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Preface

I have endeavored to provide a comprehensive introduction to a wide va-
riety of statistical methods for the analysis of repeated measurements. I
envision this book primarily as a textbook, because the notes on which it
is based have been used in a semester-length graduate course I have taught
since 1991. This course is primarily taken by graduate students in biostatis-
tics and statistics, although students and faculty from other departments
have audited the course. I also anticipate that the book will be a useful ref-
erence for practicing statisticians. This assessment is based on the positive
responses I have received to numerous short courses I have taught on this
topic to academic and industry groups.

Although my intent is to provide a reasonably comprehensive overview of
methods for the analysis of repeated measurements, I do not view this book
as a definitive “state of the art” compendium of research in this area. Some
general approaches are extremely active areas of current research, and it
is not feasible, given the goals of this book, to include a comprehensive
summary and list of references. Instead, my focus is primarily on methods
that are implemented in standard statistical software packages. As a result,
the level of detail on some topics is less than in other books, and some more
recent methods of analysis are not included. One particular example is the
topic of nonlinear mixed models for the analysis of repeated measurements
(Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1996). With respect
to some of the more recent methods of analysis, I do attempt to mention
some of the areas of current research.

The prerequisites for a course based on this book include knowledge of
mathematical statistics at the level of Hogg and Craig (1995) and a course
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in linear regression and ANOVA at the level of Neter et al. (1985). Indi-
viduals without these prerequisites who have audited the graduate course
or attended short courses have also been able to benefit from much of the
material.

Because a wide variety of methods are covered, knowledge of topics such
as multivariate normal distribution theory, categorical data analysis, and
generalized linear models would also be useful. However, my philosophy is
not to assume any particular knowledge of these areas and to present the
necessary background material in the book.

When I began to develop my graduate course on the analysis of repeated
measurements, no suitable text was available for the course as I envisioned
it, and I made the decision to prepare my own notes. Since then, multi-
ple books on the analysis of repeated measurements have been published.
I regularly refer to the following books (listed chronologically): Hand and
Taylor (1987), Crowder and Hand (1990) [updated as Hand and Crowder
(1996)], Diggle (1990), Jones (1993), Diggle et al. (1994), Kshirsagar and
Smith (1995), Vonesh and Chinchilli (1996), and Lindsey (1999), among
others. Although some of the existing books are reasonably comprehensive
in their coverage, others are more narrowly focused on specialized topics.
This book is more comprehensive than many and is targeted at a lower
mathematical level and focused more on applications than most. In sum-
mary, it is more oriented toward statistical practitioners than to statistical
researchers.

Two obvious distinctions of this book are the extensive use of real data
sets and the inclusion of numerous homework problems. Eighty real data
sets are used in the examples and homework problems. These data sets
are available from the website www.springer-ny.com (click on “author web-
sites”). Because many of the data sets can be used to demonstrate multiple
methods of analysis, instructors can easily develop additional homework
problems and exam questions based on the data sets provided.

The inclusion of homework problems makes this book especially well-
suited as a course text. Approximately 85% of the homework problems
involve data analysis. The focus of these problems is not on providing a
definitive analysis of the data but rather on providing the reader with expe-
rience in knowing when, and learning how, to select and apply appropriate
methods of analysis. Although many of the examples and homework prob-
lems have a biomedical focus, the principles and methods apply to other
subject areas as well.

My graduate course and short course notes include numerous examples
of the use of, and output from, statistical software packages, primarily SAS
(SAS Institute, 1999). I have purposely chosen not to include programming
statements or computer output in the book. I do provide the raw data for
nearly all examples as well as the key results of all analyses. In this way,
readers will be able to carry out and verify the results of their own analyses
using their choice of software.
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The notes on which this book is based are in the form of overhead trans-
parencies produced using TEX (Knuth, 1986). This format is well-suited
for instructors. The course notes also include programming statements and
computer output for the examples, prepared primarily using SAS. Course
instructors interested in obtaining this supplemental material, as well as
solutions to homework problems, should contact Springer-Verlag.

I would like to thank John Kimmel of Springer-Verlag for initially en-
couraging me to write this book and for his support and advice during
its preparation. I am also grateful to the graduate students who have par-
ticipated in my course since 1991 and to the attendees at external short
courses; both groups have motivated me to develop and expand the notes
on which this book is based. I also thank Michelle Larson for her assistance
in the preparation of solutions to the homework problems and Kathy Clark
for her careful review of the manuscript. Finally, I thank my wife, Ruth,
and our children, Michael, Carrie, and Nathan, for their understanding and
support during this endeavor.

San Diego, California Charles S. Davis
November 2001
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1
Introduction

1.1 Repeated Measurements

This book describes, discusses, and demonstrates a variety of statistical
methods for the analysis of repeated measurements. The term “repeated
measurements” refers broadly to data in which the response of each exper-
imental unit or subject is observed on multiple occasions or under multiple
conditions. Although the response variable could itself be either univariate
or multivariate, we restrict consideration to univariate response variables
measured at multiple occasions for each subject. The term “multiple” will
usually mean “more than two,” since the topic of paired measurements is
addressed in many other books.

The term “longitudinal data” is also often used to describe repeated mea-
surements data. Some authors use this term when referring to data in which
the repeated measurements factor is time. In this usage, longitudinal data
could be viewed as a special case of repeated measurements data. Other au-
thors make an alternative distinction and use the term “longitudinal data”
to refer to data collected over an extended period of time, often under un-
controlled conditions. The term “repeated measurements” is then used to
describe data collected over a relatively short time period, frequently un-
der experimental conditions. Using this definition, repeated measurements
data can be regarded as a special case of longitudinal data. In this book,
we will use the term “repeated measurements” in the broad sense to refer
to the situation in which multiple measurements of the response variable
are obtained from each experimental unit.
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Research in many areas of application frequently involves study designs
in which repeated measurements are obtained. Studies in which the re-
sponse variable is measured at multiple points in time from each subject
are one important and commonly used application. In other applications,
the response from each experimental unit is measured under multiple con-
ditions rather than at multiple time points.

In some settings in which repeated measurements data are obtained, the
independent experimental units are not individual subjects. For example,
in a toxicological study, the experimental units might be litters; responses
are then obtained from the multiple newborns in each litter. In a genetic
study, experimental units might be defined by families; responses are then
obtained from the members of each family.

1.2 Advantages and Disadvantages of Repeated
Measurements Designs

A key strength of studies in which repeated measurements are obtained
from each subject is that this is the only type of design in which it is pos-
sible to obtain information concerning individual patterns of change. This
type of design also economizes on subjects. For example, when studying
the effects of a treatment over time, it is usually desirable to observe the
same subjects repeatedly rather than to observe different subjects at each
specified time point. Another advantage is that subjects can serve as their
own controls in that the outcome variable can be measured under both
control and experimental conditions for each subject. Because between-
subjects sources of variability can be excluded from the experimental error,
repeated measurements designs often provide more efficient estimators of
relevant parameters than cross-sectional designs with the same number and
pattern of measurements. A final consideration is that data can often be
collected more reliably in a study in which the same subjects are followed
repeatedly than in a cross-sectional study.

There are two main difficulties in the analysis of data from repeated mea-
sures studies. First, the analysis is complicated by the dependence among
repeated observations made on the same experimental unit. Second, the
investigator often cannot control the circumstances for obtaining measure-
ments, so that the data may be unbalanced or partially incomplete. For
example, in a longitudinal study, the response from a subject may be miss-
ing at one or more of the time points due to factors that are unrelated to the
outcome of interest. In toxicology or genetic studies, litter or family sizes
are variable rather than fixed; hence, the number of repeated measures is
not constant across experimental units.

