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CHAPTER 1

About this document

This document integrates lecture notes for a one year graduate level course with com-

puter programs that illustrate and apply the methods that are studied. The immediate avail-

ability of executable (and modifiable) example programs when using the PDF version of

the document is one of the advantages of the system that has been used. On the other

hand, when viewed in printed form, the document is a somewhatterse approximation to a

textbook. These notes are not intended to be a perfect substitute for a printed textbook. If

you are a student of mine, please note that last sentence carefully. There are many good

textbooks available. A few of my favorites are listed in the bibliography.

With respect to contents, the emphasis is on estimation and inference within the world

of stationary data, with a bias toward microeconometrics. The second half is somewhat

more polished than the first half, since I have taught that course more often. If you take a

moment to read the licensing information in the next section, you’ll see that you are free to

copy and modify the document. If anyone would like to contribute material that expands

the contents, it would be very welcome. Error corrections and other additions are also

welcome.

1.1. License

All materials are copyrighted by Michael Creel with the datethat appears above. They

are provided under the terms of the GNU General Public License, ver. 2, which forms

Section24 of the notes. The main thing you need to know is that you are free to modify

and distribute these materials in any way you like, as long asyou do so under the terms of

the GPL. In particular, you must make available the source files, in editable form, for your

modified version of the materials.

1.2. Obtaining the materials

The materials are available on my web page, in a variety of forms including PDF and

the editable sources, atpareto.uab.es/mcreel/Econometrics/. In addition to the final product,

which you’re probably looking at in some form now, you can obtain the editable sources,

which will allow you to create your own version, if you like, or send error corrections

and contributions. The main document was prepared using LYX (www.lyx.org)and GNU

Octave(www.octave.org). LYX is a free1 “what you see is what you mean” word processor,

basically working as a graphical frontend to LATEX. It (with help from other applications)

can export your work in LATEX, HTML, PDF and several other forms. It will run on Linux,

Windows, and MacOS systems. Figure1.2.1shows LYX editing this document.

1”Free” is used in the sense of ”freedom”, but LYX is also free of charge.

13
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1.3. AN EASY WAY TO USE LYX AND OCTAVE TODAY 14

FIGURE 1.2.1. LYX

GNU Octave has been used for the example programs, which are scattered though

the document. This choice is motivated by two factors. The first is the high quality of

the Octave environment for doing applied econometrics. Thefundamental tools exist and

are implemented in a way that make extending them fairly easy. The example programs

included here may convince you of this point. Secondly, Octave’s licensing philosophy

fits in with the goals of this project. Thirdly, it runs on Linux, Windows and MacOS.

Figure1.2.2shows an Octave program being edited by NEdit, and the resultof running the

program in a shell window.

1.3. An easy way to use LYX and Octave today

The example programs are available as links to files on my web page in the PDF

version, andhere. Support files needed to run these are availablehere. The files won’t

run properly from your browser, since there are dependencies between files - they are only

illustrative when browsing. To see how to use these files (edit and run them), you should

go to thehome pageof this document, since you will probably want to download the pdf

version together with all the support files and examples. Then set the base URL of the PDF

file to point to wherever the Octave files are installed. Then you need to install Octave and

octave-forge. All of this may sound a bit complicated, because it is. An easier solution is

available:

http://pareto.uab.es/mcreel/Econometrics/Examples
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles
http://pareto.uab.es/mcreel/Econometrics
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FIGURE 1.2.2. Octave

The ParallelKnoppixdistribution of Linux is an ISO image file that may be burnt to

CDROM. It contains a bootable-from-CD Gnu/Linux system that has all of the tools needed

to edit this document, run the Octave example programs, etc.In particular, it will allow you

to cut out small portions of the notes and edit them, and send them to me as LYX (or TEX)

files for inclusion in future versions. Think error corrections, additions, etc.! The CD

automatically detects the hardware of your computer, and will not touch your hard disk

unless you explicitly tell it to do so. The reason why these notes are integrated into a Linux

distribution for parallel computing will be apparent if youget to Chapter20. If you don’t

get that far and you’re not interested in parallel computing, please just ignore the stuff

on the CD that’s not related to econometrics. If you happen tobe interested in parallel

computing but not econometrics, just skip ahead to Chapter20.

1.4. Known Bugs

This section is a reminder to myself to try to fix a few things.

• The PDF version has hyperlinks to figures that jump to the wrong figure. The

numbers are correct, but the links are not. ps2pdf bugs?

http://pareto.uab.es/mcreel/ParallelKnoppix


CHAPTER 2

Introduction: Economic and econometric models

Economic theory tells us that an individual’s demand function for a good is something

like:

x = x(p,m,z)

• x is the quantity demanded

• p is G×1 vector of prices of the good and its substitutes and complements

• m is income

• z is a vector of other variables such as individual characteristics that affect pref-

erences

Suppose we have a sample consisting of one observation onn individuals’ demands at time

periodt (this is across section, wherei = 1,2, ...,n indexes the individuals in the sample).

The individual demand functions are

xi = xi(pi ,mi ,zi)

The model is not estimable as it stands, since:

• The form of the demand function is different for alli.

• Some components ofzi may not be observable to an outside modeler. For ex-

ample, people don’t eat the same lunch every day, and you can’t tell what they

will order just by looking at them. Suppose we can breakzi into the observable

componentswi and a single unobservable componentεi .

A step toward an estimable econometric model is to suppose that the model may be written

as

xi = β1 + p′iβp +miβm+w′
iβw + εi

We have imposed a number of restrictions on the theoretical model:

• The functionsxi(·) which in principle may differ for alli have been restricted to

all belong to the same parametric family.

• Of all parametric families of functions, we have restrictedthe model to the class

of linear in the variables functions.

• The parameters are constant across individuals.

• There is a single unobservable component, and we assume it isadditive.

If we assume nothing about the error termε, we can always write the last equation. But in

order for theβ coefficients to exist in a sense that has economic meaning, and in order to

be able to use sample data to make reliable inferences about their values, we need to make

additional assumptions. These additional assumptions have no theoretical basis, they are

assumptions on top of those needed to prove the existence of ademand function. The

16



2. INTRODUCTION: ECONOMIC AND ECONOMETRIC MODELS 17

validity of any results we obtain using this model will be contingent on these additional

restrictions being at least approximately correct. For this reason,specification testingwill

be needed, to check that the model seems to be reasonable. Only when we are convinced

that the model is at least approximately correct should we use it for economic analysis.

When testing a hypothesis using an econometric model, at least three factors can cause

a statistical test to reject the null hypothesis:

(1) the hypothesis is false

(2) a type I error has occured

(3) the econometric model is not correctly specified so the test does not have the

assumed distribution

To be able to make scientific progress, we would like to ensurethat the third reason is

not contributing in a major way to rejections, so that rejection will be most likely due to

either the first or second reasons. Hopefully the above example makes it clear that there are

many possible sources of misspecification of econometric models. In the next few sections

we will obtain results supposing that the econometric modelis entirely correctly specified.

Later we will examine the consequences of misspecification and see some methods for

determining if a model is correctly specified. Later on, econometric methods that seek to

minimize maintained assumptions are introduced.



CHAPTER 3

Ordinary Least Squares

3.1. The Linear Model

Consider approximating a variabley using the variablesx1,x2, ...,xk. We can consider

a model that is a linear approximation:

Linearity : the model is a linear function of the parameter vectorβ0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ε

or, using vector notation:

y = x′β0 + ε

The dependent variabley is a scalar random variable,x = ( x1 x2 · · · xk)
′

is a k-

vector of explanatory variables, andβ0 = ( β0
1 β0

2 · · · β0
k)

′
. The superscript “0” inβ0

means this is the ”true value” of the unknown parameter. It will be defined more precisely

later, and usually suppressed when it’s not necessary for clarity.

Suppose that we want to use data to try to determine the best linear approximation

to y using the variablesx. The data{(yt ,xt)} ,t = 1,2, ...,n are obtained by some form of

sampling1. An individual observation is

yt = x′tβ + εt

Then observations can be written in matrix form as

(3.1.1) y = Xβ + ε,

wherey =
(

y1 y2 · · · yn

)′
is n×1 andX =

(
x1 x2 · · · xn

)′
.

Linear models are more general than they might first appear, since one can employ

nonlinear transformations of the variables:

ϕ0(z) =
[

ϕ1(w) ϕ2(w) · · · ϕp(w)
]

β + ε

where theφi() are known functions. Definingy = ϕ0(z), x1 = ϕ1(w), etc. leads to a model

in the form of equation3.6.1. For example, the Cobb-Douglas model

z= Awβ2
2 wβ3

3 exp(ε)

can be transformed logarithmically to obtain

lnz= lnA+ β2 lnw2 + β3 lnw3 + ε.

1For example, cross-sectional data may be obtained by randomsampling. Time series data accumulate histori-
cally.

18



3.2. ESTIMATION BY LEAST SQUARES 19

FIGURE 3.2.1. Typical data, Classical Model
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If we definey= lnz, β1 = lnA, etc.,we can put the model in the form needed. The approx-

imation is linear in the parameters, but not necessarily linear in the variables.

3.2. Estimation by least squares

Figure 3.2.1, obtained by runningTypicalData.mshows some data that follows the

linear modelyt = β1 + β2xt2 + εt . The green line is the ”true” regression lineβ1 + β2xt2,

and the red crosses are the data points(xt2,yt), whereεt is a random error that has mean

zero and is independent ofxt2. Exactly how the green line is defined will become clear

later. In practice, we only have the data, and we don’t know where the green line lies. We

need to gain information about the straight line that best fits the data points.

Theordinary least squares(OLS) estimator is defined as the value that minimizes the

sum of the squared errors:

β̂ = argmins(β)

where

s(β) =
n

∑
t=1

(
yt −x′tβ

)2

= (y−Xβ)′ (y−Xβ)

= y′y−2y′Xβ + β′X′Xβ

= ‖ y−Xβ ‖2

This last expression makes it clear how the OLS estimator is defined: it minimizes the

Euclidean distance betweeny andXβ. The fitted OLS coefficients are those that give the

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/TypicalData.m


3.3. GEOMETRIC INTERPRETATION OF LEAST SQUARES ESTIMATION 20

best linear approximation toy usingx as basis functions, where ”best” means minimum

Euclidean distance. One could think of other estimators based upon other metrics. For

example, theminimum absolute distance(MAD) minimizes∑n
t=1 |yt −x′tβ|. Later, we will

see that which estimator is best in terms of their statistical properties, rather than in terms

of the metrics that define them, depends upon the properties of ε, about which we have as

yet made no assumptions.

• To minimize the criterions(β), find the derivative with respect toβ and set it to

zero:

Dβs(β) = −2X′y+2X′Xβ

Dβs(β̂) = −2X′y+2X′Xβ̂ ≡ 0

so

β̂ = (X′X)−1X′y.

• To verify that this is a minimum, check the second order sufficient condition:

D2
βs(β̂) = 2X′X

Sinceρ(X) = K, this matrix is positive definite, since it’s a quadratic formin a

p.d. matrix (identity matrix of ordern), soβ̂ is in fact a minimizer.

• Thefitted valuesare the vector̂y = Xβ̂.

• Theresidualsare the vector̂ε = y−Xβ̂
• Note that

y = Xβ + ε

= Xβ̂+ ε̂

• Also, the first order conditions can be written as

X′y−X′Xβ̂ = 0

X′
(

y−Xβ̂
)

= 0

X′ε̂ = 0

which is to say, the OLS residuals are orthogonal toX. Let’s look at this more

carefully.

3.3. Geometric interpretation of least squares estimation

3.3.1. In X,Y Space.Figure 3.3.1 shows a typical fit to data, along with the true

regression line. Note that the true line and the estimated line are different. This figure was

created by running the Octave programOlsFit.m. You can experiment with changing the

parameter values to see how this affects the fit, and to see howthe fitted line will sometimes

be close to the true line, and sometimes rather far away.

3.3.2. In Observation Space.If we want to plot in observation space, we’ll need to

use only two or three observations, or we’ll encounter some limitations of the blackboard.

If we try to use 3, we’ll encounter the limits of my artistic ability, so let’s use two. With

only two observations, we can’t haveK > 1.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/OlsFit.m
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FIGURE 3.3.1. Example OLS Fit
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FIGURE 3.3.2. The fit in observation space

Observation 2

Observation 1

x

y

S(x)

x*beta=P_xY

e = M_xY

• We can decomposey into two components: the orthogonal projection onto the

K−dimensional space spanned byX, Xβ̂, and the component that is the orthogo-

nal projection onto then−K subpace that is orthogonal to the span ofX, ε̂.
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• Sinceβ̂ is chosen to makêε as short as possible,ε̂ will be orthogonal to the space

spanned byX. SinceX is in this space,X′ε̂ = 0. Note that the f.o.c. that define

the least squares estimator imply that this is so.

3.3.3. Projection Matrices. Xβ̂ is the projection ofy onto the span ofX, or

Xβ̂ = X
(
X′X

)−1
X′y

Therefore, the matrix that projectsy onto the span ofX is

PX = X(X′X)−1X′

since

Xβ̂ = PXy.

ε̂ is the projection ofy onto theN−K dimensional space that is orthogonal to the span of

X. We have that

ε̂ = y−Xβ̂

= y−X(X′X)−1X′y

=
[
In−X(X′X)−1X′]y.

So the matrix that projectsy onto the space orthogonal to the span ofX is

MX = In−X(X′X)−1X′

= In−PX.

We have

ε̂ = MXy.

Therefore

y = PXy+MXy

= Xβ̂+ ε̂.

These two projection matrices decompose then dimensional vectory into two orthogonal

components - the portion that lies in theK dimensional space defined byX, and the portion

that lies in the orthogonaln−K dimensional space.

• Note that bothPX andMX aresymmetricandidempotent.

– A symmetric matrixA is one such thatA = A′.

– An idempotent matrixA is one such thatA = AA.

– The only nonsingular idempotent matrix is the identity matrix.

3.4. Influential observations and outliers

The OLS estimator of theith element of the vectorβ0 is simply

β̂i =
[
(X′X)−1X′]

i· y

= c′iy
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This is how we define a linear estimator - it’s a linear function of the dependent vari-

able. Since it’s a linear combination of the observations onthe dependent variable, where

the weights are determined by the observations on the regressors, some observations may

have more influence than others.

To investigate this, letet be ann vector of zeros with a 1 in the tth position,i.e., it’s the

tth column of the matrixIn. Define

ht = (PX)tt

= e′tPXet

soht is the tth element on the main diagonal ofPX. Note that

ht = ‖ PXet ‖2

so

ht ≤‖ et ‖2= 1

So 0< ht < 1. Also,

TrPX = K ⇒ h = K/n.

So the average of theht isK/n. The valueht is referred to as theleverageof the observation.

If the leverage is much higher than average, the observationhas the potential to affect the

OLS fit importantly. However, an observation may also be influential due to the value of

yt , rather than the weight it is multiplied by, which only depends on thext ’s.

To account for this, consider estimation ofβ without using thetth observation (des-

ignate this estimator aŝβ(t)). One can show (see Davidson and MacKinnon, pp. 32-5 for

proof) that

β̂(t) = β̂−
(

1
1−ht

)
(X′X)−1X′

t ε̂t

so the change in thetth observations fitted value is

x′t β̂−x′t β̂
(t) =

(
ht

1−ht

)
ε̂t

While an observation may be influential if it doesn’t affect its own fitted value, it certainlyis

influential if it does. A fast means of identifying influential observations is to plot
(

ht
1−ht

)
ε̂t

(which I will refer to as theown influenceof the observation) as a function oft. Figure

3.4.1gives an example plot of data, fit, leverage and influence. TheOctave program is

InfluentialObservation.m. If you re-run the program you will see that the leverage of the

last observation (an outlying value of x) is always high, andthe influence is sometimes

high.

After influential observations are detected, one needs to determinewhy they are influ-

ential. Possible causes include:

• data entry error, which can easily be corrected once detected. Data entry errors

are very common.

• special economic factors that affect some observations. These would need to

be identified and incorporated in the model. This is the idea behindstructural

change: the parameters may not be constant across all observations.

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/InfluentialObservation.m
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FIGURE 3.4.1. Detection of influential observations

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3

X

Data points
fitted

Leverage
Influence

• pure randomness may have caused us to sample a low-probability observation.

There existrobustestimation methods that downweight outliers.

3.5. Goodness of fit

The fitted model is

y = Xβ̂+ ε̂

Take the inner product:

y′y = β̂′X′Xβ̂+2β̂′X′ε̂+ ε̂′ε̂

But the middle term of the RHS is zero sinceX′ε̂ = 0, so

(3.5.1) y′y = β̂′X′Xβ̂+ ε̂′ε̂

Theuncentered R2u is defined as

R2
u = 1− ε̂′ε̂

y′y

=
β̂′X′Xβ̂

y′y

=
‖ PXy ‖2

‖ y ‖2

= cos2(φ),

whereφ is the angle betweeny and the span ofX .

• The uncenteredR2 changes if we add a constant toy, since this changesφ (see

Figure3.5.1, the yellow vector is a constant, since it’s on the 45 degree line in
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observation space). Another, more common definition measures the contribution

FIGURE 3.5.1. UncenteredR2

of the variables, other than the constant term, to explaining the variation iny.

Thus it measures the ability of the model to explain the variation of y about its

unconditional sample mean.

Let ι = (1,1, ...,1)′, an -vector. So

Mι = In− ι(ι′ι)−1ι′

= In− ιι′/n

Mιy just returns the vector of deviations from the mean. In termsof deviations from the

mean, equation3.5.1becomes

y′Mιy = β̂′X′MιXβ̂+ ε̂′Mιε̂

Thecentered R2c is defined as

R2
c = 1− ε̂′ε̂

y′Mιy
= 1− ESS

TSS

whereESS= ε̂′ε̂ andTSS= y′Mιy=∑n
t=1(yt − ȳ)2.

Supposing thatX contains a column of ones (i.e., there is a constant term),

X′ε̂ = 0⇒ ∑
t

ε̂t = 0
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soMιε̂ = ε̂. In this case

y′Mιy = β̂′X′MιXβ̂+ ε̂′ε̂

So

R2
c =

RSS
TSS

whereRSS= β̂′X′MιXβ̂

• Supposing that a column of ones is in the space spanned byX (PXι = ι), then one

can show that 0≤ R2
c ≤ 1.

3.6. The classical linear regression model

Up to this point the model is empty of content beyond the definition of a best linear

approximation toy and some geometrical properties. There is no economic content to the

model, and the regression parameters have no economic interpretation. For example, what

is the partial derivative ofy with respect tox j? The linear approximation is

y = β1x1 + β2x2 + ...+ βkxk + ε

The partial derivative is
∂y
∂x j

= β j +
∂ε
∂x j

Up to now, there’s no guarantee that∂ε
∂xj

=0. For theβ to have an economic meaning, we

need to make additional assumptions. The assumptions that are appropriate to make depend

on the data under consideration. We’ll start with the classical linear regression model,

which incorporates some assumptions that are clearly not realistic for economic data. This

is to be able to explain some concepts with a minimum of confusion and notational clutter.

Later we’ll adapt the results to what we can get with more realistic assumptions.

Linearity : the model is a linear function of the parameter vectorβ0 :

y = β0
1x1 + β0

2x2 + ...+ β0
kxk + ε(3.6.1)

or, using vector notation:

y = x′β0 + ε

Nonstochastic linearly independent regressors: X is a fixed matrix of constants, it

has rankK, its number of columns, and

lim
1
n

X′X = QX(3.6.2)

whereQX is a finite positive definite matrix. This is needed to be able to identify the

individual effects of the explanatory variables.

Independently and identically distributed errors:

(3.6.3) ε ∼ IID(0,σ2In)

ε is jointly distributed IID. This implies the following two properties:

Homoscedastic errors:

(3.6.4) V(εt) = σ2
0,∀t

Nonautocorrelated errors:
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(3.6.5) E (εtεs) = 0,∀t 6= s

Optionally, we will sometimes assume that the errors are normally distributed.

Normally distributed errors:

(3.6.6) ε ∼ N(0,σ2In)

3.7. Small sample statistical properties of the least squares estimator

Up to now, we have only examined numeric properties of the OLSestimator, that

always hold. Now we will examine statistical properties. The statistical properties depend

upon the assumptions we make.

3.7.1. Unbiasedness.We haveβ̂ = (X′X)−1X′y. By linearity,

β̂ = (X′X)−1X′ (Xβ + ε)

= β +(X′X)−1X′ε

By 3.6.2and3.6.3

E(X′X)−1X′ε = E(X′X)−1X′ε

= (X′X)−1X′Eε

= 0

so the OLS estimator is unbiased under the assumptions of theclassical model.

Figure 3.7.1 shows the results of a small Monte Carlo experiment where theOLS

estimator was calculated for 10000 samples from the classical model withy = 1+ 2x+ ε,

wheren = 20,σ2
ε = 9, andx is fixed across samples. We can see that theβ2 appears to be

estimated without bias. The program that generates the plotis Unbiased.m, if you would

like to experiment with this.

With time series data, the OLS estimator will often be biased. Figure3.7.2shows the

results of a small Monte Carlo experiment where the OLS estimator was calculated for

1000 samples from the AR(1) model withyt = 0+0.9yt−1+ εt , wheren = 20 andσ2
ε = 1.

In this case, assumption3.6.2does not hold: the regressors are stochastic. We can see that

the bias in the estimation ofβ2 is about -0.2.

The program that generates the plot isBiased.m, if you would like to experiment with

this.

3.7.2. Normality. With the linearity assumption, we haveβ̂ = β +(X′X)−1X′ε. This

is a linear function ofε. Adding the assumption of normality (3.6.6, which implies strong

exogeneity), then

β̂ ∼ N
(
β,(X′X)−1σ2

0

)

since a linear function of a normal random vector is also normally distributed. In Figure

3.7.1you can see that the estimator appears to be normally distributed. It in fact is normally

distributed, since the DGP (see the Octave program) has normal errors. Even when the

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Unbiased.m
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Biased.m
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FIGURE 3.7.1. Unbiasedness of OLS under classical assumptions
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FIGURE 3.7.2. Biasedness of OLS when an assumption fails
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data may be taken to be IID, the assumption of normality is often questionable or simply

untenable. For example, if the dependent variable is the number of automobile trips per

week, it is a count variable with a discrete distribution, and is thus not normally distributed.
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Many variables in economics can take on only nonnegative values, which, strictly speaking,

rules out normality.2

3.7.3. The variance of the OLS estimator and the Gauss-Markov theorem. Now

let’s make all the classical assumptions except the assumption of normality. We havêβ =

β +(X′X)−1X′ε and we know thatE(β̂) = β. So

Var(β̂) = E

{(
β̂−β

)(
β̂−β

)′}

= E
{
(X′X)−1X′εε′X(X′X)−1}

= (X′X)−1σ2
0

The OLS estimator is alinear estimator, which means that it is a linear function of the

dependent variable,y.

β̂ =
[
(X′X)−1X′]y

= Cy

whereC is a function of the explanatory variables only, not the dependent variable. It is

also unbiasedunder the present assumptions, as we proved above. One couldconsider

other weightsW that are a function ofX that define some other linear estimator. We’ll

still insist upon unbiasedness. Considerβ̃ = Wy, whereW = W(X) is somek×n matrix

function ofX. Note that sinceW is a function ofX, it is nonstochastic, too. If the estimator

is unbiased, then we must haveWX= IK :

E (Wy) = E (WXβ0+Wε)

= WXβ0

= β0

⇒

WX = IK

The variance of̃β is

V(β̃) = WW′σ2
0.

Define

D = W− (X′X)−1X′

so

W = D+(X′X)−1X′

SinceWX= IK , DX = 0, so

V(β̃) =
(
D+(X′X)−1X′)(D+(X′X)−1X′)′ σ2

0

=
(

DD′ +
(
X′X

)−1
)

σ2
0

So

V(β̃) ≥V(β̂)

2Normality may be a good model nonetheless, as long as the probability of a negative value occuring is negligable
under the model. This depends upon the mean being large enough in relation to the variance.



3.7. SMALL SAMPLE STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMATOR 30

FIGURE 3.7.3. Gauss-Markov Result: The OLS estimator
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The inequality is a shorthand means of expressing, more formally, thatV(β̃)−V(β̂) is a

positive semi-definite matrix. This is a proof of the Gauss-Markov Theorem. The OLS

estimator is the ”best linear unbiased estimator” (BLUE).

• It is worth emphasizing again that we have not used the normality assumption in

any way to prove the Gauss-Markov theorem, so it is valid if the errors are not

normally distributed, as long as the other assumptions hold.

To illustrate the Gauss-Markov result, consider the estimator that results from splitting the

sample intop equally-sized parts, estimating using each part of the dataseparately by OLS,

then averaging thep resulting estimators. You should be able to show that this estimator is

unbiased, but inefficient with respect to the OLS estimator.The programEfficiency.millus-

trates this using a small Monte Carlo experiment, which compares the OLS estimator and

a 3-way split sample estimator. The data generating processfollows the classical model,

with n = 21. The true parameter value isβ = 2. In Figures3.7.3and3.7.4we can see that

the OLS estimator is more efficient, since the tails of its histogram are more narrow.

We have thatE(β̂) = β andVar(β̂) =
(

X
′
X
)−1

σ2
0, but we still need to estimate the

variance ofε, σ2
0, in order to have an idea of the precision of the estimates ofβ. A com-

monly used estimator ofσ2
0 is

σ̂2
0 =

1
n−K

ε̂′ε̂

This estimator is unbiased:

http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Efficiency.m
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FIGURE 3.7.4. Gauss-Markov Resul: The split sample estimator

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.5  1  1.5  2  2.5  3  3.5  4

Beta 2 hat, Split Sample Estimator

σ̂2
0 =

1
n−K

ε̂′ε̂

=
1

n−K
ε′Mε

E (σ̂2
0) =

1
n−K

E(Trε′Mε)

=
1

n−K
E(TrMεε′)

=
1

n−K
TrE(Mεε′)

=
1

n−K
σ2

0TrM

=
1

n−K
σ2

0 (n−k)

= σ2
0

where we use the fact thatTr(AB) = Tr(BA) when both products are conformable. Thus,

this estimator is also unbiased under these assumptions.

3.8. Example: The Nerlove model

3.8.1. Theoretical background.For a firm that takes input pricesw and the output

level q as given, the cost minimization problem is to choose the quantities of inputsx to

solve the problem

min
x

w′x
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subject to the restriction

f (x) = q.

The solution is the vector of factor demandsx(w,q). The cost functionis obtained by

substituting the factor demands into the criterion function:

Cw,q) = w′x(w,q).

• Monotonicity Increasing factor prices cannot decrease cost, so

∂C(w,q)

∂w
≥ 0

Remember that these derivatives give the conditional factor demands (Shephard’s

Lemma).

• Homogeneity The cost function is homogeneous of degree 1 in input prices:

C(tw,q) = tC(w,q) wheret is a scalar constant. This is because the factor de-

mands are homogeneous of degree zero in factor prices - they only depend upon

relative prices.

• Returns to scaleThereturns to scaleparameterγ is defined as the inverse of the

elasticity of cost with respect to output:

γ =

(
∂C(w,q)

∂q
q

C(w,q)

)−1

Constant returns to scaleis the case where increasing productionq implies that

cost increases in the proportion 1:1. If this is the case, then γ = 1.

3.8.2. Cobb-Douglas functional form.The Cobb-Douglas functional form is linear

in the logarithms of the regressors and the dependent variable. For a cost function, if there

areg factors, the Cobb-Douglas cost function has the form

C = Awβ1
1 ...w

βg
g qβqeε

What is the elasticity ofC with respect towj?

eC
w j

=

(
∂C
∂WJ

)(wj

C

)

= β jAwβ1
1 .w

β j−1
j ..w

βg
g qβqeε wj

Awβ1
1 ...w

βg
g qβqeε

= β j

This is one of the reasons the Cobb-Douglas form is popular - the coefficients are easy

to interpret, since they are the elasticities of the dependent variable with respect to the
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explanatory variable. Not that in this case,

eC
w j

=

(
∂C
∂WJ

)(wj

C

)

= x j(w,q)
wj

C
≡ sj(w,q)

thecost shareof the jth input. So with a Cobb-Douglas cost function,β j = sj (w,q). The

cost shares are constants.

Note that after a logarithmic transformation we obtain

lnC = α+ β1 lnw1 + ...+ βg lnwg + βq lnq+ ε

whereα = lnA . So we see that the transformed model is linear in the logs of the data.

One can verify that the property of HOD1 implies that
g

∑
i=1

βg = 1

In other words, the cost shares add up to 1.

The hypothesis that the technology exhibits CRTS implies that

γ =
1
βq

= 1

soβq = 1. Likewise, monotonicity implies that the coefficientsβi ≥ 0, i = 1, ...,g.

3.8.3. The Nerlove data and OLS.The filenerlove.datacontains data on 145 electric

utility companies’ cost of production, output and input prices. The data are for the U.S.,

and were collected by M. Nerlove. The observations are by row, and the columns are

COMPANY, COST (C), OUTPUT (Q), PRICE OF LABOR (PL), PRICE OF FUEL

(PF) andPRICE OF CAPITAL (PK). Note that the data are sorted by output level (the

third column).

We will estimate the Cobb-Douglas model

(3.8.1) lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

using OLS. To do this yourself, you need the data file mentioned above, as well asNerlove.m (the estimation program)

, and the library of Octave functions mentioned in the introduction to Octave that forms sec-

tion 22of this document.3

The results are

*************************************************** ******
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

3If you are running the bootable CD, you have all of this installed and ready to run.

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/nerlove.data
http://pareto.uab.es/mcreel/Econometrics/Examples/OLS/Nerlove.m
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constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*************************************************** ******

• Do the theoretical restrictions hold?

• Does the model fit well?

• What do you think about RTS?

While we will use Octave programs as examples in this document, since following the

programming statements is a useful way of learning how theory is put into practice, you

may be interested in a more ”user-friendly” environment fordoing econometrics. I heartily

recommendGretl, the Gnu Regression, Econometrics, and Time-Series Library. This is an

easy to use program, available in English, French, and Spanish, and it comes with a lot of

data ready to use. It even has an option to save output as LATEX fragments, so that I can just

include the results into this document, no muss, no fuss. Here the results of the Nerlove

model from GRETL:

Model 2: OLS estimates using the 145 observations 1–145

Dependent variable: l_cost

Variable Coefficient Std. Error t-statistic p-value

const −3.5265 1.77437 −1.9875 0.0488

l_output 0.720394 0.0174664 41.2445 0.0000

l_labor 0.436341 0.291048 1.4992 0.1361

l_fuel 0.426517 0.100369 4.2495 0.0000

l_capita −0.219888 0.339429 −0.6478 0.5182

Mean of dependent variable 1.72466

S.D. of dependent variable 1.42172

Sum of squared residuals 21.5520

Standard error of residuals (σ̂) 0.392356

UnadjustedR2 0.925955

AdjustedR̄2 0.923840

F(4,140) 437.686

Akaike information criterion 145.084

Schwarz Bayesian criterion 159.967

Fortunately, Gretl and my OLS program agree upon the results. Gretl is included in the

bootable CD mentioned in the introduction. I recommend using GRETL to repeat the

examples that are done using Octave.

The previous properties hold for finite sample sizes. Beforeconsidering the asymptotic

properties of the OLS estimator it is useful to review the MLEestimator, since under the

assumption of normal errors the two estimators coincide.

http://gretl.sourceforge.net
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3.9. Exercises

Exercises

(1) Prove that the split sample estimator used to generate figure3.7.4is unbiased.

(2) Calculate the OLS estimates of the Nerlove model using Octave and GRETL, and

provide printouts of the results. Interpret the results.

(3) Do an analysis of whether or not there are influential observations for OLS estimation

of the Nerlove model. Discuss.

(4) Using GRETL, examine the residuals after OLS estimationand tell me whether or not

you believe that the assumption of independent identicallydistributed normal errors is

warranted. No need to do formal tests, just look at the plots.Print out any that you

think are relevant, and interpret them.

(5) For a random vectorX ∼ N(µx,Σ), what is the distribution ofAX+ b, whereA andb

are conformable matrices of constants?

(6) Using Octave, write a little program that verifies thatTr(AB) = Tr(BA) for A andB

4x4 matrices of random numbers. Note: there is an Octave function trace.

(7) For the model with a constant and a single regressor,yt = β1+β2xt +εt , which satisfies

the classical assumptions, prove that the variance of the OLS estimator declines to zero

as the sample size increases.



CHAPTER 4

Maximum likelihood estimation

The maximum likelihood estimator is important since it is asymptotically efficient,

as is shown below. For the classical linear model with normalerrors, the ML and OLS

estimators ofβ are the same, so the following theory is presented without examples. In

the second half of the course, nonlinear models with nonnormal errors are introduced, and

examples may be found there.

4.1. The likelihood function

Suppose we have a sample of sizen of the random vectorsy andz. Suppose the joint

density ofY =
(

y1 . . . yn

)
andZ =

(
z1 . . . zn

)
is characterized by a parameter

vectorψ0 :

fYZ(Y,Z,ψ0).

This is the joint density of the sample. This density can be factored as

fY Z(Y,Z,ψ0) = fY|Z(Y|Z,θ0) fZ(Z,ρ0)

The likelihood functionis just this density evaluated at other valuesψ

L(Y,Z,ψ) = f (Y,Z,ψ),ψ ∈ Ψ,

whereΨ is aparameter space.

Themaximum likelihood estimatorof ψ0 is the value ofψ that maximizes the likeli-

hood function.

Note that ifθ0 andρ0 share no elements, then the maximizer of the conditional like-

lihood function fY|Z(Y|Z,θ) with respect toθ is the same as the maximizer of the overall

likelihood function fYZ(Y,Z,ψ) = fY|Z(Y|Z,θ) fZ(Z,ρ), for the elements ofψ that corre-

spond toθ. In this case, the variablesZ are said to beexogenousfor estimation ofθ, and

we may more conveniently work with the conditional likelihood function fY|Z(Y|Z,θ) for

the purposes of estimatingθ0.

DEFINITION 4.1.1. The maximum likelihood estimator ofθ0 = argmaxfY|Z(Y|Z,θ)

• If the n observations are independent, the likelihood function canbe written as

L(Y|Z,θ) =
n

∏
t=1

f (yt |zt ,θ)

where theft are possibly of different form.

• If this is not possible, we can always factor the likelihood into contributions of

observations,by using the fact that a joint density can be factored into theproduct

36
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of a marginal and conditional (doing this iteratively)

L(Y,θ) = f (y1|z1,θ) f (y2|y1,z2,θ) f (y3|y1,y2,z3,θ) · · · f (yn|y1,y2, . . .yt−n,zn,θ)

To simplify notation, define

xt = {y1,y2, ...,yt−1,zt}

sox1 = z1, x2 = {y1,z2}, etc. - it contains exogenous and predetermined endogeous vari-

ables. Now the likelihood function can be written as

L(Y,θ) =
n

∏
t=1

f (yt |xt ,θ)

The criterion function can be defined as the average log-likelihood function:

sn(θ) =
1
n

lnL(Y,θ) =
1
n

n

∑
t=1

ln f (yt |xt ,θ)

The maximum likelihood estimator may thus be defined equivalently as

θ̂ = argmaxsn(θ),

where the set maximized over is defined below. Since ln(·) is a monotonic increasing

function, lnL andL maximize at the same value ofθ. Dividing by n has no effect on̂θ.

4.1.1. Example: Bernoulli trial. Suppose that we are flipping a coin that may be

biased, so that the probability of a heads may not be 0.5. Maybe we’re interested in es-

timating the probability of a heads. Lety = 1(heads) be a binary variable that indicates

whether or not a heads is observed. The outcome of a toss is a Bernoulli random variable:

fY(y, p0) = py
0 (1− p0)

1−y ,y∈ {0,1}

= 0,y /∈ {0,1}

So a representative term that enters the likelihood function is

fY(y, p) = py(1− p)1−y

and

ln fY(y, p) = yln p+(1−y) ln(1− p)

The derivative of this is

∂ ln fY(y, p)

∂p
=

y
p
− (1−y)

(1− p)

=
y− p

p(1− p)

Averaging this over a sample of sizen gives

∂sn(p)

∂p
=

1
n

n

∑
i=1

yi − p
p(1− p)

Setting to zero and solving gives

(4.1.1) p̂ = ȳ

So it’s easy to calculate the MLE ofp0in this case.
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Now imagine that we had a bag full of bent coins, each bent around a sphere of a

different radius (with the head pointing to the outside of the sphere). We might suspect

that the probability of a heads could depend upon the radius.Suppose thatpi ≡ p(xi ,β) =

(1+exp(−x′iβ))−1 wherexi =
[

1 r i

]′
, so thatβ is a 2×1 vector. Now

∂pi(β)

∂β
= pi (1− pi)xi

so

∂ ln fY(y,β)

∂β
=

y− pi

pi (1− pi)
pi (1− pi)xi

= (yi − p(xi,β))xi

So the derivative of the average log lihelihood function is now

∂sn(β)

∂β
=

∑n
i=1 (yi − p(xi,β))xi

n

This is a set of 2 nonlinear equations in the two unknown elements inβ. There is no explicit

solution for the two elements that set the equations to zero.This is commonly the case with

ML estimators: they are often nonlinear, and finding the value of the estimate often requires

use of numeric methods to find solutions to the first order conditions. This possibility is

explored further in the second half of these notes (see section14.5).

4.2. Consistency of MLE

To show consistency of the MLE, we need to make explicit some assumptions.

Compact parameter space:θ ∈ Θ, an open bounded subset ofℜK . Maximixa-

tion is overΘ, which is compact.

This implies thatθ is an interior point of theparameter spaceΘ.

Uniform convergence:

sn(θ)
u.a.s→ lim

n→∞
E θ0sn(θ) ≡ s∞(θ,θ0),∀θ ∈ Θ.

We have suppressedY here for simplicity. This requires that almost sure convergence

holds for all possible parameter values. For a given parameter value, an ordinary Law of

Large Numbers will usually imply almost sure convergence tothe limit of the expectation.

Convergence for a single element of the parameter space, combined with the assumption

of a compact parameter space, ensures uniform convergence.

Continuity: sn(θ) is continuous inθ,θ ∈ Θ. This implies thats∞(θ,θ0) is con-

tinuous inθ.

Identification: s∞(θ,θ0) has a unique maximum in its first argument.

We will use these assumptions to show thatθ̂n
a.s.→ θ0.

First, θ̂n certainly exists, since a continuous function has a maximumon a compact set.

Second, for anyθ 6= θ0

E

(
ln

(
L(θ)

L(θ0)

))
≤ ln

(
E

(
L(θ)

L(θ0)

))

by Jensen’s inequality ( ln(·) is a concave function).
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Now, the expectation on the RHS is

E

(
L(θ)

L(θ0)

)
=

Z

L(θ)

L(θ0)
L(θ0)dy= 1,

sinceL(θ0) is the density function of the observations, and since the integral of any density

is 1. Therefore, since ln(1) = 0,

E

(
ln

(
L(θ)

L(θ0)

))
≤ 0,

or

E (sn (θ))−E (sn (θ0)) ≤ 0.

Taking limits, this is (by the assumption on uniform convergence)

s∞(θ,θ0)−s∞(θ0,θ0) ≤ 0

except on a set of zero probability.

By the identification assumption there is a unique maximizer, so the inequality is strict

if θ 6= θ0:

s∞(θ,θ0)−s∞(θ0,θ0) < 0,∀θ 6= θ0,a.s.

Suppose thatθ∗ is a limit point ofθ̂n (any sequence from a compact set has at least one

limit point). Sinceθ̂n is a maximizer, independent ofn, we must have

s∞(θ∗,θ0)−s∞(θ0,θ0) ≥ 0.

These last two inequalities imply that

θ∗ = θ0,a.s.

Thus there is only one limit point, and it is equal to the true parameter value, with proba-

bility one. In other words,

lim
n→∞

θ̂ = θ0, a.s.

This completes the proof of strong consistency of the MLE. One can use weaker assump-

tions to prove weak consistency (convergence in probability to θ0) of the MLE. This is

omitted here. Note that almost sure convergence implies convergence in probability.

4.3. The score function

Differentiability: Assume thatsn(θ) is twice continuously differentiable in a

neighborhoodN(θ0) of θ0, at least whenn is large enough.

To maximize the log-likelihood function, take derivatives:

gn(Y,θ) = Dθsn(θ)

=
1
n

n

∑
t=1

Dθ ln f (yt |xx,θ)

≡ 1
n

n

∑
t=1

gt(θ).
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This is thescore vector(with dim K×1). Note that the score function hasY as an argument,

which implies that it is a random function.Y (and any exogeneous variables) will often be

suppressed for clarity, but one should not forget that they are still there.

The ML estimator̂θ sets the derivatives to zero:

gn(θ̂) =
1
n

n

∑
t=1

gt(θ̂) ≡ 0.

We will show thatE θ [gt(θ)] = 0, ∀t. This is the expectation taken with respect to the

density f(θ), not necessarilyf (θ0) .

E θ [gt(θ)] =

Z

[Dθ ln f (yt |xt ,θ)] f (yt |x,θ)dyt

=

Z

1
f (yt |xt ,θ)

[Dθ f (yt |xt ,θ)] f (yt |xt ,θ)dyt

=

Z

Dθ f (yt |xt ,θ)dyt .

Given some regularity conditions on boundedness ofDθ f , we can switch the order of inte-

gration and differentiation, by the dominated convergencetheorem. This gives

E θ [gt(θ)] = Dθ

Z

f (yt |xt ,θ)dyt

= Dθ1

= 0

where we use the fact that the integral of the density is 1.

• SoE θ(gt(θ) = 0 : the expectation of the score vector is zero.

• This hold for allt, so it implies thatE θgn(Y,θ) = 0.

4.4. Asymptotic normality of MLE

Recall that we assume thatsn(θ) is twice continuously differentiable. Take a first order

Taylor’s series expansion ofg(Y, θ̂) about the true valueθ0 :

0 ≡ g(θ̂) = g(θ0)+ (Dθ′g(θ∗))
(
θ̂−θ0

)

or with appropriate definitions

H(θ∗)
(
θ̂−θ0

)
= −g(θ0),

whereθ∗ = λθ̂ +(1−λ)θ0,0 < λ < 1. AssumeH(θ∗) is invertible (we’ll justify this in a

minute). So √
n
(
θ̂−θ0

)
= −H(θ∗)−1√ng(θ0)

Now considerH(θ∗). This is

H(θ∗) = Dθ′g(θ∗)

= D2
θsn(θ∗)

=
1
n

n

∑
t=1

D2
θ ln ft(θ∗)
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where the notation

D2
θsn(θ) ≡ ∂2sn(θ)

∂θ∂θ′
.

Given that this is an average of terms, it should usually be the case that this satisfies a

strong law of large numbers (SLLN).Regularity conditionsare a set of assumptions that

guarantee that this will happen. There are different sets ofassumptions that can be used to

justify appeal to different SLLN’s. For example, theD2
θ ln ft(θ∗) must not be too strongly

dependent over time, and their variances must not become infinite. We don’t assume any

particular set here, since the appropriate assumptions will depend upon the particularities

of a given model. However, we assume that a SLLN applies.

Also, since we know that̂θ is consistent, and sinceθ∗ = λθ̂+(1−λ)θ0, we have that

θ∗a.s.→ θ0. Also, by the above differentiability assumtion,H(θ) is continuous inθ. Given

this,H(θ∗) converges to the limit of it’s expectation:

H(θ∗) a.s.→ lim
n→∞
E
(
D2

θsn(θ0)
)

= H∞(θ0) < ∞

This matrix converges to a finite limit.

Re-arranging orders of limits and differentiation, which is legitimate given regularity

conditions, we get

H∞(θ0) = D2
θ lim

n→∞
E (sn(θ0))

= D2
θs∞(θ0,θ0)

We’ve already seen that

s∞(θ,θ0) < s∞(θ0,θ0)

i.e., θ0 maximizes the limiting objective function. Since there is aunique maximizer, and

by the assumption thatsn(θ) is twice continuously differentiable (which holds in the limit),

thenH∞(θ0) must be negative definite, and therefore of full rank. Therefore the previous

inversion is justified, asymptotically, and we have

(4.4.1)
√

n
(
θ̂−θ0

) a.s.→ −H∞(θ0)
−1√ng(θ0).

Now consider
√

ng(θ0). This is

√
ngn(θ0) =

√
nDθsn(θ)

=

√
n

n

n

∑
t=1

Dθ ln ft(yt |xt ,θ0)

=
1√
n

n

∑
t=1

gt(θ0)

We’ve already seen thatE θ [gt(θ)] = 0. As such, it is reasonable to assume that a CLT

applies.

Note thatgn(θ0)
a.s.→ 0, by consistency. To avoid this collapse to a degenerate r.v. (a

constant vector) we need to scale by
√

n. A generic CLT states that, forXn a random vector

that satisfies certain conditions,

Xn−E(Xn)
d→ N(0, limV(Xn))
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The “certain conditions” thatXn must satisfy depend on the case at hand. Usually,Xn will

be of the form of an average, scaled by
√

n:

Xn =
√

n
∑n

t=1 Xt

n

This is the case for
√

ng(θ0) for example. Then the properties ofXn depend on the proper-

ties of theXt . For example, if theXt have finite variances and are not too strongly dependent,

then a CLT for dependent processes will apply. Supposing that a CLT applies, and noting

thatE(
√

ngn(θ0) = 0, we get

I∞(θ0)
−1/2√ngn(θ0)

d→ N [0, IK]

where

I∞(θ0) = lim
n→∞
E θ0

(
n[gn(θ0)] [gn(θ0)]

′)

= lim
n→∞

Vθ0

(√
ngn(θ0)

)

This can also be written as

(4.4.2)
√

ngn(θ0)
d→ N [0, I∞(θ0)]

• I∞(θ0) is known as theinformation matrix.

• Combining [4.4.1] and [4.4.2], we get

√
n
(
θ̂−θ0

) a∼ N
[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1] .

The MLE estimator is asymptotically normally distributed.

DEFINITION 1 (CAN). An estimator̂θ of a parameterθ0 is
√

n-consistent and asymp-

totically normally distributed if

(4.4.3)
√

n
(
θ̂−θ0

) d→ N (0,V∞)

whereV∞ is a finite positive definite matrix.

There do exist, in special cases, estimators that are consistent such that
√

n
(
θ̂−θ0

) p→
0. These are known assuperconsistentestimators, since normally,

√
n is the highest factor

that we can multiply by and still get convergence to a stable limiting distribution.

DEFINITION 2 (Asymptotic unbiasedness). An estimatorθ̂ of a parameterθ0 is asymp-

totically unbiased if

(4.4.4) lim
n→∞
E θ(θ̂) = θ.

Estimators that are CAN are asymptotically unbiased, though not all consistent esti-

mators are asymptotically unbiased. Such cases are unusual, though. An example is

4.4.1. Coin flipping, again. In section4.1.1we saw that the MLE for the parameter

of a Bernoulli trial, with i.i.d. data, is the sample mean: ˆp = ȳ (equation4.1.1). Now let’s
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find the limiting variance of
√

n(p̂− p).

limVar
√

n(p̂− p) = lim nVar(p̂− p)

= lim nVar(p̂)

= lim nVar(ȳ)

= lim nVar

(
∑yt

n

)

= lim
1
n ∑Var(yt) (by independence of obs.)

= lim
1
n

nVar(y) (by identically distributed obs.)

= p(1− p)

4.5. The information matrix equality

We will show thatH∞(θ) = −I∞(θ). Let ft(θ) be short forf (yt |xt ,θ)

1 =

Z

ft (θ)dy, so

0 =

Z

Dθ ft (θ)dy

=

Z

(Dθ ln ft (θ)) ft(θ)dy

Now differentiate again:

0 =
Z [

D2
θ ln ft (θ)

]
ft (θ)dy+

Z

[Dθ ln ft(θ)]Dθ′ ft(θ)dy

= E θ
[
D2

θ ln ft(θ)
]
+

Z

[Dθ ln ft(θ)] [Dθ′ ln ft (θ)] ft(θ)dy

= E θ
[
D2

θ ln ft(θ)
]
+E θ [Dθ ln ft (θ)] [Dθ′ ln ft (θ)]

= E θ [Ht(θ)]+E θ [gt(θ)] [gt(θ)]′(4.5.1)

Now sum overn and multiply by1
n

E θ
1
n

n

∑
t=1

[Ht(θ)] = −E θ

[
1
n

n

∑
t=1

[gt(θ)] [gt(θ)]′
]

The scoresgt and gs are uncorrelated fort 6= s, since fort > s, ft (yt |y1, ...,yt−1,θ) has

conditioned on prior information, so what was random ins is fixed in t. (This forms the

basis for a specification test proposed by White: if the scores appear to be correlated one

may question the specification of the model). This allows us to write

E θ [H(θ)] = −E θ
(
n[g(θ)] [g(θ)]′

)

since all cross products between different periods expect to zero. Finally take limits, we

get

(4.5.2) H∞(θ) = −I∞(θ).

This holds for allθ, in particular, forθ0. Using this,
√

n
(
θ̂−θ0

) a.s.→ N
[
0,H∞(θ0)

−1I∞(θ0)H∞(θ0)
−1]
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simplifies to

(4.5.3)
√

n
(
θ̂−θ0

) a.s.→ N
[
0, I∞(θ0)

−1]

To estimate the asymptotic variance, we need estimators ofH∞(θ0) andI∞(θ0). We can

use

Î∞(θ0) = n
n

∑
t=1

gt(θ̂)gt(θ̂)′

Ĥ∞(θ0) = H(θ̂).

Note, one can’t use

Î∞(θ0) = n
[
gn(θ̂)

][
gn(θ̂)

]′

to estimate the information matrix. Why not?

From this we see that there are alternative ways to estimateV∞(θ0) that are all valid.

These include

V̂∞(θ0) = −Ĥ∞(θ0)
−1

V̂∞(θ0) = Î∞(θ0)
−1

V̂∞(θ0) = Ĥ∞(θ0)
−1
Î∞(θ0)Ĥ∞(θ0)

−1

These are known as theinverse Hessian, outer product of the gradient(OPG) andsandwich

estimators, respectively. The sandwich form is the most robust, since it coincides with the

covariance estimator of thequasi-ML estimator.

4.6. The Cramér-Rao lower bound

THEOREM 3. [Cramer-Rao Lower Bound]The limiting variance of a CAN estimator

of θ0, sayθ̃, minus the inverse of the information matrix is a positive semidefinite matrix.

Proof: Since the estimator is CAN, it is asymptotically unbiased, so

lim
n→∞
E θ(θ̃−θ) = 0

Differentiate wrtθ′ :

Dθ′ lim
n→∞
E θ(θ̃−θ) = lim

n→∞

Z

Dθ′
[

f (Y,θ)
(
θ̃−θ

)]
dy

= 0 (this is aK×K matrix of zeros).

Noting thatDθ′ f (Y,θ) = f (θ)Dθ′ ln f (θ), we can write

lim
n→∞

Z (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy+ lim

n→∞

Z

f (Y,θ)Dθ′
(
θ̃−θ

)
dy= 0.

Now note thatDθ′
(
θ̃−θ

)
= −IK, and

R

f (Y,θ)(−IK)dy= −IK. With this we have

lim
n→∞

Z (
θ̃−θ

)
f (θ)Dθ′ ln f (θ)dy= IK .

Playing with powers ofn we get

lim
n→∞

Z √
n
(
θ̃−θ

)√
n

1
n

[Dθ′ ln f (θ)]
︸ ︷︷ ︸

f (θ)dy = IK
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Note that the bracketed part is just the transpose of the score vector,g(θ), so we can write

lim
n→∞
E θ
[√

n
(
θ̃−θ

)√
ng(θ)′

]
= IK

This means that the covariance of the score function with
√

n
(
θ̃−θ

)
, for θ̃ any CAN

estimator, is an identity matrix. Using this, suppose the variance of
√

n
(
θ̃−θ

)
tends to

V∞(θ̃). Therefore,

(4.6.1) V∞

[ √
n
(
θ̃−θ

)
√

ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.

Since this is a covariance matrix, it is positive semi-definite. Therefore, for anyK -vector

α,
[

α′ −α′I −1
∞ (θ)

][ V∞(θ̃) IK
IK I∞(θ)

][
α

−I∞(θ)−1α

]
≥ 0.

This simplifies to

α′ [V∞(θ̃)− I −1
∞ (θ)

]
α ≥ 0.

Sinceα is arbitrary,V∞(θ̃)− I −1
∞ (θ) is positive semidefinite. This conludes the proof.

This means thatI −1
∞ (θ) is a lower boundfor the asymptotic variance of a CAN esti-

mator.

DEFINITION 4.6.1. (Asymptotic efficiency) Given two CAN estimators of a parameter

θ0, sayθ̃ andθ̂, θ̂ is asymptotically efficient with respect tõθ if V∞(θ̃)−V∞(θ̂) is a positive

semidefinite matrix.

A direct proof of asymptotic efficiency of an estimator is infeasible, but if one can

show that the asymptotic variance is equal to the inverse of the information matrix, then the

estimator is asymptotically efficient. In particular,the MLE is asymptotically efficient with

respect to any other CAN estimator.

Summary of MLE

• Consistent

• Asymptotically normal (CAN)

• Asymptotically efficient

• Asymptotically unbiased

• This is for general MLE: we haven’t specified the distribution or the lineari-

ty/nonlinearity of the estimator

4.7. Exercises

Exercises

(1) Consider coin tossing with a single possibly biased coin. The density function for the

random variabley = 1(heads) is

fY(y, p0) = py
0 (1− p0)

1−y ,y∈ {0,1}

= 0,y /∈ {0,1}
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Suppose that we have a sample of sizen. We know from above that the ML estimator

is p̂0 = ȳ. We also know from the theory above that

√
n(ȳ− p0)

a∼ N
[
0,H∞(p0)

−1I∞(p0)H∞(p0)
−1]

a) find the analytic expression forgt(θ) and show thatE θ [gt(θ)] = 0

b) find the analytical expressions forH∞(p0) andI∞(p0) for this problem

c) verify that the result for limVar
√

n(p̂− p) found in section4.4.1is equal toH∞(p0)
−1I∞(p0)H∞(p0)

−1

d) Write an Octave program that does a Monte Carlo study that shows that
√

n(ȳ− p0)

is approximately normally distributed whenn is large. Please give me histograms that

show the sampling frequency of
√

n(ȳ− p0) for several values ofn.

(2) Consider the modelyt = x′tβ + αεt where the errors follow the Cauchy (Student-t with

1 degree of freedom) density. So

f (εt ) =
1

π
(
1+ ε2

t
) ,−∞ < εt < ∞

The Cauchy density has a shape similar to a normal density, but with much thicker tails.

Thus, extremely small and large errors occur much more frequently with this density

than would happen if the errors were normally distributed. Find the score function

gn(θ) whereθ =
(

β′ α
)′

.

(3) Consider the model classical linear regression modelyt = x′tβ+εt whereεt ∼ IIN(0,σ2).

Find the score functiongn(θ) whereθ =
(

β′ σ
)′

.

(4) Compare the first order conditions that define the ML estimators of problems 2 and 3

and interpret the differences.Whyare the first order conditions that define an efficient

estimator different in the two cases?



CHAPTER 5

Asymptotic properties of the least squares estimator

The OLS estimator under the classical assumptions is BLUE1, for all sample sizes.

Now let’s see what happens when the sample size tends to infinity.

5.1. Consistency

β̂ = (X′X)−1X′y

= (X′X)−1X′ (Xβ + ε)

= β0 +(X′X)−1X′ε

= β0 +

(
X′X

n

)−1 X′ε
n

Consider the last two terms. By assumption limn→∞

(
X′X

n

)
= QX ⇒ limn→∞

(
X′X

n

)−1
=

Q−1
X , since the inverse of a nonsingular matrix is a continuous function of the elements of

the matrix. ConsideringX
′ε
n ,

X′ε
n

=
1
n

n

∑
t=1

xtεt

Eachxtεt has expectation zero, so

E

(
X′ε
n

)
= 0

The variance of each term is

V (xtεt ) = xtx
′
tσ2.

As long as these are finite, and given a technical condition2, the Kolmogorov SLLN applies,

so
1
n

n

∑
t=1

xtεt
a.s.→ 0.

This implies that

β̂ a.s.→ β0.

This is the property ofstrong consistency:the estimator converges in almost surely to the

true value.

• The consistency proof does not use the normality assumption.

• Remember that almost sure convergence implies convergencein probability.

1BLUE ≡ best linear unbiased estimator if I haven’t defined it before
2For application of LLN’s and CLT’s, of which there are very many to choose from, I’m going to avoid the
technicalities. Basically, as long as terms that make up an average have finite variances and are not too strongly
dependent, one will be able to find a LLN or CLT to apply. Which one it is doesn’t matter, we only need the result.
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5.2. Asymptotic normality

We’ve seen that the OLS estimator is normally distributedunder the assumption of

normal errors.If the error distribution is unknown, we of course don’t knowthe distribution

of the estimator. However, we can get asymptotic results.Assuming the distribution ofε is

unknown, but the the other classical assumptions hold:

β̂ = β0 +(X′X)−1X′ε

β̂−β0 = (X′X)−1X′ε
√

n
(

β̂−β0

)
=

(
X′X

n

)−1 X′ε√
n

• Now as before,
(

X′X
n

)−1
→ Q−1

X .

• ConsideringX′ε√
n , the limit of the variance is

lim
n→∞

V

(
X′ε√

n

)
= lim

n→∞
E

(
X′εε′X

n

)

= σ2
0QX

The mean is of course zero. To get asymptotic normality, we need to apply a

CLT. We assume one (for instance, the Lindeberg-Feller CLT)holds, so

X′ε√
n

d→ N
(
0,σ2

0QX
)

Therefore, √
n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

• In summary, the OLS estimator is normally distributed in small and large samples

if ε is normally distributed. Ifε is not normally distributed,̂β is asymptotically

normally distributed when a CLT can be applied.

5.3. Asymptotic efficiency

The least squares objective function is

s(β) =
n

∑
t=1

(
yt −x′tβ

)2

Supposing thatε is normally distributed, the model is

y = Xβ0 + ε,

ε ∼ N(0,σ2
0In), so

f (ε) =
n

∏
t=1

1√
2πσ2

exp

(
− ε2

t

2σ2

)
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The joint density fory can be constructed using a change of variables. We haveε = y−Xβ,

so ∂ε
∂y′ = In and| ∂ε

∂y′ | = 1, so

f (y) =
n

∏
t=1

1√
2πσ2

exp

(
− (yt −x′tβ)2

2σ2

)
.

Taking logs,

lnL(β,σ) = −nln
√

2π−nlnσ−
n

∑
t=1

(yt −x′tβ)2

2σ2 .

It’s clear that the fonc for the MLE ofβ0 are the same as the fonc for OLS (up to mul-

tiplication by a constant), sothe estimators are the same, under the present assumptions.

Therefore, their properties are the same.In particular, under the classical assumptions with

normality, the OLS estimator̂β is asymptotically efficient.

As we’ll see later, it will be possible to use (iterated) linear estimation methods and

still achieve asymptotic efficiency even if the assumption thatVar(ε) 6= σ2In, as long asε is

still normally distributed. This isnot the case ifε is nonnormal. In general with nonnormal

errors it will be necessary to use nonlinear estimation methods to achieve asymptotically

efficient estimation. That possibility is addressed in the second half of the notes.

5.4. Exercises

(1) Write an Octave program that generates a histogram forR Monte Carlo replica-

tions of
√

n
(

β̂ j −β j

)
, whereβ̂ is the OLS estimator andβ j is one of thek slope

parameters.Rshould be a large number, at least 1000. The model used to gener-

ate data should follow the classical assumptions, except that the errors should not

be normally distributed (tryU(−a,a), t(p), χ2(p)− p, etc). Generate histograms

for n∈ {20,50,100,1000}. Do you observe evidence of asymptotic normality?

Comment.



CHAPTER 6

Restrictions and hypothesis tests

6.1. Exact linear restrictions

In many cases, economic theory suggests restrictions on theparameters of a model.

For example, a demand function is supposed to be homogeneousof degree zero in prices

and income. If we have a Cobb-Douglas (log-linear) model,

lnq = β0 + β1 ln p1 + β2 ln p2 + β3 lnm+ ε,

then we need that

k0 lnq = β0 + β1 lnkp1 + β2 lnkp2 + β3 lnkm+ ε,

so

β1 ln p1 + β2 ln p2 + β3 lnm = β1 lnkp1 + β2 lnkp2 + β3 lnkm

= (lnk)(β1 + β2+ β3)+ β1 ln p1 + β2 ln p2 + β3 lnm.

The only way to guarantee this for arbitraryk is to set

β1 + β2+ β3 = 0,

which is aparameter restriction.In particular, this is a linear equality restriction, whichis

probably the most commonly encountered case.

6.1.1. Imposition. The general formulation of linear equality restrictions isthe model

y = Xβ + ε

Rβ = r

whereR is aQ×K matrix,Q < K andr is aQ×1 vector of constants.

• We assumeR is of rankQ, so that there are no redundant restrictions.

• We also assume that∃β that satisfies the restrictions: they aren’t infeasible.

Let’s consider how to estimateβ subject to the restrictionsRβ = r. The most obvious ap-

proach is to set up the Lagrangean

min
β

s(β) =
1
n

(y−Xβ)′ (y−Xβ)+2λ′(Rβ− r).

The Lagrange multipliers are scaled by 2, which makes thingsless messy. The fonc are

Dβs(β̂, λ̂) = −2X′y+2X′Xβ̂R+2R′λ̂ ≡ 0

Dλs(β̂, λ̂) = Rβ̂R− r ≡ 0,
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which can be written as
[

X′X R′

R 0

][
β̂R

λ̂

]
=

[
X′y

r

]
.

We get [
β̂R

λ̂

]
=

[
X′X R′

R 0

]−1[
X′y

r

]
.

For the masochists: Stepwise Inversion

Note that
[

(X′X)−1 0

−R(X′X)−1 IQ

][
X′X R′

R 0

]
≡ AB

=

[
IK (X′X)−1R′

0 −R(X′X)−1R′

]

≡
[

IK (X′X)−1R′

0 −P

]

≡ C,

and
[

IK (X′X)−1R′P−1

0 −P−1

][
IK (X′X)−1R′

0 −P

]
≡ DC

= IK+Q,

so

DAB = IK+Q

DA = B−1

B−1 =

[
IK (X′X)−1R′P−1

0 −P−1

][
(X′X)−1 0

−R(X′X)−1 IQ

]

=

[
(X′X)−1− (X′X)−1R′P−1R(X′X)−1 (X′X)−1R′P−1

P−1R(X′X)−1 −P−1

]
,

so (everyone should start paying attention again, and please note that we have made the

definitionP = R(X′X)−1R′)
[

β̂R

λ̂

]
=

[
(X′X)−1− (X′X)−1R′P−1R(X′X)−1 (X′X)−1R′P−1

P−1R(X′X)−1 −P−1

][
X′y

r

]

=


 β̂− (X′X)−1R′P−1

(
Rβ̂− r

)

P−1
(

Rβ̂− r
)




=

[ (
IK − (X′X)−1R′P−1R

)

P−1R

]
β̂+

[
(X′X)−1R′P−1r

−P−1r

]

The fact thatβ̂R andλ̂ are linear functions of̂β makes it easy to determine their distribu-

tions, since the distribution of̂β is already known. Recall that forx a random vector, and

for A andb a matrix and vector of constants, respectively,Var(Ax+b) = AVar(x)A′.
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Though this is the obvious way to go about finding the restricted estimator, an easier

way, if the number of restrictions is small, is to impose themby substitution. Write

y = X1β1 +X2β2 + ε
[

R1 R2

][ β1

β2

]
= r

whereR1 is Q×Q nonsingular. Supposing theQ restrictions are linearly independent, one

can always makeR1 nonsingular by reorganizing the columns ofX. Then

β1 = R−1
1 r −R−1

1 R2β2.

Substitute this into the model

y = X1R−1
1 r −X1R−1

1 R2β2 +X2β2 + ε

y−X1R
−1
1 r =

[
X2−X1R−1

1 R2
]

β2 + ε

or with the appropriate definitions,

yR = XRβ2 + ε.

