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Preface

R is a popular open source software tool for statistical analysis and graphics.
This book focuses on the very powerful graphics facilities that R provides for
the production of publication-quality diagrams and plots.

What this book is about

This book describes the graphics system in R. The first chapter provides an
overview of the R graphics facilities. There are many pictures that demon-
strate the variety and complexity of plots and diagrams that can be produced
using R. There is a description of the different output formats that R graphics
can produce and there is a description of the overall organization of the R
graphics facilities, so that the user has some idea of where to find a function
for a particular purpose.

The most important feature of the R graphics setup is the existence of two
distinct graphics systems within R: the traditional graphics system and the
grid graphics system. Section 1.2.2 offers some advice on which system to use.
Part I of this book is concerned with the traditional graphics system, which
implements many of the “traditional” graphics facilities of the S language[11][5]
(originally developed at Bell Laboratories and available in a commercial im-
plementation as S-PLUS). The majority of R graphics functions available at
the time of writing are based upon this system. The chapters in this part of
the book describe how to work with the traditional graphics functions, with
a particular emphasis on how to modify or add output to a plot to produce
exactly the right final output. Chapter 2 describes the functions that are avail-
able to produce complete plots and Chapter 3 focuses on how to customize
the details of plots, combine multiple plots, and add further output to plots.

Part II describes the grid graphics system, which is unique to R and is much
more powerful than the traditional system. At the time of writing, there
are fewer functions based on grid for producing complete plots, but there is
more power to produce a wider range of final results. Most of the functions
that produce complete plots using grid come from Deepayan Sarkar’s lattice
package, which implements Bill Cleveland’s Trellis graphics system. This
is described in Chapter 4. The remaining chapters describe how the grid
system can be used to produce graphical scenes starting from a blank page.
In particular, there is a discussion of how to develop new graphical functions
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that are easy for other people to use and build on.

Appendix A provides a very brief introduction to the R system in general and
Appendix B discusses ways in which the traditional and grid graphics systems
can be combined.

The main part of the book assumes a basic familiarity with the R language
and environment. For more detailed information, the reader is directed to
the home page of the R Project (the URL is given below), which has links to
on-line documents and references to printed material.

There are a number of projects working on graphical user interfaces to R,
but the common underlying method of interaction is via a command line.
This book focuses on the production of graphical output by entering R code
interactively at the command-line interface to R and writing code in scripts
to load into R or to run as a batch job.

What this book is not about

This book does not contain discussions about which sort of plot is most appro-
priate for a particular sort of data, nor does it contain guidelines for correct
graphical presentation. In fact, instructions are provided for producing some
types of plots and graphical elements that are generally disapproved of, such
as pie charts and cross-hatched fill patterns.

The information in this book is meant to be used to produce a plot once the
format of the plot has been decided upon and to experiment with different
ways of presenting a set of data. No plot types are deliberately excluded,
partly because no plot type is all bad (e.g., a pie chart can be a very effec-
tive way to present a simple proportion) and partly because some graphical
elements, such as cross-hatching, are sometimes required by a particular pub-
lisher.

The flexibility of R graphics encourages the user not to be constrained to
thinking in terms of just the traditional types of plots. The aim of this book
is to provide lots of useful tools and to describe how to use them. There are
many other sources of information on graphical guidelines and recommended
plot types, some of which are mentioned below.

Most introductory statistics text books will contain basic guidelines for se-
lecting an appropriate type of plot. Examples of books that deal specif-
ically with the construction of effective plots and are aimed at a general
audience are “Creating More Effective Graphs” by Naomi Robbins[51] and
Edward Tufte’s “Visual Display of Quantitative Information”[60] and “Envi-
sioning Information”[61]. For more technical discussions of these issues, see
“Visualizing Data” and “Elements of Graphing Data” by Bill Cleveland|[12][13],
and “The Grammar of Graphics” by Leland Wilkinson[67].

@ © 2006 by Taylor & Francis Group, LLC



For ideas on appropriate graphical displays for particular types of analysis or
particular types of data, some starting points are “Data analysis and graph-
ics using R” by John Maindonald and John Braun[37], “An R and S-Plus
Companion to Applied Regression” by John Fox[20], “Statistical Analysis and
Data Display” by Richard Heiberger and Burt Holland[29], and “Visualizing
Categorical Data” by Michael Friendly[25].

This book is also mot a complete reference to the R system. Appendix A
provides a very brief introduction to R, but there are many freely-available
documents that provide both introductory and in-depth explanations of the R
system. The best place to start is the “Documentation” section on the home
page of the R project web site (see “On the web” on page ix). Two examples of
introductory texts are “Introductory Statistics with R” by Peter Dalgaard[18§]
and “Using R for Introductory Statistics” by John Verzani[65]; the standard
advanced text is “Modern Applied Statistics with S” by Bill Venables and
Brian Ripley[64].

Finally, this book does not describe in any detail the many graphics functions
that are available in add-on packages for R that are mot part of the stan-
dard R installation. This book only focuses on the graphics facilities that are
distributed with R by default — in particular, functions in the grDevices,
graphics, grid, and lattice packages. No attempt is made to enumerate
all existing graphics functions for R or even to list all add-on packages that
contain graphics functions; the list is very long and growing all the time. Ex-
cept where specified, all add-on packages mentioned in this book are available
from CRAN*, the main download site for R.

Differences with S-PLUS

The traditional graphics system in R is a reimplementation of the traditional
graphics system in the original S language. This means that much of what
is said about the traditional system in Part I of this book is also true for
the traditional graphics in the commercial distribution of S, S-PLUS. How-
ever, there are some important differences between traditional R graphics and
traditional S graphics, such as the specification of colors and line types by
character strings, the concept of layouts for arranging plots, and the availabil-
ity of mathematical annotation in text. These differences mean that graphics
code written for R is not guaranteed to produce the same result (or even run)
in S-PLUS. Furthermore, the grid graphics system described in Part II is not
available in S-PLUS (just as the S-PLUS editable graphics are not available in
R).

This book focuses on the graphics systems available in R so specific differences

*The Comprehensive R Archive Network; http://cran.r-project.org
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with S-PLUS are not highlighted in the main text. However, much of what is
said in Part I will also apply to traditional graphics in S-PLUS.

Who should read this book

This book should be of interest to a variety of R users. For people who are
new to R, this book provides an overview of the graphics system, which is
useful for understanding what to expect from R’s graphics functions and how
to modify or add to the output they produce. For this purpose, Chapter 1 and
Chapter 2 are a good starting point from which to begin producing standard
plots, but you will soon need to start dipping into Chapter 3 in order to fine
tune your plots. It would also be worthwhile to take a look at Chapter 4 to
see what Trellis plots can do.

For intermediate-level R users, this book provides all of the information neces-
sary to perform sophisticated customizations of plots produced in R. As with
many software applications, it is possible to work with R for years and remain
unaware of important and useful features. This book will be useful in making
users aware of the full scope of R graphics, and in providing a description of
the correct model for working with R graphics. Sections 1.2, 1.3, and Chapters
3 and 4 should be read first. Chapters 5, 6, and 7 should be read by users
interested in experimenting with novel graphical displays.

For advanced R users, this book contains vital information for producing co-
herent, reusable, and extensible graphics functions. Advanced users should
pay particular attention to Part II.

Conventions used in this book

This book describes a large number of R functions and there are many code
examples. Samples of code that could be entered interactively at the R com-
mand line are formatted as follows:

> 1:10

where the > denotes the R command-line prompt and everything else is what
the user should enter. When an expression is longer than a single line it will
look like this:

> plot(1:10, 1:10, col="blue", lty="dashed",
axes=FALSE, type="1")

with the additional lines indented appropriately.

Often, the functions described in this book are used for the side-effect of
producing graphical output, so the result of running a function is represented
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by a figure. In cases where the result of a function is a value that we might
be interested in, the result will be shown below the code that produced it and
will be formatted as follows:

[1J 1 2 3 4 5 6 7 8 910

In some places, an entirely new R function is defined. Such code would nor-
mally be entered into a script file and loaded into R in one step (rather than
being entered at the command line), so the code for new R functions will be
presented in a figure and formatted as follows:

1 myfun <- function(x, y) {
2 plot(x ,y)
3}

with line numbers provided for easy reference to particular parts of the code
from the main text.

When referring to a function within the main text, it will be formatted in
a typewriter font and will have parentheses after the function name, e.g.,
plotO).

When referring to the arguments to a function or the values specified for the
arguments, they will also be formatted in a typewriter font, but they will
not have any parentheses at the end, e.g., x, y, or col="red".

When referring to an S3 class, statements will be of the form: “the
"classname" class,” using a typewriter font with the class name in double-
quotes. However, when referring to an object that is an instance of a class,
statements will be of the form: “the classname object,” using a typewriter
font, but without the double-quotes around the class name.

On the web

There is a web site (URL below) with errata and links to pages of PNG
versions of all figures from the book and the R code used to produce them.

http://www.stat.auckland.ac.nz/ paul/RGraphics/rgraphics.html

There is also an RGraphics package containing functions to produce the figures
in this book and all functions, classes, and methods defined in the book (see
especially Chapter 7). This package is available from CRAN (see the footnote
on page vii).
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Version information

Software development is an ongoing process and this book can only provide
a snapshot of R’s graphics facilities. The descriptions and code samples in
this book are accurate for R version 2.1.0 and above. Apart from a couple
of places, mostly in Chapter 7, code examples are also accurate for R version
2.0.1. In each of these cases, there is a footnote to highlight the difference
and, if possible, to provide information about how to modify the code so that
it will work in R version 2.0.1. Much of the content of Part I is also accurate
for earlier versions of R, but specific areas of incompatibility are not indicated
in the text.

A new “minor” version of R is released approximately every six months. The
most up-to-date information on the most recent versions of R and grid are
available in the on-line help pages and at the home pages for the R Project
and the grid package:

http://www.R-project.org/
http://www.stat.auckland.ac.nz/ paul/grid/grid.html
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1

An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R
graphics giving information on where to look for a particular function.
The final section describes the different graphical output formats that
R can produce and how to obtain a particular output format.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)
> text (150, 600,
"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle.* The call to
the text () function adds the label at the data location (150, 600) within
the plot.

*The pressure data set, available in the datasets package, contains 19 recordings of
the relationship between vapor pressure (in millimeters of mercury) and temperature (in
degrees Celsius).
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Figure 1.1

A simple scatterplot of vapor pressure of mercury as a function of temperature.
The plot is produced from two simple R expressions: one expression to draw the
basic plot, consisting of axes, data symbols, and bounding rectangle; and another
expression to add the text label within the plot.
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This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot, or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output obscuring any previous output that it overlaps.

There are very many graphical functions provided by R and the add-on pack-
ages for R, so before describing individual functions, Section 1.1 demonstrates
the variety of results that can be achieved using R graphics. This should pro-
vide some idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are organized.
This should provide users with some basic ideas of where to look for a function
to do a specific task. Section 1.3 describes the set of functions involved with
the selection of a particular graphical output format. By the end of this
chapter, the reader will be in a position to start understanding in more detail
the core R functions that produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected together on pages 7 to 15.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, piecharts, and basic 3D plots. Figure 1.2 shows
some examples.*

In R, these basic plot types can be produced by a single function call (e.g.,

*The barplot makes use of data on death rates in the state of Virginia for different age
groups and population groups, available as the VADeaths data set in the datasets package.
The boxplot example makes use of data on the effect of vitamin C on tooth growth in guinea
pigs, available as the ToothGrowth data set, also from the datasets package. These and
many other data sets distributed with R were obtained from “Interactive Data Analysis” by
Don McNeil[40] rather than directly from the original source.
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pie(pie.sales) will produce a piechart), but plots can also be considered
merely as starting points for producing more complex images. For example, in
the scatterplot in Figure 1.2, a text label has been added within the body of the
plot (in this case to show a subject identification number) and a secondary
y-axis has been added on the right-hand side of the plot. Similarly, in the
histogram, lines have been added to show a theoretical normal distribution
for comparison with the observed data. In the barplot, labels have been added
to the elements of the bars to quantify the contribution of each element to the
total bar and, in the boxplot, a legend has been added to distinguish between
the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction[19]. This plot
is based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the traditional statistical plots, R provides an implementation of
Trellis plots[6] via the package lattice[54] by Deepayan Sarkar. Trellis plots
embody a number of design principles proposed by Bill Cleveland[12][13] that
are aimed at ensuring accurate and faithful communication of information via
statistical plots. These principles are evident in a number of new plot types
in Trellis and in the default choice of colors, symbol shapes, and line styles
provided by Trellis plots. Furthermore, Trellis plots provide a feature known
as “multi-panel conditioning,” which creates multiple plots by splitting the
data being plotted according to the levels of other variables.

Figure 1.4 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six “panels,” one for each site. Each panel consists of a dotplot showing yield
for each site with different symbols used to distinguish different years, and a
“strip” showing the name of the site.
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For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.

1.1.3 Special-purpose plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized areas.
There are many examples of special-purpose plots in add-on packages for R.
For example, Figure 1.5 shows a map of New Zealand produced using R and
the add-on packages maps|[7] and mapproj[39].

R graphics works mostly in rectangular Cartesian coordinates, but functions
have been written to display data in other coordinate systems. Figure 1.6
shows three plots based on polar coordinates. The top-left image was pro-
duced using the stars() function. Such star plots are useful for representing
data where many variables have been measured on a relatively small number of
subjects. The top-right image was produced using customized code by Karsten
Bjerre and the bottom-left image was produced using the rose.diag() func-
tion from the CircStats package[36]. Plots such as these are useful for pre-
senting geographic, or compass-based data. The bottom-right image in Figure
1.6 is a ternary plot producing using ternaryplot () from the vcd package[41].
A ternary plot can be used to plot categorical data where there are exactly
three levels.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.7 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node[30].

For more information on how to generate a plot starting from an empty page
with traditional graphics functions, see Chapter 3. The grid package provides
even more power and flexibility for producing customized graphical output
(see Chapters 5 and 6), especially for the purpose of producing functions for
others to use (see Chapter 7).

1.1.4 General graphical scenes
The generality and flexibility of R graphics makes it possible to produce graph-

ical images that go beyond what is normally considered to be statistical graph-
ics, although the information presented can usually be thought of as data of
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some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.8. This
is a standard way of presenting the results of a meta-analysis. Figure 1.12
and Figure 3.6 provide other examples of tabular graphical output produced
by R.*

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.9 shows two examples that provide a geo-
metric representation of extensions to F-tests (provided by Arden Miller[42]).
A more unusual example of a general diagram is provided by the musical score
in Figure 1.10 (provided by Steven Miller). R graphics can even be used like
a general-purpose painting program to produce “clip art” as shown by Figure
1.11. These examples tend to require more effort to achieve the final result as
they cannot be produced from a single function call. However, R’s graphics
facilities, especially those provided by the grid system (Chapters 5 and 6),
provide a great deal of support for composing arbitrary images like these.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types (for little
effort), but also for providing tools to produce final images that are well
beyond the standard plot types (including going beyond the boundaries of
what is normally considered statistical graphics).

*All of the figures in this book, apart from the figures in Chapter 7 that only contain R
code, were produced using R.
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Figure 1.2

Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a piechart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes. (The boxplot is adapted from an idea by Roger Bivand.)
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Figure 1.3

A customized scatterplot produced using R. This is created by starting with a simple
scatterplot and augmenting it by adding an additional y-axis and several additional
sets of lines, polygons, and text labels.
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Figure 1.4

A Trellis dotplot produced using R. The relationship between the yield of barley and
species of barley is presented, with a separate dotplot for different experimental sites
and different plotting symbols for data gathered in different years. This is a small
modification of Figure 1.1 from Bill Cleveland’s “Visualizing Data” (reproduced with
permission from Hobart Press).
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Figure 1.5

A map of New Zealand produced using R, Ray Brownrigg’s maps package, and
Thomas Minka’s mapproj package. The map (of New Zealand) is drawn as a se-
ries of polygons, and then text, an arrow, and a data point have been added to
indicate the location of Auckland, the birthplace of R. A separate world map has

been drawn in the bottom-right corner, with a circle to help people locate New
7AaalanAd
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Figure 1.6

Some polar-coordinate plots produced using R (top-left), the CircStats package by
Ulric Lund and Claudio Agostinelli (top-right), and code submitted to the R-help
mailing list by Karsten Bjerre (bottom-left). The plot at bottom-right is a ternary
plot produced using the vcd package (by David Meyer, Achim Zeileis, Alexandros
Karatzoglou, and Kurt Hornik)
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Figure 1.7

A novel decision tree plot, visualizing the distribution of the dependent variable
in each terminal node. From code under development by Torsten Hothorn, Kurt
Hornik, Achim Zeileis, and Friedrich Leisch and planned to appear on CRAN as the

package party.
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A table-like plot produced using R. This is a typical presentation of the results
from a meta-analysis. The original motivation and data were provided by Martyn
Plummer[48].
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A music score produced using R (code by Steven Miller).

Once upon a time ...

Figure 1.11
A piece of clip art produced using R.
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1.2 The organization of R graphics

This section briefly describes how R’s graphics functions are organized so that

the user knows where to start looking for a particular function.

The R graphics system can be broken into four distinct levels: graphics pack-
ages; graphics systems; a graphics engine, including standard graphics devices;

and graphics device

Graphics
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Graphics
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Graphics
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Figure 1.12
The structure of the
graphics functions in

packages (see Figure 1.12).
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R graphics system showing the main packages that provide
R. Arrows indicate where one package builds on the functions
in another package. The packages described in this book are highlighted with thicker

borders and grey backgrounds.
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The core R graphics functionality described in this book is provided by the
graphics engine and the two graphics systems, traditional graphics and grid.
The graphics engine consists of functions in the grDevices package and pro-
vides fundamental support for handling such things as colors and fonts (see
Section 3.2), and graphics devices for producing output in different graphics
formats (see Section 1.3).

The traditional graphics system consists of functions in the graphics package
and is described in Part I. The grid graphics system consists of functions in
the grid package and is described in Part II.

There are many other graphics functions provided in add-on graphics pack-
ages, which build on the functions in the graphics systems. Only one such
package, the lattice package, is described in any detail in this book. The
lattice package builds on the grid system to provide Trellis plots (see Chap-
ter 4).

There are also add-on graphics device packages that provide additional graph-
ical output formats.

1.2.1 Types of graphics functions

Functions in the graphics systems and graphics packages can be broken down
into three main types: high-level functions that produce complete plots; low-
level functions that add further output to an existing plot; and functions for
working interactively with graphical output.

The traditional system, or graphics packages built on top of it, provide the
majority of the high-level functions currently available in R. The most signifi-
cant exception is the lattice package (see Chapter 4), which provides complete
plots based on the grid system.

Both the traditional and grid systems provide many low-level graphics func-
tions, and grid also provides functions for interacting with graphical output
(editing, extracting, deleting parts of an image).

Most functions in graphics packages produce complete plots and typically offer
specialized plots for a specific sort of analysis or a specific field of study. For
example: the hexbin package[10] from the BioConductor project has functions
for producing hexagonal binning plots for visualizing large amounts of data;
the maps package[7] provides functions for visualizing geographic data (see, for
example, Figure 1.5); and the package scatterplot3d[35] produces a variety
of 3-dimensional plots. If there is a need for a particular sort of plot, there
is a reasonable chance that someone has already written a function to do it.
For example, a common request on the R-help mailing list is for a way to
add error bars to scatterplots or barplots and this can be achieved via the
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functions plotCI() from the gplots package in the gregmisc bundle or the
errbar () function from the Hmisc package. There are some search facilities
linked off the main R home page web site to help to find a particular function
for a particular purpose (also see Section A.2.10).

While there is no detailed discussion of the high-level graphics functions in
graphics packages other than lattice, the general comments in Chapter 2 con-
cerning the behavior of high-level functions in the traditional graphics system
will often apply as well to high-level graphics functions in graphics packages
built on the traditional system.

1.2.2 Traditional graphics versus grid graphics

The existence of two distinct graphics systems in R raises the issue of when
to use each system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
see Appendix B for ways around this).

In some cases, the same sort of plot can be produced by both lattice and
traditional functions. The lattice versions offer more flexibility for adding
further output and for interacting with the plot, plus Trellis plots have a
better design in terms of visually decoding the information in the plot.

For producing graphical scenes starting from a blank page, the grid system
offers the benefit of a much wider range of possibilities, at the cost of a having
to learn a few additional concepts.

For the purpose of writing new graphical functions for others to use, grid
again provides better support for producing more general output that can be
combined with other output more easily. Grid also provides more possibilities
for interaction.
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1.3 Graphical output formats

At the start of this chapter (page 1), there is a simple example of the sort of R
expressions that are required to produce a plot. When using R interactively,
the result is a plot drawn on screen. However, it is also possible to produce
a file that contains the plot, for example, as a PostScript document. This
section describes how to control the format in which a plot is produced.

R graphics output can be produced in a wide variety of graphical formats.
In R’s terminology, output is directed to a particular output device and that
dictates the output format that will be produced. A device must be created or
“opened” in order to receive graphical output and, for devices that create a file
on disk, the device must also be closed in order to complete the output. For
example, for producing PostScript output, R has a function postscript()
that opens a file to receive PostScript commands. Graphical output sent to
this device is recorded by writing PostScript commands into the file. The
function dev.off () closes a device.

The following code shows how to produce a simple scatterplot in PostScript
format. The output is stored in a file called myplot.ps:

> postscript(file="myplot.ps")
> plot(pressure)
> dev.off ()

To produce the same output in PNG format (in a file called myplot.png), the
code simply becomes:

> png(file="myplot.png")
> plot(pressure)
> dev.off ()

When working in an interactive session, output is often produced, at least
initially, on the screen. When R is installed, an appropriate screen format is
selected as the default device and this default device is opened automatically
the first time that any graphical output occurs. For example, on the various
Unix systems, the default device is an X11 window so the first time a graphics
function gets called, a window is created to draw the output on screen. The
user can control the format of the default device using the options () function.
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Table 1.1
Graphics formats that R supports and the functions that open
an appropriate graphics device

Device Function Graphical Format

Screen/GUI Devices

x11() or X110 X Window window
windows () Microsoft Windows window
quartz () Mac OS X Quartz window
File Devices

postscript () Adobe PostScript file

pdf O Adobe PDF file

pictex() ETEX PicTEX file

xfig() XFIG file

bitmap () GhostScript conversion to file
png() PNG bitmap file

jpegO JPEG bitmap file

(Windows only)
win.metafile() Windows Metafile file

bmp () Windows BMP file

Devices provided by add-on packages

devGTK () GTK window (gtkDevice)
devJava() Java Swing window (RJavaDevice)
devSVG() SVG file (RSvgDevice)

1.3.1 Graphics devices

Table 1.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document being created. The
documentation for individual functions should be consulted for descriptions
of these arguments.

It is possible to have more than one device open at the same time, but only
one device is currently “active” and all graphics output is sent to that device.

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.1list (). This gives
the name (the device format) and number for each open device. The function
dev.cur () returns this information only for the currently active device. The
dev.set () function can be used to make a device active, by specifying the
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appropriate device number and the functions dev.next() and dev.prev()
can be used to make the next/previous device on the device list the active
device.

All open devices can be closed at once using the function graphics.off ().
When an R session ends, all open devices are closed automatically.

1.3.2 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. On Windows there is a facility for returning to pre-
vious screens of output (see the “History” menu, which is available when a
graphics window has focus), but on most screen devices, the output of previ-
ous pages is lost.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening
a device and specifying a pattern for the file name like file="myplot%03d"
so that the %034 is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

1.3.3 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy () copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
the aspect ratio of the active device. The function dev.copy2eps () is similar
to dev.copy (), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a IWTEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print () attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").
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The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason it is possible to disable the display list, by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

Chapter summary

R graphics can produce a wide variety of graphical output, including
(but not limited to) many different kinds of statistical plots, and the
output can be produced in a wide variety of formats. Graphical output
is produced by calling functions that either draw a complete plot or
add further output to an existing plot.

There are two main graphics systems in R: a traditional system similar
to the original S graphics system and a newer grid system that is
unique to R. Additional graphics functionality is provided by a large
number of add-on packages that build on these graphics systems.
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2

Simple Usage of Traditional Graphics

Chapter preview

This chapter introduces the main high-level plotting functions in the
traditional graphics system. These are the functions used to produce
complete plots such as scatterplots, histograms, and boxplots. This
chapter describes the names of the standard plotting functions, the
standard ways to call these functions, and some of the standard argu-
ments that can be used to vary the appearance of the plots. Some of
this information is also applicable to high-level plotting functions in
other add-on packages.

The aim of this chapter is to provide an idea of the range of functions that
are available in the traditional graphics system, to point the user toward the
most important ones, and introduce the standard approach to using them.

The graphics functions that make up the traditional graphics system are pro-
vided in an add-on package called graphics, which is automatically loaded in
a standard installation of R. In a non-standard installation, it may be neces-
sary to make the following call in order to access traditional graphics functions
(if the graphics package is already loaded, this will not do any harm).

> library(graphics)

This chapter mentions all of the high-level graphics functions in the graphics
package, but does not describe all possible uses of these functions. For detailed
information on the behavior of individual functions the user should consult
the individual help pages using the help() function (or help.start() for a
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web-browser interface). For example, the following code shows the help page
for the barplot() function.

> help(barplot)

Another useful way of learning about a graphics function is to use the
example () function. This runs the code in the “Examples” section of the help
page for a function. The following code runs the examples for barplot ().

> par (ask=TRUE)
> example(barplot)

The par (ask=TRUE) is important to ensure that the user is prompted before
each new page; without it the examples tend to flash by too fast for them to
be viewed properly.

2.1 The traditional graphics model

As described at the start of Chapter 1, a plot is created in traditional graphics
by first calling a high-level function that creates a complete plot, then calling
low-level functions to add more output if necessary.

Traditional graphics functions always produce output on the current device
(see Section 1.3.1 for information on devices and selecting a current device
when more than one device is open). There is also the concept of a “current
plot,” and all low-level functions add output to the current plot. If there is
only one plot per page, then a high-level function starts a new plot on a new
page. There may be multiple plots on a page (see Section 3.3), and in this
case a high-level function starts the next plot on the same page, only starting
a new page when the number of plots per page is exceeded.

The main persistent record of graphical output is the device output — a
window on screen or a file on disk. The only way to edit graphical output is
to modify and rerun the original R code, or to produce output in a format
that can be edited using third-party software (e.g., the output from an xfig()
device can be edited using the xfig program; on Windows, the metafile format
can be edited by a number of different programs).
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2.2 Plots of one or two variables

The traditional graphics system provides a standard set of basic plot types.
The plot () function produces scatterplots, the barplot () function produces
barplots, hist() produces histograms, boxplot() produces boxplots, and
pie() produces piecharts (see Figure 1.2 for example output).

R does not make a major distinction between, for example, scatterplots that
only plot data symbols at each (x, y) location and scatterplots that draw
straight lines connecting the (x, y) locations (line plots). These are just
variations on the basic scatterplot, controlled by a type argument. This is
demonstrated by the following code, which produces four different plots by
varying the value of the type argument (see Figure 2.1).

y <= rnorm(20)

plot(y, type="p")
plot(y, type="1")
plot(y, type="b")
plot(y, type="h")

V V V V V

R also does not make a distinction between a plot of a single set of data and
a plot containing multiple series of data. Additional data series can be added
to a plot using low-level functions such as points () and lines() (see Section
3.4.1; also see the function matplot () below).

The first argument to these high-level functions is the data to plot, but there
is a reasonable amount of flexibility in the way that the data can be specified.
For example, each of the following calls to plot () can be used to produce the
scatterplot in Figure 1.1 (with small variations in the axis labels). In the first
case, all of the data to plot are specified in a single data frame. In the second
case, separate x and y variables are specified. In the third case, the data to
plot are specified as a formula.

> plot(pressure)
> plot(pressure$temperature, pressure$pressure)
> plot(pressure ~ temperature, data=pressure)

All of the basic plotting functions in the traditional graphics system are generic
(see Section A.4). One consequence of this has just been described — there
are several ways to specify the data to plot — but this also means that in some
cases the plot that the functions produce depends on the type of arguments
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Four variations on a scatterplot. In each case, the plot is produced by a call to
the plot () function with the same data; all that changes is the value of the type
argument.
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passed to the functions. This is most relevant to the plot () function, which,
for example, will produce boxplots if the x variable is a factor. Another
example is shown in the code below. Here an 1m object is created from a call
to the Im() function. When this object is passed to the plot () function, the
special plot method for 1m objects produces several regression diagnostic plots
(see Figure 2.2).*

> 1m.SR <- 1lm(sr ~ poplb5 + pop75 + dpi + ddpi,
data = LifeCycleSavings)
> plot(1lm.SR)

In many cases, add-on graphics packages provide new plots by defining a new
method for the plot () function. For example, the cluster package[52] pro-
vides a plot () method for plotting the result of an agglomerative hierarchical
clustering procedure[32][53][56] (an agnes object). This method produces a
special “bannerplot” and a dendrogram from the data (see the following code
and Figure 2.3). The first five expressions are just setting up the data; the
last two expressions create an agnes object and then plot it.

ai <- agnes(iris[subset, 1:4])
plot(ai, labels = cS)

> subset <- sample(1:150, 20)

> cS <- as.character(Sp <- iris$Species[subset])
> cS[Sp == "setosa"] <- "S"

> cS[Sp == "versicolor"] <- "V"

> cS[Sp == "virginica"] <- "g"

>

>

The matplot () function is not a plot () method, but it is specifically designed
to work like plot () with x or y given as matrices. This function is a convenient
way to plot multiple data series on a single scatterplot. Different data series
are automatically distinguished by using different data symbols and colors.

In addition to the very traditional set of plots, there is a function for producing
scatterplots of a single variable, stripchart (), a function for drawing curves
representing a mathematical function, curve (), and a function for producing
a character-based stem-and-leaf plot, stem().

*The data used in this example are measures relating to the savings ratio (aggregate
personal saving divided by disposable income) averaged over the period 1960-1970 for 50
countries, available as the data set LifeCycleSavings in the datasets package.

fThe data used in this example are the famous iris data data set giving measurements
of physical dimensions of three species of iris, available as the iris data set in the datasets
package.
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Plotting an 1m object. There is a special plot () method for 1m objects that produces
four diagnostic plots from the results of a linear model analysis.
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Plotting an agnes object. There is a special plot() method for agnes objects that
produces plots relevant to the results of an agglomerative hierarchical clustering
analysis.
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Some add-on graphics packages provide useful extensions on the standard plot
types. For example, the Hmisc package[26] provides the labcurve () function
for drawing a plot with lines through multiple data series and text labels
attached to each line.

2.2.1 Arguments to graphics functions

It is often the case, especially when producing graphics for publication, that
the output produced by a single call to a high-level graphics function is not
exactly right. There are many ways in which the output of graphics functions
may be modified and Chapter 3 addresses this topic in full detail. This section
will only consider the possibility of specifying arguments to high-level graphics
functions in order to modify their output.

Many of these arguments are specific to a particular function. For example,
the boxplot () function has width and boxwex arguments (among others) for
controlling the width of the boxes in the plot, and the barplot () function has
a horiz argument for controlling whether bars are drawn horizontally rather
than vertically.

The following code shows examples of the use of the boxwex argument for
boxplot () and the horiz argument for barplot () (see Figure 2.4).*

In the first example, there are two calls to boxplot (), which are identical
except that the second specifies that the individual boxplots should be half as
wide as they would be by default (boxwex=0.5).

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light grey")

> boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col="light grey",
boxwex=0.5)

In the second exameple, there are two calls to barplot (), which are identical
except that the second specifies that the bars should be drawn horizontally
rather than vertically (horiz=TRUE).

*The data in the boxplot example are from an experiment to test the effectiveness
of different orchard spray constituents in repelling honeybees, available as the data set
OrchardSprays in the datasets package. The data used in the barplot example are from
the VADeaths data set (see page 3).
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Modifying default barplot () and boxplot () output. The top two plots are produced
by calls to the boxplot () function with the same data, but with different values of
the boxwex argument. The bottom two plots are both produced by calls to the
barplot() function with the same data, but with different values of the horiz
argument.
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> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "grey",
names=c("RM", "RF", "UM", "UF"))

> barplot(VADeaths[1:2,], angle = c(45, 135),
density = 20, col = "grey",
names=c("RM", "RF", "UM", "UF"),
horiz=TRUE)

In general, the user should consult the documentation for the specific function
to determine which arguments are available and what effect they have.

2.2.2 Standard arguments

Despite the existence of many arguments that are specific only to a single
graphics function, there are several arguments that are “standard” in the sense
that many high-level functions will accept them.

Most high-level functions will accept graphical parameters controlling such
things as color (col), line type (1ty), and text font. Section 3.2 provides a
full list of these arguments and describes their effects. In many cases, these
arguments are not given as explicitly named arguments to the high-level func-
tion, but are accepted via the ellipsis argument (.. .).

Unfortunately, because the interpretation of these standard arguments may
vary in some cases, some care is necessary. For example, if the col argument
is specified for a standard scatterplot, this only affects the color of the data
symbols in the plot (it does not affect the color of the axes, or the axis labels),
but for the barplot () function, col specifies the color for the fill or pattern
used within the bars.

In addition to the standard graphical parameters, there are standard argu-
ments to control the appearance of axes and labels on plots. It is usually
possible to modify the range of the axis scales on a plot by specifying x1im
or ylim arguments in the call to the high-level function, and often there is a
set of arguments for specifying the labels on a plot: main for a title, sub for
a sub-title, x1ab for an x-axis label and ylab for a y-axis label.

Although there is no guarantee that these standard arguments will be accepted
by high-level functions in add-on graphics packages, in many cases they will
be accepted, and they will have the expected effect.