Although many approaches to the analysis of repeated measures data
have been studied, most are restricted to the setting in which the response
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TABLE 1.1. General layout for repeated measurements
Time Missing

Subject Point Indicator Response Covariates
1 1 δ11 y11 x111 · · · x11p

...
...

...
...

. . .
...

j δ1j y1j x1j1 · · · x1jp

...
...

...
...

. . .
...

t1 δ1t1 y1t1 x1t11 · · · x1t1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i 1 δi1 yi1 xi11 · · · xi1p

...
...

...
...

. . .
...

j δij yij xij1 · · · xijp

...
...

...
...

. . .
...

ti δiti yiti xiti1 · · · xitip

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 1 δn1 yn1 xn11 · · · xn1p

...
...

...
...

. . .
...

j δnj ynj xnj1 · · · xnjp

...
...

...
...

. . .
...

tn δntn yntn xntn1 · · · xntnp

variable is normally distributed and the data are balanced and complete.
Although the development of methods for the analysis of repeated measures
categorical data has received substantially less attention in the past, this
has more recently become an important and active area of research. Still,
the methodology is not nearly as well-developed as for continuous, normally
distributed outcomes. The practical application of methods for repeated
categorical outcomes also lags behind that for normal-theory methods due
to the lack of readily accessible software.

1.3 Notation for Repeated Measurements

The notation used to describe methods for the analysis of repeated mea-
surements varies considerably in the statistical literature. Table 1.1 shows
the general layout for repeated measurements that will be used in this book.
Let n denote the number of independent experimental units (subjects) from
which repeated measurements are obtained, let ti denote the number of
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measurements from subject i, and let yij be the response from subject i at
time point (or occasion) j for j = 1, . . . , ti and i = 1, . . . , n. In addition,
let p denote the number of covariates, and let xij = (xij1, . . . , xijp)′ de-
note the vector of covariates associated with yij . In general, the values of
the covariates may vary across the repeated measurements from a subject;
such occasion-specific variables are called time-dependent or within-subject
covariates. Because there may be missing values of yij and/or missing com-
ponents in the vector xij , it is convenient to define indicator variables

δij =
{ 1 if yij and xij are observed,

0 otherwise.

One special case of the general layout shown in Table 1.1 is when repeated
measurements are obtained (or scheduled to be obtained) at a common set
of t measurement occasions for all subjects. In this case, t1 = · · · = tn = t.

An important and commonly occurring situation is when repeated mea-
surements are obtained from s subpopulations (groups) of subjects at a
common set of t time points (or measurement occasions). In this case, let
nh be the number of subjects in group h for h = 1, . . . , s. In terms of the
general notation, n =

∑s
h=1 nh. The s groups may be defined by the s levels

of a single covariate. In other situations, the groups may be defined by the
cross-classification of the levels of several categorical covariates. In terms
of the general layout shown in Table 1.1, the s groups can be described
in terms of p = s − 1 time-independent (or between-subject) categorical
covariates. Although data of this type can be displayed using the general
layout of Table 1.1, it may be more convenient to present the data as shown
in Table 1.2. In this case, instead of letting yij denote the response at time j
from subject i, we let yhij denote the response at time j from subject i in
group h for j = 1, . . . , t, i = 1, . . . , nh, and h = 1, . . . , s.

The final special case we will consider is the situation where repeated
measurements are obtained (or scheduled to be obtained) at t time points
from n subjects from a single population. In this case, the data can be
displayed in an n× t matrix, as shown in Table 1.3. Here, yij denotes the
jth measurement from the ith subject for j = 1, . . . , t, i = 1, . . . , n. The
corresponding missing value indicators are defined by

δij =
{ 1 if yij is observed,

0 otherwise.

1.4 Missing Data

As was mentioned in Section 1.2, the occurrence of missing data is com-
mon in studies where repeated measurements are obtained. Although this
book does not focus specifically on the analysis of incomplete repeated
measurements, many of the methods described in subsequent chapters can
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TABLE 1.2. Layout for the special case of multiple samples
Time Point

Group Subject 1 . . . j . . . t

1 1 y111 . . . y11j . . . y11t

...
...

. . .
...

. . .
...

i y1i1 . . . y1ij . . . y1it

...
...

. . .
...

. . .
...

n1 y1n11 . . . y1n1j . . . y1n1t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 1 yh11 . . . yh1j . . . yh1t

...
...

. . .
...

. . .
...

i yhi1 . . . yhij . . . yhit

...
...

. . .
...

. . .
...

nh yhnh1 . . . yhnhj . . . yhnht

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1 ys11 . . . ys1j . . . ys1t

...
...

. . .
...

. . .
...

i ysi1 . . . ysij . . . ysit

...
...

. . .
...

. . .
...

ns ysns1 . . . ysnsj . . . ysnst

TABLE 1.3. Layout for the one-sample case
Time Point

Subject 1 . . . j . . . t

1 y11 . . . y1j . . . y1t

...
...

. . .
...

. . .
...

i yi1 . . . yij . . . yit

...
...

. . .
...

. . .
...

n yn1 . . . ynj . . . ynt
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be used when the data are incomplete. The mechanism that results in
missing data must, however, be considered when selecting an appropriate
method of analysis. Little and Rubin (1987) and Schafer (1997) provide
comprehensive treatments of the analysis of incomplete data. Laird (1988),
Gornbein et al. (1992), Heyting et al. (1992), Little (1995), and Kenward
and Molenberghs (1999) provide reviews focused specifically on repeated
measurements.

In particular, Little and Rubin (1987) have described missing-data mech-
anisms as follows:

1. Missing completely at random (MCAR): if the probability of observ-
ing the response is independent of both the observed and unobserved
outcome values;

2. Missing at random (MAR): if the probability of observing the re-
sponse depends on the observed outcome values but is independent
of the unobserved outcome values;

3. Nonignorable: if the probability of observing the response depends on
the unobserved outcome values.

The nonignorable missing-data mechanism is also called informative or non-
random.

With specific reference to repeated measurements, consider a study in
which the outcome variable of interest is scheduled to be measured at a fixed
number of occasions (visits) for each subject. The missing-data mechanism
is MCAR if subjects miss their visits totally at random. A MAR missing-
data mechanism would result if the probability of missing a visit is directly
related to prior observed responses. An example of a nonrandom (nonig-
norable) missing-data mechanism would be if, in addition to prior observed
responses affecting whether the response at a specific subsequent visit is
missing, subjects would be more or less likely to miss a visit based on the
unobserved value of their response at that specific visit.

In their discussion of missing data in repeated measurements, Diggle
and Kenward (1994) refer to MCAR as the completely random dropout
(CRD) mechanism. They propose the term “random dropout” (RD) for
the MAR mechanism. The situation in which the missing-data mechanism
is nonignorable is called the informative dropout (ID) mechanism.

The preceding characterizations of missing-data mechanisms refer only
to the response variable and do not address the effect of covariates on the
missing-data mechanism. For example, it may be important to consider the
influence of a fully observed covariate on the probability of response. Little
and Rubin (1987) have classified the mechanisms that govern missing data
when the influence of a covariate is taken into account. If the probability of
response is independent of the covariate and of the observed and unobserved
responses, then the missing-data mechanism is said to be MCAR. If the
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probability of response depends on the covariate but is independent of
the unobserved responses, then the missing-data mechanism is said to be
MAR provided that we have conditioned on the value of the covariate.
If the probability of response depends on the unobserved responses with a
possible (but not necessary) dependence on the covariate, then the missing-
data mechanism is said to be nonignorable.

Suppose that the probability of observing a response depends on the
value of the covariate but not on the observed and unobserved responses.
For example, suppose that the probability of dropping out of a study varies
according to the value of a covariate. Little and Rubin (1987) classify this
mechanism as MAR due to the dependence on the covariate. There are,
however, differing opinions on the classification of the missing-data mech-
anism in this situation. Diggle and Kenward (1994), among others, have
classified this mechanism as MCAR provided that one conditions on the
covariate in the analysis. Little (1995) suggests using the term covariate
dependent dropout to describe this situation (provided that one conditions
on all of the necessary covariates) and reserves the term MCAR only for a
dropout that is independent of the covariate and observed and unobserved
responses.