This model satisfies the classical assumptions,supposing the restriction is true. One can

estimate by OLS. The variance ofβ̂2 is as before

V(β̂2) =
(
X′

RXR
)−1 σ2

0

and the estimator is

V̂(β̂2) =
(
X′

RXR
)−1 σ̂2

where one estimatesσ2
0 in the normal way, using the restricted model,i.e.,

σ̂2
0 =

(
yR−XRβ̂2

)′(
yR−XRβ̂2

)

n− (K−Q)

To recoverβ̂1, use the restriction. To find the variance ofβ̂1, use the fact that it is a linear

function ofβ̂2, so

V(β̂1) = R−1
1 R2V(β̂2)R

′
2

(
R−1

1

)′

= R−1
1 R2

(
X′

2X2
)−1

R′
2

(
R−1

1

)′ σ2
0

6.1.2. Properties of the restricted estimator.We have that

β̂R = β̂− (X′X)−1R′P−1
(

Rβ̂− r
)

= β̂+(X′X)−1R′P−1r − (X′X)−1R′P−1R(X′X)−1X′y

= β +(X′X)−1X′ε+(X′X)−1R′P−1 [r −Rβ]− (X′X)−1R′P−1R(X′X)−1X′ε

β̂R−β = (X′X)−1X′ε

+ (X′X)−1R′P−1 [r −Rβ]

− (X′X)−1R′P−1R(X′X)−1X′ε

Mean squared error is

MSE(β̂R) = E (β̂R−β)(β̂R−β)′
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Noting that the crosses between the second term and the otherterms expect to zero, and

that the cross of the first and third has a cancellation with the square of the third, we obtain

MSE(β̂R) = (X′X)−1σ2

+ (X′X)−1R′P−1 [r −Rβ] [r −Rβ]′P−1R(X′X)−1

− (X′X)−1R′P−1R(X′X)−1σ2

So, the first term is the OLS covariance. The second term is PSD, and the third term is

NSD.

• If the restriction is true, the second term is 0, so we are better off. True restrictions

improve efficiency of estimation.

• If the restriction is false, we may be better or worse off, in terms of MSE, de-

pending on the magnitudes ofr −Rβ andσ2.

6.2. Testing

In many cases, one wishes to test economic theories. If theory suggests parameter

restrictions, as in the above homogeneity example, one can test theory by testing parameter

restrictions. A number of tests are available.

6.2.1. t-test. Suppose one has the model

y = Xβ + ε

and one wishes to test thesingle restriction H0 :Rβ = r vs. HA :Rβ 6= r . UnderH0, with

normality of the errors,

Rβ̂− r ∼ N
(
0,R(X′X)−1R′σ2

0

)

so
Rβ̂− r√

R(X′X)−1R′σ2
0

=
Rβ̂− r

σ0
√

R(X′X)−1R′ ∼ N (0,1) .

The problem is thatσ2
0 is unknown. One could use the consistent estimatorσ̂2

0 in place of

σ2
0, but the test would only be valid asymptotically in this case.

PROPOSITION4.

(6.2.1)
N(0,1)√

χ2(q)
q

∼ t(q)

as long as theN(0,1) and theχ2(q) are independent.

We need a few results on theχ2 distribution.

PROPOSITION5. If x∼ N(µ, In) is a vector ofn independent r.v.’s., then

(6.2.2) x′x∼ χ2(n,λ)

whereλ = ∑i µ
2
i = µ′µ is thenoncentrality parameter.

When aχ2 r.v. has the noncentrality parameter equal to zero, it is referred to as a central

χ2 r.v., and it’s distribution is written asχ2(n), suppressing the noncentrality parameter.
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PROPOSITION 6. If the n dimensional random vectorx ∼ N(0,V), then x′V−1x ∼
χ2(n).

We’ll prove this one as an indication of how the following unproven propositions could

be proved.

Proof: FactorV−1 asP′P (this is the Cholesky factorization, whereP is defined to be

upper triangular). Then considery = Px. We have

y∼ N(0,PVP′)

but

VP′P = In

PVP′P = P

soPVP′ = In and thusy∼ N(0, In). Thusy′y∼ χ2(n) but

y′y = x′P′Px= xV−1x

and we get the result we wanted.

A more general proposition which implies this result is

PROPOSITION7. If then dimensional random vectorx∼ N(0,V), then

(6.2.3) x′Bx∼ χ2(ρ(B))

if and only if BV is idempotent.

An immediate consequence is

PROPOSITION8. If the random vector (of dimensionn) x∼ N(0, I), andB is idempo-

tent with rankr, then

(6.2.4) x′Bx∼ χ2(r).

Consider the random variable

ε̂′ε̂
σ2

0

=
ε′MXε

σ2
0

=

(
ε

σ0

)′
MX

(
ε

σ0

)

∼ χ2(n−K)

PROPOSITION9. If the random vector (of dimensionn) x∼ N(0, I), thenAxandx′Bx

are independent ifAB= 0.

Now consider (remember that we have only one restriction in this case)

Rβ̂−r

σ0

√
R(X′X)−1R′

√
ε̂′ ε̂

(n−K)σ2
0

=
Rβ̂− r

σ̂0
√

R(X′X)−1R′

This will have thet(n−K) distribution ifβ̂ andε̂′ε̂ are independent. Butβ̂ = β+(X′X)−1X′ε
and

(X′X)−1X′MX = 0,
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so
Rβ̂− r

σ̂0
√

R(X′X)−1R′ =
Rβ̂− r

σ̂Rβ̂
∼ t(n−K)

In particular, for the commonly encounteredtest of significanceof an individual coefficient,

for whichH0 : βi = 0 vs.H0 : βi 6= 0 , the test statistic is

β̂i

σ̂β̂i

∼ t(n−K)

• Note: the t− test is strictly valid only if the errors are actually normally dis-

tributed. If one has nonnormal errors, one could use the above asymptotic result

to justify taking critical values from theN(0,1) distribution, sincet(n−K)
d→

N(0,1) asn→ ∞. In practice, a conservative procedure is to take critical values

from thet distribution if nonnormality is suspected. This will reject H0 less often

since thet distribution is fatter-tailed than is the normal.

6.2.2. F test. TheF test allows testing multiple restrictions jointly.

PROPOSITION10. If x∼ χ2(r) andy∼ χ2(s), then

(6.2.5)
x/r
y/s

∼ F(r,s)

provided thatx andy are independent.

PROPOSITION11. If the random vector (of dimensionn) x ∼ N(0, I), thenx′Ax and

x′Bx are independent ifAB= 0.

Using these results, and previous results on theχ2 distribution, it is simple to show that

the following statistic has theF distribution:

F =

(
Rβ̂− r

)′(
R(X′X)−1R′

)−1(
Rβ̂− r

)

qσ̂2 ∼ F(q,n−K).

A numerically equivalent expression is

(ESSR−ESSU)/q
ESSU/(n−K)

∼ F(q,n−K).

• Note: TheF test is strictly valid only if the errors are truly normally distributed.

The following tests will be appropriate when one cannot assume normally dis-

tributed errors.

6.2.3. Wald-type tests.The Wald principle is based on the idea that if a restriction is

true, the unrestricted model should “approximately” satisfy the restriction. Given that the

least squares estimator is asymptotically normally distributed:
√

n
(

β̂−β0

)
d→ N

(
0,σ2

0Q−1
X

)

then underH0 : Rβ0 = r, we have

√
n
(

Rβ̂− r
)

d→ N
(
0,σ2

0RQ−1
X R′)
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so by Proposition [6]

n
(

Rβ̂− r
)′ (

σ2
0RQ−1

X R′)−1
(

Rβ̂− r
)

d→ χ2(q)

Note thatQ−1
X or σ2

0 are not observable. The test statistic we use substitutes the consis-

tent estimators. Use(X′X/n)−1 as the consistent estimator ofQ−1
X . With this, there is a

cancellation ofn′s, and the statistic to use is
(

Rβ̂− r
)′(

σ̂2
0R(X′X)−1R′

)−1(
Rβ̂− r

)
d→ χ2(q)

• The Wald test is a simple way to test restrictions without having to estimate the

restricted model.

• Note that this formula is similar to one of the formulae provided for theF test.

6.2.4. Score-type tests (Rao tests, Lagrange multiplier tests). In some cases, an

unrestricted model may be nonlinear in the parameters, but the model is linear in the pa-

rameters under the null hypothesis. For example, the model

y = (Xβ)γ + ε

is nonlinear inβ andγ, but is linear inβ underH0 : γ = 1. Estimation of nonlinear models is

a bit more complicated, so one might prefer to have a test based upon the restricted, linear

model. The score test is useful in this situation.

• Score-type tests are based upon the general principle that the gradient vector of

the unrestricted model, evaluated at the restricted estimate, should be asymptoti-

cally normally distributed with mean zero, if the restrictions are true. The original

development was for ML estimation, but the principle is valid for a wide variety

of estimation methods.

We have seen that

λ̂ =
(
R(X′X)−1R′)−1

(
Rβ̂− r

)

= P−1
(

Rβ̂− r
)

so √
nP̂λ =

√
n
(

Rβ̂− r
)

Given that √
n
(

Rβ̂− r
)

d→ N
(
0,σ2

0RQ−1
X R′)

under the null hypothesis, we obtain
√

nP̂λ d→ N
(
0,σ2

0RQ−1
X R′)

So (√
nP̂λ

)′ (
σ2

0RQ−1
X R′)−1

(√
nP̂λ

)
d→ χ2(q)

Noting that limnP= RQ−1
X R′, we obtain,

λ̂′
(

R(X′X)−1R′

σ2
0

)
λ̂ d→ χ2(q)
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since the powers ofn cancel. To get a usable test statistic substitute a consistent estimator

of σ2
0.

• This makes it clear why the test is sometimes referred to as a Lagrange multiplier

test. It may seem that one needs the actual Lagrange multipliers to calculate this.

If we impose the restrictions by substitution, these are notavailable. Note that

the test can be written as
(

R′λ̂
)′

(X′X)−1R′λ̂

σ2
0

d→ χ2(q)

However, we can use the fonc for the restricted estimator:

−X′y+X′Xβ̂R+R′λ̂

to get that

R′λ̂ = X′(y−Xβ̂R)

= X′ε̂R

Substituting this into the above, we get

ε̂′RX(X′X)−1X′ε̂R

σ2
0

d→ χ2(q)

but this is simply

ε̂′R
PX

σ2
0

ε̂R
d→ χ2(q).

To see why the test is also known as a score test, note that the fonc for restricted least

squares

−X′y+X′Xβ̂R+R′λ̂

give us

R′λ̂ = X′y−X′Xβ̂R

and the rhs is simply the gradient (score) of the unrestricted model, evaluated at the re-

stricted estimator. The scores evaluated at the unrestricted estimate are identically zero.

The logic behind the score test is that the scores evaluated at the restricted estimate should

be approximately zero, if the restriction is true. The test is also known as a Rao test, since

P. Rao first proposed it in 1948.

6.2.5. Likelihood ratio-type tests. The Wald test can be calculated using the unre-

stricted model. The score test can be calculated using only the restricted model. The like-

lihood ratio test, on the other hand, uses both the restricted and the unrestricted estimators.

The test statistic is

LR= 2
(
lnL(θ̂)− lnL(θ̃)

)

where θ̂ is the unrestricted estimate andθ̃ is the restricted estimate. To show that it is

asymptoticallyχ2, take a second order Taylor’s series expansion of lnL(θ̃) aboutθ̂ :

lnL(θ̃) ≃ lnL(θ̂)+
n
2

(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)
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(note, the first order term drops out sinceDθ lnL(θ̂)≡ 0 by the fonc and we need to multiply

the second-order term byn sinceH(θ) is defined in terms of1n lnL(θ)) so

LR≃−n
(
θ̃− θ̂

)′
H(θ̂)

(
θ̃− θ̂

)

As n→ ∞,H(θ̂) → H∞(θ0) = −I (θ0), by the information matrix equality. So

LR
a
= n

(
θ̃− θ̂

)′
I∞(θ0)

(
θ̃− θ̂

)

We also have that, from [??] that

√
n
(
θ̂−θ0

) a
= I∞(θ0)

−1n1/2g(θ0).

An analogous result for the restricted estimator is (this isunproven here, to prove this set

up the Lagrangean for MLE subject toRβ = r, and manipulate the first order conditions) :
√

n
(
θ̃−θ0

) a
= I∞(θ0)

−1
(

In−R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1
)

n1/2g(θ0).

Combining the last two equations
√

n
(
θ̃− θ̂

) a
= −n1/2I∞(θ0)

−1R′ (RI∞(θ0)
−1R′)−1

RI∞(θ0)
−1g(θ0)

so, substituting into [??]

LR
a
=
[
n1/2g(θ0)

′I∞(θ0)
−1R′

][
RI∞(θ0)

−1R′]−1
[
RI∞(θ0)

−1n1/2g(θ0)
]

But since

n1/2g(θ0)
d→ N (0, I∞(θ0))

the linear function

RI∞(θ0)
−1n1/2g(θ0)

d→ N(0,RI∞(θ0)
−1R′).

We can see that LR is a quadratic form of this rv, with the inverse of its variance in the

middle, so

LR
d→ χ2(q).

6.3. The asymptotic equivalence of the LR, Wald and score tests

We have seen that the three tests all converge toχ2 random variables. In fact, they

all converge to thesameχ2 rv, under the null hypothesis. We’ll show that the Wald and

LR tests are asymptotically equivalent. We have seen that the Wald test is asymptotically

equivalent to

W
a
= n

(
Rβ̂− r

)′ (
σ2

0RQ−1
X R′)−1

(
Rβ̂− r

)
d→ χ2(q)

Using

β̂−β0 = (X′X)−1X′ε

and

Rβ̂− r = R(β̂−β0)
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we get
√

nR(β̂−β0) =
√

nR(X′X)−1X′ε

= R

(
X′X

n

)−1

n−1/2X′ε

Substitute this into [??] to get

W
a
= n−1ε′XQ−1

X R′ (σ2
0RQ−1

X R′)−1
RQ−1

X X′ε
a
= ε′X(X′X)−1R′ (σ2

0R(X′X)−1R′)−1
R(X′X)−1X′ε

a
=

ε′A(A′A)−1A′ε
σ2

0

a
=

ε′PRε
σ2

0

wherePR is the projection matrix formed by the matrixX(X′X)−1R′.

• Note that this matrix is idempotent and hasq columns, so the projection matrix

has rankq.

Now consider the likelihood ratio statistic

LR
a
= n1/2g(θ0)

′I (θ0)
−1R′ (RI (θ0)

−1R′)−1
RI (θ0)

−1n1/2g(θ0)

Under normality, we have seen that the likelihood function is

lnL(β,σ) = −nln
√

2π−nlnσ− 1
2

(y−Xβ)′ (y−Xβ)

σ2 .

Using this,

g(β0) ≡ Dβ
1
n

lnL(β,σ)

=
X′(y−Xβ0)

nσ2

=
X′ε
nσ2

Also, by the information matrix equality:

I (θ0) = −H∞(θ0)

= lim−Dβ′g(β0)

= lim−Dβ′
X′(y−Xβ0)

nσ2

= lim
X′X
nσ2

=
QX

σ2

so

I (θ0)
−1 = σ2Q−1

X
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Substituting these last expressions into [??], we get

LR
a
= ε′X′(X′X)−1R′ (σ2

0R(X′X)−1R′)−1
R(X′X)−1X′ε

a
=

ε′PRε
σ2

0
a
= W

This completes the proof that the Wald and LR tests are asymptotically equivalent. Simi-

larly, one can show that,under the null hypothesis,

qF
a
= W

a
= LM

a
= LR

• The proof for the statistics except forLR does not depend upon normality of the

errors, as can be verified by examining the expressions for the statistics.

• TheLR statisticis based upon distributional assumptions, since one can’t write

the likelihood function without them.

• However, due to the close relationship between the statisticsqF andLR, suppos-

ing normality, theqF statistic can be thought of as apseudo-LR statistic,in that

it’s like a LR statistic in that it uses the value of the objective functions of the

restricted and unrestricted models, but it doesn’t requiredistributional assump-

tions.

• The presentation of the score and Wald tests has been done in the context of

the linear model. This is readily generalizable to nonlinear models and/or other

estimation methods.

Though the four statisticsare asymptotically equivalent, they are numerically different in

small samples. The numeric values of the tests also depend upon howσ2 is estimated, and

we’ve already seen than there are several ways to do this. Forexample all of the following

are consistent forσ2 underH0

ε̂′ ε̂
n−k

ε̂′ ε̂
n

ε̂′Rε̂R
n−k+q

ε̂′Rε̂R
n

and in general the denominator call be replaced with any quantity a such that lima/n = 1.

It can be shown, for linear regression models subject to linear restrictions, and ifε̂
′ ε̂
n is

used to calculate the Wald test andε̂′Rε̂R
n is used for the score test, that

W > LR> LM.

For this reason, the Wald test will always reject if the LR test rejects, and in turn the LR

test rejects if the LM test rejects. This is a bit problematic: there is the possibility that by

careful choice of the statistic used, one can manipulate reported results to favor or disfavor

a hypothesis. A conservative/honest approach would be to report all three test statistics
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when they are available. In the case of linear models with normal errors theF test is to be

preferred, since asymptotic approximations are not an issue.

The small sample behavior of the tests can be quite different. The true size (probability

of rejection of the null when the null is true) of the Wald testis often dramatically higher

than the nominal size associated with the asymptotic distribution. Likewise, the true size

of the score test is often smaller than the nominal size.

6.4. Interpretation of test statistics

Now that we have a menu of test statistics, we need to know how to use them.

6.5. Confidence intervals

Confidence intervals for single coefficients are generated in the normal manner. Given

thet statistic

t(β) =
β̂−β

σ̂β̂

a 100(1−α)% confidence interval forβ0 is defined by the bounds of the set ofβ such that

t(β) does not rejectH0 : β0 = β, using aα significance level:

C(α) = {β : −cα/2 <
β̂−β

σ̂β̂
< cα/2}

The set of suchβ is the interval

β̂± σ̂β̂cα/2

A confidence ellipse for two coefficients jointly would be, analogously, the set of

{ β1,β2} such that theF (or some other test statistic) doesn’t reject at the specified criti-

cal value. This generates an ellipse, if the estimators are correlated.

• The region is an ellipse, since the CI for an individual coefficient defines a (in-

finitely long) rectangle with total prob. mass 1−α, since the other coefficient is

marginalized (e.g., can take on any value). Since the ellipse is bounded in both

dimensions but also contains mass 1−α, it must extend beyond the bounds of

the individual CI.

• From the pictue we can see that:

– Rejection of hypotheses individually does not imply that the joint test will

reject.

– Joint rejection does not imply individal tests will reject.

6.6. Bootstrapping

When we rely on asymptotic theory to use the normal distribution-based tests and con-

fidence intervals, we’re often at serious risk of making important errors. If the sample size

is small and errors are highly nonnormal, the small sample distribution of
√

n
(

β̂−β0

)
may

be very different than its large sample distribution. Also,the distributions of test statistics

may not resemble their limiting distributions at all. A means of trying to gain information

on the small sample distribution of test statistics and estimators is thebootstrap. We’ll

consider a simple example, just to get the main idea.
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FIGURE 6.5.1. Joint and Individual Confidence Regions
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Suppose that

y = Xβ0+ ε

ε ∼ IID(0,σ2
0)

X is nonstochastic

Given that the distribution ofε is unknown, the distribution of̂β will be unknown in small

samples. However, since we have random sampling, we could generateartificial data. The

steps are:

(1) Drawn observations from̂ε with replacement. Call this vector̃ε j (it’s a n×1).

(2) Then generate the data by ˜y j = Xβ̂+ ε̃ j

(3) Now take this and estimate

β̃ j = (X′X)−1X′ỹ j .

(4) Saveβ̃ j

(5) Repeat steps 1-4, until we have a large number,J, of β̃ j .

With this, we can use the replications to calculate theempirical distribution ofβ̃ j . One way

to form a 100(1-α)% confidence interval forβ0 would be to order thẽβ j from smallest to

largest, and drop the first and lastJα/2 of the replications, and use the remaining endpoints

as the limits of the CI. Note that this will not give the shortest CI if the empirical distribution

is skewed.

• Suppose one was interested in the distribution of some function of β̂, for example

a test statistic. Simple: just calculate the transformation for eachj, and work with

the empirical distribution of the transformation.

• If the assumption of iid errors is too strong (for example if there is heteroscedas-

ticity or autocorrelation, see below) one can work with a bootstrap defined by

sampling from(y,x) with replacement.

• How to chooseJ: J should be large enough that the results don’t change with

repetition of the entire bootstrap. This is easy to check. Ifyou find the results

change a lot, increaseJ and try again.

• The bootstrap is based fundamentally on the idea that the empirical distribution of

the sample data converges to the actual sampling distribution asn becomes large,

so statistics based on sampling from the empirical distribution should converge in

distribution to statistics based on sampling from the actual sampling distribution.

• In finite samples, this doesn’t hold. At a minimum, the bootstrap is a good way

to check if asymptotic theory results offer a decent approximation to the small

sample distribution.

• Bootstrapping can be used to test hypotheses. Basically, use the bootstrap to

get an approximation to the empirical distribution of the test statistic under the

alternative hypothesis, and use this to get critical values. Compare the test statis-

tic calculated using the real data, under the null, to the bootstrap critical values.

There are many variations on this theme, which we won’t go into here.
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6.7. Testing nonlinear restrictions, and the Delta Method

Testing nonlinear restrictions of a linear model is not muchmore difficult, at least when

the model is linear. Since estimation subject to nonlinear restrictions requires nonlinear

estimation methods, which are beyond the score of this course, we’ll just consider the

Wald test for nonlinear restrictions on a linear model.

Consider theq nonlinear restrictions

r(β0) = 0.

wherer(·) is aq-vector valued function. Write the derivative of the restriction evaluated at

β as

Dβ′ r(β)
∣∣
β = R(β)

We suppose that the restrictions are not redundant in a neighborhood ofβ0, so that

ρ(R(β)) = q

in a neighborhood ofβ0. Take a first order Taylor’s series expansion ofr(β̂) aboutβ0:

r(β̂) = r(β0)+R(β∗)(β̂−β0)

whereβ∗ is a convex combination of̂β andβ0. Under the null hypothesis we have

r(β̂) = R(β∗)(β̂−β0)

Due to consistency of̂β we can replaceβ∗ by β0, asymptotically, so
√

nr(β̂)
a
=
√

nR(β0)(β̂−β0)

We’ve already seen the distribution of
√

n(β̂−β0). Using this we get

√
nr(β̂)

d→ N
(
0,R(β0)Q

−1
X R(β0)

′σ2
0

)
.

Considering the quadratic form

nr(β̂)′
(
R(β0)Q

−1
X R(β0)

′)−1
r(β̂)

σ2
0

d→ χ2(q)

under the null hypothesis. Substituting consistent estimators forβ0,QX andσ2
0, the resulting

statistic is

r(β̂)′
(

R(β̂)(X′X)−1R(β̂)′
)−1

r(β̂)

σ̂2

d→ χ2(q)

under the null hypothesis.

• This is known in the literature as theDelta method, or asKlein’s approximation.

• Since this is a Wald test, it will tend to over-reject in finitesamples. The score and

LR tests are also possibilities, but they require estimation methods for nonlinear

models, which aren’t in the scope of this course.

Note that this also gives a convenient way to estimate nonlinear functions and associated

asymptotic confidence intervals. If the nonlinear functionr(β0) is not hypothesized to be
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zero, we just have
√

n
(

r(β̂)− r(β0)
)

d→ N
(
0,R(β0)Q

−1
X R(β0)

′σ2
0

)

so an approximation to the distribution of the function of the estimator is

r(β̂) ≈ N(r(β0),R(β0)(X
′X)−1R(β0)

′σ2
0)

For example, the vector of elasticities of a functionf (x) is

η(x) =
∂ f (x)

∂x
⊙ x

f (x)

where⊙ means element-by-element multiplication. Suppose we estimate a linear function

y = x′β + ε.

The elasticities ofy w.r.t. x are

η(x) =
β

x′β
⊙x

(note that this is the entire vector of elasticities). The estimated elasticities are

η̂(x) =
β̂

x′β̂
⊙x

To calculate the estimated standard errors of all five elasticites, use

R(β) =
∂η(x)

∂β′

=




x1 0 · · · 0

0 x2
...

...
. . . 0

0 · · · 0 xk




x′β−




β1x2
1 0 · · · 0

0 β2x2
2

...
...

. .. 0

0 · · · 0 βkx2
k




(x′β)2 .

To get a consistent estimator just substitute inβ̂. Note that the elasticity and the standard

error are functions ofx. The programExampleDeltaMethod.mshows how this can be done.

In many cases, nonlinear restrictions can also involve the data, not just the parameters.

For example, consider a model of expenditure shares. Letx(p,m) be a demand funcion,

wherep is prices andm is income. An expenditure share system forG goods is

si(p,m) =
pixi(p,m)

m
, i = 1,2, ...,G.

Now demand must be positive, and we assume that expendituressum to income, so we

have the restrictions

0 ≤ si(p,m) ≤ 1, ∀i
G

∑
i=1

si(p,m) = 1

Suppose we postulate a linear model for the expenditure shares:

si(p,m) = βi
1 + p′βi

p +mβi
m+ εi

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ExampleDeltaMethod.m
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It is fairly easy to write restrictions such that the shares sum to one, but the restriction that

the shares lie in the[0,1] interval depends on both parameters and the values ofp andm.

It is impossible to impose the restriction that 0≤ si(p,m) ≤ 1 for all possiblep andm. In

such cases, one might consider whether or not a linear model is a reasonable specification.

6.8. Example: the Nerlove data

Remember that we in a previous example (section3.8.3) that the OLS results for the

Nerlove model are

*************************************************** ******
OLS estimation results
Observations 145
R-squared 0.925955
Sigma-squared 0.153943

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value
constant -3.527 1.774 -1.987 0.049
output 0.720 0.017 41.244 0.000
labor 0.436 0.291 1.499 0.136
fuel 0.427 0.100 4.249 0.000
capital -0.220 0.339 -0.648 0.518

*************************************************** ******

Note thatsK = βK < 0, and thatβL + βF + βK 6= 1.

Remember that if we have constant returns to scale, thenβQ = 1, and if there is homo-

geneity of degree 1 thenβL + βF + βK = 1. We can test these hypotheses either separately

or jointly. NerloveRestrictions.mimposes and tests CRTS and then HOD1. From it we

obtain the results that follow:

Imposing and testing HOD1

*************************************************** ****

Restricted LS estimation results

Observations 145

R-squared 0.925652

Sigma-squared 0.155686

estimate st.err. t-stat. p-value

constant -4.691 0.891 -5.263 0.000

output 0.721 0.018 41.040 0.000

labor 0.593 0.206 2.878 0.005

fuel 0.414 0.100 4.159 0.000

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/NerloveRestrictions.m
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capital -0.007 0.192 -0.038 0.969

*************************************************** ****

Value p-value

F 0.574 0.450

Wald 0.594 0.441

LR 0.593 0.441

Score 0.592 0.442

Imposing and testing CRTS

*************************************************** ****

Restricted LS estimation results

Observations 145

R-squared 0.790420

Sigma-squared 0.438861

estimate st.err. t-stat. p-value

constant -7.530 2.966 -2.539 0.012

output 1.000 0.000 Inf 0.000

labor 0.020 0.489 0.040 0.968

fuel 0.715 0.167 4.289 0.000

capital 0.076 0.572 0.132 0.895

*************************************************** ****

Value p-value

F 256.262 0.000

Wald 265.414 0.000

LR 150.863 0.000

Score 93.771 0.000

Notice that the input price coefficients in fact sum to 1 when HOD1 is imposed. HOD1

is not rejected at usual significance levels (e.g.,α = 0.10). Also,R2 does not drop much

when the restriction is imposed, compared to the unrestricted results. For CRTS, you should

note thatβQ = 1, so the restriction is satisfied. Also note that the hypothesis thatβQ = 1 is

rejected by the test statistics at all reasonable significance levels. Note thatR2 drops quite

a bit when imposing CRTS. If you look at the unrestricted estimation results, you can see

that a t-test forβQ = 1 also rejects, and that a confidence interval forβQ does not overlap

1.

From the point of view of neoclassical economic theory, these results are not anoma-

lous: HOD1 is an implication of the theory, but CRTS is not.
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EXERCISE 12. Modify the NerloveRestrictions.m program to impose andtest the re-

strictions jointly.

The Chow test. Since CRTS is rejected, let’s examine the possibilities more carefully.

Recall that the data is sorted by output (the third column). Define 5 subsamples of firms,

with the first group being the 29 firms with the lowest output levels, then the next 29 firms,

etc. The five subsamples can be indexed byj = 1,2, ...,5, where j = 1 for t = 1,2, ...29,

j = 2 for t = 30,31, ...58, etc. Define a piecewise linear model

(6.8.1) lnCt = β j
1 + β j

2 lnQt + β j
3 lnPLt + β j

4 lnPFt + β j
5 lnPKt + εt

where j is a superscript (not a power) that inicates that the coefficients may be different

according to the subsample in which the observation falls. That is, the coefficients depend

upon j which in turn depends upont. Note that the first column of nerlove.data indicates

this way of breaking up the sample. The new model may be written as

(6.8.2)




y1

y2
...

y5




=




X1 0 · · · 0

0 X2
... X3

X4 0

0 X5







β1

β2

β5




+




ε1

ε2

...

ε5




wherey1 is 29×1, X1 is 29×5, β j is the 5×1 vector of coefficient for thejth subsample,

andε j is the 29×1 vector of errors for thejth subsample.

The Octave programRestrictions/ChowTest.mestimates the above model. It also tests

the hypothesis that the five subsamples share the same parameter vector, or in other words,

that there is coefficient stability across the five subsamples. The null to test is that the

parameter vectors for the separate groups are all the same, that is,

β1 = β2 = β3 = β4 = β5

This type of test, that parameters are constant across different sets of data, is sometimes

referred to as aChow test.

• There are 20 restrictions. If that’s not clear to you, look atthe Octave program.

• The restrictions are rejected at all conventional significance levels.

Since the restrictions are rejected, we should probably usethe unrestricted model for anal-

ysis. What is the pattern of RTS as a function of the output group (small to large)? Figure

6.8.1plots RTS. We can see that there is increasing RTS for small firms, but that RTS is

approximately constant for large firms.

6.9. Exercises

(1) Using the Chow test on the Nerlove model, we reject that there is coefficient

stability across the 5 groups. But perhaps we could restrictthe input price coef-

ficients to be the same but let the constant and output coefficients vary by group

size. This new model is

(6.9.1) lnCi = β j
1 + β j

2 lnQi + β3 lnPLi + β4 lnPFi + β5 lnPKi + εi

http://pareto.uab.es/mcreel/Econometrics/Examples/Restrictions/ChowTest.m
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FIGURE 6.8.1. RTS as a function of firm size
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(a) estimate this model by OLS, givingR, estimated standard errors for co-

efficients, t-statistics for tests of significance, and the associated p-values.

Interpret the results in detail.

(b) Test the restrictions implied by this model (relative tothe model that lets all

coefficients vary across groups) using the F, qF, Wald, scoreand likelihood

ratio tests. Comment on the results.

(c) Estimate this model but imposing the HOD1 restriction,using an OLSesti-

mation program. Don’t use mc_olsr or any other restricted OLS estimation

program. Give estimated standard errors for all coefficients.

(d) Plot the estimated RTS parameters as a function of firm size. Compare the

plot to that given in the notes for the unrestricted model. Comment on the

results.

(2) For the simple Nerlove model, estimated returns to scaleis R̂TS= 1
β̂q

. Apply

the delta method to calculate the estimated standard error for estimated RTS.

Directly testH0 : RTS= 1 versusHA : RTS6= 1 rather than testingH0 : βQ = 1

versusHA : βQ 6= 1. Comment on the results.

(3) Perform a Monte Carlo study that generates data from the model

y = −2+1x2+1x3+ ε

where the sample size is 30,x2 andx3 are independently uniformly distributed on

[0,1] andε ∼ IIN(0,1)

(a) Compare the means and standard errors of the estimated coefficients using

OLS and restricted OLS, imposing the restriction thatβ2 + β3 = 2.
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(b) Compare the means and standard errors of the estimated coefficients using

OLS and restricted OLS, imposing the restriction thatβ2 + β3 = 1.

(c) Discuss the results.



CHAPTER 7

Generalized least squares

One of the assumptions we’ve made up to now is that

εt ∼ IID(0,σ2),

or occasionally

εt ∼ IIN(0,σ2).

Now we’ll investigate the consequences of nonidentically and/or dependently distributed

errors. We’ll assume fixed regressors for now, relaxing thisadmittedly unrealistic assump-

tion later. The model is

y = Xβ + ε

E (ε) = 0

V(ε) = Σ

whereΣ is a general symmetric positive definite matrix (we’ll writeβ in place ofβ0 to

simplify the typing of these notes).

• The case whereΣ is a diagonal matrix gives uncorrelated, nonidentically dis-

tributed errors. This is known asheteroscedasticity.

• The case whereΣ has the same number on the main diagonal but nonzero ele-

ments off the main diagonal gives identically (assuming higher moments are also

the same) dependently distributed errors. This is known asautocorrelation.

• The general case combines heteroscedasticity and autocorrelation. This is known

as “nonspherical” disturbances, though why this term is used, I have no idea.

Perhaps it’s because under the classical assumptions, a joint confidence region

for ε would be ann− dimensional hypersphere.

7.1. Effects of nonspherical disturbances on the OLS estimator

The least square estimator is

β̂ = (X′X)−1X′y

= β +(X′X)−1X′ε

• We have unbiasedness, as before.

• The variance of̂β is

E
[
(β̂−β)(β̂−β)′

]
= E

[
(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′ΣX(X′X)−1(7.1.1)

71
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Due to this, any test statistic that is based upon an estimator of σ2 is invalid, since

thereisn’t anyσ2, it doesn’t exist as a feature of the true d.g.p. In particular, the

formulas for thet, F,χ2 based tests given above do not lead to statistics with these

distributions.

• β̂ is still consistent, following exactly the same argument given before.

• If ε is normally distributed, then

β̂ ∼ N
(
β,(X′X)−1X′ΣX(X′X)−1)

The problem is thatΣ is unknown in general, so this distribution won’t be useful

for testing hypotheses.

• Without normality, and unconditional onX we still have

√
n
(

β̂−β
)

=
√

n(X′X)−1X′ε

=

(
X′X

n

)−1

n−1/2X′ε

Define the limiting variance ofn−1/2X′ε (supposing a CLT applies) as

lim
n→∞
E

(
X′εε′X

n

)
= Ω

so we obtain
√

n
(

β̂−β
)

d→ N
(
0,Q−1

X ΩQ−1
X

)

Summary: OLS with heteroscedasticity and/or autocorrelation is:

• unbiased in the same circumstances in which the estimator isunbiased with iid

errors

• has a different variance than before, so the previous test statistics aren’t valid

• is consistent

• is asymptotically normally distributed, but with a different limiting covariance

matrix. Previous test statistics aren’t valid in this case for this reason.

• is inefficient, as is shown below.

7.2. The GLS estimator

SupposeΣ were known. Then one could form the Cholesky decomposition

P′P = Σ−1

Here,P is an upper triangular matrix. We have

P′PΣ = In

so

P′PΣP′ = P′,

which implies that

PΣP′ = In

Consider the model

Py= PXβ +Pε,
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or, making the obvious definitions,

y∗ = X∗β + ε∗.

This variance ofε∗ = Pε is

E (Pεε′P′) = PΣP′

= In

Therefore, the model

y∗ = X∗β + ε∗

E (ε∗) = 0

V(ε∗) = In

satisfies the classical assumptions. The GLS estimator is simply OLS applied to the trans-

formed model:

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X′P′PX)−1X′P′Py

= (X′Σ−1X)−1X′Σ−1y

The GLS estimator is unbiased in the same circumstances under which the OLS esti-

mator is unbiased. For example, assumingX is nonstochastic

E (β̂GLS) = E
{
(X′Σ−1X)−1X′Σ−1y

}

= E
{
(X′Σ−1X)−1X′Σ−1(Xβ + ε

}

= β.

The variance of the estimator, conditional onX can be calculated using

β̂GLS = (X∗′X∗)−1X∗′y∗

= (X∗′X∗)−1X∗′ (X∗β + ε∗)

= β +(X∗′X∗)−1X∗′ε∗

so

E

{(
β̂GLS−β

)(
β̂GLS−β

)′}
= E

{
(X∗′X∗)−1X∗′ε∗ε∗′X∗(X∗′X∗)−1}

= (X∗′X∗)−1X∗′X∗(X∗′X∗)−1

= (X∗′X∗)−1

= (X′Σ−1X)−1

Either of these last formulas can be used.

• All the previous results regarding the desirable properties of the least squares

estimator hold, when dealing with the transformed model, since the transformed

model satisfies the classical assumptions..
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• Tests are valid, using the previous formulas, as long as we substituteX∗ in place

of X. Furthermore, any test that involvesσ2 can set it to 1. This is preferable to

re-deriving the appropriate formulas.

• The GLS estimator is more efficient than the OLS estimator. This is a conse-

quence of the Gauss-Markov theorem, since the GLS estimatoris based on a

model that satisfies the classical assumptions but the OLS estimator is not. To

see this directly, not that (the following needs to be completed)

Var(β̂)−Var(β̂GLS) = (X′X)−1X′ΣX(X′X)−1− (X′Σ−1X)−1

= AΣA
′

whereA =
[
(X′X)−1X′− (X′Σ−1X)−1X′Σ−1

]
. This may not seem obvious, but

it is true, as you can verify for yourself. Then noting thatAΣA
′
is a quadratic form

in a positive definite matrix, we conclude thatAΣA
′
is positive semi-definite, and

that GLS is efficient relative to OLS.

• As one can verify by calculating fonc, the GLS estimator is the solution to the

minimization problem

β̂GLS= argmin(y−Xβ)′Σ−1(y−Xβ)

so themetricΣ−1 is used to weight the residuals.

7.3. Feasible GLS

The problem is thatΣ isn’t known usually, so this estimator isn’t available.

• Consider the dimension ofΣ : it’s ann×nmatrix with
(
n2−n

)
/2+n=

(
n2 +n

)
/2

unique elements.

• The number of parameters to estimate is larger thann and increases faster than

n. There’s no way to devise an estimator that satisfies a LLN without adding

restrictions.

• Thefeasible GLS estimatoris based upon making sufficient assumptions regard-

ing the form ofΣ so that a consistent estimator can be devised.

Suppose that weparameterizeΣ as a function ofX andθ, whereθ may includeβ as well

as other parameters, so that

Σ = Σ(X,θ)

whereθ is of fixed dimension. If we can consistently estimateθ, we can consistently

estimateΣ, as long asΣ(X,θ) is a continuous function ofθ (by the Slutsky theorem). In

this case,

Σ̂ = Σ(X, θ̂)
p→ Σ(X,θ)

If we replaceΣ in the formulas for the GLS estimator witĥΣ, we obtain the FGLS estimator.

The FGLS estimator shares the same asymptotic properties asGLS. These are

(1) Consistency

(2) Asymptotic normality

(3) Asymptotic efficiencyif the errors are normally distributed. (Cramer-Rao).

(4) Test procedures are asymptotically valid.
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In practice, the usual way to proceed is

(1) Define a consistent estimator ofθ. This is a case-by-case proposition, depending

on the parameterizationΣ(θ). We’ll see examples below.

(2) FormΣ̂ = Σ(X, θ̂)

(3) Calculate the Cholesky factorization̂P = Chol(Σ̂−1).

(4) Transform the model using

P̂′y = P̂′Xβ + P̂′ε

(5) Estimate using OLS on the transformed model.

7.4. Heteroscedasticity

Heteroscedasticity is the case where

E (εε′) = Σ

is a diagonal matrix, so that the errors are uncorrelated, but have different variances. Het-

eroscedasticity is usually thought of as associated with cross sectional data, though there is

absolutely no reason why time series data cannot also be heteroscedastic. Actually, the pop-

ular ARCH (autoregressive conditionally heteroscedastic) models explicitly assume that a

time series is heteroscedastic.

Consider a supply function

qi = β1 + βpPi + βsSi + εi

wherePi is price andSi is some measure of size of theith firm. One might suppose that

unobservable factors (e.g., talent of managers, degree of coordination between production

units,etc.) account for the error termεi . If there is more variability in these factors for large

firms than for small firms, thenεi may have a higher variance whenSi is high than when it

is low.

Another example, individual demand.

qi = β1 + βpPi + βmMi + εi

whereP is price andM is income. In this case,εi can reflect variations in preferences.

There are more possibilities for expression of preferenceswhen one is rich, so it is possible

that the variance ofεi could be higher whenM is high.

Add example of group means.

7.4.1. OLS with heteroscedastic consistent varcov estimation. Eicker (1967) and

White (1980) showed how to modify test statistics to accountfor heteroscedasticity of

unknown form. The OLS estimator has asymptotic distribution
√

n
(

β̂−β
)

d→ N
(
0,Q−1

X ΩQ−1
X

)

as we’ve already seen. Recall that we defined

lim
n→∞
E

(
X′εε′X

n

)
= Ω
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This matrix has dimensionK ×K and can be consistently estimated, even if we can’t esti-

mateΣ consistently. The consistent estimator, under heteroscedasticity but no autocorrela-

tion is

Ω̂ =
1
n

n

∑
t=1

xtx
′
t ε̂

2
t

One can then modify the previous test statistics to obtain tests that are valid when there is

heteroscedasticity of unknown form. For example, the Wald test forH0 : Rβ− r = 0 would

be

n
(

Rβ̂− r
)′
(

R

(
X′X

n

)−1

Ω̂
(

X′X
n

)−1

R′
)−1(

Rβ̂− r
)

a∼ χ2(q)

7.4.2. Detection.There exist many tests for the presence of heteroscedasticity. We’ll

discuss three methods.

Goldfeld-Quandt. The sample is divided in to three parts, with n1,n2 andn3 observa-

tions, wheren1 +n2+n3 = n. The model is estimated using the first and third parts of the

sample, separately, so thatβ̂1 andβ̂3 will be independent. Then we have

ε̂1′ε̂1

σ2 =
ε1′M1ε1

σ2
d→ χ2(n1−K)

and

ε̂3′ε̂3

σ2 =
ε3′M3ε3

σ2
d→ χ2(n3−K)

so
ε̂1′ε̂1/(n1−K)

ε̂3′ε̂3/(n3−K)

d→ F(n1−K,n3−K).

The distributional result is exact if the errors are normally distributed. This test is a two-

tailed test. Alternatively, and probably more conventionally, if one has prior ideas about the

possible magnitudes of the variances of the observations, one could order the observations

accordingly, from largest to smallest. In this case, one would use a conventional one-tailed

F-test.Draw picture.

• Ordering the observations is an important step if the test isto have any power.

• The motive for dropping the middle observations is to increase the difference

between the average variance in the subsamples, supposing that there exists het-

eroscedasticity. This can increase the power of the test. Onthe other hand,

dropping too many observations will substantially increase the variance of the

statisticsε̂1′ε̂1 andε̂3′ε̂3. A rule of thumb, based on Monte Carlo experiments is

to drop around 25% of the observations.

• If one doesn’t have any ideas about the form of the het. the test will probably

have low power since a sensible data ordering isn’t available.

White’s test. When one has little idea if there exists heteroscedasticity, and no idea of

its potential form, the White test is a possibility. The ideais that if there is homoscedasticity,

then

E (ε2
t |xt) = σ2,∀t

so thatxt or functions ofxt shouldn’t help to explainE (ε2
t ). The test works as follows:

(1) Sinceεt isn’t available, use the consistent estimatorε̂t instead.
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(2) Regress

ε̂2
t = σ2 +z′tγ+vt

wherezt is aP-vector. zt may include some or all of the variables inxt , as well

as other variables. White’s original suggestion was to usext , plus the set of all

unique squares and cross products of variables inxt .

(3) Test the hypothesis thatγ = 0. TheqF statistic in this case is

qF =
P(ESSR−ESSU)/P
ESSU/(n−P−1)

Note thatESSR = TSSU , so dividing both numerator and denominator by this we

get

qF = (n−P−1)
R2

1−R2

Note that this is theR2 or the artificial regression used to test for heteroscedastic-

ity, not theR2 of the original model.

An asymptotically equivalent statistic, under the null of no heteroscedasticity (so thatR2

should tend to zero), is

nR2 a∼ χ2(P).

This doesn’t require normality of the errors, though it doesassume that the fourth moment

of εt is constant, under the null.Question: why is this necessary?

• The White test has the disadvantage that it may not be very powerful unless the

zt vector is chosen well, and this is hard to do without knowledge of the form of

heteroscedasticity.

• It also has the problem that specification errors other than heteroscedasticity may

lead to rejection.

• Note: the null hypothesis of this test may be interpreted asθ = 0 for the variance

modelV(ε2
t ) = h(α+z′tθ), whereh(·) is an arbitrary function of unknown form.

The test is more general than is may appear from the regression that is used.

Plotting the residuals. A very simple method is to simply plot the residuals (or their

squares).Draw pictures here. Like the Goldfeld-Quandt test, this will be more informative

if the observations are ordered according to the suspected form of the heteroscedasticity.

7.4.3. Correction. Correcting for heteroscedasticity requires that a parametric form

for Σ(θ) be supplied, and that a means for estimatingθ consistently be determined. The es-

timation method will be specific to the for supplied forΣ(θ). We’ll consider two examples.

Before this, let’s consider the general nature of GLS when there is heteroscedasticity.

Multiplicative heteroscedasticity

Suppose the model is

yt = x′tβ + εt

σ2
t = E (ε2

t ) =
(
z′tγ
)δ
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but the other classical assumptions hold. In this case

ε2
t =

(
z′tγ
)δ

+vt

andvt has mean zero. Nonlinear least squares could be used to estimateγ andδ consistently,

wereεt observable. The solution is to substitute the squared OLS residualsε̂2
t in place of

ε2
t , since it is consistent by the Slutsky theorem. Once we haveγ̂ andδ̂, we can estimateσ2

t

consistently using

σ̂2
t =

(
z′t γ̂
)δ̂

p

→ σ2
t .

In the second step, we transform the model by dividing by the standard deviation:

yt

σ̂t
=

x′tβ
σ̂t

+
εt

σ̂t

or

y∗t = x∗′t β + ε∗t .

Asymptotically, this model satisfies the classical assumptions.

• This model is a bit complex in that NLS is required to estimatethe model of the

variance. A simpler version would be

yt = x′tβ + εt

σ2
t = E (ε2

t ) = σ2zδ
t

wherezt is a single variable. There are still two parameters to be estimated, and

the model of the variance is still nonlinear in the parameters. However, thesearch

methodcan be used in this case to reduce the estimation problem to repeated

applications of OLS.

• First, we define an interval of reasonable values forδ, e.g.,δ ∈ [0,3].

• Partition this interval intoM equally spaced values, e.g.,{0, .1, .2, ...,2.9,3}.
• For each of these values, calculate the variablezδm

t .

• The regression

ε̂2
t = σ2zδm

t +vt

is linear in the parameters, conditional onδm, so one can estimateσ2 by OLS.

• Save the pairs (σ2
m,δm), and the correspondingESSm. Choose the pair with the

minimumESSm as the estimate.

• Next, divide the model by the estimated standard deviations.

• Can refine.Draw picture.

• Works well when the parameter to be searched over is low dimensional, as in this

case.

Groupwise heteroscedasticity

A common case is where we have repeated observations on each of a number of eco-

nomic agents: e.g., 10 years of macroeconomic data on each ofa set of countries or re-

gions, or daily observations of transactions of 200 banks. This sort of data is apooled

cross-section time-series model.It may be reasonable to presume that the variance is con-

stant over time within the cross-sectional units, but that it differs across them (e.g., firms or
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countries of different sizes...). The model is

yit = x′it β + εit

E (ε2
it ) = σ2

i ,∀t

wherei = 1,2, ...,G are the agents, andt = 1,2, ...,n are the observations on each agent.

• The other classical assumptions are presumed to hold.

• In this case, the varianceσ2
i is specific to each agent, but constant over then

observations for that agent.

• In this model, we assume thatE (εit εis) = 0. This is a strong assumption that we’ll

relax later.

To correct for heteroscedasticity, just estimate eachσ2
i using the natural estimator:

σ̂2
i =

1
n

n

∑
t=1

ε̂2
it

• Note that we use 1/n here since it’s possible that there are more thann regressors,

son−K could be negative. Asymptotically the difference is unimportant.

• With each of these, transform the model as usual:

yit

σ̂i
=

x′it β
σ̂i

+
εit

σ̂i

Do this for each cross-sectional group. This transformed model satisfies the clas-

sical assumptions, asymptotically.

7.4.4. Example: the Nerlove model (again!)Let’s check the Nerlove data for evi-

dence of heteroscedasticity. In what follows, we’re going to use the model with the constant

and output coefficient varying across 5 groups, but with the input price coefficients fixed

(see Equation6.9.1for the rationale behind this). Figure7.4.1, which is generated by the

Octave programGLS/NerloveResiduals.mplots the residuals. We can see pretty clearly

that the error variance is larger for small firms than for larger firms.

Now let’s try out some tests to formally check for heteroscedasticity. The Octave

programGLS/HetTests.mperforms the White and Goldfeld-Quandt tests, using the above

model. The results are

Value p-value

White’s test 61.903 0.000

Value p-value

GQ test 10.886 0.000

All in all, it is very clear that the data are heteroscedastic. That means that OLS estimation

is not efficient, and tests of restrictions that ignore heteroscedasticity are not valid. The

previous tests (CRTS, HOD1 and the Chow test) were calculated assuming homoscedastic-

ity. The Octave programGLS/NerloveRestrictions-Het.muses the Wald test to check for

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m
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FIGURE 7.4.1. Residuals, Nerlove model, sorted by firm size
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CRTS and HOD1, but using a heteroscedastic-consistent covariance estimator.1 The results

are

Testing HOD1

Value p-value

Wald test 6.161 0.013

Testing CRTS

Value p-value

Wald test 20.169 0.001

We see that the previous conclusions are altered - both CRTS is and HOD1 are rejected at

the 5% level. Maybe the rejection of HOD1 is due to to Wald test’s tendency to over-reject?

From the previous plot, it seems that the variance ofε is a decreasing function of

output. Suppose that the 5 size groups have different error variances (heteroscedasticity by

groups):

Var(εi) = σ2
j ,

where j = 1 if i = 1,2, ...,29, etc.,as before. The Octave programGLS/NerloveGLS.m

estimates the model using GLS (through a transformation of the model so that OLS can be

applied). The estimation results are

*************************************************** ******

1By the way, notice thatGLS/NerloveResiduals.mandGLS/HetTests.muse the restricted LS estimator directly
to restrict the fully general model with all coefficients varying to the model with only the constant and the output
coefficient varying. ButGLS/NerloveRestrictions-Het.mestimates the model by substituting the restrictions into
the model. The methods are equivalent, but the second is moreconvenient and easier to understand.

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveGLS.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveResiduals.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/HetTests.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveRestrictions-Het.m
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OLS estimation results

Observations 145

R-squared 0.958822

Sigma-squared 0.090800

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.046 1.276 -0.820 0.414

constant2 -1.977 1.364 -1.450 0.149

constant3 -3.616 1.656 -2.184 0.031

constant4 -4.052 1.462 -2.771 0.006

constant5 -5.308 1.586 -3.346 0.001

output1 0.391 0.090 4.363 0.000

output2 0.649 0.090 7.184 0.000

output3 0.897 0.134 6.688 0.000

output4 0.962 0.112 8.612 0.000

output5 1.101 0.090 12.237 0.000

labor 0.007 0.208 0.032 0.975

fuel 0.498 0.081 6.149 0.000

capital -0.460 0.253 -1.818 0.071

*************************************************** ******

*************************************************** ******

OLS estimation results

Observations 145

R-squared 0.987429

Sigma-squared 1.092393

Results (Het. consistent var-cov estimator)

estimate st.err. t-stat. p-value

constant1 -1.580 0.917 -1.723 0.087

constant2 -2.497 0.988 -2.528 0.013

constant3 -4.108 1.327 -3.097 0.002

constant4 -4.494 1.180 -3.808 0.000

constant5 -5.765 1.274 -4.525 0.000

output1 0.392 0.090 4.346 0.000

output2 0.648 0.094 6.917 0.000

output3 0.892 0.138 6.474 0.000

output4 0.951 0.109 8.755 0.000

output5 1.093 0.086 12.684 0.000
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labor 0.103 0.141 0.733 0.465

fuel 0.492 0.044 11.294 0.000

capital -0.366 0.165 -2.217 0.028

*************************************************** ******

Testing HOD1

Value p-value

Wald test 9.312 0.002

The first panel of output are the OLS estimation results, which are used to consistently esti-

mate theσ2
j . The second panel of results are the GLS estimation results.Some comments:

• TheR2 measures are not comparable - the dependent variables are not the same.

The measure for the GLS results uses the transformed dependent variable. One

could calculate a comparableR2 measure, but I have not done so.

• The differences in estimated standard errors (smaller in general for GLS)can

be interpreted as evidence of improved efficiency of GLS, since the OLS stan-

dard errors are calculated using the Huber-White estimator. They would not be

comparable if the ordinary (inconsistent) estimator had been used.

• Note that the previously noted pattern in the output coefficients persists. The

nonconstant CRTS result is robust.

• The coefficient on capital is now negative and significant at the 3% level. That

seems to indicate some kind of problem with the model or the data, or economic

theory.

• Note that HOD1 is now rejected. Problem of Wald test over-rejecting? Specifi-

cation error in model?

7.5. Autocorrelation

Autocorrelation, which is the serial correlation of the error term, is a problem that

is usually associated with time series data, but also can affect cross-sectional data. For

example, a shock to oil prices will simultaneously affect all countries, so one could expect

contemporaneous correlation of macroeconomic variables across countries.

7.5.1. Causes.Autocorrelation is the existence of correlation across theerror term:

E (εt εs) 6= 0,t 6= s.

Why might this occur? Plausible explanations include

(1) Lags in adjustment to shocks. In a model such as

yt = x′tβ + εt ,

one could interpretx′tβ as the equilibrium value. Supposext is constant over a

number of observations. One can interpretεt as a shock that moves the system

away from equilibrium. If the time needed to return to equilibrium is long with
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FIGURE 7.5.1. Autocorrelation induced by misspecification

respect to the observation frequency, one could expectεt+1 to be positive, condi-

tional onεt positive, which induces a correlation.

(2) Unobserved factors that are correlated over time. The error term is often assumed

to correspond to unobservable factors. If these factors arecorrelated, there will

be autocorrelation.

(3) Misspecification of the model. Suppose that the DGP is

yt = β0 + β1xt + β2x2
t + εt

but we estimate

yt = β0 + β1xt + εt

The effects are illustrated in Figure7.5.1.

7.5.2. Effects on the OLS estimator.The variance of the OLS estimator is the same

as in the case of heteroscedasticity - the standard formula does not apply. The correct

formula is given in equation7.1.1. Next we discuss two GLS corrections for OLS. These

will potentially induce inconsistency when the regressorsare nonstochastic (see Chapter8)

and should either not be used in that case (which is usually the relevant case) or used with

caution. The more recommended procedure is discussed in section 7.5.5.
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7.5.3. AR(1). There are many types of autocorrelation. We’ll consider twoexamples.

The first is the most commonly encountered case: autoregressive order 1 (AR(1) errors.

The model is

yt = x′tβ + εt

εt = ρεt−1 +ut

ut ∼ iid(0,σ2
u)

E (εtus) = 0,t < s

We assume that the model satisfies the other classical assumptions.

• We need a stationarity assumption:|ρ|< 1. Otherwise the variance ofεt explodes

ast increases, so standard asymptotics will not apply.

• By recursive substitution we obtain

εt = ρεt−1 +ut

= ρ(ρεt−2 +ut−1)+ut

= ρ2εt−2 + ρut−1+ut

= ρ2(ρεt−3 +ut−2)+ ρut−1+ut

In the limit the laggedε drops out, sinceρm → 0 asm→ ∞, so we obtain

εt =
∞

∑
m=0

ρmut−m

With this, the variance ofεt is found as

E (ε2
t ) = σ2

u

∞

∑
m=0

ρ2m

=
σ2

u

1−ρ2

• If we had directly assumed thatεt were covariance stationary, we could obtain

this using

V(εt ) = ρ2E (ε2
t−1)+2ρE (εt−1ut)+E (u2

t )

= ρ2V(εt )+ σ2
u,

so

V(εt) =
σ2

u

1−ρ2

• The variance is the 0th order autocovariance:γ0 = V(εt)

• Note that the variance does not depend ont

Likewise, the first order autocovarianceγ1 is

Cov(εt ,εt−1) = γs = E ((ρεt−1 +ut)εt−1)

= ρV(εt)

=
ρσ2

u

1−ρ2
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• Using the same method, we find that fors< t

Cov(εt ,εt−s) = γs =
ρsσ2

u

1−ρ2

• The autocovariances don’t depend ont: the process{εt} is covariance stationary

Thecorrelation (in general, for r.v.’sx andy) is defined as

corr(x,y) =
cov(x,y)

se(x)se(y)

but in this case, the two standard errors are the same, so thes-order autocorrelationρs is

ρs = ρs

• All this means that the overall matrixΣ has the form

Σ =
σ2

u

1−ρ2
︸ ︷︷ ︸

this is the variance




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
. . .

...
. . . ρ

ρn−1 · · · 1




︸ ︷︷ ︸
this is the correlation matrix

So we have homoscedasticity, but elements off the main diagonal are not zero.

All of this depends only on two parameters,ρ andσ2
u. If we can estimate these

consistently, we can apply FGLS.

It turns out that it’s easy to estimate these consistently. The steps are

(1) Estimate the modelyt = x′tβ + εt by OLS.

(2) Take the residuals, and estimate the model

ε̂t = ρε̂t−1 +u∗t

Sinceε̂t
p→ εt , this regression is asymptotically equivalent to the regression

εt = ρεt−1 +ut

which satisfies the classical assumptions. Therefore,ρ̂ obtained by applying OLS

to ε̂t = ρε̂t−1 +u∗t is consistent. Also, sinceu∗t
p→ ut , the estimator

σ̂2
u =

1
n

n

∑
t=2

(û∗t )
2 p→ σ2

u

(3) With the consistent estimatorsσ̂2
u and ρ̂, form Σ̂ = Σ(σ̂2

u, ρ̂) using the previous

structure ofΣ, and estimate by FGLS. Actually, one can omit the factorσ̂2
u/(1−

ρ2), since it cancels out in the formula

β̂FGLS=
(
X′Σ̂−1X

)−1
(X′Σ̂−1y).

• One can iterate the process, by taking the first FGLS estimator of β, re-estimating

ρ andσ2
u, etc. If one iterates to convergences it’s equivalent to MLE (supposing

normal errors).
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• An asymptotically equivalent approach is to simply estimate the transformed

model

yt − ρ̂yt−1 = (xt − ρ̂xt−1)
′β +u∗t

usingn−1 observations (sincey0 andx0 aren’t available). This is the method

of Cochrane and Orcutt. Dropping the first observation is asymptotically irrele-

vant, butit can be very important in small samples.One can recuperate the first

observation by putting

y∗1 = y1

√
1− ρ̂2

x∗1 = x1

√
1− ρ̂2

This somewhat odd-looking result is related to the Choleskyfactorization ofΣ−1.

See Davidson and MacKinnon, pg. 348-49 for more discussion.Note that the

variance ofy∗1 is σ2
u, asymptotically, so we see that the transformed model will

be homoscedastic (and nonautocorrelated, since theu′sare uncorrelated with the

y′s, in different time periods.

7.5.4. MA(1). The linear regression model with moving average order 1 errors is

yt = x′tβ + εt

εt = ut + φut−1

ut ∼ iid(0,σ2
u)

E (εtus) = 0,t < s

In this case,

V(εt) = γ0 = E
[
(ut + φut−1)

2
]

= σ2
u + φ2σ2

u

= σ2
u(1+ φ2)

Similarly

γ1 = E [(ut + φut−1)(ut−1 + φut−2)]

= φσ2
u

and

γ2 = [(ut + φut−1) (ut−2 + φut−3)]

= 0

so in this case

Σ = σ2
u




1+ φ2 φ 0 · · · 0

φ 1+ φ2 φ

0 φ
. . .

...
...

. . . φ
0 · · · φ 1+ φ2
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Note that the first order autocorrelation is

ρ1 =
φσ2

u
σ2

u(1+φ2)
=

γ1

γ0

=
φ

(1+ φ2)

• This achieves a maximum atφ = 1 and a minimum atφ = −1, and the maximal

and minimal autocorrelations are 1/2 and -1/2. Therefore, series that are more

strongly autocorrelated can’t be MA(1) processes.

Again the covariance matrix has a simple structure that depends on only two parameters.

The problem in this case is that one can’t estimateφ using OLS on

ε̂t = ut + φut−1

because theut are unobservable and they can’t be estimated consistently.However, there is

a simple way to estimate the parameters.

• Since the model is homoscedastic, we can estimate

V(εt ) = σ2
ε = σ2

u(1+ φ2)

using the typical estimator:

σ̂2
ε = ̂σ2

u(1+ φ2) =
1
n

n

∑
t=1

ε̂2
t

• By the Slutsky theorem, we can interpret this as defining an (unidentified) esti-

mator of bothσ2
u andφ, e.g., use this as

σ̂2
u(1+ φ̂2) =

1
n

n

∑
t=1

ε̂2
t

However, this isn’t sufficient to define consistent estimators of the parameters,

since it’s unidentified.

• To solve this problem, estimate the covariance ofεt andεt−1 using

Ĉov(εt ,εt−1) = φ̂σ2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

This is a consistent estimator, following a LLN (and given that the epsilon hats

are consistent for the epsilons). As above, this can be interpreted as defining an

unidentified estimator:

φ̂σ̂2
u =

1
n

n

∑
t=2

ε̂t ε̂t−1

• Now solve these two equations to obtain identified (and therefore consistent)

estimators of bothφ andσ2
u. Define the consistent estimator

Σ̂ = Σ(φ̂, σ̂2
u)

following the form we’ve seen above, and transform the modelusing the Cholesky

decomposition. The transformed model satisfies the classical assumptions asymp-

totically.
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7.5.5. Asymptotically valid inferences with autocorrelation of unknown form. See

Hamilton Ch. 10, pp. 261-2 and 280-84.

When the form of autocorrelation is unknown, one may decide to use the OLS estima-

tor, without correction. We’ve seen that this estimator hasthe limiting distribution

√
n
(

β̂−β
)

d→ N
(
0,Q−1

X ΩQ−1
X

)

where, as before,Ω is

Ω = lim
n→∞
E

(
X′εε′X

n

)

We need a consistent estimate ofΩ. Definemt = xtεt (recall thatxt is defined as aK ×1

vector). Note that

X′ε =
[

x1 x2 · · · xn

]




ε1

ε2
...

εn




=
n

∑
t=1

xtεt

=
n

∑
t=1

mt

so that

Ω = lim
n→∞

1
n
E

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

We assume thatmt is covariance stationary (so that the covariance betweenmt andmt−s

does not depend ont).

Define thev− th autocovariance ofmt as

Γv = E (mtm
′
t−v).

Note thatE (mtm′
t+v) = Γ′

v. (show this with an example).In general, we expect that:

• mt will be autocorrelated, sinceεt is potentially autocorrelated:

Γv = E (mtm
′
t−v) 6= 0

Note that this autocovariance does not depend ont, due to covariance stationarity.

• contemporaneously correlated (E (mit mjt ) 6= 0 ), since the regressors inxt will

in general be correlated (more on this later).

• and heteroscedastic (E (m2
it ) = σ2

i , which depends uponi ), again since the re-

gressors will have different variances.

While one could estimateΩ parametrically, we in general have little information upon

which to base a parametric specification. Recent research has focused on consistent non-

parametric estimators ofΩ.

Now define

Ωn = E
1
n

[(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]
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We have (show that the following is true, by expanding sum and shifting rows to left)

Ωn = Γ0 +
n−1

n

(
Γ1 + Γ′

1

)
+

n−2
n

(
Γ2 + Γ′

2

)
· · ·+ 1

n

(
Γn−1+ Γ′

n−1

)

The natural, consistent estimator ofΓv is

Γ̂v =
1
n

n

∑
t=v+1

m̂tm̂
′
t−v.

where

m̂t = xt ε̂t

(note: one could put 1/(n−v) instead of 1/nhere). So, a natural, but inconsistent, estimator

of Ωn would be

Ω̂n = Γ̂0 +
n−1

n

(
Γ̂1 + Γ̂′

1

)
+

n−2
n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+ 1

n

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1

∑
v=1

n−v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the numberof parameters to estimate is more

than the number of observations, and increases more rapidlythann, so information does

not build up asn→ ∞.