The following code shows examples of setting some of these standard argu-
ments for the plot() function (see Figure 2.5). All of the calls to plot()
draw a scatterplot with lines connecting the data values: the first call uses a
wider line (1wd=3), the second call draws the line a grey color (col="grey"),
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the third call draws a dashed line (1ty="dashed"), and the fourth call uses a
much wider range of values on the y-scale (ylim=c(-4, 4)).

y <- rnorm(20)

plot(y, type="1", 1lwd=3)
plot(y, type="1", col="grey")
plot(y, type="1", lty="dashed")
plot(y, type="1", ylim=c(-4, 4))

V V V VvV V

In cases where the default output from a high-level function cannot be mod-
ified to produce the desired result by specifying arguments to the high-level
function, possible options are to add further annotation (see Section 3.4), or
to generate the entire plot from scratch (see Section 3.5).

Some high-level functions provide an argument to inhibit some of the default
output in order to assist in the customization of a plot. For example, the
default plot () function has an axes argument to allow the user to inhibit the
drawing of axes and the user can then produce customized output to represent
the axis (see Section 3.4.5).

2.3 Plots of multiple variables

The traditional graphics system provides a number of functions for visualizing
high-dimensional data. For plots of three variables there are: the persp()
function for producing 3D surfaces; contour() and filled.contour() for
producing contours to represent the values of the third variable; image (),
which produces a grid of rectangles and uses color to represent the value of the
third variable; and symbols(), which uses a symbol (e.g., a circle of varying
radius) to represent the third variable. Figure 2.6 shows some examples of
the output from these functions.*

For the special case of two dichotomous variables grouped by a third variable
(data from a 2 by 2 by k contingency table), there is the fourfoldplot()
function, which creates a “fourfold display”[23].

*The data used to produce the 3-D surface, contour, and image plots are topographic
measurements of Maunga Whau (Mt. Eden), a dormant volcano in Auckland, New Zealand,
available as the data set volcano in the datasets package. The data were digitally captured
from a topographic map by Ross Ihaka. The data used for the symbols() plot are physical
measurements of black cherry trees, available as the trees data set in the datasets package.
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Figure 2.5

Standard arguments for high-level functions. All four plots are produced by calls to
the plot () function with the same data, but with different standard plot function
arguments specified: the top-left plot makes use of the 1lwd argument to control line
thickness; the top-right plot uses the col argument to control line color; the bottom-
left plot makes use of the 1ty argument to control line type; and the bottom-right
plot uses the ylim argument to control the scale on the y-axis.
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Figure 2.6

Plotting three variables. Clockwise from top-left: a 3D surface, a plot where a third
variable is represented by the size of the plotting symbols, an image plot where a
third variable is represented using color, and a contour plot.

@ © 2006 by Taylor & Francis Group, LLC



For data sets containing more than three variables, there is the pairs() func-
tion for producing a matrix of scatterplots (plotting each variable against all
other variables), the function stars() for producing “star” plots of contin-
uous variables, and the mosaicplot() function for producing a mosaicplot
of categorical data[28][24]. Figure 2.7 shows examples of the output of these
functions.*

Some important add-on graphics packages provide more extensive facilities for
producing representations of multi-dimensional data. For 3D plots, there is
the scatterplot3d package[35] and the rgl package[2]. The latter provides
some access to the visualization capabilities of OpenGL so there are advanced
visualization features like the ability to interactively rotate plots and special
lighting and surface effects. The Rggobi package[33] provides an interface
between R and the ggobi program[57], which offers a number of techniques
for visualizing many variables, including the grand tour[17].

The standard arguments described in the previous section for standard plots
of one or two variables are less well supported for plotting three or more
variables.

2.4 Modern plots and specialized plots

The traditional graphics system, and add-on graphics packages that have built
on it, contain a number of functions to produce plots that are relatively mod-
ern (i.e., not provided by all statistical software packages), or that are suited
to a particular type of data or analysis technique, or that are specific to a
particular area of research.

The traditional system has functions that implement several of the plots de-
veloped by Bill Cleveland based on principles of human perception. The
dotchart () function creates a dotplot (see the top-left plot in Figure 2.8%)
and the coplot () function creates a conditioning plot (an example is shown
in Figure 3.28). For a much wider range of plots of this kind, see Chapter 4,
which describes Trellis plots.

*The data used for the scatterplot matrix are the iris data (see page 29). The data used
in the stars() plot are measures of fuel consumption and automobile design, available as
the mtcars data set in the datasets package. The data used for the mosaicplot are records
of survival rates and demographic measures for passengers on the Titanic, available as the
Titanic data set in the datasets package.

TThe data set used in this example are from the VADeaths data set (see page 3).
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Plotting multivariate data. At the top is a scatterplot matrix (a scatterplot for every
combination of a set of variables), at bottom-left is a variation on a star plot, and
at bottom-right is a mosaicplot.
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Some modern and specialized plots. Clockwise from top-left are: a (Cleveland)
dotplot, a sunflower plot, and two variations on a dendrogram.
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There are several functions for helping to plot data when data symbols over-
lap in a standard scatterplot. The sunflowerplot() function can be useful
when identical data values repeat a small number of times. In these plots, a
“flower” is produced at each location with a “petal” for each replication (see the
top-right plot in Figure 2.8). When the data are voluminous, the hexbin()
function from the hexbin package is useful for plotting regions representing
data density rather than plotting individual data points. A similar approach
is to bin the data and use one of contour () or image (). It is also worth men-
tioning the jitter () function, which does no drawing, but adds a very small
random amount to data values in order to separate values that are originally
identical.

There are functions that are particularly aimed at representing categori-
cal data or the results of analyzing categorical data. For example, the
assocplot () function produces Cohen-Friendly association plots[16][22]. A
much wider range of such functions is provided by the vcd package, which
implements plots from Michael Friendly’s book “Visualizing Categorical
Data”[25].

The plot() method for dendrogram objects is provided for drawing hierar-
chical or tree-like structures, such as the results from clustering or a recursive
partitioning regression tree. The packages rpart[59] and maptree[66] provide
more functions related to this area. The bottom two plots in Figure 2.8 show
examples of output from the plot () method for dendrogram objects.*

2.5 Interactive graphics

The strength of the traditional graphics system lies in the production of static
graphics. There are only limited facilities for interacting with graphical out-
put.

The locator () function allows the user to click within a plot and returns the
coordinates where the mouse click occurred. It will also optionally draw data
symbols at the clicked locations or draw lines between the clicked locations.

The identify () function can be used to add labels to data symbols on a plot.
The data point closest to the mouse click gets labelled.

In R version 2.1.0, there is a getGraphicsEvent () function that provides

*The data used in these examples are measures of crime rates in various US states in
1973, available as the data set USArrests in the datasets package.
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a more flexible basis for developing interactive plots (currently only for the
Windows graphics device). This function captures key stroke events as well
as mouse events and allows more general event handlers to be written as R
functions.

Several add-on graphics packages provide additional interactive capabilities.
The tcltk package provides a general facility for building GUI components
and this can be used to create interactive graphics. Some of the tcltk de-
mos and the dynamicGraph package[4] provide examples of this approach.
The Rggobi package[33] and the iPlots package[62] provide an alternative
approach by linking R to other graphics software applications that have so-
phisticated interactive features, such as brushing and linking plots[14][58].

Chapter summary

The traditional graphics system has functions to produce the stan-
dard statistical plots such as histograms, scatterplots, barplots, and
piecharts. There are also functions for producing higher-dimensional
plots such as 3D surfaces and contour plots and more specialized or
modern plots such as dotplots, dendrograms, and mosaicplots. In most
cases, the functions provide a number of arguments to allow the user
to control the details of the plot, such as the widths of the boxes in
a boxplot. There are a standard set of arguments for controlling the
appearance of the plot (colors, fonts, line types, etc.) and the labels
and axes on a plot, but these are not all available for all types of plots.
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3

Customizing Traditional Graphics

Chapter preview

It is very often the case that a high-level plotting function does not
produce exactly the final result that is desired. This chapter describes
low-level traditional functions that are useful for controlling the fine
details of a plot and for adding further output to a plot (e.g., adding
descriptive labels).

In order to utilise these low-level functions effectively, this chapter also
includes a description of the regions and coordinate systems that are
used to locate the output from low-level functions. For example, there
is a description of which function to use to draw text in the margins of
a plot as opposed to drawing text in the data region (where the data
symbols are plotted). There is also a discussion of ways to arrange
several plots together on a single page.

Sometimes it is not possible to achieve a final result by modifying an
existing high-level plot. In such cases, the user might need to create a
plot using only low-level functions. This case is also addressed in this
chapter together with some discussion of how to write a new graphics
function for other people to use.

It is often the case that the default or standard output from a high-level
function is not exactly what the user requires, particularly when producing
graphics for publication. Various aspects of the output often need to be mod-
ified or completely replaced. This chapter describes the various ways in which
the output from a traditional graphics high-level function can be customized
and extended.
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The real power of the traditional graphics system lies in the ability to control
many aspects of the appearance of a plot, to add extra output to a plot, and
even to build a plot from scratch in order to produce precisely the right final
output.

Section 3.1 introduces important concepts of drawing regions, coordinate sys-
tems, and graphics state that are required for properly working with tradi-
tional graphics at a lower level. Section 3.2 describes how to control aspects
of output such as colors, fonts, line styles, and plotting symbols, and Section
3.3 addresses the problem of placing several plots on the same page. Section
3.4 describes how to customize a plot by adding extra output and Section 3.5
looks at ways to produce entirely new types of plots.

3.1 The traditional graphics model in more detail

In order to explain some of the facilities for customizing plots, it is necessary
to describe more about the model underlying traditional graphics plots.

3.1.1 Plotting regions

In the base graphics system, every page is split up into three main regions: the
outer margins, the current figure region, and the current plot region. Figure
3.1 shows these regions when there is only one figure on the page and Figure
3.2 shows the regions when there are multiple figures on the page.

The region obtained by removing the outer margins from the device is called
the inner region. When there is only one figure, this usually corresponds to the
figure region, but when there are multiple figures the inner region corresponds
to the union of all figure regions.

The area outside the plot region, but inside the figure region is referred to
as the figure margins. A typical high-level function draws data symbols and
lines within the plot region and axes and labels in the figure margins or outer
margins (see Section 3.4 for information on the functions used to draw output
in the different regions).

The size and location of the different regions is controlled either via the par ()
function, or using special functions for arranging plots (see Section 3.3). Spec-
ifying an arrangement of the regions does not usually affect the current plot
as the settings only come into effect when the next plot is started.
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Figure Region

Figure 3.1
The plot regions in traditional graphics. The outer margins, figure region, and plot
region, when there is a single plot on the page.
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Multiple figure regions in traditional graphics. The outer margins, current figure
region, and current plot region, when there are multiple plots on the page.
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Figure 3.3
The user coordinate system in the plot region. Locations within this coordinate
system are relative to the scales on the plot axes.

Coordinate systems

Each plotting region has one or more coordinate systems associated with it.
Drawing in a region occurs relative to the relevant coordinate system. The
coordinate system in the plot region, referred to as “user coordinates,” is
probably the easiest to understand as it simply corresponds to the range of
values on the axes of the plot (see Figure 3.3). The drawing of data symbols,
lines, text, and so on in the plot region is relative to this user coordinate
system.

The scales on the axes of a plot are often set up automatically by R, but it is
possible to control them explicitly via x1im and ylim arguments to high-level
plotting functions (see Section 2.2.1) or via the usr argument to the par()
function (see Section 3.4.7).
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The figure margins contain the next most commonly-used coordinate systems.
The coordinate systems in these margins are a combination of x- or y-ranges
(like user coordinates) and lines of text away from the boundary of the plot
region. Figure 3.4 shows two of the four figure margin coordinate systems.
Axes are drawn in the figure margins using these coordinate systems.

There is a further set of “normalized” coordinate systems available for the
figure margins in which the x- and y-ranges are replaced with a range from 0
to 1. In other words, it is possible to specify locations along the axes as a pro-
portion of the total axis length. Axis labels and plot titles are drawn relative
to this coordinate system. All of these figure margin coordinate systems are
created implicitly from the arrangement of the figure margins and the setting
of the user coordinate system.

The outer margins have similar sets of coordinate systems, but locations along
the boundary of the inner region can only be specified in normalized coordi-
nates (always relative to the extent of the complete outer margin). Figure 3.5
shows two of the four outer margin coordinate systems.

Sections 3.4.3 and 3.4.5 describe functions that produce output relative to
these margin coordinate systems.

3.1.2 The traditional graphics state

The traditional graphics system maintains a graphics “state” for each graphics
device. Whenever output is drawn, the graphics state is consulted to deter-
mine where it should be drawn, what color it should be, what fonts to use for
text, and so on.

The graphics state consists of a large number of settings. Some of these
settings describe the size and placement of the plot regions and coordinate
systems described above. Some settings describe the general appearance of
graphical output (the colors and line types that are used to draw lines, the
fonts that are used to draw text, etc). Some settings describe aspects of the
output device (e.g., the physical size of the device and the current clipping
region).

Tables 3.1 to 3.3 together provide a list of all of the graphics state settings and
a very brief indication of their meaning. Most of the settings are described in
detail in Sections 3.2 and 3.3.

The main function used to access the graphics state is the par() function.
Simply typing par () will result in a complete listing of the current graphics
state. A specific state setting can be queried by supplying specific setting
names as arguments to par(). The following code (page 52) queries the
current state of the col and 1ty settings.
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Figure 3.4

Figure margin coordinate systems. The typical coordinate systems for figure margin
1 (top plot) and figure margin 2 (bottom plot). Locations within these coordinate
systems are a combination of position along the axis scale and distance away from
the axis in multiples of lines of text.
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Outer margin coordinate systems. The typical coordinate systems for outer margin
1 (top plot) and outer margin 2 (bottom plot). Locations within these coordinate
systems are a combination of a proportion along the inner region and distance away
from the inner region in multiples of lines of text.
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Table 3.1

High-level traditional graphics state settings. This set of graphics state
settings can be queried and set via the par() function and can be used
as arguments to other graphics functions (e.g., plot () or lines()). Each
setting is described in more detail in the relevant Section.

Setting Description Section
adj justification of text 3.2.3
ann draw plot labels and titles? 3.2.3
bg “background” color 3.2.1
bty type of box drawn by box () 3.2.5
cex size of text (multiplier) 3.2.3
cex.axis size of axis tick labels 3.2.3
cex.lab size of axis labels 3.2.3
cex.main  size of plot title 3.2.3
cex.sub size of plot sub-title 3.2.3
col color of lines and data symbols 3.2.1
col.axis color of axis tick labels 3.2.1
col.lab color of axis labels 3.2.1
col.main  color of plot title 3.2.1
col.sub color of plot sub-title 3.2.1
fg “foreground” color 3.2.1
font font face (bold, italic) for text 3.2.3
font.axis font face for axis tick labels 3.2.3
font.lab font face for axis labels 3.2.3
font.main font face for plot title 3.2.3
font.sub font face for plot sub-title 3.2.3
gamma gamma correction for colors 3.2.1
lab number of ticks on axes 3.2.5
las rotation of text in margins 3.2.3
1ty line type (solid, dashed) 3.2.2
lwd line width 3.2.2
mgp placement of axis ticks and tick labels 3.2.5
pch data symbol type 3.24
srt rotation of text in plot region 3.2.3
tck length of axis ticks (relative to plot size) 3.2.5
tcl length of axis ticks (relative to text size) 3.2.5
tmag size of plot title (relative to other labels) 3.2.3
type type of plot (points, lines, both) 3.24
xaxp number of ticks on x-axis 3.2.5
Xaxs calculation of scale range on x-axis 3.2.5
xaxt x-axis style (standard, none) 3.2.5
xpd clipping region 3.2.7
yaxp number of ticks on y-axis 3.2.5
yaxs calculation of scale range on y-axis 3.2.5
yaxt y-axis style (standard, none) 3.2.5
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> par(c("col" R nltyn))

$col
[1] "black"

$1ty
[1] "solid"

The par () function can be used to modify traditional graphics state settings
by specifying a value via an argument with the appropriate setting name. The
following code sets new values for the col and 1ty settings.

> par(col="red", 1lty="dashed")

Modifying traditional graphics state settings via par () has a persistent effect.
Settings specified in this way will hold until a different setting is specified.
Settings may also be temporarily modified by specifying a new value in a
call to a graphics function such as plot() or lines(). The following code
demonstrates this idea. First of all, the line type is permanently set using
par (), then a plot is drawn and the lines drawn between data points in this
plot are dashed. Next, a plot is drawn with a temporary line type setting
of 1ty="so0lid" and the lines in this plot are solid. When the third plot is
drawn, the permanent line type setting of 1ty="dashed" is back in effect so
the lines are again dashed.

y <- rnorm(20)

par(1ty="dashed")

plot(y, type="1") # line is dashed

plot(y, type="1", lty="solid") # line is solid
plot(y, type="1") # line is dashed

V V V V V

Only some of the graphics state settings can be set temporarily in calls to
graphics functions. For example, the mfrow setting may not be set in this way
and can only be set using par (). These “low level” settings are listed in Table
3.2.

A small set of graphics state settings cannot be set at all and can only be
queried using par (). For example, there is no function to allow the user to
modify the size of the current device (after the device has been created), but
its size (in inches) may be obtained using par("din"). These “read only”
settings are listed in Table 3.3.

Changes to the traditional graphics state only affect the current graphics
device.
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Table 3.2

Low-level traditional graphics state settings. This set of graphics
state settings can be queried and set via the par() function. Each
setting is described in more detail in the relevant Section.

Setting Description Section
ask prompt user before new page? 3.2.8
family font family for text 3.2.3
fig location of figure region (normalized) 3.2.6
fin size of figure region (inches) 3.2.6
lend line end style 3.2.2
lheight line spacing (multiplier) 3.2.3
ljoin line join style 3.2.2
Imitre line mitre limit 3.2.2
mai size of figure margins (inches) 3.2.6
mar size of figure margins (lines of text) 3.2.6
mex line spacing in margins 3.2.6
mfcol number of figures on a page 3.3.1
mfg which figure is used next 3.3.1
mfrow number of figures on a page 3.3.1
new has a new plot been started? 3.2.8
oma size of outer margins (lines of text) 3.2.6
omd location of inner region (normalized) 3.2.6
omi size of outer margins (inches) 3.2.6
pin size of plot region (inches) 3.2.6
plt location of plot region (normalized) 3.2.6
ps size of text (points) 3.2.3
pty aspect ratio of plot region 3.2.6
usr range of scales on axes 3.4.7
xlog logarithmic scale on x-axis? 3.2.5
ylog logarithmic scale on y-axis? 3.2.5
Table 3.3

Read-only traditional graphics state settings. This set of graphics
state settings can only be queried (via the par() function). Each
setting is described in more detail in the relevant Section.

Setting Description Section
cin size of a character (inches) 3.4.7
cra size of a character (“pixels”) 3.4.7
cxy size of a character (user coordinates) 3.4.7
din size of graphics device (inches) 3.4.7

@ © 2006 by Taylor & Francis Group, LLC



3.2 Controlling the appearance of plots

This section is concerned with the appearance of plots, which means the colors,
line types, fonts and so on that are used to draw a plot. As described in Section
3.1.2, these features are controlled via traditional graphics state settings and
values are specified for the settings either with a call to the par() function
or as arguments to a specific graphics function such as plot (). For example,
there is a setting called col to control the color of output (see the next section).
This can be set permanently using par () with an expression of the form

par(col="red")

which will affect all subsequent graphical output. Alternatively, the setting
can be specified as an argument to a high-level function using an expression
like

plot(..., col="red")

which means that the setting will affect the output just for that plot. Finally,
the setting can be used as an argument to a low-level function, as in the
expression

lines(..., col="red")

which shows that the setting can be used to control the appearance of a single
piece of graphical output.

There are many individual settings that affect the appearance of a plot, but
they can be grouped in terms of what aspects of a plot the settings affect.
Each of the following sections details a particular group of settings, including
a description of the role of individual settings and descriptions of what con-
stitutes valid values for each setting. There are sections on: specifying colors;
how to control the appearance of lines, text, data symbols, and axes; how to
control the size and location of the various plotting regions; clipping (only
drawing output on certain parts of the page); and specifying what should
happen when a high-level function is called to start a new plot.

The appearance of plots is also affected by the location and size of the plotting
regions, but this is dealt with separately in Section 3.3.

This section is not meant to be read from start to end as it is very detailed.
This section should be used as a reference tool to access the relevant subsec-
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tions as they are required to learn about controlling a particular aspect of a
plot.

3.2.1 Colors

There are three main color settings in the traditional graphics state: col, fg,
and bg.

The col setting is the most commonly used. The primary use is to specify
the color of data symbols, lines, text, and so on that are drawn in the plot
region. Unfortunately, when specified via a graphics function, the effect can
vary. For example, a standard scatterplot produced by the plot () function
will use col for coloring data symbols and lines, but the barplot () function
will use col for filling the contents of its bars. In the rect() function, the
col argument provides the color to fill the rectangle and there is a border
argument specific to rect () that gives the color to draw the border of the
rectangle. The effect of col on graphical output drawn in the margins also
varies. It does not affect the color of axes and axis labels, but it does affect
the output from the mtext () function. There are specific settings for affecting
axes, labels, titles, and sub-titles called col.axis, col.lab, col.main, and
col.sub.

The fgsetting is primarily intended for specifying the color of axes and borders
on plots. There is some overlap between this and the specific col.axis,
col.main, etc. settings described above.

The bg setting is primarily intended to specify the color of the background
for base graphics output. This color is used to fill the entire page. As with
the col setting, when bg is specified in a graphics function it can have a quite
different meaning. For example, the plot () and points() function use bg to
specify the color for the interior of the data symbols, which can have different
colors on the border (pch values 21 to 25; see Section 3.2.4).

There is also a gamma setting that controls the gamma correction for a device.
On most devices this can only be set once when the device is first opened.

Specifying colors

The easiest way to specify a color in R is simply to use the color’s name. For
example, "red" can be used to specify that graphical output should be (a
very bright) red. R understands a fairly large set of color names (657 to be
exact); type colors() (or colours()) to see a full list of known names.

It is also possible to specify colors using one of the standard color-space de-
scriptions. For example, the rgb() function allows a color to be specified as
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a Red-Green-Blue (RGB) triplet of intensities. Using this function, the color
red is specified as rgb(1, 0, 0) (i.e., as much red as possible, no blue, and
no green). The function col2rgb() can be used to see the RGB values for a
particular color name.

An alternative way to provide an RGB color specification is to provide a
string of the form "#RRGGBB", where each of the pairs RR, GG, BB consist of
two hexadecimal digits giving a value in the range zero (00) to 255 (FF). In
this specification, the color red is given as "#FF0000".

There is also an hsv() function for specifying a color as a Hue-Saturation-
Value (HSV) triplet. The terminology of color spaces is fraught, but roughly
speaking: hue corresponds to a position on the rainbow, from red (0),
through orange, yellow, green, blue, indigo, to violet (1); saturation deter-
mines whether the color is dull or bright; and value determines whether the
color is light or dark. The HSV specification for the (very bright) color red is
hsv(0, 1, 1). The function rgb2hsv() converts a color specification from
RGB to HSV.

There is also a convertColor () function for converting colors between dif-
ferent color spaces, including the CIELAB and CIELUYV color spaces[46], in
which a unit distance represents a perceptually constant change in color. The
hcl () function allows colors to be specified directly as polar coordinates within
CIELUV (as a hue, chroma, and luminance triplet). This is like a perceptually
uniform version of HSV.* Ross Thaka’s colorspace package[31] provides an
alternative set of functions for generating, converting, and combining colors
in a sophisticated manner in a wide variety of color spaces.

One final way to specify a color is simply as an integer index into a predefined
set of colors. The predefined set of colors can be viewed and modified using
the palette() function. In the default palette, red is specified as the integer
2.

Semitransparent colors

All R colors are stored with an alpha transparency channel. An alpha value of
0 means fully transparent and an alpha value of 17 means fully opaque. When
an alpha value is not specified, the color is opaque.

The function rgb () can be used to specify a color with an alpha transparency

*The hel() function is only available from R version 2.1.0.

fThe maximum alpha value depends on the method being used to specify a color. When
a color is specified via rgb(), the user can decide what the maximal value should be (it
defaults to 1). When a color is specified as a string beginning with a "#", the maximum
value is "FF".
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Table 3.4
Functions to generate color sets. R functions that can be used to generate coher-
ent sets of colors

Name Description

rainbow() Colors vary from red through orange, yellow,
green, blue, and indigo, to violet.

heat.colors() Colors vary from white, through orange, to red.

terrain.colors() Colors vary from white, through brown, to green.

topo.colors() Colors vary from white, through brown then green,
to blue.

cm.colors() Colors vary from light blue, through white, to light
magenta.

grey() or gray() A set of shades of grey.

channel (e.g., rgb(1, 0, 0, 0.5) specifies a semitransparent red), or a color
can be specified as a string beginning with a "#" and followed by eight hex-
adecimal digits. In the latter case, the last two hexadecimal digits specify an
alpha value in the range 0 to 255 (e.g., "#FF000080" specifies a semitranspar-
ent red).

A color may also be specified as NA, which is usually interpreted as fully
transparent (i.e., nothing is drawn). The special color name "transparent"
can also be used to specify full transparency.

Only the PDF and Quartz devices support semitransparent colors. On all
other devices, semitransparent colors are rendered as fully transparent.

Color sets

More than one color is often required within a single plot and in such cases it
can be difficult to select colors that are aesthetically pleasing or are related in
some way (e.g., a set of colors in which the brightness of the colors decreases in
regular steps). Table 3.4 lists some functions that R provides for generating
sets of colors. The output of the expression example(rainbow) provides a
nice visual summary of the color sets generated by several of these functions.

Each of the functions in Table 3.4 selects a set of colors by taking regular
steps along a path through the HSV color space. This can produce color sets
that do not appear to vary smoothly. A perceptually constant color space
makes it easier to generate sets of colors with even perceptual steps between
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them or a set of colors that do not vary on a particular perceptual dimension.
For example, the following code generates six colors from the CIELUV color
space that vary regularly in terms of hue, but are all equally bright (the chroma
component is fixed at 50) and all equally light (the luminance component is
fixed at 60).

> hcl(seq(0, 360, length=7)[-7], 50, 60)

[1] "#C87ABA" "#ACSC4E" "#6BID59" "#00A396" "#5F96C2"
[6] "#B37EBE"

The RColorBrewer package[47] provides color palettes from Cynthia Brewer’s
ColorBrewer tool[27]. The ColorBrewer color sets have been carefully selected
by a color expert and include distinct palettes for representing nominal and
ordinal categories.

The functions colorRamp() and colorRampPalette() can be used to inter-
polate a new color set from an existing set of colors (e.g., create additional
colors from within a ColorBrewer palette).*

Device Dependency of Color Specifications

R stores colors internally as RGB triplets. The final appearance of a color
can vary considerably when it is viewed on a screen, or printed on paper, or
displayed through a projector as it depends on the physical characteristics of
the screen, printer ink, or projector.

Fill patterns

In some cases (e.g., when printing in black and white), it is difficult to make
use of different colors to distinguish between different elements of a plot. Using
different levels of grey can be effective, but another option is to make use of
some sort of fill pattern, such as cross-hatching. These should be used with
caution because it is very easy to create visual effects that are distracting.
Nevertheless, some journals actively encourage their use, so the facility has
some purpose.

In R, there is only limited support for fill patterns and they can only be
applied to rectangles and polygons (and only within the traditional graphics

*The functions colorRamp(), colorRampPalette(), and convertColor() are not avail-
able before R version 2.1.0, but some color ramp functionality is available in the hexbin
package[10], which is part of the BioConductor project.
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system). It is possible to fill a rectangle or polygon with a set of lines drawn
at a certain angle, with a specific separation between the lines. A density
argument controls the separation between the lines (in terms of lines per inch)
and an angle argument controls the angle of the lines (in terms of degrees
clockwise from 3 o’clock). Examples of the use of fill patterns are given in
Figures 2.4, 3.20, and their associated code.

These settings can only be controlled via arguments to the functions rect (),
polygon(), hist (), barplot (), pie(), and legend () (and not via par()).

3.2.2 Lines

There are five graphics state settings for controlling the appearance of lines.
The 1ty setting describes the type of line to draw (solid, dashed, dotted, ...),
the 1wd setting describes the width of lines, and the 1join, lend, and lmitre
settings control how the ends and corners in lines are drawn (see below).

The scope of these settings again differs depending on the graphics function
being called. For example, for standard scatterplots, the setting only applies
to lines drawn within the plot region. In order to affect the lines drawn as part
of the axes, the 1ty setting must be passed directly to the axis() function.

Specifying line widths

The width of lines is specified by a simple numeric value, e.g., 1lwd=3. The
interpretation of this value depends on what sort of device the line is being
drawn on. In other words, the physical width of the line may be different
when the line is drawn on a computer screen compared to when it is printed
on a sheet of paper. On a computer screen, a line width of 1 will typically
mean one pixel. For PostScript and PDF output, a line width of 1 produces
a line 0.75 points wide. The default value is 1.

Specifying line types

R graphics supports a fixed set of predefined line types, which can be specified
by name, such as "solid" or "dashed", or as an integer index (see Figure
3.6). In addition, it is possible to specify customized line types via a string of
digits. In this case, each digit is a hexadecimal value that indicates a number
of “units” to draw either a line or a gap. Odd digits specify line lengths and
even digits specify gap lengths. For example, a dotted line is specified by
1ty="13", which means draw a line of length one unit then a gap of length
three units. A unit corresponds to the current line width, so the result scales
with line width, but is device-dependent. Up to four such line-gap pairs can
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be specified. Figure 3.6 shows the available predefined line types and some
examples of customized line types.

Specifying line ends and joins

When drawing thick lines, it becomes important to select the style that is
used to draw corners (joins) in the line and the ends of the line. R provides
three styles for both cases: there is an 1lend setting to control line ends, which
can be "round" or flat (with two variations on flat, "square" or "butt"); and
there is an 1join setting to control line joins, which can be "mitre" (pointy),
"round", or "bevel". The differences are most easily demonstrated visually
(see Figure 3.7).

When the line join style is "mitre", the join style will automatically be con-
verted to "bevel" if the angle at the join is too small. This is to avoid
excessively pointy joins. The point at which the automatic conversion occurs
is controlled by a setting called lmitre, which specifies the ratio of the length
of the mitre divided by the line width. The default value is 10, which means
that the conversion occurs for joins where the angle is less than 11 degrees.
Other standard values are 2, which means that conversion occurs at angles less
than 60 degrees, and 1.414, which means that conversion occurs for angles
less than 90 degrees. The minimum mitre limit value is 1.

These settings can only be specified via par() (not as arguments to high-
level or low-level graphics functions) and not all devices will respect them
(especially the line mitre limit).

It is important to remember that line join styles influence the corners on
rectangles and polygons as well as joins in lines.

3.2.3 Text

There are a large number of traditional graphics state settings for controlling
the appearance of text. The size of text is controlled via ps and cex; the font
is controlled via font and family; the justification of text is controlled via
adj; and the angle of rotation is controlled via srt.

There is also an ann setting, which indicates whether titles and axis labels
should be drawn on a plot. This is intended to apply to high-level functions,
but is not guaranteed to work with all such functions (especially functions
from add-on graphics packages). There are examples of the use of ann as an
argument to high-level plotting functions in Section 3.4.

@ © 2006 by Taylor & Francis Group, LLC



Integer Sample line String

Predefined
0 "blank"
1 "solid"
) ceeececececa=-. "dashed"
3 .................. "dotted"
4 = mimimim- - "dotdash"
FE —m———— — "longdash"
6 ~—mr—mr—mr—e—a—. "twodash"
Custom
.................. nq3"
- "F8"
— i "431313"
......... — "22848222"

Figure 3.6

Predefined and custom line types. Line type may be specified as a predefined integer,
as a predefined string name, or as a string of hexadecimal characters specifying a
custom line type.
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Figure 3.7

Line join and line ending styles. Three thick lines have been drawn through the
same three points (indicated by black circles), but with different line end and line
join styles. The black line was drawn first with "square" ends and "mitre" joins;
the dark grey line was drawn on top of the black line with "round" ends and "round"
joins; and the light grey line was drawn on top of that with "butt" ends and "bevel"
joins.

Justification of text

The adj setting is a value from 0 to 1 indicating the horizontal justification
of text strings (0 means left-justified, 1 means right-justified and a value of
0.5 centers text).

The meaning of the adj setting depends on whether text is being drawn in
the plot region, in the figure margins, or in the outer margins. In the plot
region, the justification is relative to the (x, y) location at which the text
is being drawn. In this context, it is also possible to specify two values for
the setting and the second value is taken as a vertical justification for the
text. Furthermore, non-finite values (NA, NaN, or Inf) may be specified for
the justification and this is taken to mean “exact” centering. There is only
a difference between a justification value of 0.5 and a non-finite justification
value for vertical justification. In this case, a setting of 0.5 means text is
vertically centered based on the height of the text above the text baseline
(i.e., ignoring “descenders” like the tail on a “y”). A non-finite value means
that text is vertically centered based on the full height of the text (including
descenders). Figure 3.8 shows how various adj settings affect the alignment
of text in the plot region.

In the figure margins and outer margins, the meaning of the adj setting
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c(0, 1) (0, 0.5) c(0, NA) c(0, 0)

c(NA, 1) c(NA,;0.5)  c(NA, NA) c(NA, 0)

c(0.5, 1) c(0.5,0.5) c(0:5,NA) c(0.5, 0)

o(1, 1) c(1, 0.5) c(1, NA) c(1,0)

Figure 3.8

Alignment of text in the plot region. The adj graphical setting may be given two
values, c(hjust, vjust), where hjust specifies horizontal justification and wvjust spec-
ifies vertical justification. Each piece of text in the diagram is justified relative to a
grey cross to represent the effect of the relevant adj setting. The vertical adjustment
for NA is subtly different from the vertical adjustment for 0.5.
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depends on the las setting. When margin text is parallel to the axis, adj
specifies both the location and the justification of the text. For example, a
value of 0 means that the text is left-justified and that the text is located at
the left end of the margin. When text is perpendicular to the axis, the adj
setting only affects justification. Furthermore, the adj setting only affects
“horizontal” justification (justification in the reading direction) for text in the
margins.