If the missing-data mechanism is MCAR, most standard approaches to
analysis will be valid, and the issue of interest is simply the difficulty in
implementing an analysis when the data are incomplete. In particular, anal-
yses that omit experimental units with missing data (“complete case” anal-
yses) are valid, although they may be inefficient. If the missing-data mech-
anism is MAR, then the nonresponse mechanism is said to be ignorable. In
this case, likelihood-based inferences are still valid. Moment-based analysis
methods, however, are biased when the missing-data mechanism is MAR.
Although MAR is a weaker assumption than MCAR, nonignorable missing-
data mechanisms are certainly much more common than either MCAR or
MAR mechanisms.

If the missing-data mechanism is nonignorable, both likelihood-based
and moment-based methods of analysis are biased. The development of
methods for the analysis of repeated measurements that are valid in the
case of nonignorable missingness is a difficult task.

Wu and Carroll (1988) discuss a special type of nonignorable missingness
that they call “informative dropout;” this special case has been studied
by several authors. In particular, Wu and Carroll (1988), Wu and Bai-
ley (1989), and Mori et al. (1992, 1994) propose methodology for estimat-
ing the rate of change of a continuous repeated outcome when the dropout
mechanism is informative. This approach has been extended to generalized
linear mixed models (Follmann and Wu, 1995) and to repeated count data
(Albert and Follmann, 2000).

Other authors have considered other types of models that adjust for
nonignorable missingness. These include the approaches of Stasny (1987),
Conaway (1992, 1993, 1994), Dawson and Lagakos (1993), Diggle and Ken-
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ward (1994), Follmann et al. (1994), Cook and Lawless (1997), Molenberghs
et al. (1997), and Albert (2000). Such methods for the analysis of repeated
measurements when the missing-data mechanism is nonignorable are not
yet available in standard statistical software packages.

As an alternative to parametrically modeling the dropout process, Ver-
beke et al. (2001) recommend the use of a sensitivity analysis based on
local influence (Cook, 1986) to examine the potential effects of nonran-
dom dropout. Rotnitzky et al. (1998) also propose a procedure for carrying
out a sensitivity analysis that examines how inferences concerning regres-
sion parameters change depending on assumptions about the nonresponse
mechanism. Kenward (1998) provides an example illustrating the use of
sensitivity analyses for repeated measurements. For normally distributed
endpoints, Brown (1990) proposes a “protective” estimator that also does
not require one to address the missingness model explicitly. Michiels and
Molenberghs (1997) extend Brown’s approach to repeated categorical out-
comes with nonrandom dropout.

1.5 Sample Size Estimation

This book describes methods for the analysis of data when the response
variable is measured repeatedly for each independent experimental unit.
Although the design of repeated measurements studies is equally important,
this is not, however, a focus of the following chapters.

One important issue in study design is estimating the sample size re-
quired to detect an effect of a given magnitude with specified power or
to estimate the power with which an effect of a given magnitude can be
detected using a specified sample size. When the outcome variable is mea-
sured once for each experimental unit, procedures for estimating sample
size and power are well-known and widely applied. The corresponding situ-
ation for repeated measurements data, however, is less well-developed. The
complexity is due both to the fact that repeated observations from the same
experimental unit are correlated and also that the repeated measurements
situation requires more assumptions and parameters to be specified.

Lefante (1990), Kirby et al. (1994), and Overall and Doyle (1994) con-
sider sample size estimation when the focus is on hypotheses characterized
in terms of a univariate summary statistic across the repeated measure-
ments. These approaches are relevant to the methods of analysis presented
in Chapter 2 of this book. Overall et al. (1998) compare the Kirby et al.
(1994) and Overall and Doyle (1994) approaches, and Ahn et al. (2001)
provide a computer program for sample size estimation.

Several sample size estimation methodologies are available when the re-
sponse at each time point is normally distributed. These approaches are
relevant to the methods of analysis discussed in Chapters 3–6 of this book.



1.6 Outline of Topics 9

Bloch (1986) and Lui and Cumberland (1992) describe methods for sam-
ple size estimation based on the univariate split-plot analysis-of-variance
model. Vonesh and Schork (1986) and Rochon (1991) provide sample size
estimation procedures based on Hotelling’s T 2 statistic. Muller and Bar-
ton (1989) and Muller et al. (1992) consider sample size and power for the
full multivariate analysis-of-variance model. Diggle et al. (1994, pp. 29–
31) and Lindsey (2001) also discuss sample size estimation for normally
distributed outcome variables.

Sample size estimation when the response variable at each time point is
binary has also been studied; these approaches can be used in the situa-
tions discussed in Chapters 7–9 of this book. Lui (1991) and Shoukri and
Martin (1992) extend the univariate split-plot model to the binary case.
Lee and Dubin (1994) base their approach on the concept of the design
effect from sample survey methodology. Rochon (1989) and Lipsitz and
Fitzmaurice (1994) use weighted least squares procedures for sample size
estimation with binary repeated measurements.

Approaches for estimation of sample size and power based on extensions
of generalized linear model methodology to the repeated measurements
situation are also available. These methods are useful in conjunction with
the analysis approaches described in Chapter 9 of this book. Section 9.5.6
provides references and basic descriptions of the sample size estimation
methods proposed by Liu and Liang (1997), Shih (1997), Rochon (1998),
and Pan (2001b).

1.6 Outline of Topics

Many approaches to the analysis of repeated measurements have been pro-
posed and studied. In addition, numerous books have been published deal-
ing wholly or predominantly with the analysis of repeated measurements.
Table 1.4 provides a listing of books that I am aware of that have their fo-
cus on statistical methodology for repeated measurements. Useful tutorials
and articles reviewing methods for the analysis of repeated measurements
include the papers by Everitt (1995), Cnaan et al. (1997), Albert (1999),
and Omar et al. (1999). Diggle and Donnelly (1989) provide a selected bib-
liography on general methods for the analysis of repeated measurements.

Although I have found many of these other references to be quite useful,
this book has a somewhat different purpose. Because it is often difficult to
select, implement, and apply appropriate statistical methodology, I have
sought to provide a broad survey of traditional and modern methods for
the analysis of repeated measurements. Whereas some of the existing books
are reasonably comprehensive in their coverage, others are more narrowly
focused on specialized topics. This book is more comprehensive than many,
and is targeted at a lower mathematical level and focused more on ap-
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TABLE 1.4. Books focusing on methodology for repeated measurements

Crowder, M.J. and Hand, D.J. (1990). Analysis of Repeated Measures. Chap-
man and Hall, London.

Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated Mea-
surement Data. Chapman and Hall, London.

Diggle, P.J. (1990). Time Series: A Biostatistical Introduction. Oxford Uni-
versity Press, New York.

Diggle, P.J. et al. (1994, 2002). Analysis of Longitudinal Data. Oxford Uni-
versity Press, Oxford.

Dwyer, J.H. et al. (1992). Statistical Models for Longitudinal Studies of Health.
Oxford University Press, New York.

Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on
Generalized Linear Models. Springer-Verlag, New York.

Girden, E.R. (1992). ANOVA: Repeated Measures. Sage Publications, New-
bury Park, CA.

Goldstein, H. (1979). The Design and Analysis of Longitudinal Studies: Their
Role in the Measurement of Change. Academic Press, New York.

Hagenaars, J.A. (1990). Categorical Longitudinal Data: Log-linear Panel,
Trend, and Cohort Analysis. Sage Publications, Newbury Park, CA.