On the other hand, supposing thatΓv tends to zero sufficiently rapidly asv tends to∞,

a modified estimator

Ω̂n = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

whereq(n)
p→ ∞ asn→ ∞ will be consistent, providedq(n) grows sufficiently slowly.

• The assumption that autocorrelations die off is reasonablein many cases. For

example, the AR(1) model with|ρ| < 1 has autocorrelations that die off.

• The termn−v
n can be dropped because it tends to one forv< q(n), given thatq(n)

increases slowly relative ton.

• A disadvantage of this estimator is that is may not be positive definite. This could

cause one to calculate a negativeχ2 statistic, for example!

• Newey and West proposed and estimator (Econometrica, 1987) that solves the

problem of possible nonpositive definiteness of the above estimator. Their esti-

mator is

Ω̂n = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.

This estimator is p.d. by construction. The condition for consistency is that

n−1/4q(n) → 0. Note that this is a very slow rate of growth forq. This estimator

is nonparametric - we’ve placed no parametric restrictionson the form ofΩ. It is

an example of akernelestimator.

Finally, sinceΩn hasΩ as its limit, Ω̂n
p→ Ω. We can now usêΩn and Q̂X = 1

nX′X to

consistently estimate the limiting distribution of the OLSestimator under heteroscedasticity

and autocorrelation of unknown form. With this, asymptotically valid tests are constructed

in the usual way.

7.5.6. Testing for autocorrelation. Durbin-Watson test
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The Durbin-Watson test statistic is

DW =
∑n

t=2 (ε̂t − ε̂t−1)
2

∑n
t=1 ε̂2

t

=
∑n

t=2

(
ε̂2
t −2ε̂t ε̂t−1 + ε̂2

t−1

)

∑n
t=1 ε̂2

t

• The null hypothesis is that the first order autocorrelation of the errors is zero:H0 :

ρ1 = 0. The alternative is of courseHA : ρ1 6= 0. Note that the alternative is not

that the errors are AR(1), since many general patterns of autocorrelation will have

the first order autocorrelation different than zero. For this reason the test is useful

for detecting autocorrelation in general. For the same reason, one shouldn’t just

assume that an AR(1) model is appropriate when the DW test rejects the null.

• Under the null, the middle term tends to zero, and the other two tend to one, so

DW
p→ 2.

• Supposing that we had an AR(1) error process withρ = 1. In this case the middle

term tends to−2, soDW
p→ 0

• Supposing that we had an AR(1) error process withρ = −1. In this case the

middle term tends to 2, soDW
p→ 4

• These are the extremes:DW always lies between 0 and 4.

• The distribution of the test statistic depends on the matrixof regressors,X, so

tables can’t give exact critical values. The give upper and lower bounds, which

correspond to the extremes that are possible. See Figure7.5.2. There are means

of determining exact critical values conditional onX.

• Note that DW can be used to test for nonlinearity (add discussion).

• The DW test is based upon the assumption that the matrixX is fixed in repeated

samples. This is often unreasonable in the context of economic time series, which

is precisely the context where the test would have application. It is possible to

relate the DW test to other test statistics which are valid without strict exogeneity.

Breusch-Godfrey test

This test uses an auxiliary regression, as does the White test for heteroscedasticity. The

regression is

ε̂t = x′tδ+ γ1ε̂t−1 + γ2ε̂t−2 + · · ·+ γPε̂t−P +vt

and the test statistic is thenR2 statistic, just as in the White test. There areP restrictions,

so the test statistic is asymptotically distributed as aχ2(P).

• The intuition is that the lagged errors shouldn’t contribute to explaining the cur-

rent error if there is no autocorrelation.

• xt is included as a regressor to account for the fact that theε̂t are not independent

even if theεt are. This is a technicality that we won’t go into here.

• This test is valid even if the regressors are stochastic and contain lagged depen-

dent variables, so it is considerably more useful than the DWtest for typical time

series data.
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FIGURE 7.5.2. Durbin-Watson critical values

• The alternative is not that the model is an AR(P), following the argument above.

The alternative is simply that some or all of the firstP autocorrelations are differ-

ent from zero. This is compatible with many specific forms of autocorrelation.

7.5.7. Lagged dependent variables and autocorrelation.We’ve seen that the OLS

estimator is consistent under autocorrelation, as long asplimX′ε
n = 0. This will be the case

whenE (X′ε) = 0, following a LLN. An important exception is the case whereX contains

laggedy′sand the errors are autocorrelated. A simple example is the case of a single lag of

the dependent variable with AR(1) errors. The model is

yt = x′tβ +yt−1γ+ εt

εt = ρεt−1 +ut

Now we can write

E (yt−1εt ) = E
{
(x′t−1β +yt−2γ+ εt−1)(ρεt−1 +ut)

}

6= 0

since one of the terms isE (ρε2
t−1) which is clearly nonzero. In this caseE (X′ε) 6= 0, and

thereforeplimX′ε
n 6= 0. Since

plimβ̂ = β + plim
X′ε
n
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the OLS estimator is inconsistent in this case. One needs to estimate by instrumental vari-

ables (IV), which we’ll get to later.

7.5.8. Examples.

Nerlove model, yet again. The Nerlove model uses cross-sectional data, so one may

not think of performing tests for autocorrelation. However, specification error can induce

autocorrelated errors. Consider the simple Nerlove model

lnC = β1 + β2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

and the extended Nerlove model

lnC = β j
1 + β j

2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε.

We have seen evidence that the extended model is preferred. So if it is in fact the proper

model, the simple model is misspecified. Let’s check if this misspecification might induce

autocorrelated errors.

The Octave programGLS/NerloveAR.mestimates the simple Nerlove model, and

plots the residuals as a function of lnQ, and it calculates a Breusch-Godfrey test statis-

tic. The residual plot is in Figure7.6.1, and the test results are:

Value p-value

Breusch-Godfrey test 34.930 0.000

Clearly, there is a problem of autocorrelated residuals.

EXERCISE 7.6. Repeat the autocorrelation tests using the extended Nerlove model

(Equation??) to see the problem is solved.

Klein model. Klein’s Model I is a simple macroeconometric model. One of the equa-

tions in the model explains consumption (C) as a function of profits (P), both current and

lagged, as well as the sum of wages in the private sector (Wp) and wages in the government

sector (Wg). Have a look at theREADME file for this data set. This gives the variable

names and other information.

Consider the model

Ct = α0 + α1Pt + α2Pt−1 + α3(W
p

t +Wg
t )+ ε1t

The Octave programGLS/Klein.mestimates this model by OLS, plots the residuals, and

performs the Breusch-Godfrey test, using 1 lag of the residuals. The estimation and test

results are:

*************************************************** ******

OLS estimation results

Observations 21

R-squared 0.981008

Sigma-squared 1.051732

Results (Ordinary var-cov estimator)

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/NerloveAR.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Data/klein_readme.txt
http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/Klein.m
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FIGURE 7.6.1. Residuals of simple Nerlove model
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Residuals
Quadratic fit to Residuals

estimate st.err. t-stat. p-value

Constant 16.237 1.303 12.464 0.000

Profits 0.193 0.091 2.115 0.049

Lagged Profits 0.090 0.091 0.992 0.335

Wages 0.796 0.040 19.933 0.000

*************************************************** ******

Value p-value

Breusch-Godfrey test 1.539 0.215

and the residual plot is in Figure7.6.2. The test does not reject the null of nonautocorre-

latetd errors, but we should remember that we have only 21 observations, so power is likely

to be fairly low. The residual plot leads me to suspect that there may be autocorrelation -

there are some significant runs below and above the x-axis. Your opinion may differ.

Since it seems that theremaybe autocorrelation, lets’s try an AR(1) correction. The

Octave programGLS/KleinAR1.mestimates the Klein consumption equation assuming

that the errors follow the AR(1) pattern. The results, with the Breusch-Godfrey test for

remaining autocorrelation are:

*************************************************** ******

OLS estimation results

Observations 21

http://pareto.uab.es/mcreel/Econometrics/Examples/GLS/KleinAR1.m
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FIGURE 7.6.2. OLS residuals, Klein consumption equation
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Regression residuals

Residuals

R-squared 0.967090

Sigma-squared 0.983171

Results (Ordinary var-cov estimator)

estimate st.err. t-stat. p-value

Constant 16.992 1.492 11.388 0.000

Profits 0.215 0.096 2.232 0.039

Lagged Profits 0.076 0.094 0.806 0.431

Wages 0.774 0.048 16.234 0.000

*************************************************** ******

Value p-value

Breusch-Godfrey test 2.129 0.345

• The test is farther away from the rejection region than before, and the residual

plot is a bit more favorable for the hypothesis of nonautocorrelated residuals,

IMHO. For this reason, it seems that the AR(1) correction might have improved

the estimation.

• Nevertheless, there has not been much of an effect on the estimated coefficients

nor on their estimated standard errors. This is probably because the estimated

AR(1) coefficient is not very large (around 0.2)
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• The existence or not of autocorrelation in this model will beimportant later, in

the section on simultaneous equations.

7.7. Exercises

Exercises

(1) Comparing the variances of the OLS and GLS estimators, I claimed that the following

holds:

Var(β̂)−Var(β̂GLS) = AΣA
′

Verify that this is true.

(2) Show that the GLS estimator can be defined as

β̂GLS= argmin(y−Xβ)′Σ−1(y−Xβ)

(3) The limiting distribution of the OLS estimator with heteroscedasticity of unknown

form is √
n
(

β̂−β
)

d→ N
(
0,Q−1

X ΩQ−1
X

)
,

where

lim
n→∞
E

(
X′εε′X

n

)
= Ω

Explain why

Ω̂ =
1
n

n

∑
t=1

xtx
′
t ε̂

2
t

is a consistent estimator of this matrix.

(4) Define thev− th autocovariance of a covariance stationary processmt , whereE(mt =

0) as

Γv = E (mtm
′
t−v).

Show thatE (mtm′
t+v) = Γ′

v.

(5) For the Nerlove model

lnC = β j
1 + β j

2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

assume thatV(εt |xt) = σ2
j , j = 1,2, ...,5. That is, the variance depends upon which of

the 5 firm size groups the observation belongs to.

a) Apply White’s test using the OLS residuals, to test for homoscedasticity

b) Calculate the FGLS estimator and interpret the estimation results.

c) Test the transformed model to check whether it appears to satisfy homoscedasticity.
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Stochastic regressors

Up to now we have treated the regressors as fixed, which is clearly unrealistic. Now we

will assume they are random. There are several ways to think of the problem. First, if we

are interested in an analysisconditionalon the explanatory variables, then it is irrelevant if

they are stochastic or not, since conditional on the values of they regressors take on, they

are nonstochastic, which is the case already considered.

• In cross-sectional analysis it is usually reasonable to make the analysis condi-

tional on the regressors.

• In dynamic models, whereyt may depend onyt−1, a conditional analysis is not

sufficiently general, since we may want to predict into the future many periods

out, so we need to consider the behavior ofβ̂ and the relevant test statistics un-

conditional onX.

The model we’ll deal will involve a combination of the following assumptions

Linearity : the model is a linear function of the parameter vectorβ0 :

yt = x′tβ0 + εt ,

or in matrix form,

y = Xβ0 + ε,

wherey is n× 1, X =
(

x1 x2 · · · xn

)′
, wherext is K × 1, andβ0 andε are con-

formable.

Stochastic, linearly independent regressors

X has rankK with probability 1

X is stochastic

limn→∞ Pr
(

1
nX′X = QX

)
= 1, whereQX is a finite positive definite matrix.

Central limit theorem

n−1/2X′ε d→ N(0,QXσ2
0)

Normality (Optional) : ε|X ∼ N(0,σ2In): ε is normally distributed

Strongly exogenous regressors:

E (εt |X) = 0,∀t(8.0.1)

Weakly exogenous regressors:

E(εt |xt) = 0,∀t(8.0.2)

In both cases,x′tβ is the conditional mean ofyt givenxt : E(yt |xt) = x′tβ

96
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8.1. Case 1

Normality of ε, strongly exogenous regressors

In this case,

β̂ = β0 +(X′X)−1X′ε

E (β̂|X) = β0 +(X′X)−1X′E (ε|X)

= β0

and since this holds for allX, E(β̂) = β, unconditional onX. Likewise,

β̂|X ∼ N
(
β,(X′X)−1σ2

0

)

• If the density ofX is dµ(X), the marginal density of̂β is obtained by multiplying

the conditional density bydµ(X) and integrating overX. Doing this leads to a

nonnormal density for̂β, in small samples.

• However, conditional onX, the usual test statistics have thet, F andχ2 distribu-

tions. Importantly,these distributions don’t depend onX, so when marginalizing

to obtain the unconditional distribution, nothing changes. The tests are valid in

small samples.

• Summary: WhenX is stochastic but strongly exogenous andε is normally dis-

tributed:

(1) β̂ is unbiased

(2) β̂ is nonnormally distributed

(3) The usual test statistics have the same distribution as with nonstochasticX.

(4) The Gauss-Markov theorem still holds, since it holds conditionally on X,

and this is true for allX.

(5) Asymptotic properties are treated in the next section.

8.2. Case 2

ε nonnormally distributed, strongly exogenous regressors

The unbiasedness ofβ̂ carries through as before. However, the argument regardingtest

statistics doesn’t hold, due to nonnormality ofε. Still, we have

β̂ = β0 +(X′X)−1X′ε

= β0 +

(
X′X

n

)−1 X′ε
n

Now (
X′X

n

)−1
p→ Q−1

X

by assumption, and
X′ε
n

=
n−1/2X′ε√

n
p→ 0

since the numerator converges to aN(0,QXσ2) r.v. and the denominator still goes to infin-

ity. We have unbiasedness and the variance disappearing, so, the estimator is consistent:

β̂ p→ β0.
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Considering the asymptotic distribution

√
n
(

β̂−β0

)
=

√
n

(
X′X

n

)−1 X′ε
n

=

(
X′X

n

)−1

n−1/2X′ε

so √
n
(

β̂−β0

)
d→ N(0,Q−1

X σ2
0)

directly following the assumptions.Asymptotic normality of the estimator still holds.Since

the asymptotic results on all test statistics only require this, all the previous asymptotic

results on test statistics are also valid in this case.

• Summary: Under strongly exogenous regressors, withε normal or nonnormal,̂β
has the properties:

(1) Unbiasedness

(2) Consistency

(3) Gauss-Markov theorem holds, since it holds in the previous case and doesn’t

depend on normality.

(4) Asymptotic normality

(5) Tests are asymptotically valid

(6) Tests are not valid in small samples if the error is normally distributed

8.3. Case 3

Weakly exogenous regressors

An important class of models aredynamic models, where lagged dependent variables

have an impact on the current value. A simple version of thesemodels that captures the

important points is

yt = z′tα+
p

∑
s=1

γsyt−s+ εt

= x′tβ + εt

where nowxt contains lagged dependent variables. Clearly, even withE(εt |xt) = 0, X and

ε are not uncorrelated, so one can’t show unbiasedness. For example,

E (εt−1xt) 6= 0

sincext containsyt−1 (which is a function ofεt−1) as an element.

• This fact implies that all of the small sample properties such as unbiasedness,

Gauss-Markov theorem, and small sample validity of test statistics do not hold

in this case. Recall Figure3.7.2. This is a case of weakly exogenous regressors,

and we see that the OLS estimator is biased in this case.

• Nevertheless, under the above assumptions, all asymptoticproperties continue to

hold, using the same arguments as before.

8.4. When are the assumptions reasonable?

The two assumptions we’ve added are
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(1) limn→∞ Pr
(

1
nX′X = QX

)
= 1, aQX finite positive definite matrix.

(2) n−1/2X′ε d→ N(0,QXσ2
0)

The most complicated case is that of dynamic models, since the other cases can be treated as

nested in this case. There exist a number of central limit theorems for dependent processes,

many of which are fairly technical. We won’t enter into details (see Hamilton, Chapter 7

if you’re interested). A main requirement for use of standard asymptotics for a dependent

sequence

{st} = {1
n

n

∑
t=1

zt}

to converge in probability to a finite limit is thatzt bestationary, in some sense.

• Strong stationarity requires that the joint distribution of the set

{zt ,zt+s,zt−q, ...}

not depend ont.

• Covariance (weak) stationarity requires that the first and second moments of this

set not depend ont.

• An example of a sequence that doesn’t satisfy this is an AR(1)process with a unit

root (arandom walk):

xt = xt−1 + εt

εt ∼ IIN(0,σ2)

One can show that the variance ofxt depends upont in this case, so it’s not

weakly stationary.

• The series sint + εt has a first moment that depends upont, so it’s not weakly

stationary either.

Stationarity prevents the process from trending off to plusor minus infinity, and prevents

cyclical behavior which would allow correlations between far removedzt zndzs to be high.

Draw a picture here.

• In summary, the assumptions are reasonable when the stochastic conditioning

variables have variances that are finite, and are not too strongly dependent. The

AR(1) model with unit root is an example of a case where the dependence is too

strong for standard asymptotics to apply.

• The econometrics of nonstationary processes has been an active area of research

in the last two decades. The standard asymptotics don’t apply in this case. This

isn’t in the scope of this course.

8.5. Exercises

Exercises

(1) Show that for two random variablesA andB, if E(A|B) = 0, thenE (A f(B)) = 0. How

is this used in the proof of the Gauss-Markov theorem?

(2) Is it possible for an AR(1) model for time series data,e.g., yt = 0+0.9yt−1+ εt satisfy

weak exogeneity? Strong exogeneity? Discuss.



CHAPTER 9

Data problems

In this section well consider problems associated with the regressor matrix: collinear-

ity, missing observation and measurement error.

9.1. Collinearity

Collinearity is the existence of linear relationships amongst the regressors. We can

always write

λ1x1 + λ2x2 + · · ·+ λKxK +v= 0

wherexi is the ith column of the regressor matrixX, and v is an n× 1 vector. In the

case that there exists collinearity, the variation inv is relatively small, so that there is an

approximately exact linear relation between the regressors.

• “relative” and “approximate” are imprecise, so it’s difficult to define when collinearilty

exists.

In the extreme, if there are exact linear relationships (every element ofv equal) thenρ(X)<

K, soρ(X′X) < K, soX′X is not invertible and the OLS estimator is not uniquely defined.

For example, if the model is

yt = β1 + β2x2t + β3x3t + εt

x2t = α1 + α2x3t

then we can write

yt = β1 + β2(α1 + α2x3t)+ β3x3t + εt

= β1 + β2α1 + β2α2x3t + β3x3t + εt

= (β1 + β2α1)+ (β2α2 + β3)x3t

= γ1 + γ2x3t + εt

• The γ′s can be consistently estimated, but since theγ′s define two equations in

threeβ′s, theβ′s can’t be consistently estimated (there are multiple valuesof β
that solve the fonc). Theβ′sareunidentifiedin the case of perfect collinearity.

• Perfect collinearity is unusual, except in the case of an error in construction of

the regressor matrix, such as including the same regressor twice.

Another case where perfect collinearity may be encounteredis with models with dummy

variables, if one is not careful. Consider a model of rental price (yi) of an apartment. This

could depend factors such as size, quality etc., collected in xi , as well as on the location of

the apartment. LetBi = 1 if the ith apartment is in Barcelona,Bi = 0 otherwise. Similarly,

100
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FIGURE 9.1.1. s(β) when there is no collinearity
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defineGi , Ti andLi for Girona, Tarragona and Lleida. One could use a model such as

yi = β1 + β2Bi + β3Gi + β4Ti + β5Li +x′iγ+ εi

In this model,Bi + Gi + Ti + Li = 1, ∀i, so there is an exact relationship between these

variables and the column of ones corresponding to the constant. One must either drop the

constant, or one of the qualitative variables.

9.1.1. A brief aside on dummy variables.Introduce a brief discussion of dummy

variables here.

9.1.2. Back to collinearity. The more common case, if one doesn’t make mistakes

such as these, is the existence of inexact linear relationships, i.e., correlations between the

regressors that are less than one in absolute value, but not zero. The basic problem is

that when two (or more) variables move together, it is difficult to determine their separate

influences. This is reflected in imprecise estimates,i.e., estimates with high variances.With

economic data, collinearity is commonly encountered, and is often a severe problem.

When there is collinearity, the minimizing point of the objective function that defines

the OLS estimator (s(β), the sum of squared errors) is relatively poorly defined. This is

seen in Figures9.1.1and9.1.2.

To see the effect of collinearity on variances, partition the regressor matrix as

X =
[

x W
]

wherex is the first column ofX (note: we can interchange the columns ofX isf we like, so

there’s no loss of generality in considering the first column). Now, the variance of̂β, under
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FIGURE 9.1.2. s(β) when there is collinearity
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the classical assumptions, is

V(β̂) =
(
X′X

)−1 σ2

Using the partition,

X′X =

[
x′x x′W

W′x W′W

]

and following a rule for partitioned inversion,
(
X′X

)−1
1,1 =

(
x′x−x′W(W′W)−1W′x

)−1

=
(

x′
(

In−W(W′W)
′1W′

)
x
)−1

=
(
ESSx|W

)−1

where byESSx|W we mean the error sum of squares obtained from the regression

x = Wλ +v.

Since

R2 = 1−ESS/TSS,

we have

ESS= TSS(1−R2)

so the variance of the coefficient corresponding tox is

V(β̂x) =
σ2

TSSx(1−R2
x|W)

We see three factors influence the variance of this coefficient. It will be high if
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(1) σ2 is large

(2) There is little variation inx. Draw a picture here.

(3) There is a strong linear relationship betweenx and the other regressors, so that

W can explain the movement inx well. In this case,R2
x|W will be close to 1. As

R2
x|W → 1,V(β̂x) → ∞.

The last of these cases is collinearity.

Intuitively, when there are strong linear relations between the regressors, it is difficult

to determine the separate influence of the regressors on the dependent variable. This can

be seen by comparing the OLS objective function in the case ofno correlation between

regressors with the objective function with correlation between the regressors. See the

figures nocollin.ps (no correlation) and collin.ps (correlation), available on the web site.

9.1.3. Detection of collinearity. The best way is simply to regress each explanatory

variable in turn on the remaining regressors. If any of theseauxiliary regressions has a

high R2, there is a problem of collinearity. Furthermore, this procedure identifies which

parameters are affected.

• Sometimes, we’re only interested in certain parameters. Collinearity isn’t a prob-

lem if it doesn’t affect what we’re interested in estimating.

An alternative is to examine the matrix of correlations between the regressors. High corre-

lations are sufficient but not necessary for severe collinearity.

Also indicative of collinearity is that the model fits well (high R2), but none of the

variables is significantly different from zero (e.g., theirseparate influences aren’t well de-

termined).

In summary, the artificial regressions are the best approachif one wants to be careful.

9.1.4. Dealing with collinearity. More information

Collinearity is a problem of an uninformative sample. The first question is: is all the

available information being used? Is more data available? Are there coefficient restrictions

that have been neglected?Picture illustrating how a restriction can solve problem ofperfect

collinearity.

Stochastic restrictions and ridge regression

Supposing that there is no more data or neglected restrictions, one possibility is to

change perspectives, to Bayesian econometrics. One can express prior beliefs regarding the

coefficients using stochastic restrictions. A stochastic linear restriction would be something

of the form

Rβ = r +v

whereR andr are as in the case of exact linear restrictions, butv is a random vector. For

example, the model could be

y = Xβ + ε

Rβ = r +v(
ε
v

)
∼ N

(
0

0

)
,

(
σ2

ε In 0n×q

0q×n σ2
vIq

)
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This sort of model isn’t in line with the classical interpretation of parameters as constants:

according to this interpretation the left hand side ofRβ = r + v is constant but the right is

random. This model does fit the Bayesian perspective: we combine information coming

from the model and the data, summarized in

y = Xβ + ε

ε ∼ N(0,σ2
ε In)

with prior beliefs regarding the distribution of the parameter, summarized in

Rβ ∼ N(r,σ2
vIq)

Since the sample is random it is reasonable to suppose thatE (εv′) = 0, which is the last

piece of information in the specification. How can you estimate using this model? The

solution is to treat the restrictions as artificial data. Write
[

y

r

]
=

[
X

R

]
β +

[
ε
v

]

This model is heteroscedastic, sinceσ2
ε 6= σ2

v. Define theprior precision k= σε/σv. This

expresses the degree of belief in the restriction relative to the variability of the data. Sup-

posing that we specifyk, then the model
[

y

kr

]
=

[
X

kR

]
β +

[
ε
kv

]

is homoscedastic and can be estimated by OLS. Note that this estimator is biased. It is

consistent, however, given thatk is a fixed constant, even if the restriction is false (this

is in contrast to the case of false exact restrictions). To see this, note that there areQ

restrictions, whereQ is the number of rows ofR. As n→ ∞, theseQ artificial observations

have no weight in the objective function, so the estimator has the same limiting objective

function as the OLS estimator, and is therefore consistent.

To motivate the use of stochastic restrictions, consider the expectation of the squared

length ofβ̂:

E (β̂′β̂) = E

{(
β +

(
X′X

)−1
X′ε
)′(

β +
(
X′X

)−1
X′ε
)}

= β′β +E
(
ε′X(X′X)−1(X′X)−1X′ε

)

= β′β +Tr
(
X′X

)−1 σ2

= β′β + σ2
K

∑
i=1

λi(the trace is the sum of eigenvalues)

> β′β + λmax(X′X−1)σ2(the eigenvalues are all positive, sinceX′X is p.d.

so

E (β̂′β̂) > β′β +
σ2

λmin(X′X)

whereλmin(X′X) is the minimum eigenvalue ofX′X (which is the inverse of the maximum

eigenvalue of(X′X)−1). As collinearity becomes worse and worse,X′X becomes more
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nearly singular, soλmin(X′X) tends to zero (recall that the determinant is the product of the

eigenvalues) andE (β̂′β̂) tends to infinite. On the other hand,β′β is finite.

Now considering the restrictionIKβ = 0+v. With this restriction the model becomes
[

y

0

]
=

[
X

kIK

]
β +

[
ε
kv

]

and the estimator is

β̂ridge =

([
X′ kIK

][ X

kIK

])−1[
X′ IK

][ y

0

]

=
(
X′X +k2IK

)−1
X′y

This is the ordinaryridge regressionestimator. The ridge regression estimator can be seen

to addk2IK , which is nonsingular, toX′X, which is more and more nearly singular as

collinearity becomes worse and worse. Ask→ ∞, the restrictions tend toβ = 0, that is, the

coefficients are shrunken toward zero. Also, the estimator tends to

β̂ridge =
(
X′X +k2IK

)−1
X′y→

(
k2IK

)−1
X′y =

X′y
k2 → 0

soβ̂′
ridgeβ̂ridge → 0. This is clearly a false restriction in the limit, if our original model is at

al sensible.

There should be some amount of shrinkage that is in fact a truerestriction. The prob-

lem is to determine thek such that the restriction is correct. The interest in ridge regression

centers on the fact that it can be shown that there exists ak such thatMSE(β̂ridge) < β̂OLS.

The problem is that thisk depends onβ andσ2, which are unknown.

The ridge trace method plotsβ̂′
ridgeβ̂ridge as a function ofk, and chooses the value ofk

that “artistically” seems appropriate (e.g., where the effect of increasingk dies off). Draw

picture here.This means of choosingk is obviously subjective. This is not a problem from

the Bayesian perspective: the choice ofk reflects prior beliefs about the length ofβ.

In summary, the ridge estimator offers some hope, but it is impossible to guarantee

that it will outperform the OLS estimator. Collinearity is afact of life in econometrics, and

there is no clear solution to the problem.

9.2. Measurement error

Measurement error is exactly what it says, either the dependent variable or the re-

gressors are measured with error. Thinking about the way economic data are reported,

measurement error is probably quite prevalent. For example, estimates of growth of GDP,

inflation, etc. are commonly revised several times. Why should the last revision necessarily

be correct?

9.2.1. Error of measurement of the dependent variable.Measurement errors in the

dependent variable and the regressors have important differences. First consider error in
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measurement of the dependent variable. The data generatingprocess is presumed to be

y∗ = Xβ + ε

y = y∗ +v

vt ∼ iid(0,σ2
v)

wherey∗ is the unobservable true dependent variable, andy is what is observed. We assume

thatε andv are independent and thaty∗ = Xβ+ε satisfies the classical assumptions. Given

this, we have

y+v= Xβ + ε

so

y = Xβ + ε−v

= Xβ + ω

ωt ∼ iid(0,σ2
ε + σ2

v)

• As long asv is uncorrelated withX, this model satisfies the classical assumptions

and can be estimated by OLS. This type of measurement error isn’t a problem,

then.

9.2.2. Error of measurement of the regressors.The situation isn’t so good in this

case. The DGP is

yt = x∗′t β + εt

xt = x∗t +vt

vt ∼ iid(0,Σv)

whereΣv is a K ×K matrix. NowX∗ contains the true, unobserved regressors, andX is

what is observed. Again assume thatv is independent ofε, and that the modely = X∗β+ ε
satisfies the classical assumptions. Now we have

yt = (xt −vt)
′ β + εt

= x′tβ−v′tβ + εt

= x′tβ + ωt

The problem is that now there is a correlation betweenxt andωt , since

E (xtωt) = E
(
(x∗t +vt)

(
−v′tβ + εt

))

= −Σvβ

where

Σv = E
(
vtv

′
t

)
.

Because of this correlation, the OLS estimator is biased andinconsistent, just as in the

case of autocorrelated errors with lagged dependent variables. In matrix notation, write the

estimated model as

y = Xβ + ω
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We have that

β̂ =

(
X′X

n

)−1(X′y
n

)

and

plim

(
X′X

n

)−1

= plim
(X∗′+V′)(X∗ +V)

n

= (QX∗ + Σv)
−1

sinceX∗ andV are independent, and

plim
V ′V

n
= limE

1
n

n

∑
t=1

vtv
′
t

= Σv

Likewise,

plim

(
X′y
n

)
= plim

(X∗′ +V′)(X∗β + ε)
n

= QX∗β

so

plimβ̂ = (QX∗ + Σv)
−1QX∗β

So we see that the least squares estimator is inconsistent when the regressors are measured

with error.

• A potential solution to this problem is the instrumental variables (IV) estimator,

which we’ll discuss shortly.

9.3. Missing observations

Missing observations occur quite frequently: time series data may not be gathered in

a certain year, or respondents to a survey may not answer all questions. We’ll consider

two cases: missing observations on the dependent variable and missing observations on the

regressors.

9.3.1. Missing observations on the dependent variable.In this case, we have

y = Xβ + ε

or [
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]

wherey2 is not observed. Otherwise, we assume the classical assumptions hold.

• A clear alternative is to simply estimate using the compete observations

y1 = X1β + ε1

Since these observations satisfy the classical assumptions, one could estimate by

OLS.
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• The question remains whether or not one could somehow replace the unobserved

y2 by a predictor, and improve over OLS in some sense. Let ˆy2 be the predictor

of y2. Now

β̂ =

{[
X1

X2

]′[
X1

X2

]}−1[
X1

X2

]′[
y1

ŷ2

]

=
[
X′

1X1 +X′
2X2
]−1[

X′
1y1 +X′

2ŷ2
]

Recall that the OLS fonc are

X′Xβ̂ = X′y

so if we regressed using only the first (complete) observations, we would have

X′
1X1β̂1 = X′

1y1.

Likewise, an OLS regression using only the second (filled in)observations would give

X′
2X2β̂2 = X′

2ŷ2.

Substituting these into the equation for the overall combined estimator gives

β̂ =
[
X′

1X1 +X′
2X2
]−1
[
X′

1X1β̂1 +X′
2X2β̂2

]

=
[
X′

1X1 +X′
2X2
]−1

X′
1X1β̂1 +

[
X′

1X1 +X′
2X2
]−1

X′
2X2β̂2

≡ Aβ̂1 +(IK −A)β̂2

where

A≡
[
X′

1X1 +X′
2X2
]−1

X′
1X1

and we use
[
X′

1X1 +X′
2X2
]−1

X′
2X2 =

[
X′

1X1 +X′
2X2
]−1[(

X′
1X1 +X′

2X2
)
−X′

1X1
]

= IK −
[
X′

1X1 +X′
2X2
]−1

X′
1X1

= IK −A.

Now,

E (β̂) = Aβ +(IK −A)E
(

β̂2

)

and this will be unbiased only ifE
(

β̂2

)
= β.

• The conclusion is the this filled in observations alone wouldneed to define an

unbiased estimator. This will be the case only if

ŷ2 = X2β + ε̂2

whereε̂2 has mean zero. Clearly, it is difficult to satisfy this condition without

knowledge ofβ.

• Note that putting ˆy2 = ȳ1 does not satisfy the condition and therefore leads to a

biased estimator.

EXERCISE13. Formally prove this last statement.
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• One possibility that has been suggested (see Greene, page 275) is to estimateβ
using a first round estimation using only the complete observations

β̂1 = (X′
1X1)

−1X′
1y1

then use this estimate,β̂1,to predicty2 :

ŷ2 = X2β̂1

= X2(X
′
1X1)

−1X′
1y1

Now, the overall estimate is a weighted average ofβ̂1 andβ̂2, just as above, but

we have

β̂2 = (X′
2X2)

−1X′
2ŷ2

= (X′
2X2)

−1X′
2X2β̂1

= β̂1

This shows that this suggestion is completely empty of content: the final estima-

tor is the same as the OLS estimator using only the complete observations.

9.3.2. The sample selection problem.In the above discussion we assumed that the

missing observations are random. The sample selection problem is a case where the missing

observations are not random. Consider the model

y∗t = x′tβ + εt

which is assumed to satisfy the classical assumptions. However,y∗t is not always observed.

What is observed isyt defined as

yt = y∗t if y∗t ≥ 0

Or, in other words,y∗t is missing when it is less than zero.

The difference in this case is that the missing values are notrandom: they are correlated

with thext . Consider the case

y∗ = x+ ε

with V(ε) = 25, but using only the observations for whichy∗ > 0 to estimate. Figure9.3.1

illustrates the bias. The Octave program issampsel.m

9.3.3. Missing observations on the regressors.Again the model is
[

y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]

but we assume now that each row ofX2 has an unobserved component(s). Again, one could

just estimate using the complete observations, but it may seem frustrating to have to drop

observations simply because of a single missing variable. In general, if the unobserved

X2 is replaced by some prediction,X∗
2 , then we are in the case of errors of observation.

As before, this means that the OLS estimator is biased whenX∗
2 is used instead ofX2.

Consistency is salvaged, however, as long as the number of missing observations doesn’t

increase withn.

http://pareto.uab.es/mcreel/Econometrics/Examples/Figures/sampsel.m


EXERCISES 110

FIGURE 9.3.1. Sample selection bias
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• Including observations that have missing values replaced by ad hocvalues can be

interpreted as introducing false stochastic restrictions. In general, this introduces

bias. It is difficult to determine whether MSE increases or decreases. Monte

Carlo studies suggest that it is dangerous to simply substitute the mean, for ex-

ample.

• In the case that there is only one regressor other than the constant, subtitution of

x̄ for the missingxt does not lead to bias. This is a special case that doesn’t hold

for K > 2.

EXERCISE14. Prove this last statement.

• In summary, if one is strongly concerned with bias, it is bestto drop observations

that have missing components. There is potential for reduction of MSE through

filling in missing elements with intelligent guesses, but this could also increase

MSE.

9.4. Exercises

Exercises

(1) Consider the Nerlove model

lnC = β j
1 + β j

2 lnQ+ β3 lnPL + β4 lnPF + β5 lnPK + ε

When this model is estimated by OLS, some coefficients are notsignificant. This may

be due to collinearity.
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Exercises

(a) Calculate the correlation matrix of the regressors.

(b) Perform artificial regressions to see if collinearity isa problem.

(c) Apply the ridge regression estimator.

Exercises

(i) Plot the ridge trace diagram

(ii) Check what happens ask goes to zero, and ask becomes very large.



CHAPTER 10

Functional form and nonnested tests

Though theory often suggests which conditioning variablesshould be included, and

suggests the signs of certain derivatives, it is usually silent regarding the functional form of

the relationship between the dependent variable and the regressors. For example, consider-

ing a cost function, one could have a Cobb-Douglas model

c = Awβ1
1 wβ2

2 qβqeε

This model, after taking logarithms, gives

lnc = β0 + β1 lnw1 + β2 lnw2 + βq lnq+ ε

whereβ0 = lnA. Theory suggests thatA> 0,β1 > 0,β2 > 0,β3 > 0. This model isn’t com-

patible with a fixed cost of production sincec= 0 whenq= 0. Homogeneity of degree one

in input prices suggests thatβ1 + β2 = 1, while constant returns to scale impliesβq = 1.

While this model may be reasonable in some cases, an alternative

√
c = β0 + β1

√
w1 + β2

√
w2 + βq

√
q+ ε

may be just as plausible. Note that
√

x and ln(x) look quite alike, for certain values of the

regressors, and up to a linear transformation, so it may be difficult to choose between these

models.

The basic point is that many functional forms are compatiblewith the linear-in-parameters

model, since this model can incorporate a wide variety of nonlinear transformations of the

dependent variable and the regressors. For example, suppose thatg(·) is a real valued func-

tion and thatx(·) is a K− vector-valued function. The following model is linear in the

parameters but nonlinear in the variables:

xt = x(zt)

yt = x′tβ + εt

There may beP fundamental conditioning variableszt , but there may beK regressors,

whereK may be smaller than, equal to or larger thanP. For example,xt could include

squares and cross products of the conditioning variables inzt .

10.1. Flexible functional forms

Given that the functional form of the relationship between the dependent variable and

the regressors is in general unknown, one might wonder if there exist parametric mod-

els that can closely approximate a wide variety of functional relationships. A “Diewert-

Flexible” functional form is defined as one such that the function, the vector of first deriva-

tives and the matrix of second derivatives can take on an arbitrary valueat a single data

112
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point. Flexibility in this sense clearly requires that there be at least

K = 1+P+
(
P2−P

)
/2+P

free parameters: one for each independent effect that we wish to model.

Suppose that the model is

y = g(x)+ ε

A second-order Taylor’s series expansion (with remainder term) of the functiong(x) about

the pointx = 0 is

g(x) = g(0)+x′Dxg(0)+
x′D2

xg(0)x
2

+R

Use the approximation, which simply drops the remainder term, as an approximation to

g(x) :

g(x) ≃ gK(x) = g(0)+x′Dxg(0)+
x′D2

xg(0)x
2

As x→ 0, the approximation becomes more and more exact, in the sense thatgK(x)→ g(x),

DxgK(x)→Dxg(x) andD2
xgK(x)→D2

xg(x). Forx= 0, the approximation is exact, up to the

second order. The idea behind many flexible functional formsis to note thatg(0), Dxg(0)

andD2
xg(0) are all constants. If we treat them as parameters, the approximation will have

exactly enough free parameters to approximate the functiong(x), which is of unknown

form, exactly, up to second order, at the pointx = 0. The model is

gK(x) = α+x′β +1/2x′Γx

so the regression model to fit is

y = α+x′β +1/2x′Γx+ ε

• While the regression model has enough free parameters to be Diewert-flexible,

the question remains: isplimα̂ = g(0)? Is plimβ̂ = Dxg(0)? Is plimΓ̂ = D2
xg(0)?

• The answer is no, in general. The reason is that if we treat thetrue values of the

parameters as these derivatives, thenε is forced to play the part of the remainder

term, which is a function ofx, so thatx andε are correlated in this case. As

before, the estimator is biased in this case.

• A simpler example would be to consider a first-order T.S. approximation to a

quadratic function.Draw picture.

• The conclusion is that “flexible functional forms” aren’t really flexible in a use-

ful statistical sense, in that neither the function itself nor its derivatives are con-

sistently estimated, unless the function belongs to the parametric family of the

specified functional form. In order to lead to consistent inferences, the regression

model must be correctly specified.

10.1.1. The translog form. In spite of the fact that FFF’s aren’t really flexible for the

purposes of econometric estimation and inference, they areuseful, and they are certainly

subject to less bias due to misspecification of the functional form than are many popular

forms, such as the Cobb-Douglas or the simple linear in the variables model. The translog

model is probably the most widely used FFF. This model is as above, except that the vari-

ables are subjected to a logarithmic tranformation. Also, the expansion point is usually
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taken to be the sample mean of the data, after the logarithmictransformation. The model

is defined by

y = ln(c)

x = ln

(
z
z̄

)

= ln(z)− ln(z̄)

y = α+x′β +1/2x′Γx+ ε

In this presentation, thet subscript that distinguishes observations is suppressed for sim-

plicity. Note that

∂y
∂x

= β + Γx

=
∂ ln(c)
∂ ln(z)

(the other part ofxis constant)

=
∂c
∂z

z
c

which is the elasticity ofc with respect toz. This is a convenient feature of the translog

model. Note that at the means of the conditioning variables,z̄, x = 0, so

∂y
∂x

∣∣∣∣
z=z̄

= β

so theβ are the first-order elasticities, at the means of the data.

To illustrate, consider thaty is cost of production:

y = c(w,q)

wherew is a vector of input prices andq is output. We could add other variables by

extendingq in the obvious manner, but this is supressed for simplicity.By Shephard’s

lemma, the conditional factor demands are

x =
∂c(w,q)

∂w

and the cost shares of the factors are therefore

s=
wx
c

=
∂c(w,q)

∂w
w
c

which is simply the vector of elasticities of cost with respect to input prices. If the cost

function is modeled using a translog function, we have

ln(c) = α+x′β +z′δ+1/2
[

x′ z
][ Γ11 Γ12

Γ′
12 Γ22

][
x

z

]

= α+x′β +z′δ+1/2x′Γ11x+x′Γ12z+1/2z2γ22
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wherex = ln(w/w̄) (element-by-element division) andz= ln(q/q̄), and

Γ11 =

[
γ11 γ12

γ12 γ22

]

Γ12 =

[
γ13

γ23

]

Γ22 = γ33.

Note that symmetry of the second derivatives has been imposed.

Then the share equations are just

s= β +
[

Γ11 Γ12

][ x

z

]

Therefore, the share equations and the cost equation have parameters in common. By

pooling the equations together and imposing the (true) restriction that the parameters of the

equations be the same, we can gain efficiency.

To illustrate in more detail, consider the case of two inputs, so

x =

[
x1

x2

]
.

In this case the translog model of the logarithmic cost function is

lnc = α+ β1x1 + β2x2 + δz+
γ11

2
x2

1 +
γ22

2
x2

2 +
γ33

2
z2 + γ12x1x2 + γ13x1z+ γ23x2z

The two cost shares of the inputs are the derivatives of lnc with respect tox1 andx2:

s1 = β1 + γ11x1 + γ12x2 + γ13z

s2 = β2 + γ12x1 + γ22x2 + γ13z

Note that the share equations and the cost equation have parameters in common. One

can do a pooled estimation of the three equations at once, imposing that the parameters

are the same. In this way we’re using more observations and therefore more information,

which will lead to imporved efficiency. Note that this does assume that the cost equation

is correctly specified (i.e., not an approximation), since otherwise the derivatives would

not be the true derivatives of the log cost function, and would then be misspecified for the

shares. To pool the equations, write the model in matrix form(adding in error terms)




lnc

s1

s2


=




1 x1 x2 z
x2
1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

0 0 1 0 0 x2 0 x1 0 z







α
β1

β2

δ
γ11

γ22

γ33

γ12

γ13

γ23




+




ε1

ε2

ε3
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This isoneobservation on the three equations. With the appropriate notation, a single

observation can be written as

yt = Xtθ+ εt

The overall model would stackn observations on the three equations for a total of 3n

observations: 


y1

y2
...

yn




=




X1

X2
...

Xn




θ+




ε1

ε2
...

εn




Next we need to consider the errors. For observationt the errors can be placed in a vector

εt =




ε1t

ε2t

ε3t




First consider the covariance matrix of this vector: the shares are certainly correlated

since they must sum to one. (In fact, with 2 shares the variances are equal and the covari-

ance is -1 times the variance. General notation is used to allow easy extension to the case

of more than 2 inputs). Also, it’s likely that the shares and the cost equation have differ-

ent variances. Supposing that the model is covariance stationary, the variance ofεt won′t

depend upont:

Varεt = Σ0 =




σ11 σ12 σ13

· σ22 σ23

· · σ33




Note that this matrix is singular, since the shares sum to 1. Assuming that there is no au-

tocorrelation, the overall covariance matrix has theseemingly unrelated regressions(SUR)

structure.

Var




ε1

ε2
...

εn




= Σ

=




Σ0 0 · · · 0

0 Σ0
. . .

...
...

. . . 0

0 · · · 0 Σ0




= In⊗Σ0

where the symbol⊗ indicates theKronecker product. The Kronecker product of two ma-

tricesA andB is

A⊗B=




a11B a12B · · · a1qB

a21B
. . .

...
...

apqB · · · apqB




.
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10.1.2. FGLS estimation of a translog model.So, this model has heteroscedasticity

and autocorrelation, so OLS won’t be efficient. The next question is: how do we estimate

efficiently using FGLS? FGLS is based upon inverting the estimated error covariancêΣ. So

we need to estimateΣ.

An asymptotically efficient procedure is (supposing normality of the errors)

(1) Estimate each equation by OLS

(2) EstimateΣ0 using

Σ̂0 =
1
n

n

∑
t=1

ε̂t ε̂′t

(3) Next we need to account for the singularity ofΣ0. It can be shown that̂Σ0 will

be singular when the shares sum to one, so FGLS won’t work. Thesolution is to

drop one of the share equations, for example the second. The model becomes

[
lnc

s1

]
=

[
1 x1 x2 z

x2
1
2

x2
2
2

z2

2 x1x2 x1z x2z

0 1 0 0 x1 0 0 x2 z 0

]




α
β1

β2

δ
γ11

γ22

γ33

γ12

γ13

γ23




+

[
ε1

ε2

]

or in matrix notation for the observation:

y∗t = X∗
t θ+ ε∗t

and in stacked notation for all observations we have the 2n observations:



y∗1
y∗2
...

y∗n




=




X∗
1

X∗
2

...

X∗
n




θ+




ε∗1
ε∗2
...

ε∗n




or, finally in matrix notation for all observations:

y∗ = X∗θ+ ε∗

Considering the error covariance, we can define

Σ∗
0 = Var

[
ε1

ε2

]

Σ∗ = In⊗Σ∗
0

DefineΣ̂∗
0 as the leading 2×2 block ofΣ̂0 , and form

Σ̂∗ = In⊗ Σ̂∗
0.
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This is a consistent estimator, following the consistency of OLS and applying a

LLN.

(4) Next compute the Cholesky factorization

P̂0 = Chol
(
Σ̂∗

0

)−1

(I am assuming this is defined as an upper triangular matrix, which is consis-

tent with the way Octave does it) and the Cholesky factorization of the overall

covariance matrix of the 2 equation model, which can be calculated as

P̂ = CholΣ̂∗ = In⊗ P̂0

(5) Finally the FGLS estimator can be calculated by applyingOLS to the transformed

model

P̂′y∗ = P̂′X∗θ+
ˆ̂ ′Pε∗

or by directly using the GLS formula

θ̂FGLS=
(

X∗′ (Σ̂∗
0

)−1
X∗
)−1

X∗′ (Σ̂∗
0

)−1
y∗

It is equivalent to transform each observation individually:

P̂′
0y∗y = P̂′

0X∗
t θ+ P̂′

0ε∗

and then apply OLS. This is probably the simplest approach.

A few last comments.

(1) We have assumed no autocorrelation across time. This is clearly restrictive. It is

relatively simple to relax this, but we won’t go into it here.

(2) Also, we have only imposed symmetry of the second derivatives. Another re-

striction that the model should satisfy is that the estimated shares should sum to

1. This can be accomplished by imposing

β1 + β2 = 1
3

∑
i=1

γi j = 0, j = 1,2,3.

These are linear parameter restrictions, so they are easy toimpose and will im-

prove efficiency if they are true.

(3) The estimation procedure outlined above can beiterated.That is, estimatêθFGLS

as above, then re-estimateΣ∗
0 using errors calculated as

ε̂ = y−Xθ̂FGLS

These might be expected to lead to a better estimate than the estimator based

on θ̂OLS, since FGLS is asymptotically more efficient. Then re-estimate θ us-

ing the new estimated error covariance. It can be shown that if this is repeated

until the estimates don’t change (i.e., iterated to convergence) then the result-

ing estimator is the MLE. At any rate, the asymptotic properties of the iterated

and uniterated estimators are the same, since both are basedupon a consistent

estimator of the error covariance.
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10.2. Testing nonnested hypotheses

Given that the choice of functional form isn’t perfectly clear, in that many possibilities

exist, how can one choose between forms? When one form is a parametric restriction of

another, the previously studied tests such as Wald, LR, score orqF are all possibilities. For

example, the Cobb-Douglas model is a parametric restriction of the translog: The translog

is

yt = α+x′tβ +1/2x′tΓxt + ε

where the variables are in logarithms, while the Cobb-Douglas is

yt = α+x′tβ + ε

so a test of the Cobb-Douglas versus the translog is simply a test thatΓ = 0.

The situation is more complicated when we want to testnon-nested hypotheses.If the

two functional forms are linear in the parameters, and use the same transformation of the

dependent variable, then they may be written as

M1 : y = Xβ + ε

εt ∼ iid(0,σ2
ε)

M2 : y = Zγ+ η

η ∼ iid(0,σ2
η)

We wish to test hypotheses of the form:H0 : Mi is correctly specifiedversusHA : Mi is

misspecified, for i = 1,2.

• One could account for non-iid errors, but we’ll suppress this for simplicity.

• There are a number of ways to proceed. We’ll consider theJ test, proposed by

Davidson and MacKinnon,Econometrica(1981). The idea is to artificially nest

the two models, e.g.,

y = (1−α)Xβ + α(Zγ)+ ω

If the first model is correctly specified, then the true value of α is zero. On the

other hand, if the second model is correctly specified thenα = 1.

– The problem is that this model is not identified in general. For example, if

the models share some regressors, as in

M1 : yt = β1 + β2x2t + β3x3t + εt

M2 : yt = γ1 + γ2x2t + γ3x4t + ηt

then the composite model is

yt = (1−α)β1+(1−α)β2x2t +(1−α)β3x3t + αγ1 + αγ2x2t + αγ3x4t + ωt

Combining terms we get

yt = ((1−α)β1+ αγ1)+ ((1−α)β2+ αγ2)x2t +(1−α)β3x3t + αγ3x4t + ωt

= δ1 + δ2x2t + δ3x3t + δ4x4t + ωt
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The fourδ′s are consistently estimable, butα is not, since we have four equations in 7

unknowns, so one can’t test the hypothesis thatα = 0.

The idea of theJ test is to substitutêγ in place ofγ. This is a consistent estimator

supposing that the second model is correctly specified. It will tend to a finite probability

limit even if the second model is misspecified. Then estimatethe model

y = (1−α)Xβ + α(Zγ̂)+ ω

= Xθ+ αŷ+ ω

where ŷ = Z(Z′Z)−1Z′y = PZy. In this model,α is consistently estimable, and one can

show that, under the hypothesis that the first model is correct, α p→ 0 and that the ordinary

t -statistic forα = 0 is asymptotically normal:

t =
α̂
σ̂α̂

a∼ N(0,1)

• If the second model is correctly specified, thent
p→∞, sinceα̂ tends in probability

to 1, while it’s estimated standard error tends to zero. Thusthe test will always re-

ject the false null model, asymptotically, since the statistic will eventually exceed

any critical value with probability one.

• We can reverse the roles of the models, testing the second against the first.

• It may be the case thatneithermodel is correctly specified. In this case, the test

will still reject the null hypothesis, asymptotically, if we use critical values from

theN(0,1) distribution, since as long aŝα tends to something different from zero,

|t| p→ ∞. Of course, when we switch the roles of the models the other will also be

rejected asymptotically.

• In summary, there are 4 possible outcomes when we test two models, each against

the other. Both may be rejected, neither may be rejected, or one of the two may

be rejected.

• There are other tests available for non-nested models. TheJ− test is simple to

apply when both models are linear in the parameters. TheP-test is similar, but

easier to apply whenM1 is nonlinear.

• The above presentation assumes that the same transformation of the dependent

variable is used by both models. MacKinnon, White and Davidson, Journal of

Econometrics, (1983) shows how to deal with the case of different transforma-

tions.

• Monte-Carlo evidence shows that these tests often over-reject a correctly speci-

fied model. Can use bootstrap critical values to get better-performing tests.



CHAPTER 11

Exogeneity and simultaneity

Several times we’ve encountered cases where correlation between regressors and the

error term lead to biasedness and inconsistency of the OLS estimator. Cases include au-

tocorrelation with lagged dependent variables and measurement error in the regressors.

Another important case is that of simultaneous equations. The cause is different, but the

effect is the same.

11.1. Simultaneous equations

Up until now our model is

y = Xβ + ε

where, for purposes of estimation we can treatX as fixed. This means that when estimating

β weconditiononX. When analyzing dynamic models, we’re not interested in conditioning

on X, as we saw in the section on stochastic regressors. Nevertheless, the OLS estimator

obtained by treatingX as fixed continues to have desirable asymptotic properties even in

that case.

Simultaneous equations is a different prospect. An exampleof a simultaneous equation

system is a simple supply-demand system:

Demand: qt = α1 + α2pt + α3yt + ε1t

Supply: qt = β1 + β2pt + ε2t

E

([
ε1t

ε2t

][
ε1t ε2t

])
=

[
σ11 σ12

· σ22

]

≡ Σ,∀t

The presumption is thatqt andpt are jointly determined at the same time by the intersection

of these equations. We’ll assume thatyt is determined by some unrelated process. It’s easy

to see that we have correlation between regressors and errors. Solving forpt :

α1 + α2pt + α3yt + ε1t = β1 + β2pt + ε2t

β2pt −α2pt = α1−β1+ α3yt + ε1t − ε2t

pt =
α1−β1

β2−α2
+

α3yt

β2−α2
+

ε1t − ε2t

β2−α2

Now consider whetherpt is uncorrelated withε1t :

E (ptε1t) = E

{(
α1−β1

β2−α2
+

α3yt

β2−α2
+

ε1t − ε2t

β2−α2

)
ε1t

}

=
σ11−σ12

β2−α2

121
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Because of this correlation, OLS estimation of the demand equation will be biased and

inconsistent. The same applies to the supply equation, for the same reason.

In this model,qt and pt are theendogenousvaribles (endogs), that are determined

within the system.yt is anexogenousvariable (exogs). These concepts are a bit tricky,

and we’ll return to it in a minute. First, some notation. Suppose we group together current

endogs in the vectorYt . If there areG endogs,Yt is G×1. Group current and lagged exogs,

as well as lagged endogs in the vectorXt , which isK×1. Stack the errors of theGequations

into the error vectorEt . The model, with additional assumtions, can be written as

Y′
t Γ = X′

t B+E′
t

Et ∼ N(0,Σ),∀t

E (EtE
′
s) = 0,t 6= s

We can stack alln observations and write the model as

YΓ = XB+E

E (X′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

where

Y =




Y′
1

Y′
2

...

Y′
n




,X =




X′
1

X′
2

...

X′
n




,E =




E′
1

E′
2

...

E′
n




Y is n×G, X is n×K, andE is n×G.

• This system iscomplete, in that there are as many equations as endogs.

• There is a normality assumption. This isn’t necessary, but allows us to consider

the relationship between least squares and ML estimators.

• Since there is no autocorrelation of theEt ’s, and since the columns ofE are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . .
...

· σGGIn




= In⊗Σ

• X may contain lagged endogenous and exogenous variables. These variables are

predetermined.

• We need to define what is meant by “endogenous” and “exogenous” when clas-

sifying the current period variables.
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11.2. Exogeneity

The model defines adata generating process. The model involves two sets of variables,

Yt andXt , as well as a parameter vector

θ =
[

vec(Γ)′ vec(B)′ vec∗(Σ)′
]′

• In general, without additional restrictions,θ is aG2 +GK+
(
G2−G

)
/2+G di-

mensional vector. This is the parameter vector that were interested in estimating.

• In principle, there exists a joint density function forYt andXt , which depends on

a parameter vectorφ. Write this density as

ft(Yt ,Xt |φ, It )

whereIt is the information set in periodt. This includes laggedY′
t s and lagged

Xt ’s of course. This can be factored into the density ofYt conditional onXt times

the marginal density ofXt :

ft (Yt ,Xt |φ, It ) = ft(Yt |Xt ,φ, It ) ft(Xt |φ, It )

This is a general factorization, but is may very well be the case that not all param-

eters inφ affect both factors. So useφ1 to indicate elements ofφ that enter into

the conditional density and writeφ2 for parameters that enter into the marginal.

In general,φ1 andφ2 may share elements, of course. We have

ft (Yt ,Xt |φ, It ) = ft(Yt |Xt ,φ1, It ) ft(Xt |φ2, It )

• Recall that the model is

Y′
t Γ = X′

t B+E′
t

Et ∼ N(0,Σ),∀t

E (EtE
′
s) = 0,t 6= s

Normality and lack of correlation over time imply that the observations are independent of

one another, so we can write the log-likelihood function as the sum of likelihood contribu-

tions of each observation:

lnL(Y|θ, It) =
n

∑
t=1

ln ft (Yt ,Xt |φ, It)

=
n

∑
t=1

ln( ft(Yt |Xt ,φ1, It) ft (Xt |φ2, It ))

=
n

∑
t=1

ln ft (Yt |Xt ,φ1, It)+
n

∑
t=1

ln ft (Xt |φ2, It) =

DEFINITION 15 (Weak Exogeneity).Xt is weakly exogeneous forθ (the original pa-

rameter vector) if there is a mapping fromφ to θ that is invariant toφ2. More formally, for

an arbitrary(φ1,φ2), θ(φ) = θ(φ1).

This implies thatφ1 andφ2 cannot share elements ifXt is weakly exogenous, since

φ1 would change asφ2 changes, which prevents consideration of arbitrary combinations of

(φ1,φ2).
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Supposing thatXt is weakly exogenous, then the MLE ofφ1 using the joint density is

the same as the MLE using only the conditional density

lnL(Y|X,θ, It ) =
n

∑
t=1

ln ft(Yt |Xt ,φ1, It)

since the conditional likelihood doesn’t depend onφ2. In other words, the joint and condi-

tional log-likelihoods maximize at the same value ofφ1.

• With weak exogeneity, knowledge of the DGP ofXt is irrelevant for inference

on φ1, and knowledge ofφ1 is sufficient to recover the parameter of interest,θ.

Since the DGP ofXt is irrelevant, we can treatXt as fixed in inference.

• By the invariance property of MLE, the MLE ofθ is θ(φ̂1),and this mapping is

assumed to exist in the definition of weak exogeneity.

• Of course, we’ll need to figure out just what this mapping is torecoverθ̂ from

φ̂1. This is the famousidentification problem.

• With lack of weak exogeneity, the joint and conditional likelihood functions max-

imize in different places. For this reason, we can’t treatXt as fixed in inference.

The joint MLE is valid, but the conditional MLE is not.

• In resume, we require the variables inXt to be weakly exogenous if we are to be

able to treat them as fixed in estimation. LaggedYt satisfy the definition, since

they are in the conditioning information set, e.g.,Yt−1 ∈ It . LaggedYt aren’t

exogenous in the normal usage of the word, since their valuesare determined

within the model, just earlier on.Weakly exogenousvariables includeexogenous

(in the normal sense) variables as well as allpredeterminedvariables.

11.3. Reduced form

Recall that the model is

Y′
t Γ = X′

t B+E′
t

V(Et) = Σ

This is the model instructural form.

DEFINITION 16 (Structural form). An equation is in structural form whenmore than

one current period endogenous variable is included.

The solution for the current period endogs is easy to find. It is

Y′
t = X′

t BΓ−1 +E′
t Γ

−1

= X′
t Π +V′

t =

Now only one current period endog appears in each equation. This is thereduced form.

DEFINITION 17 (Reduced form). An equation is in reduced form if only one current

period endog is included.

An example is our supply/demand system. The reduced form forquantity is obtained

by solving the supply equation for price and substituting into demand:
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qt = α1 + α2

(
qt −β1− ε2t

β2

)
+ α3yt + ε1t

β2qt −α2qt = β2α1−α2 (β1 + ε2t)+ β2α3yt + β2ε1t

qt =
β2α1−α2β1

β2−α2
+

β2α3yt

β2−α2
+

β2ε1t −α2ε2t

β2−α2

= π11+ π21yt +V1t

Similarly, the rf for price is

β1 + β2pt + ε2t = α1 + α2pt + α3yt + ε1t

β2pt −α2pt = α1−β1+ α3yt + ε1t − ε2t

pt =
α1−β1

β2−α2
+

α3yt

β2−α2
+

ε1t − ε2t

β2−α2

= π12+ π22yt +V2t

The interesting thing about the rf is that the equations individually satisfy the classical as-

sumptions, sinceyt is uncorrelated withε1t andε2t by assumption, and thereforeE (ytVit ) =

0, i=1,2,∀t. The errors of the rf are
[

V1t

V2t

]
=

[ β2ε1t−α2ε2t
β2−α2

ε1t−ε2t
β2−α2

]

The variance ofV1t is

V(V1t) = E

[(
β2ε1t −α2ε2t

β2−α2

)(
β2ε1t −α2ε2t

β2−α2

)]

=
β2

2σ11−2β2α2σ12+ α2σ22

(β2−α2)
2

• This is constant over time, so the first rf equation is homoscedastic.

• Likewise, since theεt are independent over time, so are theVt .

The variance of the second rf error is

V(V2t) = E

[(
ε1t − ε2t

β2−α2

)(
ε1t − ε2t

β2−α2

)]

=
σ11−2σ12+ σ22

(β2−α2)
2

and the contemporaneous covariance of the errors across equations is

E (V1tV2t) = E

[(
β2ε1t −α2ε2t

β2−α2

)(
ε1t − ε2t

β2−α2

)]

=
β2σ11− (β2 + α2)σ12+ σ22

(β2−α2)
2

• In summary the rf equations individually satisfy the classical assumptions, under

the assumtions we’ve made, but they are contemporaneously correlated.

The general form of the rf is

Y′
t = X′

t BΓ−1 +E′
t Γ

−1

= X′
t Π +V′

t
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so we have that

Vt =
(
Γ−1)′ Et ∼ N

(
0,
(
Γ−1)′ ΣΓ−1

)
,∀t

and that theVt are timewise independent (note that this wouldn’t be the case if theEt were

autocorrelated).

11.4. IV estimation

The IV estimator may appear a bit unusual at first, but it will grow on you over time.

The simultaneous equations model is

YΓ = XB+E

Considering the first equation (this is without loss of generality, since we can always reorder

the equations) we can partition theY matrix as

Y =
[

y Y1 Y2

]

• y is the first column

• Y1 are the other endogenous variables that enter the first equation

• Y2 are endogs that are excluded from this equation

Similarly, partitionX as

X =
[

X1 X2

]

• X1 are the included exogs, andX2 are the excluded exogs.

Finally, partition the error matrix as

E =
[

ε E12

]

Assume thatΓ has ones on the main diagonal. These are normalization restrictions that

simply scale the remaining coefficients on each equation, and which scale the variances of

the error terms.

Given this scaling and our partitioning, the coefficient matrices can be written as

Γ =




1 Γ12

−γ1 Γ22

0 Γ32




B =

[
β1 B12

0 B22

]

With this, the first equation can be written as

y = Y1γ1 +X1β1 + ε

= Zδ+ ε

The problem, as we’ve seen is thatZ is correlated withε, sinceY1 is formed of endogs.



11.4. IV ESTIMATION 127

Now, let’s consider the general problem of a linear regression model with correlation

between regressors and the error term:

y = Xβ + ε

ε ∼ iid(0, Inσ2)

E (X′ε) 6= 0.