Rotating text

The srt setting specifies a rotation angle clockwise from the positive x-axis,
in degrees (not radians). This will only affect text drawn in the plot region
(text drawn by the text () function). Text can be drawn at any angle within
the plot region.

In the figure and outer margins, text may only be drawn at angles that are
multiples of 90°, and this angle is controlled by the las setting. A value of
0 means text is always drawn parallel to the relevant axis (i.e., horizontal in
margins 1 and 3, and vertical in margins 2 and 4). A value of 1 means text is
always horizontal, 2 means text is always perpendicular to the relevant axis,
and 3 means text is always vertical. This setting interacts with or overrides
the adj and srt settings.

Text size

The size of text is ultimately a numerical value specifying the size of the font
in “points.” The font size is controlled by two settings: ps specifies an absolute
font size setting (e.g., ps=9), and cex specifies a multiplicative modifier (e.g.,
cex=1.5). The final font size specification is simply fontsize * cex. On
some devices, the font size that is specified will not be honored exactly. For
example, when drawing in an X11 window with bitmap fonts, there are only
a finite set of font sizes available and this set will vary depending on which
fonts are installed. For the PostScript and PDF formats, font sizes should be
accurate.

As with specifying color, the scope of a cex setting can vary depending on
where it is given. When cex is specified via par(), it affects most text.
However, when cex is specified via plot(), it only affects the size of data
symbols. There are special settings for controlling the size of text that is drawn
as axis tick labels (cex.axis), text that is drawn as axis labels (cex.lab),
text in the title (cex.main), and text in the sub-title (cex.sub). Finally, there
is a tmag setting for controlling the amount to magnify title text relative to
other plot labels.
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Multi-line text

It is possible to draw text that spans several lines, by inserting a new line
escape sequence, "\n", within a piece of text, as in the following example.

"first line\nsecond line"

The spacing between lines is controlled by the 1height setting, which is a mul-
tiplier applied to the natural height of a line of text. For example, Theight=2
specifies double-spaced text. This setting can only be specified via par().

Specifying fonts

Specifying an exact font may involve several pieces of information and is very
device-specific. A font is usually part of a font “family” (e.g. Helvetica or
Courier) and is a particular “face” within that family (e.g., bold or italic).
It is also possible to specify things like the font format (e.g., TrueType or
Computer Modern), the font encoding (e.g., ISO Latin 1), and even the font
foundry or designer (e.g., Adobe or Sun Microsystems).

In R graphics, it is possible to specify the font face and a font family. On
some devices, the latter can include extra details such as encoding.

The font face is specified via the font setting as an integer (Table 3.5 shows
the possible values). As with color and text size, the font setting applies only
to text drawn in the plot region. There are additional settings specifically for
axes (font.axis), labels (font.lab), and titles (font.main and font.sub).

Every graphics device establishes a default font family, which is usually a
sans serif font such as Helvetica or Arial. A new font family is specified via
the family setting using a device-independent name. The names "sans",
"serif", "mono", and "symbol" are available for the most common devices*
and provide a sans serif font, a serif font, a monospaced font, and a symbol
font respectively (see Table 3.6).

Figure 3.9 demonstrates the 16 basic font family and face combinations.f

The device-independent font name is mapped to a device-dependent font fam-
ily by individual devices. These mappings can be modified and new font
names and mappings defined using functions such as postscriptFont () and
postscriptFonts().

*Windows, X11, Quartz, PDF, and PostScript.

TThe fact that there is a font specification provided for all standard devices does not
mean that a matching font will always be available. There can be significant differences
between operating systems and locales in terms of which fonts are installed by default.
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Table 3.5

Possible font face specifications in traditional graphics. The font face must
be specified as an integer, usually between 1 and 4. The special value 5
indicates that a symbol font should be used. The range of valid font faces
varies for different Hershey fonts, but the maximum valid value is usually
4 or less. When the font family is "HersheySerif", there are a number of

special font faces available.

Integer

Description

ad W=

Symbol

Roman or upright face
Bold face

Slanted or italic face
Bold and slanted face

For the HersheySerif font family
5 Cyrillic font
6 Slanted Cyrillic font
7 Japanese characters

Table 3.6

Device-independent and Hershey font families that are distributed
with R. A font family is specified as a string

Name

Description

Device-independent fonts

"serif" Serif variable-width font
"sans" Sans-serif variable-width font
"mono" Mono-spaced “typewriter” font
"symbol" Symbol font

Hershey fonts

"HersheySerif" Serif variable-width font
"HersheySans" Sans-serif variable-width font
"HersheyScript" Serif “handwriting” font
"HersheyGothicEnglish" Gothic script font
"HersheyGothicGerman"  Gothic script font
"HersheyGothicItalian" Gothic script font
"HersheySymbol" Serif symbol font
"HersheySansSymbol" Sans-serif symbol font
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Figure 3.9

Font families and font faces. The appearance of the base sixteen font family and
font face combinations that are available for X11, PDF, PostScript, Windows, and
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Quartz graphics devices (the output shown is for the PostScript device).
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The Hershey outline fonts[1] are also distributed with R and are available for
all output formats. The names to use with the family setting to obtain the
different Hershey fonts are shown in Table 3.6. See the on-line help page for
Hershey for more information on Hershey fonts.

The family setting can only be specified via par () (not as an argument to a
high-level plotting function).

Locales

From R version 2.1.0, there is support for multi-byte locales, such as UTF-8
locales and East Asian locales (Chinese, Japanese, and Korean). This means
that strings can be specified in R that contain characters outside of the ISO
Latin 1 character set that R was restricted to prior to version 2.1.0. Such
characters cannot be produced within graphical output on all devices.

As long as the appropriate fonts are available, it should be possible to produce
characters outside of the ISO Latin 1 set for X11, Windows, and Quartz
devices, but PostScript and PDF output can only be produced for ISO Latin
1 characters.

3.2.4 Data symbols

R provides a fixed set of 26 data symbols for plotting and the choice of data
symbol is controlled by the pch setting. This can be an integer value to select
one of the fixed set of data symbols, or a single character (see Figure 3.10).
Some of the predefined data symbols (pch between 21 and 25) allow a fill color
separate from the border color, with the bg setting controlling the fill color
in these cases. If pch is a character then that letter is used as the plotting

symbol. The character "." is treated as a special case and the device attempts
to draw a very small dot (see, for example, the scatterplot matrix in Figure
2.7).

The size of the data symbols is linked to the size of text and is affected by the
cex setting. If the data symbol is a character, the size will also be affected by
the ps setting.

The type setting controls how data is represented in a plot. A value of "p"
means that data symbols are drawn at each (x, y) location. The value "1"
means that the (x, y) locations are connected by lines. A value of "b" means
that both data symbols and lines are drawn. The pch setting may also have
the value "o", which means that data symbols are “over-plotted” on lines (with
the value "b", the lines stop short of each data symbol). It is also possible
to specify the value "h", which means that vertical lines are drawn from the
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Figure 3.10

Data symbols available in R. A particular data symbol is selected by specifying an
integer between 0 and 25 or a single character for the pch graphical setting. In the
diagram, the relevant integer or character pch value is shown in grey to the left of
the relevant symbol.
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x-axis to the (x, y) locations (the appearance is like a barplot with very
thin bars). Two further values, "s" and "S" mean that (x, y) locations are
joined in a city-block fashion with lines going horizontally then vertically (or
vertically then horizontally) between each data location. Finally, the value
"n" means that nothing is drawn at all.

Figure 3.11 shows simple examples of the different plot types. This setting is
most often specified within a call to a high-level function (e.g., plot ()) rather
than via par().

3.2.5 Axes

By default, the traditional graphics system produces axes with sensible labels
and tick marks at sensible locations. If the axis does not look right, there are
a number of graphical state settings specifically for controlling aspects such as
the number of tick marks and the positioning of labels. These are described
below. If none of these gives the desired result, the user may have to resort
to drawing the axis explicitly using the axis() function (see Section 3.4.5).

The lab setting in the traditional graphics state is used to control the number
of tick marks on the axes. The setting is only used as a starting point for the
algorithm R uses to determine sensible tick locations so the final number of
tick marks that are drawn could easily differ from this specification. The
setting takes two values: the first specifies the number of tick marks on the
x-axis and the second specifies the number of tick marks on the y-axis.

The xaxp and yaxp settings also relate to the number and location of the tick
marks on the axes of a plot. This setting is almost always calculated by R
for each new plot so user settings are usually overridden (see Section 3.4.5 for
an exception to this rule). In other words, it only makes sense to query this
setting for its current value. The settings consist of three values: the first two
specify the location of the left-most and right-most tick-marks (bottom and
top tick-marks for the y-axis), and the third value specifies how many intervals
there are between tick marks. When a log transformation is in effect for an
axis, the three values have a different meaning altogether (see the on-line help
page for par()).

The mgp setting controls the distance that the components of the axes are
drawn away from the edge of the plot region. There are three values repre-
senting the positioning of the overall axis label, the tick mark labels, and the
lines for the ticks. The values are in terms of lines of text away from the edges
of the plot region. The default value is c(3, 1, 0). Figure 3.12 gives an
example of different mgp settings.

The tck and tcl settings control the length of tick marks. The tcl setting
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Figure 3.11

Basic plot types. Plotting the same data with different plot type settings. In
each case, the output is produced by an expression of the form plot(x, vy,
type=something), where the relevant value of type is shown above each plot.
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Figure 3.12

Different axis styles. The top-left plot demonstrates the default axis settings for
an x-axis. The top-right plot shows the effect of specifying an “internal” axis range
calculation and the bottom-left plot shows the effects of specifying different positions
for the axis labels and different lengths for the tick marks.
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specifies the length of tick marks as a fraction of the height of a line of text.
The sign dictates the direction of the tick marks — a negative value draws
tick marks outside the plot region and a positive value draws tick marks inside
the plot region. The tck setting specifies tick mark lengths as a fraction of
the smaller of the physical width or height of the plotting region, but it is
only used if its value is not NA (and it is NA by default). Figure 3.12 gives an
example of different tcl settings.

The xaxs and yaxs settings control the “style” of the axes of a plot. By
default, the setting is "r", which means that R calculates the range of values
on the axis to be wider than the range of the data being plotted (so that data
symbols do not collide with the boundaries of the plot region). It is possible
to make the range of values on the axis exactly match the range of values in
the data, by specifying the value "i". This can be useful if the range of values
on the axes are being explicitly controlled via x1im or ylim arguments to a
function. Figure 3.12 gives an example of different xaxs settings.

The xaxt and yaxt settings control the “type” of axes. The default value,
"s", means that the axis is drawn. Specifying a value of "n" means that the
axis is not drawn.

The x1log and ylog settings control the transformation of values on the axes.
The default value is FALSE, which means that the axes are linear and values
are not transformed. If this value is TRUE then a logarithmic transformation
is applied to any values on the relevant dimension in the plot region. This
also affects the calculation of tick mark locations on the axes.

When data of a special nature are being plotted (e.g., time series data), some
of these settings may not apply (and may not have any sensible interpretation).

The bty setting is not strictly to do with axes, but it controls the output
of the box() function, which is most commonly used in conjunction with
drawing axes. This function draws a bounding box around the edges of the
plot region (by default). The bty setting controls the type of box that the
box () function draws. The value can be "n", which means that no box is
drawn, or it can be one of "o", "1", "7" "c" "u", or "]", which means that
the box drawn resembles the corresponding uppercase character. For example,
bty="c" means that the bottom, left, and top borders will be drawn, but the
right border will not be drawn.

In addition to these graphics state settings, many high-level plotting functions,
e.g., plot (), provide arguments x1lim and ylim to control the range of the
scale on the axes. Section 2.2.2 has an example.
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3.2.6 Plotting regions

As described in Section 3.1.1, the traditional graphics system defines several
different regions on the graphics device. This section describes how to control
the size and layout of these regions using graphics state settings. Figure 3.13
shows a diagram of some of the settings that affect the widths and horizontal
placement of the regions.

Outer margins

By default, there are no outer margins on a page. Outer margins can be
specified using the oma graphics state setting. This consists of four values for
the four margins in the order (bottom, left, top, right) and values are
interpreted as lines of text (a value of 1 provides space for one line of text
in the margin). The margins can also be specified in inches using omi or in
normalized device coordinates (i.e., as a proportion of the device region) using
omd. In the latter case, the margins are specified in the order (left, right,
bottom, top).

Figure regions

By default, the figure region is calculated from the settings for the outer
margins, and the number of figures on the page. The figure region can be
specified explicitly using either the fig setting or the fin state setting. The
fig setting specifies the location, (left, right, bottom, top), of the figure
region where each value is a proportion of the “inner” region (the page less
the outer margins). The fin setting specifies the size, (width, height), of
the figure region in inches and the resulting figure region is centered within
the inner region.

Figure margins

The figure margins can be controlled using the mar state setting. This consists
of four values for the four margins in the order (bottom, left, top, right)
where each value represents a number of lines of text. The default is c(5,
4, 4, 2) + 0.1. The margins may also be specified in terms of inches using
mai.

The mex setting controls the size of a “line” in the margins. This does not
affect the size of text drawn in the margins, but is used to multiply the size
of text to determine the height of one line of text in the margins.
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Figure 3.13

Graphics state settings controlling plot regions. These are some of the settings that
control the widths and horizontal locations of the plot regions. For ease of com-
parison, this diagram has the same layout as Figure 3.1: the central grey rectangle
represents the plot region, the lighter grey rectangle around that is the figure region,
and the darker grey rectangle around that is the outer margins. A similar diagram
could be produced for settings controlling heights and vertical locations.
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Plot regions

By default, the plot region is calculated from the figure region less the figure
margins. The location and size of the plot region may be controlled explicitly
using the plt, pin, or pty settings. The plt setting allows the user to specify
the location of the plot region, (left, right, bottom, top), where each
value is a proportion of current figure region. The pin setting specifies the
size of the plot region, (width, height), in terms of inches. The pty setting
controls how much of the available space (figure region less figure margins)
that the plot region occupies. The default value is "m", which means that the
plot region occupies all of the available space. A value of "s" means that the
plot region will take up as much of the available space as possible, but it must
be “square” (i.e., its physical width will be the same as its physical height).

3.2.7 Clipping

Traditional graphics output is usually clipped to the plot region. This means
that any output that would appear outside the plot region is not drawn. For
example, in the default behavior, data symbols for (x, y) locations which
lie outside the plot region are not drawn. Traditional graphics functions that
draw in the margins clip output to the current figure region or to the device.
Section 3.4 has information about which functions draw in which regions.

It can be useful to override the default clipping region. For example, this
is necessary to draw a legend outside the plot region using the legend()
function.

The traditional clipping region is controlled via the xpd setting. Clipping can
occur either to the whole device (an xpd value of NA), to the current figure
region (a value of TRUE), or to the current plot region (a value of FALSE, which
is the default).

3.2.8 Moving to a new plot

As described in Section 2.1, high-level graphics functions usually start a new
plot. There are traditional graphics state settings that control exactly when
and how this happens.

The ask setting controls whether the user is prompted before the graphics
system starts a new page of output. It is useful for viewing multiple pages of
output (e.g., the output from example (boxplot)) that otherwise flick by too
fast to view properly. If the ask setting is TRUE then the user is prompted
before a new page of output is begun.
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The new setting controls whether a function that starts a new plot will move
on to the next figure region (possibly a new page). Every plot sets the value
to FALSE so that the next plot will move on by default, but if this setting has
the value TRUE then a new plot does not move on to the next figure region.
This can be used to overlay several plots on the same figure (Section 3.4.7 has
an example).

3.3 Arranging multiple plots

There are a number of ways to produce multiple plots on a single page.

The number of plots on a page, and their placement on the page, can be
controlled directly by specifying traditional graphics state settings using the
par O function, or through a higher-level interface provided by the layout ()
function. The split.screen() function (and associated functions) provide
yet another approach where a figure region can itself be treated as a complete
page to split into further figure and plot regions.

These three approaches are mutually incompatible. For example, a call to the
layout () function will override any previous mfrow and mfcol settings. Also,
some high-level functions (e.g., coplot ()) call layout () or par () themselves
to create a plot arrangement, which means that the output from such functions
cannot be arranged with other plots on a page.

3.3.1 Using the traditional graphics state

The number of figure regions on a page can be controlled via the mfrow and
mfcol graphics state settings. Both of these consist of two values indicating
a number of rows, nr, and a number of columns, nc; these settings result in
nr X nc figure regions of equal size.

The top-left figure region is used first. If the setting is made via mfrow then
the figure regions along the top row are used next from left to right, until that
row is full. After that, figure regions are used in the next row down, from
left to right, and so on. When all rows are full, a new page is started. For
example, the following code creates six figure regions on the page, arranged
in three rows and two columns and the regions are used in the order shown
in Figure 3.14a.

> par (mfrow=c(3, 2))
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If the setting is made via mfcol, figure regions are used by column instead of
by row.

The order in which figure regions are used can be controlled by using the mfg
setting to specify the next figure region. This setting consists of two values
that indicate the row and column of the next figure to use.

3.3.2 Layouts

The layout () function provides an alternative to the mfrow and mfcol set-
tings. The primary difference is that the layout () function allows the creation
of multiple figure regions of unequal sizes.

The simple idea underlying the layout () function is that it divides the inner
region of the page into a number of rows and columns, but the heights of rows
and the widths of columns can be independently controlled, and a figure can
occupy more than one row or more than one column.*

The first argument (and the only required argument) to the layout () function
is a matrix. The number of rows and columns in the matrix determines the
number of rows and columns in the layout.

The contents of the matrix are integer values that determine which rows and
columns each figure will occupy. The following layout specification is identical
to par (mfrow=c(3, 2)).

> layout (matrix(c(l, 2, 3, 4, 5, 6), byrow=TRUE, ncol=2))
It may be easier to imagine the arrangement of figure regions if the matrix
is specified using cbind() or rbind(). The code below repeats the previous
example, but uses rbind () to specify the layout matrix.
> layout (rbind(c(1, 2),

c(3, 4),

c(5, 6)))
The function layout.show() may be helpful for visualizing the figure regions
that are created. The following code creates a figure visualizing the layout
created in the previous example (see Figure 3.14a).
> layout.show(6)

*The underlying concept of a “layout”[43] is also implemented, in a slightly different
and more general way, in the grid graphics system (see Section 5.5.6)
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Figure 3.14

Some basic layouts. (a) A layout that is identical to par (mfrow=c(3, 2)). (b) Same
as (a) except the figures are used in the reverse order. (¢) A layout with unequal
row heights. (d) same as (c) except the layout widths and heights “respect” each
other.
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The contents of the layout matrix determine the order in which the resulting
figure regions will be used. The following code creates a layout with exactly
the same rows and columns as the previous one, but the figure regions will be
used in the reverse order (see Figure 3.14Db).

> layout (rbind(c(6, 5),
c(4, 3),
c(2, 1))

By default, all row heights are the same and all column widths are the same
size and the available inner region is divided up equally. The heights argu-
ments can be used to specify that certain rows are given a greater portion
of the available height (for all of what follows, the widths argument works
analogously for column widths). When the available height is divided up, the
proportion of the available height given to each row is determined by dividing
the row heights by the sum of the row heights. For example, in the following
layout there are two rows and one column. The top row is given two-thirds
of the available height (2/(2 + 1)) and the bottom row is given one third
(1/(241)). Figure 3.14c shows the resulting layout.

> layout (matrix(c(l, 2)), heights=c(2, 1))

In the examples so far, the division of row heights has been completely in-
dependent of the division of column widths. The widths and heights can be
forced to correspond as well so that, for example, a height of 1 corresponds
to the same physical distance as a width of 1. This allows control over the
aspect ratio of the resulting figure. The respect argument is used to force
this correspondence. The following code is the same as the previous example
except that the respect argument is set to TRUE (see Figure 3.14d).

> layout (matrix(c(1l, 2)), heights=c(2, 1),
respect=TRUE)

It is also possible to specify heights of rows and widths of columns in absolute
terms. The 1lcm() function can be used to specify heights and widths for a
layout in terms of centimeters. The following code is the same as the previous
example, except that a third, empty, region is created to provide a vertical
gap of 0.5cm between the two figures (see Figure 3.15a). The 0 in the first
matrix argument means that no figure will ever occupy that region.

> layout (matrix(c(1, 0, 2)),
heights=c(2, 1cm(0.5), 1),
respect=TRUE)
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Figure 3.15

Some more complex layouts. (a) A layout with a row height specified in centimeters.
(b) A layout with a figure occupying more than one column. (¢) Same as (b), but
with only column 1 and row 3 respected.
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This next piece of code demonstrates that a figure may occupy more than one
row or column in the layout. This extends the previous example by adding a
second column and creating a figure region that occupies both columns of the
bottom row. In the matrix argument, the value 2 appears in both columns of
row 3 (see Figure 3.15Db).

> layout (rbind(c(1, 3),
c(0, 0),
c(2, 2)),
heights=c(2, 1cm(0.5), 1),
respect=TRUE)

Finally, it is possible to specify that only certain rows and columns should
respect each other’s heights/widths. This is done by specifying a matrix for
the respect argument. In the following code, the previous example is modified
by specifying that only the first column and the last row should respect each
other’s widths/heights. In this case, the effect is to ensure that the width of
figure region 1 is the same as the height of figure region 2, but the width of
figure region 3 is free to expand to the available width (see Figure 3.15¢).

> layout (rbind(c(1, 3),
c(0, 0),
c(2, 2)),
heights=c(2, 1cm(0.5), 1),
respect=rbind(c(0, 0),
c(0, 0),
c(1, O))

3.3.3 The split-screen approach

The split.screen() function provides yet another way to divide the page
into a number of figure regions. The first argument, figs, is either two
values specifying a number of rows and columns of figures (i.e., like the
mfrow setting), or a matrix containing a figure region location, (left, right,
bottom, top), on each row (i.e., like a fig setting on each row).

Having established figure regions in this manner, a figure region is used by
calling the screen() function to select a region. This means that the order
in which figures are used is completely under the user’s control, and it is
possible to reuse a figure region, though there are dangers in doing so (the
on-line help for split.screen() discusses this some more). The function
erase.screen() can be used to clear a defined screen and close.screen()
can be used to remove one or more screen definitions.

@ © 2006 by Taylor & Francis Group, LLC



An even more useful feature of this approach is that each figure region can
itself be divided up by a further call to split.screen(). This allows complex
arrangements of plots to be created.

The downside to this approach is that it does not fit very nicely with the
underlying traditional graphics system model (see Section 3.1). The recom-
mended way to achieve complex arrangements of plots is via the layout ()
function (see Section 3.3.2) or by using the grid graphics system (see Part II),
possibly in combination with traditional high-level functions (see Appendix
B).

3.4 Annotating plots

Sometimes it is not enough to be able to modify the default output from
high-level functions and in many situations, further graphical output must be
added to achieve the desired result (see, for example, Figure 1.3). R graphics
in general is fundamentally oriented to supporting the annotation of plots —
the ability to add graphical output to an existing plot. In particular, the
regions and coordinate systems used in the construction of a plot are also
available for adding further output to the plot. For example, it is possible to
position a text label relative to the scales on the axes of a plot.

3.4.1 Annotating the plot region

Most graphics functions that add output to an existing plot, add the output
to the plot region, relative to the user coordinate system.

Graphical primitives

This section describes the graphics functions that provide the most basic
graphics output (lines, rectangles, text, etc).

The most common use of this facility is to plot additional sets of data within
a plot. The lines() function draws lines between (x, y) locations, and the
points() function draws data symbols at (x, y) locations. The following
code demonstrates a common situation where three different sets of y-values,
recorded at the same set of x-values, are plotted together on the same plot
(see the top-left plot in Figure 3.16).
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Figure 3.16

Annotating the plot region of a traditional graphics plot. The top-left plot shows
points and extra lines being added to an initial line plot. The top-right plot shows
text being added to an initial scatterplot. The bottom-left plot shows a dashed
rectangle and a polygon being added to an initial scatterplot. Axes and labels have
been omitted from the plots in order to avoid clutter.
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First some data are generated, consisting of one set of x values and three sets
of y values, and the first set of y values are plotted as a grey line (type="1"
and col="grey").

\4

x <= 1:10

y <- matrix(sort(rnorm(30)), ncol=3)

plot(x, y[,1], ylim=range(y), ann=FALSE, axes=FALSE,
type="1", col="grey")

box(col="grey")

vV Vv

\4

Now a set of points are added for the first set of y values, then lines and points
are added for the other two sets of y values.

points(x, y[,1])

lines(x, y[,2], col="grey")
points(x, y[,2], pch=2)
lines(x, y[,3], col="grey")
points(x, y[,3], pch=3)

vV V. V V V

The lines() function typically draws a single line through many points
(though NA values in the (x, y) locations will create breaks in the line). An
alternative is provided by the segments() function, which will draw several
different straight lines between pairs of end points.

It is also possible to draw text at (x, y) locations. This is useful for labeling
data locations, particularly using the pos argument to offset the text so that
it does not overlay any data symbols. The following code creates a diagram
demonstrating the use of text () (see the top-right plot in Figure 3.16). Again,
some data are created and (grey) data symbols are plotted at the (x, y)
locations.

x <- c(4, 5, 2, 1)

y <- X

plot(x, y, ann=FALSE, axes=FALSE, col="grey", pch=16)
points(3, 3, col="grey", pch=16)

box(col="grey")

vV V V V V

Now some text labels are added, with each one offset in a different way from
the (x, y) location. Notice that the arguments to text () may be vectors so
that several pieces of text are drawn by the one function call.

> text(x, y, c("bottom", "left", "top", "right"), pos=1:4)
> text(3, 3, "overlay")
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There are also the functions rect () and polygon () for drawing rectangles and
polygons. The arguments to rect () may be vectors, in which case multiple
rectangles are drawn. Multiple polygons may be drawn using polygon()
by inserting an NA value between each set of polygon vertexes. R will draw
self-intersecting polygons, but does not handle polygons with holes. For both
rect () and polygon(), the col argument specifies the color to fill the interior
of the shape and the argument border controls the color of the line around
the boundary of the shape. The following code demonstrates the use of these
functions. First, data are generated and plotted (as grey circles).

x <= rnorm(100)
y <= rnorm(100)
plot(x, y, ann=FALSE, axes=FALSE, col="grey")
box(col="grey")

V V V V

Now we draw a dashed bounding box for the data using rect() and a solid
convex hull using polygon() (and chull() to calculate the hull; see the
bottom-left plot of Figure 3.16).

> rect(min(x), min(y), max(x), max(y), lty="dashed")
> hull <- chull(x, y)
> polygon(x[hull], y[hull])

Like the plot () function, the text(), lines(), and points() functions are
generic. This means that they have flexible interfaces for specifying (x, y)
locations, or they produce different output when given objects of a particular
class in the x argument. For example, both lines(), and points() will
accept formulae for specifying the (x, y) locations and the lines () function
will behave sensibly when given a ts (time series) object to draw.

As a parallel to the matplot () function (see page 29), there are functions
matpoints() and matlines() specifically for adding lines and data symbols
to a plot given x or y as matrices.

Graphical utilities

In addition to the low-level graphical primitives of the previous section, there
are a number of utility functions that provide a set of slightly more complex
shapes.

The grid() function adds a series of grid lines to a plot. This is simply a
series of line segments, but the default appearance (light grey and dotted) is
suited to the purpose of providing visual cues to the viewer without interfering
with the primary data symbols.
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abline() & arrows() rug()

Line of best fit

Figure 3.17

More examples of annotating the plot region of a traditional graphics plot. The
left-hand plot shows a line of best fit (plus a text label and arrow) being added to
an initial scatterplot. The right-hand plot shows a series of ticks being added as a
rug plot on an initial histogram.

The abline() function provides a number of convenient ways to add a line
(or lines) to a plot. The line(s) can be specified either by a slope and y-
axis intercept, or as a series of x-locations for vertical lines or y-locations for
horizontal lines. The function will also accept the coefficients from a linear
regression analysis (even as an 1m object), thereby providing a simple way to
add a line of best fit to a scatterplot.

The arrows () function draws line segments and augments them with simple
arrowheads at either end. The following code annotates a basic scatterplot
with a line and arrows (see the left plot of Figure 3.17).

First, some data are generated and plotted.

x <- runif (20, 1, 10)

y <= x + rnorm(20)

plot(x, y, ann=FALSE, axes=FALSE, col="grey", pch=16)
box(col="grey")

vV V V VvV

Now a line of best fit is drawn through the data using abline() and a text
label and arrow are added using text () and arrows().
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> Imfit <- 1m(y ~ x)

> abline(1mfit)

> arrows(5, 8, 7, predict(lmfit, data.frame(x=7)),
length=0.1)

> text(5, 8, "Line of best fit", pos=2)

The box () function draws a rectangle around the boundary of the plot region.
The which argument makes it possible to draw the rectangle around the cur-
rent figure region, inner region, or outer region instead. The box() function
has been used in each of the examples in this section.

The rug() function produces a “rug” plot along one of the axes, which consists
of a series of tick marks representing data locations. This can be useful to
represent an additional one-dimensional plot of data (e.g., in combination
with a density curve). The following code uses this function to annotate a
histogram (see the right plot of Figure 3.17).

> y <= rnorm(50)

> hist(y, main="", xlab="", ylab="", axes=FALSE,
border="grey", col="light grey")

> box(col="grey")

> rug(y, ticksize=0.02)

3.4.2 Missing values and non-finite values

R has special values representing missing observations (NA) and non-finite
values (NaN and Inf). Most traditional graphics functions allow such values
within (x, y) locations and handle them by not drawing the relevant location.
For drawing data symbols or text, this means the relevant data symbol or piece
of text will not be drawn. For drawing lines, this means that lines to or from
the relevant location are not drawn; a gap is created in the line. For drawing
rectangles, an entire rectangle will not be drawn if any of the four boundary
locations are missing or non-finite.

Polygons are a slightly more complex case. For drawing polygons, a missing
or non-finite value in x or y is interpreted as the end of one polygon and the
start of another. Figure 3.18 shows an example. On the left, a polygon is
drawn through 12 locations evenly spaced around a circle. On the right, the
first, fifth, and ninth locations have been set to NA so the output is split into
three separate polygons.

Missing or non-finite values can also be specified for some traditional graphics
state settings. For example, if a color setting is missing or non-finite then

@ © 2006 by Taylor & Francis Group, LLC



~
=4

Figure 3.18

Drawing polygons using the polygon() function. On the left, a single polygon
(dodecagon) is produced from multiple (x, y) locations. On the right, the first,
fifth, and ninth values have been set to NA, which splits the output into three separate
polygons.

nothing is drawn (this is a brute-force way to specify a completely transparent
color). Similarly, specifying a missing value or non-finite value for cex means
that the relevant data symbol or piece of text is not drawn.

3.4.3 Annotating the margins

There are only two functions that produce output in the figure or outer mar-
gins, relative to the margin coordinate systems (Section 3.1.1).

The mtext () function draws text at any location in any of the margins. The
outer argument controls whether output goes in the figure or outer margins.
The side argument determines which margin to draw in: 1 means the bottom
margin, 2 means the left margin, 3 means the top margin, and 4 means the
right margin.

Text is drawn a number of lines of text away from the edges of the plot region
for figure margins, or a number of lines away from the edges of the inner region
for outer margins. In the figure margins, the location of the text along the
margin can be specified relative to the user coordinates on the relevant axis
using the at argument. In some cases it is possible to specify the location
as a proportion of the length of the margin using the adj argument, but this
is dependent on the value of the las state setting. For certain las settings,
the adj argument instead controls the justification of the text relative to a
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position chosen by the las argument. Often, a trial-and-error approach is
required to achieve the desired result.

The title() function is essentially a specialized version of mtext(). It is
more convenient for producing a few specific types of output, but much less
flexible than mtext (). This function can be used to produce a main title for
a plot (in the top figure margin), axis labels (in the left and bottom figure
margins), and a sub-title for a plot (in the bottom margin below the x-axis
label). The output from this function is heavily influenced by various graphics
state settings, such as cex.main and col.main (for the size and color of the
title).

With a little extra effort, it is also possible to produce graphical output in
the figure or outer margins using the functions that normally draw in the plot
region (e.g., points () and lines()). In order to do this, the clipping region of
the plot must first be set using the xpd state setting (see Section 3.2.7). This
approach is not very convenient because the functions are drawing relative
to user coordinates rather than locations relative to the margin coordinate
systems. Nevertheless, it can sometimes be useful.

The following code demonstrates the use of mtext () and a simple application
of using lines() outside the plot region for drawing what appears to be a
rectangle extending across two plots (see Figure 3.19).*

First of all, the mfrow setting is used to set up an arrangement of two figure
regions, one above the other. The clipping region is set to the entire device
using xpd=NA.

> y1 <- rnorm(100)
> y2 <- rnorm(100)

> par(mfrow=c(2, 1), xpd=NA)

The first data set is plotted as a time series on the top plot and a label is
added at the left end of figure margin 3. In addition, thick grey lines are drawn
to represent the top of the rectangle that deliberately extend well below the
bottom of the plot.

*This example was motivated by a question to R-help on December 14 2004 with subject:
“drawing a rectangle through multiple plots”.
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Left end of margin

Mty

Right end of margin

Label below x=30

Figure 3.19

Annotating the margins of a traditional graphics plot. Text has been added in
margin 3 of the top plot and in margins 1 and 3 in the bottom plot. Thick grey
lines have been added to both plots (and overlapped so that it appears to be a single
rectangle across the plots).
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> plot(yl, type="1", axes=FALSE,
xlab="", ylab="", main="")

> box(col="grey")

> mtext("Left end of margin", adj=0, side=3)

> lines(x=c(20, 20, 40, 40), y=c(-7, max(yl), max(yl), -7),
lwd=3, col="grey")

The second data set is plotted as a time series in the bottom plot, a label is
added to this plot at the right end of figure margin 3, and another label is
drawn beneath the x-location 30 in figure margin 1. Finally, thick grey lines
are drawn to represent the bottom of the rectangle that deliberately extend
above the plot. These lines overlap the lines drawn with respect to the top
plot to create the impression of a single rectangle traversing both plots.