Hand, D.J. and Crowder, M.J. (1996). Practical Longitudinal Data Analysis.
Chapman and Hall, London.

Hand, D.J. and Taylor, C.C. (1987). Multivariate Analysis of Variance and
Repeated Measures. Chapman and Hall, London.

Jones, R.H. (1993). Longitudinal Data with Serial Correlation: A State-Space
Approach. Chapman and Hall, London.

Kshirsagar, A.M. and Smith, W.B. (1995). Growth Curves. Marcel Dekker,
New York.

Lindsey, J.K. (1999). Models for Repeated Measurements. Oxford University
Press, New York.

McCulloch, C.E. and Searle, S.R. (2000). Generalized, Linear, and Mixed Mod-
els. John Wiley and Sons, New York.

Müller, H.G. (1988). Nonparametric Regression Analysis of Longitudinal Data.
Springer-Verlag, Berlin.

Nesselroade, J.R. and Baltes, P.B. (1980). Longitudinal Methodology in the
Study of Behavior and Development. Academic Press, New York.

Pan, J.X. and Fang, K.T. (2001). Growth Curve Models with Statistical Diag-
nostics. Springer-Verlag, New York.

Pickles, A. (1990). Longitudinal Data and the Analysis of Change. Oxford
University Press, New York.

Plewis, I. (1985). Analysing Change: Measurement and Explanation Using
Longitudinal Data. John Wiley and Sons, New York.

Verbeke, G. and Molenberghs, G. (1997). Linear Mixed Models in Practice.
Springer-Verlag, New York.

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudi-
nal Data. Springer-Verlag, New York.

Vonesh, E.F. and Chinchilli, V.M. (1996). Linear and Nonlinear Models for
the Analysis of Repeated Measurements. Marcel Dekker, New York.

von Eye, A. (1990). Statistical Methods in Longitudinal Research. Volumes I
and II. Academic Press, New York.
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plications than most. It is designed to be used both as a textbook in a
semester-length course and also as a useful reference for statisticians and
data analysts.

I have attempted to provide sufficient background material on the meth-
ods that are presented to ensure that students and readers will have a
good understanding of the methodology. At the same time, the focus is on
applying the approaches discussed to real data. Because of this, there are
numerous examples in each chapter as well as homework problems at the
end of each chapter.

The remaining chapters discuss methods for the analysis of repeated
measurements when the response variable is

• continuous and normally distributed;

• categorical;

• continuous and nonnormal.

Note that categorical outcome variables include dichotomous responses,
polytomous variables (more than two possible values, not necessarily or-
dered), ordered categorical responses, and count variables. For each type
of outcome variable, methods that can be used in the following settings are
discussed:

• one sample (p = 0);

• multiple samples (one categorical covariate);

• multiple samples (p categorical covariates);

• regression (quantitative covariates).

Chapter 2 first discusses some simple univariate approaches to the anal-
ysis of repeated measurements. These methods involve reducing the mul-
tiple measurements obtained from each subject to a single “derived vari-
able” or “summary statistic.” Chapters 3–6 discuss methods for normally
distributed response variables. These chapters cover both traditional and
modern approaches to the analysis of repeated measurements.

Chapter 7 then describes the weighted least squares approach for the
analysis of categorical response variables. Chapter 8 presents the random-
ization model approach for the analysis of one-sample repeated measure-
ments; this method can be applied both to categorical and continuous out-
come variables. Chapter 9 describes extensions of generalized linear model
methodology for the analysis of repeated measurements; these methods
also can be used for categorical and continuous outcome variables. Finally,
Chapter 10 discusses nonparametric methods for the analysis of repeated
measurements.
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1.7 Choosing the “Best” Method of Analysis

This book describes several methods for the analysis of repeated measure-
ments. Although some are old and others are more recent, I have found
all (with one exception to be mentioned later in this section) to be useful.
Here are some guidelines for selecting an appropriate statistical method for
a given application. Additional comments on the advantages and disadvan-
tages of the various methods are provided in each chapter.

Chapter 2 discusses methods that reduce the vector of multiple measure-
ments from each experimental unit to a single measurement. This approach
avoids the issue of correlation among the repeated measurements from a
subject and is often a useful preliminary or exploratory method of analysis.
In situations where the distribution of the outcome variable is unusual, or
where the sample size is too small or the number and pattern of repeated
measurements are too irregular to permit the use of other methods, the
univariate approach to the analysis of repeated measurements may be the
only feasible one.

When the outcome variable at each time point is continuous and ap-
proximately normally distributed, the methods described in Chapters 3,
4, and 6 should be considered. Although Chapter 5 describes the use of
classical repeated measures analysis of variance (ANOVA) for the analy-
sis of continuous, normally distributed repeated measurements, I do not
recommend the use of this methodology. I have included a short chapter
on repeated measures ANOVA only because this approach is still widely
used in some areas of application. Therefore, it is important to describe the
restrictive assumptions and shortcomings of this methodology.

Chapter 6 discusses the linear mixed model, the most recent approach
to the analysis of normally distributed repeated measurements. A natural
question is whether the older multivariate analysis methods described in
Chapters 3 and 4 are still necessary. First, the unstructured multivariate
analysis approaches based on Hotelling’s T 2 statistic, multivariate analysis
of variance, and growth curve analysis are valid methods of analysis when
repeated measurements are obtained at a fixed set of time points and there
are no missing data. Second, the classical methods described in Chapters 3
and 4 are often based on fewer assumptions than are considered in prac-
tical applications of linear mixed model methodology. Third, because the
unstructured multivariate analysis approaches are commonly used in some
areas of application, familiarity with them is desirable. A final comment
is that the simulation studies described in Section 6.5.3 indicate that the
unstructured multivariate test statistics may perform better in small and
moderate samples than the linear mixed model statistics. Thus, although
the methods of Chapter 6 are important, the unstructured multivariate
analysis approaches based on Hotelling’s T 2 statistic, multivariate analysis
of variance, and growth curve analysis are still often worthy of considera-
tion.
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When the outcome variable is categorical, the methods of Chapters 7–9
can be considered. Of these, the weighted least squares (WLS) methodology
of Chapter 7 and the methods based on extensions of generalized linear
model methodology (Chapter 9) are the most general approaches to the
analysis of repeated categorical outcomes. Although some might argue that
the methods of Chapter 9 are always to be preferred over the older WLS
approach, the methods of Chapter 7 are quite useful when the number of
repeated measurements is relatively small and all covariates are categorical.
In particular, the WLS approach can be used for analyzing a wide variety
of types of linear and nonlinear response functions and also provides a
lack-of-fit statistic for assessing the appropriateness of the chosen model.

The methods described in Chapter 9 can also be used to analyze contin-
uous repeated measurements when the marginal distribution at each time
point is a member of the exponential family of distributions, such as the
normal, gamma, and inverse Gaussian distributions. In particular, when
the response is approximately normally distributed, the methods in Chap-
ter 9 provide alternatives to the methods of Chapters 3–6 that may be
more robust to departures from assumptions. Wu et al. (2001) discuss the
relationships between the methods of Chapters 6 and 9 when the data are
normally distributed.

Section 9.8 describes methods appropriate for the analysis of ordered
categorical outcomes. These offer the advantage of being able to accom-
modate continuous covariates but require the restrictive proportional-odds
assumption. The WLS approach (Chapter 7) can fit more flexible models
to ordered categorical responses and also provides an overall goodness-of-fit
test. The disadvantages are that covariates must be categorical and that
the sample size must be quite large if any of (a) the number of levels of
the response variable, (b) the number of time points, or (c) the number of
levels of the cross-classification of the covariates is large.