The present case of a structural equation from a system of equations fits into this notation,

but so do other problems, such as measurement error or laggeddependent variables with

autocorrelated errors. Consider some matrixW which is formed of variables uncorrelated

with ε. This matrix defines a projection matrix

PW = W(W′W)−1W′

so that anything that is projected onto the space spanned byW will be uncorrelated withε,
by the definition ofW. Transforming the model with this projection matrix we get

PWy = PWXβ +PWε

or

y∗ = X∗β + ε∗

Now we have thatε∗ andX∗ are uncorrelated, since this is simply

E (X∗′ε∗) = E (X′P′
WPWε)

= E (X′PWε)

and

PWX = W(W′W)−1W′X

is the fitted value from a regression ofX onW. This is a linear combination of the columns

of W, so it must be uncorrelated withε. This implies that applying OLS to the model

y∗ = X∗β + ε∗

will lead to a consistent estimator, given a few more assumptions. This is thegeneralized

instrumental variables estimator. W is known as the matrix of instruments. The estimator

is

β̂IV = (X′PWX)−1X′PWy

from which we obtain

β̂IV = (X′PWX)−1X′PW(Xβ + ε)

= β +(X′PWX)−1X′PWε

so

β̂IV −β = (X′PWX)−1X′PWε

=
(
X′W(W′W)−1W′X

)−1
X′W(W′W)−1W′ε
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Now we can introduce factors ofn to get

β̂IV −β =

((
X′W

n

)(
W′W

n

−1
)(

W′X
n

))−1(
X′W

n

)(
W′W

n

)−1(W′ε
n

)

Assuming that each of the terms with an in the denominator satisfies a LLN, so that

• W′W
n

p→ QWW, a finite pd matrix

• X′W
n

p→ QXW, a finite matrix with rankK (= cols(X) )

• W′ε
n

p→ 0

then the plim of the rhs is zero. This last term has plim 0 sincewe assume thatW andε are

uncorrelated, e.g.,

E (W′
t εt) = 0,

Given these assumtions the IV estimator is consistent

β̂IV
p→ β.

Furthermore, scaling by
√

n, we have

√
n
(

β̂IV −β
)

=

((
X′W

n

)(
W′W

n

)−1(W′X
n

))−1(
X′W

n

)(
W′W

n

)−1(W′ε√
n

)

Assuming that the far right term satifies a CLT, so that

• W′ε√
n

d→ N(0,QWWσ2)

then we get √
n
(

β̂IV −β
)

d→ N
(
0,(QXWQ−1

WWQ′
XW)−1σ2)

The estimators forQXW andQWW are the obvious ones. An estimator forσ2 is

σ̂2
IV =

1
n

(
y−Xβ̂IV

)′(
y−Xβ̂IV

)
.

This estimator is consistent following the proof of consistency of the OLS estimator ofσ2,

when the classical assumptions hold.

The formula used to estimate the variance ofβ̂IV is

V̂(β̂IV ) =
((

X′W
)(

W′W
)−1(

W′X
))−1

σ̂2
IV

The IV estimator is

(1) Consistent

(2) Asymptotically normally distributed

(3) Biased in general, since even thoughE (X′PWε) = 0, E (X′PWX)−1X′PWε may

not be zero, since(X′PWX)−1 andX′PWε are not independent.

An important point is that the asymptotic distribution ofβ̂IV depends uponQXW andQWW,

and these depend upon the choice ofW. The choice of instruments influences the efficiency

of the estimator.

• When we have two sets of instruments,W1 andW2 such thatW1 ⊂ W2, then the

IV estimator usingW2 is at least as efficiently asymptotically as the estimator that

usedW1. More instruments leads to more asymptotically efficient estimation, in

general.
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• There are special cases where there is no gain (simultaneousequations is an ex-

ample of this, as we’ll see).

• The penalty for indiscriminant use of instruments is that the small sample bias of

the IV estimator rises as the number of instruments increases. The reason for this

is thatPWX becomes closer and closer toX itself as the number of instruments

increases.

• IV estimation can clearly be used in the case of simultaneousequations. The only

issue is which instruments to use.

11.5. Identification by exclusion restrictions

The identification problem in simultaneous equations is in fact of the same nature as

the identification problem in any estimation setting: does the limiting objective function

have the proper curvature so that there is a unique global minimum or maximum at the true

parameter value? In the context of IV estimation, this is thecase if the limiting covariance

of the IV estimator is positive definite andplim1
nW′ε = 0. This matrix is

V∞(β̂IV ) = (QXWQ−1
WWQ′

XW)−1σ2

• The necessary and sufficient condition for identification issimply that this matrix

be positive definite, and that the instruments be (asymptotically) uncorrelated

with ε.

• For this matrix to be positive definite, we need that the conditions noted above

hold: QWW must be positive definite andQXW must be of full rank (K ).

• These identification conditions are not that intuitive nor is it very obvious how to

check them.

11.5.1. Necessary conditions.If we use IV estimation for a single equation of the

system, the equation can be written as

y = Zδ+ ε

where

Z =
[

Y1 X1

]

Notation:

• Let K be the total numer of weakly exogenous variables.

• Let K∗ = cols(X1) be the number of included exogs, and letK∗∗ = K−K∗ be the

number of excluded exogs (in this equation).

• Let G∗ = cols(Y1) + 1 be the total number of included endogs, and letG∗∗ =

G−G∗ be the number of excluded endogs.

Using this notation, consider the selection of instruments.

• Now theX1 are weakly exogenous and can serve as their own instruments.

• It turns out thatX exhausts the set of possible instruments, in that if the variables

in X don’t lead to an identified model then no other instruments will identify the

model either. Assuming this is true (we’ll prove it in a moment), then a necessary

condition for identification is thatcols(X2) ≥ cols(Y1) since if not then at least
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one instrument must be used twice, soW will not have full column rank:

ρ(W) < K∗ +G∗−1⇒ ρ(QZW) < K∗ +G∗−1

This is theorder conditionfor identification in a set of simultaneous equations.

When the only identifying information is exclusion restrictions on the variables

that enter an equation, then the number of excluded exogs must be greater than

or equal to the number of included endogs, minus 1 (the normalized lhs endog),

e.g.,

K∗∗ ≥ G∗−1

• To show that this is in fact a necessary condition consider some arbitrary set of

instrumentsW. A necessary condition for identification is that

ρ
(

plim
1
n

W′Z

)
= K∗ +G∗−1

where

Z =
[

Y1 X1

]

Recall that we’ve partitioned the model

YΓ = XB+E

as

Y =
[

y Y1 Y2

]

X =
[

X1 X2

]

Given the reduced form

Y = XΠ +V

we can write the reduced form using the same partition

[
y Y1 Y2

]
=
[

X1 X2

][ π11 Π12 Π13

π21 Π22 Π23

]
+
[

v V1 V2

]

so we have

Y1 = X1Π12+X2Π22+V1

so
1
n

W′Z =
1
n

W′
[

X1Π12+X2Π22+V1 X1

]

Because theW ’s are uncorrelated with theV1 ’s, by assumption, the cross betweenW and

V1 converges in probability to zero, so

plim
1
n

W′Z = plim
1
n

W′
[

X1Π12+X2Π22 X1

]

Since the far rhs term is formed only of linear combinations of columns ofX, the rank of

this matrix can never be greater thanK, regardless of the choice of instruments. IfZ has

more thanK columns, then it is not of full column rank. WhenZ has more thanK columns

we have

G∗−1+K∗ > K
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or noting thatK∗∗ = K −K∗,

G∗−1 > K∗∗

In this case, the limiting matrix is not of full column rank, and the identification condition

fails.

11.5.2. Sufficient conditions.Identification essentially requires that the structural pa-

rameters be recoverable from the data. This won’t be the case, in general, unless the struc-

tural model is subject to some restrictions. We’ve already identified necessary conditions.

Turning to sufficient conditions (again, we’re only considering identification through zero

restricitions on the parameters, for the moment).

The model is

Y′
t Γ = X′

t B+Et

V(Et) = Σ

This leads to the reduced form

Y′
t = X′

t BΓ−1 +EtΓ−1

= X′
t Π +Vt

V(Vt) =
(
Γ−1)′ ΣΓ−1

= Ω

The reduced form parameters are consistently estimable, but none of them are knowna

priori, and there are no restrictions on their values. The problem isthat more than one

structural form has the same reduced form, so knowledge of the reduced form parameters

alone isn’t enough to determine the structural parameters.To see this, consider the model

Y′
t ΓF = X′

t BF +EtF

V(EtF) = F ′ΣF

whereF is some arbirary nonsingularG×G matrix. The rf of this new model is

Y′
t = X′

t BF (ΓF)−1 +EtF (ΓF)−1

= X′
t BFF−1Γ−1 +EtFF−1Γ−1

= X′
t BΓ−1 +EtΓ−1

= X′
t Π +Vt

Likewise, the covariance of the rf of the transformed model is

V(EtF (ΓF)−1) = V(EtΓ−1)

= Ω

Since the two structural forms lead to the same rf, and the rf is all that is directly estimable,

the models are said to beobservationally equivalent.What we need for identification are

restrictions onΓ andB such that the only admissibleF is an identity matrix (if all of the

equations are to be identified). Take the coefficient matrices as partitioned before:
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[
Γ
B

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




The coefficients of the first equation of the transformed model are simply these coefficients

multiplied by the first column ofF. This gives

[
Γ
B

][
f11

F2

]
=




1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]

For identification of the first equation we need that there be enough restrictions so that the

only admissible [
f11

F2

]

be the leading column of an identity matrix, so that



1 Γ12

−γ1 Γ22

0 Γ32

β1 B12

0 B22




[
f11

F2

]
=




1

−γ1

0

β1

0




Note that the third and fifth rows are
[

Γ32

B22

]
F2 =

[
0

0

]

Supposing that the leading matrix is of full column rank, e.g.,

ρ

([
Γ32

B22

])
= cols

([
Γ32

B22

])
= G−1

then the only way this can hold, without additional restrictions on the model’s parameters,

is if F2 is a vector of zeros. Given thatF2 is a vector of zeros, then the first equation

[
1 Γ12

][ f11

F2

]
= 1⇒ f11 = 1

Therefore, as long as

ρ

([
Γ32

B22

])
= G−1

then [
f11

F2

]
=

[
1

0G−1

]

The first equation is identified in this case, so the conditionis sufficient for identification.

It is also necessary, since the condition implies that this submatrix must have at leastG−1
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rows. Since this matrix has

G∗∗ +K∗∗ = G−G∗+K∗∗

rows, we obtain

G−G∗+K∗∗ ≥ G−1

or

K∗∗ ≥ G∗−1

which is the previously derived necessary condition.

The above result is fairly intuitive (draw picture here). The necessary condition ensures

that there are enough variables not in the equation of interest to potentially move the other

equations, so as to trace out the equation of interest. The sufficient condition ensures that

those other equations in fact do move around as the variableschange their values. Some

points:

• When an equation hasK∗∗ = G∗−1, is is exactly identified, in that omission of

an identifiying restriction is not possible without loosingconsistency.

• WhenK∗∗ > G∗ −1, the equation isoveridentified, since one could drop a re-

striction and still retain consistency. Overidentifying restrictions are therefore

testable. When an equation is overidentified we have more instruments than are

strictly necessary for consistent estimation. Since estimation by IV with more

instruments is more efficient asymptotically, one should employ overidentifying

restrictions if one is confident that they’re true.

• We can repeat this partition for each equation in the system,to see which equa-

tions are identified and which aren’t.

• These results are valid assuming that the only identifying information comes

from knowing which variables appear in which equations, e.g., by exclusion

restrictions, and through the use of a normalization. Thereare other sorts of

identifying information that can be used. These include

(1) Cross equation restrictions

(2) Additional restrictions on parameters within equations (as in the Klein model

discussed below)

(3) Restrictions on the covariance matrix of the errors

(4) Nonlinearities in variables

• When these sorts of information are available, the above conditions aren’t neces-

sary for identification, though they are of course still sufficient.

To give an example of how other information can be used, consider the model

YΓ = XB+E

whereΓ is an upper triangular matrix with 1’s on the main diagonal. This is atriangular

systemof equations. In this case, the first equation is

y1 = XB·1 +E·1

Since only exogs appear on the rhs, this equation is identified.

The second equation is
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y2 = −γ21y1 +XB·2+E·2

This equation hasK∗∗ = 0 excluded exogs, andG∗ = 2 included endogs, so it fails the order

(necessary) condition for identification.

• However, suppose that we have the restrictionΣ21 = 0, so that the first and second

structural errors are uncorrelated. In this case

E (y1tε2t) = E
{
(X′

t B·1 + ε1t)ε2t
}

= 0

so there’s no problem of simultaneity. If the entireΣ matrix is diagonal, then

following the same logic, all of the equations are identified. This is known as a

fully recursivemodel.

11.5.3. Example: Klein’s Model 1. To give an example of determining identification

status, consider the following macro model (this is the widely known Klein’s Model 1)

Consumption:Ct = α0 + α1Pt + α2Pt−1 + α3(W
p

t +Wg
t )+ ε1t

Investment: It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2t

Private Wages:Wp
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t

Output: Xt = Ct + It +Gt

Profits: Pt = Xt −Tt −Wp
t

Capital Stock:Kt = Kt−1 + It


ε1t

ε2t

ε3t


 ∼ IID







0

0

0


 ,




σ11 σ12 σ13

σ22 σ23

σ33







The other variables are the government wage bill,Wg
t , taxes,Tt , government nonwage

spending,Gt ,and a time trend,At . The endogenous variables are the lhs variables,

Y′
t =

[
Ct It Wp

t Xt Pt Kt

]

and the predetermined variables are all others:

X′
t =

[
1 Wg

t Gt Tt At Pt−1 Kt−1 Xt−1

]
.

The model assumes that the errors of the equations are contemporaneously correlated, by

nonautocorrelated. The model written asYΓ = XB+E gives

Γ =




1 0 0 −1 0 0

0 1 0 −1 0 −1

−α3 0 1 0 1 0

0 0 −γ1 1 −1 0

−α1 −β1 0 0 1 0

0 0 0 0 0 1
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B =




α0 β0 γ0 0 0 0

α3 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 γ3 0 0 0

α2 β2 0 0 0 0

0 β3 0 0 0 1

0 0 γ2 0 0 0




To check this identification of the consumption equation, weneed to extractΓ32 andB22,

the submatrices of coefficients of endogs and exogs thatdon’t appear in this equation.

These are the rows that have zeros in the first column, and we need to drop the first column.

We get

[
Γ32

B22

]
=




1 0 −1 0 −1

0 −γ1 1 −1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1

0 γ2 0 0 0




We need to find a set of 5 rows of this matrix gives a full-rank 5×5 matrix. For example,

selecting rows 3,4,5,6, and 7 we obtain the matrix

A =




0 0 0 0 1

0 0 1 0 0

0 0 0 −1 0

0 γ3 0 0 0

β3 0 0 0 1




This matrix is of full rank, so the sufficient condition for identification is met. Counting

included endogs,G∗ = 3, and counting excluded exogs,K∗∗ = 5, so

K∗∗−L = G∗−1

5−L = 3−1

L = 3

• The equation is over-identified by three restrictions, according to the counting

rules, which are correct when the only identifying information are the exclusion

restrictions. However, there is additional information inthis case. BothWp
t and

Wg
t enter the consumption equation, and their coefficients are restricted to be the

same. For this reason the consumption equation is in fact overidentified by four

restrictions.
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11.6. 2SLS

When we have no information regarding cross-equation restrictions or the structure of

the error covariance matrix, one can estimate the parameters of a single equation of the

system without regard to the other equations.

• This isn’t always efficient, as we’ll see, but it has the advantage that misspecifi-

cations in other equations will not affect the consistency of the estimator of the

parameters of the equation of interest.

• Also, estimation of the equation won’t be affected by identification problems in

other equations.

The 2SLS estimator is very simple: in the first stage, each column ofY1 is regressed onall

the weakly exogenous variables in the system, e.g., the entire X matrix. The fitted values

are

Ŷ1 = X(X′X)−1X′Y1

= PXY1

= XΠ̂1

Since these fitted values are the projection ofY1 on the space spanned byX, and since any

vector in this space is uncorrelated withε by assumption,̂Y1 is uncorrelated withε. SinceŶ1

is simply the reduced-form prediction, it is correlated with Y1, The only other requirement

is that the instruments be linearly independent. This should be the case when the order

condition is satisfied, since there are more columns inX2 than inY1 in this case.

The second stage substitutesŶ1 in place ofY1, and estimates by OLS. This original

model is

y = Y1γ1 +X1β1 + ε

= Zδ+ ε

and the second stage model is

y = Ŷ1γ1 +X1β1 + ε.

SinceX1 is in the space spanned byX, PXX1 = X1, so we can write the second stage model

as

y = PXY1γ1 +PXX1β1 + ε

≡ PXZδ+ ε

The OLS estimator applied to this model is

δ̂ = (Z′PXZ)−1Z′PXy

which is exactly what we get if we estimate using IV, with the reduced form predictions of

the endogs used as instruments. Note that if we define

Ẑ = PXZ

=
[

Ŷ1 X1

]
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so thatẐ are the instruments forZ, then we can write

δ̂ = (Ẑ′Z)−1Ẑ′y

• Important note: OLS on the transformed model can be used to calculate the 2SLS

estimate ofδ, since we see that it’s equivalent to IV using a particular setof

instruments. Howeverthe OLS covariance formula is not valid.We need to

apply the IV covariance formula already seen above.

Actually, there is also a simplification of the general IV variance formula. Define

Ẑ = PXZ

=
[

Ŷ X
]

The IV covariance estimator would ordinarily be

V̂(δ̂) =
(
Z′Ẑ
)−1(

Ẑ′Ẑ
)(

Ẑ′Z
)−1 σ̂2

IV

However, looking at the last term in brackets

Ẑ′Z =
[

Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y′

1(PX)Y1 Y′
1(PX)X1

X′
1Y1 X′

1X1

]

but sincePX is idempotent and sincePXX = X, we can write

[
Ŷ1 X1

]′ [
Y1 X1

]
=

[
Y′

1PXPXY1 Y′
1PXX1

X′
1PXY1 X′

1X1

]

=
[

Ŷ1 X1

]′ [
Ŷ1 X1

]

= Ẑ′Ẑ

Therefore, the second and last term in the variance formula cancel, so the 2SLS varcov

estimator simplifies to

V̂(δ̂) =
(
Z′Ẑ
)−1 σ̂2

IV

which, following some algebra similar to the above, can alsobe written as

V̂(δ̂) =
(
Ẑ′Ẑ
)−1 σ̂2

IV

Finally, recall that though this is presented in terms of thefirst equation, it is general since

any equation can be placed first.

Properties of 2SLS:

(1) Consistent

(2) Asymptotically normal

(3) Biased when the mean esists (the existence of moments is atechnical issue we

won’t go into here).

(4) Asymptotically inefficient, except in special circumstances (more on this later).

11.7. Testing the overidentifying restrictions

The selection of which variables are endogs and which are exogsis part of the specifi-

cation of the model. As such, there is room for error here: one might erroneouslyclassify
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a variable as exog when it is in fact correlated with the errorterm. A general test for the

specification on the model can be formulated as follows:

The IV estimator can be calculated by applying OLS to the transformed model, so the

IV objective function at the minimized value is

s(β̂IV ) =
(

y−Xβ̂IV

)′
PW

(
y−Xβ̂IV

)
,

but

ε̂IV = y−Xβ̂IV

= y−X(X′PWX)−1X′PWy

=
(
I −X(X′PWX)−1X′PW

)
y

=
(
I −X(X′PWX)−1X′PW

)
(Xβ + ε)

= A(Xβ + ε)

where

A≡ I −X(X′PWX)−1X′PW

so

s(β̂IV ) =
(
ε′ + β′X′)A′PWA(Xβ + ε)

Moreover,A′PWA is idempotent, as can be verified by multiplication:

A′PWA =
(
I −PWX(X′PWX)−1X′)PW

(
I −X(X′PWX)−1X′PW

)

=
(
PW −PWX(X′PWX)−1X′PW

)(
PW −PWX(X′PWX)−1X′PW

)

=
(
I −PWX(X′PWX)−1X′)PW.

Furthermore,A is orthogonal toX

AX =
(
I −X(X′PWX)−1X′PW

)
X

= X−X

= 0

so

s(β̂IV ) = ε′A′PWAε

Supposing theε are normally distributed, with varianceσ2, then the random variable

s(β̂IV )

σ2 =
ε′A′PWAε

σ2

is a quadratic form of aN(0,1) random variable with an idempotent matrix in the middle,

so
s(β̂IV )

σ2 ∼ χ2(ρ(A′PWA))

This isn’t available, since we need to estimateσ2. Substituting a consistent estimator,

s(β̂IV )

σ̂2

a∼ χ2(ρ(A′PWA))
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• Even if theε aren’t normally distributed, the asymptotic result still holds. The

last thing we need to determine is the rank of the idempotent matrix. We have

A′PWA =
(
PW −PWX(X′PWX)−1X′PW

)

so

ρ(A′PWA) = Tr
(
PW −PWX(X′PWX)−1X′PW

)

= TrPW −TrX′PWPWX(X′PWX)−1

= TrW(W′W)−1W′−KX

= TrW′W(W′W)−1−KX

= KW −KX

whereKW is the number of columns ofW and KX is the number of columns

of X. The degrees of freedom of the test is simply the number of overidentifying

restrictions: the number of instruments we have beyond the number that is strictly

necessary for consistent estimation.

• This test is an overall specification test: the joint null hypothesis is that the model

is correctly specifiedand that theW form valid instruments (e.g., that the vari-

ables classified as exogs really are uncorrelated withε. Rejection can mean that

either the modely = Zδ + ε is misspecified, or that there is correlation between

X andε.
• This is a particular case of the GMM criterion test, which is covered in the second

half of the course. See Section15.8.

• Note that since

ε̂IV = Aε

and

s(β̂IV ) = ε′A′PWAε

we can write

s(β̂IV )

σ̂2
=

(
ε̂′W(W′W)−1W′)(W(W′W)−1W′ε̂

)

ε̂′ε̂/n

= n(RSŜεIV |W/TSŜεIV )

= nR2
u

whereR2
u is the uncenteredR2 from a regression of theIV residuals on all of the

instrumentsW. This is a convenient way to calculate the test statistic.

On an aside, consider IV estimation of a just-identified model, using the standard notation

y = Xβ + ε

andW is the matrix of instruments. If we have exact identificationthencols(W) = cols(X),

soW
′
X is a square matrix. The transformed model is

PWy = PWXβ +PWε
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and the fonc are

X′PW(y−Xβ̂IV ) = 0

The IV estimator is

β̂IV =
(
X′PWX

)−1
X′PWy

Considering the inverse here
(
X′PWX

)−1
=

(
X′W(W′W)−1W′X

)−1

= (W′X)−1(X′W(W′W)−1)−1

= (W′X)−1(W′W)
(
X′W

)−1

Now multiplying this byX′PWy, we obtain

β̂IV = (W′X)−1(W′W)
(
X′W

)−1
X′PWy

= (W′X)−1(W′W)
(
X′W

)−1
X′W(W′W)−1W′y

= (W′X)−1W′y

The objective function for the generalized IV estimator is

s(β̂IV ) =
(

y−Xβ̂IV

)′
PW

(
y−Xβ̂IV

)

= y′PW

(
y−Xβ̂IV

)
− β̂′

IV X′PW

(
y−Xβ̂IV

)

= y′PW

(
y−Xβ̂IV

)
− β̂′

IV X′PWy+ β̂′
IV X′PWXβ̂IV

= y′PW

(
y−Xβ̂IV

)
− β̂′

IV

(
X′PWy+X′PWXβ̂IV

)

= y′PW

(
y−Xβ̂IV

)

by the fonc for generalized IV. However, when we’re in the just indentified case, this is

s(β̂IV ) = y′PW
(
y−X(W′X)−1W′y

)

= y′PW
(
I −X(W′X)−1W′)y

= y′
(
W(W′W)−1W′−W(W′W)−1W′X(W′X)−1W′)y

= 0

The value of the objective function of the IV estimator is zero in the just identified case.

This makes sense, since we’ve already shown that the objective function after dividing by

σ2 is asymptoticallyχ2 with degrees of freedom equal to the number of overidentifying

restrictions. In the present case, there are no overidentifying restrictions, so we have a

χ2(0) rv, which has mean 0 and variance 0, e.g., it’s simply 0. This means we’re not able

to test the identifying restrictions in the case of exact identification.

11.8. System methods of estimation

2SLS is a single equation method of estimation, as noted above. The advantage of a

single equation method is that it’s unaffected by the other equations of the system, so they

don’t need to be specified (except for defining what are the exogs, so 2SLS can use the

complete set of instruments). The disadvantage of 2SLS is that it’s inefficient, in general.
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• Recall that overidentification improves efficiency of estimation, since an overi-

dentified equation can use more instruments than are necessary for consistent

estimation.

• Secondly, the assumption is that

YΓ = XB+E

E (X′E) = 0(K×G)

vec(E) ∼ N(0,Ψ)

• Since there is no autocorrelation of theEt ’s, and since the columns ofE are

individually homoscedastic, then

Ψ =




σ11In σ12In · · · σ1GIn

σ22In
...

. . .
...

· σGGIn




= Σ⊗ In

This means that the structural equations are heteroscedastic and correlated with

one another

• In general, ignoring this will lead to inefficient estimation, following the sec-

tion on GLS. When equations are correlated with one another estimation should

account for the correlation in order to obtain efficiency.

• Also, since the equations are correlated, information about one equation is im-

plicitly information about all equations. Therefore, overidentification restrictions

in any equation improve efficiency forall equations, even the just identified equa-

tions.

• Single equation methods can’t use these types of information, and are therefore

inefficient (in general).

11.8.1. 3SLS.Note: It is easier and more practical to treat the 3SLS estimator as a

generalized method of moments estimator (see Chapter15). I no longer teach the following

section, but it is retained for its possible historical interest. Another alternative is to use

FIML (Subsection11.8.2), if you are willing to make distributional assumptions on the

errors. This is computationally feasible with modern computers.

Following our above notation, each structural equation canbe written as

yi = Yiγ1 +Xiβ1 + εi

= Ziδi + εi
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Grouping theG equations together we get




y1

y2
...

yG




=




Z1 0 · · · 0

0 Z2
...

...
. . . 0

0 · · · 0 ZG







δ1

δ2
...

δG




+




ε1

ε2
...

εG




or

y = Zδ+ ε

where we already have that

E (εε′) = Ψ

= Σ⊗ In

The 3SLS estimator is just 2SLS combined with a GLS correction that takes advantage of

the structure ofΨ. DefineẐ as

Ẑ =




X(X′X)−1X′Z1 0 · · · 0

0 X(X′X)−1X′Z2
...

...
. . . 0

0 · · · 0 X(X′X)−1X′ZG




=




Ŷ1 X1 0 · · · 0

0 Ŷ2 X2
...

...
. . . 0

0 · · · 0 ŶG XG




These instruments are simply theunrestrictedrf predicitions of the endogs, combined

with the exogs. The distinction is that if the model is overidentified, then

Π = BΓ−1

may be subject to some zero restrictions, depending on the restrictions onΓ andB, andΠ̂
does not impose these restrictions. Also, note thatΠ̂ is calculated using OLS equation by

equation. More on this later.

The 2SLS estimator would be

δ̂ = (Ẑ′Z)−1Ẑ′y

as can be verified by simple multiplication, and noting that the inverse of a block-diagonal

matrix is just the matrix with the inverses of the blocks on the main diagonal. This IV

estimator still ignores the covariance information. The natural extension is to add the GLS

transformation, putting the inverse of the error covariance into the formula, which gives the

3SLS estimator

δ̂3SLS =
(

Ẑ′ (Σ⊗ In)
−1Z

)−1
Ẑ′ (Σ⊗ In)

−1y

=
(
Ẑ′ (Σ−1⊗ In

)
Z
)−1

Ẑ′ (Σ−1⊗ In
)

y
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This estimator requires knowledge ofΣ. The solution is to define a feasible estimator using

a consistent estimator ofΣ. The obvious solution is to use an estimator based on the 2SLS

residuals:

ε̂i = yi −Zi δ̂i,2SLS

(IMPORTANT NOTE : this is calculated usingZi , not Ẑi). Then the elementi, j of Σ is

estimated by

σ̂i j =
ε̂′i ε̂ j

n
SubstituteΣ̂ into the formula above to get the feasible 3SLS estimator.

Analogously to what we did in the case of 2SLS, the asymptoticdistribution of the

3SLS estimator can be shown to be

√
n
(

δ̂3SLS− δ
)

a∼ N


0, lim

n→∞
E





(
Ẑ′ (Σ⊗ In)

−1 Ẑ
n

)−1







A formula for estimating the variance of the 3SLS estimator in finite samples (cancelling

out the powers ofn) is

V̂
(

δ̂3SLS

)
=
(
Ẑ′ (Σ̂−1⊗ In

)
Ẑ
)−1

• This is analogous to the 2SLS formula in equation (??), combined with the GLS

correction.

• In the case that all equations are just identified, 3SLS is numerically equivalent to

2SLS. Proving this is easiest if we use a GMM interpretation of 2SLS and 3SLS.

GMM is presented in the next econometrics course. For now, take it on faith.

The 3SLS estimator is based upon the rf parameter estimatorΠ̂, calculated equation by

equation using OLS:

Π̂ = (X′X)−1X′Y

which is simply

Π̂ = (X′X)−1X′
[

y1 y2 · · · yG

]

that is, OLS equation by equation usingall the exogs in the estimation of each column of

Π.

It may seem odd that we use OLS on the reduced form, since the rfequations are

correlated:

Y′
t = X′

t BΓ−1 +E′
t Γ−1

= X′
t Π +V′

t

and

Vt =
(
Γ−1)′ Et ∼ N

(
0,
(
Γ−1)′ ΣΓ−1

)
,∀t

Let this var-cov matrix be indicated by

Ξ =
(
Γ−1)′ ΣΓ−1
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OLS equation by equation to get the rf is equivalent to




y1

y2
...

yG




=




X 0 · · · 0

0 X
...

...
. . . 0

0 · · · 0 X







π1

π2
...

πG




+




v1

v2
...

vG




whereyi is then×1 vector of observations of theith endog,X is the entiren×K matrix of

exogs,πi is theith column ofΠ, andvi is theith column ofV. Use the notation

y = Xπ +v

to indicate the pooled model. Following this notation, the error covariance matrix is

V(v) = Ξ⊗ In

• This is a special case of a type of model known as a set ofseemingly unrelated

equations (SUR)since the parameter vector of each equation is different. The

equations are contemporanously correlated, however. The general case would

have a differentXi for each equation.

• Note that each equation of the system individually satisfiesthe classical assump-

tions.

• However, pooled estimation using the GLS correction is moreefficient, since

equation-by-equation estimation is equivalent to pooled estimation, sinceX is

block diagonal, but ignoring the covariance information.

• The model is estimated by GLS, whereΞ is estimated using the OLS residuals

from equation-by-equation estimation, which are consistent.

• In the special case that all theXi are the same, which is true in the present case of

estimation of the rf parameters, SUR≡OLS. To show this note that in this case

X = In⊗X. Using the rules

(1) (A⊗B)−1 = (A−1⊗B−1)

(2) (A⊗B)′ = (A′⊗B′) and

(3) (A⊗B)(C⊗D) = (AC⊗BD), we get

π̂SUR =
(
(In⊗X)′ (Ξ⊗ In)

−1 (In⊗X)
)−1

(In⊗X)′ (Ξ⊗ In)
−1y

=
((

Ξ−1⊗X′)(In⊗X)
)−1(Ξ−1⊗X′)y

=
(
Ξ⊗ (X′X)−1)(Ξ−1⊗X′)y

=
[
IG⊗ (X′X)−1X′]y

=




π̂1

π̂2
...

π̂G




• So the unrestricted rf coefficients can be estimated efficiently (assuming normal-

ity) by OLS, even if the equations are correlated.
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• We have ignored any potential zeros in the matrixΠ, which if they exist could

potentially increase the efficiency of estimation of the rf.

• Another example where SUR≡OLS is in estimation of vector autoregressions.

See two sections ahead.

11.8.2. FIML. Full information maximum likelihood is an alternative estimation method.

FIML will be asymptotically efficient, since ML estimators based on a given information

set are asymptotically efficient w.r.t. all other estimators that use the same information set,

and in the case of the full-information ML estimator we use the entire information set. The

2SLS and 3SLS estimators don’t require distributional assumptions, while FIML of course

does. Our model is, recall

Y′
t Γ = X′

t B+E′
t

Et ∼ N(0,Σ),∀t

E (EtE
′
s) = 0,t 6= s

The joint normality ofEt means that the density forEt is the multivariate normal, which is

(2π)−g/2(detΣ−1)−1/2
exp

(
−1

2
E′

t Σ
−1Et

)

The transformation fromEt to Yt requires the Jacobian

|det
dEt

dY′
t
| = |detΓ|

so the density forYt is

(2π)−G/2|detΓ|
(
detΣ−1)−1/2

exp

(
−1

2

(
Y′

t Γ−X′
t B
)

Σ−1(Y′
t Γ−X′

t B
)′
)

Given the assumption of independence over time, the joint log-likelihood function is

lnL(B,Γ,Σ)=−nG
2

ln(2π)+nln(|detΓ|)− n
2

lndetΣ−1− 1
2

n

∑
t=1

(
Y′

t Γ−X′
t B
)

Σ−1(Y′
t Γ−X′

t B
)′

• This is a nonlinear in the parameters objective function. Maximixation of this

can be done using iterative numeric methods. We’ll see how todo this in the next

section.

• It turns out that the asymptotic distribution of 3SLS and FIML are the same,

assuming normality of the errors.

• One can calculate the FIML estimator by iterating the 3SLS estimator, thus avoid-

ing the use of a nonlinear optimizer. The steps are

(1) CalculateΓ̂3SLSandB̂3SLSas normal.

(2) CalculateΠ̂ = B̂3SLSΓ̂−1
3SLS. This is new, we didn’t estimateΠ in this way

before. This estimator may have some zeros in it. When Greenesays iter-

ated 3SLS doesn’t lead to FIML, he means this for a procedure that doesn’t

updateΠ̂, but only updateŝΣ andB̂ andΓ̂. If you updateΠ̂ youdoconverge

to FIML.

(3) Calculate the instrumentŝY = XΠ̂ and calculatêΣ usingΓ̂ andB̂ to get the

estimated errors, applying the usual estimator.
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(4) Apply 3SLS using these new instruments and the estimate of Σ.

(5) Repeat steps 2-4 until there is no change in the parameters.

• FIML is fully efficient, since it’s an ML estimator that uses all information. This

implies that 3SLS is fully efficientwhen the errors are normally distributed.

Also, if each equation is just identified and the errors are normal, then 2SLS

will be fully efficient, since in this case 2SLS≡3SLS.

• When the errors aren’t normally distributed, the likelihood function is of course

different than what’s written above.

11.9. Example: 2SLS and Klein’s Model 1

The Octave programSimeq/Klein.mperforms 2SLS estimation for the 3 equations of

Klein’s model 1, assuming nonautocorrelated errors, so that lagged endogenous variables

can be used as instruments. The results are:

CONSUMPTION EQUATION

*************************************************** ****

2SLS estimation results

Observations 21

R-squared 0.976711

Sigma-squared 1.044059

estimate st.err. t-stat. p-value

Constant 16.555 1.321 12.534 0.000

Profits 0.017 0.118 0.147 0.885

Lagged Profits 0.216 0.107 2.016 0.060

Wages 0.810 0.040 20.129 0.000

*************************************************** ****

INVESTMENT EQUATION

*************************************************** ****

2SLS estimation results

Observations 21

R-squared 0.884884

Sigma-squared 1.383184

estimate st.err. t-stat. p-value

Constant 20.278 7.543 2.688 0.016

Profits 0.150 0.173 0.867 0.398

Lagged Profits 0.616 0.163 3.784 0.001

Lagged Capital -0.158 0.036 -4.368 0.000

*************************************************** ****

http://pareto.uab.es/mcreel/Econometrics/Examples/Simeq/Klein.m


11.9. EXAMPLE: 2SLS AND KLEIN’S MODEL 1 147

WAGES EQUATION

*************************************************** ****

2SLS estimation results

Observations 21

R-squared 0.987414

Sigma-squared 0.476427

estimate st.err. t-stat. p-value

Constant 1.500 1.148 1.307 0.209

Output 0.439 0.036 12.316 0.000

Lagged Output 0.147 0.039 3.777 0.002

Trend 0.130 0.029 4.475 0.000

*************************************************** ****

The above results are not valid (specifically, they are inconsistent) if the errors are

autocorrelated, since lagged endogenous variables will not be valid instruments in that

case. You might consider eliminating the lagged endogenousvariables as instruments,

and re-estimating by 2SLS, to obtain consistent parameter estimates in this more complex

case. Standard errors will still be estimated inconsistently, unless use a Newey-West type

covariance estimator. Food for thought...



CHAPTER 12

Introduction to the second half

We’ll begin with study ofextremum estimatorsin general. LetZn be the available data,

based on a sample of sizen.

DEFINITION 12.0.1. [Extremum estimator] An extremum estimatorθ̂ is the optimiz-

ing element of an objective functionsn(Zn,θ) over a setΘ.

We’ll usually write the objective function suppressing thedependence onZn.

Example: Least squares, linear model

Let the d.g.p. beyt = x′tθ0+εt , t = 1,2, ...,n, θ0 ∈ Θ. Stacking observations vertically,

yn = Xnθ0+εn, whereXn =
(

x1 x2 · · · xn

)′
. The least squares estimator is defined

as

θ̂ ≡ argmin
Θ

sn(θ) = (1/n)[yn−Xnθ]′ [yn−Xnθ]

We readily find that̂θ = (X′X)−1X′y.

Example: Maximum likelihood

Suppose that the continuous random variableyt ∼ IIN(θ0,1). The maximum likeli-

hood estimator is defined as

θ̂ ≡ argmax
Θ
Ln(θ) =

n

∏
t=1

(2π)−1/2exp

(
− (yt −θ)2

2

)

Because the logarithmic function is strictly increasing on(0,∞), maximization of the av-

erage logarithm of the likelihood function is achieved at the samêθ as for the likelihood

function:

θ̂ ≡ argmax
Θ

sn(θ) = (1/n) lnLn(θ) = −1/2ln2π− (1/n)
n

∑
t=1

(yt −θ)2

2

Solution of the f.o.c. leads to the familiar result thatθ̂ = ȳ.

• MLE estimators are asymptotically efficient (Cramér-Rao lower bound, The-

orem3), supposing the strong distributional assumptions upon which they are

based are true.

• One can investigate the properties of an “ML” estimator supposing that the distri-

butional assumptions are incorrect. This gives aquasi-ML estimator, which we’ll

study later.

• The strong distributional assumptions of MLE may be questionable in many

cases. It is possible to estimate using weaker distributional assumptions based

only on some of the moments of a random variable(s).

Example: Method of moments

148
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Suppose we draw a random sample ofyt from the χ2(θ0) distribution. Here,θ0 is

the parameter of interest. The first moment (expectation),µ1, of a random variable will in

general be a function of the parameters of the distribution,i.e., µ1(θ0) .

• µ1 = µ1(θ0) is amoment-parameter equation.

• In this example, the relationship is the identity functionµ1(θ0) = θ0, though in

general the relationship may be more complicated. The sample first moment is

µ̂1 =
n

∑
t=1

yt/n.

• Define

m1(θ) = µ1(θ)− µ̂1

• The method of moments principle is to choose the estimator ofthe parameter

to set the estimate of the population moment equal to the sample moment, i.e.,

m1(θ̂) ≡ 0. Then the moment-parameter equation is inverted to solve for the

parameter estimate.

In this case,

m1(θ̂) = θ̂−
n

∑
t=1

yt/n = 0.

Since∑n
t=1 yt/n

p→ θ0 by the LLN, the estimator is consistent.

More on the method of moments

Continuing with the above example, the variance of aχ2(θ0) r.v. is

V (yt) = E
(
yt −θ0)2

= 2θ0.

• Define

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n
• The MM estimator would set

m2(θ̂) = 2θ̂− ∑n
t=1 (yt − ȳ)2

n
≡ 0.

Again, by the LLN, the sample variance is consistent for the true variance, that

is,
∑n

t=1 (yt − ȳ)2

n
p→ 2θ0.

So,

θ̂ =
∑n

t=1 (yt − ȳ)2

2n
,

which is obtained by inverting the moment-parameter equation, is consistent.

Example: Generalized method of moments (GMM)

The previous two examples give two estimators ofθ0 which are both consistent. With

a given sample, the estimators will be different in general.

• With two moment-parameter equations and only one parameter, we haveoveri-

dentification,which means that we have more information than is strictly neces-

sary for consistent estimation of the parameter.
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• The GMM combines information from the two moment-parameterequations to

form a new estimator which will bemore efficient,in general (proof of this be-

low).

From the first example, definem1t(θ) = θ− yt . We already have thatm1(θ) is the sample

average ofm1t(θ), i.e.,

m1(θ) = 1/n
n

∑
t=1

m1t(θ)

= θ−
n

∑
t=1

yt/n.

Clearly, when evaluated at the true parameter valueθ0, bothE
[
m1t(θ0)

]
= 0 andE

[
m1(θ0)

]
=

0.

From the second example we define additional moment conditions

m2t(θ) = 2θ− (yt − ȳ)2

and

m2(θ) = 2θ− ∑n
t=1 (yt − ȳ)2

n
.

Again, it is clear from the LLN thatm2(θ0)
a.s.→ 0. The MM estimator would chosêθ to set

eitherm1(θ̂) = 0 orm2(θ̂) = 0. In general, no single value ofθ will solve the two equations

simultaneously.

• The GMM estimator is based on defining a measure of distanced(m(θ)), where

m(θ) = (m1(θ),m2(θ))′ , and choosing

θ̂ = argmin
Θ

sn(θ) = d (m(θ)) .

An example would be to choosed(m) = m′Am, whereA is a positive definite matrix. While

it’s clear that the MM gives consistent estimates if there isa one-to-one relationship be-

tween parameters and moments, it’s not immediately obviousthat the GMM estimator is

consistent. (We’ll see later that it is.)

These examples show that these widely used estimators may all be interpreted as the

solution of an optimization problem. For this reason, the study of extremum estimators is

useful for its generality. We will see that the general results extend smoothly to the more

specialized results available for specific estimators. After studying extremum estimators

in general, we will study the GMM estimator, then QML and NLS.The reason we study

GMM first is that LS, IV, NLS, MLE, QML and other well-known parametric estimators

may all be interpreted as special cases of the GMM estimator,so the general results on

GMM can simplify and unify the treatment of these other estimators. Nevertheless, there

are some special results on QML and NLS, and both are important in empirical research,

which makes focus on them useful.

One of the focal points of the course will be nonlinear models. This is not to suggest

that linear models aren’t useful. Linear models are more general than they might first

appear, since one can employ nonlinear transformations of the variables:
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ϕ0(yt) =
[

ϕ1(xt) ϕ2(xt) · · · ϕp(xt)
]

θ0 + εt

For example,

lnyt = α+ βx1t + γx2
1t + δx1tx2t + εt

fits this form.

• The important point is that the model islinear in the parametersbut not neces-

sarily linear in the variables.

In spite of this generality, situations often arise which simply can not be convincingly

represented by linear in the parameters models. Also, theory that applies to nonlinear

models also applies to linear models, so one may as well startoff with the general case.

Example: Expenditure shares

Roy’s Identity states that the quantity demanded of theith of G goods is

xi =
−∂v(p,y)/∂pi

∂v(p,y)/∂y
.

An expenditure share is

si ≡ pixi/y,

so necessarilysi ∈ [0,1], and∑G
i=1si = 1. No linear in the parameters model forxi or si

with a parameter space that is defined independent of the datacan guarantee that either of

these conditions holds. These constraints will often be violated by estimated linear models,

which calls into question their appropriateness in cases ofthis sort.

Example: Binary limited dependent variable

The referendum contingent valuation (CV) method of infering the social value of a

project provides a simple example. This example is a specialcase of more general discrete

choice (or binary response) models. Individuals are asked if they would pay an amountA

for provision of a project. Indirect utility in the base case(no project) isv0(m,z)+ε0, where

m is income andz is a vector of other variables such as prices, personal characteristics,etc.

After provision, utility isv1(m,z)+ ε1. The random termsεi , i = 1,2, reflect variations of

preferences in the population. With this, an individual agrees1 to payA if

ε0− ε1
︸ ︷︷ ︸

ε
<

v1(m−A,z)−v0(m,z)︸ ︷︷ ︸
∆v(w,A)

Defineε = ε0−ε1, let w collectmandz, and let∆v(w,A) = v1(m−A,z)−v0(m,z). Define

y = 1 if the consumer agrees to payA for the change,y = 0 otherwise. The probability of

agreement is

(12.0.1) Pr(y = 1) = Fε [∆v(w,A)] .

1We assume here that responses are truthful, that is there is no strategic behavior and that individuals are able to
order their preferences in this hypothetical situation.
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To simplify notation, definep(w,A) ≡ Fε [∆v(w,A)] . To make the example specific, sup-

pose that

v1(m,z) = α−βm

v0(m,z) = −βm

andε0 andε1 are i.i.d. extreme value random variables. That is, utilitydepends only on

income, preferences in both states are homothetic, and a specific distributional assumption

is made on the distribution of preferences in the population. With these assumptions (the

details are unimportant here, see articles by D. McFadden ifyou’re interested) it can be

shown that

p(A,θ) = Λ(α+ βA) ,

whereΛ(z) is the logistic distribution function

Λ(z) = (1+exp(−z))−1 .

This is the simple logit model: the choice probability is thelogit function of a linear in

parameters function.

Now, y is either 0 or 1, and the expected value ofy is Λ(α+ βA) . Thus, we can write

y = Λ(α+ βA)+ η

E (η) = 0.

One could estimate this by (nonlinear) least squares
(

α̂,β̂
)

= argmin
1
n ∑

t
(y−Λ(α+ βA))2

The main point is that it is impossible thatΛ(α+ βA) can be written as a linear in the

parameters model, in the sense that, for arbitraryA, there are noθ,ϕ(A) such that

Λ(α+ βA) = ϕ(A)′θ,∀A

whereϕ(A) is a p-vector valued function ofA andθ is a p dimensional parameter. This

is because for anyθ, we can always find aA such thatϕ(A)′θ will be negative or greater

than 1, which is illogical, since it is the expectation of a 0/1 binary random variable. Since

this sort of problem occurs often in empirical work, it is useful to study NLS and other

nonlinear models.

After discussing these estimation methods for parametric models we’ll briefly intro-

ducenonparametric estimation methods. These methods allow one, for example, to esti-

mate f (xt ) consistently when we are not willing to assume that a model ofthe form

yt = f (xt)+ εt

can be restricted to a parametric form

yt = f (xt ,θ)+ εt

Pr(εt < z) = Fε(z|φ,xt )

θ ∈ Θ,φ ∈ Φ
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where f (·) and perhapsFε(z|φ,xt ) are of known functional form. This is important since

economic theory gives us general information about functions and the signs of their deriva-

tives, but not about their specific form.

Then we’ll look at simulation-based methods in econometrics. These methods allow

us to substitute computer power for mental power. Since computer power is becoming

relatively cheap compared to mental effort, any econometrician who lives by the principles

of economic theory should be interested in these techniques.

Finally, we’ll look at how econometric computations can be done in parallel on a clus-

ter of computers. This allows us to harness more computational power to work with more

complex models that can be dealt with using a desktop computer.



CHAPTER 13

Numeric optimization methods

Readings: Hamilton, ch. 5, section 7 (pp. 133-139)∗; Gourieroux and Monfort, Vol.

1, ch. 13, pp. 443-60∗; Goffe, et. al. (1994).

If we’re going to be applying extremum estimators, we’ll need to know how to find

an extremum. This section gives a very brief introduction towhat is a large literature

on numeric optimization methods. We’ll consider a few well-known techniques, and one

fairly new technique that may allow one to solve difficult problems. The main objective

is to become familiar with the issues, and to learn how to use the BFGS algorithm at the

practical level.

The general problem we consider is how to find the maximizing elementθ̂ (aK -vector)

of a functions(θ). This function may not be continuous, and it may not be differentiable.

Even if it is twice continuously differentiable, it may not be globally concave, so local

maxima, minima and saddlepoints may all exist. Supposings(θ) were a quadratic function

of θ, e.g.,

s(θ) = a+b′θ+
1
2

θ′Cθ,

the first order conditions would be linear:

Dθs(θ) = b+Cθ

so the maximizing (minimizing) element would beθ̂ = −C−1b. This is the sort of problem

we have with linear models estimated by OLS. It’s also the case for feasible GLS, since

conditional on the estimate of the varcov matrix, we have a quadratic objective function in

the remaining parameters.

More general problems will not have linear f.o.c., and we will not be able to solve for

the maximizer analytically. This is when we need a numeric optimization method.

13.1. Search

The idea is to create a grid over the parameter space and evaluate the function at each

point on the grid. Select the best point. Then refine the grid in the neighborhood of the

best point, and continue until the accuracy is ”good enough”. See Figure13.1.1. One has

to be careful that the grid is fine enough in relationship to the irregularity of the function to

ensure that sharp peaks are not missed entirely.

To checkq values in each dimension of aK dimensional parameter space, we need

to checkqK points. For example, ifq = 100 andK = 10, there would be 10010 points

to check. If 1000 points can be checked in a second, it would take 3.171× 109 years to

perform the calculations, which is approximately the age ofthe earth. The search method

154
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FIGURE 13.1.1. The search method

is a very reasonable choice ifK is small, but it quickly becomes infeasible ifK is moderate

or large.

13.2. Derivative-based methods

13.2.1. Introduction. Derivative-based methods are defined by

(1) the method for choosing the initial value,θ1

(2) the iteration method for choosingθk+1 givenθk (based upon derivatives)

(3) the stopping criterion.

The iteration method can be broken into two problems: choosing the stepsizeak (a scalar)

and choosing the direction of movement,dk, which is of the same dimension ofθ, so that

θ(k+1) = θ(k) +akdk.

A locally increasing direction of search dis a direction such that

∃a :
∂s(θ+ad)

∂a
> 0

for a positive but small. That is, if we go in directiond, we will improve on the objective

function, at least if we don’t go too far in that direction.
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FIGURE 13.2.1. Increasing directions of search

• As long as the gradient atθ is not zero there exist increasing directions, and

they can all be represented asQkg(θk) whereQk is a symmetric pd matrix and

g(θ) = Dθs(θ) is the gradient atθ. To see this, take a T.S. expansion around

a0 = 0

s(θ+ad) = s(θ+0d)+ (a−0)g(θ+0d)′d+o(1)

= s(θ)+ag(θ)′d+o(1)

For small enougha the o(1) term can be ignored. Ifd is to be an increasing

direction, we needg(θ)′d > 0. Definingd = Qg(θ), whereQ is positive definite,

we guarantee that

g(θ)′d = g(θ)′Qg(θ) > 0

unlessg(θ) = 0. Every increasing direction can be represented in this way (p.d.

matrices are those such that the angle betweeng andQg(θ) is less that 90 de-

grees). See Figure13.2.1.

• With this, the iteration rule becomes

θ(k+1) = θ(k) +akQkg(θk)
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and we keep going until the gradient becomes zero, so that there is no increasing direction.

The problem is how to choosea andQ.

• Conditional on Q, choosinga is fairly straightforward. A simple line search is

an attractive possibility, sincea is a scalar.

• The remaining problem is how to chooseQ.

• Note also that this gives no guarantees to find a global maximum.

13.2.2. Steepest descent.Steepest descent (ascent if we’re maximizing) just setsQ

to and identity matrix, since the gradient provides the direction of maximum rate of change

of the objective function.

• Advantages: fast - doesn’t require anything more than first derivatives.

• Disadvantages: This doesn’t always work too well however (draw picture of ba-

nana function).

13.2.3. Newton-Raphson.The Newton-Raphson method uses information about the

slope and curvature of the objective function to determine which direction and how far to

move from an initial point. Supposing we’re trying to maximizesn(θ). Take a second order

Taylor’s series approximation ofsn(θ) aboutθk (an initial guess).

sn(θ) ≈ sn(θk)+g(θk)′
(

θ−θk
)

+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

To attempt to maximizesn(θ), we can maximize the portion of the right-hand side that

depends onθ, i.e., we can maximize

s̃(θ) = g(θk)′θ+1/2
(

θ−θk
)′

H(θk)
(

θ−θk
)

with respect toθ. This is a much easier problem, since it is a quadratic function in θ, so it

has linear first order conditions. These are

Dθs̃(θ) = g(θk)+H(θk)
(

θ−θk
)

So the solution for the next round estimate is

θk+1 = θk−H(θk)−1g(θk)

This is illustrated in Figure13.2.2.

However, it’s good to include a stepsize, since the approximation tosn(θ) may be bad

far away from the maximizer̂θ, so the actual iteration formula is

θk+1 = θk−akH(θk)−1g(θk)

• A potential problem is that the Hessian may not be negative definite when we’re

far from the maximizing point. So−H(θk)−1 may not be positive definite, and

−H(θk)−1g(θk) may not define an increasing direction of search. This can hap-

pen when the objective function has flat regions, in which case the Hessian matrix

is very ill-conditioned (e.g., is nearly singular), or whenwe’re in the vicinity of

a local minimum,H(θk) is positive definite, and our direction is adecreasingdi-

rection of search. Matrix inverses by computers are subjectto large errors when

the matrix is ill-conditioned. Also, we certainly don’t want to go in the direction
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FIGURE 13.2.2. Newton-Raphson method

of a minimum when we’re maximizing. To solve this problem,Quasi-Newton

methods simply add a positive definite component toH(θ) to ensure that the re-

sulting matrix is positive definite,e.g., Q= −H(θ)+bI , whereb is chosen large

enough so thatQ is well-conditioned and positive definite. This has the benefit

that improvement in the objective function is guaranteed.

• Another variation of quasi-Newton methods is to approximate the Hessian by

using successive gradient evaluations. This avoids actualcalculation of the Hes-

sian, which is an order of magnitude (in the dimension of the parameter vector)

more costly than calculation of the gradient. They can be done to ensure that the

approximation is p.d. DFP and BFGS are two well-known examples.

Stopping criteria

The last thing we need is to decide when to stop. A digital computer is subject to

limited machine precision and round-off errors. For these reasons, it is unreasonable to

hope that a program canexactly find the point that maximizes a function. We need to

define acceptable tolerances. Some stopping criteria are:

• Negligable change in parameters:

|θk
j −θk−1

j | < ε1,∀ j
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• Negligable relative change:

|
θk

j −θk−1
j

θk−1
j

| < ε2,∀ j

• Negligable change of function:

|s(θk)−s(θk−1)| < ε3

• Gradient negligibly different from zero:

|g j(θk)| < ε4,∀ j

• Or, even better, check all of these.

• Also, if we’re maximizing, it’s good to check that the last round (real, not ap-

proximate) Hessian is negative definite.

Starting values

The Newton-Raphson and related algorithms work well if the objective function is

concave (when maximizing), but not so well if there are convex regions and local minima

or multiple local maxima. The algorithm may converge to a local minimum or to a local

maximum that is not optimal. The algorithm may also have difficulties converging at all.

• The usual way to “ensure” that a global maximum has been foundis to use many

different starting values, and choose the solution that returns the highest objective

function value.THIS IS IMPORTANT in practice. More on this later.

Calculating derivatives

The Newton-Raphson algorithm requires first and second derivatives. It is often dif-

ficult to calculate derivatives (especially the Hessian) analytically if the functionsn(·) is

complicated. Possible solutions are to calculate derivatives numerically, or to use programs

such as MuPAD or Mathematica to calculate analytic derivatives. For example, Figure

13.2.3shows MuPAD1 calculating a derivative that I didn’t know off the top of my head,

and one that I did know.

• Numeric derivatives are less accurate than analytic derivatives, and are usually

more costly to evaluate. Both factors usually cause optimization programs to be

less successful when numeric derivatives are used.

• One advantage of numeric derivatives is that you don’t have to worry about hav-

ing made an error in calculating the analytic derivative. When programming an-

alytic derivatives it’s a good idea to check that they are correct by using numeric

derivatives. This is a lesson I learned the hard way when writing my thesis.

• Numeric second derivatives are much more accurate if the data are scaled so that

the elements of the gradient are of the same order of magnitude. Example: if the

model isyt = h(αxt +βzt)+εt , and estimation is by NLS, suppose thatDαsn(·) =

1000 andDβsn(·) = 0.001. One could defineα∗ = α/1000;x∗t = 1000xt ;β∗ =

1000β;z∗t = zt/1000. In this case, the gradientsDα∗sn(·) andDβsn(·) will both be

1.

1MuPAD is not a freely distributable program, so it’s not on the CD. You can download it from
http://www.mupad.de/download.shtml
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FIGURE 13.2.3. Using MuPAD to get analytic derivatives

In general, estimation programs always work better if data is scaled in this

way, since roundoff errors are less likely to become important. This is important

in practice.

• There are algorithms (such as BFGS and DFP) that use the sequential gradient

evaluations to build up an approximation to the Hessian. Theiterations are faster

for this reason since the actual Hessian isn’t calculated, but more iterations usu-

ally are required for convergence.

• Switching between algorithms during iterations is sometimes useful.

13.3. Simulated Annealing

Simulated annealing is an algorithm which can find an optimumin the presence of non-

concavities, discontinuities and multiple local minima/maxima. Basically, the algorithm

randomly selects evaluation points, accepts all points that yield an increase in the objective

function, but also accepts some points that decrease the objective function. This allows the

algorithm to escape from local minima. As more and more points are tried, periodically

the algorithm focuses on the best point so far, and reduces the range over which random

points are generated. Also, the probability that a negativemove is accepted reduces. The

algorithm relies on many evaluations, as in the search method, but focuses in on promising
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areas, which reduces function evaluations with respect to the search method. It does not

require derivatives to be evaluated. I have a program to do this if you’re interested.

13.4. Examples

This section gives a few examples of how some nonlinear models may be estimated

using maximum likelihood.

13.4.1. Discrete Choice: The logit model.In this section we will consider maximum

likelihood estimation of the logit model for binary 0/1 dependent variables. We will use the

BFGS algotithm to find the MLE.

We saw an example of a binary choice model in equation12.0.1. A more general

representation is

y∗ = g(x)− ε

y = 1(y∗ > 0)

Pr(y = 1) = Fε[g(x)]

≡ p(x,θ)

The log-likelihood function is

sn(θ) =
1
n

n

∑
i=1

(yi ln p(xi ,θ)+ (1−yi) ln [1− p(xi,θ)])

For the logit model (see the contingent valuation example above), the probability has

the specific form

p(x,θ) =
1

1+exp(−x′θ)

You should download and examineLogitDGP.m, which generates data according to

the logit model,logit.m , which calculates the loglikelihood, andEstimateLogit.m, which

sets things up and calls the estimation routine, which uses the BFGS algorithm.

Here are some estimation results withn = 100, and the trueθ = (0,1)′.

***********************************************
Trial of MLE estimation of Logit model

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: 0.607063
Observations: 100

estimate st. err t-stat p-value
constant 0.5400 0.2229 2.4224 0.0154
slope 0.7566 0.2374 3.1863 0.0014

Information Criteria
CAIC : 132.6230

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/LogitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m
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BIC : 130.6230
AIC : 125.4127

***********************************************

The estimation program is callingmle_results() , which in turn calls a number of

other routines. These functions are part of theoctave-forge repository.

13.4.2. Count Data: The Poisson model.Demand for health care is usually thought

of a a derived demand: health care is an input to a home production function that produces

health, and health is an argument of the utility function. Grossman (1972), for example,

models health as a capital stock that is subject to depreciation (e.g., the effects of ageing).

Health care visits restore the stock. Under the home production framework, individuals de-

cide when to make health care visits to maintain their healthstock, or to deal with negative

shocks to the stock in the form of accidents or illnesses. As such, individual demand will

be a function of the parameters of the individuals’ utility functions.

TheMEPS health data file, meps1996.data, contains 4564 observations on six mea-

sures of health care usage. The data is from the 1996 Medical Expenditure Panel Sur-

vey (MEPS). You can get more information athttp://www.meps.ahrq.gov/ . The six

measures of use are are office-based visits (OBDV), outpatient visits (OPV), inpatient vis-

its (IPV), emergency room visits (ERV), dental visits (VDV), and number of prescription

drugs taken (PRESCR). These form columns 1 - 6 ofmeps1996.data . The conditioning

variables are public insurance (PUBLIC), private insurance (PRIV), sex (SEX), age (AGE),

years of education (EDUC), and income (INCOME). These form columns 7 - 12 of the file,

in the order given here. PRIV and PUBLIC are 0/1 binary variables, where a 1 indicates

that the person has access to public or private insurance coverage. SEX is also 0/1, where

1 indicates that the person is female. This data will be used in examples fairly extensively

in what follows.

The programExploreMEPS.mshows how the data may be read in, and gives some

descriptive information about variables, which follows:

All of the measures of use are count data, which means that they take on the values

0,1,2, .... It might be reasonable to try to use this information by specifying the density as

a count data density. One of the simplest count data densities is the Poisson density, which

is

fY(y) =
exp(−λ)λy

y!
.

The Poisson average log-likelihood function is

sn(θ) =
1
n

n

∑
i=1

(−λi +yi lnλi − lnyi !)

We will parameterize the model as

λi = exp(x′iβ)

xi = [1 PUBLIC PRIV SEX AGE EDUC INC]′.

http://pareto.uab.es/mcreel/Econometrics/Examples/Data/meps1996.data
http://www.meps.ahrq.gov/
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/ExploreMEPS.m
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This ensures that the mean is positive, as is required for thePoisson model. Note that for

this parameterization

β j =
∂λ/∂β j

λ
so

β jx j = ηλ
xj

,

the elasticity of the conditional mean ofy with respect to thejth conditioning variable.

The programEstimatePoisson.mestimates a Poisson model using the full data set. The

results of the estimation, using OBDV as the dependent variable are here:

MPITB extensions found

OBDV

*************************************************** ***

Poisson model, MEPS 1996 full data set

MLE Estimation Results

BFGS convergence: Normal convergence

Average Log-L: -3.671090

Observations: 4564

estimate st. err t-stat p-value

constant -0.791 0.149 -5.290 0.000

pub. ins. 0.848 0.076 11.093 0.000

priv. ins. 0.294 0.071 4.137 0.000

sex 0.487 0.055 8.797 0.000

age 0.024 0.002 11.471 0.000

edu 0.029 0.010 3.061 0.002

inc -0.000 0.000 -0.978 0.328

Information Criteria

CAIC : 33575.6881 Avg. CAIC: 7.3566

BIC : 33568.6881 Avg. BIC: 7.3551

AIC : 33523.7064 Avg. AIC: 7.3452

*************************************************** ***

13.4.3. Duration data and the Weibull model. In some cases the dependent variable

may be the time that passes between the occurence of two events. For example, it may be

the duration of a strike, or the time needed to find a job once one is unemployed. Such

variables take on values on the positive real line, and are referred to as duration data.

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m
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A spell is the period of time between the occurence of initial event and the concluding

event. For example, the initial event could be the loss of a job, and the final event is the

finding of a new job. The spell is the period of unemployment.

Let t0 be the time the initial event occurs, andt1 be the time the concluding event

occurs. For simplicity, assume that time is measured in years. The random variableD

is the duration of the spell,D = t1 − t0. Define the density function ofD, fD(t), with

distribution functionFD(t) = Pr(D < t).

Several questions may be of interest. For example, one mightwish to know the ex-

pected time one has to wait to find a job given that one has already waiteds years. The

probability that a spell lastssyears is

Pr(D > s) = 1−Pr(D ≤ s) = 1−FD(s).

The density ofD conditional on the spell already having lastedsyears is

fD(t|D > s) =
fD(t)

1−FD(s)
.

The expectanced additional time required for the spell to end given that is has already lasted

syears is the expectation ofD with respect to this density, minuss.

E = E (D|D > s)−s=

(
Z ∞

t
z

fD(z)
1−FD(s)

dz

)
−s

To estimate this function, one needs to specify the densityfD(t) as a parametric density,

then estimate by maximum likelihood. There are a number of possibilities including the

exponential density, the lognormal,etc.A reasonably flexible model that is a generalization

of the exponential density is the Weibull density

fD(t|θ) = e−(λt)γ
λγ(λt)γ−1.

According to this model,E (D) = λ−γ. The log-likelihood is just the product of the log

densities.