\4

plot(y2, type="1", axes=FALSE,
xlab="", ylab="", main="")

box(col="grey")

mtext ("Right end of margin", adj=1, side=3)

mtext ("Label below x=30", at=30, side=1)

lines(x=c(20, 20, 40, 40), y=c(7, min(y2), min(y2), 7),
lwd=3, col="grey")

V V V V

3.4.4 Legends

The traditional graphics system provides the legend () function for adding a
legend or key to a plot. The legend is usually drawn within the plot region,
and is located relative to user coordinates. The function has many arguments,
which allow for a great deal of flexibility in the specification of the contents
and layout of the legend. The following code demonstrates a couple of typical
uses.

The first example shows a scatterplot with a legend to relate group names to
different symbols (see the top plot in Figure 3.20).

> with(iris,
plot(Sepal.Length, Sepal.Width,
pch=as.numeric(Species), cex=1.2))
> legend(6.1, 4.4, c("setosa", "versicolor", "virginica"),
cex=1.5, pch=1:3)

The next example shows a barplot with a legend to relate group names to
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Figure 3.20
Some simple legends. Legends can be added to any kind of plot and can relate text
labels to different symbols or different fill colors or patterns.
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different fill patterns (see the bottom plot in Figure 3.20).*

> barplot(VADeaths[1:2,], angle=c(45, 135), density=20,
col="grey", names=c("RM", |IRF|I’ "UM", IIUFII))

> legend (0.4, 38, c("55-59", "50-54"), cex=1.5,
angle = c(135, 45), density = 20, fill = "grey")

It should be noted that it is entirely the responsibility of the user to ensure
that the legend corresponds to the plot. There is no automatic checking that
data symbols in the legend match those in the plot, or that the labels in the
legend have any correspondence with the data.

Some high-level functions draw their own legend specific to their purpose (e.g.,
filled.contour()).

3.4.5 Axes

In most cases, the axes that are automatically generated by the traditional
graphics system will be sufficient for a plot. This is true even when the data
being plotted on an axis are non-numeric. For example, the axes of a boxplot
or barplot are labeled appropriately using group names.

Section 3.2.5 describes ways in which the default appearance of automatically-
generated axes can be modified, but it is more often the case that the user
needs to inhibit the production of the automatic axis and draw a customized
axis using the axis () function.

The first step is to inhibit the default axes. Most high-level functions should
provide an axes argument which, when set to FALSE, indicates that the high-
level function should not draw axes. Specifying the traditional graphics setting
xaxt="n" (or yaxt="n") may also do the trick.

The axis() function can draw axes on any side of a plot (chosen by the
side argument), and the user can specify the location along the axis of tick
marks and the text to use for tick labels (using the at and labels arguments
respectively). The following code demonstrates a simple example of a plot
where the automatic axes are inhibited and custom axes are drawn, including
a “secondary” y-axis on the right side of the plot (see Figure 3.21).

First of all, some temperature data are generated and an empty plot is created
with no data symbols and no axes.

*The data for the scatterplot are from the iris data set (see page 29) and the data for
the histogram are from the VADeaths data set (see page 3).
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Figure 3.21

Customizing axes. An initial plot is drawn with a y-scale in degrees centigrade, then
a secondary y-axis is drawn with a scale in degrees Fahrenheit. The x-axis is drawn
using special text labels, rather than the default numeric locations of the tick marks.
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x <= 1:2

y <- runif(2, 0, 100)

par (mar=c(4, 4, 2, 4))

plot(x, y, type="n", xlim=c(0.5, 2.5), ylim=c(-10, 110),
axes=FALSE, ann=FALSE)

V V V V

Next, the main y-axis is drawn with specific tick locations to represent the
Centigrade scale.

> axis(2, at=seq(0, 100, 20))
> mtext ("Temperature (Centigrade)", side=2, line=3)

Now the bottom axis is drawn with special labels and a secondary y-axis is
drawn to represent the Fahrenheit scale.

> axis (1, at=1:2, labels=c("Treatment 1", "Treatment 2"))

> axis(4, at=seq(0, 100, 20), labels=seq(0, 100, 20)*9/5 + 32)
> mtext ("Temperature (Fahrenheit)", side=4, line=3)

> box ()

Finally, some thermometer-like symbols are drawn to represent the actual
temperatures.

> segments(x, 0, x, 100, 1lwd=20, col="dark grey")
> segments(x, 0, x, 100, lwd=16, col="white")
> segments(x, 0, x, y, lwd=16, col="light grey")

The axis() function is not generic, but there are special alternative func-
tions for plotting time related data. The functions axis.Date() and
axis.POSIXct() take an object containing dates and produce an axis with
appropriate labels representing times, days, months, and years (e.g., 10: 15,
Jan 12 or 1995).

In some cases, it may be useful to draw tick marks at the locations that the
default axis would use, but with different labels. The axTicks() function
can be used to calculate these default locations. This function is also useful
for enforcing an xaxp (or yaxp) graphics state setting. If these settings are
specified via par (), they usually have no effect because the traditional graph-
ics system almost always calculates the settings itself. The user can choose
these settings by passing them as arguments to axTicks (), then passing the
resulting locations via the at argument to axis ().
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3.4.6 Mathematical formulae

Any R graphics function that draws text should accept both a normal string,
e.g., "some text", and an R expression, which is typically the result of a call
to the expression() function. If an expression is specified as the text to draw,
then it is interpreted as a mathematical formula and is formatted appropri-
ately. This section provides some simple examples of what can be achieved.
For a complete description of the available features, type help(plotmath) or
demo (plotmath) in an R session.”

When an R expression is provided as text to draw in graphical output, the
expression is evaluated to produce a mathematical formula. This evaluation
is very different from the normal evaluation of R expressions: certain names
are interpreted as special mathematical symbols, e.g., alpha is interpreted as
the Greek symbol «a; certain mathematical operators are interpreted as literal
symbols, e.g., a + is interpreted as a plus sign symbol; and certain functions are
interpreted as mathematical operators, e.g., sum(x, i==1, n) is interpreted
as Y ., x. Figure 3.22 shows some examples of expressions and the output
that they create.

In some situations, for example, when calling graphics functions from within
a loop, or when calling graphics functions from within another function, the
expression representing the mathematical formula must be constructed using
values within variables as well as literal symbols and constants. A variable
name within an expression will be treated as a literal symbol (i.e., the variable
name will be drawn, not the value within the variable). The solution in such
cases is to use the substitute() function to produce an expression. The
following code shows the use of substitute() to produce a label where the
year is stored in a variable.

> myfunction <- function(year) {
text (0.5, 0.5, substitute(paste("Temperature (",
degree, "C) in ", year),
list(year=year)))

The mathematical annotation feature makes use of information about the
dimensions of individual characters to perform the formatting of the formula.
For some output formats, such information is not available, so mathematical
formulae cannot be produced. However, mathematical formulae are supported
on the major screen devices (X11, Windows, and Quartz) and information

*Further information can also be obtained from an article in the Journal of Computa-
tional and Graphical Statistics[45].
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expression (paste ("Temperature (", degree, "C) in 2003"))
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g
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i
expression (bar(x) == sum(frac(x[i], n), i==1, n))

B=(XX)"'XYy

expression (hat (beta) == (Xt * X)*{-1} * X"t * y)

Z; =1/Xi2+y12

expression(z[i] == sgrt(x[i]”*2 + yI[i]"2))

Figure 3.22

Mathematical formulae in plots. For each example, the output is shown in a serif

font, and below that, in a typewriter font, is the R expression required to produce
the output.
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for the standard Adobe Type 1 fonts is distributed with R so mathematical
formulae should always be available for PostScript and PDF output.

3.4.7 Coordinate systems

The traditional graphics system provides a number of coordinate systems for
conveniently locating graphical output (see Section 3.1.1). Graphical output
in the plot region is automatically positioned relative to the scales on the axes
and text in the figure margins is placed in terms of a number of lines away
from the edge of the plot (i.e., a scale that naturally corresponds to the size
of the text).

It is also possible to locate output according to other coordinate systems
that are not automatically supplied, but a little more work is required by the
user. The basic principle is that the traditional graphics state can be queried
to determine features of existing coordinate systems, then new coordinate
systems can be calculated from this information.

The par function

As well as being used to enforce new graphics state settings, the function
par () can also be used to query current graphics state settings. The most
useful settings are: din, fin, and pin, which reflect the current size, (width,
height), of the graphics device, figure region, and plot region, in inches; and
usr, which reflects the current user coordinate system (i.e., the ranges on the
axes). The values of usr are in the order (xmin, xmax, ymin, ymax). When
a scale has a logarithmic transformation, the values are (10"xmin, 10"xmax,
10"ymin, 10" ymax).

There are also settings that reflect the size, (width, height), of a “standard”
character. The setting cin gives the size in inches, cra in “rasters” or pixels,
and cxy in “user coordinates.” However, these values are not very useful
because they only refer to a cex value of 1 (i.e., they ignore the current
cex setting) and they only refer to the ps value when the current graphics
device was first opened. Of more use are the strheight () function and the
strwidth() function. These calculate the height and width of a given piece
of text in inches, or in terms of user coordinates, or as a proportion of the
current figure region (taking into account the current cex and ps settings).

The following code demonstrates a simple example of making use of cus-
tomized coordinates where a ruler is drawn showing centimeter units (see

Figure 3.23).

A blank plot region is set up first and calculations are performed to establish
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Figure 3.23

Custom coordinate systems. The lines and text are drawn relative to real physical
centimeters (rather than the default coordinate system defined by the scales on plot
axes).

the relationship between user coordinates in the plot and physical centime-
ters.*

> plot(0:1, 0:1, type="n", axes=FALSE, ann=FALSE)
> usr <- par("usr")

> pin <- par("pin")

> xcm <- diff(usr[1:2])/(pin[1]%*2.54)

> yem <- diff(usr([3:4])/(pin[2]*2.54)

Now drawing can occur with positions expressed in terms of centimeters. First
of all a “drop shadow” is drawn to give a three-dimensional effect by drawing
a grey rectangle offset by 2mm from the main ruler. The call to par () makes
sure that the grey rectangle is not clipped to the plotting region (see Section
3.2.7).

> par (xpd=NA)

> rect(0 + 0.2%xcm, 0 - 0.2xycm,
1 + 0.2*%xcm, 1 - 0.2*ycm,
col="grey", border=NA)

The ruler itself is drawn with a call to rect () to draw the edges of the ruler,
a call to segments () to draw the scale, and calls to text () to label the scale.

*R graphics relies on a graphics device providing accurate information on the physical
size of the natural units on the device (e.g., the physical size of pixels on a computer screen).
If a graphics device does not give accurate information, when R attempts to draw output
with an physical size (e.g., a line 1 inch long), it may not appear with the exact physical
size on the device. The physical size of output for PostScript and PDF files should always
be correct, but small inaccuracies may occur when specifying output with an physical size
(such as inches) on screen devices such as Windows and X11 windows.
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> rect(0, 0, 1, 1, col="white")
> segments(seq(l, 8, 0.1)*xcm, O,

seq(l, 8, 0.1)*xcm,

c(rep(c(0.5, rep(0.25, 4),

0.35, rep(0.25, 4)),
7), 0.5)*ycm)

> text(1:8*xcm, 0.6%ycm, 0:7, adj=c(0.5, 0))
> text(8.2*xcm, 0.6*ycm, "cm", adj=c(0, 0))

There are utility functions, xinch() and yinch(), for performing the inches-
to-user coordinates transformation (plus xyinch() for converting a location
in one step and cm() for converting inches to centimeters).

One problem with performing coordinate transformations like these is that
the locations and sizes being drawn have no memory of how they were cal-
culated. They are specified as locations and dimensions in user coordinates.
This means that if the device is resized (so that the relationship between phys-
ical dimensions and user coordinates changes), the locations and sizes will no
longer have their intended meaning. If, in the above example, the device is
resized, the ruler will no longer accurately represent centimeter units. This
problem will also occur if output is copied from one device to another device
that has different physical dimensions. The legend () function performs cal-
culations like these when arranging the components of a legend and its output
is affected by device resizes and copying between devices.*

Overlaying output

It is sometimes useful to plot two data sets on the same plot where the data
sets share a common x-variable, but have very different y-scales. This can be
achieved in at least two ways. One approach is simply to use par (new=TRUE)
to overlay two distinct plots on top of each other (care must be taken to avoid
conflicting axes overwriting each other). Another approach is to explicitly
reset the usr state setting before plotting a second set of data. The following
code demonstrates both approaches to produce exactly the same result (see
the top plot of Figure 3.24).

The data are yearly numbers of drunkenness-related arrestst and mean annual
temperature in New Haven, Connecticut from 1912 to 1971. The temperature

*It is possible to work around these problems in R version 2.1.0 and above by using the
recordGraphics() function, although this function should be used with extreme care.

fThese data were obtained from “Crime Statistics and Department Demographics” on
the New Haven Police Department Web Site:
http://www.cityofnewhaven.com/police/html/stats/crime/yearly/1863-1920.htm
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Figure 3.24

Temperature (F)

Overlaying plots. In the top plot, two line plots are drawn one on top of each other
to produce aligned plots of two data sets with very different scales. In the bottom
plot, the plotting function symbols() is used in “annotating mode” so that it adds

circles to an existing scatterplot rather than producing a complete plot itself.
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data are available as the data set nhtemp in the datasets package. There are
only arrests data for the first 9 years.

> drunkenness <- ts(c(3875, 4846, 5128, 5773, 7327,
6688, 5582, 3473, 3186,
rep(NA, 51)),
start=1912, end=1971)

The first approach is to draw a plot of the drunkenness data, call
par (new=TRUE), then draw a complete second plot of the temperature data on
top of the first plot. The second plot does not draw default axes (axes=FALSE),
but uses the axis () function to draw a secondary y-axis to represent the tem-
perature scale.

> par(mar=c(5, 6, 2, 4))

> plot(drunkenness, lwd=3, col="grey", ann=FALSE, las=2)
> mtext ("Drunkenness\nRelated Arrests", side=2, line=3.5)
> par (new=TRUE)

> plot(nhtemp, ann=FALSE, axes=FALSE)

> mtext ("Temperature (F)", side=4, line=3)

> title("Using par (new=TRUE)")

> axis(4)

The second approach draws only one plot (for the drunkenness data). The
user coordinate system is then redefined by specifying a new usr setting and
the second “plot” is produced simply using 1ines (). Again, a secondary axis
is drawn using the axis() function.

> par(mar=c(5, 6, 2, 4))

> plot(drunkenness, lwd=3, col="grey", ann=FALSE, las=2)
> mtext ("Drunkenness\nRelated Arrests", side=2, line=3.5)
> usr <- par("usr")

> par(usr=c(usr([1:2], 47.6, 54.9))

> lines(nhtemp)

> mtext ("Temperature (F)", side=4, line=3)

> title("Using par(usr=...)")

> axis(4)

Some high-level functions (e.g., symbols () and contour()) provide an argu-
ment called add which, if set to TRUE, will add the function output to the
current plot, rather than starting a new plot. The following code shows the
symbols() function being used to annotate a basic scatterplot (see the bot-
tom plot of Figure 3.24). The data used in this example are from the trees
data set (see page 35).
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> with(trees,
{
plot(Height, Volume, pch=3,
xlab="Height (ft)",
ylab=expression(paste("Volume ", (£t73))))
symbols (Height, Volume, circles=Girth/12,
fg="grey", inches=FALSE, add=TRUE)
b

Another function of this type is the bxp () function. This function is called by
boxplot () to draw the individual boxplots and is specifically set up to add
boxplots to an existing plot (although it can also produce a complete plot).

It is also worth remembering that R follows a painters model, with later output
obscuring earlier output. The following example makes use of this feature to
fill a complex region within a plot (see Figure 3.25).

The first step is to generate some data and calculate some important features
of the data.

xx <- c(1:50)
yy <- rnorm(50)
n <- 50

hline <- 0

vV V V V

The first thing to draw is a plot with a filled polygon beneath the y-values
(see the top-left plot of Figure 3.25).

> plot (yy ~ xx, type="n", axes=FALSE, ann=FALSE)
> polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)),
col="grey", border=NA)

The next step is to draw a rectangle over the top of the polygon up to a fixed
y-value. The expression par ("usr") is used to obtain the current x-scale and
y-scale ranges (see the top-right plot of Figure 3.25).

> usr <- par("usr")
> rect(usr([1], usr[3], usr[2], hline, col="white", border=NA)

Now a line through the y-values is drawn over the top of the rectangle (see
the bottom-left plot of Figure 3.25).

> lines(xx, yy)
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Figure 3.25

Overlaying output (making use of the painters model). The final complex plot,
shown at bottom-right, is the result of overlaying several basic pieces of output: a
grey polygon at top-left, with a white rectangle over the top (top-right), a black
line on top of that (bottom-left), and a grey line on top of it all (plus axes and a
bounding box).

@ © 2006 by Taylor & Francis Group, LLC



Finally, a horizontal line is drawn to indicate the y-value cut-off, and axes are
added to the plot (see the bottom-right plot of Figure 3.25).

abline (h=hline,col="grey")
box ()

axis(1)

axis(2)

vV V V V

3.4.8 Bitmap images

The R graphics engine has no internal support for drawing bitmaps. Despite
this, bitmap images can be represented by drawing a rectangle for each pixel
in the image. A convenient interface for this approach is provided by functions
in the pixmap package|8].

The plot in Figure 3.26 shows an example of what can be achieved using the
functions in the pixmap package. This plot shows the relationship between the
time of day that every second low tide occurred and the phase of the moon,
for the port of Auckland, New Zealand in February 2005. The addlogo()
function has been used to add a bitmap of the moon as a dramatic backdrop
for the main plot (the code is not shown, but it is available on the web site
for this book). This approach is most appropriate for producing images on
screen or in some sort of bitmap format such as PNG. When used for creating
vector formats such as PostScript and PDF, the file size grows very rapidly
with the size of the bitmap (e.g., the PostScript file for the printed version of
Figure 3.26 is more than 5MB!).

3.4.9 Special cases

Some high-level functions are a little more difficult to annotate than others
because the plotting regions that they set up either are not immediately ob-
vious, or are not available after the function has run. This section describes
a number of high-level functions where additional knowledge is required to
perform annotations.

Obscure scales on axes

It is not immediately obvious how to add extra annotation to a barplot or a
boxplot in traditional R graphics because the scale on the categorical axis is
not obvious.

The difficulty with the barplot() function is that because the scale on the
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Figure 3.26

Adding a bitmap to a plot. A plot with a bitmap of the moon as a back-
drop, added using the pixmap package. The bitmap is a view of the Moon’s
north pole assembled from images taken by the Galileo spacecraft, courtesy of
NASA (image #: PIA00130). The data on low tides and phases of the moon for
Auckland in February 2005 were obtained from Land Information New Zealand
(http://hydro.linz.govt.nz).
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x-axis is not labelled at all by default. the numeric scale is not obvious (and
calling par ("usr") is not much help because the scale that the function sets
up is not intuitive either). In order to add annotations sensibly to a barplot
it is necessary to capture the value returned by the function. This return
value gives the x-locations of the mid-points of each bar that the function has
drawn. These midpoints can then be used to locate annotations relative to
the bars in the plot.

The code below shows an example of adding extra horizontal reference lines
to the bars of a barplot. The mid-points of the bars are saved to a variable
called midpts, then locations are calculated from those mid-points (and the
original counts) to draw horizontal white line segments within each bar using
the segments () function (see the left plot of Figure 3.27).

y <- sample(1:10)

midpts <- barplot(y, col=" light grey")

width <- diff(midpts[1:2])/4

left <- rep(midpts, y - 1) - width

right <- rep(midpts, y - 1) + width

heights <- unlist(apply(matrix(y, ncol=10),
2, seq)) [-cumsum(y)]

> segments(left, heights, right, heights,

col="white")

V V V V V V

The boxplot () function is similar to the barplot () function in that the x-
scale is typically labelled with category names so the numeric scale is not obvi-
ous from looking at the plot. Fortunately, the scale set up by the boxplot ()
function is much more intuitive. The individual boxplots are drawn at x-
locations 1:n, where n is the number of boxplots being drawn.

The following code provides a simple example of annotating boxplots to add
a jittered dotplot of individual data points on top of the boxplots. This
provides a detailed view of the data as well as showing the main features via
the boxplot. It is also a useful way to show how interesting features of the
data, such as small clusters of points, can be hidden by a boxplot. In this
example, the jittered data are centered upon the x-locations 1:2 to correspond
to the centers of the relevant boxplots (see the right plot of Figure 3.27).*

*The data used in this example are from the ToothGrowth data set (see page 3).
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Figure 3.27

Special-case annotations. Some examples of functions where annotation requires
special care. In the barplot at left, the value returned by the barplot () function is
used to add horizontal white lines within the bars. Jittered points are added to the
boxplot (right) using the knowledge that the ith box is located at position ¢ on the
X-ax1s.

> with(ToothGrowth,
{
boxplot(len ~ supp, border="grey",
col="light grey", boxwex=0.5)
points(jitter(rep(1:2, each=30), 0.5),
unlist(split(len, supp)),
cex=0.5, pch=16)
b

Functions that draw several plots

The pairs () function is an example of a high-level function that draws more
than one plot. This function draws a matrix of scatterplots. Such functions
tend to save the traditional graphics state before drawing, call par (mfrow) or
layout () to arrange the individual plots, and restore the traditional graphics
state once all of the individual plots have been drawn. This means that it is
not possible to annotate any of the plots drawn by the pairs() function once
the function has completed drawing. The regions and coordinate systems that
the function set up to draw the individual plots have been thrown away. The
only way to annotate the output from such functions is by way of “panel”
functions.
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The pairs() function has a number of arguments that allow the user to
specify a function: panel, diag.panel, upper.panel, lower.panel, and
text.panel. The functions specified via these arguments are run as each
individual plot is drawn. In this way, the panel function has access to the plot
regions that are set up for each individual plot.

The filled.contour() function and the coplot() function have the same
problem as pairs (), as the legends that they draw are actually separate plots.
Again, they allow annotation via panel function arguments.

The following code demonstrates a simple use of a panel function with the
coplot () function. The main conditioning plot shows the locations of earth-
quakes in the Pacific Ocean near Fiji since 1964," available as the quakes
data set in the datasets package. There are multiple panels, each of which
shows the earthquakes that occurred at a particular range of depths. A panel
function is specified via the panel argument to add maps of Fiji and New
Zealand to each panel of coplot () output (see Figure 3.28).

The panel function first calls the rect() function to overlay a white back-
ground and hide the default grid lines. Next, the panel function calls the
points () function to draw the points that would normally be drawn, but uses
a custom plotting symbol (a very small dot). The map() function is called to
draw the maps of Fiji and the top of the North Island of New Zealand, and
the text () function is used to add country names. The map is drawn using
the map () function from the maps package.

> library(maps)
> coplot(lat ~ long | depth, data = quakes, number=4,
panel=function(x, y, ...) {
usr <- par("usr")
rect(usr[1], usr([3], usr[2], usr[4], col="white")
map ("world2", regions=c("New Zealand", "Fiji"),
add=TRUE, 1lwd=0.1, fill=TRUE, col="grey")
text (180, -13, "Fiji", adj=1, cex=0.7)
text (170, -35, "NZ", cex=0.7)
points(x, y, pch=".")
B

There is a predefined panel function called panel.smooth(), which draws
points and then adds a smoothed line through the points.

*The data were obtained from the Harvard PRIM-H project, who obtained it from Dr.
John Woodhouse, Dept. of Geophysics, Harvard University.
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Figure 3.28

A panel function example. An example of using a panel function to add customized
output to each element of a multi-panel plot. A panel function is defined that adds
maps of Fiji and New Zealand to each panel.
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3D plots

It is possible to annotate a plot produced using the persp() function, but it
is more difficult than for most other high-level functions. The important step
is to acquire the transformation matrix that the persp() function returns.
This can be used to transform 3D locations into 2D locations that can be
given to the standard annotation functions such as 1ines () and text (). The
persp() function also has an add argument, which allows multiple persp ()
plots to be over-plotted.

The following code demonstrates annotation of persp() output to add an
indication of the summit and access roads to a plot of the Maunga Whau
volcano in Auckland New Zealand (see Figure 3.29).*

The first step is to draw the volcano itself and record the 3D transformation
matrix in the variable trans.

z <- 2 * volcano

x <= 10 * (1:nrow(z))

y <= 10 * (1:ncol(z))

trans <- persp(x, y, z, theta = 135, phi = 30,
scale = FALSE, ltheta = -120,
# shade=0.5, border=NA,
box = FALSE)

> box(col="grey", lwd=1)

vV V V V

Now a function is defined that uses the transformation matrix to convert 3D
locations into 2D locations relative to the existing plot.

> trans3d <- function(x,y,z,pmat) {
tmat <- cbind(x,y,z,1)%*% pmat
tmat[,1:2] / tmatl[,4]
}

The next code makes use of the transformation function to draw a dot at the
summit of the volcano and a text label above that.

summit <- trans3d(x[20], y[31], max(z), trans)
points(summit[1], summit([2], pch=16)

summitlabel <- trans3d(x[20], y[31], max(z) + 50, trans)
text (summitlabel[1], summitlabel[2], "Summit")

V V V V

*The data are from the volcano data set (see page 35) and from the volcano.accessRoad
volcano.upDownRoad volcano.summitRoad data sets from the RGraphics package.
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Figure 3.29

Annotating a 3D surface created by persp(). Extra points, text, and lines are added
to the 3D plot using the transformation matrix returned by the persp() function.
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Finally, the transformation function is also used to draw lines representing
the roads that provide access to the summit of the volcano.

> drawRoad <- function(x, y, z, trans) {
road <- trans3d(x, y, z, trans)
lines(road[,1], road[,2], lwd=5)
lines(road[,1], roadl[,2], 1lwd=3, col="grey")
}
> with(volcano.summitRoad,
drawRoad(srx, sry, srz, trans))
> with(volcano.upDownRoad,
{
clipudx <- udx
clipudx[udx < 230 & udy < 300 |
udx < 150 & udy > 300] <- NA
drawRoad(clipudx, udy, udz, trans)
1)
> with(volcano.accessRoad,
drawRoad(arx, ary, arz, trans))

This example does demonstrate one of the limitations for annotating persp ()
output, namely that there is no support for automatically hiding output that
should not be seen. For example, the drawing of the upDownRoad has been
manually clipped (see the lines involving the variable clipudx) in order to
avoid drawing the part of the road that should be obscured because it is
behind the main cone of the volcano.

3.5 Creating new plots

There are cases where no existing plot provides a sensible starting point for
creating the final plot that the user requires. This section describes how to
construct a new plot entirely from scratch for such cases.

The plot.new() function is the most basic starting point for producing a
traditional graphics plot (the frame () function is equivalent). This function
sets up the various plotting regions described in Section 3.1.1 and sets both
the x-scale and y-scale to (0,1).* The regions that are set up depend on the

*The actual scale setup depends on the current settings for xaxs and yaxs. With the
default settings, the scales are (—0.04,1.04).
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current graphics state settings.

The plot.window() function resets the scales in the user coordinate system,
given x- and y-ranges via the arguments x1im and ylim, and the plot.xy ()
function draws data symbols and lines between locations within the plot re-
gion.

3.5.1 A simple plot from scratch

In order to demonstrate the use of these functions, the following code produces
the simple scatterplot in Figure 1.1 from scratch.

\4

plot.new()

plot.window(range (pressure$temperature),
range (pressure$pressure))

plot.xy(pressure, type="p")

box ()

axis(1)

axis(2)

\

V V V V

The output could be produced by the simple expression plot (pressure), but
it shows that the steps in building a plot are available as separate functions
as well, which allows the user to have fine control over the construction of a
plot.

3.5.2 A more complex plot from scratch

This section describes a slightly more complex example of creating a plot from
scratch. The final goal is represented in Figure 3.30 and the steps involved
are described below.

This first bit of code generates some data to plot.

> groups <- c("cows", "sheep", "horses",
"elephants", "giraffes")

> males <- sample(1:10, 5)

> females <- sample(1:10, 5)

There are several ways that the plot could be created. For this example, it
will be created as a single plot. The labels to the left of the plot will be drawn
in the margins of the plot, but everything else will be drawn inside the plot
region. This next bit of code sets up the figure margins so that there is enough
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Figure 3.30
A back-to-back barplot from scratch. This demonstrates the use of lower-level plot-
ting functions to produce a novel plot that cannot be produced by an existing high-
level function.

@ © 2006 by Taylor & Francis Group, LLC



room for the labels in the left margin, but all other margins are nice and small
(to avoid lots of empty space around the plot).

> par(mar=c(0.5, 5, 0.5, 1))

Inside the plot region there are seven different rows of output to draw: the
five main pairs of bars, the x-axis, and the legend at the bottom. The axis will
be drawn at a y-location of 0, the main bars at the y-locations 1:5, and the
legend at -1. The following code starts the plot and sets up the appropriate
y-scale and x-scale.

> plot.new()
> plot.window(xlim=c(-10, 10), ylim=c(-1.5, 5.5))

This next bit of code assigns some useful values to variables, including the
x-locations of tick-marks on the x-axis, the y-locations of the main bars, and
a value representing half the height of the bars.

> ticks <- seq(-10, 10, 5)
>y <- 1:5
>h <- 0.2

Now some drawing can occur. This next code draws the main part of the plot.
Everything is drawn using calls to the low-level functions such as lines(),
segments (), mtext (), and axis(). In particular, the main bars are just
rectangles produced using rect (). Notice that the x-axis is drawn within the
plot region (pos=0).

lines(rep(0, 2), c(-1.5, 5.5), col="grey")
segments(-10, y, 10, y, lty="dotted")
rect(-males, y-h, 0, y+h, col="dark grey")
rect(0, y-h, females, y+h, col="light grey")
mtext (groups, at=y, adj=1, side=2, las=2)
par(cex.axis=0.5, mex=0.5)

axis(1, at=ticks, labels=abs(ticks), pos=0)

V V V V V V VvV

The final step is to produce the legend at the bottom of the plot. Again, this
is just a series of calls to low-level functions, although the bars are sized using
strwidth() to ensure that they contain the labels.
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tw <- 1.5*strwidth("females")

rect(-tw, -1-h, 0, -1+h, col="dark grey")
rect(0, -1-h, tw, -1+h, col="light grey")
text (0, -1, "males", pos=2)

text (0, -1, "females", pos=4)

V V V V V

This example is particularly customized to the data set involved. It could
be made much more general by replacing some constants with variable values
(e.g., instead of using 5 because there are five groups in the data set, the code
could have a variable numGroups). If more than one such plot needs to be
made, it makes good sense to also wrap the code within a function. That task
is discussed in the next section.

3.5.3 Writing traditional graphics functions

Having made the effort to construct a plot from scratch, it is usually worth-
while encapsulating the calls within a new function and possibly even making
it available for others to use. This section briefly describes some of the things
to consider when creating a new graphics function built on the traditional
graphics system functions.

There are many advantages to developing new graphics functions in the grid
graphics system (see Part II) rather than using traditional graphics. Chapter
7 contains a more complete discussion of the issues involved in developing new
graphics functions.

Helper functions

There are some helper functions that do no drawing, but are used by the
predefined high-level plots to do some of the work in setting up a plot.

The xy.coords() function is useful for allowing x and y arguments to your
new function to be flexibly specified (just like the plot() function where y
can be left unspecified and x can be a data.frame, and so on). This function
takes x and y arguments and creates a standard object containing x-value,
y-values, and sensible labels for the axes. There is also an xyz.coords()
function.

If your plotting function generates multiple sub-plots, the n2mfrow () function
may be helpful to generate a sensible number of rows and columns of plots,
based on the total number of plots to fit on a page.

Another set of useful helper functions are those that calculate values to plot
from the raw data (but do no actual drawing). Examples of these sorts of
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functions are: boxplot.stats() used by boxplot () to generate five-number
summaries; contourLines() used by contour () to generate contour lines;
nclass.Sturges(), nclass.scott (), and nclass.FD() used by hist() to
generate the number of intervals for a histogram; and co.intervals() used
by coplot() to generate ranges of values for conditioning a data set into
panels.

Some high-level functions invisibly return this sort of information too. For
example, boxplot () returns the combined results from boxplot.stats() for
all of the boxplots that it produces and hist () returns information on the
intervals that it creates including the number of data values in each interval.

Argument lists

A common technique when writing a traditional graphics function is to pro-
vide an ellipsis argument (. . .) instead of individual graphics state arguments
(such as col and 1ty). This allows users to specify any state settings (e.g.,
col="red" and 1ty="dashed") and the new function can pass them straight
on to the traditional graphics functions that the new function calls. This
avoids having to specify all individual state settings as arguments to the new
function. Some care must be taken with this technique because sometimes
different graphics functions interpret the same graphics state setting in differ-
ent ways (the col setting is a good example; see Section 3.2). In such cases,
it becomes necessary to name the individual graphics state setting as an ar-
gument and explicitly pass it on only to other graphics calls that will accept
it and respond to it in the desired manner.

Sometimes it is useful for a graphics function to deliberately override the
current graphics state settings. For example, a new plot may want to force the
xpd setting to be NA in order to draw lines and text outside of the plot region.
In such cases, it is polite for the graphics function to revert the graphics state
settings at the end of the function so that users do not get a nasty surprise!
A standard technique is to put the following expressions at the start of the
new function to restore the graphics state to the settings that existed before
the function was called.

opar <- par(no.readonly=TRUE)
on.exit (par(opar))

Care should be taken to ensure that a new graphics function takes notice of
appropriate graphics state settings (e.g., ann). This can be a little complicated
to implement because it is necessary to be aware of the possibility that the
user might specify a setting in the call to the function and that such a setting
should override the main graphics state setting. The standard approach is
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to name the state setting explicitly as an argument to the graphics function
and provide the permanent state setting as a default value. See the new
graphics function template below for an example of this technique using the
ann argument. An additional complication is that now there is a state setting
that will not be part of the ... argument, so the state setting must be
explicitly passed on to any other functions that might make use of it.