Chapter 8 discusses the randomization model approach using Cochran–
Mantel–Haenszel (CMH) statistics. This methodology requires minimal as-
sumptions concerning the distribution of the response and can be used for
both continuous and categorical outcomes. In addition, CMH statistics are
applicable in situations where the sample size is too small to justify the use
of alternative approaches. The major shortcoming of this method is that it
is appropriate only for one-sample problems (i.e., when there are no covari-
ates). In addition, the randomization model approach provides procedures
for hypothesis testing only; it is not possible to estimate the parameters of
a model.

When the response variable is continuous but nonnormal, nonparametric
approaches (Chapter 10) may be the only reasonable option other than the
summary-statistic approach. In this case, the Chapter 10 approaches allow
one to consider the multivariate nature of the data rather than reducing the
multiple responses to a summary measure. The shortcomings include the
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lack of estimation procedures and the fact that the repeated measurements
nature of the data is not fully taken into account.



2
Univariate Methods

2.1 Introduction

The simplest approach to the analysis of repeated measurements is to re-
duce the vector of multiple measurements from each experimental unit to
a single measurement. Thus, a multivariate response is reduced to a uni-
variate response. This avoids the issue of correlation among the repeated
measurements from a subject. In the special case of two measurements
per subject, well-known methods of this type include the paired t test for
continuous responses and McNemar’s test for dichotomous responses.

Wishart (1938) appears to have been the first researcher to document
the use of this approach. Pocock (1983), Matthews et al. (1990), Dawson
and Lagakos (1991, 1993) , Frison and Pocock (1992), and Dawson (1994)
refer to these types of methods as the “summary-statistic approach.” Crow-
der and Hand (1990) and Diggle et al. (1994) call such methods “response
feature analysis” and “derived variable analysis,” respectively. When the
univariate summary statistic is the least squares regression slope, this ap-
proach has been referred to as the “NIH method,” because the use of this
particular summary statistic appears to have been popularized at the U.S.
National Institutes of Health.

The univariate approach to the analysis of repeated measurements is
most applicable when complete data at a common set of measurement times
are obtained from each subject. This approach is most straightforward
when the data come from a single sample (as displayed in Table 1.3) or
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TABLE 2.1. Ventilation volumes from eight subjects
Temperature (◦C)

Subject −10 25 37 50 65 80
1 74.5 81.5 83.6 68.6 73.1 79.4
2 75.5 84.6 70.6 87.3 73.0 75.0
3 68.9 71.6 55.9 61.9 60.5 61.8
4 57.0 61.3 54.1 59.2 56.6 58.8
5 78.3 84.9 64.0 62.2 60.1 78.7
6 54.0 62.8 63.0 58.0 56.0 51.5
7 72.5 68.3 67.8 71.5 65.0 67.7
8 80.8 89.9 83.2 83.0 85.7 79.6

from multiple samples defined by the levels of one or more categorical
covariates (as displayed in Table 1.2).

2.2 One Sample

We first consider the situation in which repeated measurements are ob-
tained (or scheduled to be obtained) at t time points from each of n sub-
jects, as displayed in Table 1.3. The goal of the analysis is to determine
whether the distribution of the response is changing over time.

One approach to this problem would be to carry out separate compar-
isons between pairs of time points. For example, if the response variable is
continuous and normally distributed, multiple paired t tests could be per-
formed. For nonnormal responses, the Wilcoxon signed rank test or the sign
test could be used instead. With t time points, t(t−1)/2 tests are required.
These test statistics are correlated due to the dependence between repeated
measurements for each subject and the fact that the data from each time
point are used in multiple tests. Thus, this method is not recommended.

If instead the summary-statistic approach is used, the goal is to reduce
each subject’s data to a single meaningful measure of association between
the response variable and time. For example, the summary statistic could
be the slope of the regression line for each subject or a parametric or
nonparametric correlation coefficient. Appropriate statistical methods can
then be used to test whether the mean (or median) of the derived measure
differs from zero. This approach is often useful even when the repeated
measurements are irregularly spaced. One must realize, however, that the
results of the summary-statistic approach may be misleading if the selected
summary measure does not adequately describe each subject’s data.

As an example, Table 2.1 displays data from Deal et al. (1979). In this
study, ventilation volumes (l/min) were measured in eight subjects under
six different temperatures of inspired dry air. The goal of the analysis is to
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TABLE 2.2. Estimated slopes for ventilation volume data
Subject Slope Signed Rank

1 −0.00916 −2
2 −0.02009 −4
3 −0.10439 −7
4 0.00443 1
5 −0.12029 −8
6 −0.03838 −5
7 −0.05672 −6
8 −0.01336 −3

determine whether ventilation volume is affected by temperature.
One approach would be to assume that the relationship between tempera-

ture and ventilation volume for each subject can be adequately summarized
by the slope of the least squares regression line. Let xij and yij denote the
temperature and ventilation volume, respectively, on the jth occasion for
the ith subject, for j = 1, . . . , 6 and i = 1, . . . , 8. The estimated slope for
subject i is

β̂i =

∑6
j=1(xij − xi)(yij − yi)∑6

j=1(xij − xi)2
=

∑6
j=1(xij − xi)yij∑6
j=1(xij − xi)2

,

where xi and yi are the sample means of temperature and ventilation vol-
ume, respectively, for subject i. For each subject, xi = 41.167 and

6∑
j=1

(xij − xi)2 = 5050.83.

Therefore, β̂i =
∑6

j=1 wiyij , where w1 = −0.010130, w2 = −0.003201,
w3 = −0.000825, w4 = 0.001749, w5 = 0.004719, and w6 = 0.007688. Thus,
the summary statistic β̂i is seen to be a weighted sum of the responses yij .

Table 2.2 displays the estimated slopes for each of the eight subjects as
well as the signed ranks of these slopes. The sample mean and standard
deviation of the slopes are −0.04475 and 0.04586, respectively. Assuming
that the estimated slopes are approximately normally distributed, the one-
sample t test yields

t =
√

8(−0.04475 − 0)
0.04586

= −2.76

with seven degrees of freedom (df). The two-sided p-value is 0.028, indi-
cating that the population mean slope is significantly different from zero.
Alternatively, the Wilcoxon signed rank test gives an exact two-sided p-
value of 0.032.
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TABLE 2.3. Estimated Spearman correlation coefficients for ventilation volume
data

Temperature (◦C)
Subject −10 25 37 50 65 80 rs

1 3 5 6 1 2 4 −0.257
2 4 5 1 6 2 3 −0.257
3 5 6 1 4 2 3 −0.543
4 3 6 1 5 2 4 −0.086
5 4 6 3 2 1 5 −0.314
6 2 5 6 4 3 1 −0.371
7 6 4 3 5 1 2 −0.771
8 2 6 4 3 5 1 −0.257

As an alternative to using the least square regression slope as the sum-
mary statistic, one could make the weaker assumption that the relationship
between temperature and ventilation volume is monotonic. Table 2.3 dis-
plays the within-subject ranks of ventilation volume as well as the values of
Spearman’s rank correlation coefficient rs for each subject. The values of
rs are negative for all eight subjects. The exact two-sided p-value from the
Wilcoxon signed rank statistic is 0.008, and the two-sided exact sign test
yields p = 0.0078. All of these analyses indicate that ventilation volume
tends to decrease as temperature increases.

Another example of the usefulness of the summary-statistic approach
uses data from a study at the University of Iowa Mental Health Clini-
cal Research Center in which 44 schizophrenic patients participated in a
four-week antipsychotic medication washout. The severity of extrapyrami-
dal side effects was assessed just prior to discontinuation of antipsychotic
medication and at weeks 1, 2, 3, and 4 during the washout period. Because
these types of side effects frequently accompany the use of antipsychotic
medications, the investigators were interested in determining whether such
symptoms improve during washout. Arndt et al. (1993) further describe
the study.