To illustrate application of this model, 402 observations on the lifespan of mongooses

in Serengeti National Park (Tanzania) were used to fit a Weibull model. The ”spell” in this

case is the lifetime of an individual mongoose. The parameter estimates and standard errors

areλ̂ = 0.559(0.034) andγ̂ = 0.867(0.033) and the log-likelihood value is -659.3. Figure

13.4.1presents fitted life expectancy (expected additional yearsof life) as a function of age,

with 95% confidence bands. The plot is accompanied by a nonparametric Kaplan-Meier

estimate of life-expectancy. This nonparametric estimator simply averages all spell lengths

greater than age, and then subtracts age. This is consistentby the LLN.

In the figure one can see that the model doesn’t fit the data well, in that it predicts

life expectancy quite differently than does the nonparametric model. For ages 4-6, the

nonparametric estimate is outside the confidence interval that results from the parametric

model, which casts doubt upon the parametric model. Mongooses that are between 2-6

years old seem to have a lower life expectancy than is predicted by the Weibull model,

whereas young mongooses that survive beyond infancy have a higher life expectancy, up

to a bit beyond 2 years. Due to the dramatic change in the deathrate as a function oft, one
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FIGURE 13.4.1. Life expectancy of mongooses, Weibull model

might specifyfD(t) as a mixture of two Weibull densities,

fD(t|θ) = δ
(

e−(λ1t)γ1 λ1γ1(λ1t)
γ1−1

)
+(1− δ)

(
e−(λ2t)γ2 λ2γ2(λ2t)

γ2−1
)

.

The parametersγi andλi , i = 1,2 are the parameters of the two Weibull densities, andδ is

the parameter that mixes the two.

With the same data,θ can be estimated using the mixed model. The results are a

log-likelihood = -623.17. Note that a standard likelihood ratio test cannot be used to chose

between the two models, since under the null thatδ = 1 (single density), the two parameters

λ2 andγ2 are not identified. It is possible to take this into account, but this topic is out

of the scope of this course. Nevertheless, the improvement in the likelihood function is

considerable. The parameter estimates are

Parameter Estimate St. Error

λ1 0.233 0.016

γ1 1.722 0.166

λ2 1.731 0.101

γ2 1.522 0.096

δ 0.428 0.035
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FIGURE 13.4.2. Life expectancy of mongooses, mixed Weibull model

Note that the mixture parameter is highly significant. This model leads to the fit in Figure

13.4.2. Note that the parametric and nonparametric fits are quite close to one another, up to

around 6 years. The disagreement after this point is not too important, since less than 5%

of mongooses live more than 6 years, which implies that the Kaplan-Meier nonparametric

estimate has a high variance (since it’s an average of a smallnumber of observations).

Mixture models are often an effective way to model complex responses, though they

can suffer from overparameterization. Alternatives will be discussed later.

13.5. Numeric optimization: pitfalls

In this section we’ll examine two common problems that can beencountered when

doing numeric optimization of nonlinear models, and some solutions.

13.5.1. Poor scaling of the data.When the data is scaled so that the magnitudes of

the first and second derivatives are of different orders, problems can easily result. If we

uncomment the appropriate line inEstimatePoisson.m, the data will not be scaled, and the

estimation program will have difficulty converging (it seems to take an infinite amount of

time). With unscaled data, the elements of the score vector have very different magnitudes

at the initial value ofθ (all zeros). To see this runCheckScore.m. With unscaled data,

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/EstimatePoisson.m
http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/CheckScore.m
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FIGURE 13.5.1. A foggy mountain

one element of the gradient is very large, and the maximum andminimum elements are

5 orders of magnitude apart. This causes convergence problems due to serious numerical

inaccuracy when doing inversions to calculate the BFGS direction of search. With scaled

data, none of the elements of the gradient are very large, andthe maximum difference in

orders of magnitude is 3. Convergence is quick.

13.5.2. Multiple optima. Multiple optima (one global, others local) can complicate

life, since we have limited means of determining if there is ahigher maximum the the one

we’re at. Think of climbing a mountain in an unknown range, ina very foggy place (Figure

13.5.1). You can go up until there’s nowhere else to go up, but since you’re in the fog you

don’t know if the true summit is across the gap that’s at your feet. Do you claim victory

and go home, or do you trudge down the gap and explore the otherside?

The best way to avoid stopping at a local maximum is to use manystarting values, for

example on a grid, or randomly generated. Or perhaps one might have priors about possible

values for the parameters (e.g.,from previous studies of similar data).

Let’s try to find the true minimizer of minus 1 times the foggy mountain function (since

the algoritms are set up to minimize). From the picture, you can see it’s close to(0,0), but

let’s pretend there is fog, and that we don’t know that. The programFoggyMountain.m

shows that poor start values can lead to problems. It uses SA,which finds the true global

http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/FoggyMountain.m
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minimum, and it shows that BFGS using a battery of random start values can also find the

global minimum help. The output of one run is here:

MPITB extensions found

=================================================== ===

BFGSMIN final results

Used numeric gradient

--------------------------------------------------- ---

STRONG CONVERGENCE

Function conv 1 Param conv 1 Gradient conv 1

--------------------------------------------------- ---

Objective function value -0.0130329

Stepsize 0.102833

43 iterations

--------------------------------------------------- ---

param gradient change

15.9999 -0.0000 0.0000

-28.8119 0.0000 0.0000

The result with poor start values

ans =

16.000 -28.812

================================================

SAMIN final results

NORMAL CONVERGENCE

Func. tol. 1.000000e-10 Param. tol. 1.000000e-03

Obj. fn. value -0.100023

parameter search width

0.037419 0.000018

-0.000000 0.000051

================================================

Now try a battery of random start values and

a short BFGS on each, then iterate to convergence

The result using 20 randoms start values

ans =
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3.7417e-02 2.7628e-07

The true maximizer is near (0.037,0)

In that run, the single BFGS run with bad start values converged to a point far from the true

minimizer, which simulated annealing and BFGS using a battery of random start values

both found the true maximizaer. battery of random start values managed to find the global

max. The moral of the story is be cautious and don’t publish your results too quickly.
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Exercises

(1) In octave, type ”help bfgsmin_example ”, to find out the location of the file. Edit the

file to examine it and learn how to callbfgsmin . Run it, and examine the output.

(2) In octave, type ”help samin_example ”, to find out the location of the file. Edit the

file to examine it and learn how to callsamin . Run it, and examine the output.

(3) Usinglogit.mandEstimateLogit.mas templates, write a function to calculate the probit

loglikelihood, and a script to estimate a probit model. Run it using data that actually

follows a logit model (you can generate it in the same way thatis done in the logit

example).

(4) Studymle_results.m to see what it does. Examine the functions thatmle_results.m

calls, and in turn the functions that those functions call. Write a complete description

of how the whole chain works.

(5) Look at the Poisson estimation results for the OBDV measure of health care use and

give an economic interpretation. Estimate Poisson models for the other 5 measures of

health care usage.

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/Logit.m
http://pareto.uab.es/mcreel/Econometrics/Examples/NonlinearOptimization/EstimateLogit.m


CHAPTER 14

Asymptotic properties of extremum estimators

Readings: Gourieroux and Monfort (1995), Vol. 2, Ch. 24∗; Amemiya, Ch. 4 section

4.1∗; Davidson and MacKinnon, pp. 591-96; Gallant, Ch. 3; Newey and McFadden (1994),

“Large Sample Estimation and Hypothesis Testing,” inHandbook of Econometrics, Vol. 4,

Ch. 36.

14.1. Extremum estimators

In Definition12.0.1we defined an extremum estimatorθ̂ as the optimizing element of

an objective functionsn(θ) over a setΘ. Let the objective functionsn(Zn,θ) depend upon a

n× p random matrixZn =
[

z1 z2 · · · zn

]′
where thezt arep-vectors andp is finite.

EXAMPLE 18. Given the modelyi = x′iθ+εi , with n observations, definezi = (yi ,x′i)
′.

The OLS estimator minimizes

sn(Zn,θ) = 1/n
n

∑
i=1

(
yi −x′iθ

)2

= 1/n ‖Y−Xθ ‖2

whereY andX are defined similarly toZ.

14.2. Consistency

The following theorem is patterned on a proof in Gallant (1987) (the article, ref. later),

which we’ll see in its original form later in the course. It isinteresting to compare the

following proof with Amemiya’s Theorem 4.1.1, which is donein terms of convergence in

probability.

THEOREM 19. [Consistency of e.e.]Suppose that̂θn is obtained by maximizingsn(θ)

overΘ.

Assume

(1) Compactness:The parameter spaceΘ is an open bounded subset of Euclidean

spaceℜK . So the closure ofΘ, Θ, is compact.

(2) Uniform Convergence:There is a nonstochastic functions∞(θ) that is continuous

in θ onΘ such that

lim
n→∞

sup
θ∈Θ

|sn(θ)−s∞(θ)| = 0, a.s.

(3) Identification: s∞(·) has a unique global maximum atθ0 ∈ Θ, i.e., s∞(θ0) >

s∞(θ), ∀θ 6= θ0,θ ∈ Θ

Thenθ̂n
a.s.→ θ0.

171
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Proof: Select aω ∈ Ω and hold it fixed. Then{sn(ω,θ)} is a fixed sequence of

functions. Suppose thatω is such thatsn(θ) converges uniformly tos∞(θ). This happens

with probability one by assumption (b). The sequence{θ̂n} lies in the compact setΘ, by

assumption (1) and the fact that maximixation is overΘ. Since every sequence from a

compact set has at least one limit point (Davidson, Thm. 2.12), say thatθ̂ is a limit point

of {θ̂n}. There is a subsequence{θ̂nm} ({nm} is simply a sequence of increasing integers)

with limm→∞ θ̂nm = θ̂. By uniform convergence and continuity

lim
m→∞

snm(θ̂nm) = s∞(θ̂).

To see this, first of all, select an elementθ̂t from the sequence
{

θ̂nm

}
. Then uniform con-

vergence implies

lim
m→∞

snm(θ̂t ) = s∞(θ̂t ).

Continuity ofs∞ (·) implies that

lim
t→∞

s∞(θ̂t) = s∞(θ̂)

since the limit ast → ∞ of
{

θ̂t
}

is θ̂. So the above claim is true.

Next, by maximization

snm(θ̂nm) ≥ snm(θ0)

which holds in the limit, so

lim
m→∞

snm(θ̂nm) ≥ lim
m→∞

snm(θ0).

However,

lim
m→∞

snm(θ̂nm) = s∞(θ̂),

as seen above, and

lim
m→∞

snm(θ0) = s∞(θ0)

by uniform convergence, so

s∞(θ̂) ≥ s∞(θ0).

But by assumption (3), there is a unique global maximum ofs∞(θ) at θ0, so we must have

s∞(θ̂) = s∞(θ0), andθ̂ = θ0. Finally, all of the above limits hold almost surely, since sofar

we have heldω fixed, but now we need to consider allω ∈ Ω. Therefore{θ̂n} has only one

limit point, θ0, except on a setC⊂ Ω with P(C) = 0.

Discussion of the proof:

• This proof relies on the identification assumption of a unique global maximum at

θ0. An equivalent way to state this is

(2) Identification: Any point θ in Θ with s∞(θ) ≥ s∞(θ0) must be such that‖ θ− θ0 ‖=
0, which matches the way we will write the assumption in the section on nonparametric

inference.

• We assume that̂θn is in fact a global maximum ofsn (θ) . It is not required to be

unique forn finite, though the identification assumption requires that the limiting

objective function have a unique maximizing argument. The previous section on
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numeric optimization methods showed that actually finding the global maximum

of sn (θ) may be a non-trivial problem.

• See Amemiya’s Example 4.1.4 for a case where discontinuity leads to breakdown

of consistency.

• The assumption thatθ0 is in the interior ofΘ (part of the identification assump-

tion) has not been used to prove consistency, so we could directly assume that

θ0 is simply an element of a compact setΘ. The reason that we assume it’s in

the interior here is that this is necessary for subsequent proof of asymptotic nor-

mality, and I’d like to maintain a minimal set of simple assumptions, for clarity.

Parameters on the boundary of the parameter set cause theoretical difficulties that

we will not deal with in this course. Just note that conventional hypothesis testing

methods do not apply in this case.

• Note thatsn (θ) is not required to be continuous, thoughs∞(θ) is.

• The following figures illustrate why uniform convergence isimportant. In the

second figure, if the function is not converging around the lower of the two max-

ima, there is no guarantee that the maximizer will be in the neighborhood of the

global maximizer.

With uniform convergence, the maximum of the sample
objective function eventually must be in the neighborhood
of the maximum of the limiting objective function
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With pointwise convergence, the sample objective function
may have its maximum far away from that of the limiting
objective function

We need a uniform strong law of large numbers in order to verify assumption (2) of

Theorem19. The following theorem is from Davidson, pg. 337.

THEOREM 20. [Uniform Strong LLN]Let {Gn(θ)} be a sequence of stochastic real-

valued functions on a totally-bounded metric space(Θ,ρ). Then

sup
θ∈Θ

|Gn(θ)| a.s.→ 0

if and only if

(a)Gn(θ)
a.s.→ 0 for eachθ ∈ Θ0, whereΘ0 is a dense subset ofΘ and

(b) {Gn(θ)} is strongly stochastically equicontinuous..

• The metric space we are interested in now is simplyΘ⊂ℜK , using the Euclidean

norm.

• The pointwise almost sure convergence needed for assuption(a) comes from one

of the usual SLLN’s.

• Stronger assumptions that imply those of the theorem are:

– the parameter space is compact (this has already been assumed)

– the objective function is continuous and bounded with probability one on

the entire parameter space

– a standard SLLN can be shown to apply to some point in the parameter space

• These are reasonable conditions in many cases, and henceforth when dealing with

specific estimators we’ll simply assume that pointwise almost sure convergence

can be extended to uniform almost sure convergence in this way.

• The more general theorem is useful in the case that the limiting objective function

can be continuous inθ even ifsn(θ) is discontinuous. This can happen because

discontinuities may be smoothed out as we take expectationsover the data. In



14.4. ASYMPTOTIC NORMALITY 175

the section on simlation-based estimation we will se a case of a discontinuous

objective function.

14.3. Example: Consistency of Least Squares

We suppose that data is generated by random sampling of(y,w), whereyt = α0+β0wt

+εt . (wt ,εt ) has the common distribution functionµwµε (w andε are independent) with

supportW ×E . Suppose that the variancesσ2
w andσ2

ε are finite. Letθ0 = (α0,β0)′ ∈ Θ,

for which Θ is compact. Letxt = (1,wt)
′, so we can writeyt = x′tθ0 + εt . The sample

objective function for a sample sizen is

sn(θ) = 1/n
n

∑
t=1

(
yt −x′tθ

)2
= 1/n

n

∑
i=1

(
x′tθ

0 + εt −x′tθ
)2

= 1/n
n

∑
t=1

(
x′t
(
θ0−θ

))2
+2/n

n

∑
t=1

x′t
(
θ0−θ

)
εt +1/n

n

∑
t=1

ε2
t

• Considering the last term, by the SLLN,

1/n
n

∑
t=1

ε2
t

a.s.→
Z

W

Z

E
ε2dµW dµE = σ2

ε .

• Considering the second term, sinceE(ε) = 0 andw andε are independent, the

SLLN implies that it converges to zero.

• Finally, for the first term, for a givenθ, we assume that a SLLN applies so that

1/n
n

∑
t=1

(
x′t
(
θ0−θ

))2 a.s.→
Z

W

(
x′
(
θ0−θ

))2
dµW(14.3.1)

=
(
α0−α

)2
+2
(
α0−α

)(
β0−β

)Z

W
wdµW +

(
β0−β

)2 Z

W
w2dµW

=
(
α0−α

)2
+2
(
α0−α

)(
β0−β

)
E(w)+

(
β0−β

)2
E
(
w2)

Finally, the objective function is clearly continuous, andthe parameter space is assumed to

be compact, so the convergence is also uniform. Thus,

s∞(θ) =
(
α0−α

)2
+2
(
α0−α

)(
β0−β

)
E(w)+

(
β0−β

)2
E
(
w2)+ σ2

ε

A minimizer of this is clearlyα = α0,β = β0.

EXERCISE 21. Show that in order for the above solution to be unique it isnecessary

thatE(w2) 6= 0. Discuss the relationship between this condition and the problem of colin-

earity of regressors.

This example shows that Theorem19 can be used to prove strong consistency of the

OLS estimator. There are easier ways to show this, of course -this is only an example of

application of the theorem.

14.4. Asymptotic Normality

A consistent estimator is oftentimes not very useful unlesswe know how fast it is

likely to be converging to the true value, and the probability that it is far away from the true

value. Establishment of asymptotic normality with a known scaling factor solves these two

problems. The following theorem is similar to Amemiya’s Theorem 4.1.3 (pg. 111).
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THEOREM 22. [Asymptotic normality of e.e.]In addition to the assumptions of Theo-

rem19, assume

(a) Jn(θ) ≡ D2
θsn(θ) exists and is continuous in an open, convex neighborhood ofθ0.

(b) {Jn(θn)} a.s.→ J∞(θ0), a finite negative definite matrix, for any sequence{θn} that

converges almost surely toθ0.

(c)
√

nDθsn(θ0)
d→ N

[
0, I∞(θ0)

]
, whereI∞(θ0) = limn→∞Var

√
nDθsn(θ0)

Then
√

n
(
θ̂−θ0

) d→ N
[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1

]

Proof: By Taylor expansion:

Dθsn(θ̂n) = Dθsn(θ0)+D2
θsn(θ∗)

(
θ̂−θ0)

whereθ∗ = λθ̂+(1−λ)θ0, 0≤ λ ≤ 1.

• Note thatθ̂ will be in the neighborhood whereD2
θsn(θ) exists with probability

one asn becomes large, by consistency.

• Now the l.h.s. of this equation is zero, at least asymptotically, since θ̂n is a

maximizer and the f.o.c. must hold exactly since the limiting objective function

is strictly concave in a neighborhood ofθ0.

• Also, sinceθ∗ is between̂θn andθ0, and sincêθn
a.s.→ θ0 , assumption (b) gives

D2
θsn(θ∗)

a.s.→ J∞(θ0)

So

0 = Dθsn(θ0)+
[
J∞(θ0)+op(1)

](
θ̂−θ0)

And

0 =
√

nDθsn(θ0)+
[
J∞(θ0)+op(1)

]√
n
(
θ̂−θ0)

Now J∞(θ0) is a finite negative definite matrix, so theop(1) term is asymptotically irrele-

vant next toJ∞(θ0), so we can write

0
a
=
√

nDθsn(θ0)+ J∞(θ0)
√

n
(
θ̂−θ0)

√
n
(
θ̂−θ0) a

= −J∞(θ0)−1√nDθsn(θ0)

Because of assumption (c), and the formula for the variance of a linear combination of

r.v.’s, √
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

• Assumption (b) is not implied by the Slutsky theorem. The Slutsky theorem says

that g(xn)
a.s.→ g(x) if xn → xandg(·) is continuous atx. However, the function

g(·) can’t depend onn to use this theorem. In our caseJn(θn) is a function ofn.

A theorem which applies (Amemiya, Ch. 4) is

THEOREM 23. If gn(θ) converges uniformly almost surely to a nonstochastic func-

tion g∞(θ) uniformly on an open neighborhood ofθ0, thengn(θ̂)
a.s.→ g∞(θ0) if g∞(θ0) is

continuous atθ0 andθ̂ a.s.→ θ0.

• To apply this to the second derivatives, sufficient conditions would be that the

second derivatives be strongly stochastically equicontinuous on a neighborhood
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of θ0, and that an ordinary LLN applies to the derivatives when evaluated at

θ ∈ N(θ0).

• Stronger conditions that imply this are as above: continuous and bounded second

derivatives in a neighborhood ofθ0.

• Skip this in lecture. A note on the order of these matrices: Supposing thatsn(θ)

is representable as an average ofn terms, which is the case for all estimators we

consider,D2
θsn(θ) is also an average ofn matrices, the elements of which are not

centered (they do not have zero expectation). Supposing a SLLN applies, the

almost sure limit ofD2
θsn(θ0), J∞(θ0) = O(1), as we saw in Example51. On the

other hand, assumption (c):
√

nDθsn(θ0)
d→ N

[
0, I∞(θ0)

]
means that

√
nDθsn(θ0) = Op()

where we use the result of Example49. If we were to omit the
√

n, we’d have

Dθsn(θ0) = n−
1
2 Op(1)

= Op

(
n−

1
2

)

where we use the fact thatOp(nr)Op(nq) = Op(nr+q). The sequenceDθsn(θ0) is

centered, so we need to scale by
√

n to avoid convergence to zero.

14.5. Examples

14.5.1. Coin flipping, yet again.Remember that in section4.4.1 we saw that the

asymptotic variance of the MLE of the parameter of a Bernoulli trial, using i.i.d. data, was

limVar
√

n(p̂− p) = p(1− p). Let’s verify this using the methods of this Chapter. The

log-likelihood function is

sn(p) =
1
n

n

∑
t=1

{yt ln p+(1−yt) (1− ln p)}

so

Esn(p) = p0 ln p+
(
1− p0)(1− ln p)

by the fact that the observations are i.i.d. Thus,s∞(p) = p0 ln p+
(
1− p0

)
(1− ln p). A bit

of calculation shows that

D2
θsn(p)

∣∣
p=p0 ≡ Jn(θ) =

−1
p0 (1− p0)

,

which doesn’t depend uponn. By results we’ve seen on MLE, limVar
√

n
(
p̂− p0

)
=

−J −1
∞ (p0). And in this case,−J −1

∞ (p0) = p0
(
1− p0

)
. It’s comforting to see that this is

the same result we got in section4.4.1.

14.5.2. Binary response models.Extending the Bernoulli trial model to binary re-

sponse models with conditioning variables, such models arise in a variety of contexts.

We’ve already seen a logit model. Another simple example is aprobit threshold-crossing
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model. Assume that

y∗ = x′β− ε

y = 1(y∗ > 0)

ε ∼ N(0,1)

Here,y∗ is an unobserved (latent) continuous variable, andy is a binary variable that indi-

cates whethery∗is negative or positive. ThenPr(y = 1) = Pr(ε < xβ) = Φ(xβ), where

Φ(•) =

Z xβ

−∞
(2π)−1/2exp(−ε2

2
)dε

is the standard normal distribution function.

In general, a binary response model will require that the choice probability be parame-

terized in some form. For a vector of explanatory variablesx, the response probability will

be parameterized in some manner

Pr(y = 1|x) = p(x,θ)

If p(x,θ) = Λ(x′θ), we have a logit model. Ifp(x,θ) = Φ(x′θ), whereΦ(·) is the standard

normal distribution function, then we have a probit model.

Regardless of the parameterization, we are dealing with a Bernoulli density,

fYi (yi |xi) = p(xi ,θ)yi (1− p(x,θ))1−yi

so as long as the observations are independent, the maximum likelihood (ML) estimator,̂θ,

is the maximizer of

sn(θ) =
1
n

n

∑
i=1

(yi ln p(xi ,θ)+ (1−yi) ln [1− p(xi,θ)])

≡ 1
n

n

∑
i=1

s(yi ,xi ,θ).(14.5.1)

Following the above theoretical results,θ̂ tends in probability to theθ0 that maximizes the

uniform almost sure limit ofsn(θ). Noting thatE yi = p(xi ,θ0), and following a SLLN for

i.i.d. processes,sn(θ) converges almost surely to the expectation of a representative term

s(y,x,θ). First one can take the expectation conditional onx to get

E y|x{yln p(x,θ)+ (1−y) ln [1− p(x,θ)]}= p(x,θ0) ln p(x,θ)+
[
1− p(x,θ0)

]
ln [1− p(x,θ)] .

Next taking expectation overx we get the limiting objective function

(14.5.2) s∞(θ) =
Z

X

{
p(x,θ0) ln p(x,θ)+

[
1− p(x,θ0)

]
ln [1− p(x,θ)]

}
µ(x)dx,

whereµ(x) is the (joint - the integral is understood to be multiple, andX is the support of

x) density function of the explanatory variablesx. This is clearly continuous inθ, as long

asp(x,θ) is continuous, and if the parameter space is compact we therefore have uniform

almost sure convergence. Note thatp(x,θ) is continous for the logit and probit models, for

example. The maximizing element ofs∞(θ), θ∗, solves the first order conditions
Z

X

{
p(x,θ0)

p(x,θ∗)
∂

∂θ
p(x,θ∗)− 1− p(x,θ0)

1− p(x,θ∗)
∂

∂θ
p(x,θ∗)

}
µ(x)dx= 0
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This is clearly solved byθ∗ = θ0. Provided the solution is unique,θ̂ is consistent. Question:

what’s needed to ensure that the solution is unique?

The asymptotic normality theorem tells us that

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] .

In the case of i.i.d. observationsI∞(θ0) = limn→∞Var
√

nDθsn(θ0) is simply the expectation

of a typical element of the outer product of the gradient.

• There’s no need to subtract the mean, since it’s zero, following the f.o.c. in the

consistency proof above and the fact that observations are i.i.d.

• The terms inn also drop out by the same argument:

lim
n→∞

Var
√

nDθsn(θ0) = lim
n→∞

Var
√

nDθ
1
n ∑

t
s(θ0)

= lim
n→∞

Var
1√
n

Dθ ∑
t

s(θ0)

= lim
n→∞

1
n

Var∑
t

Dθs(θ0)

= lim
n→∞

VarDθs(θ0)

= VarDθs(θ0)

So we get

I∞(θ0) = E

{
∂

∂θ
s(y,x,θ0)

∂
∂θ′

s(y,x,θ0)

}
.

Likewise,

J∞(θ0) = E
∂2

∂θ∂θ′
s(y,x,θ0).

Expectations are jointly overy andx, or equivalently, first overy conditional onx, then over

x. From above, a typical element of the objective function is

s(y,x,θ0) = yln p(x,θ0)+ (1−y) ln
[
1− p(x,θ0)

]
.

Now suppose that we are dealing with a correctly specified logit model:

p(x,θ) =
(
1+exp(−x′θ)

)−1
.

We can simplify the above results in this case. We have that

∂
∂θ

p(x,θ) =
(
1+exp(−x′θ)

)−2
exp(−x′θ)x

=
(
1+exp(−x′θ)

)−1 exp(−x′θ)

1+exp(−x′θ)
x

= p(x,θ)(1− p(x,θ))x

=
(
p(x,θ)− p(x,θ)2)x.
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So

∂
∂θ

s(y,x,θ0) =
[
y− p(x,θ0)

]
x(14.5.3)

∂2

∂θ∂θ′
s(θ0) = −

[
p(x,θ0)− p(x,θ0)2]xx′.

Taking expectations overy thenx gives

I∞(θ0) =
Z

EY
[
y2−2p(x,θ0)p(x,θ0)+ p(x,θ0)2]xx′µ(x)dx(14.5.4)

=

Z [
p(x,θ0)− p(x,θ0)2]xx′µ(x)dx.(14.5.5)

where we use the fact thatEY(y) = EY(y2) = p(x,θ0). Likewise,

(14.5.6) J∞(θ0) = −
Z [

p(x,θ0)− p(x,θ0)2]xx′µ(x)dx.

Note that we arrive at the expected result: the information matrix equality holds (that is,

J∞(θ0) = −I∞(θ0)). With this,

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

simplifies to √
n
(
θ̂−θ0) d→ N

[
0,−J∞(θ0)−1]

which can also be expressed as
√

n
(
θ̂−θ0) d→ N

[
0, I∞(θ0)−1] .

On a final note, the logit and standard normal CDF’s are very similar - the logit distri-

bution is a bit more fat-tailed. While coefficients will varyslightly between the two models,

functions of interest such as estimated probabilitiesp(x, θ̂) will be virtually identical for the

two models.

14.5.3. Example: Linearization of a nonlinear model.Ref. Gourieroux and Mon-

fort, section 8.3.4. White,Intn’l Econ. Rev.1980 is an earlier reference.

Suppose we have a nonlinear model

yi = h(xi ,θ0)+ εi

where

εi ∼ iid(0,σ2)

Thenonlinear least squaresestimator solves

θ̂n = argmin
1
n

n

∑
i=1

(yi −h(xi,θ))2

We’ll study this more later, but for now it is clear that the foc for minimization will require

solving a set of nonlinear equations. A common approach to the problem seeks to avoid

this difficulty by linearizing the model. A first order Taylor’s series expansion about the

pointx0 with remainder gives

yi = h(x0,θ0)+ (xi −x0)
′ ∂h(x0,θ0)

∂x
+ νi
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whereνi encompasses bothεi and the Taylor’s series remainder. Note thatνi is no longer a

classical error - its mean is not zero. We should expect problems.

Define

α∗ = h(x0,θ0)−x′0
∂h(x0,θ0)

∂x

β∗ =
∂h(x0,θ0)

∂x

Given this, one might try to estimateα∗ andβ∗ by applying OLS to

yi = α+ βxi + νi

• Question, willα̂ andβ̂ be consistent forα∗ andβ∗?

• The answer is no, as one can see by interpretingα̂ andβ̂ as extremum estimators.

Let γ = (α,β′)′.

γ̂ = argminsn(γ) =
1
n

n

∑
i=1

(yi −α−βxi)
2

The objective function converges to its expectation

sn(γ)
u.a.s.→ s∞(γ) = EXEY|X (y−α−βx)2

andγ̂ convergesa.s. to theγ0 that minimizess∞(γ):

γ0 = argminEXEY|X (y−α−βx)2

Noting that

EXEY|X
(
y−α−x′β

)2
= EXEY|X

(
h(x,θ0)+ ε−α−βx

)2

= σ2 +EX
(
h(x,θ0)−α−βx

)2

since cross products involvingε drop out.α0 andβ0 correspond to the hyperplane that is

closest to the true regression functionh(x,θ0) according to the mean squared error crite-

rion. This depends on both the shape ofh(·) and the density function of the conditioning

variables.
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x_0

α

β

x

x

x

x

x
x x

x

x

x

Tangent line

Fitted line

Inconsistency of the linear approximation, even at 
the approximation point

h(x,θ)

• It is clear that the tangent line does not minimize MSE, since, for example, if

h(x,θ0) is concave, all errors between the tangent line and the true function are

negative.

• Note that the true underlying parameterθ0 is not estimated consistently, either

(it may be of a different dimension than the dimension of the parameter of the

approximating model, which is 2 in this example).

• Second order and higher-order approximations suffer from exactly the same prob-

lem, though to a less severe degree, of course. For this reason, translog, Gener-

alized Leontiev and other “flexible functional forms” basedupon second-order

approximations in general suffer from bias and inconsistency. The bias may not

be too important for analysis of conditional means, but it can be very important

for analyzing first and second derivatives. In production and consumer analysis,

first and second derivatives (e.g.,elasticities of substitution) are often of interest,

so in this case, one should be cautious of unthinking application of models that

impose stong restrictions on second derivatives.

• This sort of linearization about a long run equilibrium is a common practice in

dynamic macroeconomic models. It is justified for the purposes of theoretical

analysis of a modelgiventhe model’s parameters, but it is not justifiable for the

estimation of the parameters of the model using data. The section on simulation-

based methods offers a means of obtaining consistent estimators of the param-

eters of dynamic macro models that are too complex for standard methods of

analysis.
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Chapter Exercises

(1) Suppose thatxi ∼ uniform(0,1), andyi = 1−x2
i + εi , whereεi is iid(0,σ2). Sup-

pose we estimate the misspecified modelyi = α + βxi + ηi by OLS. Find the

numeric values ofα0 andβ0 that are the probability limits of̂α andβ̂
(2) Verify your results using Octave by generating data thatfollows the above model,

and calculating the OLS estimator. When the sample size is very large the esti-

mator should be very close to the analytical results you obtained in question1.

(3) Use the asymptotic normality theorem to find the asymptotic distribution of the

ML estimator ofβ0 for the modely = xβ0 + ε, whereε ∼ N(0,1) and is in-

dependent ofx. This means finding ∂2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I (β0). The

expressions may involve the unspecified density ofx.

(4) Assume a d.g.p. follows the logit model: Pr(y = 1|x) =
(
1+exp(−β0x)

)−1
.

(a) Assume thatx∼ uniform(-a,a). Find the asymptotic distribution of the ML

estimator ofβ0 (this is a scalar parameter).

(b) Now assume thatx ∼ uniform(-2a,2a). Again find the asymptotic distribu-

tion of the ML estimator ofβ0.

(c) Comment on the results



CHAPTER 15

Generalized method of moments (GMM)

Readings: Hamilton Ch. 14∗; Davidson and MacKinnon, Ch. 17 (see pg. 587 for refs.

to applications); Newey and McFadden (1994), “Large SampleEstimation and Hypothesis

Testing,” inHandbook of Econometrics, Vol. 4, Ch. 36.

15.1. Definition

We’ve already seen one example of GMM in the introduction, based upon theχ2 distri-

bution. Consider the following example based upon the t-distribution. The density function

of a t-distributed r.v.Yt is

fYt (yt ,θ0) =
Γ
[(

θ0 +1
)
/2
]

(πθ0)
1/2 Γ(θ0/2)

[
1+
(
y2

t /θ0)]−(θ0+1)/2

Given an iid sample of sizen, one could estimateθ0 by maximizing the log-likelihood

function

θ̂ ≡ argmax
Θ

lnLn(θ) =
n

∑
t=1

ln fYt (yt ,θ)

• This approach is attractive since ML estimators are asymptotically efficient. This

is because the ML estimator uses all of the available information (e.g., the dis-

tribution is fully specified up to a parameter). Recalling that a distribution is

completely characterized by its moments, the ML estimator is interpretable as a

GMM estimator that usesall of the moments. The method of moments estimator

uses onlyK moments to estimate aK− dimensional parameter. Since informa-

tion is discarded, in general, by the MM estimator, efficiency is lost relative to

the ML estimator.

• Continuing with the example, a t-distributed r.v. with density fYt (yt ,θ0) has mean

zero and varianceV(yt) = θ0/
(
θ0−2

)
(for θ0 > 2).

• Using the notation introduced previously, define a moment condition m1t(θ) =

θ/(θ−2)− y2
t andm1(θ) = 1/n∑n

t=1m1t(θ) = θ/(θ−2)−1/n∑n
t=1 y2

t . As be-

fore, when evaluated at the true parameter valueθ0, bothE θ0

[
m1t(θ0)

]
= 0 and

E θ0

[
m1(θ0)

]
= 0.

• Choosingθ̂ to setm1(θ̂) ≡ 0 yields a MM estimator:

(15.1.1) θ̂ =
2

1− n
∑i y2

i

This estimator is based on only one moment of the distribution - it uses less information

than the ML estimator, so it is intuitively clear that the MM estimator will be inefficient

relative to the ML estimator.

184
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• An alternative MM estimator could be based upon the fourth moment of the t-

distribution. The fourth moment of a t-distributed r.v. is

µ4 ≡ E(y4
t ) =

3
(
θ0
)2

(θ0−2)(θ0−4)
,

providedθ0 > 4. We can define a second moment condition

m2(θ) =
3(θ)2

(θ−2)(θ−4)
− 1

n

n

∑
t=1

y4
t

• A second, different MM estimator choosesθ̂ to setm2(θ̂) ≡ 0. If you solve this

you’ll see that the estimate is different from that in equation15.1.1.

This estimator isn’t efficient either, since it uses only onemoment. A GMM estimator

would use the two moment conditions together to estimate thesingle parameter. The GMM

estimator is overidentified, which leads to an estimator which is efficient relative to the just

identified MM estimators (more on efficiency later).

• As before, setmn(θ) = (m1(θ),m2(θ))′ . Then subscript is used to indicate the

sample size. Note thatm(θ0) = Op(n−1/2), since it is an average of centered

random variables, whereasm(θ) = Op(1), θ 6= θ0, where expectations are taken

using the true distribution with parameterθ0. This is the fundamental reason that

GMM is consistent.

• A GMM estimator requires defining a measure of distance,d (m(θ)). A popular

choice (for reasons noted below) is to setd (m(θ)) = m′Wnm, and we minimize

sn(θ) = m(θ)′Wnm(θ). We assumeWn converges to a finite positive definite ma-

trix.

• In general, assume we haveg moment conditions, som(θ) is ag -vector andW

is ag×g matrix.

For the purposes of this course, the following definition of the GMM estimator is suffi-

ciently general:

DEFINITION 24. The GMM estimator of theK -dimensional parameter vectorθ0,

θ̂ ≡ argminΘ sn(θ) ≡ mn(θ)′Wnmn(θ), wheremn(θ) = 1
n ∑n

t=1mt(θ) is a g-vector,g ≥ K,

with E θm(θ) = 0, andWn converges almost surely to a finiteg× g symmetric positive

definite matrixW∞.

What’s the reason for using GMM if MLE is asymptotically efficient?

• Robustness: GMM is based upon a limited set of moment conditions. For con-

sistency, only these moment conditions need to be correctlyspecified, whereas

MLE in effect requires correct specification ofevery conceivablemoment condi-

tion. GMM is robust with respect to distributional misspecification.The price for

robustness is loss of efficiency with respect to the MLE estimator. Keep in mind

that the true distribution is not knownso if we erroneously specify a distribution

and estimate by MLE, the estimator will be inconsistent in general (not always).

– Feasibility: in some cases the MLE estimator is not available, because we

are not able to deduce the likelihood function. More on this in the section
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on simulation-based estimation. The GMM estimator may still be feasible

even though MLE is not possible.

15.2. Consistency

We simply assume that the assumptions of Theorem19 hold, so the GMM estimator

is strongly consistent. The only assumption that warrants additional comments is that of

identification. In Theorem19, the third assumption reads: (c)Identification: s∞(·) has a

unique global maximum atθ0, i.e., s∞(θ0) > s∞(θ), ∀θ 6= θ0. Taking the case of a quadratic

objective functionsn(θ) = mn(θ)′Wnmn(θ), first considermn(θ).

• Applying a uniform law of large numbers, we getmn(θ)
a.s.→ m∞(θ).

• SinceE θ′mn(θ0) = 0 by assumption,m∞(θ0) = 0.

• Sinces∞(θ0) = m∞(θ0)′W∞m∞(θ0) = 0, in order for asymptotic identification,

we need thatm∞(θ) 6= 0 for θ 6= θ0, for at least some element of the vector. This

and the assumption thatWn
a.s.→ W∞, a finite positiveg×g definiteg× g matrix

guarantee thatθ0 is asymptotically identified.

• Note that asymptotic identification does not rule out the possibility of lack of

identification for a given data set - there may be multiple minimizing solutions in

finite samples.

15.3. Asymptotic normality

We also simply assume that the conditions of Theorem22 hold, so we will have as-

ymptotic normality. However, we do need to find the structureof the asymptotic variance-

covariance matrix of the estimator. From Theorem22, we have

√
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

whereJ∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) andI∞(θ0) = limn→∞ Var
√

n ∂
∂θ sn(θ0).

We need to determine the form of these matrices given the objective functionsn(θ) =

mn(θ)′Wnmn(θ).

Now using the product rule from the introduction,

∂
∂θ

sn(θ) = 2

[
∂

∂θ
m

′
n (θ)

]
Wnmn (θ)

Define theK ×g matrix

Dn(θ) ≡ ∂
∂θ

m′
n (θ) ,

so:

(15.3.1)
∂

∂θ
s(θ) = 2D(θ)Wm(θ) .

(Note thatsn(θ), Dn(θ), Wn andmn(θ) all depend on the sample sizen, but it is omitted to

unclutter the notation).

To take second derivatives, letDi be thei− th row ofD(θ). Using the product rule,

∂2

∂θ′∂θi
s(θ) =

∂
∂θ′

2Di(θ)Wnm(θ)

= 2DiWD′ +2m′W

[
∂

∂θ′
D′

i

]
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When evaluating the term

2m(θ)′W

[
∂

∂θ′
D(θ)′i

]

at θ0, assume that∂∂θ′ D(θ)′i satisfies a LLN, so that it converges almost surely to a finite

limit. In this case, we have

2m(θ0)′W

[
∂

∂θ′
D(θ0)′i

]
a.s.→ 0,

sincem(θ0) = op(1), W
a.s.→ W∞.

Stacking these results over theK rows ofD, we get

lim
∂2

∂θ∂θ′
sn(θ0) = J∞(θ0) = 2D∞W∞D′

∞,a.s.,

where we define limD = D∞, a.s., and limW = W∞, a.s. (we assume a LLN holds).

With regard toI∞(θ0), following equation15.3.1, and noting that the scores have mean

zero atθ0 (sinceEm(θ0) = 0 by assumption), we have

I∞(θ0) = lim
n→∞

Var
√

n
∂

∂θ
sn(θ0)

= lim
n→∞
E 4nDnWnm(θ0)m(θ)′WnD′

n

= lim
n→∞
E 4DnWn

{√
nm(θ0)

}{√
nm(θ)′

}
WnD′

n

Now, given thatm(θ0) is an average of centered (mean-zero) quantities, it is reasonable to

expect a CLT to apply, after multiplication by
√

n. Assuming this,

√
nm(θ0)

d→ N(0,Ω∞),

where

Ω∞ = lim
n→∞
E
[
nm(θ0)m(θ0)′

]
.

Using this, and the last equation, we get

I∞(θ0) = 4D∞W∞Ω∞W∞D′
∞

Using these results, the asymptotic normality theorem gives us
√

n
(
θ̂−θ0) d→ N

[
0,
(
D∞W∞D′

∞
)−1

D∞W∞Ω∞W∞D′
∞
(
D∞W∞D′

∞
)−1
]
,

the asymptotic distribution of the GMM estimator for arbitrary weighting matrixWn. Note

that forJ∞ to be positive definite,D∞ must have full row rank,ρ(D∞) = k.

15.4. Choosing the weighting matrix

W is aweighting matrix,which determines the relative importance of violations of the

individual moment conditions. For example, if we are much more sure of the first moment

condition, which is based upon the variance, than of the second, which is based upon the

fourth moment, we could set

W =

[
a 0

0 b

]

with a much larger thanb. In this case, errors in the second moment condition have less

weight in the objective function.
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• Since moments are not independent, in general, we should expect that there be a

correlation between the moment conditions, so it may not be desirable to set the

off-diagonal elements to 0.W may be a random, data dependent matrix.

• We have already seen that the choice ofW will influence the asymptotic distri-

bution of the GMM estimator. Since the GMM estimator is already inefficient

w.r.t. MLE, we might like to choose theW matrix to make the GMM estimator

efficientwithin the class of GMM estimatorsdefined bymn(θ).

• To provide a little intuition, consider the linear modely = x′β + ε, whereε ∼
N(0,Ω). That is, he have heteroscedasticity and autocorrelation.

• Let P be the Cholesky factorization ofΩ−1, e.g,P′P = Ω−1.

• Then the modelPy= PXβ+Pε satisfies the classical assumptions of homoscedas-

ticity and nonautocorrelation, sinceV(Pε) = PV(ε)P′ = PΩP′ = P(P′P)−1P′ =

PP−1 (P′)−1P′ = In. (Note: we use(AB)−1 = B−1A−1 for A, B both nonsingular).

This means that the transformed model is efficient.

• The OLS estimator of the modelPy= PXβ+Pε minimizes the objective function

(y−Xβ)′Ω−1(y−Xβ). Interpreting(y−Xβ)= ε(β) as moment conditions (note

that they do have zero expectation when evaluated atβ0), the optimal weighting

matrix is seen to be the inverse of the covariance matrix of the moment condi-

tions. This result carries over to GMM estimation. (Note: this presentation of

GLS is not a GMM estimator, because the number of moment conditions here is

equal to the sample size,n. Later we’ll see that GLS can be put into the GMM

framework defined above).

THEOREM 25. If θ̂ is a GMM estimator that minimizesmn(θ)′Wnmn(θ), the asymp-

totic variance ofθ̂ will be minimized by choosingWn so thatWn
a.s→ W∞ = Ω−1

∞ , where

Ω∞ = limn→∞E
[
nm(θ0)m(θ0)′

]
.

Proof: ForW∞ = Ω−1
∞ , the asymptotic variance

(
D∞W∞D′

∞
)−1

D∞W∞Ω∞W∞D′
∞
(
D∞W∞D′

∞
)−1

simplifies to
(
D∞Ω−1

∞ D′
∞
)−1

. Now, for any choice such thatW∞ 6= Ω−1
∞ , consider the dif-

ference of the inverses of the variances whenW = Ω−1 versus whenW is some arbitrary

positive definite matrix:
(
D∞Ω−1

∞ D′
∞
)
−
(
D∞W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1(

D∞W∞D′
∞
)

= D∞Ω−1/2
∞

[
I −Ω1/2

∞
(
W∞D′

∞
)[

D∞W∞Ω∞W∞D′
∞
]−1

D∞W∞Ω1/2
∞

]
Ω−1/2

∞ D′
∞

as can be verified by multiplication. The term in brackets is idempotent, which is also easy

to check by multiplication, and is therefore positive semidefinite. A quadratic form in a

positive semidefinite matrix is also positive semidefinite.The difference of the inverses of

the variances is positive semidefinite, which implies that the difference of the variances is

negative semidefinite, which proves the theorem.

The result

(15.4.1)
√

n
(
θ̂−θ0) d→ N

[
0,
(
D∞Ω−1

∞ D′
∞
)−1
]
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allows us to treat

θ̂ ≈ N

(
θ0,

(
D∞Ω−1

∞ D′
∞
)−1

n

)
,

where the≈ means ”approximately distributed as.” To operationalize this we need estima-

tors ofD∞ andΩ∞.

• The obvious estimator of̂D∞ is simply ∂
∂θ m′

n

(
θ̂
)
, which is consistent by the con-

sistency ofθ̂, assuming that∂∂θ m′
n is continuous inθ. Stochastic equicontinuity

results can give us this result even if∂
∂θ m′

n is not continuous. We now turn to

estimation ofΩ∞.

15.5. Estimation of the variance-covariance matrix

(See Hamilton Ch. 10, pp. 261-2 and 280-84)∗.

In the case that we wish to use the optimal weighting matrix, we need an estimate

of Ω∞, the limiting variance-covariance matrix of
√

nmn(θ0). While one could estimate

Ω∞ parametrically, we in general have little information uponwhich to base a parametric

specification. In general, we expect that:

• mt will be autocorrelated (Γts = E (mtm′
t−s) 6= 0). Note that this autocovariance

will not depend ont if the moment conditions are covariance stationary.

• contemporaneously correlated, since the individual moment conditions will not

in general be independent of one another (E (mit mjt ) 6= 0).

• and have different variances (E (m2
it ) = σ2

it ).

Since we need to estimate so many components if we are to take the parametric approach,

it is unlikely that we would arrive at a correct parametric specification. For this reason,

research has focused on consistent nonparametric estimators of Ω∞.

Henceforth we assume thatmt is covariance stationary (the covariance betweenmt and

mt−s does not depend ont). Define thev− th autocovariance of the moment conditions

Γv = E (mtm′
t−s). Note thatE (mtm′

t+s) = Γ′
v. Recall thatmt andm are functions ofθ, so

for now assume that we have some consistent estimator ofθ0, so thatm̂t = mt(θ̂). Now

Ωn = E
[
nm(θ0)m(θ0)′

]
= E

[
n

(
1/n

n

∑
t=1

mt

)(
1/n

n

∑
t=1

m′
t

)]

= E

[
1/n

(
n

∑
t=1

mt

)(
n

∑
t=1

m′
t

)]

= Γ0 +
n−1

n

(
Γ1 + Γ′

1

)
+

n−2
n

(
Γ2 + Γ′

2

)
· · ·+ 1

n

(
Γn−1 + Γ′

n−1

)

A natural, consistent estimator ofΓv is

Γ̂v = 1/n
n

∑
t=v+1

m̂tm̂
′
t−v.
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(you might usen−v in the denominator instead). So, a natural, but inconsistent, estimator

of Ω∞ would be

Ω̂ = Γ̂0 +
n−1

n

(
Γ̂1 + Γ̂′

1

)
+

n−2
n

(
Γ̂2 + Γ̂′

2

)
+ · · ·+

(
Γ̂n−1 + Γ̂′

n−1

)

= Γ̂0 +
n−1

∑
v=1

n−v
n

(
Γ̂v + Γ̂′

v

)
.

This estimator is inconsistent in general, since the numberof parameters to estimate is more

than the number of observations, and increases more rapidlythann, so information does

not build up asn→ ∞.

On the other hand, supposing thatΓv tends to zero sufficiently rapidly asv tends to∞,

a modified estimator

Ω̂ = Γ̂0 +
q(n)

∑
v=1

(
Γ̂v + Γ̂′

v

)
,

whereq(n)
p→ ∞ as n → ∞ will be consistent, providedq(n) grows sufficiently slowly.

The term n−v
n can be dropped becauseq(n) must beop(n). This allows information to

accumulate at a rate that satisfies a LLN. A disadvantage of this estimator is that it may not

be positive definite. This could cause one to calculate a negative χ2 statistic, for example!

• Note: the formula forΩ̂ requires an estimate ofm(θ0), which in turn requires

an estimate ofθ, which is based upon an estimate ofΩ! The solution to this cir-

cularity is to set the weighting matrixW arbitrarily (for example to an identity

matrix), obtain a first consistent but inefficient estimate of θ0, then use this esti-

mate to formΩ̂, then re-estimateθ0. The process can be iterated until neitherΩ̂
nor θ̂ change appreciably between iterations.

15.5.1. Newey-West covariance estimator.The Newey-West estimator (Economet-

rica, 1987) solves the problem of possible nonpositive definiteness of the above estimator.

Their estimator is

Ω̂ = Γ̂0 +
q(n)

∑
v=1

[
1− v

q+1

](
Γ̂v + Γ̂′

v

)
.

This estimator is p.d. by construction. The condition for consistency is thatn−1/4q → 0.

Note that this is a very slow rate of growth forq. This estimator is nonparametric - we’ve

placed no parametric restrictions on the form ofΩ. It is an example of akernelestimator.

In a more recent paper, Newey and West (Review of Economic Studies, 1994) use

pre-whiteningbefore applying the kernel estimator. The idea is to fit a VAR model to the

moment conditions. It is expected that the residuals of the VAR model will be more nearly

white noise, so that the Newey-West covariance estimator might perform better with short

lag lengths..

The VAR model is

m̂t = Θ1m̂t−1 + · · ·+ Θpm̂t−p +ut

This is estimated, giving the residuals ˆut . Then the Newey-West covariance estimator is

applied to these pre-whitened residuals, and the covariance Ω is estimated combining the

fitted VAR
̂̂mt = Θ̂1m̂t−1 + · · ·+ Θ̂pm̂t−p
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with the kernel estimate of the covariance of theut . See Newey-West for details.

• I have a program that does this if you’re interested.

15.6. Estimation using conditional moments

So far, the moment conditions have been presented as unconditional expectations. One

common way of defining unconditional moment conditions is based upon conditional mo-

ment conditions.

Suppose that a random variableY has zero expectation conditional on the random

variableX

EY|XY =
Z

Y f(Y|X)dY = 0

Then the unconditional expectation of the product ofY and a functiong(X) of X is also

zero. The unconditional expectation is

EYg(X) =

Z

X

(
Z

Y
Yg(X) f (Y,X)dY

)
dX.

This can be factored into a conditional expectation and an expectation w.r.t. the marginal

density ofX :

EYg(X) =

Z

X

(
Z

Y
Yg(X) f (Y|X)dY

)
f (X)dX.

Sinceg(X) doesn’t depend onY it can be pulled out of the integral

EYg(X) =
Z

X

(
Z

Y
Y f(Y|X)dY

)
g(X) f (X)dX.

But the term in parentheses on the rhs is zero by assumption, so

EYg(X) = 0

as claimed.

This is important econometrically, since models often imply restrictions on conditional

moments. Suppose a model tells us that the functionK(yt ,xt) has expectation, conditional

on the information setIt , equal tok(xt ,θ),

E θK(yt ,xt)|It = k(xt ,θ).

• For example, in the context of the classical linear modelyt = x′tβ+ εt , we can set

K(yt ,xt) = yt so thatk(xt ,θ) = x′tβ.

With this, the function

ht(θ) = K(yt ,xt)−k(xt ,θ)

has conditional expectation equal to zero

E θht(θ)|It = 0.

This is a scalar moment condition, which isn’t sufficient to identify aK -dimensional pa-

rameterθ (K > 1). However, the above result allows us to form various unconditional

expectations

mt(θ) = Z(wt )ht(θ)
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whereZ(wt ) is a g× 1-vector valued function ofwt and wt is a set of variables drawn

from the information setIt . TheZ(wt ) areinstrumental variables.We now haveg moment

conditions, so as long asg > K the necessary condition for identification holds.

One can form then×g matrix

Zn =




Z1(w1) Z2(w1) · · · Zg(w1)

Z1(w2) Z2(w2) Zg(w2)
...

...

Z1(wn) Z2(wn) · · · Zg(wn)




=




Z′
1

Z′
2

Z′
n




With this we can form theg moment conditions

mn(θ) =
1
n

Z′
n




h1(θ)

h2(θ)
...

hn(θ)




=
1
n

Z′
nhn(θ)

=
1
n

n

∑
t=1

Ztht(θ)

=
1
n

n

∑
t=1

mt(θ)

whereZ(t,·) is thetth row of Zn. This fits the previous treatment. An interesting question

that arises is how one should choose the instrumental variablesZ(wt ) to achieve maximum

efficiency.

Note that with this choice of moment conditions, we have thatDn ≡ ∂
∂θ m′(θ) (a K×g

matrix) is

Dn(θ) =
∂

∂θ
1
n

(
Z′

nhn(θ)
)′

=
1
n

(
∂

∂θ
h′n (θ)

)
Zn

which we can define to be

Dn(θ) =
1
n

HnZn.
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whereHn is aK ×n matrix that has the derivatives of the individual moment conditions as

its columns. Likewise, define the var-cov. of the moment conditions

Ωn = E
[
nmn(θ0)mn(θ0)′

]

= E

[
1
n

Z′
nhn(θ0)hn(θ0)′Zn

]

= Z′
nE

(
1
n

hn(θ0)hn(θ0)′
)

Zn

≡ Z′
n

Φn

n
Zn

where we have definedΦn = Varhn(θ0). Note that the dimension of this matrix is growing

with the sample size, so it is not consistently estimable without additional assumptions.

The asymptotic normality theorem above says that the GMM estimator using the opti-

mal weighting matrix is distributed as
√

n
(
θ̂−θ0) d→ N(0,V∞)

where

(15.6.1) V∞ = lim
n→∞

((
HnZn

n

)(
Z′

nΦnZn

n

)−1(Z′
nH ′

n

n

))−1

.

Using an argument similar to that used to prove thatΩ−1
∞ is the efficient weighting matrix,

we can show that putting

Zn = Φ−1
n H ′

n

causes the above var-cov matrix to simplify to

(15.6.2) V∞ = lim
n→∞

(
HnΦ−1

n H ′
n

n

)−1

.

and furthermore, this matrix is smaller that the limiting var-cov for any other choice of

instrumental variables. (To prove this, examine the difference of the inverses of the var-cov

matrices with the optimal intruments and with non-optimal instruments. As above, you can

show that the difference is positive semi-definite).

• Note that bothHn, which we should write more properly asHn(θ0), since it de-

pends onθ0, andΦ must be consistently estimated to apply this.

• Usually, estimation ofHn is straightforward - one just uses

Ĥ =
∂

∂θ
h′n
(
θ̃
)
,

whereθ̃ is some initial consistent estimator based on non-optimal instruments.

• Estimation ofΦn may not be possible. It is ann× n matrix, so it has more

unique elements thann, the sample size, so without restrictions on the parameters

it can’t be estimated consistently. Basically, you need to provide a parametric

specification of the covariances of theht(θ) in order to be able to use optimal

instruments. A solution is to approximate this matrix parametrically to define

the instruments. Note that the simplified var-cov matrix in equation15.6.2will

not apply if approximately optimal instruments are used - itwill be necessary
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to use an estimator based upon equation15.6.1, where the termZ′
nΦnZn

n must be

estimated consistently apart, for example by the Newey-West procedure.

15.7. Estimation using dynamic moment conditions

Note that dynamic moment conditions simplify the var-cov matrix, but are often harder

to formulate. The will be added in future editions. For now, the Hansen application below

is enough.

15.8. A specification test

The first order conditions for minimization, using the an estimate of the optimal weight-

ing matrix, are
∂

∂θ
s(θ̂) = 2

[
∂

∂θ
m

′
n

(
θ̂
)]

Ω̂−1mn
(
θ̂
)
≡ 0

or

D(θ̂)Ω̂−1mn(θ̂) ≡ 0

Consider a Taylor expansion ofm(θ̂):

(15.8.1) m(θ̂) = mn(θ0)+D′
n(θ0)

(
θ̂−θ0)+op(1).

Multiplying by D(θ̂)Ω̂−1 we obtain

D(θ̂)Ω̂−1m(θ̂) = D(θ̂)Ω̂−1mn(θ0)+D(θ̂)Ω̂−1D(θ0)′
(
θ̂−θ0)+op(1)

The lhs is zero, and sincêθ tends toθ0 andΩ̂ tends toΩ∞, we can write

D∞Ω−1
∞ mn(θ0)

a
= −D∞Ω−1

∞ D′
∞
(
θ̂−θ0)

or

√
n
(
θ̂−θ0) a

= −
√

n
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0)

With this, and taking into account the original expansion (equation15.8.1), we get
√

nm(θ̂)
a
=
√

nmn(θ0)−
√

nD′
∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1
∞ mn(θ0).

This last can be written as
√

nm(θ̂)
a
=
√

n
(

Ω1/2
∞ −D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Or
√

nΩ−1/2
∞ m(θ̂)

a
=
√

n
(

Ig−Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
Ω−1/2

∞ mn(θ0)

Now √
nΩ−1/2

∞ mn(θ0)
d→ N(0, Ig)

and one can easily verify that

P =
(

Ig−Ω−1/2
∞ D′

∞
(
D∞Ω−1

∞ D′
∞
)−1

D∞Ω−1/2
∞

)
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is idempotent of rankg−K, (recall that the rank of an idempotent matrix is equal to its

trace) so
(√

nΩ−1/2
∞ m(θ̂)

)′(√
nΩ−1/2

∞ m(θ̂)
)

= nm(θ̂)′Ω−1
∞ m(θ̂)

d→ χ2(g−K)

SinceΩ̂ converges toΩ∞, we also have

nm(θ̂)′Ω̂−1m(θ̂)
d→ χ2(g−K)

or

n ·sn(θ̂)
d→ χ2(g−K)

supposing the model is correctly specified. This is a convenient test since we just multiply

the optimized value of the objective function byn, and compare with aχ2(g−K) critical

value. The test is a general test of whether or not the momentsused to estimate are correctly

specified.

• This won’t work when the estimator is just identified. The f.o.c. are

Dθsn(θ) = DΩ̂−1m(θ̂) ≡ 0.

But with exact identification, bothD and Ω̂ are square and invertible (at least

asymptotically, assuming that asymptotic normality hold), so

m(θ̂) ≡ 0.

So the moment conditions are zeroregardlessof the weighting matrix used. As

such, we might as well use an identity matrix and save trouble. Also sn(θ̂) = 0,

so the test breaks down.

• A note: this sort of test often over-rejects in finite samples. One should be cau-

tious in rejecting a model when this test rejects.

15.9. Other estimators interpreted as GMM estimators

15.9.1. OLS with heteroscedasticity of unknown form.

EXAMPLE 26. White’s heteroscedastic consistent varcov estimator for OLS.

Supposey = Xβ0 + ε, whereε ∼ N(0,Σ), Σ a diagonal matrix.

• The typical approach is to parameterizeΣ = Σ(σ), whereσ is a finite dimensional

parameter vector, and to estimateβ andσ jointly (feasible GLS). This will work

well if the parameterization ofΣ is correct.

• If we’re not confident about parameterizingΣ, we can still estimateβ consistently

by OLS. However, the typical covariance estimatorV(β̂) = (X′X)−1 σ̂2 will be

biased and inconsistent, and will lead to invalid inferences.

By exogeneity of the regressorsxt (a K × 1 column vector) we haveE(xtεt) = 0,which

suggests the moment condition

mt(β) = xt
(
yt −x′tβ

)
.
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In this case, we have exact identification (K parameters andK moment conditions). We

have

m(β) = 1/n∑
t

mt = 1/n∑
t

xtyt −1/n∑
t

xtx′tβ.

For any choice ofW, m(β) will be identically zero at the minimum, due to exact iden-

tification. That is, since the number of moment conditions isidentical to the number of

parameters, the foc imply thatm(β̂) ≡ 0 regardless ofW. There is no need to use the “opti-

mal” weighting matrix in this case, an identity matrix worksjust as well for the purpose of

estimation. Therefore

β̂ =

(
∑
t

xtx′t

)−1

∑
t

xtyt = (X′X)−1X′y,

which is the usual OLS estimator.

The GMM estimator of the asymptotic varcov matrix is
(

D̂∞Ω̂−1D̂∞
′)−1

. Recall that

D̂∞ is simply ∂
∂θ m′ (θ̂

)
. In this case

D̂∞ = −1/n∑
t

xtx′t = −X′X/n.

Recall that a possible estimator ofΩ is

Ω̂ = Γ̂0 +
n−1

∑
v=1

(
Γ̂v + Γ̂′

v

)
.

This is in general inconsistent, but in the present case of nonautocorrelation, it simplifies to

Ω̂ = Γ̂0

which has a constant number of elements to estimate, so informationwill accumulate, and

consistency obtains. In the present case

Ω̂ = Γ̂0 = 1/n

(
n

∑
t=1

m̂tm̂
′
t

)

= 1/n

[
n

∑
t=1

xtx′t
(

yt −x′t β̂
)2
]

= 1/n

[
n

∑
t=1

xtx′t ε̂
2
t

]

=
X′ÊX

n

whereÊ is ann×n diagonal matrix witĥε2
t in the positiont,t.

Therefore, the GMM varcov. estimator, which is consistent,is

V̂
(√

n
(

β̂−β
))

=

{(
−X′X

n

)(
X′ÊX

n

−1
)(

−X′X
n

)}−1

=

(
X′X

n

)−1(X′ÊX
n

)(
X′X

n

)−1

This is the varcov estimator that White (1980) arrived at in an influential article. This

estimator is consistent under heteroscedasticity of an unknown form. If there is autocorre-

lation, the Newey-West estimator can be used to estimateΩ - the rest is the same.
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15.9.2. Weighted Least Squares.Consider the previous example of a linear model

with heteroscedasticity of unknown form:

y = Xβ0 + ε

ε ∼ N(0,Σ)

whereΣ is a diagonal matrix.

Now, suppose that the form ofΣ is known, so thatΣ(θ0) is a correct parametric speci-

fication (which may also depend uponX). In this case, the GLS estimator is

β̃ =
(
X′Σ−1X

)−1
X′Σ−1y)

This estimator can be interpreted as the solution to theK moment conditions

m(β̃) = 1/n∑
t

xtyt

σt(θ0)
−1/n∑

t

xtx′t
σt(θ0)

β̃ ≡ 0.

That is, the GLS estimator in this case has an obvious representation as a GMM estimator.

With autocorrelation, the representation exists but it is alittle more complicated. Neverthe-

less, the idea is the same. There are a few points:

• The (feasible) GLS estimator is known to be asymptotically efficient in the class

of linear asymptotically unbiased estimators (Gauss-Markov).

• This means that it is more efficient than the above example of OLS with White’s

heteroscedastic consistent covariance, which is an alternative GMM estimator.

• This means that the choice of the moment conditions is important to achieve

efficiency.

15.9.3. 2SLS.Consider the linear model

yt = z′tβ + εt ,

or

y = Zβ + ε

using the usual construction, whereβ is K × 1 andεt is i.i.d. Suppose that this equation

is one of a system of simultaneous equations, so thatzt contains both endogenous and

exogenous variables. Suppose thatxt is the vector of all exogenous and predetermined

variables that are uncorrelated withεt (suppose thatxt is r ×1).