Another good technique is to provide arguments that users are used to seeing
in other graphics functions — the main, sub, x1im, and ylim arguments are
good examples of this sort of thing — and a new graphics function should
be able to handle missing and non-finite values. The functions is.na(),
is.finite(), and na.omit () may be useful for this purpose.

Plot methods

If a new function is for use with a particular type of data, then it is convenient
for users if the function is provided as a method for the generic plot () func-
tion. This allows users to simply call the new function by calling plot (x),
where x is an object of the relevant class.

A graphics function template

The code in Figure 3.31 is a simple shell that combines some of the basic
guidelines from this section. This is just a simplified version of the default
plot() method. It is far from complete and will not gracefully accept all
possible inputs (especially via the ... argument), but it could be used as the
starting template for writing a new traditional graphics function.
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1 plot.newclass <-

2 function(x, y=NULL,

3 main="", sub="",

4 x1im=NULL, ylim=NULL,

5 axes=TRUE, ann=par("ann"),

6 col=par("col"),

7 o0 A{

8 xy <- xy.coords(x, y)

9 if (is.null(xlim))

10 xlim <- range(xy$x[is.finite(xy$x)])
11 if (is.null(ylim))

12 ylim <- range(xy$yl[is.finite(xy$y)]1)
13 opar <- par(no.readonly=TRUE)

14 on.exit(par(opar))

15  plot.new()

16  plot.window(xlim, ylim, ...)

17 points(xy$x, xy$y, col=col, ...)

18  if (axes) {

19 axis(1)

20 axis(2)

21 box ()

22 T

23  if (ann)

24 title(main=main, sub=sub,

25 xlab=xy$xlab, ylab=xy$ylab, ...)
26 }

Figure 3.31
A graphics function template. This code provides a starting point for producing a
new graphics function for others to use.
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Chapter summary

High-level traditional graphics functions produce complete plots and
low-level traditional graphics functions add output to existing plots.
There are low-level functions for producing simple output such as lines,
rectangles, text, and polygons and also functions for producing more
complex output such as axes and legends.

The traditional graphics system creates several regions for drawing the
various components of a plot: a plot region for drawing data symbols
and lines, figure margins for axes and labels, and so on. Each low-level
graphics function produces output in a particular drawing region and
most work in the plot region.

There is a traditional graphics system state that consists of settings to
control the appearance of output and the arrangement of the drawing
regions. There are settings for controlling color, fonts, line styles, data
symbol style, and the style of axes. There are several mechanisms for
arranging multiple plots on a single page.

It is straightforward to create a complete plot using only low-level
graphics functions. This makes it possible to produce a completely
new type of plot. It is also possible for the user to define an entirely
new graphics function.
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4

Trellis Graphics: the Lattice Package

Chapter preview

This chapter describes how to produce Trellis plots using R. There
is a description of what Trellis plots are as well as a description of
the functions used to produce them. Trellis plots are designed to be
easy to interpret and at the same time provide some modern and
sophisticated plotting styles, such as multipanel conditioning.

The grid graphics system provides no high-level plotting functions
itself, so this chapter also describes the best way to produce a complete
plot using the grid system. There are several advantages to producing
a plot using the grid system, including greater flexibility in adding
further output to the plot, and the ability to interactively edit the
plot.

This chapter describes the lattice package, developed by Deepayan Sarkar[54].
Lattice is based on the grid graphics system, but can be used as a complete
graphics system in itself and a great deal can be achieved without encountering
any of the underlying grid concepts.” This chapter deals with lattice as a
self-contained system consisting of functions for producing complete plots,
functions for controlling the appearance of the plots, and functions for opening
and closing devices. Section 5.8 and Section 6.7 describe some of the benefits
that can be gained from viewing lattice plots as grid output and dealing
directly with the grid concepts and objects that underly the lattice system.

*To give Deepayan proper credit, lattice uses grid only to render plots. Lattice performs
a lot of work itself to deconstruct formulae, rearrange the data, and manage many user-
settable options.
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The graphics functions that make up the lattice graphics system are provided
in an add-on package called lattice. The lattice system is loaded into R as
follows.

> library(lattice)

The lattice package implements the Trellis Graphics system[6] with some novel
extensions. The Trellis Graphics system has a large number of sophisticated
features and many of these are described in this section, but more information,
examples, and background are available from the Trellis Display web site:

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html

4.1 The lattice graphics model

In simple usage, lattice functions appear to work just like traditional graphics
functions where the user calls a function and output is generated on the current
device. The following example plots the locations of 1000 earthquakes that
have occurred in the Pacific Ocean (near Fiji) since 1964 (see Figure 4.1).*

> xyplot(lat ~ long, data=quakes, pch=".")

It is perfectly valid to use lattice this way; however, lattice graphics functions
do not produce graphical output directly. Instead they produce an object
of class "trellis", which contains a description of the plot. The print()
method for objects of this class does the actual drawing of the plot. This
can be demonstrated quite easily. For example, the following code creates a
trellis object, but does not draw anything.

> tplot <- xyplot(lat ~ long, data=quakes, pch=".")

The result of the call to xyplot() is assigned to the variable tplot so it is
not printed. The plot can be drawn by calling print on the trellis object
(the result is exactly the same as Figure 4.1).

> print(tplot)

*The data are available as the data set quakes in the datasets package.
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Figure 4.1
A scatterplot using lattice (showing the locations of earthquakes in the Pacific
Ocean). A basic lattice plot has a very similar appearance to an analogous tra-
ditional plot.
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This design makes it possible to work with the trellis object and modify it
using the update () method for trellis objects, which is an alternative to
modifying the original R expression used to create the trellis object. The
following code demonstrates this idea by modifying the trellis object tplot
to redefine the main title of the plot (it was empty). The resulting output is
shown in Figure 4.2. A subtle change to look for is the fact that extra space
has been introduced to allow room for adding the new main title text (the
height of the plot region is slightly smaller compared to Figure 4.1).

> update (tplot,
main="Earthquakes in the Pacific Ocean\n(since 1964)")

The side-effect of the code above is to produce new output that is a modifi-
cation of the original plot, represented by tplot. However, it is important to
remember that tplot has not been changed in any way (typing tplot again
will produce output like Figure 4.1 again). In order to retain an R object
representing the modified plot, the user must assign the value returned by the
update () function, as in the following code.

> tplot2 <-
update (tplot,
main="Earthquakes in the Pacific Ocean (since 1964)")

4.1.1 Lattice devices

For each graphics device, lattice maintains its own set of graphical parameter
settings that control the appearance of plots (colors of lines, fonts for text,
and many more — see Section 4.3)*. The default settings depend on the
type of device being opened (e.g., the settings are different for a PostScript
device compared to a PDF device). In simple usage this causes no problems,
because lattice automatically initializes these settings the first time that lattice
output is produced on a device. If it is necessary to control the initial values
for these settings the trellis.device() function can be used to explicitly
open a device with specific lattice graphical parameter settings (or just to
enforce specific lattice settings on an existing device). Section 4.3 describes
more functions for manipulating the lattice graphical parameter settings.

*One of the features of Trellis Graphics is that carefully selected default settings are
provided for colors, data symbols, and so on. These settings are selected to maximize the
interpretability of plots and are based on principles of human perception|[15].
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Figure 4.2

The result of modifying a lattice object. Lattice creates an object representing the
plot. If this object is modified, the plot is redrawn. This figure shows the result of
modifying the object representing the plot in Figure 4.1 to add a title to the plot.
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4.2 Lattice plot types

Lattice provides functions to produce a number of standard plot types, plus
some more modern and specialized plots. Table 4.1 describes the functions
that are available and Figure 4.3 provides a basic idea of the sort of output
that they produce.

There are a number of functions that produce output very similar to the out-
put of functions in the traditional graphics system, but there are three possible
reasons for using lattice functions instead of the traditional counterparts:

1. The default appearance of the lattice plots is superior in some areas.
For example, the default colors and the default data symbols have been
deliberately chosen to make it easy to distinguish between groups when
more than one data series is plotted. There are also some subtle things
such as the fact that tick labels on the y-axes are written horizontally
by default, which makes them easier to read.

2. The lattice plot functions can be extended in several very powerful ways.
For example, several data series can be plotted at once in a convenient
manner and multiple panels of plots can be produced easily (see Section
4.2.1).

3. The output from lattice functions is grid output, so many powerful grid
features are available for annotating, editing, and saving the graphics
output. See Section 5.8 and Section 6.7 for examples of these features.

Most of the lattice plotting functions provide a very long list of arguments
and produce a wide range of different types of output. Many of the argu-
ments are shared by different functions and the on-line help for the xyplot ()
function provides an explanation of these standard arguments. The follow-
ing sections address some of the important shared arguments, but for a full
explanation of all arguments, the documentation for each specific function
should be consulted. The next section discusses two important arguments,
formula and data. The use of several other arguments is demonstrated in
Section 4.2.2 in the context of a more complex example. Section 4.3 mentions
the par.settings argument and Section 4.4 describes the layout argument.
Section 4.5 describes the panel and strip arguments.
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Table 4.1
The plotting functions available in lattice

Lattice Traditional

Function Description Analogue

barchart () Barcharts barplot()

bwplot () Boxplots boxplot ()
Box-and-whisker plots

densityplot() Conditional kernel density plots none
Smoothed density estimate

dotplot () Dotplots dotchart ()
Continuous versus categorical

histogram() Histograms hist()

qgmath () Quantile-quantile plots qqnorm()
Data set versus theoretical distribution

stripplot() Stripplots stripchart ()
One-dimensional scatterplot

qq O Quantile-quantile plots qgplot )
Data set versus data set

xyplot () Scatterplots plot O

levelplot () Level plots image ()

contourplot() Contour plots contour ()

cloud () 3-dimensional scatterplot none

wireframe () 3-dimensional surfaces persp(Q)

splom() Scatterplot matrices pairs()

parallel() Parallel coordinate plots none
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Figure 4.3

Plot types available in lattice. The name of the function used to produce the different
plot types is shown in the strip above each plot.
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4.2.1 The formula argument and multipanel conditioning

In most cases, the first argument to the lattice plotting functions is an R
formula (see Section A.2.6) that describes which variables to plot. The sim-
plest case has already been demonstrated. A formula of the form y = x
plots variable y against variable x. There are some variations for plots of
only one variable or plots of more than two variables. For example, for the
bwplot () function, the formula can be of the form ~ x and for the cloud()
and wireframe () functions something of the form z ~ x * y is required to
specify the three variables to plot. Another useful variation is the ability to
specify multiple y-variables. Something of the form y1 + y2 ~ x produces a
plot of both the y1 variable and the y2 variable against x. Multiple x-variables
can be specified as well.

The second argument to a lattice plotting function is typically data, which
allows the user to specify a data frame within which lattice can find the
variables specified in the formula.

One of the very powerful features of Trellis Graphics is the ability to specify
conditioning variables within the formula argument. Something of the form
y 7 x | gindicates that several plots should be generated, showing the vari-
able y against the variable x for each level of the variable g. In order to demon-
strate this feature, the following code produces several scatterplots, with each
scatterplot showing the locations of earthquakes that occurred within a par-
ticular depth range (see Figure 4.4). First of all, a new variable depthgroup is
defined, which is a binning of the original depth variable in the quakes data
set.

> depthgroup <- equal.count(quakes$depth, number=3, overlap=0)

Now this depthgroup variable can be used to produce a scatterplot for each
depth range.

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".")

In the Trellis terminology, the plot in Figure 4.4 consists of three panels. Each
panel in this case contains a scatterplot and above each panel there is a strip
that presents the level of the conditioning variable.

There can be more than one conditioning variable in the formula argument,
in which case a panel is produced for each combination of the conditioning
variables. An example of this is given in Section 4.2.2.

The most natural type of variable to use as a conditioning variable is a cat-
egorical variable (factor), but there is also support for using a continuous
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Figure 4.4

A lattice multipanel conditioning plot. A single function call produces several scat-
terplots of the locations of earthquakes for different earthquake depths.
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(numeric) conditioning variable. For this purpose, Trellis Graphics introduces
the concept of a shingle. This is a continuous variable with a number of
ranges associated with it. The ranges are used to split the continuous val-
ues into (possibly overlapping) groups. The shingle() function can be used
to explicitly control the ranges, or the equal.count () function can be used
to generate ranges automatically given a number of groups (as was done to
produce the depthgroup variable above).

4.2.2 A nontrivial example

This section describes an example that makes use of some of the common
arguments to the lattice plotting functions to produce a more complex final
result (see Figure 4.5). First of all, another grouping variable, magnitude, is
defined, which is a shingle indicating whether an earthquake is big or small.

> magnitude <- equal.count(quakes$mag, number=2, overlap=0)

The plot is still produced from a single function call, but there are two con-
ditioning variables, so there is a panel for each possible combination of depth
and magnitude. A title and axis labels have been specified for the plot using
the main, xlab, and ylab arguments. The between argument has been used
to introduce a vertical gap between the top row of panels (big earthquakes)
and the bottom row of panels (small earthquakes). The par.strip.text ar-
gument is used to control the size of text in the strips above each panel. The
scales argument is used to control the drawing of axis labels; in this case
the specification says that the x-axis labels should go at the bottom for both
panels. This is to avoid the axis tick marks interfering with the main title.
Finally, the par.settings argument is used to control the size of the tick
labels on the axes.

> xyplot(lat ~ long | depthgroup * magnitude,
data=quakes,
main="Fiji Earthquakes",
ylab="latitude", xlab="longitude",
pCh=".",
scales=list(x=list(alternating=c(1, 1, 1))),
between=1list(y=1),
par.strip.text=list(cex=0.7),
par.settings=list(axis.text=list(cex=0.7)))

This example demonstrates that it is possible to have very fine control over
many aspects of a lattice plot, given sufficient willingness to learn about all
of the arguments that are available.
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Figure 4.5

A complex lattice plot. There are a large number of arguments to lattice plotting
functions to allow control over many details of a plot, such as the text to use for
labels and titles, the size and placement of axis tick labels, and the size of the gaps
between columns and rows of panels.
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4.3 Controlling the appearance of lattice plots

An important feature of Trellis Graphics is the careful selection of default
settings that are provided for many of the features of lattice plots. For exam-
ple, the default data symbols and colors used to distinguish between different
data series have been chosen so that it is easy to visually discriminate be-
tween them. Nevertheless, it is still sometimes desirable to be able to make
alterations to the default settings for aspects like color and text size. It is also
useful to be able to control the layout or arrangement of the components (pan-
els and strips) of a lattice plot, but that is dealt with separately in Section
4.4. This section is only concerned with graphical parameters that control
colors, line types, fonts and the like.

The lattice graphical parameter settings consist of a large list of parameter
groups and each parameter group is a list of parameter settings. For example,
there is a plot.line parameter group consisting of col, 1ty, and lwd settings
to control the color, line type, and line width for lines drawn between data
locations. There is a separate plot.symbol group consisting of cex, col,
font, and pch settings to control the size, shape, and color of data symbols.
The settings in each parameter group affect some aspect of a lattice plot:
some have a “global” effect; for example, the fontsize settings affect all text
in a plot; some are more specific; for example, the strip.background setting
affects the background color of strips; and some only affect a certain aspect
of a certain sort of plot; for example, the box.dot settings affect only the dot
that is plotted at the median value in boxplots.

A separate list of graphical parameters is maintained for each graphics device.
Changes to parameter settings (see below) only affect the current device.

The function show.settings() produces a picture representing some of the
current graphical parameter settings. Figure 4.6 shows the settings for a
black-and-white PostScript device.

The current value of graphical parameter settings can be obtained using the
trellis.par.get () function. For a list of all current graphical parameter
settings, type trellis.par.get (). If a name is specified as the argument to
this function, then only the relevant settings are returned. The following code
shows how to obtain only the fontsize group of settings (the output is on
page 139).

> trellis.par.get("fontsize")
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Figure 4.6
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There are two ways to set new values for graphical parameters. The values
can be set persistently (i.e., they will affect all subsequent plots until a new
setting is specified) using the trellis.par.set() function, or they can be
set temporarily for a single plot by specifying settings as an argument to a
plotting function.

The trellis.par.set() function can be used in several ways. For back-
compatibility with the original implementation of Trellis, it is possible to
provide a name as the first argument and a list of settings as the second
argument. This will modify the values for one parameter group.

A new approach is to provide a list of lists that can be used to modify multiple
parameter groups at once. Lattice also introduces the concept of themes,
which is a comprehensive and coherent set of graphical parameter values. It
is possible to specify such a theme and enforce a new “look and feel” for a
plot in one function call. Lattice currently provides one such theme via the
col.whitebg() function. It is also possible to obtain the default theme for a
particular device using the canonical.theme () function.

The following code demonstrates how to use trellis.par.set() in either
the backwards-compatible, one-parameter-group-at-a-time way, or the new
list-of-lists way, to specify fontsize settings.

> trellis.par.set("fontsize", list(text=14, points=10))
> trellis.par.set(list(fontsize=list(text=14, points=10)))

The theme approach is usually more convenient, especially when setting only
one value within a parameter group. For example, the following code demon-
strates the difference between the two approaches for modifying just the text
setting within the fontsize parameter group (old way first, new way second).

> fontsize <- trellis.par.get("fontsize")
> fontsize$text <- 20
> trellis.par.set("fontsize", fontsize)

> trellis.par.set(list(fontsize=list(text=20)))

The concept of themes is an example of a lattice-specific extension to the
original Trellis Graphics system.
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The other way to modify lattice graphical parameter settings is on a per-
plot basis, by specifying a par.settings argument in the call to a plotting
function. The value for this argument should be a theme (a list of lists).
Such a setting will only be enforced for the relevant plot and will not affect
any subsequent plots. The following code demonstrates how to modify the
fontsize settings just for a single plot.

> xyplot(lat ~ long, data=quakes,
par.settings=list(fontsize=1list(text=14, points=10)))

4.4 Arranging lattice plots

There are two types of arrangements to consider when dealing with lattice
plots: the arrangement of panels and strips within a single lattice plot; and
the arrangement of several complete lattice plots together on a single page.

In the first case (the arrangement of panels and strips within a single plot)
there are two useful arguments that can be specified in a call to a lattice
plotting function: the layout argument and the aspect argument.

The layout argument consists of up to three values. The first two indicate
the number of columns and rows of panels on each page and the third value
indicates the number of pages. It is not necessary to specify all three values,
as lattice provides sensible default values for any unspecified values. The
following code produces a variation on Figure 4.4 by explicitly specifying that
there should be a single column of three panels via the layout argument, and
that each panel must be “square” via the aspect argument. The index.cond
argument has also been used to specify that the panels should be ordered from
top to bottom (see Figure 4.7).

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",
layout=c(1, 3), aspect=1, index.cond=1ist(3:1))

The aspect argument specifies the aspect ratio (height divided by width) for
the panels. The default value is "fi11", which means that panels expand to
occupy as much space as possible. In the example above, the panels were all
forced to be square by specifying aspect=1. This argument will also accept
the special value "xy", which means that the aspect ratio is calculated to
satisfy the “banking to 45 degrees” rule proposed by Bill Cleveland[13].
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Figure 4.7

Controlling the layout of lattice panels. Lattice arranges panels in a sensible way by
default, but there are several ways to force the panels to be arranged in a particular
layout. This figure shows a custom arrangement of the panels in the plot from Figure
4.4.
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As with the choice of colors and data symbols, a lot of work is done to select
sensible default values for the arrangement of panels, so in many cases nothing
special needs to be specified.

Another issue in the arrangement of a single lattice plot is the placement and
structure of the key or legend. This can be controlled using the auto.key or
key argument to plotting functions, which will accept complex specifications
of the contents, layout, and positioning of the key.

The problem of arranging multiple lattice plots on a page requires a different
approach. A trellis object must be created (but not plotted) for each lattice
plot, then the print () function is called, supplying arguments to specify the
position of each plot. The following code provides a simple demonstration
using the average yearly number of sunspots from 1749 to 1983, available as
the sunspots data set in the datasets package (see Figure 4.8). Two lattice
plots are produced and then positioned one above the other on a page. The
position argument is used to specify their location, (left, bottom, right,
top), as a proportion of the total page, and the more argument is used in the
first print () call to ensure that the second print() call draws on the same
page. The scales argument is also used to draw the x-axis at the top of the
top plot.

> spots <- by(sunspots, gl(235, 12, 1ab=1749:1983), mean)

> plotl <- xyplot(spots ~ 1749:1983, xlab="", type="1",
main="Average Yearly Sunspots",
scales=list(x=list(alternating=2)))

> plot2 <- xyplot(spots ~ 1749:1983, xlab="Year", type="1")
> print(plotl, position=c(0, 0.2, 1, 1), more=TRUE)
> print(plot2, position=c(0, 0, 1, 0.33))

Section 5.8 describes additional options for controlling the arrangements of
panels within a lattice plot, and more flexible options for arranging multiple
lattice plots, using the concepts and facilities of the grid system.

4.5 Annotating lattice plots

In the original Trellis Graphics system, plots are completely self-contained.
There is no real concept of adding output to a plot once the plot has been
drawn. This constraint has been lifted in lattice, though the traditional ap-
proach is still supported.
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Figure 4.8
Arranging multiple lattice plots. This shows two separate lattice plots arranged
together on a single page.

@ © 2006 by Taylor & Francis Group, LLC



4.5.1 Panel functions and strip functions

The trellis object that is produced by a lattice plotting function is a com-
plete description of a plot. The usual way to add extra output to a plot (e.g.,
add text labels to data symbols), is to add extra information to the trellis
object. This is achieved by specifying a panel function via the panel argument
of lattice plotting functions.

The panel function is called for each panel in a lattice plot. All lattice plotting
functions have a default panel function, which is usually the name of the
function with a “panel.” prefix. For example, the default panel function for
the xyplot () function is panel.xyplot (). The default panel function draws
the default contents for a panel so it is typical to call this default as part of a
custom panel function.

The arguments available to the panel function differ depending on the plotting
function. The documentation for individual panel functions should be con-
sulted for full details, but some common arguments to expect are x and y (and
possibly z), giving locations at which to plot data symbols, and subscripts,
which provides the indices used to obtain the subset of the data for each panel.

In addition to the panel function, it is possible to specify a prepanel function
for controlling the scaling and size of panels and a strip function for controlling
what gets drawn in the strips of a lattice plot.

The following code provides a simple demonstration of the use of panel,
prepanel and strip functions. The plot is a lattice multi-panel scatterplot
with text labels added to the data points and a custom strip showing both
levels of the conditioning variable with the relevant level bold and the other
level grey (see Figure 4.9).

The panel function calls the default panel.xyplot() to draw data symbols,
then calls 1text () to draw the labels. Because lattice is based on grid, tra-
ditional graphics functions will not work in a panel function (though see Ap-
pendix B for a way around this constraint). However, there are several lattice
functions that correspond to traditional functions and can be used in much
the same way as the corresponding traditional functions. The names of the
lattice analogues are the traditional function names with an “1” prefix added.
In this case, the code draws letters as the labels, using the subscripts argu-
ment to select an appropriate subset. The labels are drawn slightly to the left
of and above the data symbols by subtracting 1 from the x values and adding
1 to the y values.
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Annotating a lattice plot using panel and strip functions. The text labels have been
added beside the data symbols using a custom panel function and the bold and grey
numerals in the strips have been produced using a custom strip function.
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> myPanel <- function(x, y, subscripts, ...) {
panel.xyplot(x, y, ...)
ltext(x - 1, y + 1, letters[subscripts], cex=0.5)
}

The strip function also uses 1text (). Locations within the strip are based on
a “normalized” coordinate system with the location (0, 0) at the bottom-left
corner and (1, 1) at the top-right corner. The font face and color for the
text is calculated using the which.panel argument. This supplies the current
level for each conditioning variable in the panel.

> myStrip <- function(which.panel, ...) {
font <- rep(1, 2)
font [which.panel] <- 2
col=rep("grey", 2)
col[which.panel] <- "black"
1lines(c(0, 1, 1, 0, 0), c(0, 0, 1, 1, 0))
ltext(c(0.33, 0.66), rep(0.5, 2), 1:2,

font=font, col=col)

The prepanel function calculates the limits of the scales for each panel by
extending the range of data by 1 unit (this allows room for the text labels
that are added in the panel function).

> myPrePanel <- function(x, y, ...) {
list(xlim=c(min(x) - 1, max(x) + 1),
ylim=c(min(y) - 1, max(y) + 1))

We now generate some data to plot and create the plot using xyplot (), with
the special panel functions provided as arguments. The final result is shown
in Figure 4.9.

> X <-1:20
> Y <-1:20
> G <- factor(rep(1:2, 10))

\4

xyplot(X ~ Y | G, aspect=1, layout=c(l, 2),
panel=myPanel, strip=myStrip,
prepanel=myPrePanel)

A great deal more can be done with panel functions using grid concepts and
functions. See Sections 5.8 and 6.7 for some examples.
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4.5.2 Adding output to a lattice plot

Unlike in the original Trellis implementation, it is also possible to add output
to a complete lattice plot (i.e., without using a panel function). The func-
tion trellis.focus() can be used to return to a particular panel or strip
of the current lattice plot in order to add further output using, for example,
1lines() or lpoints(). The function trellis.panelArgs() may be useful
for retrieving the arguments (including the data) used to originally draw the
panel. Also, the trellis.identify() function provides basic mouse inter-
action for labelling data points within a panel. Again, Sections 5.8 and 6.7
show how grid provides more flexibility for navigating to different parts of a
lattice plot and for adding further output.

4.6 Creating new lattice plots

The lattice plotting functions have many arguments and are very flexible in
the variety of output that they can produce. However, lattice is not designed
to be the best environment for developing new types of graphical display. For
example, there is no mechanism for adding new graphical parameters to the
list of values that control the appearance of plots (see Section 4.3).

Nevertheless, a lot can be done by defining a panel function that does not just
add extra output to the default output, but replaces the default output with
some sort of completely different display. For example, the lattice dotplot ()
function is really only a call to the bwplot () function with a different panel
function supplied.

Users wanting to develop a new lattice plotting function along these lines are
advised to read Chapter 5 to gain an understanding of the grid system that
is used in the production of lattice output.
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Chapter summary

The lattice package implements and extends the Trellis graphics sys-
tem for producing complete statistical plots. This system provides
most standard plot types and a number of modern plot types with
several important extensions. For a start, the layout and appearance
of the plots is designed to maximize readability and comprehension of
the information represented in the plot. Also, the system provides a
feature called multipanel conditioning, which produces multiple panels
of plots from a single data set, where each panel contains a different
subset of the data. The lattice functions provide an extensive set of
arguments for customizing the detailed appearance of a plot and there
are functions that allow the user to add further output to a plot.
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5
The Grid Graphics Model

Chapter preview

This chapter describes the fundamental tools that grid provides for
drawing graphical scenes (including plots). There are basic features
such as functions for drawing lines, rectangles, and text, together with
more sophisticated and powerful concepts such as viewports, layouts,
and units, which allow basic output to be located and sized in very
flexible ways.

This chapter is useful for drawing a wide variety of pictures, including
statistical plots from scratch, and for adding output to lattice plots.

The functions that make up the grid graphics system are provided in an add-
on package called grid. The grid system is loaded into R as follows.

> library(grid)

In addition to the standard on-line documentation available via the help()
function, grid provides both broader and more in-depth on-line documentation
in a series of vignettes, which are available via the vignette() function.

The grid graphics system only provides low-level graphics functions. There
are no high-level functions for producing complete plots. Section 5.1 briefly
introduces the concepts underlying the grid system, but this only provides an
indication of how to work with grid and some of the things that are possible.
An effective direct use of grid functions requires a deeper understanding of
the grid system (see later sections of this chapter and Chapter 6).
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The lattice package described in Chapter 4 provides a good demonstration of
the high-level results that can be achieved using grid. Other examples in this
book are Figure 1.7 in Chapter 1 and Figures 7.1 and 7.18 in Chapter 7.

5.1 A brief overview of grid graphics

This chapter describes how to use grid to produce graphical output. There
are functions to produce basic output, such as lines and rectangles and text,
and there are functions to establish the context for drawing, such as specifying
where output should be placed and what colors and fonts to use for drawing.

Like the traditional system, all grid output occurs on the current device,* and
later output obscures any earlier output that it overlaps (i.e.,output follows
the “painters model”). In this way, images can be constructed incrementally
using grid by calling functions in sequence to add more and more output.

There are grid functions to draw primitive graphical output such as lines,
text, and polygons, plus some slightly higher-level graphical components such
as axes (see Section 5.2). Complex graphical output is produced by making a
sequence of calls to these primitive functions.

The colors, line types, fonts, and other aspects that affect the appearance of
graphical output are controlled via a set of graphical parameters (see Section
5.4).

Grid provides no predefined regions for graphical output, but there is a pow-
erful facility for defining regions, based on the idea of a viewport (see Section
5.5). It is quite simple to produce a set of regions that are convenient for
producing a single plot (see the example in the next section), but it is also
possible to produce very complex sets of regions such as those used in the
production of Trellis plots (see Chapter 4).

All viewports have a large set of coordinate systems associated with them
so that it is possible to position and size output in physical terms (e.g., in
centimeters) as well as relative to the scales on axes, and in a variety of other
ways (see Section 5.3).

All grid output occurs relative to the current viewport (region) on a page. In
order to start a new page of output, the user must call the grid.newpage ()

*See Section 1.3.1 for information on devices and selecting a current device when more
than one device is open.
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function. The function grid.prompt () controls whether the user is prompted
when moving to a new page.

As well as the side effect of producing graphical output, grid graphics functions
produce objects representing output. These objects can be saved to produce
a persistent record of a plot, and other grid functions exist to modify these
graphical objects (for example, it is possible to interactively edit a plot). It is
also possible to work entirely with graphical descriptions, without producing
any output. Functions for working with graphical objects are described in
detail in Chapter 6.

5.1.1 A simple example

The following example demonstrates the construction of a simple scatterplot
using grid. This is more work than a single function call to produce the plot,
but it shows some of the advantages that can be gained by producing the plot
using grid.

This example uses the pressure data to produce a scatterplot much like that
in Figure 1.1.

Firstly, some regions are created that will correspond to the “plot region” (the
area within which the data symbols will be drawn) and the “margins” (the
area used to draw axes and labels).

The following code creates two viewports. The first viewport is a rectangular
region that leaves space for 5 lines of text at the bottom, 4 lines of text at the
left side, 2 lines at the top, and 2 lines to the right. The second viewport is
in the same location as the first, but it has x- and y-scales corresponding to
the range of the pressure data to be plotted.

> pushViewport (plotViewport(c(5, 4, 2, 2)))

> pushViewport(dataViewport (pressure$temperature,
pressure$pressure,
name="plotRegion"))

The following code draws the scatterplot one piece at a time. Grid output
occurs relative to the most recent viewport, which in this case is the viewport
with the appropriate axis scales. The data symbols are drawn relative to the
x- and y-scales, a rectangle is draw around the entire plot region, and x- and
y-axes are drawn to represent the scales.
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> grid.points(pressure$temperature, pressure$pressure,
name="dataSymbols")

grid.rect()

grid.xaxis()

grid.yaxis()

VvV V V

Adding labels to the axes demonstrates the use of the different coordinate
systems available. The label text is drawn outside the edges of the plot region
and is positioned in terms of a number of lines of text (i.e.,the height that a
line of text would occupy).

> grid.text("temperature", y=unit(-3, "lines"))
> grid.text("pressure", x=unit(-3, "lines"), rot=90)

The obvious result of running the above code is the graphical output (see the
top-left image in Figure 5.1). Less obvious is the fact that several objects have
been created. There are objects representing the viewport regions and there
are objects representing the graphical output. The following code makes use
of this fact to modify the plotting symbol from a circle to a triangle (see the
top-right image in Figure 5.1). The object representing the data symbols was
named "dataSymbols" (see the code above) and this name is used to find that
object and modify it using the grid.edit () function.

> grid.edit("dataSymbols", pch=2)

The next piece of code makes use of the objects representing the viewports.
The upViewport () and downViewport () functions are used to navigate be-
tween the different viewport regions to perform some extra annotations. First
of all, a call to the upViewport() function is used to go back to working
within the entire device so that a dashed rectangle can be drawn around the
complete plot. Next, the downViewport () function is used to return to the
plot region to add a text annotation that is positioned relative to the scale on
the axes of the plot (see bottom-right image in Figure 5.1).

upViewport (2)

grid.rect(gp=gpar (1ty="dashed"))

downViewport ("plotRegion")

grid.text("Pressure (mm Hg)\nversus\nTemperature (Celsius)",
x=unit (150, "native"), y=unit(600, "native"))

V V V V

The final scatterplot is still quite simple in this example, but the techniques
that were used to produce it are very general and powerful. It is possible to
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Figure 5.1

A simple scatterplot produced using grid. The top-left plot was constructed from
a series of calls to primitive grid functions that produce graphical output. The
top-right plot shows the result of calling the grid.edit() function to interactively
modify the plotting symbol. The bottom-right plot was created by making calls to
upViewport () and downViewport() to navigate between different drawing regions
and adding further output (a dashed border and text within the plot).
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produce a very complex plot, yet still have complete access to modify and add
to any part of the plot.

In the remaining sections of this chapter, and in Chapter 6, the basic grid
concepts of viewports and units are discussed in full detail. A complete un-
derstanding of the grid system will be useful in two ways: it will allow the
user to produce very complex images from scratch (the issue of making them
available to others is addressed in Chapter 7) and it will allow the user to
work effectively with (e.g., modify and add to) complex grid output that is
produced by other people’s code (e.g. lattice plots).

5.2 Graphical primitives

The most simple grid functions to understand are those that draw something.
There are a set of grid functions for producing basic graphical output such as
lines, circles, and text.* Table 5.1 lists the full set of these functions.

The first arguments to most of these functions is a set of locations and di-
mensions for the graphical object to draw. For example, grid.rect() has
arguments x, y, width, and height for specifying the locations and sizes of
the rectangles to draw. An important exception is the grid.text () function,
which requires the text to draw as its first argument.