Table 2.4 displays the resulting ratings on the Simpson–Angus (SA) scale
(Simpson and Angus, 1970). The SA scale rates ten aspects (e.g., elbow
rigidity, arm dropping) from 0 to 4 (normal to extremely symptomatic)
and yields a total score ranging from 0 to 40. High scores indicate greater
symptom severity. The character ‘.’ is used to denote a few missing values
in Table 2.4.

Figure 2.1 displays modified box plots (Moore and McCabe, 1993, pp. 42–
43) of the weekly SA ratings. At each time point, the first quartile (25th
percentile), median, third quartile (75th percentile), and sample mean (de-
noted by ×) are displayed. Data points more than 1.5 times the interquar-
tile range beyond the quartiles are displayed individually (∗); otherwise,
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TABLE 2.4. Weekly Simpson–Angus ratings from 44 schizophrenic patients
Patient Week 0 Week 1 Week 2 Week 3 Week 4

1 1 4 0 0 0
2 4 5 8 9 3
3 1 2 2 1 1
4 8 7 0 5 5
5 1 1 0 1 1
6 3 2 0 0 0
7 4 4 4 . 2
8 . . 1 9 6
9 6 6 0 0 0
10 3 3 0 0 0
11 6 4 1 0 0
12 0 0 0 0 .
13 3 0 17 5 22
14 8 1 2 2 0
15 0 0 0 0 0
16 0 0 5 1 2
17 1 5 4 5 2
18 2 1 . . .
19 0 0 0 0 0
20 0 0 6 8 5
21 0 0 0 0 .
22 11 12 0 0 0
23 10 6 0 0 1
24 3 0 2 1 1
25 1 0 1 1 0
26 0 5 0 2 4
27 0 0 0 . .
28 3 0 0 0 .
29 7 7 3 4 5
30 12 22 15 24 5
31 3 0 0 0 0
32 0 0 0 0 0
33 1 0 0 0 0
34 0 0 0 0 0
35 7 1 10 7 5
36 2 0 0 1 0
37 10 5 5 8 2
38 2 0 4 0 1
39 5 2 1 3 2
40 0 0 0 . .
41 1 1 0 1 3
42 0 0 0 0 .
43 0 0 0 0 0
44 1 0 2 1 1
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FIGURE 2.1. Modified box plots of weekly Simpson–Angus ratings for 44
schizophrenic patients
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the upper and lower limits of each plot extend to the largest and smallest
observations.

The marginal distributions of the SA ratings are clearly nonnormal. At
each time point, both the minimum value and the 25th percentile are equal
to zero, as is the median at week 2. The median SA ratings at weeks 0–4
are 2, 1, 0, 1, and 1, respectively. The mean ratings of 3.0, 2.5, 2.2, 2.5,
and 2.1 also indicate a tendency for SA ratings to decrease following the
withdrawal of antipsychotic medications.

The summary-statistic approach is one possible method of assessing
whether there is an association between SA ratings and measurement week.
In this example, the least squares slope is not likely to be a useful sum-
mary statistic. When the Spearman rank correlation coefficient between SA
rating and week is computed for each subject, the correlation coefficients
range from −1 to 0.8. Of the 32 nonzero correlations, eight are positive and
24 are negative. Based on the sign test, the exact two-sided p-value is 0.007.
Using the Wilcoxon signed rank test, the sum of the ranks corresponding
to positive correlations is 103 and the sum of the ranks of negative correla-
tions is 425. The normal approximation to the distribution of the Wilcoxon
statistic yields p = 0.003. Both tests indicate the tendency of SA ratings
to decrease over time.

Although most of the subjects in Table 2.4 have observations at all five
measurement times, there are eight subjects with missing data. Four sub-
jects have four of the five measurements, three subjects have three of the
five measurements, and one subject has only two measurements. As an
alternative to weighting the individual Spearman correlation coefficients
equally, one could consider giving lower weight to those from subjects with
missing data.

2.3 Multiple Samples

Table 1.2 displays the general layout for the case of repeated measurements
from multiple samples. In this setting, yhij is the response at time point j
for subject i in group h for h = 1, . . . , s, i = 1, . . . , nh, and j = 1, . . . , t.
Within-group comparisons among time points might be of interest. In this
case, the methods of Section 2.2 can be used. A more common goal of the
analysis in this setting, however, is to determine whether the pattern of
change over time is the same across the s groups.

One approach to this problem would be to carry out separate compar-
isons among groups at each of the t time points. For example, if the response
variable was continuous and normally distributed, one-way analysis of vari-
ance (ANOVA) could be used to compare the groups at each measurement
occasion. For nonnormal responses, the Kruskal–Wallis test could be used.
If the response at each time point is categorical, Pearson’s chi-square test
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TABLE 2.5. Body weights of 16 rats
Day

ID 1 8 15 22 29 36 43 44 50 57 64
Group 1:
1 240 250 255 260 262 258 266 266 265 272 278
2 225 230 230 232 240 240 243 244 238 247 245
3 245 250 250 255 262 265 267 267 264 268 269
4 260 255 255 265 265 268 270 272 274 273 275
5 255 260 255 270 270 273 274 273 276 278 280
6 260 265 270 275 275 277 278 278 284 279 281
7 275 275 260 270 273 274 276 271 282 281 284
8 245 255 260 268 270 265 265 267 273 274 278

Group 2:
9 410 415 425 428 438 443 442 446 456 468 478

10 405 420 430 440 448 460 458 464 475 484 496
11 445 445 450 452 455 455 451 450 462 466 472
12 555 560 565 580 590 597 595 595 612 618 628
Group 3:
13 470 465 475 485 487 493 493 504 507 518 525
14 535 525 530 533 535 540 525 530 543 544 559
15 520 525 530 540 543 546 538 544 553 555 548
16 510 510 520 515 530 538 535 542 550 553 569

of homogeneity would be appropriate. The primary disadvantage of this
type of univariate analysis approach is that t separate tests are required.

If instead the summary-statistic approach is used, the goal is to first
reduce each subject’s data to a single, meaningful measure of association
between the response variable and time, as in Section 2.2. In the multiple-
sample case, parametric or nonparametric methods can then be used to
test for differences among the s groups.

For example, Table 2.5 displays data from a nutrition study conducted
in three groups of rats (Crowder and Hand, 1990, p. 19). The three groups
were put on different diets, and each animal’s body weight (grams) was
recorded repeatedly (approximately weekly) over a nine-week period. The
goal of the analysis is to determine whether the growth profiles of the three
groups differ.

One approach would be to assume that the relationship between body
weight and measurement time can be adequately summarized by the slope
of the least squares regression line. Let xij and yij denote the measurement
day and body weight, respectively, on the jth occasion for the ith animal,
for j = 1, . . . , 11 and i = 1, . . . , 16. The estimated slope for the ith animal
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TABLE 2.6. Estimated slopes for rat body weight data
Group ID Slope Group ID Slope

1 1 0.484 2 9 1.011
2 0.330 10 1.341
3 0.398 11 0.363
4 0.330 12 1.148
5 0.406 3 13 0.919
6 0.318 14 0.315
7 0.202 15 0.493
8 0.409 16 0.905

is

β̂i =

∑11
j=1(xij − xi)(yij − yi)∑11

j=1(xij − xi)2
=

∑11
j=1(xij − xi)yij∑11
j=1(xij − xi)2

,

where xi and yi are the sample means of x and y for animal i. Note that
xi = 33.545 and

11∑
j=1

(xij − xi)2 = 4162.73

for i = 1, . . . , 16. Therefore, β̂i =
∑11

j=1 wiyij , where

w1 = −0.007818, w7 = 0.002271,
w2 = −0.006137, w8 = 0.002511,
w3 = −0.004455, w9 = 0.003953,
w4 = −0.002774, w10 = 0.005634,
w5 = −0.001092, w11 = 0.007316.
w6 = 0.000590,

Table 2.6 displays the estimated slopes for each animal; these slopes are
positive for all animals in each of the three groups. The sample means of
the slopes in groups 1, 2, and 3 are 0.3596, 0.9655, and 0.6580, respectively,
indicating that the rate of weight gain is, on average, greatest in group 2
and least in group 1. The corresponding sample standard deviations are
0.0845, 0.4242, and 0.3022.