• Define Ẑ as the vector of predictions ofZ when regressed uponX, e.g., Ẑ =

X (X′X)−1X′Z

Ẑ = X
(
X′X

)−1X′Z

• Since Ẑ is a linear combination of the exogenous variablesx, ẑt must be un-

correlated withε. This suggests theK-dimensional moment conditionmt(β) =

ẑt (yt −z′tβ) and so

m(β) = 1/n∑
t

ẑt
(
yt −z′tβ

)
.
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• Since we haveK parameters andK moment conditions, the GMM estimator will

setm identically equal to zero, regardless ofW, so we have

β̂ =

(
∑
t

ẑtz′t

)−1

∑
t

(ẑtyt) =
(
Ẑ′Z
)−1

Ẑ′y

This is the standard formula for 2SLS. We use the exogenous variables and the reduced

form predictions of the endogenous variables as instruments, and apply IV estimation. See

Hamilton pp. 420-21 for the varcov formula (which is the standard formula for 2SLS), and

for how to deal withεt heterogeneous and dependent (basically, just use the Newey-West or

some other consistent estimator ofΩ, and apply the usual formula). Note thatεt dependent

causes lagged endogenous variables to loose their status aslegitimate instruments.

15.9.4. Nonlinear simultaneous equations.GMM provides a convenient way to es-

timate nonlinear systems of simultaneous equations. We have a system of equations of the

form

y1t = f1(zt ,θ0
1)+ ε1t

y2t = f2(zt ,θ0
2)+ ε2t

...

yGt = fG(zt ,θ0
G)+ εGt,

or in compact notation

yt = f (zt ,θ0)+ εt ,

where f (·) is aG -vector valued function, andθ0 = (θ0′
1 ,θ0′

2 , · · · ,θ0′
G)′.

We need to find anAi × 1 vector of instrumentsxit , for each equation, that are un-

correlated withεit . Typical instruments would be low order monomials in the exogenous

variables inzt , with their lagged values. Then we can define the
(
∑G

i=1Ai
)
×1 orthogonality

conditions

mt(θ) =




(y1t − f1(zt ,θ1))x1t

(y2t − f2(zt ,θ2))x2t
...

(yGt − fG(zt ,θG))xGt




.

• A note on identification: selection of instruments that ensure identification is a

non-trivial problem.

• A note on efficiency: the selected set of instruments has important effects on the

efficiency of estimation. Unfortunately there is little theory offering guidance on

what is the optimal set. More on this later.

15.9.5. Maximum likelihood. In the introduction we argued that ML will in general

be more efficient than GMM since ML implicitly uses all of the moments of the distribution

while GMM uses a limited number of moments. Actually, a distribution withP parameters

can be uniquely characterized byP moment conditions. However, some sets ofP moment

conditions may contain more information than others, sincethe moment conditions could

be highly correlated. A GMM estimator that chose an optimal set of P moment conditions
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would be fully efficient. Here we’ll see that the optimal moment conditions are simply the

scores of the ML estimator.

Let yt be aG -vector of variables, and letYt = (y′1,y
′
2, ...,y

′
t)
′. Then at timet, Yt−1 has

been observed (refer to it as the information set, since we assume the conditioning variables

have been selected to take advantage of all useful information). The likelihood function is

the joint density of the sample:

L (θ) = f (y1,y2, ...,yn,θ)

which can be factored as

L (θ) = f (yn|Yn−1,θ) · f (Yn−1,θ)

and we can repeat this to get

L (θ) = f (yn|Yn−1,θ) · f (yn−1|Yn−2,θ) · ... · f (y1).

The log-likelihood function is therefore

lnL (θ) =
n

∑
t=1

ln f (yt |Yt−1,θ).

Define

mt(Yt ,θ) ≡ Dθ ln f (yt |Yt−1,θ)

as thescoreof the tth observation. It can be shown that, under the regularity conditions,

that the scores have conditional mean zero when evaluated atθ0 (see notes to Introduction

to Econometrics):

E {mt(Yt ,θ0)|Yt−1} = 0

so one could interpret these as moment conditions to use to define a just-identified GMM

estimator ( if there areK parameters there areK score equations). The GMM estimator sets

1/n
n

∑
t=1

mt(Yt , θ̂) = 1/n
n

∑
t=1

Dθ ln f (yt |Yt−1, θ̂) = 0,

which are precisely the first order conditions of MLE. Therefore, MLE can be interpreted

as a GMM estimator. The GMM varcov formula isV∞ =
(
D∞Ω−1D′

∞
)−1

.

Consistent estimates of variance components are as follows

• D∞

D̂∞ =
∂

∂θ′
m(Yt , θ̂) = 1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

• Ω
It is important to note thatmt andmt−s, s> 0 are both conditionally and un-

conditionally uncorrelated. Conditional uncorrelation follows from the fact that

mt−s is a function ofYt−s, which is in the information set at timet. Unconditional

uncorrelation follows from the fact that conditional uncorrelation hold regardless

of the realization ofYt−1, so marginalizing with respect toYt−1 preserves uncor-

relation (see the section on ML estimation, above). The factthat the scores are

serially uncorrelated implies thatΩ can be estimated by the estimator of the 0th
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autocovariance of the moment conditions:

Ω̂ = 1/n
n

∑
t=1

mt(Yt , θ̂)mt(Yt , θ̂)′ = 1/n
n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′

Recall from study of ML estimation that the information matrix equality (equation??)

states that

E
{[

Dθ ln f (yt |Yt−1,θ0)
][

Dθ ln f (yt |Yt−1,θ0)
]′}

= −E
{

D2
θ ln f (yt |Yt−1,θ0)

}
.

This result implies the well known (and already seeen) result that we can estimateV∞ in

any of three ways:

• The sandwich version:

V̂∞ = n





{
∑n

t=1D2
θ ln f (yt |Yt−1, θ̂)

}
×{

∑n
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′}−1
×

{
∑n

t=1 D2
θ ln f (yt |Yt−1, θ̂)

}





−1

• or the inverse of the negative of the Hessian (since the middle and last term can-

cel, except for a minus sign):

V̂∞ =

[
−1/n

n

∑
t=1

D2
θ ln f (yt |Yt−1, θ̂)

]−1

,

• or the inverse of the outer product of the gradient (since themiddle and last cancel

except for a minus sign, and the first term converges to minus the inverse of the

middle term, which is still inside the overall inverse)

V̂∞ =

{
1/n

n

∑
t=1

[
Dθ ln f (yt |Yt−1, θ̂)

][
Dθ ln f (yt |Yt−1, θ̂)

]′
}−1

.

This simplification is a special result for the MLE estimator- it doesn’t apply to GMM

estimators in general.

Asymptotically, if the model is correctly specified, all of these forms converge to the

same limit. In small samples they will differ. In particular, there is evidence that the outer

product of the gradient formula does not perform very well insmall samples (see Davidson

and MacKinnon, pg. 477). White’sInformation matrix test(Econometrica, 1982) is based

upon comparing the two ways to estimate the information matrix: outer product of gradient

or negative of the Hessian. If they differ by too much, this isevidence of misspecification

of the model.

15.10. Example: The Hausman Test

This section discusses the Hausman test, which was originally presented in Hausman,

J.A. (1978), Specification tests in econometrics,Econometrica, 46, 1251-71.

Consider the simple linear regression modelyt = x′tβ + εt . We assume that the func-

tional form and the choice of regressors is correct, but thatthe some of the regressors may

be correlated with the error term, which as you know will produce inconsistency of̂β. For

example, this will be a problem if

• if some regressors are endogeneous

• some regressors are measured with error
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FIGURE 15.10.1. OLS
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• lagged values of the dependent variable are used as regressors andεt is autocor-

related.

To illustrate, the Octave programbiased.mperforms a Monte Carlo experiment where er-

rors are correlated with regressors, and estimation is by OLS and IV. The true value of the

slope coefficient used to generate the data isβ = 2. Figure15.10.1shows that the OLS

estimator is quite biased, while Figure15.10.2shows that the IV estimator is on average

much closer to the true value. If you play with the program, increasing the sample size, you

can see evidence that the OLS estimator is asymptotically biased, while the IV estimator is

consistent.

We have seen that inconsistent and the consistent estimators converge to different prob-

ability limits. This is the idea behind the Hausman test - a pair of consistent estimators

converge to the same probability limit, while if one is consistent and the other is not they

converge to different limits. If we accept that one is consistent (e.g., the IV estimator), but

we are doubting if the other is consistent (e.g.,the OLS estimator), we might try to check

if the difference between the estimators is significantly different from zero.

• If we’re doubting about the consistency of OLS (or QML,etc.), why should we

be interested in testing - why not just use the IV estimator? Because the OLS

estimator is more efficient when the regressors are exogenous and the other clas-

sical assumptions (including normality of the errors) hold. When we have a more

efficient estimator that relies on stronger assumptions (such as exogeneity) than

the IV estimator, we might prefer to use it, unless we have evidence that the

assumptions are false.

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/biased.m
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FIGURE 15.10.2. IV

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 1.85  1.9  1.95  2  2.05  2.1  2.15

IV estimates

line 1

So, let’s consider the covariance between the MLE estimatorθ̂ (or any other fully efficient

estimator) and some other CAN estimator, sayθ̃. Now, let’s recall some results from MLE.

Equation4.4.1is:

√
n
(
θ̂−θ0

) a.s.→ −H∞(θ0)
−1√ng(θ0).

Equation4.5.2is

H∞(θ) = −I∞(θ).

Combining these two equations, we get
√

n
(
θ̂−θ0

) a.s.→ I∞(θ0)
−1√ng(θ0).

Also, equation4.6.1tells us that the asymptotic covariance between any CAN estima-

tor and the MLE score vector is

V∞

[ √
n
(
θ̃−θ

)
√

ng(θ)

]
=

[
V∞(θ̃) IK

IK I∞(θ)

]
.

Now, consider
[

IK 0K

0K I∞(θ)−1

][ √
n
(
θ̃−θ

)
√

ng(θ)

]
a.s.→
[ √

n
(
θ̃−θ

)
√

n
(
θ̂−θ

)
]

.
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The asymptotic covariance of this is

V∞

[ √
n
(
θ̃−θ

)
√

n
(
θ̂−θ

)
]

=

[
IK 0K

0K I∞(θ)−1

][
V∞(θ̃) IK

IK I∞(θ)

][
IK 0K

0K I∞(θ)−1

]

=

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 I∞(θ)−1

]
,

which, for clarity in what follows, we might write as

V∞

[ √
n
(
θ̃−θ

)
√

n
(
θ̂−θ

)
]

=

[
V∞(θ̃) I∞(θ)−1

I∞(θ)−1 V∞(θ̂)

]
.

So, the asymptotic covariance between the MLE and any other CAN estimator is equal to

the MLE asymptotic variance (the inverse of the informationmatrix).

Now, suppose we with to test whether the the two estimators are in fact both converging

to θ0, versus the alternative hypothesis that the ”MLE” estimator is not in fact consistent

(the consistency of̃θ is a maintained hypothesis). Under the null hypothesis thatthey are,

we have [
IK −IK

][ √
n
(
θ̃−θ0

)
√

n
(
θ̂−θ0

)
]

=
√

n
(
θ̃− θ̂

)
,

will be asymptotically normally distributed as

√
n
(
θ̃− θ̂

) d→ N
(
0,V∞(θ̃)−V∞(θ̂)

)
.

So,

n
(
θ̃− θ̂

)′ (
V∞(θ̃)−V∞(θ̂)

)−1(θ̃− θ̂
) d→ χ2(ρ),

whereρ is the rank of the difference of the asymptotic variances. A statistic that has the

same asymptotic distribution is
(
θ̃− θ̂

)′ (
V̂(θ̃)− V̂(θ̂)

)−1(θ̃− θ̂
) d→ χ2(ρ).

This is the Hausman test statistic, in its original form. Thereason that this test has power

under the alternative hypothesis is that in that case the ”MLE” estimator will not be con-

sistent, and will converge toθA, say, whereθA 6= θ0. Then the mean of the asymptotic

distribution of vector
√

n
(
θ̃− θ̂

)
will be θ0−θA, a non-zero vector, so the test statistic will

eventually reject, regardless of how small a significance level is used.

• Note: if the test is based on a sub-vector of the entire parameter vector of the

MLE, it is possible that the inconsistency of the MLE will notshow up in the

portion of the vector that has been used. If this is the case, the test may not

have power to detect the inconsistency. This may occur, for example, when the

consistent but inefficient estimator is not identified for all the parameters of the

model.

Some things to note:

• The rank,ρ, of the difference of the asymptotic variances is often lessthan the

dimension of the matrices, and it may be difficult to determine what the true rank

is. If the true rank is lower than what is taken to be true, the test will be biased
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against rejection of the null hypothesis. The contrary holds if we underestimate

the rank.

• A solution to this problem is to use a rank 1 test, by comparingonly a single

coefficient. For example, if a variable is suspected of possibly being endogenous,

that variable’s coefficients may be compared.

• This simple formula only holds when the estimator that is being tested for consis-

tency isfully efficient under the null hypothesis. This means that it must be a ML

estimator or a fully efficient estimator that has the same asymptotic distribution

as the ML estimator. This is quite restrictive since modern estimators such as

GMM and QML are not in general fully efficient.

Following up on this last point, let’s think of two not necessarily efficient estimators,̂θ1

and θ̂2, where one is assumed to be consistent, but the other may not be. We assume

for expositional simplicity that botĥθ1 and θ̂2 belong to the same parameter space, and

that they can be expressed as generalized method of moments (GMM) estimators. The

estimators are defined (suppressing the dependence upon data) by

θ̂i = argmin
θi∈Θ

mi (θi)
′Wi mi(θi)

wheremi(θi) is agi ×1 vector of moment conditions, andWi is agi ×gi positive definite

weighting matrix,i = 1,2. Consider the omnibus GMM estimator

(15.10.1)
(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
][ W1 0(g1×g2)

0(g2×g1) W2

][
m1(θ1)

m2(θ2)

]
.

Suppose that the asymptotic covariance of the omnibus moment vector is

Σ = lim
n→∞

Var

{
√

n

[
m1(θ1)

m2(θ2)

]}
(15.10.2)

≡
(

Σ1 Σ12

· Σ2

)
.

The standard Hausman test is equivalent to a Wald test of the equality of θ1 andθ2 (or

subvectors of the two) applied to the omnibus GMM estimator,but with the covariance of

the moment conditions estimated as

Σ̂ =

(
Σ̂1 0(g1×g2)

0(g2×g1) Σ̂2

)
.

While this is clearly an inconsistent estimator in general,the omittedΣ12 term cancels out

of the test statistic when one of the estimators is asymptotically efficient, as we have seen

above, and thus it need not be estimated.

The general solution when neither of the estimators is efficient is clear: the entireΣ
matrix must be estimated consistently, since theΣ12 term will not cancel out. Methods

for consistently estimating the asymptotic covariance of avector of moment conditions

are well-known, e.g.,the Newey-West estimator discussed previously. The Hausman test

using a proper estimator of the overall covariance matrix will now have an asymptoticχ2

distribution when neither estimator is efficient. This is
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However, the test suffers from a loss of power due to the fact that the omnibus GMM

estimator of equation15.10.1is defined using an inefficient weight matrix. A new test can

be defined by using an alternative omnibus GMM estimator

(15.10.3)
(
θ̂1, θ̂2

)
= arg min

Θ×Θ

[
m1(θ1)

′ m2(θ2)
′
](

Σ̃
)−1

[
m1(θ1)

m2(θ2)

]
,

whereΣ̃ is a consistent estimator of the overall covariance matrixΣ of equation15.10.2. By

standard arguments, this is a more efficient estimator than that defined by equation15.10.1,

so the Wald test using this alternative is more powerful. Seemy article inApplied Eco-

nomics, 2004, for more details, including simulation results. TheOctave scripthausman.m

calculates the Wald test corresponding to the efficient joint GMM estimator (the ”H2” test

in my paper), for a simple linear model.

15.11. Application: Nonlinear rational expectations

Readings:Hansen and Singleton, 1982∗; Tauchen, 1986

Though GMM estimation has many applications, application to rational expectations

models is elegant, since theory directly suggests the moment conditions. Hansen and Sin-

gleton’s 1982 paper is also a classic worth studying in itself. Though I strongly recommend

reading the paper, I’ll use a simplified model with similar notation to Hamilton’s.

We assume a representative consumer maximizes expected discounted utility over an

infinite horizon. Utility is temporally additive, and the expected utility hypothesis holds.

The future consumption stream is the stochastic sequence{ct}∞
t=0 . The objective function

at timet is the discounted expected utility

(15.11.1)
∞

∑
s=0

βsE (u(ct+s)|It) .

• The parameterβ is between 0 and 1, and reflects discounting.

• It is the information setat time t, and includes the all realizations of random

variables indexedt and earlier.

• The choice variable isct - current consumption, which is constained to be less

than or equal to current wealthwt .

• Suppose the consumer can invest in a risky asset. A dollar invested in the asset

yields a gross return

(1+ rt+1) =
pt+1 +dt+1

pt

wherept is the price anddt is the dividend in periodt. The price ofct is normal-

ized to 1.

• Current wealthwt = (1+ rt)it−1, whereit−1 is investment in periodt −1. So the

problem is to allocate current wealth between current consumption and invest-

ment to finance future consumption:wt = ct + it .

• Future net rates of returnrt+s,s> 0 arenot knownin periodt: the asset is risky.

A partial set of necessary conditions for utility maximization have the form:

(15.11.2) u′(ct) = βE
{
(1+ rt+1)u′(ct+1)|It

}
.

http://pareto.uab.es/mcreel/Econometrics/Examples/Hausman/hausman.m
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To see that the condition is necessary, suppose that the lhs <rhs. Then by reducing current

consumption marginally would cause equation15.11.1to drop byu′(ct), since there is no

discounting of the current period. At the same time, the marginal reduction in consumption

finances investment, which has gross return(1+ rt+1) , which could finance consumption in

periodt +1. This increase in consumption would cause the objective function to increase by

βE {(1+ rt+1)u′(ct+1)|It} . Therefore, unless the condition holds, the expected discounted

utility function is not maximized.

• To use this we need to choose the functional form of utility. Aconstant relative

risk aversion form is

u(ct) =
c1−γ

t −1
1− γ

whereγ is the coefficient of relative risk aversion. With this form,

u′(ct) = c−γ
t

so the foc are

c−γ
t = βE

{
(1+ rt+1)c−γ

t+1|It
}

While it is true that

E
(

c−γ
t −β

{
(1+ rt+1)c−γ

t+1

})
|It = 0

so that we could use this to define moment conditions, it is unlikely that ct is stationary,

even though it is in real terms, and our theory requires stationarity. To solve this, divide

though byc−γ
t

E

(
1-β

{
(1+ rt+1)

(
ct+1

ct

)−γ
})

|It = 0

(note thatct can be passed though the conditional expectation sincect is chosen based only

upon information available in timet).

Now

1-β

{
(1+ rt+1)

(
ct+1

ct

)−γ
}

is analogous toht(θ) defined above: it’s a scalar moment condition. To get a vectorof mo-

ment conditions we need some instruments. Suppose thatzt is a vector of variables drawn

from the information setIt . We can use the necessary conditions to form the expressions
[
1−β(1+ rt+1)

(
ct+1
ct

)−γ
]

zt ≡ mt(θ)

• θ representsβ andγ.
• Therefore, the above expression may be interpreted as a moment condition which

can be used for GMM estimation of the parametersθ0.

Note that at timet, mt−s has been observed, and is therefore an element of the information

set. By rational expectations, the autocovariances of the moment conditions other thanΓ0

should be zero. The optimal weighting matrix is therefore the inverse of the variance of the

moment conditions:

Ω∞ = lim E
[
nm(θ0)m(θ0)′

]
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which can be consistently estimated by

Ω̂ = 1/n
n

∑
t=1

mt(θ̂)mt(θ̂)′

As before, this estimate depends on an initial consistent estimate ofθ, which can be ob-

tained by setting the weighting matrixW arbitrarily (to an identity matrix, for example).

After obtainingθ̂, we then minimize

s(θ) = m(θ)′Ω̂−1m(θ).

This process can be iterated, e.g., use the new estimate to re-estimateΩ, use this to estimate

θ0, and repeat until the estimates don’t change.

• In principle, we could use a very large number of moment conditions in estima-

tion, sinceany current or lagged variablecould be used inxt . Since use of more

moment conditions will lead to a more (asymptotically) efficient estimator, one

might be tempted to use many instrumental variables. We willdo a computer lab

that will show that this may not be a good idea with finite samples. This issue has

been studied using Monte Carlos (Tauchen,JBES,1986). The reason for poor

performance when using many instruments is that the estimate of Ω becomes

very imprecise.

• Empirical papers that use this approach often have serious problems in obtain-

ing precise estimates of the parameters. Note that we are basing everything on

a single parial first order condition. Probably this f.o.c. is simply not informa-

tive enough. Simulation-based estimation methods (discussed below) are one

means of trying to use more informative moment conditions toestimate this sort

of model.

15.12. Empirical example: a portfolio model

The Octave programportfolio.mperforms GMM estimation of a portfolio model, us-

ing the data filetauchen.data. The columns of this data file arec, p, andd in that order.

There are 95 observations (source: Tauchen,JBES, 1986). As instruments we use lags of

c andr, as well as a constant. For a single lag the estimation results are

MPITB extensions found

*************************************************** ***

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.000014

Observations: 94

http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/portfolio.m
http://pareto.uab.es/mcreel/Econometrics/Examples/GMM/tauchen.data


15.12. EMPIRICAL EXAMPLE: A PORTFOLIO MODEL 208

Value df p-value

X^2 test 0.001 1.000 0.971

estimate st. err t-stat p-value

beta 0.915 0.009 97.271 0.000

gamma 0.569 0.319 1.783 0.075

*************************************************** ***

For two lags the estimation results are

MPITB extensions found

*************************************************** ***

Example of GMM estimation of rational expectations model

GMM Estimation Results

BFGS convergence: Normal convergence

Objective function value: 0.037882

Observations: 93

Value df p-value

X^2 test 3.523 3.000 0.318

estimate st. err t-stat p-value

beta 0.857 0.024 35.636 0.000

gamma -2.351 0.315 -7.462 0.000

*************************************************** ***

Pretty clearly, the results are sensitive to the choice of instruments. Maybe there is some

problem here: poor instruments, or possibly a conditional moment that is not very infor-

mative. Moment conditions formed from Euler conditions sometimes do not identify the

parameter of a model. See Hansen, Heaton and Yarron, (1996)JBESV14, N3. Is that a

problem here, (I haven’t checked it carefully)?
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Exercises

(1) Show how to cast the generalized IV estimator presented in section11.4 as a

GMM estimator. Identify what are the moment conditions,mt(θ), what is the

form of the the matrixDn, what is the efficient weight matrix, and show that the

covariance matrix formula given previously corresponds tothe GMM covariance

matrix formula.

(2) Using Octave, generate data from the logit dgp . Recall thatE(yt |xt) = p(xt ,θ) =

[1+exp(−xt ′θ)]−1. Consider the moment condtions (exactly identified)mt(θ) =

[yt − p(xt ,θ)]xt

(a) Estimate by GMM, using these moments.

(b) Estimate by MLE.

(c) The two estimators should coincide. Prove analyticallythat the estimators

coicide.

(3) Verify the missing steps needed to show thatn ·m(θ̂)′Ω̂−1m(θ̂) has aχ2(g−K)

distribution. That is, show that the monster matrix is idempotent and has trace

equal tog−K.

(4) For the portfolio example, experiment with the program using lags of 3 and 4

periods to define instruments

(a) Iterate the estimation ofθ = (β,γ) andΩ to convergence.

(b) Comment on the results. Are the results sensitive to the set of instruments

used? (Look at̂Ω as well aŝθ. Are these good instruments? Are the instru-

ments highly correlated with one another?



CHAPTER 16

Quasi-ML

Quasi-ML is the estimator one obtains when a misspecified probability model is used

to calculate an ”ML” estimator.

Given a sample of sizen of a random vectory and a vector of conditioning variablesx,

suppose the joint density ofY =
(

y1 . . . yn

)
conditional onX =

(
x1 . . . xn

)
is

a member of the parametric familypY (Y|X,ρ), ρ ∈ Ξ. The true joint density is associated

with the vectorρ0 :

pY (Y|X,ρ0).

As long as the marginal density ofX doesn’t depend onρ0, this conditional density fully

characterizes the random characteristics of samples: i.e., it fully describes the probabilisti-

cally important features of the d.g.p. Thelikelihood functionis just this density evaluated

at other valuesρ
L(Y|X,ρ) = pY (Y|X,ρ),ρ ∈ Ξ.

• Let Yt−1 =
(

y1 . . . yt−1

)
, Y0 = 0, and letXt =

(
x1 . . . xt

)
The like-

lihood function, taking into account possible dependence of observations, can be

written as

L(Y|X,ρ) =
n

∏
t=1

pt(yt |Yt−1,Xt ,ρ)

≡
n

∏
t=1

pt(ρ)

• The average log-likelihood function is:

sn(ρ) =
1
n

lnL(Y|X,ρ) =
1
n

n

∑
t=1

ln pt(ρ)

• Suppose that we do not have knowledge of the family of densitiespt(ρ). Mistak-

enly, we may assume that the conditional density ofyt is a member of the family

ft (yt |Yt−1,Xt ,θ), θ ∈ Θ, where there is noθ0 such thatft(yt |Yt−1,Xt ,θ0) =

pt(yt |Yt−1,Xt ,ρ0),∀t (this is what we mean by “misspecified”).

• This setup allows for heterogeneous time series data, with dynamic misspecifica-

tion.

210
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The QML estimator is the argument that maximizes themisspecifiedaverage log likeli-

hood, which we refer to as the quasi-log likelihood function. This objective function is

sn(θ) =
1
n

n

∑
t=1

ln ft (yt |Yt−1,Xt ,θ0)

≡ 1
n

n

∑
t=1

ln ft (θ)

and the QML is

θ̂n = argmax
Θ

sn(θ)

A SLLN for dependent sequences applies (we assume), so that

sn(θ)
a.s.→ lim

n→∞
E

1
n

n

∑
t=1

ln ft(θ) ≡ s∞(θ)

We assume that this can be strengthened to uniform convergence, a.s., following the previ-

ous arguments. The “pseudo-true” value ofθ is the value that maximizes ¯s(θ):

θ0 = argmax
Θ

s∞(θ)

Given assumptions so that theorem19 is applicable, we obtain

lim
n→∞

θ̂n = θ0,a.s.

• Applying the asymptotic normality theorem,
√

n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1]

where

J∞(θ0) = lim
n→∞
ED2

θsn(θ0)

and

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0).

• Note that asymptotic normality only requires that the additional assumptions re-

gardingJ andI hold in a neighborhood ofθ0 for J and atθ0, for I , not through-

outΘ. In this sense, asymptotic normality is a local property.

16.1. Consistent Estimation of Variance Components

Consistent estimation ofJ∞(θ0) is straightforward. Assumption (b) of Theorem22

implies that

Jn(θ̂n) =
1
n

n

∑
t=1

D2
θ ln ft(θ̂n)

a.s.→ lim
n→∞
E

1
n

n

∑
t=1

D2
θ ln ft(θ0) = J∞(θ0).

That is, just calculate the Hessian using the estimateθ̂n in place ofθ0.

Consistent estimation ofI∞(θ0) is more difficult, and may be impossible.

• Notation: Let gt ≡ Dθ ft (θ0)
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We need to estimate

I∞(θ0) = lim
n→∞

Var
√

nDθsn(θ0)

= lim
n→∞

Var
√

n
1
n

n

∑
t=1

Dθ ln ft (θ0)

= lim
n→∞

1
n

Var
n

∑
t=1

gt

= lim
n→∞

1
n
E

{(
n

∑
t=1

(gt −E gt)

)(
n

∑
t=1

(gt −E gt)

)′}

This is going to contain a term

lim
n→∞

1
n

n

∑
t=1

(E gt) (E gt)
′

which will not tend to zero, in general. This term is not consistently estimable in general,

since it requires calculating an expectation using the truedensity under the d.g.p., which is

unknown.

• There are important cases whereI∞(θ0) is consistently estimable. For example,

suppose that the data come from a random sample (i.e., they are iid). This would

be the case with cross sectional data, for example. (Note: under i.i.d. sampling,

the joint distribution of(yt ,xt) is identical. This does not imply that the condi-

tional densityf (yt |xt) is identical).

• With random sampling, the limiting objective function is simply

s∞(θ0) = EXE0 ln f (y|x,θ0)

whereE0 means expectation ofy|x andEX means expectation respect to the

marginal density ofx.

• By the requirement that the limiting objective function be maximized atθ0 we

have

DθEXE0 ln f (y|x,θ0) = Dθs∞(θ0) = 0

• The dominated convergence theorem allows switching the order of expectation

and differentiation, so

DθEXE0 ln f (y|x,θ0) = EXE0Dθ ln f (y|x,θ0) = 0

The CLT implies that

1√
n

n

∑
t=1

Dθ ln f (y|x,θ0)
d→ N(0, I∞(θ0)).

That is, it’s not necessary to subtract the individual means, since they are zero.

Given this, and due to independent observations, a consistent estimator is

Î =
1
n

n

∑
t=1

Dθ ln ft (θ̂)Dθ′ ln ft (θ̂)

This is an important case where consistent estimation of thecovariance matrix is possible.

Other cases exist, even for dynamically misspecified time series models.
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16.2. Example: the MEPS Data

To check the plausibility of the Poisson model for the MEPS data, we can compare

the sample unconditional variance with the estimated unconditional variance according to

the Poisson model:̂V(y) =
∑n

t=1 λ̂t
n . Using the programPoissonVariance.m, for OBDV and

ERV, we get We see that even after conditioning, the overdispersion is not captured in either

TABLE 1. Marginal Variances, Sample and Estimated (Poisson)

OBDV ERV

Sample 38.09 0.151
Estimated 3.28 0.086

case. There is huge problem with OBDV, and a significant problem with ERV. In both cases

the Poisson model does not appear to be plausible. You can check this for the other use

measures if you like.

16.2.1. Infinite mixture models: the negative binomial model. Reference: Cameron

and Trivedi (1998)Regression analysis of count data,chapter 4.

The two measures seem to exhibit extra-Poisson variation. To capture unobserved

heterogeneity, a possibility is therandom parametersapproach. Consider the possibility

that the constant term in a Poisson model were random:

fY(y|x,ε) =
exp(−θ)θy

y!

θ = exp(x′β + ε)

= exp(x′β)exp(ε)

= λν

whereλ = exp(x′β) andν = exp(ε). Now ν captures the randomness in the constant. The

problem is that we don’t observeν, so we will need to marginalize it to get a usable density

fY(y|x) =
Z ∞

−∞

exp[−θ]θy

y!
fv(z)dz

This densitycanbe used directly, perhaps using numerical integration to evaluate the like-

lihood function. In some cases, though, the integral will have an analytic solution. For

example, ifν follows a certain one parameter gamma density, then

(16.2.1) fY(y|x,φ) =
Γ(y+ ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+ λ

)ψ( λ
ψ+ λ

)y

whereφ = (λ,ψ). ψ appears since it is the parameter of the gamma density.

• For this density,E(y|x) = λ, which we have parameterizedλ = exp(x′β)

• The variance depends upon howψ is parameterized.

– If ψ = λ/α, whereα > 0, thenV(y|x) = λ+αλ. Note thatλ is a function of

x, so that the variance is too. This is referred to as the NB-I model.

– If ψ = 1/α, whereα > 0, thenV(y|x) = λ + αλ2. This is referred to as the

NB-II model.

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-I/PoissonVariance.m
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So both forms of the NB model allow for overdispersion, with the NB-II model allowing

for a more radical form.

Testing reduction of a NB model to a Poisson model cannot be done by testingα = 0

using standard Wald or LR procedures. The critical values need to be adjusted to account

for the fact thatα = 0 is on the boundary of the parameter space. Without getting into

details, suppose that the data were in fact Poisson, so thereis equidispersion and the true

α = 0. Then about half the time the sample data will be underdispersed, and about half

the time overdispersed. When the data is underdispersed, the MLE of α will be α̂ = 0.

Thus, under the null, there will be a probability spike in theasymptotic distribution of√
n(α̂−α) =

√
nα̂ at 0, so standard testing methods will not be valid.

This programwill do estimation using the NB model. Note how modelargs is used to

select a NB-I or NB-II density. Here are NB-I estimation results for OBDV:

MPITB extensions found

OBDV

=================================================== ===
BFGSMIN final results

Used analytic gradient

--------------------------------------------------- ---
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
--------------------------------------------------- ---
Objective function value 2.18573
Stepsize 0.0007
17 iterations
--------------------------------------------------- ---

param gradient change
1.0965 0.0000 -0.0000
0.2551 -0.0000 0.0000
0.2024 -0.0000 0.0000
0.2289 0.0000 -0.0000
0.1969 0.0000 -0.0000
0.0769 0.0000 -0.0000
0.0000 -0.0000 0.0000
1.7146 -0.0000 0.0000

*************************************************** ***
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.185730
Observations: 4564

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m
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estimate st. err t-stat p-value
constant -0.523 0.104 -5.005 0.000
pub. ins. 0.765 0.054 14.198 0.000
priv. ins. 0.451 0.049 9.196 0.000
sex 0.458 0.034 13.512 0.000
age 0.016 0.001 11.869 0.000
edu 0.027 0.007 3.979 0.000
inc 0.000 0.000 0.000 1.000
alpha 5.555 0.296 18.752 0.000

Information Criteria
CAIC : 20026.7513 Avg. CAIC: 4.3880

BIC : 20018.7513 Avg. BIC: 4.3862
AIC : 19967.3437 Avg. AIC: 4.3750

*************************************************** ***

Note that the parameter values of the last BFGS iteration aredifferent that those re-

ported in the final results. This reflects two things - first, the data were scaled before doing

the BFGS minimization, but themle_results script takes this into account and reports

the results using the original scaling. But also, the parameterizationα = exp(α∗) is used

to enforce the restriction thatα > 0. The unrestricted parameterα∗ = logα is used to

define the log-likelihood function, since the BFGS minimization algorithm does not do

contrained minimization. To get the standard error and t-statistic of the estimate ofα, we

need to use the delta method. This is done insidemle_results , making use of the function

parameterize.m.

Likewise, here are NB-II results:

MPITB extensions found

OBDV

=================================================== ===
BFGSMIN final results

Used analytic gradient

--------------------------------------------------- ---
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
--------------------------------------------------- ---
Objective function value 2.18496
Stepsize 0.0104394
13 iterations
--------------------------------------------------- ---

param gradient change
1.0375 0.0000 -0.0000
0.3673 -0.0000 0.0000
0.2136 0.0000 -0.0000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/parameterize.m
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0.2816 0.0000 -0.0000
0.3027 0.0000 0.0000
0.0843 -0.0000 0.0000

-0.0048 0.0000 -0.0000
0.4780 -0.0000 0.0000

*************************************************** ***
Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.184962
Observations: 4564

estimate st. err t-stat p-value
constant -1.068 0.161 -6.622 0.000
pub. ins. 1.101 0.095 11.611 0.000
priv. ins. 0.476 0.081 5.880 0.000
sex 0.564 0.050 11.166 0.000
age 0.025 0.002 12.240 0.000
edu 0.029 0.009 3.106 0.002
inc -0.000 0.000 -0.176 0.861
alpha 1.613 0.055 29.099 0.000

Information Criteria
CAIC : 20019.7439 Avg. CAIC: 4.3864

BIC : 20011.7439 Avg. BIC: 4.3847
AIC : 19960.3362 Avg. AIC: 4.3734

*************************************************** ***

• For the OBDV usage measurel, the NB-II model does a slightly better job than the

NB-I model, in terms of the average log-likelihood and the information criteria

(more on this last in a moment).

• Note that both versions of the NB model fit much better than does the Poisson

model (see13.4.2).

• The estimatedα is highly significant.

To check the plausibility of the NB-II model, we can compare the sample unconditional

variance with the estimated unconditional variance according to the NB-II model:V̂(y) =

∑n
t=1 λ̂t+α̂(λ̂t)

2

n . For OBDV and ERV (estimation results not reported), we get For OBDV,

TABLE 2. Marginal Variances, Sample and Estimated (NB-II)

OBDV ERV

Sample 38.09 0.151
Estimated 30.58 0.182

the overdispersion problem is significantly better than in the Poisson case, but there is still
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some that is not captured. For ERV, the negative binomial model seems to capture the

overdispersion adequately.

16.2.2. Finite mixture models: the mixed negative binomialmodel. The finite

mixture approach to fitting health care demand was introduced by Deb and Trivedi (1997).

The mixture approach has the intuitive appeal of allowing for subgroups of the population

with different health status. If individuals are classifiedas healthy or unhealthy then two

subgroups are defined. A finer classification scheme would lead to more subgroups. Many

studies have incorporated objective and/or subjective indicators of health status in an ef-

fort to capture this heterogeneity. The available objective measures, such as limitations on

activity, are not necessarily very informative about a person’s overall health status. Sub-

jective, self-reported measures may suffer from the same problem, and may also not be

exogenous

Finite mixture models are conceptually simple. The densityis

fY(y,φ1, ...,φp,π1, ...,πp−1) =
p−1

∑
i=1

πi f
(i)
Y (y,φi)+ πp f p

Y (y,φp),

whereπi > 0, i = 1,2, ..., p, πp = 1−∑p−1
i=1 πi, and ∑p

i=1 πi = 1. Identification requires

that theπi are ordered in some way, for example,π1 ≥ π2 ≥ ·· · ≥ πp andφi 6= φ j , i 6= j.

This is simple to accomplish post-estimation by rearrangement and possible elimination of

redundant component densities.

• The properties of the mixture density follow in a straightforward way from those

of the components. In particular, the moment generating function is the same

mixture of the moment generating functions of the componentdensities, so, for

example,E(Y|x) = ∑p
i=1 πiµi(x), whereµi(x) is the mean of theith component

density.

• Mixture densities may suffer from overparameterization, since the total number

of parameters grows rapidly with the number of component densities. It is possi-

ble to constrained parameters across the mixtures.

• Testing for the number of component densities is a tricky issue. For example,

testing forp = 1 (a single component, which is to say, no mixture) versusp = 2

(a mixture of two components) involves the restrictionπ1 = 1, which is on the

boundary of the parameter space. Not that whenπ1 = 1, the parameters of the

second component can take on any value without affecting thedensity. Usual

methods such as the likelihood ratio test are not applicablewhen parameters are

on the boundary under the null hypothesis. Information criteria means of choos-

ing the model (see below) are valid.

The following results are for a mixture of 2 NB-II models, forthe OBDV data, which you

can replicate usingthis program.

OBDV

*************************************************** ***

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/EstimateNegBin.m
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Mixed Negative Binomial model, MEPS 1996 full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.164783
Observations: 4564

estimate st. err t-stat p-value
constant 0.127 0.512 0.247 0.805
pub. ins. 0.861 0.174 4.962 0.000
priv. ins. 0.146 0.193 0.755 0.450
sex 0.346 0.115 3.017 0.003
age 0.024 0.004 6.117 0.000
edu 0.025 0.016 1.590 0.112
inc -0.000 0.000 -0.214 0.831
alpha 1.351 0.168 8.061 0.000
constant 0.525 0.196 2.678 0.007
pub. ins. 0.422 0.048 8.752 0.000
priv. ins. 0.377 0.087 4.349 0.000
sex 0.400 0.059 6.773 0.000
age 0.296 0.036 8.178 0.000
edu 0.111 0.042 2.634 0.008
inc 0.014 0.051 0.274 0.784
alpha 1.034 0.187 5.518 0.000
Mix 0.257 0.162 1.582 0.114

Information Criteria
CAIC : 19920.3807 Avg. CAIC: 4.3647

BIC : 19903.3807 Avg. BIC: 4.3610
AIC : 19794.1395 Avg. AIC: 4.3370

*************************************************** ***

It is worth noting that the mixture parameter is not significantly different from zero,

but also not that the coefficients of public insurance and age, for example, differ quite a bit

between the two latent classes.

16.2.3. Information criteria. As seen above, a Poisson model can’t be tested (using

standard methods) as a restriction of a negative binomial model. But it seems, based upon

the values of the likelihood functions and the fact that the NB model fits the variance much

better, that the NB model is more appropriate. How can we determine which of a set of

competing models is the best?

The information criteria approach is one possibility. Information criteria are functions

of the log-likelihood, with a penalty for the number of parameters used. Three popular

information criteria are the Akaike (AIC), Bayes (BIC) and consistent Akaike (CAIC). The

formulae are

CAIC = −2lnL(θ̂)+k(lnn+1)

BIC = −2lnL(θ̂)+k lnn

AIC = −2lnL(θ̂)+2k
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It can be shown that the CAIC and BIC will select the correctlyspecified model from a

group of models, asymptotically. This doesn’t mean, of course, that the correct model

is necesarily in the group. The AIC is not consistent, and will asymptotically favor an

over-parameterized model over the correctly specified model. Here are information crite-

ria values for the models we’ve seen, for OBDV. Pretty clearly, the NB models are better

TABLE 3. Information Criteria, OBDV

Model AIC BIC CAIC

Poisson 7.345 7.355 7.357
NB-I 4.375 4.386 4.388
NB-II 4.373 4.385 4.386

MNB-II 4.337 4.361 4.365

than the Poisson. The one additional parameter gives a very significant improvement in

the likelihood function value. Between the NB-I and NB-II models, the NB-II is slightly

favored. But one should remember that information criteriavalues are statistics, with vari-

ances. With another sample, it may well be that the NB-I modelwould be favored, since the

differences are so small. The MNB-II model is favored over the others, by all 3 information

criteria.

Why is all of this in the chapter on QML? Let’s suppose that thecorrect model for

OBDV is in fact the NB-II model. It turns out in this case that the Poisson model will

give consistent estimates of the slope parameters (if a model is a member of the linear-

exponential family and the conditional mean is correctly specified, then the parameters of

the conditional mean will be consistently estimated). So the Poisson estimator would be

a QML estimator that is consistent for some parameters of thetrue model. The ordinary

OPG or inverse Hessinan ”ML” covariance estimators are however biased and inconsis-

tent, since the information matrix equality does not hold for QML estimators. But for

i.i.d. data (which is the case for the MEPS data) the QML asymptotic covariance can be

consistently estimated, as discussed above, using the sandwich form for the ML estimator.

mle_results in fact reports sandwich results, so the Poisson estimationresults would be

reliable for inference even if the true model is the NB-I or NB-II. Not that they are in fact

similar to the results for the NB models.

However, if we assume that the correct model is the MNB-II model, as is favored by

the information criteria, then both the Poisson and NB-x models will have misspecified

mean functions, so the parameters that influence the means would be estimated with bias

and inconsistently.
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Exercises

Exercises

(1) Considering the MEPS data (the description is in Section13.4.2), for the OBDV (y)

measure, letη be a latent index of health status that has expectation equalto unity.1 We

suspect thatη andPRIV may be correlated, but we assume thatη is uncorrelated with

the other regressors. We assume that

E(y|PUB,PRIV,AGE,EDUC, INC,η)

= exp(β1 + β2PUB+ β3PRIV+ β4AGE+ β5EDUC+ β6INC)η.

We use the Poisson QML estimator of the model

y ∼ Poisson(λ)

λ = exp(β1 + β2PUB+ β3PRIV+(16.2.2)

β4AGE+ β5EDUC+ β6INC).

Since much previous evidence indicates that health care services usage is overdis-

persed2, this is almost certainly not an ML estimator, and thus is notefficient. However,

whenη andPRIV are uncorrelated, this estimator is consistent for theβi parameters,

since the conditional mean is correctly specified in that case. Whenη andPRIV are

correlated, Mullahy’s (1997) NLIV estimator that uses the residual function

ε =
y
λ
−1,

whereλ is defined in equation16.2.2, with appropriate instruments, is consistent. As

instruments we use all the exogenous regressors, as well as the cross products ofPUB

with the variables inZ = {AGE,EDUC, INC}. That is, the full set of instruments is

W = {1 PUB Z PUB×Z }.

(a) Calculate the Poisson QML estimates.

(b) Calculate the generalized IV estimates (do it using a GMMformulation - see the

portfolio example for hints how to do this).

(c) Calculate the Hausman test statistic to test the exogeneity of PRIV.

(d) comment on the results

1A restriction of this sort is necessary for identification.
2Overdispersion exists when the conditional variance is greater than the conditional mean. If this is the case, the
Poisson specification is not correct.



CHAPTER 17

Nonlinear least squares (NLS)

Readings: Davidson and MacKinnon, Ch. 2∗ and 5∗; Gallant, Ch. 1

17.1. Introduction and definition

Nonlinear least squares (NLS) is a means of estimating the parameter of the model

yt = f (xt ,θ0)+ εt .

• In general,εt will be heteroscedastic and autocorrelated, and possibly nonnor-

mally distributed. However, dealing with this is exactly asin the case of linear

models, so we’ll just treat the iid case here,

εt ∼ iid(0,σ2)

If we stack the observations vertically, defining

y = (y1,y2, ...,yn)
′

f = ( f (x1,θ), f (x1,θ), ..., f (x1,θ))′

and

ε = (ε1,ε2, ...,εn)
′

we can write then observations as

y = f(θ)+ ε

Using this notation, the NLS estimator can be defined as

θ̂ ≡ argmin
Θ

sn(θ) =
1
n

[y− f(θ)]′ [y− f(θ)] =
1
n
‖ y− f(θ) ‖2

• The estimator minimizes the weighted sum of squared errors,which is the same

as minimizing the Euclidean distance betweeny andf(θ).

The objective function can be written as

sn(θ) =
1
n

[
y′y−2y′f(θ)+ f(θ)′f(θ)

]
,

which gives the first order conditions

−
[

∂
∂θ

f(θ̂)′
]

y+

[
∂

∂θ
f(θ̂)′

]
f(θ̂) ≡ 0.

Define then×K matrix

(17.1.1) F(θ̂) ≡ Dθ′ f(θ̂).

221
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In shorthand, usêF in place ofF(θ̂). Using this, the first order conditions can be written as

−F̂′y+ F̂′f(θ̂) ≡ 0,

or

(17.1.2) F̂′ [y− f(θ̂)
]
≡ 0.

This bears a good deal of similarity to the f.o.c. for the linear model - the derivative of the

prediction is orthogonal to the prediction error. Iff(θ) = Xθ, thenF̂ is simply X, so the

f.o.c. (with spherical errors) simplify to

X′y−X′Xβ = 0,

the usual 0LS f.o.c.

We can interpret this geometrically:INSERT drawings of geometrical depiction of

OLS and NLS (see Davidson and MacKinnon, pgs. 8,13 and 46).

• Note that the nonlinearity of the manifold leads to potential multiple local max-

ima, minima and saddlepoints: the objective functionsn(θ) is not necessarily

well-behaved and may be difficult to minimize.

17.2. Identification

As before, identification can be considered conditional on the sample, and asymptot-

ically. The condition for asymptotic identification is thatsn(θ) tend to a limiting function

s∞(θ) such thats∞(θ0) < s∞(θ), ∀θ 6= θ0. This will be the case ifs∞(θ0) is strictly convex

at θ0, which requires thatD2
θs∞(θ0) be positive definite. Consider the objective function:

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2

=
1
n

n

∑
t=1

[
f (xt ,θ0)+ εt − ft(xt ,θ)

]2

=
1
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]2
+

1
n

n

∑
t=1

(εt)
2

− 2
n

n

∑
t=1

[
ft(θ0)− ft(θ)

]
εt

• As in example14.3, which illustrated the consistency of extremum estimators

using OLS, we conclude that the second term will converge to aconstant which

does not depend uponθ.

• A LLN can be applied to the third term to conclude that it converges pointwise

to 0, as long asf(θ) andε are uncorrelated.

• Next, pointwise convergence needs to be stregnthened to uniform almost sure

convergence. There are a number of possible assumptions onecould use. Here,

we’ll just assume it holds.

• Turning to the first term, we’ll assume a pointwise law of large numbers applies,

so

(17.2.1)
1
n

n

∑
t=1

[
ft (θ0)− ft(θ)

]2 a.s.→
Z [

f (z,θ0)− f (z,θ)
]2

dµ(z),
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whereµ(x) is the distribution function ofx. In many cases,f (x,θ) will be bounded

and continuous, for allθ ∈ Θ, so strengthening to uniform almost sure conver-

gence is immediate. For example iff (x,θ) = [1+exp(−xθ)]−1 , f : ℜK → (0,1) ,

a bounded range, and the function is continuous inθ.

Given these results, it is clear that a minimizer isθ0. When considering identification (as-

ymptotic), the question is whether or not there may be some other minimizer. A local

condition for identification is that

∂2

∂θ∂θ′
s∞(θ) =

∂2

∂θ∂θ′

Z [
f (x,θ0)− f (x,θ)

]2
dµ(x)

be positive definite atθ0. Evaluating this derivative, we obtain (after a little work)

∂2

∂θ∂θ′

Z [
f (x,θ0)− f (x,θ)

]2
dµ(x)

∣∣∣∣
θ0

= 2
Z [

Dθ f (z,θ0)′
][

Dθ′ f (z,θ0)
]′

dµ(z)

the expectation of the outer product of the gradient of the regression function evaluated at

θ0. (Note: the uniform boundedness we have already assumed allows passing the derivative

through the integral, by the dominated convergence theorem.) This matrix will be positive

definite (wp1) as long as the gradient vector is of full rank (wp1). The tangent space to the

regression manifold must span aK -dimensional space if we are to consistently estimate

a K -dimensional parameter vector. This is analogous to the requirement that there be no

perfect colinearity in a linear model. This is a necessary condition for identification. Note

that the LLN implies that the above expectation is equal to

J∞(θ0) = 2limE
F′F
n

17.3. Consistency

We simply assume that the conditions of Theorem19 hold, so the estimator is consis-

tent. Given that the strong stochastic equicontinuity conditions hold, as discussed above,

and given the above identification conditions an a compact estimation space (the closure of

the parameter spaceΘ), the consistency proof’s assumptions are satisfied.

17.4. Asymptotic normality

As in the case of GMM, we also simply assume that the conditions for asymptotic nor-

mality as in Theorem22hold. The only remaining problem is to determine the form of the

asymptotic variance-covariance matrix. Recall that the result of the asymptotic normality

theorem is √
n
(
θ̂−θ0) d→ N

[
0,J∞(θ0)−1I∞(θ0)J∞(θ0)−1] ,

whereJ∞(θ0) is the almost sure limit of ∂2

∂θ∂θ′ sn(θ) evaluated atθ0, and

I∞(θ0) = limVar
√

nDθsn(θ0)

The objective function is

sn(θ) =
1
n

n

∑
t=1

[yt − f (xt ,θ)]2
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So

Dθsn(θ) = −2
n

n

∑
t=1

[yt − f (xt ,θ)]Dθ f (xt ,θ).

Evaluating atθ0,

Dθsn(θ0) = −2
n

n

∑
t=1

εtDθ f (xt ,θ0).

Note that the expectation of this is zero, sinceεt andxt are assumed to be uncorrelated.

So to calculate the variance, we can simply calculate the second moment about zero. Also

note that
n

∑
t=1

εtDθ f (xt ,θ0) =
∂

∂θ
[
f(θ0)

]′ ε

= F′ε

With this we obtain

I∞(θ0) = limVar
√

nDθsn(θ0)

= lim nE
4
n2F′εε’ F

= 4σ2 limE
F′F
n

We’ve already seen that

J∞(θ0) = 2limE
F′F
n

,

where the expectation is with respect to the joint density ofx and ε. Combining these

expressions forJ∞(θ0) andI∞(θ0), and the result of the asymptotic normality theorem, we

get
√

n
(
θ̂−θ0) d→ N

(
0,

(
limE

F′F
n

)−1

σ2

)
.

We can consistently estimate the variance covariance matrix using

(17.4.1)

(
F̂′F̂
n

)−1

σ̂2,

whereF̂ is defined as in equation17.1.1and

σ̂2 =

[
y− f(θ̂)

]′ [
y− f(θ̂)

]

n
,

the obvious estimator. Note the close correspondence to theresults for the linear model.

17.5. Example: The Poisson model for count data

Suppose thatyt conditional onxt is independently distributed Poisson. A Poisson

random variable is acount datavariable, which means it can take the values {0,1,2,...}.

This sort of model has been used to study visits to doctors peryear, number of patents

registered by businesses per year,etc.

The Poisson density is

f (yt ) =
exp(−λt)λyt

t

yt !
,yt ∈ {0,1,2, ...}.
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The mean ofyt is λt , as is the variance. Note thatλt must be positive. Suppose that the true

mean is

λ0
t = exp(x′tβ

0),

which enforces the positivity ofλt . Suppose we estimateβ0 by nonlinear least squares:

β̂ = argminsn(β) =
1
T

n

∑
t=1

(
yt −exp(x′tβ)

)2

We can write

sn(β) =
1
T

n

∑
t=1

(
exp(x′tβ

0 + εt −exp(x′tβ)
)2

=
1
T

n

∑
t=1

(
exp(x′tβ

0−exp(x′tβ)
)2

+
1
T

n

∑
t=1

ε2
t +2

1
T

n

∑
t=1

εt
(
exp(x′tβ

0−exp(x′tβ)
)

The last term has expectation zero since the assumption thatE (yt |xt) = exp(x′tβ0) implies

thatE (εt |xt) = 0, which in turn implies that functions ofxt are uncorrelated withεt . Ap-

plying a strong LLN, and noting that the objective function is continuous on a compact

parameter space, we get

s∞(β) = E x
(
exp(x′β0−exp(x′β)

)2
+E x exp(x′β0)

where the last term comes from the fact that the conditional variance ofε is the same as

the variance ofy. This function is clearly minimized atβ = β0, so the NLS estimator is

consistent as long as identification holds.

EXERCISE27. Determine the limiting distribution of
√

n
(

β̂−β0
)

. This means find-

ing the the specific forms of∂
2

∂β∂β′ sn(β), J (β0), ∂sn(β)
∂β

∣∣∣ , and I (β0). Again, use a CLT as

needed, no need to verify that it can be applied.

17.6. The Gauss-Newton algorithm

Readings:Davidson and MacKinnon, Chapter 6, pgs. 201-207∗.

The Gauss-Newton optimization technique is specifically designed for nonlinear least

squares. The idea is to linearize the nonlinear model, rather than the objective function.

The model is

y = f(θ0)+ ε.

At someθ in the parameter space, not equal toθ0, we have

y = f(θ)+ ν

whereν is a combination of the fundamental error termε and the error due to evaluating

the regression function atθ rather than the true valueθ0. Take a first order Taylor’s series

approximation around a pointθ1 :

y = f(θ1)+
[
Dθ′ f

(
θ1)](θ−θ1)+ ν+approximation error.

Definez≡ y− f(θ1) andb≡ (θ−θ1). Then the last equation can be written as

z = F(θ1)b+ ω,
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where, as above,F(θ1) ≡ Dθ′ f(θ1) is the n×K matrix of derivatives of the regression

function, evaluated atθ1, andω is ν plus approximation error from the truncated Taylor’s

series.

• Note thatF is known, givenθ1.

• Note that one could estimateb simply by performing OLS on the above equation.

• Givenb̂, we calculate a new round estimate ofθ0 asθ2 = b̂+θ1. With this, take a

new Taylor’s series expansion aroundθ2 and repeat the process. Stop whenb̂= 0

(to within a specified tolerance).

To see why this might work, consider the above approximation, but evaluated at the NLS

estimator:

y = f(θ̂)+F(θ̂)
(
θ− θ̂

)
+ ω

The OLS estimate ofb≡ θ− θ̂ is

b̂ =
(
F̂′F̂
)−1

F̂′ [y− f(θ̂)
]
.

This must be zero, since

F̂′ (θ̂
)[

y− f(θ̂)
]
≡ 0

by definition of the NLS estimator (these are the normal equations as in equation17.1.2,

Sinceb̂≡ 0 when we evaluate atθ̂, updating would stop.

• The Gauss-Newton method doesn’t require second derivatives, as does the Newton-

Raphson method, so it’s faster.

• The varcov estimator, as in equation17.4.1is simple to calculate, since we have

F̂ as a by-product of the estimation process (i.e., it’s just the last round “regressor

matrix”). In fact, a normal OLS program will give the NLS varcov estimator

directly, since it’s just the OLS varcov estimator from the last iteration.

• The method can suffer from convergence problems sinceF(θ)′F(θ), may be very

nearly singular, even with an asymptotically identified model, especially ifθ is

very far fromθ̂. Consider the example

y = β1 + β2xtβ3 + εt

When evaluated atβ2 ≈ 0, β3 has virtually no effect on the NLS objective func-

tion, soF will have rank that is “essentially” 2, rather than 3. In thiscase,F′F

will be nearly singular, so(F′F)−1 will be subject to large roundoff errors.

17.7. Application: Limited dependent variables and sampleselection

Readings: Davidson and MacKinnon, Ch. 15∗ (a quick reading is sufficient), J. Heck-

man, “Sample Selection Bias as a Specification Error”,Econometrica, 1979 (This is a

classic article, not required for reading, and which is a bitout-dated. Nevertheless it’s a

good place to start if you encounter sample selection problems in your research).

Sample selection is a common problem in applied research. The problem occurs when

observations used in estimation are sampled non-randomly,according to some selection

scheme.
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17.7.1. Example: Labor Supply. Labor supply of a person is a positive number of

hours per unit time supposing the offer wage is higher than the reservation wage, which is

the wage at which the person prefers not to work. The model (very simple, witht subscripts

suppressed):

• Characteristics of individual:x

• Latent labor supply:s∗ = x′β + ω
• Offer wage:wo = z′γ+ ν
• Reservation wage:wr = q′δ+ η

Write the wage differential as

w∗ =
(
z′γ+ ν

)
−
(
q′δ+ η

)

≡ r ′θ+ ε

We have the set of equations

s∗ = x′β + ω

w∗ = r ′θ+ ε.

Assume that [
ω
ε

]
∼ N

([
0

0

]
,

[
σ2 ρσ
ρσ 1

])
.

We assume that the offer wage and the reservation wage, as well as the latent variables∗

are unobservable. What is observed is

w = 1[w∗ > 0]

s = ws∗.

In other words, we observe whether or not a person is working.If the person is working,

we observe labor supply, which is equal to latent labor supply, s∗. Otherwise,s= 0 6= s∗.

Note that we are using a simplifying assumption that individuals can freely choose their

weekly hours of work.

Suppose we estimated the model

s∗ = x′β + residual

using only observations for whichs> 0. The problem is that these observations are those

for whichw∗ > 0, or equivalently,−ε < r ′θ and

E
[
ω|− ε < r ′θ

]
6= 0,

sinceε andω are dependent. Furthermore, this expectation will in general depend onx

since elements ofx can enter inr . Because of these two facts, least squares estimation is

biased and inconsistent.

Consider more carefullyE [ω|− ε < r ′θ] . Given the joint normality ofω andε, we can

write (see for example SpanosStatistical Foundations of Econometric Modelling,pg. 122)

ω = ρσε+ η,
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whereη has mean zero and is independent ofε. With this we can write

s∗ = x′β + ρσε+ η.

If we condition this equation on−ε < r ′θ we get

s= x′β + ρσE (ε|− ε < r ′θ)+ η

which may be written as

s= x′β + ρσE (ε|ε > −r ′θ)+ η

• A useful result is that for

z∼ N(0,1)

E(z|z> z∗) =
φ(z∗)

Φ(−z∗)
,

whereφ(·) andΦ(·) are the standard normal density and distribution function,

respectively. The quantity on the RHS above is known as theinverse Mill’s ratio:

IMR(z∗) =
φ(z∗)

Φ(−z∗)

With this we can write (making use of the fact that the standard normal density

is symmetric about zero, so thatφ(−a) = φ(a)):

s = x′β + ρσ
φ(r ′θ)

Φ(r ′θ)
+ η(17.7.1)

≡
[

x′
φ(r ′θ)
Φ(r ′θ)

][ β
ζ

]
+ η.(17.7.2)

whereζ = ρσ. The error termη has conditional mean zero, and is uncorrelated with the

regressorsx′
φ(r ′θ)
Φ(r ′θ)

. At this point, we can estimate the equation by NLS.

• Heckman showed how one can estimate this in a two step procedure where first

θ is estimated, then equation17.7.2is estimated by least squares using the esti-

mated value ofθ to form the regressors. This is inefficient and estimation ofthe

covariance is a tricky issue. It is probably easier (and moreefficient) just to do

MLE.

• The model presented above depends strongly on joint normality. There exist

many alternative models which weaken the maintained assumptions. It is pos-

sible to estimate consistently without distributional assumptions. See Ahn and

Powell,Journal of Econometrics, 1994.



CHAPTER 18

Nonparametric inference

18.1. Possible pitfalls of parametric inference: estimation

Readings: H. White (1980) “Using Least Squares to Approximate Unknown Regres-

sion Functions,”International Economic Review, pp. 149-70.

In this section we consider a simple example, which illustrates both why nonparametric

methods may in some cases be preferred to parametric methods.

We suppose that data is generated by random sampling of(y,x), wherey = f (x) +ε, x

is uniformly distributed on(0,2π), andε is a classical error. Suppose that

f (x) = 1+
3x
2π

−
( x

2π

)2

The problem of interest is to estimate the elasticity off (x) with respect tox, throughout

the range ofx.

In general, the functional form off (x) is unknown. One idea is to take a Taylor’s

series approximation tof (x) about some pointx0. Flexible functional forms such as the

transcendental logarithmic (usually know as the translog)can be interpreted as second order

Taylor’s series approximations. We’ll work with a first order approximation, for simplicity.

Approximating aboutx0:

h(x) = f (x0)+Dx f (x0)(x−x0)

If the approximation point isx0 = 0, we can write

h(x) = a+bx

The coefficienta is the value of the function atx = 0, and the slope is the value of the

derivative atx = 0. These are of course not known. One might try estimation by ordinary

least squares. The objective function is

s(a,b) = 1/n
n

∑
t=1

(yt −h(xt))
2 .

The limiting objective function, following the argument weused to get equations14.3.1

and17.2.1is

s∞(a,b) =

Z 2π

0
( f (x)−h(x))2dx.

The theorem regarding the consistency of extremum estimators (Theorem19) tells us that

â and b̂ will converge almost surely to the values that minimize the limiting objective

function. Solving the first order conditions1 reveals thats∞(a,b) obtains its minimum

1The following results were obtained using the commandmaxima -b fff.mac You can get the source file at
http://pareto.uab.es/mcreel/Econometrics/Examples/N onparametric/fff.mac .
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FIGURE 18.1.1. True and simple approximating functions
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at
{

a0 = 7
6,b0 = 1

π
}

. The estimated approximating functionĥ(x) therefore tends almost

surely to

h∞(x) = 7/6+x/π

In Figure18.1.1we see the true function and the limit of the approximation tosee the

asymptotic bias as a function ofx.

(The approximating model is the straight line, the true model has curvature.) Note that

the approximating model is in general inconsistent, even atthe approximation point. This

shows that “flexible functional forms” based upon Taylor’s series approximations do not in

general lead to consistent estimation of functions.

The approximating model seems to fit the true model fairly well, asymptotically. How-

ever, we are interested in the elasticity of the function. Recall that an elasticity is the mar-

ginal function divided by the average function:

ε(x) = xφ′(x)/φ(x)

Good approximation of the elasticity over the range ofx will require a good approximation

of both f (x) and f ′(x) over the range ofx. The approximating elasticity is

η(x) = xh′(x)/h(x)

In Figure18.1.2we see the true elasticity and the elasticity obtained from the limiting

approximating model.

The true elasticity is the line that has negative slope for largex. Visually we see that

the elasticity is not approximated so well. Root mean squared error in the approximation

of the elasticity is (
Z 2π

0
(ε(x)−η(x))2dx

)1/2

= .31546
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FIGURE 18.1.2. True and approximating elasticities
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Now suppose we use the leading terms of a trigonometric series as the approximating

model. The reason for using a trigonometric series as an approximating model is motivated

by the asymptotic properties of the Fourier flexible functional form (Gallant, 1981, 1982),

which we will study in more detail below. Normally with this type of model the number

of basis functions is an increasing function of the sample size. Here we hold the set of

basis function fixed. We will consider the asymptotic behavior of a fixed model, which we

interpret as an approximation to the estimator’s behavior in finite samples. Consider the set

of basis functions:

Z(x) =
[

1 x cos(x) sin(x) cos(2x) sin(2x)
]
.

The approximating model is

gK(x) = Z(x)α.

Maintaining these basis functions as the sample size increases, we find that the limiting

objective function is minimized at
{

a1 =
7
6
,a2 =

1
π
,a3 = − 1

π2 ,a4 = 0,a5 = − 1
4π2 ,a6 = 0

}
.