In most cases, multiple locations and sizes can be specified and multiple prim-
itives will be produced in response. For example, the following function call
produces 100 circles because 100 locations and radii are specified (see Figure
5.2).

> grid.circle(x=seq(0.1, 0.9, length=100),
y=0.5 + 0.4*sin(seq(0, 2%pi, length=100)),
r=abs(0.1*cos(seq(0, 2*pi, length=100))))

The grid.move.to() and grid.line.to() functions are unusual in that they
both only accept one location. These functions refer to and modify a “cur-
rent location.” The grid.move.to() function sets the current location and
grid.line.to() draws from the current location to a new location, then sets

*All of these functions are of the form grid.*() and, for each one, there is a correspond-
ing *Grob() function that creates an object containing a description of primitive graphical
output, but does not draw anything. The *Grob() versions are addressed fully in Chapter
6.
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Table 5.1
Graphical primitives in grid. This is the complete set of low-level functions that
produce graphical output. For each function that produces graphical output (left-
most column), there is a corresponding function that returns a graphical object
containing a description of graphical output instead of producing graphical output
(right-most column). The latter set of functions is described further in Chapter 6.

Function to
Produce Output Description

Function to
Produce Object

grid.

grid.

grid.

grid.

grid.

grid.

grid.

grid

grid.

grid.

grid.
grid.

move.to()
line.to()
lines()
segments ()
rect()
circle()

polygon()

.text ()

arrows ()

points()

xaxis ()

yaxis()

Set the current location

Draw a line from the current lo-
cation to a new location and reset
the current location.

Draw a single line through multi-
ple locations in sequence.

Draw multiple lines between pairs
of locations.

Draw rectangles given locations
and sizes.

Draw circles given locations and
radii.

Draw polygons given vertexes.

Draw text given strings, locations
and rotations.

Draw arrows at either end of lines
given locations or an object de-
scribing lines.

Draw data symbols given loca-
tions.

Draw x-axis.

Draw y-axis.

moveToGrob ()
lineToGrob()

linesGrob()
segmentsGrob ()
rectGrob()
circleGrob()

polygonGrob()
textGrob()

arrowsGrob ()

pointsGrob()

xaxisGrob()

yaxisGrob()
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Figure 5.2

Primitive grid output. A demonstration of basic graphical output produced using
a single call to the grid.circle() function. There are 100 circles of varying sizes,
each at a different (x, y) location.

the current location to be the new location. The current location is not used
by the other drawing functions®. In most cases, grid.lines() will be more
convenient, but grid.move.to() and grid.line.to() are useful for drawing
lines across multiple viewports (an example is given in Section 5.5.1).

The grid.arrows() function is used to add arrows to lines. A single line
can be specified by x and y locations (through which a line will be drawn),
or the grob argument can be used to specify an object that describes one or
more lines (produced by linesGrob(), segmentsGrob(), or lineToGrob()).
In the latter case, grid.arrows() will add arrows at the ends of the line(s).
The following code demonstrates the different uses (see Figure 5.3). The first
grid.arrows () call specifies locations via the x and y arguments to produce
a single line, at the end of which an arrow is drawn. The second call specifies
a segments graphical object via the grob argument, which describes three
lines, and an arrow is added to the end of each of these lines.

> angle <- seq(0, 2*pi, length=50)
> grid.arrows(x=seq(0.1, 0.5, length=50),
y=0.5 + 0.3*sin(angle))
> grid.arrows (grob=segmentsGrob(6:8/10, 0.2, 7:9/10, 0.8))

*There is one exception: the grid.arrows() function makes use of the current location
when an arrow is added to a line.to graphical object produced by lineToGrob().
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Figure 5.3

Drawing arrows using the grid.arrows() function. Arrows can be added to: a
single line through multiple points, as generated by grid.lines() (e.g., the sine
curve in the left half of the figure); multiple straight line segments, as generated by
grid.segments() (e.g., the three straight lines in the right half of the figure); the
result of a line-to operation, as generated by grid.line.to() (example not shown
here).

In simple usage, the grid.polygon() function draws a single polygon through
the specified x and y locations (automatically joining the last location to the
first to close the polygon). It is possible to produce multiple polygons from a
single call (which is much faster than making multiple calls) if the id argument
is specified. In this case, a polygon is drawn for each set of x and y locations
corresponding to a different value of id. The following code demonstrates
both usages (see Figure 5.4). The two grid.polygon() calls use the same x
and y locations, but the second call splits the locations into three separate
polygons using the id argument.

> angle <- seq(0, 2%pi, length=10) [-10]

> grid.polygon(x=0.25 + 0.15%cos(angle), y=0.5 + 0.3*sin(angle),
gp=gpar(fill="grey"))

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),
id=rep(1:3, each=3),
gp=gpar (fill="grey"))

The grid.xaxis() and grid.yaxis () functions are not really graphical prim-
itives as they produce relatively complex output consisting of both lines and
text. They are included here because they complete the set of grid functions
that produce graphical output. The main argument to these functions is the
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Figure 5.4

Drawing polygons using the grid.polygon() function. By default, a single polygon
is produced from multiple (x, y) locations (the nonagon on the left), but it is
possible to associate subsets of the locations with separate polygons using the id
argument (the three triangles on the right).

at argument. This is used to specify where tick-marks should be placed. If the
argument is not specified, sensible tick-marks are drawn based on the current
scales in effect (see Section 5.5 for information about viewport scales). The
values specified for the at argument are always relative to the current scales
(see the concept of the "native" coordinate system in Section 5.3). These
functions are much less flexible and general than the traditional axis () func-
tion. For example, they do not provide automatic support for generating
labels from time- or date-based at locations.

Drawing curves

There is no native curve-drawing function in grid, but an approximation to a
smooth curve consisting of many straight line segments is often sufficient. The
example on the left of Figure 5.3 demonstrates how a series of line segments
can appear very much like a smooth curve, if enough line segments are used.

5.2.1 Standard arguments

All primitive graphics functions accept a gp argument that allows control over
aspects such as the color and line type of the relevant output. For example, the
following code specifies that the boundary of the rectangle should be dashed
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and colored red.
> grid.rect(gp=gpar(col="red", lty="dashed"))

Section 5.4 provides more information about setting graphical parameters.

All primitive graphics functions also accept a vp argument that can be used
to specify a viewport in which to draw the relevant output. The following
code shows a simple example of the syntax (the result is a rectangle drawn in
the left half of the page); Section 5.5 describes viewports and the use of vp
arguments in full detail.

> grid.rect(vp=viewport(x=0, width=0.5, just="left"))

Finally, all primitive graphics functions also accept a name argument. This can
be used to identify the graphical object produced by the function. It is useful
for interactively editing graphical output and when working with graphical
objects (see Chapter 6). The following code demonstrates how to associate a
name with a rectangle.

> grid.rect(name="myrect")

5.3 Coordinate systems

When drawing in grid, there are always a large number of coordinate systems
available for specifying the locations and sizes of graphical output. For ex-
ample, it is possible to specify an x location as a proportion of the width of
the drawing region, or as a number of inches (or centimeters, or millimeters)
from the left-hand edge of the drawing region, or relative to the current x-
scale. The full set of coordinate systems available is shown in Table 5.2. The
meaning of some of these will only become clear with an understanding of
viewports (Section 5.5) and graphical objects (Chapter 6).*

With so many coordinate systems available, it is necessary to specify which
coordinate system a location or size refers to. The unit () function is used

* Absolute units, such as inches, may not be rendered with full accuracy on screen devices
(see the footnote on page 100).
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Table 5.2

The full set of coordinate systems available in grid.

Coordinate

System Name

Description

"native"

npc

n San n

"inches"

n lel
llmmll
"points"
llbigptsll
llplcas n
lldidall
"cicero"

"scaledpts"

n ChaI' n

"lines"

"strwidth"
"strheight"

"grobwidth"
"grobheight"

Locations and sizes are relative to the x- and y-
scales for the current viewport.

Normalized Parent Coordinates. Treats the
bottom-left corner of the current viewport as the
location (0,0) and the top-right corner as (1, 1).
Square Normalized Parent Coordinates. Locations
and sizes are expressed as a proportion of the
smaller of the width and height of the current
viewport.

Locations and sizes are in terms of physical inches.
For locations, (0,0) is at the bottom-left of the
viewport.

Same as "inches", except in centimeters.
Millimeters.

Points. There are 72.27 points per inch.

Big points. There are 72 big points per inch.
Picas. There are 12 points per pica.

Dida. 1157 dida equals 1238 points.

Cicero. There are 12 dida per cicero.

Scaled points. There are 65536 scaled points per
point.

Locations and sizes are specified in terms of mul-
tiples of the current nominal font size (dependent
on the current fontsize and cex).

Locations and sizes are specified in terms of mul-
tiples of the height of a line of text (dependent on
the current fontsize, cex, and lineheight).

Locations and sizes are expressed as multiples of
the width (or height) of a given string (depen-
dent on the string and the current fontsize, cex,
fontfamily, and fontface).

Locations and sizes are expressed as multiples of
the width (or height) of a given graphical object
(dependent on the type, location, and graphical
settings of the graphical object).
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to associate a numeric value with a coordinate system. This function creates
an object of class "unit" (hereafter referred to simply as a unit), which acts
very much like a normal numeric object — it is possible to perform basic
operations such as sub-setting units, and adding and subtracting units.

Each value in a unit can be associated with a different coordinate system and
each location and dimension of a graphical object is a separate unit, so for
example, a rectangle can have its x-location, y-location, width, and height all
specified relative to different coordinate systems.

The following pieces of code demonstrate some of the flexibility of grid units.
The first code examples show some different uses of the unit () function: a
single value is associated with a coordinate system, then several values are
associated with a coordinate system (notice the recycling of the coordinate
system value), then several values are associated with different coordinate
systems.

> unit (1, "mm")

[1] 1mm

> unit(1:4, "mm")

[1] 1mm 2mm 3mm 4mm

> unit(1:4, c("npc", "mm", "native", "lines"))
[1] 1npc 2mm 3native 4lines

The next code examples show how units can be manipulated in many of the
ways that normal numeric vectors can: firstly by sub-setting, then simple ad-
dition (again notice the recycling), then finally the use of a summary function
(max () in this case).

> unit(1:4, "mm") [2:3]
[1] 2mm 3mm
> unit(1, "npc") - unit(1:4, "mm")

[1] 1npc-1mm 1npc-2mm 1npc-3mm 1npc-4mm
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> max(unit(1:4, c("npc", "mm", "native", "lines")))
[1] max(1npc, 2mm, 3native, 4lines)

Some operations on units are not as straightforward as with numeric vectors,
but require the use of functions written specifically for units. For exam-
ple, the length of units must be obtained using the unit.length() function
rather than length(), units must be concatenated (in the sense of the c()
function) using unit.c(), and there are special functions for repeating units
and for calculating parallel maxima and minima (unit.rep(), unit.pmin(),
and unit.pmax()).

The following code provides an example of using units to locate and size a
rectangle. The rectangle is at a location 40% of the way across the drawing
region and 1 inch from the bottom of the drawing region. It is as wide as the
text "very snug", and it is one line of text high (see Figure 5.5).

> grid.rect(x=unit(0.4, "npc"), y=unit(l, "inches"),
width=stringWidth("very snug"),
height=unit (1, "lines"),
just=c("left", "bottom"))

5.3.1 Conversion functions

As demonstrated in the previous section, a unit is not simply a numeric value.
Units only reduce to a simple numeric value (a physical location on a graphics
device) when drawing occurs. A consequence of this is that a unit can mean
very different things, depending on when it gets drawn (this should become
more apparent with an understanding of graphical parameters in Section 5.4
and viewports in Section 5.5).

In some cases, it can be useful to convert a unit to a simple numeric value.
For example, it is sometimes necessary to know the current scale limits for
numerical calculations. There are several functions that can assist with this
problem: convertUnit (), convertX(), convertY(), convertWidth(), and
convertHeight (). The following code demonstrates how to calculate the
current scale limits for the x-dimension. First of all, a scale is defined on the
x-axis with the range c(-10, 50) (see Section 5.5 for more about viewports).

> pushViewport (viewport (xscale=c(-10, 50)))

The next expression performs a query to obtain the current x-axis scale. The
expression unit (0:1, "npc") represents the left and right boundaries of the
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Figure 5.5

A demonstration of grid units. A diagram demonstrating how graphical output
can be located and sized using grid units to associate numeric values with different
coordinate systems. The grey border represents the current viewport. A black
rectangle has been drawn with its bottom-left corner 40% of the way across the
current viewport and 1 inch above the bottom of the current viewport. The rectangle
is 1 line of text high and as wide as the text “very snug” (as it would be drawn in
the current font).

current drawing region and convertX () is used to convert these locations into
values in the "native" coordinate system, which is relative to the current
scales.

> convertX(unit(0:1, "npc"), "native", valueOnly=TRUE)

[1] -10 50

WARNING: These conversion functions must be used with care. The out-
put from these functions is only valid for the current device size. If, for
example, a window on screen is resized, or output is copied from one device to
another device with a different physical size, these calculations may no longer
be correct. In other words, only rely on these functions when it is known
that the size of the graphics device will not change. See Appendix B for more
information on this topic and for a way to be able to use these functions on
devices that may be resized. The discussion on the use of these functions
in drawDetails() methods and the function grid.record() is also relevant
(see “Calculations during drawing” in Section 7.3.10).
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5.3.2 Complex units

There are two peculiarities of the "strwidth", "strheight", "grobwidth",
and "grobheight" coordinate systems that require further explanation. In
all of these cases, a value is interpreted as a multiple of the size of some
other object. In the former two cases, the other object is just a text string
(e.g., "a label"), but in the latter two cases, the other object can be any
graphical object (see Chapter 6). It is necessary to specify the other object
when generating a unit for these coordinate systems and this is achieved via
the data argument. The following code shows some simple examples.

> unit (1, "strwidth", "some text")

[1] 1strwidth

> unit (1, "grobwidth", textGrob("some text"))
[1] 1grobwidth

A more convenient interface for generating units, when all values are rela-
tive to a single coordinate system, is also available via the stringWidth(),
stringHeight (), grobWidth(), and grobHeight () functions. The following
code is equivalent to the previous example.

> stringWidth("some text")

[1] 1strwidth

> grobWidth(textGrob("some text"))
[1] 1grobwidth

In this particular example, the "strwidth" and "grobwidth" units will be
identical as they are based on identical pieces of text. The difference is that
a graphical object can contain not only the text to draw, but other informa-
tion that may affect the size of the text, such as the font family and size.
In the following code, the two units are no longer identical because the text
grob represents text drawn at font size of 20, whereas the simple string rep-
resents text at the default size of 10. The convertWidth() function is used
to demonstrate the difference.
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> convertWidth(stringWidth("some text"), "inches")
[1] 0.7175inches

> convertWidth(grobWidth(textGrob("some text",
gp=gpar (fontsize=18))),
"inches")

[1] 1.07625inches

For units that contain multiple values, there must be an object specified
for every "strwidth", "strheight", "grobwidth", and "grobheight" value.
Where there is a mixture of coordinate systems within a unit, a value of NULL
can be supplied for the coordinate systems that do not require data. The
following code demonstrates this.

> unit(rep(l, 3), "strwidth", list("one", "two", "three"))
[1] 1strwidth 1strwidth 1strwidth

> unit(rep(l, 3),
c("npc", "strwidth", "grobwidth"),
1ist(NULL, "two", textGrob("three")))

[1] 1npc 1strwidth 1grobwidth

Again, there is a simpler interface for straightforward situations.
> stringWidth(c("one", "two", "three"))

[1] 1strwidth 1strwidth lstrwidth

For "grobwidth" and "grobheight" units, it is also possible to specify the
name of a graphical object rather than the graphical object itself. This can
be useful for establishing a reference to a graphical object, so that when the
named graphical object is modified, the unit is updated for the change. The
following code demonstrates this idea. First of all, a text grob is created with
the name "tgrob".

> grid.text("some text", name="tgrob")
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Next, a unit is created that is based on the width of the grob called "tgrob".
> theUnit <- grobWidth("tgrob")

The convertWidth() function can be used to show the current value of the
unit.

> convertWidth(theUnit, "inches")

[1] 0.7175inches

The following code modifies the grob named "tgrob" and convertWidth()
is used to show that the value of the unit reflects the new width of the text

grob.

> grid.edit("tgrob", gp=gpar(fontsize=18))
> convertWidth(theUnit, "inches")

[1] 1.07625inches

5.4 Controlling the appearance of output

All graphical primitives functions (and the viewport () function — see Section
5.5) — have a gp argument that can be used to provide a set of graphical
parameters to control the appearance of the graphical output. There is a
fixed set of graphical parameters (see Table 5.3), all of which can be specified
for all types of graphical output.

The value supplied for the gp argument must be an object of class "gpar",
and a gpar object can be produced using the gpar () function. For example,
the following code produces a gpar object containing graphical parameter
settings controlling color and line type.

> gpar(col="red", lty="dashed")

$col
[1] "red"

$1ty
[1] "dashed"
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Table 5.3
The full set of graphical parameters available in grid. The lex parameter
has only been available since R version 2.1.0.

Parameter Description

col Color of lines, text, rectangle borders, ...

fill Color for filling rectangles, circles, polygons, ...

gamma Gamma correction for colors

alpha Alpha blending coefficient for transparency

lwd Line width

lex Line width expansion multiplier applied to 1wd to
obtain final line width

1ty Line type

lineend Line end style (round, butt, square)

linejoin Line join style (round, mitre, bevel)

linemitre  Line mitre limit

cex Character expansion multiplier applied to
fontsize to obtain final font size

fontsize Size of text (in points)

fontface Font face (bold, italic, ...)

fontfamily Font family

lineheight Multiplier applied to final font size to obtain the

height of a line
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The function get.gpar() can be used to obtain current graphical parameter
settings. The following code shows how to query the current line type and fill
color. When called with no arguments, the function returns a complete list of
current settings.

> get.gpar(c("1lty", "£ill"))

$1ty
[1] "solid"

$£ill
[1] "transparent"

A gpar object represents an explicit graphical context — settings for a small
number of specific graphical parameters. The example above produces a
graphical context that ensures that the color setting is "red" and the line-type
setting is "dashed". There is always an implicit graphical context consisting
of default settings for all graphical parameters. The implicit graphical con-
text is initialized automatically by grid for every graphics device and can be
modified by viewports (see Section 5.5.5) or by gTrees (see Section 6.2.1).*

A graphical primitive will be drawn with graphical parameter settings taken
from the implicit graphical context, except where there are explicit graphical
parameter settings from the graphical primitive’s gp argument. For graphical
primitives, the explicit graphical context is only in effect for the duration of the
drawing of the graphical primitive. The following code example demonstrates
these rules.

The default initial implicit graphical context includes settings such as
lty="solid" and fill="transparent". The first (right-most) rectangle
has an explicit setting fill="black" so it only uses the implicit setting
1ty="so0lid". The second (left-most) rectangle uses all of the implicit graph-
ical parameter settings. In particular, it is not at all affected by the explicit
settings of the first rectangle (see Figure 5.6).

> grid.rect(x=0.66, height=0.7, width=0.2,
gp=gpar(fill="black"))
> grid.rect(x=0.33, height=0.7, width=0.2)

*The ideas of implicit and explicit graphical contexts are similar to the specification of
settings in Cascading Style Sheets[34] and the graphics state in PostScript[3].
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Figure 5.6

Graphical parameters for graphical primitives. The grey rectangle represents the
current viewport. The left-hand rectangle has been drawn with no specific graphical
parameters so it inherits the defaults for the current viewport (which in this case
are a black border and no fill color). The right-hand rectangle has been drawn with
a specific fill color of black (it is still drawn with the inherited black border). The
graphical parameter settings for one rectangle have no effect on the other rectangle.

5.4.1 Specifying graphical parameter settings

The values that can be specified for colors, line types, line widths, line ends,
line joins, and fonts are mostly the same as for the traditional graphics system.
Sections 3.2.1, 3.2.2, and 3.2.3 contain descriptions of these specifications
(for example, see the sub-section “Specifying colors”). In many cases, the
graphical parameter in grid also has the same name as the traditional graphics
state setting (e.g., col), though several of the grid parameters are slightly
more verbose (e.g. lineend and fontfamily). Some other differences in the
specification of graphical parameter values in the grid graphics system are
described below.

In grid, the fontface value can be a string instead of an integer. Table 5.4
shows the possible string values.

In grid, the cex value is cumulative. This means that it is multiplied by the
previous cex value to obtain a current cex value. The following code shows
a simple example. A viewport is pushed with cex=0.5. This means that text
will be half size. Next, some text is drawn, also with cex=0.5. This text is
drawn quarter size because cex was already 0.5 from the viewport (0.5%0.5
= 0.25).
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Table 5.4

Possible font face specifications in grid.

Integer String Description
1 "plain" Roman or upright face
2 "bold" Bold face
3 "italic" or "oblique" Slanted face
4 "bold.italic" Bold and slanted face

For the HersheySerif font family
5 "cyrillic"
6 ‘"cyrillic.oblique"
7 IIEUCII

Cyrillic font
Slanted Cyrillic font
Japanese characters

> pushViewport (viewport (gp=gpar (cex=0.5)))
> grid.text("How small do you think?", gp=gpar(cex=0.5))

The alpha graphical parameter setting is unique to grid. It is a value between
1 (fully opaque) and O (fully transparent). The alpha value is combined
with the alpha channel of colors by multiplying the two and this setting is
cumulative like the cex setting. The following code shows a simple example.
A viewport is pushed with alpha=0.5, then a rectangle is drawn using a
semitransparent red fill color (alpha channel set to 0.5). The final alpha
channel for the fill color is 0.25 (0.5%0.5 = 0.25).

> pushViewport (viewport (gp=gpar (alpha=0.5)))
> grid.rect(width=0.5, height=0.5,
gp=gpar (fill=rgb(1, 0, 0, 0.5)))

Grid does not support fill patterns (see page 58).

5.4.2 Vectorized graphical parameter settings

All graphical parameter settings may be vector values. Many graphical primi-
tive functions produce multiple primitives as output and graphical parameter
settings will be recycled over those primitives. The following code produces
100 circles, cycling through 50 different shades of grey for the circles (see
Figure 5.7).
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Figure 5.7

Recycling graphical parameters. The 100 circles are drawn by a single function call
with 50 different greys specified for the border color (from a very light grey to a
very dark grey and back to a very light grey). The 50 colors are recycled over the
100 circles so circle 7 gets the same color as circle ¢ + 50.

> levels <- round(seq(90, 10, length=25))

> greys <- paste("grey", c(levels, rev(levels)), sep="")

> grid.circle(x=seq(0.1, 0.9, length=100),
y=0.5 + 0.4*sin(seq(0, 2%pi, length=100)),
r=abs(0.1*cos(seq(0, 2*pi, length=100))),
gp=gpar (col=greys))

The grid.polygon() function is a slightly complex case. There are two ways
in which this function will produce multiple polygons: when the id argument
is specified and when there are NA values in the x or y locations (see Sec-
tion 5.6). For grid.polygon(), a different graphical parameter will only be
applied to each polygon identified by a different id. When a single polygon
(as identified by a single id value) is split into multiple sub-polygons by NA
values, all sub-polygons receive the same graphical parameter settings. The
following code demonstrates these rules (see Figure 5.8). The first call to
grid.polygon() draws two polygons as specified by the id argument. The
f£ill graphical parameter setting contains two colors so the first polygon gets
the first color (grey) and the second polygon gets the second color (white). In
the second call, all that has changed is that an NA value has been introduced.
This means that the first polygon as specified by the id argument is split into
two separate polygons, but both of these polygons use the same £ill setting
because they both correspond to an id of 1. Both of these polygons get the
first color (grey).
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Figure 5.8

Recycling graphical parameters for polygons. On the left, a single function call
produces two polygons with different fill colors by specifying an id argument and
two fill colors. On the right, there are three polygons because an NA value has been
introduced in the (x, y) locations for the polygon, but there are still only two colors
specified. The colors are allocated to polygons using the id argument and ignoring
any NA values.

\4

angle <- seq(0, 2*pi, length=11) [-11]

grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),
id=rep(1:2, (7, 3)),
gp=gpar (fill=c("grey", "white")))

angle[4] <- NA

grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),
id=rep(1:2, (7, 3)),
gp=gpar (fill=c("grey", "white")))

\4

vV Vv

All graphical primitives have a gp component, so it is possible to specify any
graphical parameter setting for any graphical primitive. This may seem inef-
ficient, and indeed in some cases the values are completely ignored (e.g., text
drawing ignores the 1ty setting), but in many cases the values are potentially
useful. For example, even when there is no text being drawn, the settings for
fontsize, cex, and lineheight are always used to calculate the meaning of
"lines" and "char" coordinates.

@ © 2006 by Taylor & Francis Group, LLC



5.5 Viewports

A wviewport is a rectangular region that provides a context for drawing.

A viewport provides a drawing context consisting of both a geometric context
and a graphical context. A geometric context consists of a set of coordinate sys-
tems for locating and sizing output and all of the coordinate systems described
in Section 5.3 are available within every viewport.* A graphical context con-
sists of explicit graphical parameter settings for controlling the appearance of
output. This is specified as a gpar object via the gp argument.

By default, grid creates a viewport that corresponds to the entire graphics
device and, until another viewport is created, drawing occurs within the full
extent of the device and using the default graphical parameter settings.

A new viewport is created using the viewport() function. A viewport has
a location (given by x and y), a size (given by width and height), and it is
justified relative to its location (according to the value of the just argument).
The location and size of a viewport are specified in units, so a viewport can
be positioned and sized within another viewport in a very flexible manner.
The following code creates a viewport that is left-justified at an x location
0.4 of the way across the drawing region, and bottom-justified 1 centimeter
from the bottom of the drawing region. It is as wide as the text "very very
snug indeed", and it is six lines of text high. Figure 5.9 shows a diagram
representing this viewport.

> viewport(x=unit(0.4, "npc"), y=unit(l, "cm"),
width=stringWidth("very very snug indeed"),
height=unit(6, "lines"),
just=c("left", "bottom"))

viewport [GRID.VP.33]

An important thing to notice in the above example is that the result of the
viewport () function is an object of class viewport. No region has actually
been created on a graphics device. In order to create regions on a graphics
device, a viewport object must be pushed onto the device, as described in the
next section.

*The idea of being able to define a geometric context is similar to the concept of the
current transformation matrix (CTM) in PostScript[3] and the modeling transformation in
OpenGL[55].
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Figure 5.9

A diagram of a simple viewport. A viewport is a rectangular region specified by
an (x, y) location, a (width, height) size, and a justification (and possibly a
rotation). This diagram shows a viewport that is left-bottom justified 1 centimeter
off the bottom of the page and 0.4 of the way across the page. It is 6 lines of text
high and as wide as the text “very very snug indeed”.

5.5.1 Pushing, popping, and navigating between viewports

The pushViewport () function takes a viewport object and uses it to create
a region on the graphics device. This region becomes the drawing context for
all subsequent graphical output, until the region is removed or another region
is defined.

The following code demonstrates this idea (see Figure 5.10). To start with,
the entire device, and the default graphical parameter settings, provide the
drawing context. Within this context, the grid.text () call draws some text
at the top-left corner of the device. A viewport is then pushed, which creates
a region 80% as wide as the device, half the height of the device, and rotated
at an angle of 10 degrees™. The viewport is given a name, "vpl", which will
help us to navigate back to this viewport from another viewport later.

Within the new drawing context defined by the viewport that has been pushed,
exactly the same grid.text () call produces some text at the top-left corner
of the viewport. A rectangle is also drawn to make the extent of the new
viewport clear.

*It is not often very useful to rotate a viewport, but it helps in this case to dramatise
the difference between the drawing regions.
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top-left corner

Figure 5.10

Pushing a viewport. Drawing occurs relative to the entire device until a viewport is
pushed. For example, some text has been drawn in the top-left corner of the device.
Once a viewport has been pushed, output is drawn relative to that viewport. The
black rectangle represents a viewport that has been pushed and text has been drawn
in the top-left corner of that viewport.

\

grid.text ("top-left corner", x=unit(l, "mm"),
y=unit (1, "npc") - unit(l, "mm"),
just=c("left", "top"))
> pushViewport (viewport(width=0.8, height=0.5, angle=10,
name="vp1"))

\4

grid.rect()

grid.text ("top-left corner", x=unit(l, "mm"),
y=unit (1, "npc") - unit(l, "mm"),
just=c("left", "top"))

\

The pushing of viewports is entirely general. A viewport is pushed relative
to the current drawing context. The following code slightly extends the pre-
vious example by pushing a further viewport, exactly like the first, and again
drawing text at the top-left corner (see Figure 5.11). The location, size, and
rotation of this second viewport are all relative to the context provided by the
first viewport. Viewports can be nested like this to any depth.
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Figure 5.11

Pushing several viewports. Viewports are pushed relative to the current viewport.
Here, a second viewport has been pushed relative to the viewport that was pushed
in Figure 5.10. Again, text has been drawn in the top-left corner.

> pushViewport (viewport (width=0.8, height=0.5, angle=10,
name="vp2"))
> grid.rect()
> grid.text("top-left corner", x=unit(1l, "mm"),
y=unit (1, "npc") - unit(l, "mm"),
just=c("left", "top"))

In grid, drawing is always within the context of the current viewport. One
way to change the current viewport is to push a viewport (as in the previous
examples), but there are other ways too. For a start, it is possible to pop a
viewport using the popViewport () function. This removes the current view-
port and the drawing context reverts to whatever it was before the current
viewport was pushed*. The following code demonstrates popping viewports
(see Figure 5.12). The call to popViewport () removes the last viewport cre-
ated on the device. Text is drawn at the bottom-right of the resulting drawing
region (which has reverted back to being the first viewport that was pushed).

> popViewport ()

> grid.text("bottom-right corner",
x=unit (1, "npc") - unit(l, "mm"),
y=unit(1l, "mm"), just=c("right", "bottom"))

*It is illegal to pop the top-most viewport that represents the entire device region and
the default graphical parameter settings. Trying to do so will result in an error.
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Figure 5.12

Popping a viewport. When a viewport is popped, the drawing context reverts to
the parent viewport. In this figure, the second viewport (pushed in Figure 5.11) has
been popped to go back to the first viewport (pushed in Figure 5.10). This time
text has been drawn in the bottom-right corner.

The popViewport() function has an integer argument n that specifies how
many viewports to pop. The default is 1, but several viewports can be popped
at once by specifying a larger value. The special value of 0 means that all
viewports should be popped. In other words, the drawing context should
revert to the entire device and the default graphical parameter settings.

Another way to change the current viewport is by using the upViewport ()
and downViewport() functions. The upViewport() function is similar to
popViewport () in that the drawing context reverts to whatever it was prior to
the current viewport being pushed. The difference is that upViewport () does
not remove the current viewport from the device. This difference is significant
because it means that that a viewport can be revisited without having to push
it again. Revisiting a viewport is faster than pushing a viewport and it allows
the creation of viewport regions to be separated from the production of output
(see “viewport paths” in Section 5.5.3 and Chapter 7).

A viewport can be revisited using the downViewport () function. This function
has an argument name that can be used to specify the name of an existing
viewport. The result of downViewport() is to make the named viewport
the current drawing context. The following code demonstrates the use of
upViewport () and downViewport () (see Figure 5.13).

A call to upViewport () is made, which reverts the drawing context to the
entire device (recall that prior to this navigation the current viewport was
the first viewport that was pushed) and text is drawn in the bottom-right
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Figure 5.13

Navigating between viewports. Rather than popping a viewport, it is possible to
navigate up from a viewport (and leave the viewport on the device). Here navigation
has occurred from the first viewport to revert the drawing context to the entire
device and text has been drawn in the bottom-right corner. Next, there has been
a navigation down to the first viewport again and a second border has been drawn
around the outside of the viewport.

corner. The downViewport () function is then used to navigate back down to
the viewport that was first pushed and a second border is drawn around this
viewport. The viewport to navigate down to is specified by its name, "vp1".

\4

upViewport ()
grid.text("bottom-right corner",
x=unit (1, "npc") - unit(l, "mm"),
y=unit (1, "mm"), just=c("right", "bottom"))
downViewport ("vpl")
grid.rect(width=unit(1, "npc") + unit(2, "mm"),
height=unit (1, "npc") + unit(2, "mm"))

\4

vV Vv

There is also a seekViewport () function that can be used to travel across
the viewport tree. This can be convenient for interactive use, but the result is
less predictable, so it is less suitable for use in writing grid functions for oth-
ers to use. The call seekViewport ("avp") is equivalent to upViewport (0);
downViewport ("avp").
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Drawing between viewports

Sometimes it is useful to be able to locate graphical output relative to more
than one viewport. The only way to do this in grid is via the grid.move.to ()
and grid.line.to() functions. It is possible to call grid.move.to() within
one viewport, change viewports, and call grid.line.to(). An example is
provided in Section 5.8.2.

5.5.2 Clipping to viewports

Drawing can be restricted to only the interior of the current viewport (clipped
to the viewport) by specifying the c1ip argument to the viewport () function.
This argument has three values: "on" indicates that output should be clipped
to the current viewport; "off" indicates that output should not be clipped
at all; "inherit" means that the clipping region of the previous viewport
should be used (this may not have been set by the previous viewport if that
viewport’s clip argument was also "inherit"). The following code provides
a simple example (see Figure 5.14). A viewport is pushed with clipping on
and a circle with a very thick black border is drawn relative to the viewport.
A rectangle is also drawn to show the extent of the viewport. The circle
partially extends beyond the limits of the viewport, so only those parts of the
circle that lie within the viewport are drawn.

> pushViewport (viewport(w=.5, h=.5, clip="on"))
> grid.rect()
> grid.circle(r=.7, gp=gpar(1lwd=20))

Next, another viewport is pushed and this viewport just inherits the clipping
region from the first viewport. Another circle is drawn, this time with a grey
and slightly thinner border and again the circle is clipped to the viewport.