One possible method of analysis is to compare the three groups using
one-way ANOVA. The resulting F statistic with 2 and 13 df is 7.57 (p =
0.007). Because the assumptions of the one-way ANOVA model may not
be satisfied, the Kruskal–Wallis test could also be used to compare the
distributions of the estimated slopes in the three groups. This test gives a
chi-square statistic of 5.80 with 2 df (p = 0.055). The parametric analysis
indicates that the mean slopes in the three groups differ significantly; the
nonparametric test gives a nearly significant result.
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TABLE 2.7. Successive two-week seizure counts: first ten subjects in each of the
two treatment groups

Treatment ID Week 2 Week 4 Week 6 Week 8
Progabide 101 11 14 9 8

102 8 7 9 4
103 0 4 3 0
108 3 6 1 3
110 2 6 7 4
111 4 3 1 3
112 22 17 19 16
113 5 4 7 4
117 2 4 0 4
121 3 7 7 7

Placebo 104 5 3 3 3
106 3 5 3 3
107 2 4 0 5
114 4 4 1 4
116 7 18 9 21
118 5 2 8 7
123 6 4 0 2
126 40 20 23 12
130 5 6 6 5
135 14 13 6 0

As a second example, Leppik et al. (1987) conducted a clinical trial in
59 epileptic subjects. In this study, individuals suffering from simple or
complex partial seizures were randomized to receive either the antiepilep-
tic drug progabide (31 subjects) or a placebo (28 subjects). At each of four
successive postrandomization visits, the number of seizures occurring dur-
ing the previous two weeks was reported. The medical question of interest
is whether progabide reduces the frequency of epileptic seizures.

Table 2.7 displays the seizure counts during the successive two-week pe-
riods from the first ten subjects in each of the two groups. These data were
obtained from Thall and Vail (1990). Figure 2.2 displays side-by-side modi-
fied box plots (Moore and McCabe, 1993, pp. 42–43) for the two treatments
at each assessment time. The sample means in the progabide and placebo
groups are denoted by filled and open circles, respectively. During each
two-week period, there appears to be a slight tendency for seizure counts
to be lower in progabide-treated patients than in placebo-treated patients.
The median number of seizures in the progabide group at weeks 2, 4, 6, and
8 is 4, 5, 4, and 4, respectively. The corresponding medians in the placebo
group are 5, 4.5, 5, and 5, respectively.
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FIGURE 2.2. Modified box plots of successive two-week seizure counts for 59 sub-
jects with epilepsy
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One possible approach to determining whether progabide reduces the
frequency of epileptic seizures is to reduce the vector of four observations
from each subject (weeks 2, 4, 6, and 8) to a single measurement. The total
seizure count is one potential summary statistic. The median of the four
measurements from each subject is another choice; this summary statistic
will be less affected by extreme observations.

Table 2.8 displays the total seizure count and the median seizure count
for each subject in the progabide and placebo groups. The distributions of
the total seizure counts are extremely nonnormal in both treatment groups;
the p-values from the Shapiro–Wilk (1965) test of normality are less than
0.001. The median total seizure counts in the progabide and placebo groups
are 15 and 16, respectively. Using the Wilcoxon–Mann–Whitney test, there
is insufficient evidence to conclude that progabide reduces the total seizure
count; the two-sided p-value is 0.19.

The distributions of the median two-week seizure counts are also non-
normal in both treatment groups; the p-values from the Shapiro–Wilk test
of normality are again less than 0.001. The median of the two-week me-
dian count in the progabide group is 3.5; the corresponding median in the
placebo group is 4.25. Using the Wilcoxon–Mann–Whitney test, there is in-
sufficient evidence to conclude that progabide reduces the median two-week
seizure count; the two-sided p-value is 0.27.

2.4 Comments

The summary-statistic approach is a simple and often useful method for
the analysis of repeated measurements. For example, Everitt (1995) applies
a number of analysis methods to several data sets and concludes that the
summary-statistic approach offers advantages in many circumstances.

One summary statistic used in the examples considered in this chapter
was the least squares slope for each subject. This derived variable is a lin-
ear combination of the repeated measurements of the outcome variable.
Other linear combinations of a subject’s observations can also be consid-
ered. These include the response at the final time point or measurement
occasion, the difference between the final response and the initial response,
the average of the last l measurements, for some choice of l ≤ t, and the
area under the curve (AUC) estimated by the trapezoidal rule.

The univariate approach to the analysis of repeated measurements can
be applied when there are varying numbers of repeated measurements from
each experimental unit. The results of such an analysis must be interpreted
carefully, however, because the assumptions of the statistical methods used
in making comparisons among groups may not be satisfied when each ex-
perimental unit does not contribute the same number and pattern of mea-
surements. In this case, one approach that can be considered is to carry out
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TABLE 2.8. Total and median seizure counts from 31 subjects in the progabide
group and 28 subjects in the placebo group

Group ID Total Median ID Total Median
Progabide 101 42 10.0 143 39 7.0

102 28 7.5 147 7 1.5
103 7 1.5 203 32 8.0
108 13 3.0 204 3 0.5
110 19 5.0 207 302 68.5
111 11 3.0 208 13 3.5
112 74 18.0 209 26 6.5
113 20 4.5 211 10 2.0
117 10 3.0 214 70 15.5
121 24 7.0 218 13 3.5
122 29 4.5 221 15 3.5
124 4 1.0 225 51 13.5
128 6 1.0 228 6 1.5
129 12 3.5 232 0 0.0
137 65 14.5 236 10 2.5
139 26 6.5

Placebo 104 14 3.0 205 59 13.0
106 14 3.0 206 16 2.5
107 11 3.0 210 6 1.5
114 13 4.0 213 123 29.0
116 55 13.5 215 15 4.0
118 22 6.0 217 16 4.5
123 12 3.0 219 14 3.5
126 95 21.5 220 14 3.5
130 22 5.5 222 13 3.0
135 33 9.5 226 30 8.0
141 66 17.0 227 143 24.5
145 30 7.0 230 6 1.5
201 16 4.0 234 10 2.5
202 42 10.5 238 53 13.0
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a weighted analysis of the summary statistics. Matthews (1993) studies the
use of a weighted summary-statistic approach in the context of an example
in which the number of repeated measurements per subject ranges from 4
to 36.

Although the univariate approach can be useful in certain situations, a
shortcoming is that the results may be misleading if the selected univari-
ate summary measure does not adequately describe each subject’s data.
Ghosh et al. (1973) describe multivariate methods based on the use of two
or more summary statistics for each subject. This extension of the uni-
variate summary-statistic approach may be useful when multiple univari-
ate statistics are necessary to adequately summarize each subject’s data.
Carr et al. (1989) describe a different type of multivariate approach based
on summary statistics. They consider the situation in which an ordered cat-
egorical or interval response variable is measured at multiple time points
for each subject in two or more ordered groups. Rank measures of associ-
ation between group and response are constructed at each time point; the
estimated covariance matrix of these summary measures is then used to
test hypotheses concerning the rank measures of association.

2.5 Problems

In each of the following problems: (a) describe and justify your choice of
statistical methodology; (b) present your results, along with documentation
of how they were obtained; (c) state your conclusions and provide any
necessary comments on their limitations and significance.

2.1 Table 2.9 displays data from a study to test whether pH alters action
potential characteristics following administration of a drug. The response
variable of interest (Vmax) was measured at up to four pH levels for each of
25 subjects. Test the null hypothesis that there is no relationship between
pH and Vmax.