Substituting these values intogK(x) we obtain the almost sure limit of the approximation

(18.1.1) g∞(x) = 7/6+x/π+(cosx)

(
− 1

π2

)
+(sinx)0+(cos2x)

(
− 1

4π2

)
+(sin2x)0

In Figure18.1.3we have the approximation and the true function: Clearly thetruncated

trigonometric series model offers a better approximation,asymptotically, than does the

linear model. In Figure18.1.4we have the more flexible approximation’s elasticity and

that of the true function: On average, the fit is better, though there is some implausible
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FIGURE 18.1.3. True function and more flexible approximation
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FIGURE 18.1.4. True elasticity and more flexible approximation
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wavyness in the estimate. Root mean squared error in the approximation of the elasticity is
(

Z 2π

0

(
ε(x)− g′∞(x)x

g∞(x)

)2

dx

)1/2

= .16213,

about half that of the RMSE when the first order approximationis used. If the trigonometric

series contained infinite terms, this error measure would bedriven to zero, as we shall see.

18.2. Possible pitfalls of parametric inference: hypothesis testing

What do we mean by the term “nonparametric inference”? Simply, this means infer-

ences that are possible without restricting the functions of interest to belong to a parametric

family.
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• Consider means of testing for the hypothesis that consumersmaximize utility. A

consequence of utility maximization is that the Slutsky matrix D2
ph(p,U), where

h(p,U) are the a set of compensated demand functions, must be negative semi-

definite. One approach to testing for utility maximization would estimate a set of

normal demand functionsx(p,m).

• Estimation of these functions by normal parametric methodsrequires specifica-

tion of the functional form of demand, for example

x(p,m) = x(p,m,θ0)+ ε,θ0 ∈ Θ0,

wherex(p,m,θ0) is a function of known form andΘ0 is a finite dimensional

parameter.

• After estimation, we could use ˆx = x(p,m, θ̂) to calculate (by solving the inte-

grability problem, which is non-trivial)̂D2
ph(p,U). If we can statistically reject

that the matrix is negative semi-definite, we might concludethat consumers don’t

maximize utility.

• The problem with this is that the reason for rejection of the theoretical proposition

may be that our choice of functional form is incorrect. In theintroductory section

we saw that functional form misspecification leads to inconsistent estimation of

the function and its derivatives.

• Testing using parametric models always means we are testinga compound hy-

pothesis. The hypothesis that is tested is 1) the economic proposition we wish to

test, and 2) the model is correctly specified. Failure of either 1) or 2) can lead to

rejection. This is known as the “model-induced augmenting hypothesis.”

• Varian’s WARP allows one to test for utility maximization without specifying the

form of the demand functions. The only assumptions used in the test are those

directly implied by theory, so rejection of the hypothesis calls into question the

theory.

• Nonparametric inference allows direct testing of economicpropositions, without

the “model-induced augmenting hypothesis”.

18.3. The Fourier functional form

Readings: Gallant, 1987, “Identification and consistency in semi-nonparametric re-

gression,” inAdvances in Econometrics, Fifth World Congress,V. 1, Truman Bewley, ed.,

Cambridge.

• Suppose we have a multivariate model

y = f (x)+ ε,

where f (x) is of unknown form andx is aP−dimensional vector. For simplicity,

assume thatε is a classical error. Let us take the estimation of the vectorof

elasticities with typical element

ξxi =
xi

f (x)

∂ f (x)

∂xi f (x)
,

at an arbitrary pointxi .
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The Fourier form, following Gallant (1982), but with a somewhat different parameteriza-

tion, may be written as

(18.3.1) gK(x | θK) = α+x′β +1/2x′Cx+
A

∑
α=1

J

∑
j=1

(
u jα cos( jk′

αx)−v jα sin( jk′
αx)
)
.

where theK-dimensional parameter vector

(18.3.2) θK = {α,β′,vec∗(C)′,u11,v11, . . . ,uJA,vJA}′.

• We assume that the conditioning variablesx have each been transformed to lie in

an interval that is shorter than 2π. This is required to avoid periodic behavior of

the approximation, which is desirable since economic functions aren’t periodic.

For example, subtract sample means, divide by the maxima of the conditioning

variables, and multiply by 2π−eps, whereepsis some positive number less than

2π in value.

• Thekα are ”elementary multi-indices” which are simplyP− vectors formed of

integers (negative, positive and zero). Thekα, α = 1,2, ...,A are required to be

linearly independent, and we follow the convention that thefirst non-zero element

be positive. For example
[

0 1 −1 0 1
]′

is a potential multi-index to be used, but
[

0 −1 −1 0 1
]′

is not since its first nonzero element is negative. Nor is
[

0 2 −2 0 2
]′

a multi-index we would use, since it is a scalar multiple of the original multi-

index.

• We parameterize the matrixC differently than does Gallant because it simplifies

things in practice. The cost of this is that we are no longer able to test a quadratic

specification using nested testing.

The vector of first partial derivatives is

(18.3.3) DxgK(x | θK) = β +Cx+
A

∑
α=1

J

∑
j=1

[(
−u jα sin( jk′

αx)−v jα cos( jk′
αx)
)

jkα
]

and the matrix of second partial derivatives is

(18.3.4) D2
xgK(x|θK) = C+

A

∑
α=1

J

∑
j=1

[(
−u jα cos( jk′

αx)+v jα sin( jk′
αx)
)

j2kαk′
α
]

To define a compact notation for partial derivatives, letλ be anN-dimensional multi-

index with no negative elements. Define| λ |∗ as the sum of the elements ofλ. If we

haveN argumentsx of the (arbitrary) functionh(x), useDλh(x) to indicate a certain partial
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derivative:

Dλh(x) ≡ ∂|λ|∗

∂xλ1
1 ∂xλ2

2 · · ·∂xλN
N

h(x)

Whenλ is the zero vector,Dλh(x)≡ h(x). Taking this definition and the last few equations

into account, we see that it is possible to define(1×K) vectorZλ(x) so that

(18.3.5) DλgK(x|θK) = zλ(x)′θK .

• Both the approximating model and the derivatives of the approximating model

are linear in the parameters.

• For the approximating model to the function (not derivatives), writegK(x|θK) =

z′θK for simplicity.

The following theorem can be used to prove the consistency ofthe Fourier form.

THEOREM28. [Gallant and Nychka, 1987] Suppose thatĥn is obtained by maximizing

a sample objective functionsn(h) overHKn whereHK is a subset of some function space

H on which is defined a norm‖ h ‖. Consider the following conditions:

(a) Compactness: The closure ofH with respect to‖ h ‖ is compact in the relative

topology defined by‖ h ‖.

(b) Denseness:∪KHK , K = 1,2,3, ... is a dense subset of the closure ofH with respect

to ‖ h ‖ andHK ⊂ HK+1.

(c) Uniform convergence: There is a pointh∗ in H and there is a functions∞(h,h∗)

that is continuous inh with respect to‖ h ‖ such that

lim
n→∞

sup
H

| sn(h)−s∞(h,h∗) |= 0

almost surely.

(d) Identification: Any pointh in the closure ofH with s∞(h,h∗) ≥ s∞(h∗,h∗) must

have‖ h−h∗ ‖= 0.

Under these conditions limn→∞ ‖ h∗− ĥn ‖= 0 almost surely, provided that limn→∞ Kn =

∞ almost surely.

The modification of the original statement of the theorem that has been made is to set

the parameter spaceΘ in Gallant and Nychka’s (1987) Theorem 0 to a single point andto

state the theorem in terms of maximization rather than minimization.

This theorem is very similar in form to Theorem19. The main differences are:

(1) A generic norm‖ h ‖ is used in place of the Euclidean norm. This norm may

be stronger than the Euclidean norm, so that convergence with respect to‖ h ‖
implies convergence w.r.t the Euclidean norm. Typically wewill want to make

sure that the norm is strong enough to imply convergence of all functions of

interest.

(2) The “estimation space”H is a function space. It plays the role of the parameter

spaceΘ in our discussion of parametric estimators. There is no restriction to a

parametric family, only a restriction to a space of functions that satisfy certain

conditions. This formulation is much less restrictive thanthe restriction to a

parametric family.
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(3) There is a denseness assumption that was not present in the other theorem.

We will not prove this theorem (the proof is quite similar to the proof of theorem [19], see

Gallant, 1987) but we will discuss its assumptions, in relation to the Fourier form as the

approximating model.

18.3.1. Sobolev norm.Since all of the assumptions involve the norm‖ h ‖ , we need

to make explicit what norm we wish to use. We need a norm that guarantees that the

errors in approximation of the functions we are interested in are accounted for. Since we

are interested in first-order elasticities in the present case, we need close approximation

of both the functionf (x) and its first derivativef ′(x), throughout the range ofx. Let X

be an open set that contains all values ofx that we’re interested in. The Sobolev norm is

appropriate in this case. It is defined, making use of our notation for partial derivatives, as:

‖ h ‖m,X = max
|λ∗|≤m

sup
X

∣∣∣Dλh(x)
∣∣∣

To see whether or not the functionf (x) is well approximated by an approximating model

gK(x | θK), we would evaluate

‖ f (x)−gK(x | θK) ‖m,X .

We see that this norm takes into account errors in approximating the function and partial

derivatives up to orderm. If we want to estimate first order elasticities, as is the casein this

example, the relevantm would bem= 1. Furthermore, since we examine the sup overX ,

convergence w.r.t. the Sobolev meansuniform convergence, so that we obtain consistent

estimates for all values ofx.

18.3.2. Compactness.Verifying compactness with respect to this norm is quite tech-

nical and unenlightening. It is proven by Elbadawi, Gallantand Souza,Econometrica,

1983. The basic requirement is that if we need consistency w.r.t. ‖ h ‖m,X , then the func-

tions of interest must belong to a Sobolev space which takes into account derivatives of

orderm+1. A Sobolev space is the set of functions

Wm,X (D) = {h(x) :‖ h(x) ‖m,X < D},

whereD is a finite constant. In plain words, the functions must have bounded partial

derivatives of one order higher than the derivatives we seekto estimate.

18.3.3. The estimation space and the estimation subspace.Since in our case we’re

interested in consistent estimation of first-order elasticities, we’ll define the estimation

space as follows:

DEFINITION 29. [Estimation space] The estimation spaceH = W 2,X (D). The esti-

mation space is an open set, and we presume thath∗ ∈ H .

So we are assuming that the function to be estimated has bounded second derivatives

throughoutX .

With seminonparametric estimators, we don’t actually optimize over the estimation

space. Rather, we optimize over a subspace,HKn, defined as:
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DEFINITION 30. [Estimation subspace] The estimation subspaceHK is defined as

HK = {gK(x|θK) : gK(x|θK) ∈W 2,Z (D),θK ∈ ℜK},

wheregK(x,θK) is the Fourier form approximation as defined in Equation18.3.1.

18.3.4. Denseness.The important point here is thatHK is a space of functions that

is indexed by a finite dimensional parameter (θK hasK elements, as in equation18.3.2).

With n observations,n > K, this parameter is estimable. Note that the true functionh∗ is

not necessarily an element ofHK , so optimization overHK may not lead to a consistent

estimator. In order for optimization overHK to be equivalent to optimization overH , at

least asymptotically, we need that:

(1) The dimension of the parameter vector, dimθKn → ∞ asn→ ∞. This is achieved

by makingA andJ in equation18.3.1increasing functions ofn, the sample size.

It is clear thatK will have to grow more slowly thann. The second requirement

is:

(2) We need that theHK be dense subsets ofH .

The estimation subspaceHK , defined above, is a subset of the closure of the estimation

space,H . A set of subsetsAa of a setA is “dense” if the closure of the countable union

of the subsets is equal to the closure ofA :

∪∞
a=1Aa = A

Use a picture here. The rest of the discussion of denseness isprovided just for completeness:

there’s no need to study it in detail. To show thatHK is a dense subset ofH with respect

to ‖ h ‖1,X , it is useful to apply Theorem 1 of Gallant (1982), who in turn cites Edmunds

and Moscatelli (1977). We reproduce the theorem as presented by Gallant, with minor

notational changes, for convenience of reference:

THEOREM 31. [Edmunds and Moscatelli, 1977] Let the real-valued function h∗(x)

be continuously differentiable up to orderm on an open set containing the closure ofX .

Then it is possible to choose a triangular array of coefficients θ1,θ2, . . .θK , . . . , such that

for everyq with 0 ≤ q < m, and everyε > 0, ‖ h∗(x)− hK(x|θK) ‖q,X = o(K−m+q+ε) as

K → ∞.

In the present application,q = 1, andm= 2. By definition of the estimation space, the

elements ofH are once continuously differentiable onX , which is open and contains the

closure ofX , so the theorem is applicable. Closely following Gallant and Nychka (1987),

∪∞HK is the countable union of theHK . The implication of Theorem31 is that there is a

sequence of {hK} from ∪∞HK such that

lim
K→∞

‖ h∗−hK ‖1,X= 0,

for all h∗ ∈ H . Therefore,

H ⊂ ∪∞HK .

However,

∪∞HK ⊂ H ,



18.3. THE FOURIER FUNCTIONAL FORM 238

so

∪∞HK ⊂ H .

Therefore

H = ∪∞HK ,

so∪∞HK is a dense subset ofH , with respect to the norm‖ h ‖1,X .

18.3.5. Uniform convergence.We now turn to the limiting objective function. We

estimate by OLS. The sample objective function stated in terms of maximization is

sn(θK) = −1
n

n

∑
t=1

(yt −gK(xt | θK))2

With random sampling, as in the case of Equations14.3.1and17.2.1, the limiting objective

function is

(18.3.6) s∞ (g, f ) = −
Z

X
( f (x)−g(x))2dµx−σ2

ε.

where the true functionf (x) takes the place of the generic functionh∗ in the presentation

of the theorem. Bothg(x) and f (x) are elements of∪∞HK .

The pointwise convergence of the objective function needs to be strengthened to uni-

form convergence. We will simply assume that this holds, since the way to verify this

depends upon the specific application. We also have continuity of the objective function in

g, with respect to the norm‖ h ‖1,X since

lim
‖g1−g0‖1,X→0

{
s∞
(
g1, f )

)
−s∞

(
g0, f )

)}

= lim
‖g1−g0‖1,X→0

Z

X

[(
g1(x)− f (x)

)2−
(
g0(x)− f (x)

)2]
dµx.

By the dominated convergence theorem (which applies since the finite boundD used to

defineW 2,Z (D) is dominated by an integrable function), the limit and the integral can be

interchanged, so by inspection, the limit is zero.

18.3.6. Identification. The identification condition requires that for any point(g, f )

in H ×H , s∞(g, f ) ≥ s∞( f , f ) ⇒ ‖ g− f ‖1,X = 0. This condition is clearly satisfied given

thatg and f are once continuously differentiable (by the assumption that defines the esti-

mation space).

18.3.7. Review of concepts.For the example of estimation of first-order elasticities,

the relevant concepts are:

• Estimation spaceH =W 2,X (D): the function space in the closure of which the

true function must lie.

• Consistency norm‖ h ‖1,X . The closure ofH is compact with respect to this

norm.

• Estimation subspaceHK . The estimation subspace is the subset ofH that is rep-

resentable by a Fourier form with parameterθK . These are dense subsets ofH .

• Sample objective functionsn(θK), the negative of the sum of squares. By stan-

dard arguments this converges uniformly to the
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• Limiting objective functions∞( g, f ), which is continuous ing and has a global

maximum in its first argument, over the closure of the infiniteunion of the esti-

mation subpaces, atg = f .

• As a result of this, first order elasticities

xi

f (x)

∂ f (x)

∂xi f (x)

are consistently estimated for allx ∈ X .

18.3.8. Discussion.Consistency requires that the number of parameters used in the

expansion increase with the sample size, tending to infinity. If parameters are added at a

high rate, the bias tends relatively rapidly to zero. A basicproblem is that a high rate of

inclusion of additional parameters causes the variance to tend more slowly to zero. The

issue of how to chose the rate at which parameters are added and which to add first is

fairly complex. A problem is that the allowable rates for asymptotic normality to obtain

(Andrews 1991; Gallant and Souza, 1991) are very strict. Supposing we stick to these rates,

our approximating model is:

gK(x|θK) = z′θK .

• DefineZK as then×K matrix of regressors obtained by stacking observations.

The LS estimator is

θ̂K =
(
Z′

KZK
)+ Z′

Ky,

where(·)+ is the Moore-Penrose generalized inverse.

– This is used sinceZ′
KZK may be singular, as would be the case forK(n)

large enough when some dummy variables are included.

• . The prediction,z′θ̂K , of the unknown functionf (x) is asymptotically normally

distributed: √
n
(
z′θ̂K − f (x)

) d→ N(0,AV),

where

AV = lim
n→∞

E

[
z′
(

Z′
KZK

n

)+

zσ̂2

]
.

Formally, this is exactly the same as if we were dealing with aparametric linear

model. I emphasize, though, that this is only valid ifK grows very slowly as

n grows. If we can’t stick to acceptable rates, we should probably use some

other method of approximating the small sample distribution. Bootstrapping is a

possibility. We’ll discuss this in the section on simulation.

18.4. Kernel regression estimators

Readings: Bierens, 1987, “Kernel estimators of regression functions,” in Advances in

Econometrics, Fifth World Congress,V. 1, Truman Bewley, ed., Cambridge.

An alternative method to the semi-nonparametric method is afully nonparametric

method of estimation. Kernel regression estimation is an example (others are splines, near-

est neighbor, etc.). We’ll consider the Nadaraya-Watson kernel regression estimator in a

simple case.



18.4. KERNEL REGRESSION ESTIMATORS 240

• Suppose we have an iid sample from the joint densityf (x,y), wherex is k -

dimensional. The model is

yt = g(xt)+ εt ,

where

E(εt |xt) = 0.

• The conditional expectation ofy givenx is g(x). By definition of the conditional

expectation, we have

g(x) =
Z

y
f (x,y)
h(x)

dy

=
1

h(x)

Z

y f(x,y)dy,

whereh(x) is the marginal density ofx :

h(x) =

Z

f (x,y)dy.

• This suggests that we could estimateg(x) by estimatingh(x) and
R

y f(x,y)dy.

18.4.1. Estimation of the denominator.A kernel estimator forh(x) has the form

ĥ(x) =
1
n

n

∑
t=1

K [(x−xt)/γn]

γk
n

,

wheren is the sample size andk is the dimension ofx.

• The functionK(·) (the kernel) is absolutely integrable:
Z

|K(x)|dx< ∞,

andK(·) integrates to 1 :
Z

K(x)dx= 1.

In this respect,K(·) is like a density function, but we do not necessarily restrict

K(·) to be nonnegative.

• Thewindow widthparameter,γn is a sequence of positive numbers that satisfies

lim
n→∞

γn = 0

lim
n→∞

nγk
n = ∞

So, the window width must tend to zero, but not too quickly.

• To show pointwise consistency ofĥ(x) for h(x), first consider the expectation

of the estimator (since the estimator is an average of iid terms we only need to

consider the expectation of a representative term):

E
[
ĥ(x)

]
=

Z

γ−k
n K [(x−z)/γn]h(z)dz.
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Change variables asz∗ = (x−z)/γn, soz= x− γnz∗ and| dz
dz∗′ | = γk

n, we obtain

E
[
ĥ(x)

]
=

Z

γ−k
n K (z∗)h(x− γnz

∗)γk
ndz∗

=

Z

K (z∗)h(x− γnz
∗)dz∗.

Now, asymptotically,

lim
n→∞

E
[
ĥ(x)

]
= lim

n→∞

Z

K (z∗)h(x− γnz
∗)dz∗

=

Z

lim
n→∞

K (z∗)h(x− γnz
∗)dz∗

=
Z

K (z∗)h(x)dz∗

= h(x)
Z

K (z∗)dz∗

= h(x),

sinceγn → 0 and
R

K (z∗)dz∗ = 1 by assumption. (Note: that we can pass the

limit through the integral is a result of the dominated convergence theorem.. For

this to hold we need thath(·) be dominated by an absolutely integrable function.

• Next, considering the variance ofĥ(x), we have, due to the iid assumption

nγk
nV
[
ĥ(x)

]
= nγk

n
1
n2

n

∑
t=1

V

{
K [(x−xt)/γn]

γk
n

}

= γ−k
n

1
n

n

∑
t=1

V {K [(x−xt)/γn]}

• By the representative term argument, this is

nγk
nV
[
ĥ(x)

]
= γ−k

n V {K [(x−z)/γn]}
• Also, sinceV(x) = E(x2)−E(x)2 we have

nγk
nV
[
ĥ(x)

]
= γ−k

n E
{

(K [(x−z)/γn])
2
}
− γ−k

n {E (K [(x−z)/γn])}2

=

Z

γ−k
n K [(x−z)/γn]

2h(z)dz− γk
n

{
Z

γ−k
n K [(x−z)/γn]h(z)dz

}2

=

Z

γ−k
n K [(x−z)/γn]

2h(z)dz− γk
nE
[
ĥ(x)

]2

The second term converges to zero:

γk
nE
[
ĥ(x)

]2
→ 0,

by the previous result regarding the expectation and the fact thatγn → 0. There-

fore,

lim
n→∞

nγk
nV
[
ĥ(x)

]
= lim

n→∞

Z

γ−k
n K [(x−z)/γn]

2h(z)dz.

Using exactly the same change of variables as before, this can be shown to be

lim
n→∞

nγk
nV
[
ĥ(x)

]
= h(x)

Z

[K(z∗)]2dz∗.
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Since both
R

[K(z∗)]2dz∗ andh(x) are bounded, this is bounded, and sincenγk
n →

∞ by assumption, we have that

V
[
ĥ(x)

]
→ 0.

• Since the bias and the variance both go to zero, we have pointwise consistency

(convergence in quadratic mean implies convergence in probability).

18.4.2. Estimation of the numerator. To estimate
R

y f(x,y)dy, we need an estima-

tor of f (x,y). The estimator has the same form as the estimator forh(x), only with one

dimension more:

f̂ (x,y) =
1
n

n

∑
t=1

K∗ [(y−yt)/γn,(x−xt)/γn]

γk+1
n

The kernelK∗ (·) is required to have mean zero:
Z

yK∗ (y,x)dy= 0

and to marginalize to the previous kernel forh(x) :
Z

K∗ (y,x)dy= K(x).

With this kernel, we have
Z

yf̂ (y,x)dy=
1
n

n

∑
t=1

yt
K [(x−xt)/γn]

γk
n

by marginalization of the kernel, so we obtain

ĝ(x) =
1

ĥ(x)

Z

yf̂ (y,x)dy

=

1
n ∑n

t=1 yt
K[(x−xt)/γn]

γk
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
∑n

t=1 ytK [(x−xt)/γn]

∑n
t=1K [(x−xt)/γn]

.

This is the Nadaraya-Watson kernel regression estimator.

18.4.3. Discussion.

• The kernel regression estimator forg(xt) is a weighted average of they j , j =

1,2, ...,n, where higher weights are associated with points that are closer toxt .

The weights sum to 1.

• The window width parameterγn imposes smoothness. The estimator is increas-

ingly flat asγn → ∞, since in this case each weight tends to 1/n.

• A large window width reduces the variance (strong imposition of flatness), but

increases the bias.

• A small window width reduces the bias, but makes very little use of informa-

tion except points that are in a small neighborhood ofxt . Since relatively little

information is used, the variance is large when the window width is small.

• The standard normal density is a popular choice forK(.) andK∗(y,x), though

there are possibly better alternatives.
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18.4.4. Choice of the window width: Cross-validation.The selection of an appro-

priate window width is important. One popular method is cross validation. This consists

of splitting the sample into two parts (e.g., 50%-50%). The first part is the “in sample”

data, which is used for estimation, and the second part is the“out of sample” data, used for

evaluation of the fit though RMSE or some other criterion. Thesteps are:

(1) Split the data. The out of sample data isyout andxout.

(2) Choose a window widthγ.
(3) With the in sample data, fit ˆyout

t corresponding to eachxout
t . This fitted value is a

function of the in sample data, as well as the evaluation point xout
t , but it does not

involveyout
t .

(4) Repeat for all out of sample points.

(5) Calculate RMSE(γ)
(6) Go to step 2, or to the next step if enough window widths have been tried.

(7) Select theγ that minimizes RMSE(γ) (Verify that a minimum has been found, for

example by plotting RMSE as a function ofγ).
(8) Re-estimate using the bestγ and all of the data.

This same principle can be used to chooseA andJ in a Fourier form model.

18.5. Kernel density estimation

The previous discussion suggests that a kernel density estimator may easily be con-

structed. We have already seen how joint densities may be estimated. If were interested

in a conditional density, for example ofy conditional onx, then the kernel estimate of the

conditional density is simply

f̂y|x =
f̂ (x,y)

ĥ(x)

=

1
n ∑n

t=1
K∗[(y−yt)/γn,(x−xt )/γn]

γk+1
n

1
n ∑n

t=1
K[(x−xt )/γn]

γk
n

=
1
γn

∑n
t=1 K∗ [(y−yt)/γn,(x−xt)/γn]

∑n
t=1 K [(x−xt)/γn]

where we obtain the expressions for the joint and marginal densities from the section on

kernel regression.

18.6. Semi-nonparametric maximum likelihood

Readings:Gallant and Nychka,Econometrica, 1987. For a Fortran program to do this

and a useful discussion in the user’s guide, see

this link . See also Cameron and Johansson,Journal of Applied Econometrics, V. 12,

1997.

MLE is the estimation method of choice when we are confident about specifying the

density. Is is possible to obtain the benefits of MLE when we’re not so confident about the

specification? In part, yes.

Suppose we’re interested in the density ofy conditional onx (both may be vectors).

Suppose that the densityf (y|x,φ) is a reasonable starting approximation to the true density.

http://www.econ.duke.edu/~get/snp.html
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This density can be reshaped by multiplying it by a squared polynomial. The new density

is

gp(y|x,φ,γ) =
h2

p(y|γ) f (y|x,φ)

ηp(x,φ,γ)
where

hp(y|γ) =
p

∑
k=0

γky
k

andηp(x,φ,γ) is a normalizing factor to make the density integrate (sum) to one. Because

h2
p(y|γ)/ηp(x,φ,γ) is a homogenous function ofθ it is necessary to impose a normalization:

γ0 is set to 1. The normalization factorηp(φ,γ) is calculated (following Cameron and

Johansson) using

E(Yr) =
∞

∑
y=0

yr fY(y|φ,γ)

=
∞

∑
y=0

yr [hp (y|γ)]2
ηp(φ,γ)

fY(y|φ)

=
∞

∑
y=0

p

∑
k=0

p

∑
l=0

yr fY(y|φ)γkγl y
kyl/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγl

{
∞

∑
y=0

yr+k+l fY(y|φ)

}
/ηp(φ,γ)

=
p

∑
k=0

p

∑
l=0

γkγl mk+l+r/ηp(φ,γ).

By settingr = 0 we get that the normalizing factor is

18.6.1

(18.6.1) ηp(φ,γ) =
p

∑
k=0

p

∑
l=0

γkγl mk+l

Recall thatγ0 is set to 1 to achieve identification. Themr in equation18.6.1are the raw mo-

ments of the baseline density. Gallant and Nychka (1987) give conditions under which such

a density may be treated as correctly specified, asymptotically. Basically, the order of the

polynomial must increase as the sample size increases. However, there are technicalities.

Similarly to Cameron and Johannson (1997), we may develop a negative binomial

polynomial (NBP) density for count data. The negative binomial baseline density may be

written (see equation as

fY(y|φ) =
Γ(y+ ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+ λ

)ψ( λ
ψ+ λ

)y

whereφ = {λ,ψ}, λ > 0 andψ > 0. The usual means of incorporating conditioning vari-

ablesx is the parameterizationλ = ex′β. Whenψ = λ/α we have the negative binomial-I

model (NB-I). Whenψ = 1/α we have the negative binomial-II (NP-II) model. For the

NB-I density,V(Y) = λ + αλ. In the case of the NB-II model, we haveV(Y) = λ + αλ2.

For both forms,E(Y) = λ.

The reshaped density, with normalization to sum to one, is

(18.6.2) fY(y|φ,γ) =
[hp (y|γ)]2
ηp(φ,γ)

Γ(y+ ψ)

Γ(y+1)Γ(ψ)

(
ψ

ψ+ λ

)ψ( λ
ψ+ λ

)y

.
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FIGURE 18.6.1. Negative binomial raw moments

To get the normalization factor, we need the moment generating function:

(18.6.3) MY(t) = ψψ (λ−etλ + ψ
)−ψ

.

To illustrate, Figure18.6.1shows calculation of the first four raw moments of the NB den-

sity, calculated usingMuPAD, which is a Computer Algebra System that (use to be?) free

for personal use. These are the moments you would need to use asecond order polynomial

(p = 2). MuPAD will output these results in the form of C code, which is relatively easy to

edit to write the likelihood function for the model. This hasbeen done inNegBinSNP.cc,

which is a C++ version of this model that can be compiled to usewith octave using the

mkoctfile command. Note the impressive length of the expressions whenthe degree of

the expansion is 4 or 5! This is an example of a model that wouldbe difficult to formulate

without the help of a program likeMuPAD.

It is possible that there is conditional heterogeneity suchthat the appropriate reshaping

should be more local. This can be accomodated by allowing theγk parameters to depend

upon the conditioning variables, for example using polynomials.

Gallant and Nychka,Econometrica, 1987 prove that this sort of density can approxi-

mate a wide variety of densities arbitrarily well as the degree of the polynomial increases

with the sample size. This approach is not without its drawbacks: the sample objective

function can have anextremelylarge number of local maxima that can lead to numeric

difficulties. If someone could figure out how to do in a way suchthat the sample objec-

tive function was nice and smooth, they would probably get the paper published in a good

journal. Any ideas?

http://www.mupad.org
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/NegBinSNP.cc
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Here’s a plot of true and the limiting SNP approximations (with the order of the poly-

nomial fixed) to four different count data densities, which variously exhibit over and un-

derdispersion, as well as excess zeros. The baseline model is a negative binomial density.

0 5 10 15 20

.1

.2

.3

.4

.5

Case 1

0 5 10 15 20 25

.05

.1

Case 2

1 2 3 4 5 6 7

.05

.1

.15

.2

.25

Case 3

2.5 5 7.5 10 12.5 15

.05

.1

.15

.2

Case 4

18.7. Examples

We’ll use the MEPS OBDV data to illustrate kernel regressionand semi-nonparametric

maximum likelihood.

18.7.1. Kernel regression estimation.Let’s try a kernel regression fit for the OBDV

data. The programOBDVkernel.mloads the MEPS OBDV data, scans over a range of

window widths and calculates leave-one-out CV scores, and plots the fitted OBDV usage

versus AGE, using the best window width. The plot is in Figure18.7.1. Note that us-

age increases with age, just as we’ve seen with the parametric models. Once could use

bootstrapping to generate a confidence interval to the fit.

18.7.2. Seminonparametric ML estimation and the MEPS data.Now let’s esti-

mate a seminonparametric density for the OBDV data. We’ll reshape a negative binomial

density, as discussed above. The programEstimateNBSNP.mloads the MEPS OBDV data

and estimates the model, using a NB-I baseline density and a 2nd order polynomial expan-

sion. The output is:

http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/OBDVkernel.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Nonparametric/EstimateNBSNP.m
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FIGURE 18.7.1. Kernel fitted OBDV usage versus AGE
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=================================================== ===
BFGSMIN final results

Used numeric gradient

--------------------------------------------------- ---
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
--------------------------------------------------- ---
Objective function value 2.17061
Stepsize 0.0065
24 iterations
--------------------------------------------------- ---

param gradient change
1.3826 0.0000 -0.0000
0.2317 -0.0000 0.0000
0.1839 0.0000 0.0000
0.2214 0.0000 -0.0000
0.1898 0.0000 -0.0000
0.0722 0.0000 -0.0000

-0.0002 0.0000 -0.0000
1.7853 -0.0000 -0.0000

-0.4358 0.0000 -0.0000
0.1129 0.0000 0.0000
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*************************************************** ***
NegBin SNP model, MEPS full data set

MLE Estimation Results
BFGS convergence: Normal convergence

Average Log-L: -2.170614
Observations: 4564

estimate st. err t-stat p-value
constant -0.147 0.126 -1.173 0.241
pub. ins. 0.695 0.050 13.936 0.000
priv. ins. 0.409 0.046 8.833 0.000
sex 0.443 0.034 13.148 0.000
age 0.016 0.001 11.880 0.000
edu 0.025 0.006 3.903 0.000
inc -0.000 0.000 -0.011 0.991
gam1 1.785 0.141 12.629 0.000
gam2 -0.436 0.029 -14.786 0.000
lnalpha 0.113 0.027 4.166 0.000

Information Criteria
CAIC : 19907.6244 Avg. CAIC: 4.3619

BIC : 19897.6244 Avg. BIC: 4.3597
AIC : 19833.3649 Avg. AIC: 4.3456

*************************************************** ***

Note that the CAIC and BIC are lower for this model than for themodels presented in

Table3. This model fits well, still being parsimonious. You can playaround trying other

use measures, using a NP-II baseline density, and using other orders of expansions. Density

functions formed in this way may haveMANY local maxima, so you need to be careful

before accepting the results of a casual run. To guard against having converged to a local

maximum, one can try using multiple starting values, or one could try simulated annealing

as an optimization method. If you uncomment the relevant lines in the program, you can

use SA to do the minimization. This will take alot of time, compared to the default BFGS

minimization. The chapter on parallel computations might be interesting to read before

trying this.



CHAPTER 19

Simulation-based estimation

Readings: In addition to the book mentioned previously, articles include Gallant and

Tauchen (1996), “Which Moments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996,

pages 657-681;ă Gourieroux, Monfort and Renault (1993), “Indirect Inference,” J. Apl.

Econometrics;Pakes and Pollard (1989)Econometrica; McFadden (1989)Econometrica.

19.1. Motivation

Simulation methods are of interest when the DGP is fully characterized by a parameter

vector, but the likelihood function is not calculable. If itwere available, we would simply

estimate by MLE, which is asymptotically fully efficient.

19.1.1. Example: Multinomial and/or dynamic discrete response models.Let y∗i
be a latent random vector of dimensionm. Suppose that

y∗i = Xiβ + εi

whereXi is m×K. Suppose that

(19.1.1) εi ∼ N(0,Ω)

Henceforth drop thei subscript when it is not needed for clarity.

• y∗ is not observed. Rather, we observe a many-to-one mapping

y = τ(y∗)

This mapping is such that each element ofy is either zero or one (in some cases

only one element will be one).

• Define

Ai = A(yi) = {y∗|yi = τ(y∗)}
Suppose random sampling of(yi ,Xi). In this case the elements ofyi may not be

independent of one another (and clearly are not ifΩ is not diagonal). However,

yi is independent ofy j , i 6= j.

• Let θ = (β′,(vec∗Ω)′)′ be the vector of parameters of the model. The contribution

of the ith observation to the likelihood function is

pi(θ) =

Z

Ai

n(y∗i −Xiβ,Ω)dy∗i

where

n(ε,Ω) = (2π)−M/2 |Ω|−1/2exp

[−ε′Ω−1ε
2

]

249
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is the multivariate normal density of anM -dimensional random vector. The log-

likelihood function is

lnL (θ) =
1
n

n

∑
i=1

ln pi(θ)

and the MLEθ̂ solves the score equations

1
n

n

∑
i=1

gi(θ̂) =
1
n

n

∑
i=1

Dθ pi(θ̂)

pi(θ̂)
≡ 0.

• The problem is that evaluation ofL i(θ) and its derivative w.r.t.θ by standard

methods of numeric integration such as quadrature is computationally infeasi-

ble whenm (the dimension ofy) is higher than 3 or 4 (as long as there are no

restrictions onΩ).

• The mappingτ(y∗) has not been made specific so far. This setup is quite general:

for different choices ofτ(y∗) it nests the case of dynamic binary discrete choice

models as well as the case of multinomial discrete choice (the choice of one out

of a finite set of alternatives).

– Multinomial discrete choice is illustrated by a (very simple) job search model.

We have cross sectional data on individuals’ matching to a set of m jobs that

are available (one of which is unemployment). The utility ofalternativej is

u j = Xjβ + ε j

Utilities of jobs, stacked in the vectorui are not observed. Rather, we ob-

serve the vector formed of elements

y j = 1[u j > uk,∀k∈ m,k 6= j]

Only one of these elements is different than zero.

– Dynamic discrete choice is illustrated by repeated choicesover time between

two alternatives. Let alternativej have utility

u jt = Wjt β− ε jt ,

j ∈ {1,2}
t ∈ {1,2, ...,m}

Then

y∗ = u2−u1

= (W2−W1)β + ε2− ε1

≡ Xβ + ε

Now the mapping is (element-by-element)

y = 1[y∗ > 0] ,

that isyit = 1 if individual i chooses the second alternative in periodt, zero

otherwise.
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19.1.2. Example: Marginalization of latent variables. Economic data often presents

substantial heterogeneity that may be difficult to model. A possibility is to introduce latent

random variables. This can cause the problem that there may be no known closed form

for the distribution of observable variables after marginalizing out the unobservable latent

variables. For example, count data (that takes values 0,1,2,3, ...) is often modeled using

the Poisson distribution

Pr(y = i) =
exp(−λ)λi

i!
The mean and variance of the Poisson distribution are both equal toλ :

E (y) = V(y) = λ.

Often, one parameterizes the conditional mean as

λi = exp(Xiβ).

This ensures that the mean is positive (as it must be). Estimation by ML is straightforward.

Often, count data exhibits “overdispersion” which simply means that

V(y) > E (y).

If this is the case, a solution is to use the negative binomialdistribution rather than the

Poisson. An alternative is to introduce a latent variable that reflects heterogeneity into the

specification:

λi = exp(Xiβ + ηi)

whereηi has some specified density with supportS(this density may depend on additional

parameters). Letdµ(ηi) be the density ofηi . In some cases, the marginal density ofy

Pr(y = yi) =
Z

S

exp[−exp(Xiβ + ηi)] [exp(Xiβ + ηi)]
yi

yi !
dµ(ηi)

will have a closed-form solution (one can derive the negative binomial distribution in the

way if η has an exponential distribution), but often this will not bepossible. In this case,

simulation is a means of calculating Pr(y = i), which is then used to do ML estimation.

This would be an example of the Simulated Maximum Likelihood(SML) estimation.

• In this case, since there is only one latent variable, quadrature is probably a bet-

ter choice. However, a more flexible model with heterogeneity would allow all

parameters (not just the constant) to vary. For example

Pr(y = yi) =

Z

S

exp[−exp(Xiβi)] [exp(Xiβi)]
yi

yi !
dµ(βi)

entails aK = dimβi-dimensional integral, which will not be evaluable by quad-

rature whenK gets large.

19.1.3. Estimation of models specified in terms of stochastic differential equa-

tions. It is often convenient to formulate models in terms of continuous time using dif-

ferential equations. A realistic model should account for exogenous shocks to the system,



19.1. MOTIVATION 252

which can be done by assuming a random component. This leads to a model that is ex-

pressed as a system of stochastic differential equations. Consider the process

dyt = g(θ,yt)dt +h(θ,yt)dWt

which is assumed to be stationary.{Wt} is a standard Brownian motion (Weiner process),

such that

W(T) =

Z T

0
dWt ∼ N(0,T)

Brownian motion is a continuous-time stochastic process such that

• W(0) = 0

• [W(s)−W(t)] ∼ N(0,s− t)

• [W(s)−W(t)] and [W( j)−W(k)] are independent fors > t > j > k. That is,

non-overlapping segments are independent.

One can think of Brownian motion the accumulation of independent normally distributed

shocks with infinitesimal variance.

• The functiong(θ,yt) is the deterministic part.

• h(θ,yt) determines the variance of the shocks.

To estimate a model of this sort, we typically have data that are assumed to be observations

of yt in discrete pointsy1, y2, ...yT . That is, thoughyt is a continuous process it is observed

in discrete time.

To perform inference onθ, direct ML or GMM estimation is not usually feasible,

because one cannot, in general, deduce the transition density f (yt |yt−1,θ). This density is

necessary to evaluate the likelihood function or to evaluate moment conditions (which are

based upon expectations with respect to this density).

• A typical solution is to “discretize” the model, by which we mean to find a dis-

crete time approximation to the model. The discretized version of the model is

yt −yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)

The discretization induces a new parameter,φ (that is, theφ0 which defines

the best approximation of the discretization to the actual (unknown) discrete

time version of the model is not equal toθ0 which is the true parameter value).

This is an approximation, and as such “ML” estimation ofφ (which is actually

quasi-maximum likelihood, QML) based upon this equation isin general biased

and inconsistent for the original parameter,θ. Nevertheless, the approximation

shouldn’t be too bad, which will be useful, as we will see.

• The important point about these three examples is that computational difficulties

prevent direct application of ML, GMM, etc. Nevertheless the model is fully

specified in probabilistic terms up to a parameter vector. This means that the

model is simulable, conditional on the parameter vector.
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19.2. Simulated maximum likelihood (SML)

For simplicity, consider cross-sectional data. An ML estimator solves

θ̂ML = argmaxsn(θ) =
1
n

n

∑
t=1

ln p(yt |Xt ,θ)

wherep(yt |Xt ,θ) is the density function of thetth observation. Whenp(yt |Xt ,θ) does not

have a known closed form,θ̂ML is an infeasible estimator. However, it may be possible to

define a random function such that

E ν f (ν,yt ,Xt ,θ) = p(yt |Xt ,θ)

where the density ofν is known. If this is the case, the simulator

p̃(yt ,Xt ,θ) =
1
H

H

∑
s=1

f (νts,yt ,Xt ,θ)

is unbiased forp(yt |Xt ,θ).

• The SML simply substitutes ˜p(yt ,Xt ,θ) in place ofp(yt |Xt ,θ) in the log-likelihood

function, that is

θ̂SML = argmaxsn(θ) =
1
n

n

∑
i=1

ln p̃(yt ,Xt ,θ)

19.2.1. Example: multinomial probit. Recall that the utility of alternativej is

u j = Xjβ + ε j

and the vectory is formed of elements

y j = 1[u j > uk,k∈ m,k 6= j]

The problem is that Pr(y j = 1|θ) can’t be calculated whenm is larger than 4 or 5. However,

it is easy to simulate this probability.

• Draw ε̃i from the distributionN(0,Ω)

• Calculate ˜ui = Xiβ + ε̃i (whereXi is the matrix formed by stacking theXi j )

• Defineỹi j = 1[ui j > uik,∀k∈ m,k 6= j]

• Repeat thisH times and define

π̃i j =
∑H

h=1 ỹi jh

H

• Defineπ̃i as them-vector formed of thẽπi j . Each element of̃πi is between 0 and

1, and the elements sum to one.

• Now p̃(yi ,Xi ,θ) = y′i π̃i

• The SML multinomial probit log-likelihood function is

lnL (β,Ω) =
1
n

n

∑
i=1

y′i ln p̃(yi ,Xi ,θ)

This is to be maximized w.r.t.β andΩ.

Notes:
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• TheH draws ofε̃i are drawonly onceand are used repeatedly during the iterations

used to findβ̂ andΩ̂. The draws are different for eachi. If the ε̃i are re-drawn at

every iteration the estimator will not converge.

• The log-likelihood function with this simulator is a discontinuous function ofβ
andΩ. This does not cause problems from a theoretical point of viewsince it

can be shown that lnL (β,Ω) is stochastically equicontinuous. However, it does

cause problems if one attempts to use a gradient-based optimization method such

as Newton-Raphson.

• It may be the case, particularly if few simulations,H, are used, that some ele-

ments of̃πi are zero. If the corresponding element ofyi is equal to 1, there will

be a log(0) problem.

• Solutions to discontinuity:

– 1) use an estimation method that doesn’t require a continuous and differen-

tiable objective function, for example, simulated annealing. This is compu-

tationally costly.

– 2) Smooth the simulated probabilities so that they are continuous functions

of the parameters. For example, apply a kernel transformation such as

ỹi j = Φ
(

A×
[
ui j −

m
max
k=1

uik

])
+ .5×1

[
ui j =

m
max
k=1

uik

]

whereA is a large positive number. This approximates a step function such

thatỹi j is very close to zero ifui j is not the maximum, andui j = 1 if it is the

maximum. This makes ˜yi j a continuous function ofβ andΩ, so that ˜pi j and

therefore lnL (β,Ω) will be continuous and differentiable. Consistency re-

quires thatA(n)
p→ ∞, so that the approximation to a step function becomes

arbitrarily close as the sample size increases. There are alternative meth-

ods (e.g., Gibbs sampling) that may work better, but this is too technical to

discuss here.

• To solve to log(0) problem, one possibility is to search the web for the slog func-

tion. Also, increaseH if this is a serious problem.

19.2.2. Properties.The properties of the SML estimator depend on howH is set. The

following is taken from Lee (1995) “Asymptotic Bias in Simulated Maximum Likelihood

Estimation of Discrete Choice Models,”Econometric Theory,11,pp. 437-83.

THEOREM 32. [Lee] 1) if limn→∞ n1/2/H = 0, then

√
n
(
θ̂SML−θ0) d→ N(0, I −1(θ0))

2) if limn→∞ n1/2/H = λ, λ a finite constant, then

√
n
(
θ̂SML−θ0) d→ N(B, I −1(θ0))

whereB is a finite vector of constants.

• This means that the SML estimator is asymptotically biased if H doesn’t grow

faster thann1/2.
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• The varcov is the typical inverse of the information matrix,so that as long asH

grows fast enough the estimator is consistent and fully asymptotically efficient.

19.3. Method of simulated moments (MSM)

Suppose we have a DGP(y|x,θ) which is simulable givenθ, but is such that the density

of y is not calculable.

Once could, in principle, base a GMM estimator upon the moment conditions

mt(θ) = [K(yt ,xt)−k(xt ,θ)]zt

where

k(xt ,θ) =
Z

K(yt ,xt)p(y|xt ,θ)dy,

zt is a vector of instruments in the information set andp(y|xt ,θ) is the density ofy condi-

tional onxt . The problem is that this density is not available.

• Howeverk(xt ,θ) is readily simulated using

k̃(xt ,θ) =
1
H

H

∑
h=1

K(ỹh
t ,xt)

• By the law of large numbers,̃k(xt ,θ)
a.s.→ k(xt ,θ) , as H → ∞, which provides

a clear intuitive basis for the estimator, though in fact we obtain consistency

even forH finite, since a law of large numbers is also operating across the n

observations of real data, so errors introduced by simulation cancel themselves

out.

• This allows us to form the moment conditions

(19.3.1) m̃t(θ) =
[
K(yt ,xt)− k̃(xt ,θ)

]
zt

wherezt is drawn from the information set. As before, form

m̃(θ) =
1
n

n

∑
i=1

m̃t(θ)

=
1
n

n

∑
i=1

[
K(yt ,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt(19.3.2)

with which we form the GMM criterion and estimate as usual. Note that the

unbiased simulatork(ỹh
t ,xt) appears linearly within the sums.

19.3.1. Properties.Suppose that the optimal weighting matrix is used. McFadden

(ref. above) and Pakes and Pollard (refs. above) show that the asymptotic distribution of

the MSM estimator is very similar to that of the infeasible GMM estimator. In particular,

assuming that the optimal weighting matrix is used, and forH finite,

(19.3.3)
√

n
(
θ̂MSM−θ0) d→ N

[
0,

(
1+

1
H

)(
D∞Ω−1D′

∞
)−1
]

where
(
D∞Ω−1D′

∞
)−1

is the asymptotic variance of the infeasible GMM estimator.

• That is, the asymptotic variance is inflated by a factor 1+ 1/H. For this reason

the MSM estimator is not fully asymptotically efficient relative to the infeasible
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GMM estimator, forH finite, but the efficiency loss is small and controllable, by

settingH reasonably large.

• The estimator is asymptotically unbiased even forH = 1. This is an advantage

relative to SML.

• If one doesn’t use the optimal weighting matrix, the asymptotic varcov is just the

ordinary GMM varcov, inflated by 1+1/H.

• The above presentation is in terms of a specific moment condition based upon the

conditional mean. Simulated GMM can be applied to moment conditions of any

form.

19.3.2. Comments.Why is SML inconsistent ifH is finite, while MSM is? The

reason is that SML is based upon an average oflogarithms of an unbiased simulator (the

densities of the observations). To use the multinomial probit model as an example, the

log-likelihood function is

lnL (β,Ω) =
1
n

n

∑
i=1

y′i ln pi(β,Ω)

The SML version is

lnL (β,Ω) =
1
n

n

∑
i=1

y′i ln p̃i(β,Ω)

The problem is that

E ln(p̃i(β,Ω)) 6= ln(E p̃i(β,Ω))

in spite of the fact that

E p̃i(β,Ω) = pi(β,Ω)

due to the fact that ln(·) is a nonlinear transformation. The only way for the two to be equal

(in the limit) is if H tends to infinite so that ˜p(·) tends top(·).
The reason that MSM does not suffer from this problem is that in this case the unbiased

simulator appearslinearly within every sum of terms, and it appears within a sum overn

(see equation [19.3.2]). Therefore the SLLN applies to cancel out simulation errors, from

which we get consistency. That is, using simple notation forthe random sampling case, the

moment conditions

m̃(θ) =
1
n

n

∑
i=1

[
K(yt ,xt)−

1
H

H

∑
h=1

k(ỹh
t ,xt)

]
zt(19.3.4)

=
1
n

n

∑
i=1

[
k(xt ,θ0)+ εt −

1
H

H

∑
h=1

[k(xt ,θ)+ ε̃ht]

]
zt(19.3.5)

converge almost surely to

m̃∞(θ) =

Z [
k(x,θ0)−k(x,θ)

]
z(x)dµ(x).

(note:zt is assume to be made up of functions ofxt). The objective function converges to

s∞(θ) = m̃∞(θ)′Ω−1
∞ m̃∞(θ)

which obviously has a minimum atθ0, henceforth consistency.
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• If you look at equation19.3.5a bit, you will see why the variance inflation factor

is (1+ 1
H ).

19.4. Efficient method of moments (EMM)

The choice of which moments upon which to base a GMM estimatorcan have very

pronounced effects upon the efficiency of the estimator.

• A poor choice of moment conditions may lead to very inefficient estimators, and

can even cause identification problems (as we’ve seen with the GMM problem

set).

• The drawback of the above approach MSM is that the moment conditions used

in estimation are selected arbitrarily. The asymptotic efficiency of the estimator

may be low.

• The asymptotically optimal choice of moments would be the score vector of the

likelihood function,

mt(θ) = Dθ ln pt(θ | It)

As before, this choice is unavailable.

The efficient method of moments (EMM) (see Gallant and Tauchen (1996), “Which Mo-

ments to Match?”, ECONOMETRIC THEORY, Vol. 12, 1996, pages 657-681) seeks to

provide moment conditions that closely mimic the score vector. If the approximation is

very good, the resulting estimator will be very nearly fullyefficient.

The DGP is characterized by random sampling from the density

p(yt |xt ,θ0) ≡ pt(θ0)

We can define an auxiliary model, called the “score generator”, which simply provides

a (misspecified) parametric density

f (y|xt ,λ) ≡ ft (λ)

• This density is known up to a parameterλ. We assume that this density function

is calculable. Therefore quasi-ML estimation is possible. Specifically,

λ̂ = argmax
Λ

sn(λ) =
1
n

n

∑
t=1

ln ft (λ).

• After determininĝλ we can calculate the score functionsDλ ln f (yt |xt , λ̂).

• The important point is that even if the density is misspecified, there is a pseudo-

trueλ0 for which the true expectation, taken with respect to the true but unknown

density ofy, p(y|xt ,θ0), and then marginalized overx is zero:

∃λ0 : EXEY|X
[
Dλ ln f (y|x,λ0)

]
=

Z

X

Z

Y|X
Dλ ln f (y|x,λ0)p(y|x,θ0)dydµ(x) = 0

• We have seen in the section on QML thatλ̂ p→ λ0; this suggests using the moment

conditions

(19.4.1) mn(θ, λ̂) =
1
n

n

∑
t=1

Z

Dλ ln ft(λ̂)pt(θ)dy
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• These moment conditions are not calculable, sincept(θ) is not available, but they

are simulable using

m̃n(θ, λ̂) =
1
n

n

∑
t=1

1
H

H

∑
h=1

Dλ ln f (ỹh
t |xt , λ̂)

whereỹh
t is a draw fromDGP(θ), holdingxt fixed. By the LLN and the fact that

λ̂ converges toλ0,

m̃∞(θ0,λ0) = 0.

This is not the case for other values ofθ, assuming thatλ0 is identified.

• The advantage of this procedure is that iff (yt |xt ,λ) closely approximatesp(y|xt ,θ),

then m̃n(θ, λ̂) will closely approximate the optimal moment conditions which

characterize maximum likelihood estimation, which is fully efficient.

• If one has prior information that a certain density approximates the data well, it

would be a good choice forf (·).
• If one has no density in mind, there exist good ways of approximating unknown

distributions parametrically: Philips’ ERA’s (Econometrica, 1983) and Gallant

and Nychka’s (Econometrica, 1987)SNP density estimator which we saw before.

Since the SNP density is consistent, the efficiency of the indirect estimator is the

same as the infeasible ML estimator.

19.4.1. Optimal weighting matrix. I will present the theory forH finite, and possibly

small. This is done because it is sometimes impractical to estimate with H very large.

Gallant and Tauchen give the theory for the case ofH so large that it may be treated as

infinite (the difference being irrelevant given the numerical precision of a computer). The

theory for the case ofH infinite follows directly from the results presented here.

The moment conditioñm(θ, λ̂) depends on the pseudo-ML estimateλ̂. We can apply

Theorem22 to conclude that

(19.4.2)
√

n
(

λ̂−λ0
)

d→ N
[
0,J (λ0)−1I (λ0)J (λ0)−1]

If the densityf (yt |xt , λ̂) were in fact the true densityp(y|xt ,θ), thenλ̂ would be the maxi-

mum likelihood estimator, andJ (λ0)−1I (λ0) would be an identity matrix, due to the infor-

mation matrix equality. However, in the present case we assume thatf (yt |xt , λ̂) is only an

approximation top(y|xt ,θ), so there is no cancellation.

Recall thatJ (λ0) ≡ plim
(

∂2

∂λ∂λ′ sn(λ0)
)

. Comparing the definition ofsn(λ) with the

definition of the moment condition in Equation19.4.1, we see that

J (λ0) = Dλ′m(θ0,λ0).

As in Theorem22,

I (λ0) = lim
n→∞
E

[
n

∂sn(λ)

∂λ

∣∣∣∣
λ0

∂sn(λ)

∂λ′

∣∣∣∣
λ0

]
.

In this case, this is simply the asymptotic variance covariance matrix of the moment con-

ditions,Ω. Now take a first order Taylor’s series approximation to
√

nmn(θ0, λ̂) aboutλ0

:
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√
nm̃n(θ0, λ̂) =

√
nm̃n(θ0,λ0)+

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
+op(1)

First consider
√

nm̃n(θ0,λ0). It is straightforward but somewhat tedious to show that

the asymptotic variance of this term is1H I∞(λ0).

Next consider the second term
√

nDλ′m̃(θ0,λ0)
(

λ̂−λ0
)

. Note thatDλ′m̃n(θ0,λ0)
a.s.→

J (λ0), so we have

√
nDλ′m̃(θ0,λ0)

(
λ̂−λ0

)
=
√

nJ (λ0)
(

λ̂−λ0
)

,a.s.

But noting equation19.4.2

√
nJ (λ0)

(
λ̂−λ0

)
a∼ N

[
0, I (λ0)

]

Now, combining the results for the first and second terms,

√
nm̃n(θ0, λ̂)

a∼ N

[
0,

(
1+

1
H

)
I (λ0)

]

Suppose that̂I (λ0) is a consistent estimator of the asymptotic variance-covariance matrix

of the moment conditions. This may be complicated if the score generator is a poor ap-

proximator, since the individual score contributions may not have mean zero in this case

(see the section on QML) . Even if this is the case, the individuals means can be calculated

by simulation, so it is always possible to consistently estimateI (λ0) when the model is

simulable. On the other hand, if the score generator is takento be correctly specified, the

ordinary estimator of the information matrix is consistent. Combining this with the result

on the efficient GMM weighting matrix in Theorem25, we see that defininĝθ as

θ̂ = argmin
Θ

mn(θ, λ̂)′
[(

1+
1
H

)
Î (λ0)

]−1

mn(θ, λ̂)

is the GMM estimator with the efficient choice of weighting matrix.

• If one has used the Gallant-Nychka ML estimator as the auxiliary model, the

appropriate weighting matrix is simply the information matrix of the auxiliary

model, since the scores are uncorrelated. (e.g., it really is ML estimation asymp-

totically, since the score generator can approximate the unknown density arbi-

trarily well).

19.4.2. Asymptotic distribution. Since we use the optimal weighting matrix, the as-

ymptotic distribution is as in Equation15.4.1, so we have (using the result in Equation

19.4.2):

√
n
(
θ̂−θ0) d→ N


0,

(
D∞

[(
1+

1
H

)
I (λ0)

]−1

D′
∞

)−1

 ,

where

D∞ = lim
n→∞
E
[
Dθm′

n(θ0,λ0)
]
.

This can be consistently estimated using

D̂ = Dθm′
n(θ̂, λ̂)
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19.4.3. Diagnotic testing.The fact that

√
nmn(θ0, λ̂)

a∼ N

[
0,

(
1+

1
H

)
I (λ0)

]

implies that

nmn(θ̂, λ̂)′
[(

1+
1
H

)
I (λ̂)

]−1

mn(θ̂, λ̂)
a∼ χ2(q)

whereq is dim(λ)− dim(θ), since without dim(θ) moment conditions the model is not

identified, so testing is impossible. One test of the model issimply based on this statistic: if

it exceeds theχ2(q) critical point, something may be wrong (the small sample performance

of this sort of test would be a topic worth investigating).

• Information about what is wrong can be gotten from the pseudo-t-statistics:
(

diag

[(
1+

1
H

)
I (λ̂)

]1/2
)−1√

nmn(θ̂, λ̂)

can be used to test which moments are not well modeled. Since these moments

are related to parameters of the score generator, which are usually related to cer-

tain features of the model, this information can be used to revise the model. These

aren’t actually distributed asN(0,1), since
√

nmn(θ0, λ̂) and
√

nmn(θ̂, λ̂) have

different distributions (that of
√

nmn(θ̂, λ̂) is somewhat more complicated). It

can be shown that the pseudo-t statistics are biased toward nonrejection. See

Gourierouxet. al.or Gallant and Long, 1995, for more details.

19.5. Examples

19.5.1. Estimation of stochastic differential equations.It is often convenient to for-

mulate theoretical models in terms of differential equations, and when the observation fre-

quency is high (e.g., weekly, daily, hourly or real-time) itmay be more natural to adopt this

framework for econometric models of time series.

The most common approach to estimation of stochastic differential equations is to

“discretize” the model, as above, and estimate using the discretized version. However, since

the discretization is only an approximation to the true discrete-time version of the model

(which is not calculable), the resulting estimator is in general biased and inconsistent.

An alternative is to use indirect inference: The discretized model is used as the score

generator. That is, one estimates by QML to obtain the scoresof the discretized approxi-

mation:

yt −yt−1 = g(φ,yt−1)+h(φ,yt−1)εt

εt ∼ N(0,1)

Indicate these scores bymn(θ, φ̂). Then the system of stochastic differential equations

dyt = g(θ,yt)dt +h(θ,yt)dWt
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is simulated overθ, and the scores are calculated and averaged over the simulations

m̃n(θ, φ̂) =
1
N

N

∑
i=1

min(θ, φ̂)

θ̂ is chosen to set the simulated scores to zero

m̃n(θ̂, φ̂) ≡ 0

(sinceθ andφ are of the same dimension).

This method requires simulating the stochastic differential equation. There are many

ways of doing this. Basically, they involve doing very fine discretizations:

yt+τ = yt +g(θ,yt)+h(θ,yt)ηt

ηt ∼ N(0,τ)

By settingτ very small, the sequence ofηt approximates a Brownian motion fairly well.

This is only one method of using indirect inference for estimation of differential equa-

tions. There are others (see Gallant and Long, 1995 and Gourierouxet. al.).Use of a series

approximation to the transitional density as in Gallant andLong is an interesting possi-

bility since the score generator may have a higher dimensional parameter than the model,

which allows for diagnostic testing. In the method described above the score generator’s

parameterφ is of the same dimension as isθ, so diagnostic testing is not possible.

19.5.2. EMM estimation of a discrete choice model.In this section consider EMM

estimation. There is asophisticated packageby Gallant and Tauchen for this, but here we’ll

look at some simple, but hopefully didactic code. The fileprobitdgp.mgenerates data that

follows the probit model. The fileemm_moments.mdefines EMM moment conditions,

where the DGP and score generator can be passed as arguments.Thus, it is a general

purpose moment condition for EMM estimation. This file is interesting enough to war-

rant some discussion. A listing appears in Listing 19.1. Line 3 defines the DGP, and the

arguments needed to evaluate it are defined in line 4. The score generator is defined in

line 5, and its arguments are defined in line 6. The QML estimate of the parameter of the

score generator is read in line 7. Note in line 10 how the random draws needed to simulate

data are passed with the data, and are thus fixed during estimation, to avoid ”chattering”.

The simulated data is generated in line 16, and the derivative of the score generator using

the simulated data is calculated in line 18. In line 20 we average the scores of the score

generator, which are the moment conditions that the function returns.

1 function scores = emm_moments( theta , data , momentargs )

2 k = momentargs {1};

3 dgp = momentargs {2}; # the data generating process (DGP)

4 dgpargs = momentargs {3}; # its arguments (cell array)

5 sg = momentargs {4}; # the score generator (SG)

6 sgargs = momentargs {5}; # SG arguments (cell array)

7 phi = momentargs {6}; # QML estimate of SG parameter

8 y = data (:,1);

9 x = data (:,2: k+1);

http://www.econ.duke.edu/~get/emm.html
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/Count/ProbitDGP.m
http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_moments.m
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10 rand_draws = data (:, k+2: columns ( data )); # passed with data to ensure fixed

across iterations

11 n = rows ( y);

12 scores = zeros ( n, rows ( phi )); # container for moment contributions

13 reps = columns ( rand_draws ); # how many simulations?

14 for i = 1: reps

15 e = rand_draws (:, i );

16 y = feval ( dgp , theta , x, e, dgpargs ); # simulated data

17 sgdata = [ y x ]; # simulated data for SG

18 scores = scores + numgradient ( sg , { phi , sgdata , sgargs }); # gradient of SG

19 endfor

20 scores = scores / reps ; # average over number of simulations

21 endfunction

L ISTING 19.1

The fileemm_example.mperforms EMM estimation of the probit model, using a logit

model as the score generator. The results we obtain are

Score generator results:
=================================================== ==
BFGSMIN final results

Used analytic gradient

--------------------------------------------------- ---
STRONG CONVERGENCE
Function conv 1 Param conv 1 Gradient conv 1
--------------------------------------------------- ---
Objective function value 0.281571
Stepsize 0.0279
15 iterations
--------------------------------------------------- ---

param gradient change
1.8979 0.0000 0.0000
1.6648 -0.0000 0.0000
1.9125 -0.0000 0.0000
1.8875 -0.0000 0.0000
1.7433 -0.0000 0.0000

=================================================== ===

Model results:
*************************************************** ***
EMM example

GMM Estimation Results
BFGS convergence: Normal convergence

Objective function value: 0.000000
Observations: 1000

http://pareto.uab.es/mcreel/Econometrics/MyOctaveFiles/ParallelKnoppix/gmm/emm_example.m
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Exactly identified, no spec. test

estimate st. err t-stat p-value
p1 1.069 0.022 47.618 0.000
p2 0.935 0.022 42.240 0.000
p3 1.085 0.022 49.630 0.000
p4 1.080 0.022 49.047 0.000
p5 0.978 0.023 41.643 0.000
*************************************************** ***

It might be interesting to compare the standard errors with those obtained from ML

estimation, to check efficiency of the EMM estimator. One could even do a Monte Carlo

study.
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Exercises

(1) Do SML estimation of the probit model.

(2) Do a little Monte Carlo study to compare ML, SML and EMM estimation of

the probit model. Investigate how the number of simulationsaffect the two

simulation-based estimators.



CHAPTER 20

Parallel programming for econometrics

The following borrows heavily from Creel (2005).