> pushViewport (viewport (clip="inherit"))
> grid.circle(r=.7, gp=gpar(lwd=10, col="grey"))

Finally, a third viewport is pushed with clipping turned off. Now, when a
third circle is drawn (with a thin, black border) all of the circle is drawn, even
though parts of the circle extend beyond the the viewport.

> pushViewport (viewport (clip="off"))
> grid.circle(r=.7)
> popViewport (3)
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Figure 5.14

Clipping output in viewports. When a viewport is pushed, output can be clipped to
that viewport, or the clipping region can be left in its current state, or clipping can
be turned off entirely. In this figure, a viewport is pushed (the black rectangle) with
clipping on. A circle is drawn with a very thick black border and it gets clipped.
Next, another viewport is pushed (in the same location) with clipping left as it was.
A second circle is drawn with a slightly thinner grey border and it is also clipped.
Finally, a third viewport is pushed, which turns clipping off. A circle is drawn with
a thin black border and this circle is not clipped.
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5.5.3 Viewport lists, stacks, and trees

It can be convenient to work with several viewports at once and there are
several facilities for doing this in grid. The pushViewport() function will
accept multiple arguments and will push the specified viewports one after
another. For example, the fourth expression below is a shorter equivalent
version of the first three expressions.

\

pushViewport (vpl)
pushViewport (vp2)
pushViewport (vp3)

vV Vv

> pushViewport(vpl, vp2, vp3)

The pushViewport () function will also accept objects that contain several
viewports: viewport lists, viewport stacks, and viewport trees. The func-
tion vpList () creates a list of viewports and these are pushed “in parallel.”
The first viewport in the list is pushed, then grid navigates back up before
the next viewport in the list is pushed. The vpStack() function creates a
stack of viewports and these are pushed “in series.” Pushing a stack of view-
ports is exactly the same as specifying the viewports as multiple arguments
to pushViewport (). The vpTree () function creates a tree of viewports that
consists of a parent viewport and any number of child viewports. The parent
viewport is pushed first, then the the child viewports are pushed in parallel
within the parent.

The current set of viewports that have been pushed on the current device
constitute a viewport tree and the current.vpTree() function prints out a
representation of the current viewport tree. The following code demonstrates
the output from current.vpTree() and the difference between lists, stacks,
and trees of viewports. First of all, some (trivial) viewports are created to
work with.

> vpl <- viewport(name="A")
> vp2 <- viewport(name="B")
> vp3 <- viewport(name="C")

The next piece of code shows these three viewports pushed as a list. The
output of current.vpTree () shows the root viewport (which represents the
entire device) and then all three viewports as children of the root viewport.

> pushViewport (vpList(vpl, vp2, vp3))
> current.vpTree()
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viewport [ROOT]->(viewport [A], viewport[B], viewport[C])

This next code pushes the three viewports as a stack. The viewport vpl is
now the only child of the root viewport with vp2 a child of vp1, and vp3 a
child of vp2.

> grid.newpage()
> pushViewport (vpStack(vpl, vp2, vp3))
> current.vpTree()

viewport [ROOT]->(viewport [A]->(viewport [B]->(viewport[C])))

Finally, the three viewports are pushed as a tree, with vp1 as the parent and
vp2 and vp3 as its children.

> grid.newpage()
> pushViewport (vpTree(vpl, vpList(vp2, vp3)))
> current.vpTree()

viewport [ROOT]->(viewport [A]->(viewport[B], viewport[C]))

As with single viewports, viewport lists, stacks, and trees can be provided as
the vp argument for graphical functions (see Section 5.5.4).

Viewport paths

The downViewport () function, by default, searches down the current viewport
tree as far as is necessary to find a given viewport name. This is convenient
for interactive use, but can be ambiguous if there is more than one viewport
with the same name in the viewport tree.

Grid provides the concept of a wviewport path to resolve such ambiguity. A
viewport path is an ordered list of viewport names, which specify a series
of parent-child relations. A viewport path is created using the vpPath()
function. For example, the following code produces a viewport path that
specifies a viewport called "C" with a parent called "B", which in turn has a
parent called "A".

> vaath("A", an, "C")
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For convenience in interactive use, a viewport path may be specified directly
as a string. For example, the previous viewport path could be specified simply
as "A::B::C". The vpPath() function should be used when writing graphics
functions for others to use.

The name argument to the downViewport () function will accept a viewport
path, in which case it searches for a viewport that matches the entire path.
The strict argument to downViewport () ensures that a viewport will only
be found if the full viewport path is found, starting from the current location
in the viewport tree.

5.5.4 Viewports as arguments to graphical primitives

As mentioned in Section 5.2.1, a viewport may be specified as an argument to
functions that produce graphical output (via an argument called vp). When a
viewport is specified in this way, the viewport gets pushed before the graphical
output is produced and popped afterwards. To make this completely clear,
the following two code segments are identical. First of all, a simple viewport
is defined.

> vpl <- viewport(width=0.5, height=0.5, name="vpl")

The next code explicitly pushes the viewport, draws some text, then pops the
viewport.

> pushViewport (vpl)
> grid.text("Text drawn in a viewport")
> popViewport ()

This next piece of code does the same thing in a single call.
> grid.text("Text drawn in a viewport", vp=vpl)

It is also possible to specify the name of a viewport (or a viewport path) for a
vp argument. In this case, the name (or path) is used to navigate down to the
viewport (via a call to downViewport ()) and then back up again afterwards
(via a call to upViewport () ). This promotes the practice of pushing viewports
once, then specifying where to draw different output by simply naming the
appropriate viewport. The following code does the same thing as the previous
example, but leaves the viewport intact (so that it can be used for further
drawing).
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> pushViewport (vpl)
> upViewport ()
> grid.text("Text drawn in a viewport", vp="vpl")

This feature is also very useful when annotating a plot produced by a high-
level graphics function. As long as the graphics function names the viewports
that it creates and does not pop them, it is possible to revisit the viewports
to add further output. Examples of this are given in Section 5.8 and this
approach to writing high-level grid functions is discussed further in Chapter
7.

5.5.5 Graphical parameter settings in viewports

A viewport can have graphical parameter settings associated with it via the gp
argument to viewport (). When a viewport has graphical parameter settings,
those settings affect all graphical objects drawn within the viewport, and all
other viewports pushed within the viewport, unless the graphical objects or
the other viewports specify their own graphical parameter setting. In other
words, the graphical parameter settings for a viewport modify the implicit
graphical context (see page 168).

The following code demonstrates this rule. A viewport is pushed that has
a fill="grey" setting. A rectangle with no graphical parameter settings is
drawn within that viewport and this rectangle “inherits” the fill="grey"
setting. Another rectangle is drawn with its own fill setting so it does not
inherit the viewport setting (see Figure 5.15).

\

pushViewport (viewport (gp=gpar (fill="grey")))
grid.rect(x=0.33, height=0.7, width=0.2)

\

> grid.rect(x=0.66, height=0.7, width=0.2,
gp=gpar(fill="black"))
> popViewport ()

The graphical parameter settings in a viewport only affect other viewports and
graphical output within that viewport. The settings do not affect the view-
port itself. For example, parameters controlling the size of text (fontsize,
cex, etc.) do not affect the meaning of "lines" units when determining the
location and size of the viewport (but they will affect the location and size
of other viewports or graphical output within the viewport). A layout (see
Section 5.5.6) counts as being within the viewport (i.e., it is affected by the
graphical parameter settings of the viewport).

If there are multiple values for a graphical parameter setting, only the first is
used when determining the location and size of a viewport.
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Figure 5.15

The inheritance of viewport graphical parameters. A diagram demonstrating how
viewport graphical parameter settings are inherited by graphical output within the
viewport. The viewport sets the default fill color to grey. The left-hand rectangle
specifies no fill color itself so it is filled with grey. The right-hand rectangle specifies
a black fill color that overrides the viewport setting.

5.5.6 Layouts

A viewport can have a layout specified via the layout argument. A layout
in grid is similar to the same concept in traditional graphics (see Section
3.3.2). It divides the viewport region into several columns and rows, where
each column can have a different width and each row can have a different
height. For several reasons, however, layouts are much more flexible in grid:
there are many more coordinate systems for specifying the widths of columns
and the heights of rows (see Section 5.3); viewports can occupy overlapping
areas within the layout; and each viewport within the viewport tree can have
a layout (layouts can be nested). There is also a just argument to justify the
layout within a viewport when the layout does not occupy the entire viewport
region.

Layouts provide a convenient way to position viewports using the standard
set of coordinate systems, and provide an extra coordinate system, "null",
which is specific to layouts.

The basic idea is that a viewport can be created with a layout and then
subsequent viewports can be positioned relative to that layout. In simple
cases, this can be just a convenient way to position viewports in a regular grid,
but in more complex cases, layouts are the only way to apportion regions.
There are very many ways that layouts can be used in grid; the following
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sections attempt to provide a glimpse of the possibilities by demonstrating a
series of example uses.

A grid layout is created using the function grid.layout () (not the traditional
function layout ().

A simple layout

The following code produces a simple layout with three columns and three
rows, where the central cell (row two, column two) is forced to always be
square (using the respect argument).

> vplay <- grid.layout(3, 3,
respect=rbind(c(0, 0, 0),
c(o, 1, 0),
c(0, 0, 0)))

The next piece of code uses this layout in a viewport. Any subsequent view-
ports may make use of the layout, or they can ignore it completely.

> pushViewport (viewport (layout=vplay))

In the next piece of code, two further viewports are pushed within the viewport
with the layout. The layout.pos.col and layout.pos.row arguments are
used to specify which cells within the layout each viewport should occupy. The
first viewport occupies all of column two and the second viewport occupies all
of row 2. This demonstrates that viewports can occupy overlapping regions
within a layout. A rectangle has been drawn within each viewport to show
the region that the viewport occupies (see Figure 5.16).

> pushViewport (viewport (layout.pos.col=2, name="col2"))
> upViewport ()
> pushViewport (viewport (layout.pos.row=2, name="row2"))

A layout with units

This section describes a layout that makes use of grid units. In the context of
specifying the widths of columns and the heights of rows for a layout, there is
an additional unit available, the "null" unit. All other units ("cm", "npc",
etc.) are allocated first within a layout, then the "null" units are used to
divide the remaining space proportionally (see Section 3.3.2). The following
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Figure 5.16

Layouts and viewports. Two viewports occupying overlapping regions within a
layout. Each viewport is represented by a rectangle with the viewport name at the
top-left corner. The layout has three columns and three rows with one viewport
occupying all of row 2 and the other viewport occupying all of column 2.

code creates a layout with three columns and three rows. The left column is
one inch wide and the top row is three lines of text high. The remainder of
the current region is divided into two rows of equal height and two columns
with the right column twice as wide as the left column (see Figure 5.17).

> unitlay <-
grid.layout (3, 3,
widths=unit(c(1, 1, 2),
c("inches", "null", "null")),
heights=unit(c(3, 1, 1),
c("lines", "null", "null")))

With the use of "strwidth" and "grobwidth" units it is possible to produce
columns that are just wide enough to fit graphical output that will be drawn
in the column (and similarly for row heights — see Section 6.4).

A nested layout

This section demonstrates the nesting of layouts. The following code defines
a function that includes a trivial use of a layout consisting of two equal-width
columns to produce grid output.
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1inches 1null 2null

3lines (1, 1) (1, 2) (1, 3) 3lines
1null 2, 1) (2, 2) (2, 3) 1null
1null (3, 1) (3, 2) (3, 3) 1null
1inches 1null 2null

Figure 5.17
Layouts and units. A grid layout using a variety of coordinate systems to specify
the widths of columns and the heights of rows.
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> gridfun <- function() {
pushViewport (viewport (layout=grid.layout (1, 2)))
pushViewport (viewport (layout.pos.col=1))
grid.rect()
grid.text("black")
grid.text("&", x=1)
popViewport ()
pushViewport (viewport (layout.pos.col=2, clip="on"))
grid.rect (gp=gpar(fill="black"))
grid.text("white", gp=gpar(col="white"))
grid.text("&", x=0, gp=gpar(col="white"))
popViewport(2)

The next piece of code creates a viewport with a layout and places the output
from the above function within a particular cell of that layout (see Figure
5.18).

> pushViewport(
viewport(
layout=grid.layout(5, 5,
widths=unit(c(5, 1, 5, 2, 5),
C("mm", llnullll’ llmmll s
"null", "mm")),
heights=unit(c(5, 1, 5, 2, 5),
c("mm", "null", "mm",
"pull" , "mm" ) ) ) ))
pushViewport (viewport (layout.pos.col=2, layout.pos.row=2))
gridfun()
popViewport ()
pushViewport (viewport (layout.pos.col=4, layout.pos.row=4))
gridfun()
popViewport (2)

V V V V V V

Although the result of this particular example could be achieved using a single
layout, what this shows is that it is possible to take grid code that makes use
of a layout (and may have been written by someone else) and embed it within
a layout of your own. A more sophisticated example of this involving lattice
plots is given in Section 5.8.2.
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Figure 5.18

Nested layouts. An example of a layout nested within a layout. The black and white
squares are drawn within a layout that has two equal-width columns. One instance
of the black and white squares has been embedded within cell (2,2) of a layout
consisting of five columns and five rows of varying widths and heights (as indicated
by the dashed lines). Another instance has been embedded within cell (4,4).

5.6 Missing values and non-finite values

Non-finite values are not permitted in the location, size, or scales of a viewport.
Viewport scales are checked when a viewport is created, but it is impossible
to be certain that locations and sizes are not non-finite when the viewport
is created, so this is only checked when the viewport is pushed. Non-finite
values result in error messages.

The locations and sizes of graphical objects can be specified as missing values
(NA, "NA") or non-finite values (NaN, Inf, -Inf). For most graphical primitives,
non-finite values for locations or sizes result in the corresponding primitive
not being drawn. For the grid.line.to() function, a line segment is only
drawn if the previous location and the new location are both not non-finite.
For grid.polygon(), a non-finite value breaks the polygon into two separate
polygons. This break happens within the current polygon as specified by the
id argument. All polygons with the same id receive the same gp settings. For
grid.arrows(), an arrow head is only drawn if the first or last line segment
is drawn.

Figure 5.19 shows the behavior of these primitives where x- and y-locations
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are seven equally-spaced locations around the perimeter of a circle. In the
top-left figure, all locations are not non-finite. In each of the other figures,
two locations have been made non-finite (indicated in each case by grey text).

5.7 Interactive graphics

The strength of the grid system is in the production of static graphics. There is
only very basic support for user interaction, consisting of the grid.locator ()
function. This function returns the location of a single mouse click relative to
the current viewport. The result is a list containing an x and a y unit. The
unit argument can be used to specify the coordinate system to be used for
the result.

From R version 2.1.0, the getGraphicsEvent () function provides additional
capability (on Windows) to respond to mouse movements, mouse ups, and key
strokes. However, with this function, mouse activity is only reported relative
to the native coordinate system of the device.

5.8 Customizing lattice plots

This section provides some demonstrations of the basic grid functions within
the context of a complete lattice plot.

The lattice package described in Chapter 4 produces complete and very so-
phisticated plots using grid. It makes use of a sometimes large number of
viewports to arrange the graphical output. A page of lattice output contains
a top-level viewport with a quite complex layout that provides space for all of
the panels and strips and margins used in the plot. Viewports are created for
each panel and for each strip (among other things), and the plot is constructed
from a large number of rectangles, lines, text, and data points.

In many cases, it is possible to use lattice without having to know anything
about grid. However, a knowledge of grid provides a number of more ad-
vanced ways to work with lattice output (see Section 6.7). A simple ex-
ample is provided by the panel.width and panel.height arguments to the
print.trellis() method. These provide an alternative to the aspect argu-
ment for controlling the size of panels within a lattice plot using grid units.
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Figure 5.19

Non-finite values for line-tos, polygons, and arrows. The effect of non-finite values
for grid.line.to(), grid.polygon(), and grid.arrows. In each panel, a single
grey polygon, a single arrow (at the end of a thick black line), and a series of thin
white line-tos are drawn through the same set of seven points. In some cases, certain
locations have been set to NA (indicated by grey text), which causes the polygon to
become cropped, creates gaps in the lines, and can cause the arrow head to disappear.
In the bottom-left panel, the seventh location is not NA, but it produces no output.
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Figure 5.20
Controlling the size of lattice panels using grid units. Each panel is exactly 1.21
inches wide and 1.5 inches high.

The following code produces a multipanel lattice plot of the quakes data set
(see page 126) where the size of each panel is fixed at 1.21 inches wide and
1.5 inches high (see Figure 5.20).*

> temp <- xyplot(lat ~ long | depthgroup,
data=quakes, pch=".",
layout=c(3, 1))
> print(temp,
panel.width=1ist(1.21, "inches"),
panel.height=1ist(1.5, "inches"))

5.8.1 Adding grid output to lattice output

The functions that lattice provides for adding output to panels (1text(),
lpoints(), etc) are designed to make it easier to port code between R and
S-PLUS. However, they are restricted because they only allow output to be
located and sized relative to the "native" coordinate system. Grid graphical
primitives cannot be ported to S-PLUS, but they provide much more control

*These specific sizes were chosen for this particular data set so that one unit of longitude
corresponds to the same physical size on the page as one unit of latitude.
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over the location and size of additional panel output. Furthermore, it is possi-
ble to create and push extra viewports within a panel if desired (although it is
very important that they are popped again or lattice will get very confused).

In a similar vein, the facilities provided by the upViewport() and
downViewport () functions in grid allow for more flexible navigation of a lat-
tice plot compared to the trellis.focus() function.

The following code provides an example of using low-level grid functions to add
output within a lattice panel function. This produces a variation on Figure
4.4 with a dot and a text label added to indicate the location of Auckland,
New Zealand relative to the earthquakes (see Figure 5.21).*

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",
panel=function(...) {
grid.points(174.75, -36.87, pch=16,
size=unit(2, "mm"),
default.units="native")
grid.text ("Auckland",
unit(174.75, "native") - unit(2, "mm"),
unit(-36.87, "native"),
just="right")
panel.xyplot(...)
b

5.8.2 Adding lattice output to grid output

As well as the advantages of using grid functions to add further output to
lattice plots, an understanding that lattice output is really grid output makes
it possible to embed lattice output within grid output. The following code
provides a simple example (see Figure 5.22).

First of all, two viewports are defined. The viewport tvp occupies the right-
most 1 inch of the device and will be used to draw a label. The viewport 1vp
occupies the rest of the device and will be used to draw a lattice plot.

> 1lvp <- viewport(x=0,
width=unit (1, "npc") - unit(l, "inches"),
just="left", name="lvp")

> tvp <- viewport(x=1, width=unit(l, "inches"),
just="right", name="tvp")

*The data are from the quakes data set (see page 126).
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Adding grid output to a lattice plot (the lattice plot in Figure 4.4). The grid
functions grid.text () and grid.points() are used within a lattice panel function
to highlight the location of Auckland, New Zealand within each panel.
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Figure 5.22

Embedding a lattice plot within grid output.

depthgroup

deptharoup
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Largest
Earthquake

The lattice plot is drawn within

the viewport "lvp" and the text label is drawn within the viewport "tvp" (the
viewports are indicated by grey rectangles with their names at the top-left corner).
An arrow is drawn from viewport "tvp" where the text was drawn into viewport
"panel.1.3.0ff.vp" — the top panel of the lattice plot.
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The next piece of code produces (but does not draw) an object representing
a multipanel scatterplot using the quakes data (see page 126).

> 1plot <- xyplot(lat ~ long | depthgroup,
data=quakes, pch=".",
layout=c(1, 3), aspect=1,
index.cond=1ist(3:1))

The following pieces of code do all the drawing. First of all, the 1vp viewport is
pushed and the lattice plot is drawn inside that. The upViewport () function
is used to navigate back up so that all of the lattice viewports are left intact.

> pushViewport (1lvp)
> print(lplot, newpage=FALSE, prefix="plotl")
> upViewport ()

Next, the tvp viewport is pushed and a text label is drawn in that.

> pushViewport (tvp)

> grid.text("Largest\nEarthquake", x=unit(2, "mm"),
y=unit (1, "npc") - unit(0.5, "inches"),
just="1left")

The last step is to draw an arrow from the label to a data point within the
lattice plot. While still in the tvp viewport, the grid.move.to() function is
used to set the current location to a point just to the left of the text label.
Next, seekViewport () is used to navigate to the top panel within the lattice
plot.” Finally, grid.arrows() and lineToGrob() are used to draw a line
from the text to an (x ,y) location within the top panel. A circle is also
drawn to help identify the location being labelled.

*The name of the viewport representing the top panel in the lattice plot can be ob-
tained using the trellis.vpname() function or by just visual inspection of the output of
current.vpTree() and possibly some trial-and-error.
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> grid.move.to(unit (1, "mm"),
unit(l, "npc") - unit(0.5, "inches"))
seekViewport ("plotl.panel.1.3.0ff.vp")
grid.arrows(grob=lineToGrob(unit(167.62, "native") +
unit(1, "mm"),
unit(-15.56, "native")),
length=unit (3, "mm"), type="closed",
angle=10, gp=gpar(fill="black"))
> grid.circle(unit(167.62, "native"),
unit(-15.56, "native"),
r=unit(1, "mm"),
gp=gpar (lwd=0.1))

vV Vv

The final output is shown in Figure 5.22.

Chapter summary

Grid provides a number of functions for producing basic graphical out-
put such as lines, polygons, rectangles, and text, plus some functions
for producing slightly more complex output such as data symbols, ar-
rows, and axes. Graphical output can be located and sized relative
to a large number of coordinate systems and there are a number of
graphical parameter settings for controlling the appearance of output,
such as colors, fonts, and line types.

Viewports can be created to provide contexts for drawing. A viewport
defines a rectangular region on the device and all coordinate systems
are available within all viewports. Viewports can be arranged using
layouts and nested within one another to produce sophisticated ar-
rangements of graphical output.

Because lattice output is grid output, grid functions can be used to
add further output to a lattice plot. Grid functions can also be used
to control the size and placement of lattice plots.
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6
The Grid Graphics Object Model

Chapter preview

This chapter describes how to work with graphical output as graphical
objects (grobs). The main advantage of this approach is that it is
possible to interactively edit a scene that was produced using grid.
Because lattice is built on grid, this means it is possible to interactively
edit a lattice plot.

There are also benefits from being able to do such things as ask a piece
of graphical output how big it is. For example, this makes it easy to
leave space for a legend beside a plot.

Graphical objects can be combined to form larger, hierarchical graph-
ical objects (gTrees). This makes it possible to control the appearance
and position of whole groups of graphical objects at once.

This chapter describes the grid concepts of grobs and glrees as well
as important functions for accessing, querying, and modifying these
objects.

The previous chapter mostly dealt with using grid functions to produce graph-
ical output. That knowledge is useful for annotating a plot produced using
grid (such as a lattice plot), for producing one-off or customized plots for your
own use, and for writing simple graphics functions.

This chapter on the other hand addresses grid functions for creating and
manipulating graphical objects. This information is useful for interactively
editing or modifying graphical output and for writing graphical functions and
objects for others to use (also see Chapter 7).
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6.1 Working with graphical output

This section describes using grid to interactively modify graphical output.
Having called functions to draw some output, there are functions to edit and
delete elements of the output.

All of the functions in the previous section that produce graphical output also
produce graphical objects, or grobs, representing that output. For example,
the following code produces a number of circles as output (see the left panel
in Figure 6.1).

> grid.circle(name="circles", x=seq(0.1, 0.9, length=40),
y=0.5 + 0.4*sin(seq(0, 2*pi, length=40)),
r=abs(0.1*cos(seq(0, 2*pi, length=40))))

As well as drawing the circles, this code produces a circle grob, an object
of class "circle", which contains information describing the circles that have
been drawn.

Grid maintains a display list, a record of all viewports and grobs drawn on
the current page, and the object that grid.circle() created is stored on this
display list. This means that it can be accessed to obtain a copy, to modify
the output, or even to remove it altogether. The grob has been given the
name "circles" to make it easy to identify.

In the following code, the call to grid.get () obtains a copy of the circle
object. This can be useful for querying the elements of a scene (e.g., to see
what components an element has).

> grid.get("circles")
circlel[circles]

The following call to grid.edit () modifies the output by editing the circle
object to change the colors used for drawing the circles (see the middle panel
of Figure 6.1). In this case, the gp component of the circle grob is being
modified. Typically, most arguments that can be specified when first drawing
output can also be used when editing output.

> grid.edit("circles",
gp=gpar (col=grey(c(1:20%0.04, 20:1%0.04))))
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Figure 6.1

Modifying a circle grob. The left panel shows the output produced by a call to
grid.circle(), the middle panel shows the result of using grid.edit() to modify
the colors of the circles, and the right panel shows the result of using grid.remove ()
to delete the circles.

The next call below, to the grid.remove () function, deletes the output by
removing the circle object from the display list (see the right panel of Figure
6.1).

> grid.remove("circles")

In each of these examples, the grob has been specified by giving its name
("circles"). Other standard arguments to these functions are discussed in
the next section.

Any output produced by grid functions can be interacted with in this way,*
including output from lattice functions (see Section 6.7).

6.1.1 Standard functions and arguments
The complete set of functions that provide the ability to interact with grobs
is given in Table 6.1.

All of the functions for working with graphical output require a grob name as
the first argument, to identify which grob to work with. This name will be
treated as a regular expression if the grep argument is TRUE.

If the global argument is TRUE then all matching grobs on the display list
(not just the first) will be accessed or modified.

The following code provides a simple example. Eight concentric circle grobs
are drawn, with the first, third, fifth, and seventh circles named "circle.odd"

*It is possible to disable the grid display list, in which case no grobs are stored so these
sorts of manipulations are no longer possible.
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Table 6.1

Functions for working with grobs. Functions of the form grid.*() access and
destructively modify grobs on the grid display list and affect graphical output.
Functions of the form *Grob() work with user-level grobs and return grobs as
their values (they have no effect on graphical output).

Function to work Function to work
with output Description with grobs
grid.get () Returns a copy of one or getGrob()

more grobs
grid.edit () Modifies one or more grobs editGrob()
grid.add() Adds a grob to one or more addGrob()

grobs
grid.remove () Removes one or more grobs removeGrob ()
grid.set() Replaces one or more grobs setGrob()

and the second, fourth, sixth, and eighth circles named "circle.even". The
circles are initially drawn with decreasing shades of grey (see the left panel of

Figure 6.2).
> suffix <- c("even", "odd")
> for (i in 1:8)
grid.circle(name=paste("circle.", suffix[i %% 2 + 1],

sep=""),
r=(9 - 1)/20,
gp=gpar (col=NA, fill=grey(i/10)))

The following call to grid.edit() makes use of the global argument to
modify all grobs named "circle.odd" and change their fill color to a very
dark grey (see the middle panel of Figure 6.2).

> grid.edit("circle.odd", gp=gpar(fill="grey10"),
global=TRUE)

A second call to grid.edit (), below, makes use of both the grep argument
and the global argument to modify all grobs with names matching the pattern
"circle" (all of the circles) and change their fill color to a light grey and their
border color to a darker grey (see the right panel of Figure 6.2).

> grid.edit("circle", gp=gpar(col="grey", fill="grey90"),
grep=TRUE, global=TRUE)
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Figure 6.2

Editing grobs using grep and global in grid.edit(). The left-hand panel shows
eight separate concentric circles, with names alternating between "circle.odd"
and "circle.even", filled with progressively lighter shades of grey. The middle
panel shows the use of the global argument to change the fill for all circles named
"circle.odd" to black. The right-hand panel shows the use of the grep and global
arguments to change all circles whose names match the pattern "circle" (all of the
circles) to have a light grey fill and a grey border.

In summary, as long as the name of a grob is known, it is possible to access
that grob using grid.get (), modify it using grid.edit (), or delete it using
grid.remove().

The function getNames() is useful for producing a list of all grobs in the
current scene.”*

6.2 Grob lists, trees, and paths

As well as basic grobs, it is possible to work with a list of grobs (a gList) or
several grobs combined together in a tree-like structure (a gTree). A gList is
just a list of several grobs (produced by the function gList()). A gTree is a
grob that can contain other grobs. Examples are the xaxis and yaxis grobs.
This section looks at how to work with gTrees.

An xaxis grob contains a high-level description of an axis, plus several child
grobs representing the lines and text that make up the axis (see Figure 6.3).

The following code draws an xaxis and creates an xaxis grob on the display
list (see the left panel of Figure 6.4). The grid.get () function is used to

*The getNames () function was only introduced in R version 2.1.0; in R 2.0.0, the expres-
sion grid.get (".x", grep=TRUE, global=TRUE) does something similar, but is less efficient.
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Figure 6.3

The structure of a glree. A diagram of the structure of an xaxis gIree. There is
the xaxis gTree itself (here given the name "xaxis1") and there are its children: a
lines grob named "major", another lines grob named "ticks", and a text grob
named "labels".

obtain a copy of the grob and the childNames () function returns the names
of the grobs that are children of the xaxis grob.

> grid.xaxis(name="axisl", at=1:4/5)
> childNames(grid.get("axis1"))

[1] "major" "ticks" "labels"

The hierarchical structure of glrees makes it possible to interact with both a
high-level description, as provided by the xaxis grob, and a low-level descrip-
tion, as provided by the children of the gTree. The following code demonstrates
an interaction with the high-level description of an xaxis grob. The xaxis
g¢Iree contains components describing where to put tick-marks on the axis and
whether to draw labels and so on. The code below shows the at component of
an xaxis grob being modified. The xaxis grob is designed so that it modifies
its children to match the new high-level description so that only three ticks
are now drawn (see the middle panel of Figure 6.4).

> grid.edit("axisl", at=1:3/4)

It is also possible to access the children of a gIree. In the case of an xaxis,
there are three children: a 1ines grob with the name "major"; another lines
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Figure 6.4

Editing a gTree. The left-hand panel shows a basic x-axis, the middle panel shows
the effect of editing the at component of the x-axis (all of the tick marks and
labels have changed), and the right-hand panel shows the effect of editing the rot
component of the "labels" child of the x-axis (only the angle of rotation of the
labels has changed).

grob with the name "ticks"; and a text grob with the name "labels". Any
of these children can be accessed by specifying the name of the xaxis grob
and the name of the child in a grob path (gPath). A gPath is like a viewport
path (see Section 5.5.3) — it is just a concatenation of several grob names.
The following code shows how to access the "labels" child of the xaxis grob
using the gPath() function to specify a gPath. The gPath specifies the child
called "label" in the gIree called "axis1". The labels are rotated to 45
degrees (see the right panel of Figure 6.4).

> grid.edit(gPath("axis1", "labels"), rot=45)

It is also possible to specify a gPath directly as a string, for example
"axisl::labels", but this is only recommended for interactive use.

6.2.1 Graphical parameter settings in glrees

Just like any other grob, a gIree can have graphical parameter settings asso-
ciated with it via a gp component. These settings affect all graphical objects
that are children of the gTree, unless the children specify their own graphi-
cal parameter setting. In other words, the graphical parameter settings for a
gTree modify the implicit graphical context for the children of the gTree (see
page 168).

The following expression demonstrates this rule. The gp component of an
xaxis grob sets the drawing color to be "grey". This means that all of the
children of the xaxis — the lines and labels — will be drawn grey.

> grid.xaxis(gp=gpar(col="grey"))
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Another example of this behavior is given in Section 6.3 and the role of the
gp component in the drawing behavior of gTree objects is described in more
detail in Section 7.3.4.

6.2.2 Viewports as components of glrees

Just like any other grob, a gTree can have a viewport (or viewport tree, or
viewport path, etc.) associated with it via a vp component. This viewport is
pushed before the gTree is drawn and popped afterwards (see Section 5.5.4).
This means that the children of a gTree are drawn within the drawing context
defined by the viewport in the vp slot of the gTree (see page 173).

The following code demonstrates this rule. The vp component of an xaxis
grob specifies a viewport in the top half of the page. This means that the
children of the xaxis are positioned relative to that viewport.

> grid.xaxis(vp=viewport(y=0.75, height=0.5))

An example of this behavior is given in Section 6.3 and the role of the vp
component in the drawing behavior of gIree objects is described in more
detail in Sections 7.3.4 and 7.3.7.

6.2.3 Searching for grobs

This section provides details about how grob names and gPaths are used to
find a grob.

Grobs are stored on the grid display list in the order that they are drawn.
When searching for a matching name, the functions in Table 6.1 search the
display list from the beginning. This means that if there are several grobs
whose names are matched, they will be found in the order that they were
drawn.

Furthermore, the functions perform a depth-first search. This means that if
there is a gIree on the display list, and its name is not matched, then its
children are searched for a match before any other grobs on the display list
are searched.

The name to search for can be given as a gPath, which can be useful
to explicitly specify a particular child grob of a particular gTree (as in
"axisl::labels").

The argument strict controls whether a complete match must be found.
By default, the strict argument is FALSE, so in the previous exam-
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ple, the "labels" child of "axis1" could have been accessed simply by
grid.get("labels"). On the other hand, if strict is set to TRUE, then
simply specifying "labels" results in no match as shown by the following
code (there is no top-level grob with the name "labels").

> grid.edit("labels", strict=TRUE, rot=45)

Error in
editDLfromGPath(gPath, specs, strict, grep, global, redraw) :

’gPath’ (labels) not found

6.3 Working with graphical objects off-screen

The previous section described how grid functions that produce graphical
output also produce grobs. In some cases, it is useful to create a grob without
producing any output. This section describes how to use grid to produce
graphical objects (without drawing them). There are functions to create grobs,
functions to combine them, and modify them, and the grid.draw() function
to draw them.

For each grid function that produces graphical output, there is a counterpart
that produces a graphical object and no graphical output. For example, the
counterpart to grid.circle() is the function circleGrob() (see Table 5.1).
Similarly, for each function that works with grobs on the grid display list,
there is a counterpart for working with grobs off-screen. For example, the
counterpart to grid.edit () is editGrob() (see Table 6.1).

The following example demonstrates the process of creating a grob and work-
ing with a grob without drawing it. The code below draws a rectangle that is
as wide as a text grob, but the text is not drawn. The function textGrob()
produces a text grob, but does not draw it.