Parallel computing can offer an important reduction in the time to complete compu-

tations. This is well-known, but it bears emphasis since it is the main reason that parallel

computing may be attractive to users. To illustrate, the Intel Pentium IV (Willamette)

processor, running at 1.5GHz, was introduced in November of2000. The Pentium IV

(Northwood-HT) processor, running at 3.06GHz, was introduced in November of 2002. An

approximate doubling of the performance of a commodity CPU took place in two years.

Extrapolating this admittedly rough snapshot of the evolution of the performance of com-

modity processors, one would need to wait more than 6.6 yearsand then purchase a new

computer to obtain a 10-fold improvement in computational performance. The examples in

this chapter show that a 10-fold improvement in performancecan be achieved immediately,

using distributed parallel computing on available computers.

Recent (this is written in 2005) developments that may make parallel computing at-

tractive to a broader spectrum of researchers who do computations. The first is the fact

that setting up a cluster of computers for distributed parallel computing is not difficult. If

you are using theParallelKnoppixbootable CD that accompanies these notes, you are less

than 10 minutes away from creating a cluster, supposing you have a second computer at

hand and a crossover ethernet cable. See theParallelKnoppix tutorial. A second develop-

ment is the existence of extensions to some of the high-levelmatrix programming (HLMP)

languages1 that allow the incorporation of parallelism into programs written in these lan-

guages. A third is the spread of dual and quad-core CPUs, so that an ordinary desktop or

laptop computer can be made into a mini-cluster. Those coreswon’t work together on a

single problem unless they are told how to.

Following are examples of parallel implementations of several mainstream problems

in econometrics. A focus of the examples is on the possibility of hiding parallelization

from end users of programs. If programs that run in parallel have an interface that is nearly

identical to the interface of equivalent serial versions, end users will find it easy to take ad-

vantage of parallel computing’s performance. We continue to use Octave, taking advantage

of theMPI Toolbox (MPITB) for Octave, by by Fernández Baldomeroet al. (2004). There

are also parallel packages for Ox, R, and Python which may be of interest to econometri-

cians, but as of this writing, the following examples are themost accessible introduction to

parallel programming for econometricians.

1By ”high-level matrix programming language” I mean languages such as MATLAB (TM the Mathworks, Inc.),
Ox (TM OxMetrics Technologies, Ltd.), and GNU Octave (www.octave.org ), for example.
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http://pareto.uab.es/mcreel/ParallelKnoppix
http://pareto.uab.es/mcreel/ParallelKnoppix/ParallelKnoppixTutorial.html
http://atc.ugr.es/javier-bin/mpitb
www.octave.org
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20.1. Example problems

This section introduces example problems from econometrics, and shows how they

can be parallelized in a natural way.

20.1.1. Monte Carlo. A Monte Carlo study involves repeating a random experiment

many times under identical conditions. Several authors have noted that Monte Carlo stud-

ies are obvious candidates for parallelization (Doorniket al. 2002; Bruche, 2003) since

blocks of replications can be done independently on different computers. To illustrate the

parallelization of a Monte Carlo study, we use same trace test example as do Doornik,et.

al. (2002). tracetest.mis a function that calculates the trace test statistic for the lack of

cointegration of integrated time series. This function is illustrative of the format that we

adopt for Monte Carlo simulation of a function: it receives asingle argument of cell type,

and it returns a row vector that holds the results of one random simulation. The single ar-

gument in this case is a cell array that holds the length of theseries in its first position, and

the number of series in the second position. It generates a random result though a process

that is internal to the function, and it reports some output in a row vector (in this case the

result is a scalar).

mc_example1.mis an Octave script that executes a Monte Carlo study of the trace

test by repeatedly evaluating thetracetest.m function. The main thing to notice about

this script is that lines 7 and 10 call the functionmontecarlo.m. When called with 3

arguments, as in line 7,montecarlo.m executes serially on the computer it is called from.

In line 10, there is a fourth argument. When called with four arguments, the last argument

is the number of slave hosts to use. We see that running the Monte Carlo study on one or

more processors is transparent to the user - he or she must only indicate the number of slave

computers to be used.

20.1.2. ML. For a sample{(yt ,xt)}n of n observations of a set of dependent and ex-

planatory variables, the maximum likelihood estimator of the parameterθ can be defined

as

θ̂ = argmaxsn(θ)

where

sn(θ) =
1
n

n

∑
t=1

ln f (yt |xt ,θ)

Here,yt may be a vector of random variables, and the model may be dynamic sincext may

contain lags ofyt . As Swann (2002) points out, this can be broken into sums overblocks

of observations, for example two blocks:

sn(θ) =
1
n

{(
n1

∑
t=1

ln f (yt |xt ,θ)

)
+

(
n

∑
t=n1+1

ln f (yt |xt ,θ)

)}

Analogously, we can define up ton blocks. Again following Swann, parallelization can be

done by calculating each block on separate computers.

mle_example1.mis an Octave script that calculates the maximum likelihood estimator

of the parameter vector of a model that assumes that the dependent variable is distributed

as a Poisson random variable, conditional on some explanatory variables. In lines 1-3 the

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/tracetest.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/montecarlo/mc_example1.m
http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/mle/mle_example1.m
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data is read, the name of the density function is provided in the variablemodel , and the

initial value of the parameter vector is set. In line 5, the functionmle_estimate performs

ordinary serial calculation of the ML estimator, while in line 7 the same function is called

with 6 arguments. The fourth and fifth arguments are empty placeholders where options to

mle_estimate may be set, while the sixth argument is the number of slave computers to

use for parallel execution, 1 in this case. A person who runs the program sees no parallel

programming code - the parallelization is transparent to the end user, beyond having to

select the number of slave computers. When executed, this script prints out the estimates

theta_s andtheta_p , which are identical.

It is worth noting that a different likelihood function may be used by making themodel

variable point to a different function. The likelihood function itself is an ordinary Octave

function that is not parallelized. Themle_estimate function is a generic function that

can call any likelihood function that has the appropriate input/output syntax for evaluation

either serially or in parallel. Users need only learn how to write the likelihood function

using the Octave language.

20.1.3. GMM. For a sample as above, the GMM estimator of the parameterθ can be

defined as

θ̂ ≡ argmin
Θ

sn(θ)

where

sn(θ) = mn(θ)′Wnmn(θ)

and

mn(θ) =
1
n

n

∑
t=1

mt(yt |xt ,θ)

Sincemn(θ) is an average, it can obviously be computed blockwise, usingfor example 2

blocks:

(20.1.1) mn(θ) =
1
n

{(
n1

∑
t=1

mt(yt |xt ,θ)

)
+

(
n

∑
t=n1+1

mt(yt |xt ,θ)

)}

Likewise, we may define up ton blocks, each of which could potentially be computed on a

different machine.

gmm_example1.mis a script that illustrates how GMM estimation may be done seri-

ally or in parallel. When this is run,theta_s andtheta_p are identical up to the tolerance

for convergence of the minimization routine. The point to notice here is that an end user

can perform the estimation in parallel in virtually the sameway as it is done serially. Again,

gmm_estimate , used in lines 8 and 10, is a generic function that will estimate any model

specified by themoments variable - a different model can be estimated by changing the

value of themoments variable. The function thatmoments points to is an ordinary Oc-

tave function that uses no parallel programming, so users can write their models using the

simple and intuitive HLMP syntax of Octave. Whether estimation is done in parallel or

serially depends only the seventh argument togmm_estimate - when it is missing or zero,

estimation is by default done serially with one processor. When it is positive, it specifies

the number of slave nodes to use.

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/gmm/gmm_example1.m
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20.1.4. Kernel regression.The Nadaraya-Watson kernel regression estimator of a

functiong(x) at a pointx is

ĝ(x) =
∑n

t=1ytK [(x−xt)/γn]

∑n
t=1 K [(x−xt)/γn]

≡
n

∑
t=1

wtyy

We see that the weight depends upon every data point in the sample. To calculate the fit at

every point in a sample of sizen, on the order ofn2k calculations must be done, wherek

is the dimension of the vector of explanatory variables,x. Racine (2002) demonstrates that

MPI parallelization can be used to speed up calculation of the kernel regression estimator

by calculating the fits for portions of the sample on different computers. We follow this im-

plementation here.kernel_example1.mis a script for serial and parallel kernel regression.

Serial execution is obtained by setting the number of slavesequal to zero, in line 15. In line

17, a single slave is specified, so execution is in parallel onthe master and slave nodes.

The example programs show that parallelization may be mostly hidden from end users.

Users can benefit from parallelization without having to write or understand parallel code.

The speedups one can obtain are highly dependent upon the specific problem at hand, as

well as the size of the cluster, the efficiency of the network,etc.Some examples of speedups

are presented in Creel (2005). Figure20.1.1reproduces speedups for some econometric

problems on a cluster of 12 desktop computers. The speedup for k nodes is the time to

finish the problem on a single node divided by the time to finishthe problem onk nodes.

Note that you can get 10X speedups, as claimed in the introduction. It’s pretty obvious that

much greater speedups could be obtained using a larger cluster, for the ”embarrassingly

parallel” problems.

http://pareto.uab.es/mcreel/Econometrics/Examples/Parallel/kernel/kernel_example1.m
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FIGURE 20.1.1. Speedups from parallelization
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CHAPTER 21

Final project: econometric estimation of a RBC model

THIS IS NOT FINISHED - IGNORE IT FOR NOW

In this last chapter we’ll go through a worked example that combines a number of the

topics we’ve seen. We’ll do simulated method of moments estimation of a real business

cycle model, similar to what Valderrama (2002) does.

21.1. Data

We’ll develop a model for private consumption and real grossprivate investment. The

data are obtained from the US Bureau of Economic Analysis (BEA) National Income and

Product Accounts (NIPA),Table 11.1.5, Lines 2 and 6 (you can download quarterly data

from 1947-I to the present). The data we use are in the filerbc_data.m. This data is real

(constant dollars).

The programplots.mwill make a few plots, including Figures21.1.1though21.1.3.

First looking at the plot for levels, we can see that real consumption and investment are

clearly nonstationary (surprise, surprise). There appears to be somewhat of a structural

change in the mid-1970’s.

Looking at growth rates, the series for consumption has an extended period of high growth

in the 1970’s, becoming more moderate in the 90’s. The volatility of growth of consumption

FIGURE 21.1.1. Consumption and Investment, Levels

Examples/RBC/levels.eps not found!

FIGURE 21.1.2. Consumption and Investment, Growth Rates

Examples/RBC/growth.eps not found!
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http://www.bea.gov/bea/dn/nipaweb/TableView.asp?SelectedTable=5&FirstYear=2002&LastYear=2004&Freq=Qtr
http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/rbc_data.m
http://pareto.uab.es/mcreel/Econometrics/Examples/RBC/plots.m
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FIGURE 21.1.3. Consumption and Investment, Bandpass Filtered

Examples/RBC/filtered.eps not found!

has declined somewhat, over time. Looking at investment, there are some notable periods of

high volatility in the mid-1970’s and early 1980’s, for example. Since 1990 or so, volatility

seems to have declined.

Economic models for growth often imply that there is no long term growth (!) - the data

that the models generate is stationary and ergodic. Or, the data that the models generate

needs to be passed through the inverse of a filter. We’ll follow this, and generate stationary

business cycle data by applying the bandpass filter of Christiano and Fitzgerald (1999). The

filtered data is in Figure21.1.3. We’ll try to specify an economic model that can generate

similar data. To get data that look like the levels for consumption and investment, we’d

need to apply the inverse of the bandpass filter.

21.2. An RBC Model

Consider a very simple stochastic growth model (the same used by Maliar and Maliar

(2003), with minor notational difference):

max{ct ,kt}∞
t=0

E0 ∑∞
t=0 βtU(ct)

ct +kt = (1− δ)kt−1 + φtk
α
t−1

logφt = ρ logφt−1 + εt

εt ∼ IIN(0,σ2
ε)

Assume that the utility function is

U(ct) =
c1−γ

t −1
1− γ

• β is the discount rate

• δ is the depreciation rate of capital

• α is the elasticity of output with respect to capital

• φ is a technology shock that is positive.φt is observed in periodt.

• γ is the coefficient of relative risk aversion. Whenγ = 1, the utility function is

logarithmic.

• gross investment,it , is the change in the capital stock:

it = kt − (1− δ)kt−1

• we assume that the initial condition(k0,θ0) is given.
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We would like to estimate the parametersθ =
(
β,γ,δ,α,ρ,σ2

ε
)′

using the data that we have

on consumption and investment. This problem is very similarto the GMM estimation of the

portfolio model discussed in Sections15.11and15.12. Once can derive the Euler condition

in the same way we did there, and use it to define a GMM estimator. That approach was not

very successful, recall. Now we’ll try to use some more informative moment conditions to

see if we get better results.

21.3. A reduced form model

Macroeconomic time series data are often modeled using vector autoregressions. A

vector autogression is just the vector version of an autoregressive model. Letyt be aG-

vector of jointly dependent variables. A VAR(p) model is

yt = c+A1yt−1 +A2yt−2 + ...+Apyt−p +vt

wherec is aG-vector of parameters, andA j , j=1,2,...,p, areG×G matrices of parameters.

Let vt = Rtηt , whereηt ∼ IIN(0, I2), andRt is upper triangular. SoV(vt |yt−1, ...yt−p) =

RtR
′
t . You can think of a VAR model as the reduced form of a dynamic linear simultaneous

equations model where all of the variables are treated as endogenous. Clearly, if all of the

variables are endogenous, one would need some form of additional information to identify

a structural model. But we already have a structural model, and we’re only going to use

the VAR to help us estimate the parameters. A well-fitting reduced form model will be

adequate for the purpose.

We’re seen that our data seems to have episodes where the variance of growth rates

and filtered data is non-constant. This brings us to the general area of stochastic volatility.

Without going into details, we’ll just consider the exponential GARCH model of Nelson

(1991) as presented in Hamilton (1994, pg. 668-669).

Defineht = vec∗(Rt ), the vector of elements in the upper triangle ofRt (in our case

this is a 3×1 vector). We assume that the elements follow

logh jt = κ j +P( j ,.)

{
|vt−1|−

√
2/π+ ℵ( j ,.)vt−1

}
+G( j ,.) loght−1

The variance of the VAR error depends upon its own past, as well as upon the past realiza-

tions of the shocks.

• This is an EGARCH(1,1) specification. The obvious generalization is the EGARCH(r,m)

specification, with longer lags (r for lags ofv, m for lags ofh).

• The advantage of the EGARCH formulation is that the varianceis assuredly pos-

itive without parameter restrictions

• The matrixP has dimension 3×2.

• The matrixG has dimension 3×3.

• The matrixℵ (reminder to self: this is an ”aleph”) has dimension 2×2.

• The parameter matrixℵ allows forleverage, so that positive and negative shocks

can have asymmetric effects upon volatility.

• We will probably want to restrict these parameter matrices in some way. For

instance,G could plausibly be diagonal.
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With the above specification, we have

ηt ∼ IIN (0, I2)

ηt = R−1
t vt

and we know how to calculateRt andvt , given the data and the parameters. Thus, it is

straighforward to do estimation by maximum likelihood. This will be the score generator.

21.4. Results (I): The score generator

21.5. Solving the structural model

The first order condition for the structural model is

c−γ
t = βEt

(
c−γ

t+1

(
1− δ+ αφt+1k

α−1
t

))

or

ct =
{

βEt

[
c−γ

t+1

(
1− δ+ αφt+1k

α−1
t

)]}−1
γ

The problem is that we cannot solve forct since we do not know the solution for the

expectation in the previous equation.

The parameterized expectations algorithm (PEA: den Haan and Marcet, 1990), is a

means of solving the problem. The expectations term is replaced by a parametric function.

As long as the parametric function is a flexible enough function of variables that have been

realized in periodt, there exist parameter values that make the approximation as close to

the true expectation as is desired. We will write the approximation

Et

[
c−γ

t+1

(
1− δ+ αφt+1k

α−1
t

)]
≃ exp(ρ0 + ρ1 logφt + ρ2 logkt−1)

For given values of the parameters of this approximating function, we can solve forct , and

then forkt using the restriction that

ct +kt = (1− δ)kt−1 + φtk
α
t−1

This allows us to generate a series{(ct ,kt)}. Then the expectations approximation is up-

dated by fitting

c−γ
t+1

(
1− δ+ αφt+1k

α−1
t

)
= exp(ρ0 + ρ1 logφt + ρ2 logkt−1)+ ηt

by nonlinear least squares. The 2 step procedure of generating data and updating the param-

eters of the approximation to expectations is iterated until the parameters no longer change.

When this is the case, the expectations function is the best fit to the generated data. As long

it is a rich enough parametric model to encompass the true expectations function, it can be

made to be equal to the true expectations function by using a long enough simulation.

Thus, given the parameters of the structural model,θ =
(
β,γ,δ,α,ρ,σ2

ε
)′

, we can

generate data{(ct ,kt)} using the PEA. From this we can get the series{(ct , it)} using

it = kt − (1− δ)kt−1. This can be used to do EMM estimation using the scores of the re-

duced form model to define moments, using the simulated data from the structural model.
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CHAPTER 22

Introduction to Octave

Why is Octave being used here, since it’s not that well-knownby econometricians?

Well, because it is a high quality environment that is easilyextensible, uses well-tested and

high performance numerical libraries, it is licensed underthe GNU GPL, so you can get it

for free and modify it if you like, and it runs on both GNU/Linux, Mac OSX and Windows

systems. It’s also quite easy to learn.

22.1. Getting started

Get theParallelKnoppix CD, as was described in Section1.3. Then burn the image,

and boot your computer with it. This will give you this same PDF file, but with all of

the example programs ready to run. The editor is configure with a macro to execute the

programs using Octave, which is of course installed. From this point, I assume you are

running the CD (or sitting in the computer room across the hall from my office), or that you

have configured your computer to be able to run the*.m files mentioned below.

22.2. A short introduction

The objective of this introduction is to learn just the basics of Octave. There are other

ways to use Octave, which I encourage you to explore. These are just some rudiments.

After this, you can look at the example programs scattered throughout the document (and

edit them, and run them) to learn more about how Octave can be used to do econometrics.

Students of mine: your problem sets will include exercises that can be done by modifying

the example programs in relatively minor ways. So study the examples!

Octave can be used interactively, or it can be used to run programs that are written using

a text editor. We’ll use this second method, preparing programs with NEdit, and calling Oc-

tave from within the editor. The programfirst.mgets us started. To run this, open it up with

NEdit (by finding the correct file inside the/home/knoppix/Desktop/Econometrics

folder and clicking on the icon) and then type CTRL-ALT-o, oruse the Octave item in

the Shell menu (see Figure22.2.1).

Note that the output is not formatted in a pleasing way. That’s becauseprintf()

doesn’t automatically start a new line. Editfirst.m so that the 8th line reads ”printf(”hello

world\n”); ” and re-run the program.

We need to know how to load and save data. The programsecond.mshows how. Once

you have run this, you will find the file ”x” in the directoryEconometrics/Examples/OctaveIntro/

You might have a look at it with NEdit to see Octave’s default format for saving data. Basi-

cally, if you have data in an ASCII text file, named for example”myfile.data ”, formed of
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FIGURE 22.2.1. Running an Octave program

numbers separated by spaces, just use the command ”load myfile.data ”. After having

done so, the matrix ”myfile ” (without extension) will contain the data.

Please have a look atCommonOperations.mfor examples of how to do some basic

things in Octave. Now that we’re done with the basics, have a look at the Octave programs

that are included as examples. If you are looking at the browsable PDF version of this

document, then you should be able to click on links to open them. If not, the example

programs are availablehereand the support files needed to run these are availablehere.

Those pages will allow you to examine individual files, out ofcontext. To actually use

these files (edit and run them), you should go to thehome pageof this document, since

you will probably want to download the pdf version together with all the support files and

examples. Or get the bootable CD.

There are some other resources for doing econometrics with Octave. You might like to

check the articleEconometrics with Octaveand theEconometrics Toolbox, which is for

Matlab, but much of which could be easily used with Octave.

22.3. If you’re running a Linux installation...

Then to get the same behavior as found on the CD, you need to:

• Get the collection of support programs and the examples, from the document

home page.

http://pareto.uab.es/mcreel/Econometrics/Examples/OctaveIntro/CommonOperations.m
http://pareto.uab.es/mcreel/Econometrics/Examples/EconometricsOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics/Examples/SupportOctaveFiles.html
http://pareto.uab.es/mcreel/Econometrics
http://ideas.repec.org/a/jae/japmet/v15y2000i5p531-542.html
http://www.spatial-econometrics.com/
http://pareto.uab.es/mcreel/Econometrics/Examples/
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• Put them somewhere, and tell Octave how to find them, e.g., by putting a link to

the MyOctaveFiles directory in/usr/local/share/octave/site-m

• Make sure nedit is installed and configured to run Octave and use syntax high-

lighting. Copy the file/home/econometrics/.nedit from the CD to do this.

Or, get the fileNeditConfigurationand save it in your $HOME directory with the

name ”.nedit ”. Not to put too fine a point on it, please note that there is a period

in that name.

• Associate*.m files with NEdit so that they open up in the editor when you click

on them. That should do it.

http://pareto.uab.es/mcreel/NeditConfiguration


CHAPTER 23

Notation and Review

• All vectors will be column vectors, unless they have a transpose symbol (or I for-

get to apply this rule - your help catching typos and er0rors is much appreciated).

For example, ifxt is ap×1 vector,x′t is a 1× p vector. When I refer to ap-vector,

I mean a column vector.

23.1. Notation for differentiation of vectors and matrices

[3, Chapter 1]

Let s(·) : ℜp → ℜ be a real valued function of thep-vectorθ. Then ∂s(θ)
∂θ is organized

as ap-vector,

∂s(θ)

∂θ
=




∂s(θ)
∂θ1

∂s(θ)
∂θ2
...

∂s(θ)
∂θp




Following this convention,∂s(θ)
∂θ′ is a 1× p vector, and ∂2s(θ)

∂θ∂θ′ is a p× p matrix. Also,

∂2s(θ)

∂θ∂θ′
=

∂
∂θ

(
∂s(θ)

∂θ′

)
=

∂
∂θ′

(
∂s(θ)

∂θ

)
.

EXERCISE33. Fora andx bothp-vectors, show that∂a′x
∂x = a.

Let f (θ):ℜp → ℜn be an-vector valued function of thep-vectorθ. Let f (θ)′ be the

1×n valued transpose off . Then
(

∂
∂θ f (θ)′

)′
= ∂

∂θ′ f (θ).

• Product rule: Let f (θ):ℜp → ℜn andh(θ):ℜp → ℜn be n-vector valued func-

tions of thep-vectorθ. Then

∂
∂θ′

h(θ)′ f (θ) = h′
(

∂
∂θ′

f

)
+ f ′

(
∂

∂θ′
h

)

has dimension 1× p. Applying the transposition rule we get
∂

∂θ
h(θ)′ f (θ) =

(
∂

∂θ
f ′
)

h+

(
∂

∂θ
h′
)

f

which has dimensionp×1.

EXERCISE34. ForA a p× p matrix andx a p×1 vector, show that∂x′Ax
∂x = A+A′.

• Chain rule: Let f (·):ℜp → ℜn a n-vector valued function of ap-vector argu-

ment, and letg():ℜr → ℜp be ap-vector valued function of anr-vector valued

argumentρ. Then

∂
∂ρ′ f [g(ρ)] =

∂
∂θ′

f (θ)

∣∣∣∣
θ=g(ρ)

∂
∂ρ′ g(ρ)
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has dimensionn× r.

EXERCISE35. Forx andβ bothp×1 vectors, show that∂exp(x′β)
∂β = exp(x′β)x.

23.2. Convergenge modes

Readings:[1, Chapter 4];[4, Chapter 4].

We will consider several modes of convergence. The first three modes discussed are

simply for background. The stochastic modes are those whichwill be used later in the

course.

DEFINITION 36. A sequence is a mapping from the natural numbers{1,2, ...} =

{n}∞
n=1 = {n} to some other set, so that the set is ordered according to the natural numbers

associated with its elements.

Real-valued sequences:

DEFINITION 37. [Convergence]A real-valued sequence of vectors{an} convergesto

the vectora if for any ε > 0 there exists an integerNε such that for alln> Nε,‖ an−a‖< ε
. a is thelimit of an, writtenan → a.

Deterministic real-valued functions. Consider a sequence of functions{ fn(ω)} where

fn : Ω → T ⊆ ℜ.

Ω may be an arbitrary set.

DEFINITION 38. [Pointwise convergence]A sequence of functions{ fn(ω)} converges

pointwiseon Ω to the functionf (ω) if for all ε > 0 andω ∈ Ω there exists an integerNεω

such that

| fn(ω)− f (ω)| < ε,∀n > Nεω.

It’s important to note thatNεω depends uponω, so that converge may be much more

rapid for certainω than for others. Uniform convergence requires a similar rate of conver-

gence throughoutΩ.

DEFINITION 39. [Uniform convergence]A sequence of functions{ fn(ω)} converges

uniformlyonΩ to the functionf (ω) if for any ε > 0 there exists an integerN such that

sup
ω∈Ω

| fn(ω)− f (ω)| < ε,∀n > N.

(insert a diagram here showing the envelope aroundf (ω) in which fn(ω) must lie)

Stochastic sequences.In econometrics, we typically deal with stochastic sequences.

Given a probability space(Ω,F ,P) , recall that a random variable maps the sample space to

the real line, i.e., X(ω) : Ω → ℜ. A sequence of random variables{Xn(ω)} is a collection

of such mappings,i.e., eachXn(ω) is a random variable with respect to the probability

space(Ω,F ,P) . For example, given the modelY = Xβ0 + ε, the OLS estimator̂βn =

(X′X)−1X′Y, wheren is the sample size, can be used to form a sequence of random vectors

{β̂n}. A number of modes of convergence are in use when dealing withsequences of

random variables. Several such modes of convergence shouldalready be familiar:
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DEFINITION 40. [Convergence in probability]Let Xn(ω) be a sequence of random

variables, and letX(ω) be a random variable. LetAn = {ω : |Xn(ω)−X(ω)| > ε}. Then

{Xn(ω)} converges in probability toX(ω) if

lim
n→∞

P(An) = 0,∀ε > 0.

Convergence in probability is written asXn
p→ X, or plim Xn = X.

DEFINITION 41. [Almost sure convergence]Let Xn(ω) be a sequence of random vari-

ables, and letX(ω) be a random variable. LetA = {ω : limn→∞ Xn(ω) = X(ω)}. Then

{Xn(ω)} converges almost surely toX(ω) if

P(A ) = 1.

In other words,Xn(ω) → X(ω) (ordinary convergence of the two functions) except on a

setC = Ω−A such thatP(C) = 0. Almost sure convergence is written asXn
a.s.→ X, or

Xn → X,a.s. One can show that

Xn
a.s.→ X ⇒ Xn

p→ X.

DEFINITION 42. [Convergence in distribution]Let the r.v.Xn have distribution func-

tion Fn and the r.v.Xn have distribution functionF. If Fn → F at every continuity point of

F, thenXn converges in distribution toX.

Convergence in distribution is written asXn
d→ X. It can be shown that convergence in

probability implies convergence in distribution.

Stochastic functions.Simple laws of large numbers (LLN’s) allow us to directly con-

clude that̂βn
a.s.→ β0 in the OLS example, since

β̂n = β0 +

(
X′X

n

)−1(X′ε
n

)
,

and X′ε
n

a.s.
→ 0 by a SLLN. Note that this term is not a function of the parameterβ. This easy

proof is a result of the linearity of the model, which allows us to express the estimator in a

way that separates parameters from random functions. In general, this is not possible. We

often deal with the more complicated situation where the stochastic sequence depends on

parameters in a manner that is not reducible to a simple sequence of random variables. In

this case, we have a sequence of random functions that dependon θ: {Xn(ω,θ)}, where

eachXn(ω,θ) is a random variable with respect to a probability space(Ω,F ,P) and the

parameterθ belongs to a parameter spaceθ ∈ Θ.

DEFINITION 43. [Uniform almost sure convergence]{Xn(ω,θ)} converges uniformly

almost surely inΘ to X(ω,θ) if

lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)| = 0, (a.s.)

Implicit is the assumption that allXn(ω,θ) and X(ω,θ) are random variables w.r.t.

(Ω,F ,P) for all θ ∈ Θ. We’ll indicate uniform almost sure convergence by
u.a.s.→ and uni-

form convergence in probability by
u.p.→ .
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• An equivalent definition, based on the fact that “almost sure” means “with prob-

ability one” is

Pr

(
lim
n→∞

sup
θ∈Θ

|Xn(ω,θ)−X(ω,θ)| = 0

)
= 1

This has a form similar to that of the definition of a.s. convergence - the essential

difference is the addition of the sup.

23.3. Rates of convergence and asymptotic equality

It’s often useful to have notation for the relative magnitudes of quantities. Quantities

that are small relative to others can often be ignored, whichsimplifies analysis.

DEFINITION 44. [Little-o] Let f (n) andg(n) be two real-valued functions. The nota-

tion f (n) = o(g(n)) means limn→∞
f (n)
g(n)

= 0.

DEFINITION 45. [Big-O] Let f (n) andg(n) be two real-valued functions. The nota-

tion f (n) = O(g(n)) means there exists someN such that forn > N,
∣∣∣ f (n)

g(n)

∣∣∣ < K, whereK

is a finite constant.

This definition doesn’t require thatf (n)
g(n) have a limit (it may fluctuate boundedly).

If { fn} and{gn} are sequences of random variables analogous definitions are

DEFINITION 46. The notationf (n) = op(g(n)) meansf (n)
g(n)

p→ 0.

EXAMPLE 47. The least squares estimatorθ̂ =(X′X)−1X′Y = (X′X)−1X′ (Xθ0 + ε
)
=

θ0 + (X′X)−1X′ε. Since plim(X′X)−1X′ε
1 = 0, we can write(X′X)−1X′ε = op(1) and θ̂ =

θ0 + op(1). Asymptotically, the termop(1) is negligible. This is just a way of indicating

that the LS estimator is consistent.

DEFINITION 48. The notationf (n) = Op(g(n)) means there exists someNε such that

for ε > 0 and alln > Nε,

P

(∣∣∣∣
f (n)

g(n)

∣∣∣∣< Kε

)
> 1− ε,

whereKε is a finite constant.

EXAMPLE 49. If Xn ∼ N(0,1) thenXn = Op(1), since, givenε, there is always some

Kε such thatP(|Xn| < Kε) > 1− ε.

Useful rules:

• Op(np)Op(nq) = Op(np+q)

• op(np)op(nq) = op(np+q)

EXAMPLE 50. Consider a random sample of iid r.v.’s with mean 0 and varianceσ2.

The estimator of the mean̂θ = 1/n∑n
i=1xi is asymptotically normally distributed, e.g.,

n1/2θ̂ A∼ N(0,σ2). Son1/2θ̂ = Op(1), soθ̂ = Op(n−1/2). Before we had̂θ = op(1), now we

have have the stronger result that relates the rate of convergence to the sample size.

EXAMPLE 51. Now consider a random sample of iid r.v.’s with meanµ and variance

σ2. The estimator of the mean̂θ = 1/n∑n
i=1xi is asymptotically normally distributed, e.g.,

n1/2
(
θ̂−µ

) A∼ N(0,σ2). Son1/2
(
θ̂−µ

)
= Op(1), so θ̂−µ= Op(n−1/2), so θ̂ = Op(1).
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These two examples show that averages of centered (mean zero) quantities typically

have plim 0, while averages of uncentered quantities have finite nonzero plims. Note that

the definition ofOp does not mean thatf (n) andg(n) are of the same order. Asymptotic

equality ensures that this is the case.

DEFINITION 52. Two sequences of random variables{ fn} and{gn} are asymptoti-

cally equal (writtenfn
a
= gn) if

plim

(
f (n)

g(n)

)
= 1

Finally, analogous almost sure versions ofop andOp are defined in the obvious way.
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Exercises

(1) Fora andx bothp×1 vectors, show thatDxa′x = a.

(2) ForA a p× p matrix andx a p×1 vector, show thatD2
xx′Ax= A+A′.

(3) Forx andβ bothp×1 vectors, show thatDβ expx′β = exp(x′β)x.

(4) Forx andβ bothp×1 vectors, find the analytic expression forD2
β expx′β.

(5) Write an Octave program that verifies each of the previousresults by taking numeric

derivatives. For a hint, typehelp numgradient andhelp numhessian inside octave.



CHAPTER 24

The GPL

This document and the associated examples and materials arecopyright Michael Creel,

under the terms of the GNU General Public License, ver. 2. This license follows:

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copie s

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General P ublic

License is intended to guarantee your freedom to share and ch ange free

software--to make sure the software is free for all its users . This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose author s commit to

using it. (Some other Free Software Foundation software is c overed by

the GNU Library General Public License instead.) You can app ly it to

your programs, too.

When we speak of free software, we are referring to freedom, n ot

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and c harge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces o f it

in new free programs; and that you know you can do these things .

To protect your rights, we need to make restrictions that for bid

anyone to deny you these rights or to ask you to surrender the r ights.

These restrictions translate to certain responsibilities for you if you

distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whet her
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gratis or for a fee, you must give the recipients all the right s that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know th eir

rights.

We protect your rights with two steps: (1) copyright the soft ware, and

(2) offer you this license which gives you legal permission t o copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make c ertain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and pas sed on, we

want its recipients to know that what they have is not the orig inal, so

that any problems introduced by others will not reflect on th e original

authors’ reputations.

Finally, any free program is threatened constantly by softw are

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effec t making the

program proprietary. To prevent this, we have made it clear t hat any

patent must be licensed for everyone’s free use or not licens ed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which con tains

a notice placed by the copyright holder saying it may be distr ibuted

under the terms of this General Public License. The "Program ", below,

refers to any such program or work, and a "work based on the Pro gram"

means either the Program or any derivative work under copyri ght law:

that is to say, a work containing the Program or a portion of it ,

either verbatim or with modifications and/or translated in to another

language. (Hereinafter, translation is included without l imitation in

the term "modification".) Each licensee is addressed as "yo u".

Activities other than copying, distribution and modificat ion are not
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covered by this License; they are outside its scope. The act o f

running the Program is not restricted, and the output from th e Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Prog ram).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program ’s

source code as you receive it, in any medium, provided that yo u

conspicuously and appropriately publish on each copy an app ropriate

copyright notice and disclaimer of warranty; keep intact al l the

notices that refer to this License and to the absence of any wa rranty;

and give any other recipients of the Program a copy of this Lic ense

along with the Program.

You may charge a fee for the physical act of transferring a cop y, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any port ion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Sec tion 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notic es

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, tha t in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all thir d

parties under the terms of this License.

c) If the modified program normally reads commands interact ively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice an d a

notice that there is no warranty (or else, saying that you pro vide

a warranty) and that users may redistribute the program unde r

these conditions, and telling the user how to view a copy of th is

License. (Exception: if the Program itself is interactive b ut

does not normally print such an announcement, your work base d on

the Program is not required to print an announcement.)
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These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the P rogram,

and can be reasonably considered independent and separate w orks in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But whe n you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the te rms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of wh o wrote it.

Thus, it is not the intent of this section to claim rights or co ntest

your rights to work written entirely by you; rather, the inte nt is to

exercise the right to control the distribution of derivativ e or

collective works based on the Program.

In addition, mere aggregation of another work not based on th e Program

with the Program (or with a work based on the Program) on a volu me of

a storage or distribution medium does not bring the other wor k under

the scope of this License.

3. You may copy and distribute the Program (or a work based on i t,

under Section 2) in object code or executable form under the t erms of

Sections 1 and 2 above provided that you also do one of the foll owing:

a) Accompany it with the complete corresponding machine-re adable

source code, which must be distributed under the terms of Sec tions

1 and 2 above on a medium customarily used for software interc hange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a compl ete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medi um

customarily used for software interchange; or,

c) Accompany it with the information you received as to the of fer

to distribute corresponding source code. (This alternativ e is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with s uch

an offer, in accord with Subsection b above.)
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The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complet e source

code means all the source code for all modules it contains, pl us any

associated interface definition files, plus the scripts us ed to

control compilation and installation of the executable. Ho wever, as a

special exception, the source code distributed need not inc lude

anything that is normally distributed (in either source or b inary

form) with the major components (compiler, kernel, and so on ) of the

operating system on which the executable runs, unless that c omponent

itself accompanies the executable.

If distribution of executable or object code is made by offer ing

access to copy from a designated place, then offering equiva lent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties a re not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Pr ogram

except as expressly provided under this License. Any attemp t

otherwise to copy, modify, sublicense or distribute the Pro gram is

void, and will automatically terminate your rights under th is License.

However, parties who have received copies, or rights, from y ou under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to mo dify or

distribute the Program or its derivative works. These actio ns are

prohibited by law if you do not accept this License. Therefor e, by

modifying or distributing the Program (or any work based on t he

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or mo difying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based o n the

Program), the recipient automatically receives a license f rom the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights gran ted herein.
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You are not responsible for enforcing compliance by third pa rties to

this License.

7. If, as a consequence of a court judgment or allegation of pa tent

infringement or for any other reason (not limited to patent i ssues),

conditions are imposed on you (whether by court order, agree ment or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligation s under this

License and any other pertinent obligations, then as a conse quence you

may not distribute the Program at all. For example, if a paten t

license would not permit royalty-free redistribution of th e Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would b e to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceab le under

any particular circumstance, the balance of the section is i ntended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validit y of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which i s

implemented by public license practices. Many people have m ade

generous contributions to the wide range of software distri buted

through that system in reliance on consistent application o f that

system; it is up to the author/donor to decide if he or she is wi lling

to distribute software through any other system and a licens ee cannot

impose that choice.

This section is intended to make thoroughly clear what is bel ieved to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricte d in

certain countries either by patents or by copyrighted inter faces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation e xcluding
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those countries, so that distribution is permitted only in o r among

countries not thus excluded. In such case, this License inco rporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or n ew versions

of the General Public License from time to time. Such new vers ions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If th e Program

specifies a version number of this License which applies to i t and "any

later version", you have the option of following the terms an d conditions

either of that version or of any later version published by th e Free

Software Foundation. If the Program does not specify a versi on number of

this License, you may choose any version ever published by th e Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, wri te to the author

to ask for permission. For software which is copyrighted by t he Free

Software Foundation, write to the Free Software Foundation ; we sometimes

make exceptions for this. Our decision will be guided by the t wo goals

of preserving the free status of all derivatives of our free s oftware and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TOIN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
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YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greate st

possible use to the public, the best way to achieve this is to m ake it

free software which everyone can redistribute and change un der these terms.

To do so, attach the following notices to the program. It is sa fest

to attach them to the start of each source file to most effecti vely

convey the exclusion of warranty; and each file should have a t least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/o r modify

it under the terms of the GNU General Public License as publis hed by

the Free Software Foundation; either version 2 of the Licens e, or

(at your option) any later version.

This program is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public Lice nse

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 021 11-1307 USA

Also add information on how to contact you by electronic and p aper mail.

If the program is interactive, make it output a short notice l ike this

when it starts in an interactive mode:
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Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show t he appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they cou ld even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer ) or your

school, if any, to sign a "copyright disclaimer" for the prog ram, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating y our program into

proprietary programs. If your program is a subroutine libra ry, you may

consider it more useful to permit linking proprietary appli cations with the

library. If this is what you want to do, use the GNU Library Gen eral

Public License instead of this License.



CHAPTER 25

The attic

This holds material that is not really ready to be incorporated into the main body, but

that I don’t want to lose. Basically, ignore it, unless you’dlike to help get it ready for

inclusion.

25.1. Hurdle models

Returning to the Poisson model, lets look at actual and fittedcount probabilities. Ac-

tual relative frequencies aref (y = j) = ∑i 1(yi = j)/n and fitted frequencies arêf (y =

j) = ∑n
i=1 fY( j|xi , θ̂)/n We see that for the OBDV measure, there are many more actual

TABLE 1. Actual and Poisson fitted frequencies

Count OBDV ERV

Count Actual Fitted Actual Fitted

0 0.32 0.06 0.86 0.83
1 0.18 0.15 0.10 0.14
2 0.11 0.19 0.02 0.02
3 0.10 0.18 0.004 0.002
4 0.052 0.15 0.002 0.0002
5 0.032 0.10 0 2.4e-5

zeros than predicted. For ERV, there are somewhat more actual zeros than fitted, but the

difference is not too important.

Why might OBDV not fit the zeros well? What if people made the decision to contact

the doctor for a first visit, they are sick, then thedoctordecides on whether or not follow-up

visits are needed. This is a principal/agent type situation, where the total number of visits

depends upon the decision of both the patient and the doctor.Since different parameters

may govern the two decision-makers choices, we might expectthat different parameters

govern the probability of zeros versus the other counts. Letλp be the parameters of the

patient’s demand for visits, and letλd be the paramter of the doctor’s “demand” for visits.

The patient will initiate visits according to a discrete choice model, for example, a logit

model:

Pr(Y = 0) = fY(0,λp) = 1−1/ [1+exp(−λp)]

Pr(Y > 0) = 1/ [1+exp(−λp)] ,

The above probabilities are used to estimate the binary 0/1 hurdle process. Then, for the ob-

servations where visits are positive, a truncated Poisson density is estimated. This density

294
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is

fY(y,λd|y > 0) =
fY(y,λd)

Pr(y > 0)

=
fY(y,λd)

1−exp(−λd)

since according to the Poisson model with the doctor’s paramaters,

Pr(y = 0) =
exp(−λd)λ0

d

0!
.

Since the hurdle and truncated components of the overall density forY share no parameters,

they may be estimated separately, which is computationallymore efficient than estimating

the overall model. (Recall that the BFGS algorithm, for example, will have to invert the

approximated Hessian. The computational overhead is of orderK2 whereK is the number

of parameters to be estimated) . The expectation ofY is

E(Y|x) = Pr(Y > 0|x)E(Y|Y > 0,x)

=

(
1

1+exp(−λp)

)(
λd

1−exp(−λd)

)
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Here are hurdle Poisson estimation results for OBDV, obtained fromthis estimation program

*************************************************** ***********************

MEPS data, OBDV

logit results

Strong convergence

Observations = 500

Function value -0.58939

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -1.5502 -2.5709 -2.5269 -2.5560

pub_ins 1.0519 3.0520 3.0027 3.0384

priv_ins 0.45867 1.7289 1.6924 1.7166

sex 0.63570 3.0873 3.1677 3.1366

age 0.018614 2.1547 2.1969 2.1807

educ 0.039606 1.0467 0.98710 1.0222

inc 0.077446 1.7655 2.1672 1.9601

Information Criteria

Consistent Akaike

639.89

Schwartz

632.89

Hannan-Quinn

614.96

Akaike

603.39

*************************************************** ***********************

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_hpoisson.ox
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The results for the truncated part:

*************************************************** ***********************

MEPS data, OBDV

tpoisson results

Strong convergence

Observations = 500

Function value -2.7042

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.54254 7.4291 1.1747 3.2323

pub_ins 0.31001 6.5708 1.7573 3.7183

priv_ins 0.014382 0.29433 0.10438 0.18112

sex 0.19075 10.293 1.1890 3.6942

age 0.016683 16.148 3.5262 7.9814

educ 0.016286 4.2144 0.56547 1.6353

inc -0.0079016 -2.3186 -0.35309 -0.96078

Information Criteria

Consistent Akaike

2754.7

Schwartz

2747.7

Hannan-Quinn

2729.8

Akaike

2718.2

*************************************************** ***********************
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Fitted and actual probabilites (NB-II fits are provided as well) are:

TABLE 2. Actual and Hurdle Poisson fitted frequencies

Count OBDV ERV

Count Actual Fitted HP Fitted NB-II Actual Fitted HP Fitted NB-II

0 0.32 0.32 0.34 0.86 0.86 0.86
1 0.18 0.035 0.16 0.10 0.10 0.10
2 0.11 0.071 0.11 0.02 0.02 0.02
3 0.10 0.10 0.08 0.004 0.006 0.006
4 0.052 0.11 0.06 0.002 0.002 0.002
5 0.032 0.10 0.05 0 0.0005 0.001

For the Hurdle Poisson models, the ERV fit is very accurate. The OBDV fit is not so

good. Zeros are exact, but 1’s and 2’s are underestimated, and higher counts are overes-

timated. For the NB-II fits, performance is at least as good asthe hurdle Poisson model,

and one should recall that many fewer parameters are used. Hurdle version of the negative

binomial model are also widely used.

25.1.1. Finite mixture models.The following are results for a mixture of 2 negative

binomial (NB-I) models, for the OBDV data, which you can replicate usingthis estimation program

http://pareto.uab.es/mcreel/Econometrics/Examples/MEPS-II/estimate_mixnegbin.ox
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*************************************************** ***********************

MEPS data, OBDV

mixnegbin results

Strong convergence

Observations = 500

Function value -2.2312

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant 0.64852 1.3851 1.3226 1.4358

pub_ins -0.062139 -0.23188 -0.13802 -0.18729

priv_ins 0.093396 0.46948 0.33046 0.40854

sex 0.39785 2.6121 2.2148 2.4882

age 0.015969 2.5173 2.5475 2.7151

educ -0.049175 -1.8013 -1.7061 -1.8036

inc 0.015880 0.58386 0.76782 0.73281

ln_alpha 0.69961 2.3456 2.0396 2.4029

constant -3.6130 -1.6126 -1.7365 -1.8411

pub_ins 2.3456 1.7527 3.7677 2.6519

priv_ins 0.77431 0.73854 1.1366 0.97338

sex 0.34886 0.80035 0.74016 0.81892

age 0.021425 1.1354 1.3032 1.3387

educ 0.22461 2.0922 1.7826 2.1470

inc 0.019227 0.20453 0.40854 0.36313

ln_alpha 2.8419 6.2497 6.8702 7.6182

logit_inv_mix 0.85186 1.7096 1.4827 1.7883

Information Criteria

Consistent Akaike

2353.8

Schwartz

2336.8

Hannan-Quinn

2293.3

Akaike

2265.2

*************************************************** ***********************

Delta method for mix parameter st. err.

mix se_mix

0.70096 0.12043

• The 95% confidence interval for the mix parameter is perilously close to 1, which

suggests that there may really be only one component density, rather than a mix-

ture. Again, this isnot the way to test this - it is merely suggestive.

• Education is interesting. For the subpopulation that is “healthy”, i.e., that makes

relatively few visits, education seems to have a positive effect on visits. For the
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“unhealthy” group, education has a negative effect on visits. The other results are

more mixed. A larger sample could help clarify things.

The following are results for a 2 component constrained mixture negative binomial model

where all the slope parameters inλ j = exβ j are the same across the two components. The

constants and the overdispersion parametersα j are allowed to differ for the two compo-

nents.



25.2. MODELS FOR TIME SERIES DATA 301

*************************************************** ***********************

MEPS data, OBDV

cmixnegbin results

Strong convergence

Observations = 500

Function value -2.2441

t-Stats

params t(OPG) t(Sand.) t(Hess)

constant -0.34153 -0.94203 -0.91456 -0.97943

pub_ins 0.45320 2.6206 2.5088 2.7067

priv_ins 0.20663 1.4258 1.3105 1.3895

sex 0.37714 3.1948 3.4929 3.5319

age 0.015822 3.1212 3.7806 3.7042

educ 0.011784 0.65887 0.50362 0.58331

inc 0.014088 0.69088 0.96831 0.83408

ln_alpha 1.1798 4.6140 7.2462 6.4293

const_2 1.2621 0.47525 2.5219 1.5060

lnalpha_2 2.7769 1.5539 6.4918 4.2243

logit_inv_mix 2.4888 0.60073 3.7224 1.9693

Information Criteria

Consistent Akaike

2323.5

Schwartz

2312.5

Hannan-Quinn

2284.3

Akaike

2266.1

*************************************************** ***********************

Delta method for mix parameter st. err.

mix se_mix

0.92335 0.047318

• Now the mixture parameter is even closer to 1.

• The slope parameter estimates are pretty close to what we gotwith the NB-I

model.

25.2. Models for time series data

This section can be ignored in its present form. Just left in to form a basis for comple-

tion (by someone else ?!) at some point.

Hamilton,Time Series Analysisis a good reference for this section. This is very in-

complete and contributions would be very welcome.
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Up to now we’ve considered the behavior of the dependent variableyt as a function of

other variablesxt . These variables can of course contain lagged dependent variables, e.g.,

xt = (wt ,yt−1, ...,yt− j ). Pure time series methods consider the behavior ofyt as a function

only of its own lagged values, unconditional on other observable variables. One can think

of this as modeling the behavior ofyt after marginalizing out all other variables. While it’s

not immediately clear why a model that has other explanatoryvariables should marginalize

to a linear in the parameters time series model, most time series work is done with linear

models, though nonlinear time series is also a large and growing field. We’ll stick with

linear time series models.

25.2.1. Basic concepts.

DEFINITION 53 (Stochastic process). A stochastic process is a sequenceof random

variables, indexed by time:

(25.2.1) {Yt}∞
t=−∞

DEFINITION 54 (Time series). A time series isoneobservation of a stochastic process,

over a specific interval:

(25.2.2) {yt}n
t=1

So a time series is a sample of sizen from a stochastic process. It’s important to keep

in mind that conceptually, one could draw another sample, and that the values would be

different.

DEFINITION 55 (Autocovariance). Thejth autocovariance of a stochastic process is

(25.2.3) γ jt = E (yt −µt)(yt− j −µt− j)

whereµt = E (yt) .

DEFINITION 56 (Covariance (weak) stationarity). A stochastic processis covariance

stationary if it has time constant mean and autocovariancesof all orders:

µt = µ,∀t

γ jt = γ j ,∀t

As we’ve seen, this implies thatγ j = γ− j : the autocovariances depend only one the

interval between observations, but not the time of the observations.

DEFINITION 57 (Strong stationarity). A stochastic process is stronglystationary if the

joint distribution of an arbitrary collection of the{Yt} doesn’t depend ont.

Since moments are determined by the distribution, strong stationarity⇒weak station-

arity.

What is the mean ofYt? The time series is one sample from the stochastic process. One

could think ofM repeated samples from the stoch. proc., e.g.,{ym
t } By a LLN, we would

expect that

lim
M→∞

1
M

M

∑
m=1

ytm
p→ E (Yt)
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The problem is, we have only one sample to work with, since we can’t go back in time and

collect another. How canE (Yt) be estimated then? It turns out thatergodicityis the needed

property.

DEFINITION 58 (Ergodicity). A stationary stochastic process is ergodic (for the mean)

if the time average converges to the mean

(25.2.4)
1
n

n

∑
t=1

yt
p→ µ

A sufficient condition for ergodicity is that the autocovariances be absolutely summa-

ble:
∞

∑
j=0

|γ j | < ∞

This implies that the autocovariances die off, so that theyt are not so strongly dependent

that they don’t satisfy a LLN.

DEFINITION 59 (Autocorrelation). Thejth autocorrelation,ρ j is just the jth autoco-

variance divided by the variance:

(25.2.5) ρ j =
γ j

γ0

DEFINITION 60 (White noise). White noise is just the time series literature term for a

classical error.εt is white noise if i)E (εt) = 0,∀t, ii) V(εt) = σ2, ∀t, and iii) εt andεs are

independent,t 6= s. Gaussian white noise just adds a normality assumption.

25.2.2. ARMA models. With these concepts, we can discuss ARMA models. These

are closely related to the AR and MA error processes that we’ve already discussed. The

main difference is that the lhs variable is observed directly now.

MA(q) processes.A qth order moving average (MA) process is

yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

whereεt is white noise. The variance is

γ0 = E (yt −µ)2

= E (εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)
2

= σ2
(
1+ θ2

1+ θ2
2 + · · ·+ θ2

q

)

Similarly, the autocovariances are

γ j = θ j + θ j+1θ1 + θ j+2θ2 + · · ·+ θqθq− j , j ≤ q

= 0, j > q

Therefore an MA(q) process is necessarily covariance stationary and ergodic, as long asσ2

and all of theθ j are finite.

AR(p) processes.An AR(p) process can be represented as

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt
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The dynamic behavior of an AR(p) process can be studied by writing this pth order differ-

ence equation as a vector first order difference equation:




yt

yt−1
...

yt−p+1




=




c

0
...

0







φ1 φ2 · · · φp

1 0 0 0

0 1 0
... 0

...
...

.. .
. . . 0· · ·

0 · · · 0 1 0







yt−1

yt−2
...

yt−p




+




εt

0
...

0




or

Yt = C+FYt−1 +Et

With this, we can recursively work forward in time:

Yt+1 = C+FYt +Et+1

= C+F (C+FYt−1 +Et)+Et+1

= C+FC+F2Yt−1 +FEt +Et+1

and

Yt+2 = C+FYt+1 +Et+2

= C+F
(
C+FC+F2Yt−1 +FEt +Et+1

)
+Et+2

= C+FC+F2C+F3Yt−1 +F2Et +FEt+1 +Et+2

or in general

Yt+ j = C+FC+ · · ·+F jC+F j+1Yt−1 +F jEt +F j−1Et+1 + · · ·+FEt+ j−1 +Et+ j

Consider the impact of a shock in periodt onyt+ j . This is simply

∂Yt+ j

∂E′
t (1,1)

= F j
(1,1)

If the system is to be stationary, then as we move forward in time this impact must die off.

Otherwise a shock causes a permanent change in the mean ofyt . Therefore, stationarity

requires that

lim
j→∞

F j
(1,1)

= 0

• Save this result, we’ll need it in a minute.

Consider the eigenvalues of the matrixF. These are the forλ such that

|F −λIP| = 0

The determinant here can be expressed as a polynomial. for example, forp = 1, the matrix

F is simply

F = φ1

so

|φ1−λ|= 0

can be written as

φ1−λ = 0
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Whenp = 2, the matrixF is

F =

[
φ1 φ2

1 0

]

so

F −λIP =

[
φ1−λ φ2

1 −λ

]

and

|F −λIP| = λ2−λφ1−φ2

So the eigenvalues are the roots of the polynomial

λ2−λφ1−φ2

which can be found using the quadratic equation. This generalizes. For apth order AR

process, the eigenvalues are the roots of

λp−λp−1φ1−λp−2φ2−·· ·−λφp−1−φp = 0

Supposing that all of the roots of this polynomial are distinct, then the matrixF can be

factored as

F = TΛT−1

whereT is the matrix which has as its columns the eigenvectors ofF, andΛ is a diagonal

matrix with the eigenvalues on the main diagonal. Using thisdecomposition, we can write

F j =
(
TΛT−1)(TΛT−1) · · ·

(
TΛT−1)

whereTΛT−1 is repeatedj times. This gives

F j = TΛ jT−1

and

Λ j =




λ j
1 0 0

0 λ j
2

. . .

0 λ j
p




Supposing that theλi i = 1,2, ..., p are all real valued, it is clear that

lim
j→∞

F j
(1,1) = 0

requires that

|λi| < 1, i = 1,2, ..., p

e.g., the eigenvalues must be less than one in absolute value.

• It may be the case that some eigenvalues are complex-valued.The previous result

generalizes to the requirement that the eigenvalues be lessthan one inmodulus,

where the modulus of a complex numbera+bi is

mod(a+bi) =
√

a2 +b2
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This leads to the famous statement that “stationarity requires the roots of the

determinantal polynomial to lie inside the complex unit circle.” draw picture

here.

• When there are roots on the unit circle (unit roots) or outside the unit circle, we

leave the world of stationary processes.

• Dynamic multipliers:∂yt+ j/∂εt = F j
(1,1)

is a dynamic multiplieror an impulse-

responsefunction. Real eigenvalues lead to steady movements, whereas comlpex

eigenvalue lead to ocillatory behavior. Of course, when there are multiple eigen-

values the overall effect can be a mixture.pictures

Invertibility of AR process

To begin with, define the lag operatorL

Lyt = yt−1

The lag operator is defined to behave just as an algebraic quantity, e.g.,

L2yt = L(Lyt)

= Lyt−1

= yt−2

or

(1−L)(1+L)yt = 1−Lyt +Lyt −L2yt

= 1−yt−2

A mean-zero AR(p) process can be written as

yt −φ1yt−1−φ2yt−2−·· ·−φpyt−p = εt

or

yt(1−φ1L−φ2L2−·· ·−φpLp) = εt

Factor this polynomial as

1−φ1L−φ2L2−·· ·−φpLp = (1−λ1L)(1−λ2L) · · · (1−λpL)

For the moment, just assume that theλi are coefficients to be determined. SinceL is defined

to operate as an algebraic quantitiy, determination of theλi is the same as determination of

theλi such that the following two expressions are the same for allz :

1−φ1z−φ2z2−·· ·−φpzp = (1−λ1z)(1−λ2z) · · · (1−λpz)

Multiply both sides byz−p

z−p−φ1z1−p−φ2z2−p−·· ·φp−1z−1−φp = (z−1−λ1)(z
−1−λ2) · · · (z−1−λp)

and now defineλ = z−1 so we get

λp−φ1λp−1−φ2λp−2−·· ·−φp−1λ−φp = (λ−λ1)(λ−λ2) · · · (λ−λp)
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The LHS is precisely the determinantal polynomial that gives the eigenvalues ofF. There-

fore, theλi that are the coefficients of the factorization are simply theeigenvalues of the

matrixF.

Now consider a different stationary process

(1−φL)yt = εt

• Stationarity, as above, implies that|φ| < 1.

Multiply both sides by 1+ φL+ φ2L2 + ...+ φ jL j to get
(
1+ φL+ φ2L2 + ...+ φ jL j)(1−φL)yt =

(
1+ φL+ φ2L2 + ...+ φ jL j)εt

or, multiplying the polynomials on th LHS, we get
(
1+ φL+ φ2L2 + ...+ φ jL j −φL−φ2L2− ...−φ jL j −φ j+1L j+1

)
yt

==
(
1+ φL+ φ2L2 + ...+ φ jL j

)
εt

and with cancellations we have
(
1−φ j+1L j+1)yt =

(
1+ φL+ φ2L2 + ...+ φ jL j)εt

so

yt = φ j+1L j+1yt +
(
1+ φL+ φ2L2 + ...+ φ jL j)εt

Now as j → ∞, φ j+1L j+1yt → 0, since|φ| < 1, so

yt
∼=
(
1+ φL+ φ2L2 + ...+ φ jL j)εt

and the approximation becomes better and better asj increases. However, we started with

(1−φL)yt = εt

Substituting this into the above equation we have

yt
∼=
(
1+ φL+ φ2L2 + ...+ φ jL j)(1−φL)yt

so (
1+ φL+ φ2L2 + ...+ φ jL j)(1−φL) ∼= 1

and the approximation becomes arbitrarily good asj increases arbitrarily. Therefore, for

|φ| < 1, define

(1−φL)−1 =
∞

∑
j=0

φ jL j

Recall that our mean zero AR(p) process

yt(1−φ1L−φ2L2−·· ·−φpLp) = εt

can be written using the factorization

yt(1−λ1L)(1−λ2L) · · · (1−λpL) = εt
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where theλ are the eigenvalues ofF, and given stationarity, all the|λi | < 1. Therefore, we

can invert each first order polynomial on the LHS to get

yt =

(
∞

∑
j=0

λ j
1L j

)(
∞

∑
j=0

λ j
2L j

)
· · ·
(

∞

∑
j=0

λ j
pL j

)
εt

The RHS is a product of infinite-order polynomials inL, which can be represented as

yt = (1+ ψ1L+ ψ2L2 + · · ·)εt

where theψi are real-valued and absolutely summable.

• Theψi are formed of products of powers of theλi , which are in turn functions of

theφi .

• The ψi are real-valued because any complex-valuedλi always occur in conju-

gate pairs. This means that ifa+ bi is an eigenvalue ofF, then so isa−bi. In

multiplication

(a+bi)(a−bi) = a2−abi+abi−b2i2

= a2 +b2

which is real-valued.

• This shows that an AR(p) process is representable as an infinite-order MA(q)

process.

• Recall before that by recursive substitution, an AR(p) process can be written as

Yt+ j = C+FC+ · · ·+F jC+F j+1Yt−1 +F jEt +F j−1Et+1 + · · ·+FEt+ j−1 +Et+ j

If the process is mean zero, then everything with aC drops out. Take this and lag

it by j periods to get

Yt = F j+1Yt− j−1 +F jEt− j +F j−1Et− j+1 + · · ·+FEt−1 +Et

As j → ∞, the laggedY on the RHS drops out. TheEt−s are vectors of zeros

except for their first element, so we see that the first equation here, in the limit, is

just

yt =
∞

∑
j=0

(
F j)

1,1 εt− j

which makes explicit the relationship between theψi and theφi (and theλi as

well, recalling the previous factorization ofF j).

Moments of AR(p) process. The AR(p) process is

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

Assuming stationarity,E (yt) = µ,∀t, so

µ= c+ φ1µ+ φ2µ+ ...+ φpµ

so

µ=
c

1−φ1−φ2− ...−φp
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and

c = µ−φ1µ− ...−φpµ

so

yt −µ = µ−φ1µ− ...−φpµ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt −µ

= φ1(yt−1−µ)+ φ2(yt−2−µ)+ ...+ φp(yt−p−µ)+ εt

With this, the second moments are easy to find: The variance is

γ0 = φ1γ1 + φ2γ2 + ...+ φpγp + σ2

The autocovariances of ordersj ≥ 1 follow the rule

γ j = E [(yt −µ)(yt− j −µ))]

= E [(φ1(yt−1−µ)+ φ2(yt−2−µ)+ ...+ φp(yt−p−µ)+ εt)(yt− j −µ)]

= φ1γ j−1 + φ2γ j−2 + ...+ φpγ j−p

Using the fact thatγ− j = γ j , one can take thep+1 equations forj = 0,1, ..., p, which have

p+1 unknowns (σ2, γ0,γ1, ...,γp) and solve for the unknowns. With these, theγ j for j > p

can be solved for recursively.

Invertibility of MA(q) process.An MA(q) can be written as

yt −µ= (1+ θ1L+ ...+ θqL
q)εt

As before, the polynomial on the RHS can be factored as

(1+ θ1L+ ...+ θqL
q) = (1−η1L)(1−η2L)...(1−ηqL)

and each of the(1−ηiL) can be inverted as long as|ηi |< 1. If this is the case, then we can

write

(1+ θ1L+ ...+ θqL
q)−1(yt −µ) = εt

where

(1+ θ1L+ ...+ θqL
q)−1

will be an infinite-order polynomial inL, so we get
∞

∑
j=0

−δ jL
j(yt− j −µ) = εt

with δ0 = −1, or

(yt −µ)− δ1(yt−1−µ)− δ2(yt−2−µ)+ ... = εt

or

yt = c+ δ1yt−1 + δ2yt−2 + ...+ εt

where

c = µ+ δ1µ+ δ2µ+ ...

So we see that an MA(q) has an infinite AR representation, as long as the|ηi | < 1, i =

1,2, ...,q.
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• It turns out that one can always manipulate the parameters ofan MA(q) process

to find an invertible representation. For example, the two MA(1) processes

yt −µ= (1−θL)εt

and

y∗t −µ= (1−θ−1L)ε∗t
have exactly the same moments if

σ2
ε∗ = σ2

εθ2

For example, we’ve seen that

γ0 = σ2(1+ θ2).

Given the above relationships amongst the parameters,

γ∗0 = σ2
εθ2(1+ θ−2) = σ2(1+ θ2)

so the variances are the same. It turns out thatall the autocovariances will be the

same, as is easily checked. This means that the two MA processes areobserva-

tionally equivalent. As before, it’s impossible to distinguish between observa-

tionally equivalent processes on the basis of data.

• For a given MA(q) process, it’s always possible to manipulate the parameters to

find an invertible representation (which is unique).

• It’s important to find an invertible representation, since it’s the only representa-

tion that allows one to representεt as a function of pasty′s. The other represen-

tations express

• Why is invertibility important? The most important reason is that it provides a

justification for the use of parsimonious models. Since an AR(1) process has an

MA(∞) representation, one can reverse the argument and note that at least some

MA(∞) processes have an AR(1) representation. At the time of estimation, it’s a

lot easier to estimate the single AR(1) coefficient rather than the infinite number

of coefficients associated with the MA representation.

• This is the reason that ARMA models are popular. Combining low-order AR

and MA models can usually offer a satisfactory representation of univariate time

series data with a reasonable number of parameters.

• Stationarity and invertibility of ARMA models is similar towhat we’ve seen - we

won’t go into the details. Likewise, calculating moments issimilar.

EXERCISE61. Calculate the autocovariances of an ARMA(1,1) model:(1+ φL)yt =

c+(1+ θL)εt
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