> grid.rect(width=grobWidth(textGrob("Some text")))

It can be useful to create a grob and modify it before producing any graphical
output (i.e., only draw the final result). The following code creates an axis
and modifies the font face for the labels to italic before drawing the axis. The
function grid.draw() is used to produce graphical output from a grob.
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> ag <- xaxisGrob(at=1:4/5)
> ag <- editGrob(ag, "labels", gp=gpar(fontface="italic"))
> grid.draw(ag)

Another example of working with grobs is in the construction of gTrees. In
its simplest form, a gTree is just a grouping of several grobs (more complex
gTree creation is discussed later in Section 7.3).

By grouping several grobs together as a single object, the grobs can be dealt
with as a single object. For example, it becomes possible to edit the graphical
context for all of the grobs at once, or define the drawing context for all of
the grobs at once.

When a gIree is drawn, any viewports in its vp component are pushed, any
settings in its gp component are enforced, and then its children are all drawn.
This means that the vp and gp components of a gIree affect where and how
the children of the gTree are drawn (see Sections 6.2.1 and 6.2.2).

As an example, a boxed-text object can be created by grouping a "rect" grob
and a "text" grob together as children of a gIree. This allows us to modify
the color of both the rectangle and the text by modifying these features in
the gTree. Similarly, it is possible to locate both the rectangle and the text
by defining a viewport for the gTree.

The following code uses the gTree () function to create a glree that groups
a "rect" grob and a "text" grob together. There is no graphical output
produced from this code. It only creates graphical objects.

> tg <- textGrob("sample text")

> rg <- rectGrob(width=1.1*grobWidth(tg),
height=1.3%grobHeight (tg))

> boxedText <- gTree(children=glist(tg, rg))

It is now easy to produce output including both the rectangle and the text by
drawing variations on the boxedText grob, as demonstrated by the following
code.

The first call simply draws the plain boxedText, which is drawn in black (see
the left panel of Figure 6.5).

> grid.draw(boxedText)

The second call draws a modified boxedText with the drawing color set to
grey (see the middle panel of Figure 6.5).

> grid.draw(editGrob(boxedText, gp=gpar (col="grey")))
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Figure 6.5

Using a glree to group grobs. The left-hand panel shows a boxed text object (which
is a combination of a piece of text and a rectangle). The middle panel shows how
changes to the color settings in the boxed text object propagate to the components
(both the text and rectangle turn grey). The right-hand panel shows a more dramatic
demonstration of the same idea as, in this case, the fontsize of the boxed text is
modified and it is drawn within a rotated viewport.

The final call draws another modification of the boxedText, this time in a
rotated viewport and with a larger font (see the right panel of Figure 6.5).

> grid.draw(editGrob(boxedText, vp=viewport (angle=45),
gp=gpar (fontsize=18)))

6.3.1 Capturing output

In the example in the previous section, several grobs are created off-screen
and then grouped together as a glIree, which allows the collection of grobs to
be dealt with as a single object.

It is also possible first to draw several grobs and then to group them. The
grid.grab() function does this by generating a glree from all of the grobs
in the current page of output. This means that output can be captured even
from a function that produces very complex output (lots of grobs), such as a
lattice plot. For example, the following code draws a lattice plot, then creates
a ¢Tree containing all of the grobs in the plot.

> bwplot (rnorm(10))
> bwplotTree <- grid.grab()

The grid.grab() function actually captures all of the viewports in the current
scene as well as the grobs, so drawing the gTree, as in the following code,
produces exactly the same output as the original plot.
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> grid.newpage()
> grid.draw(bwplotTree)

Another function, grid.grabExpr() allows complex output to be captured
off-screen. This function takes an R expression and evaluates it. Any drawing
that occurs as a result of evaluating the expression does not produce any
output, but the grobs that would be produced are captured anyway.

The following code provides a simple demonstration. Here a lattice plot is
captured without drawing any output.*

> grid.grabExpr (print (bwplot (rnorm(10))))
gTree[GRID.GROB. 152]

Both the grid.grab() and grid.grabExpr () functions attempt to create a
¢Iree in a sophisticated way so that it is easier to work with the resulting
g¢Iree. Unfortunately, this will not always produce a glree that will exactly
replicate the original output. These functions issue warnings if they detect a
situation where output may not be reproduced correctly, and there is a wrap
argument that can be used to force the functions to produce a gTree that is
less sophisticated, but is guaranteed to replicate the original output.’

6.4 Placing and packing grobs in frames

It can be useful to position the components of a plot in a way that leaves
sufficient room for labels or legends. The "grobwidth" and "grobheight"
coordinate systems provide a way to determine the size of a grob and can
be used to achieve this sort of arrangement of components by, for example,
allocating appropriate regions within a layout.

The following code demonstrates this idea. First of all, some grobs are created
to use as components of a scene. The first grob, 1label, is a simple text grob.
The second grob, gplot, is a ¢Iree containing a rect grob, a lines grob, and
a points grob that provide a simple representation of time-series data. The

*The expression must explicitly print() the lattice plot because otherwise nothing
would be drawn (see Section 4.1).
TThe grid.grabExpr() function is only available from R version 2.1.0.
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gplot has a viewport in its vp component and the rectangle and lines are
drawn within that viewport.

> label <- textGrob("A\nPlot\nLabel ",
x=0, just="left")
> x <- seq(0.1, 0.9, length=50)
>y <- runif (50, 0.1, 0.9)
> gplot <-
gTree(
children=gList (rectGrob(gp=gpar (col="grey60",
fill="white")),
linesGrob(x, y),
pointsGrob(x, y, pch=16,
size=unit (1.5, "mm"))),
vp=viewport (width=unit (1, "npc") - unit(5, "mm"),
height=unit(1, "npc") - unit(5, "mm")))

The next piece of code defines a layout with two columns. The second column
of the layout has its width determined by the width of the 1abel grob created
above. The first column will take up whatever space is left over.

> layout <- grid.layout(1l, 2,
widths=unit(c(1, 1),
c("null", "grobwidth"),
1ist (NULL, label)))

Now some drawing can occur. A viewport is pushed with the layout defined
above, then the label grob is drawn in the second column of this layout,
which is exactly the right width to contain the text, and the gplot gTree is
drawn in the first column (see Figure 6.6).

pushViewport (viewport (layout=layout))
pushViewport (viewport (layout.pos.col=2))
grid.draw(label)

popViewport ()
pushViewport (viewport (layout.pos.col=1))
grid.draw(gplot)

popViewport (2)

V V V V V V VvV

Grid provides a set of functions that make it more convenient to arrange grobs
like this so that they allow space for each other. The function grid.frame(),
and its off-screen counterpart frameGrob (), produce a glree with no children.
Children are added to the frame using the grid.pack() function and the
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Figure 6.6

Packing grobs by hand. The scene was created using a frame object, into which the
time-series plot (consisting of a rectangle, lines, and points) was packed. The text
was then packed on the right-hand side, which meant that the time series plot was
allocated less room in order to leave space for the text.

frame makes sure that enough space is allowed for the child when it is drawn.
Using these functions, the previous example becomes simpler, as shown by the
following code (the output is the same as Figure 6.6). The big difference is
that there is no need to specify a layout as an appropriate layout is calculated
automatically.

The first call creates an empty frame. The second call packs gplot into the
frame; at this stage, gplot takes up the entire frame. The third call packs
the text label on the right-hand side of the frame; enough space is made for
the text label by reducing the space allowed for the rectangle.

> grid.frame (name="framel")
> grid.pack("framel", gplot)
> grid.pack("framel", label, side="right")

There are many arguments to grid.pack() for specifying where to pack new
grobs within a frame. There is also a dynamic argument to specify whether
the frame should reallocate space if the grobs that have been packed in the
frame are modified.

Unfortunately, packing grobs into a frame like this becomes quite slow as more
grobs are packed, so it is most useful for very simple arrangements of grobs
or for interactively constructing a scene. An alternative approach, which
is a little more work, but still more convenient than dealing directly with
pushing and popping viewports (and can be made dynamic like packing), is
to place grobs within a frame that has a predefined layout. The following code
demonstrates this approach. This time, the frame is initially created with the
desired layout as defined above, then the grid.place() function is used to
position grobs within specific cells of the frame layout.
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> grid.frame (name="framel", layout=layout)
> grid.place("framel", gplot, col=1)
> grid.place("framel", label, col=2)

6.4.1 Placing and packing off-screen

In the previous two examples, the screen is redrawn each time a grob is packed
into the frame. It is more typical to create a frame and pack or place grobs
within it off-screen and only draw the frame once it is complete. The following
code demonstrates the use of the frameGrob () and placeGrob() functions to
achieve the same end result as shown in Figure 6.6, doing all of the construc-
tion of the frame off-screen.

fg <- frameGrob(layout=layout)
fg <- placeGrob(fg, gplot, col=1)
fg <- placeGrob(fg, label, col=2)
grid.draw(fg)

V V V V

The function packGrob() is the off-screen counterpart of grid.pack().

6.5 Other details about grobs

This section describes some important extra details about the calculation of
grob sizes and the editing of graphical contexts.

6.5.1 Calculating the sizes of grobs

As described in Section 5.3.2, the "grobwidth" and "grobheight" units pro-
vide a way to determine the size of a grob. This section provides some more
details about the correct usage of these units.

The most important point is that the size of a grob is always calculated
relative to the current geometric and graphical context. The following code
demonstrates this point. First of all, a text grob and a rect grob are created,
and the dimensions of the rect grob are based on the dimensions of the text.*

*The rect grob draws two rectangles: one thick and dark grey; one white and thin.
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> tgl <- textGrob("Sample")
> rgl <- rectGrob(x=rep(0.5, 2),
width=1.1*grobWidth(tgl),
height=1.3*grobHeight (tgl),
gp=gpar (col=c("grey60", "white"),
lwd=c(3, 1)))

Next, these two grobs are drawn in three different settings. In the first setting,
the rectangle and the text are drawn in the default geometric and graphical
context and the rectangle bounds the text (see the left panel of Figure 6.7).

> grid.draw(tgl)
> grid.draw(rgl)

In the second setting, the grobs are both drawn within a viewport that has
cex=2. Both the text and the rectangle are drawn bigger (the calculation of
the "grobwidth" and "grobheight" units takes place in the same context as
the drawing of the text grob; see the middle panel of Figure 6.7).

pushViewport (viewport (gp=gpar (cex=2)))
grid.draw(tgl)

grid.draw(rgl)

popViewport ()

V V V V

In the third setting, the text grob is drawn in a different context than the
rectangle, so the rectangle’s size is “wrong” (see the right panel of Figure 6.7).

pushViewport (viewport (gp=gpar (cex=2)))
grid.draw(tgl)

popViewport ()

grid.draw(rgl)

vV V V V

A related issue arises with the use of grob names when creating a "grobwidth"
or "grobheight" unit (see Section 5.3.2). The following code provides a
simple example.

A text grob and two rect grobs are created, with the dimensions of both
rectangles based upon the dimensions of the text. One rectangle, rgl, uses a
copy of the text grob in the calls to grobWidth(), and grobHeight (). The
other rectangle, rg2, just uses the name of the text grob, "tgi".
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Figure 6.7

Calculating the size of a grob. In the left-hand panel, a text grob and a separate
rect grob, the size of which is calculated to be the size of the text grob, are drawn
together. In the middle panel, these objects are drawn together in a viewport with
a larger fontsize, so they are both larger. In the right-hand panel, only the text is
drawn in a viewport with a larger fontsize, so only the text is larger. The rectangle
calculates the size of the text in a different font context.

> tgl <- textGrob("Sample", name="tgl")

> rgl <- rectGrob(width=1.l*grobWidth("tgl"),
height=1.3*grobHeight ("tgl"),
gp=gpar (col="grey60", 1lwd=3))

> rg2 <- rectGrob(width=1.1*grobWidth(tgl),
height=1.3%grobHeight (tgl),
gp=gpar (col="white"))

When these rectangles and text are initially drawn, both rectangles frame the
text correctly (see the left panel of Figure 6.8).

> grid.draw(tgl)
> grid.draw(rgl)
> grid.draw(rg2)

However, if the text grob is modified, as shown below, only the rectangle rg1
(the dark grey rectangle) will be updated to correspond to the new dimensions
of the text (see the right panel of Figure 6.8).

> grid.edit("tgl", grep=TRUE, global=TRUE,
label="Different text")

With this approach, "grobwidth" and "grobheight" units are still evaluated
in the current geometric and graphical context, but in addition, only grobs
that have previously been drawn can be referred to. For example, drawing
the rectangle rgi before drawing the text tgl will not work because there is
no drawn grob named "tgl" from which a size can be calculated.
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Figure 6.8

Grob dimensions by reference. In the left-hand panel there are three grobs: one
text grob and two rect grobs. The sizes of both rect grobs are calculated from the
text grob. The difference is that the white rectangle is related to the text by value
and the dark grey rectangle is related to the text by reference. The right-hand panel
shows what happens when the text grob is edited. Only the dark grey, by-reference,
rectangle gets resized.

> grid.newpage()
> grid.draw(rgl)

Error in function (name)
Grob ’tgl’ not found

6.5.2 Editing graphical context

When a grob is edited using grid.edit () or editGrob(), the modification of
a gp component is treated as a special case. Only the graphical parameters
that are explicitly given new settings are modified. All other settings remain
untouched. The following code provides a simple example.

A circle is drawn with a grey fill color (see the left panel of Figure 6.9), then
the border of the circle is made thick (see the middle panel of Figure 6.9) and
the fill color remains the same. Finally, the border is changed to a dashed
line type, but it stays thick (and the fill remains grey — see the right panel
of Figure 6.9).

> grid.circle(r=0.3, gp=gpar(fill="grey80"),
name="mycircle")

> grid.edit("mycircle", gp=gpar(lwd=5))

> grid.edit("mycircle", gp=gpar(lty="dashed"))
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Figure 6.9

Editing the graphical context. The left-hand panel shows a circle with a solid, thin
black border and a grey fill. The middle panel shows the effect of making the border
thicker. The important point is that the other features of the circle are not affected
(the border is still solid and the fill is still grey). The right-hand panel shows another
demonstration of the same idea, with the border now drawn dashed (but the border
is still thick and the fill is still grey).

6.6 Saving and loading grid graphics

The best way to create a persistent record of a grid plot is to record in a text
file the R code that was used to create the plot. The code can then be run
again, e.g., using source (), to reproduce the output.

It is also possible to save grobs in R’s binary format using the save () function.
The grobs can then be loaded, using load (), and redrawn using grid.draw().
For the purpose of saving an entire scene, it may be more useful to save and
load a gTree created by the grid.grab function (see Section 6.3.1).*

6.7 Working with lattice grobs

The output from a lattice function is fundamentally just a collection of grid
viewports and grobs. Section 5.8 described some examples of interacting with

*A possible danger with saving a grid grob is that methods specific to that grob are not
automatically recorded, so the grob may not behave correctly when loaded into a different
session. This will only be an issue for grobs that are not predefined by the grid package
(see Chapter 7, particularly Section 7.3).
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the grid viewports that are set up by a lattice plot. This section looks at some
examples of interacting with the grobs that are created by a lattice plot.

Unfortunately, only some of the grobs produced by lattice are given useful
names. Many grobs only have the default names assigned them by the grid
system, which are neither sufficiently descriptive nor reliable to be used to
access a particular component of the plot.*

Examples of grobs that do have useful names are the "xlab" and "ylab"
grobs representing the x-label and y-label on a lattice plot.

One thing that can be done with grobs produced by lattice is to modify them
in ways that are not otherwise possible via the interface provided by lattice.
For example, at the time of writing, it is possible to control the font face, the
color, and the size of these labels (using x1ab or ylab arguments to a plotting
function or via trellis.par.set()), but it is not possible to modify the font
family or the angle of rotation.

The following code produces a lattice scatterplot, then edits the plot labels to
change the font to a "mono" family and to position the labels at the ends of
the axes (see Figure 6.10).

\4

angle <- seq(0, 2*pi, length=21) [-21]
x <- cos(angle)
y <- sin(angle)

vV Vv

\4

xyplot(y ~ x, aspect=1,
xlab="displacement",
ylab="velocity")

\4

grid.edit("[.]x1lab$", grep=TRUE,
x=unit (1, "npc"), just="right",
gp=gpar (fontfamily="mono"))
> grid.edit("[.]ylab$", grep=TRUE,
y=unit (1, "npc"), just="right",
gp=gpar (fontfamily="mono"))

Other grob operations are also possible. For example, the following code
removes the labels from the plot.

> grid.remove(".lab$", grep=TRUE, global=TRUE)

*The default name assigned to a grob by the grid system is of the form "GRID.GROB.n"
where n depends on how many other grobs have been created previously in the current
session.
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Figure 6.10

Editing the grobs in a lattice plot. The top plot is an initial scatterplot produced
using the lattice function xyplot (). The bottom plot shows the effect of editing the
grid text grobs that represent the labels on the plot (the labels are relocated at the
ends of the axes and are drawn in a monospace font).

@ © 2006 by Taylor & Francis Group, LLC



Finally, it is possible to group all of the grobs from a lattice plot together using
grid.grab(). This creates a glree that can then be used as a component in
creating another picture.

Chapter summary

As well as producing graphical output, all grid functions create grobs
(graphical objects) that contain descriptions of what has been drawn.
These grobs may be accessed, modified, and even removed, and the
graphical output will be updated to reflect the changes.

There are also grid functions for creating grobs without producing any
graphical output. A complete description of a plot can be produced
by creating, modifying, and combining grobs off-screen.

A gTree is a grob that can have other grobs as its children. A gTree can
be useful for grouping grobs and for providing a high-level interface
to a group of grobs.

The lattice plotting functions generate large numbers of grid grobs.
These grobs may be manipulated just like any other grobs to access,
edit, and delete parts of a lattice plot.
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7

Developing New Graphics Functions
and Objects

Chapter preview

This chapter looks in depth at the task of writing graphical functions
for others to use.

There are important guidelines for writing simple functions whose
main purpose is to produce graphical output. There is an empha-
sis on making sure that users can annotate the output produced by a
function and that users can make use of the function as a component
in larger or more complex plots.

There is also a discussion on how to create a new class of graphical ob-
ject. This is important for allowing users to interactively edit output,
to ask questions such as how much space a graphical object requires,
and to be able to combine graphical objects together in a gTree.

This chapter addresses the issue of developing graphics functions for others
to use. This will involve a discussion of some of the lower-level details of
how grid works as well as some more abstract ideas of software design. A
basic understanding of programming concepts is recommended, and the later
sections assume an understanding of object-oriented concepts such as classes
and methods.

Important low-level details of the grid graphics system and important design
considerations are introduced in increasing levels of complexity to allow devel-
opers to construct simple graphics functions at first. Readers aiming to design
a new fully-featured grid graphical object should read the entire chapter.
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7.1 An example

In order to provide concrete examples of the concepts described in this chapter,
a set of graphical functions and objects will be developed for the purpose of
producing plots of oceanographic data.

An example of the final output that is desired is shown in Figure 7.1. Sections
7.2 to 7.3.8 go through the process of creating functions and objects to produce
this output.

The data are measurements of fluorescence calculated at the thermocline
(point of maximum temperature gradient) for 87 measuring stations off the
coast of South Australia[38]. The values plotted in the image are from a pre-
diction surface based on an analysis using the Krig() function in the fields
package.*

— 1.300
— 1.220
= — 1.130
— 1.050
—1— 0.969
— 0.886

0.803
L 0.720

Figure 7.1

A plot of oceanographic data. The plot consists of a section of South Australian
coastline, an image representing fluorescence at the thermocline, a small map to
indicate where the main plot region is on Australia, and a legend to map the grey
scale to fluorescence values.

*The data for the prediction surface are available as the data set fluoro.predict in
the package RGraphics. Sam McClatchie provided the data and the original motivation to
look at oceanographic plots in R.
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7.1.1 Modularity

One decision can be made before writing a single line of code: the code should
be modular. This means that the code should consist of several small func-
tions, each of which produces a well-defined, self-contained piece of graphical
output. It would be a bad idea to to create Figure 7.1 in one big function.
Such a function would be unlikely to be very flexible, would be very hard to
maintain (it is easier to see what is going on in smaller functions), and would
be very hard to debug (it is much easier to test small functions with a clear,
simple purpose).

The following sections look at writing several simple functions, each of which
produces a conceptually separate part of the final plot. One possible break-
down of Figure 7.1 involves the following elements: two maps of Australia (one
just a piece of the coastline), an array of colored rectangles (an image), and
a legend. Immediately, the focus is on producing much more basic graphical
output. If some useful functions are created for these, the functions will
provide much more reusable graphical elements that could be combined in
other ways to create all sorts of other plots (for example, see Section 7.3.9
and Figure 7.18).

7.2 Simple graphics functions

The simplest approach is to write a graphics function just for its side-effect
of producing graphical output (i.e., using grid graphics functions as described
in Chapter 5). The first example will be a simple graphics function to pro-
duce an image. The code in Figure 7.2 provides code defining a function
grid.imageFun() for this purpose.

This function takes arguments to describe the number of rows and columns in
the image (nrow and ncol), the colors to use for each cell in the image (cols),
and the order in which those colors should be applied to the cells (byrow).
Output is produced by a call to the grid.rect() function (line 12), which
draws a rectangle for each cell in the image.

This function can be used to draw an array of rectangles just like any other
plotting function. An example usage is given in the following code. First, a
set of grey-scale colors are defined (these will be used throughout the chapter).

> greys <- grey(0.5 + (rep(1:4, 4) - rep(0:3, each=4))/10)
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1 grid.imageFun <- function(nrow, ncol, cols,
2 byrow=TRUE) {

3  x <= (1:ncol)/ncol

4 y <= (l:nrow)/nrow

5 if (byrow) {

6 right <- rep(x, nrow)

7 top <- rep(y, each=ncol)

8
9

} else {
right <- rep(x, each=nrow)

10 top <- rep(y, ncol)
11 }
12 grid.rect(x=right, y=top,
13 width=1/ncol, height=1/nrow,
14 just=c("right", "top"),
15 gp=gpar (col=NA, fill=cols),
16 name="image")
17 %}

Figure 7.2
A grid.imageFun() function. This function draws an array of nrow by ncol rect-
angles filled with the specified colors.

Now two images are drawn with the same colors, but different byrow settings
(see Figures 7.3a and 7.3b).

> grid.imageFun(4, 4, greys)
> grid.imageFun(4, 4, greys, byrow=FALSE)

There is an obvious deficiency in this function because it does not perform
any checking of its arguments to ensure that the correct information is being
passed to it. For example, there is no check that nrow and ncol are numeric
values of length 1. In general, in order to reduce the size and complexity of
the code chunks, the examples will leave out input-checking code. This issue
is addressed more seriously in the context of developing new graphical objects
in Section 7.3.3.

The grid.imageFun() example shows that it is quite straightforward to create
a new graphics function that just produces output. However, there are three
important things to keep in mind when writing such a function: other people
might want to embed your function as an element within a more complex
scene; other people might want to embed more output within the output from
your function; and other people might want to interactively modify the output

@ © 2006 by Taylor & Francis Group, LLC



(b)

Figure 7.3
Output from the grid.imageFun() function. The two images use the same set of
colors, but have different orientations. Image (a) has byrow=TRUE and image (b) has
byrow=FALSE.

from your function. The following sections look at how you should design your
function so that these tasks are straightforward for other people.

7.2.1 Embedding graphical output

The grid system is designed to allow graphical output to be embedded within
other graphical output. All drawing occurs within the current viewport and
no assumptions are made about the position or size of that viewport. New grid
functions should be written with this in mind and it should not be assumed
that output is being drawn into the entire device.

The grid.imageFun() function demonstrates this idea; this function just
draws rectangles within the current viewport, wherever that may be and how-
ever large it may be.

On the other hand, it is sometimes important to enforce certain constraints
on how graphical output is drawn. A good example is in the drawing of maps.
Usually, a map is drawn with a specific aspect ratio so that, for example, 1
unit in the x-dimension has the same physical size as 1 unit in the y-dimension.
In such cases, it may be necessary for a function to push its own viewports to
enforce an aspect ratio before performing any drawing. A function to draw a
map of Australia will be developed in order to demonstrate this idea.

The package o0z[63] provides data for drawing maps of Australia. The
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1 grid.ozFun <- function(ozRegion) {

2 pushViewport(

3 viewport (name="ozlay",

4 layout=grid.layout (1,1,

5 widths=diff (ozRegion$rangex),
6 heights=diff (ozRegion$rangey),
7 respect=TRUE)))

8  pushViewport (viewport (name="ozvp",

9 layout.pos.row=1,

10 layout.pos.col=1,

11 xscale=ozRegion$rangex,
12 yscale=ozRegion$rangey,
13 clip=TRUE))

14 index <- 1
15  for(i in ozRegion$lines) {

16 grid.lines(i$x, i$y, default.units="native",

17 name=paste("ozlines", index, sep=""))

18 index <- index + 1

19 %

20  upViewport(2)

21 %}

Figure 7.4

A grid.ozFun() function. This function draws a map of Australia or some part
thereof.

ozRegion() function in the oz package returns an object of class "ozRegion"
containing x-axis and y-axis ranges, and a list of x-locations and y-locations
to draw map lines. The grid.ozFun() shown in Figure 7.4 makes use of
ozRegion() to draw a map of Australia using grid.

The most important part of this function is the pushing of viewports that
establish the correct aspect ratio for drawing the map (lines 2 to 13). The
first viewport contains a layout with a single cell set to the correct aspect ratio
and the second viewport occupies that cell and sets the appropriate "native"
coordinate system for the map. This allows the map to be drawn within any
viewport, but retain the appropriate shape.

The rest of the grid.ozFun() function just draws the lines representing the
Australian coastline (and state boundaries) using grid.lines().

The following code shows an example of the grid.ozFun() function being
used to draw all of Australia (see Figure 7.5). The map is not distorted even
though the region it is drawn in (indicated by the grey rectangle) is very wide.
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Figure 7.5
Example output from grid.ozFun(). By default it draws all of Australia.

> grid.ozFun(ozRegion())

7.2.2 Facilitating annotation

In addition to being able to produce graphical output within any context, it is
vital that further graphical output can be added to the output of a graphical
function. Again, the grid system is designed to facilitate this, by allowing
navigation between viewports.

In this context, there are two important features of the grid.ozFun() func-
tion defined in Figure 7.4: the viewports that are pushed have names,
"ozlay" and "ozvp" (lines 3 and 8); and the function calls upViewport ()
(not popViewport()) when it has finished drawing (line 20). These features
mean that the viewports are available and accessible for other code to use
after the grid.ozFun() function has done its drawing.

The following code provides an example of annotation using the
grid.imageFun () function to add an image to output from the grid.ozFun()
function (see Figure 7.6). In this example, only a small part of the South Aus-
tralian coastline is used (the coastline close to the area where fluorescence data
were gathered).

First of all, the latitude and longitude ranges are set up for the map (mapLong
and mapLat) and for the image (imageLong and imageLat). Also, the set of
colors for the image are calculated (imageCols). The prediction surface to be
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Figure 7.6
Annotating grid.ozFun() output. An image has been added using the
grid.imageFun() function.

plotted is in a variable called fluoro.predict, which has components x, y,
and z for the longitude, latitude, and predicted fluorescence value respectively.
These ranges and colors will be used throughout the rest of the chapter.

mapLong <- c(132, 136)

mapLat <- c(-35, -31.5)

imageLong <- range(fluoro.predict$x)

imagelLat <- range(fluoro.predict$y)

zbreaks <- seq(min(fluoro.predict$z, na.rm=TRUE),
max (fluoro.predict$z, na.rm=TRUE),
length=10)

> zcol <- cut(fluoro.predict$z, zbreaks,
include.lowest=TRUE, labels=FALSE)

> ozgreys <- grey(0.5 + 1:9/20)

> imageCols <- ozgreys[zcol]

V V V V V

Now, the map and image can be drawn. The map is drawn first which produces
the coast line of South Australia and sets up the viewports "ozlay" and
n OZVp n .

> grid.ozFun(ozRegion(xlim=mapLong, ylim=mapLat))
The function downViewport() is used to navigate down to the viewport

"ozvp", which has scales set up representing the latitude and longitude of
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the map. This is only possible because the grid.ozFun() function specified
useful names for the viewports it set up.

> downViewport ("ozvp")

A further viewport is pushed to occupy the region where the image should be
drawn and the image is drawn within that viewport.

> pushViewport (viewport (y=min(imageLat),
height=abs(diff (imagelat)),
x=max (imageLong) ,
width=abs(diff (imagelong)),
default.units="native",
just=c("right", "bottom")))

> grid.imageFun(50, 50, col=imageCols)

> upViewport (0)

7.2.3 Editing output

In addition to being able to add further output to a plot, it is useful to make
it easy for others to modify the existing elements of a plot. The important
step in this case is to provide a name for each piece of graphical output that
your function produces.

The grid.imageFun() function uses the name "image" for the set of rect-
angles that it draws (line 16 in Figure 7.2) and the grid.ozFun() function
names each map border that it draws "ozlinesi", where i varies from 1 to
the number of borders drawn (line 17 in Figure 7.4).

These names are useful for interacting with the output from these functions,
particularly for the purpose of editing the output. The following code presents
a couple of examples of modifying the plot produced in Figure 7.6. The first
edit reverses the set of colors used in the image. The second edit changes the
color of all map borders to grey and makes the borders thicker (see Figure
7.7).

> grid.edit("image", gp=gpar(fill=rev(ozgreys) [zcol]))
> grid.edit (" ozlines[0-9]+3$", gp=gpar(col="grey", lwd=2),
grep=TRUE, global=TRUE)
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Figure 7.7
Editing grid.ozFun() output. Compared to Figure 7.6, the colors of the image have
been reversed and the Australian coastline is thicker and colored grey.

7.2.4 Absolute versus relative sizes

Another thing to consider when designing a graphics function is whether to
use absolute or relative coordinate systems and graphical parameters for sizing
graphical output. If absolute coordinates systems such as "inches", "cm", or
"mm" are used to size output, then the output will remain that size no matter
how large or small the surrounding viewport is made. This is also true of
graphical parameters such as fontsize (which specifies the size of text in
points), and 1lwd. If, on the other hand, relative coordinates such as "npc" or
"native" are used for sizing output, the output will resize with its container.
Graphical parameters that are relative like this are cex for sizing text and
lex for line width.

In general, absolute sizes are more appropriate for producing or fine-tuning a
piece of output for a specific use (e.g., a figure in an article). Relative sizes
are more appropriate when designing general graphics functions for others to
use, where it is unknown how large the final output will be. One possible
exception to this rule is the sizing of text. It is reasonable to set text size in
absolute terms (i.e., a particular point size) in order to ensure that the text
is legible.

The coordinate systems used for "char", "lines", "strwidth", or
"grobwidth" units depend on the size of other output and so are considered
to be relative.

@ © 2006 by Taylor & Francis Group, LLC



7.3 Graphical objects

A properly written graphics function can be very useful if it can be reused
in other plots and arbitrarily added to or modified as described in previous
sections. There are, however, a number of benefits to be gained from also
creating a graphical object, or grob, to represent the output that your function
produces.

The following sections consider again the development of functions to produce
maps and images, but this time with an emphasis on creating objects that
represent the output, rather than just producing output.

Defining new grobs involves working with classes and generic functions. This
section assumes a familiarity with the basic ideas of object-oriented program-
ming and its implementation in S3 classes and methods (see Section A.4 for
a very brief introduction).

The design of classes and methods is a reasonably sophisticated process, there
are often a number of possible designs to choose from, and it can be difficult
to determine a “best solution.” This means that it is impossible to provide
a single definitive statement about how a new graphical object should be
developed. Instead, this section presents a number of examples with several
different implementations and there is a discussion of the advantages and
disadvantages of different approaches.

7.3.1 Overview of creating a new graphical class

There are two main steps involved in defining a new graphical class. First of
all, the structure of the class must be described. This consists of specifying
the components of the new class — the information that is stored in objects
of that class. For example, the "rect" class has components x, y, width,
height, and just that describe the location and size of the rectangle.

The functions grob() and gTree() are used to define the structure for a
new graphical class (as described in more detail in the next section). These
functions ensure that all grobs have a number of standard components. For
example, all grobs must have gp, vp, and name components. In addition, all
classes derived from "gTree" (via the gTree () function) also have components
children and childrenvp that describe the children of the gTree and how
those children are drawn (see Section 7.3.4).

The second step in defining a new graphical class is to define the behavior
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of the class. This consists of writing methods for several important generic
functions. Methods can be written to control the validation of a grob, how a
grob is drawn, and what happens when a grob is modified. It is also possible
to write methods for calculating the size of a grob. These generic functions
are described in Sections 7.3.4 to 7.3.7.

7.3.2 Defining a new graphical class

The code in Figure 7.8 gives an example of defining a new graphical class.
An "imageGrob" class is defined, which contains a description of the image
output generated by the grid.imageFun() function that was defined earlier.

The imageGrob() function calls the function gTree() to create an object of
a new class, "imageGrob". An imageGrob is a gIree with several components
that provide a high-level description of the an image (ncol, nrow, cols, and
byrow). There is also a single child, which is a rect grob, representing the
rectangles that will be drawn to produce the image. The imageGrob() func-
tion also provides the standard gp, vp, and name components, which should
be available for all grobs.

The makeImageRect () function generates a rect grob from a high-level image
description. This is very similar to the function grid.imageFun(), but it
produces an object containing a description of some rectangles rather than
drawing the rectangles and it calls rectGrob () rather than grid.rect () (line
11). This function is not intended to be used directly — it is just a “helper
function” for the main imageGrob() function. This is an example of modular
code that makes it easier to read the main function and it will be used later
when some other class examples are considered.

The grid. imageGrob() function is just a convenience for producing graphical
output from an imageGrob grob; it just creates an appropriate grob and draws
it. The following code produces the same result as Figure 7.3a.

> grid.imageGrob(4, 4, greys)

There are now functions that define a new class and create an object of that
class. 