2.2 Forty male subjects were randomly assigned to one of two treat-
ment groups. Each patient had his BPRS factor measured before treatment
(week 0) and at weekly intervals for eight weeks. Table 2.10 displays the
resulting data. Test whether the BPRS response profiles are the same for
the two treatments using an appropriate summary statistic.

2.3 Kenward (1987) describes an experiment to compare two treatments
for controlling intestinal parasites in calves. There were 30 calves in each of
the two groups, and the weight of each calf was determined at 11 measure-
ment times. Table 2.11 displays the data from the first ten calves in each
group. Use an appropriate summary statistic to compare the two treat-
ments.
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TABLE 2.9. Effect of pH on action potential characteristics in 25 subjects
pH Level

Subject 6.5 6.9 7.4 7.9
1 284 310 326
2 261 292
3 213 224 240
4 222 235 247
5 270 286
6 210 218
7 216 234 237
8 236 273 283
9 220 249 270 281
10 166 218 244
11 227 258 282 286
12 216 284
13 257 284
14 204 234 268
15 258 267
16 193 224 235
17 185 222 252 263
18 238 301 300
19 198 240
20 235 255
21 216 238
22 197 212 219
23 234 238
24 295 281
25 261 272
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TABLE 2.10. BPRS measurements from 40 subjects
Week

Treatment Subject 0 1 2 3 4 5 6 7 8
1 1 42 39 36 43 41 40 38 47 41

2 58 68 61 55 43 34 28 28 28
3 54 55 41 38 43 28 29 25 24
4 55 77 49 54 56 50 47 42 46
5 72 75 72 65 50 39 32 38 32
6 48 43 41 38 36 29 33 27 25
7 71 61 47 30 27 40 30 31 31
8 30 36 38 38 31 26 26 25 24
9 41 43 39 35 28 22 20 23 21
10 57 51 51 55 53 43 43 39 32
11 30 34 34 41 36 36 38 36 36
12 55 52 49 54 48 43 37 36 31
13 36 32 36 31 25 25 21 19 22
14 38 35 36 34 25 27 25 26 26
15 66 68 65 49 36 32 27 30 37
16 41 35 45 42 31 31 29 26 30
17 45 38 46 38 40 33 27 31 27
18 39 35 27 25 29 28 21 25 20
19 24 28 31 28 29 21 22 23 22
20 38 34 27 25 25 27 21 19 21

2 1 52 73 42 41 39 38 43 62 50
2 30 23 32 24 20 20 19 18 20
3 65 31 33 28 22 25 24 31 32
4 37 31 27 31 31 26 24 26 23
5 59 67 58 61 49 38 37 36 35
6 30 33 37 33 28 26 27 23 21
7 69 52 41 33 34 37 37 38 35
8 62 54 49 39 55 51 55 59 66
9 38 40 38 27 31 24 22 21 21
10 65 44 31 34 39 34 41 42 39
11 78 95 75 76 66 64 64 60 75
12 38 41 36 27 29 27 21 22 23
13 63 65 60 53 52 32 37 52 28
14 40 37 31 38 35 30 33 30 27
15 40 36 55 55 42 30 26 30 37
16 54 45 35 27 25 22 22 22 22
17 33 41 30 32 46 43 43 43 43
18 28 30 29 33 30 26 36 33 30
19 52 43 26 27 24 32 21 21 21
20 47 36 32 29 25 23 23 23 23



2.5 Problems 31

TABLE 2.11. Weights of 60 calves at 11 measurement times: first ten animals in
each group

Week
Trt. ID 0 2 4 6 8 10 12 14 16 18 19
1 1 233 224 245 258 271 287 287 287 290 293 297

2 231 238 260 273 290 300 311 313 317 321 326
3 232 237 245 265 285 298 304 319 317 334 329
4 239 246 268 288 308 309 327 324 327 336 341
5 215 216 239 264 282 299 307 321 328 332 337
6 236 226 242 255 263 277 290 299 300 308 310
7 219 229 246 265 279 292 299 299 298 300 290
8 231 245 270 292 302 321 322 334 323 337 337
9 230 228 243 255 272 276 277 289 289 300 303
10 232 240 247 263 275 286 294 302 308 319 326

2 1 210 215 230 244 259 266 277 292 292 290 264
2 230 240 258 277 277 293 300 323 327 340 343
3 226 233 248 277 297 313 322 340 354 365 362
4 233 239 253 277 292 310 318 333 336 353 338
5 238 241 262 282 300 314 319 331 338 348 338
6 225 228 237 261 271 288 300 316 319 333 330
7 224 225 239 257 268 290 304 313 310 318 318
8 237 241 255 276 293 307 312 336 336 344 328
9 237 224 234 239 256 266 276 300 302 293 269
10 233 239 259 283 294 313 320 347 348 362 352
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TABLE 2.12. Body weights of 27 rats
Week

Group Rat 0 1 2 3 4
Control 1 57 86 114 139 172

2 60 93 123 146 177
3 52 77 111 144 185
4 49 67 100 129 164
5 56 81 104 121 151
6 46 70 102 131 153
7 51 71 94 110 141
8 63 91 112 130 154
9 49 67 90 112 140
10 57 82 110 139 169

Thyroxin 1 59 85 121 146 181
2 54 71 90 110 138
3 56 75 108 151 189
4 59 85 116 148 177
5 57 72 97 120 144
6 52 73 97 116 140
7 52 70 105 138 171

Thiouracil 1 61 86 109 120 129
2 59 80 101 111 122
3 53 79 100 106 133
4 59 88 100 111 122
5 51 75 101 123 140
6 51 75 92 100 119
7 56 78 95 103 108
8 58 69 93 116 140
9 46 61 78 90 107
10 53 72 89 104 122

2.4 Box (1950) describes an experiment in which 30 rats were randomly
assigned to three treatment groups. Group 1 was a control group, group 2
had thyroxin added to their drinking water, and group 3 had thiouracil
added to their drinking water. Whereas there were ten rats in each of
groups 1 and 3, group 2 consisted of only seven rats (due to an unspecified
accident at the beginning of the experiment). The body weights of each of
the 27 rats were recorded at the beginning of the experiment and at weekly
intervals for four weeks, as shown in Table 2.12. Test for differences among
the three groups using an appropriate summary statistic.

2.5 Table 2.13 displays data from 27 patients involved in a pilot study
for a new treatment for AIDS (Thompson, 1991). Three variables (TMHR
scores, Karnofsky scores, and T-4 cell counts) were measured at baseline
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and at 90 and 180 days after the beginning of treatment. For each variable,
test whether the treatment has an effect over time.

2.6 In an investigation of the effects of various dosages of radiation ther-
apy on psychomotor skills (Danford et al., 1960), 45 cancer patients were
trained to operate a psychomotor testing device. Six patients were not
given radiation and served as controls, whereas the remainder were treated
with dosages of 25–50 R, 75–100 R, or 125–250 R. Table 2.14 displays the
psychomotor test scores on the three days following radiation treatment.
Test for differences among the four groups using an appropriate summary
statistic.

2.7 In a study of the association of hyperglycemia and relative hyperinsu-
linemia, standard glucose tolerance tests were administered to three groups
of subjects: 13 controls, 12 nonhyperinsulinemic obese patients, and 8 hy-
perinsulinemic obese patients (Zerbe, 1979b; Zerbe and Murphy, 1986). Ta-
ble 2.15 displays plasma inorganic phosphate measurements obtained from
blood samples drawn 0, 0.5, 1, 1.5, 2, 3, 4, and 5 hours after a standard-dose
oral glucose challenge. Test for differences among the three groups using
an appropriate summary statistic.

2.8 Sixty female rats were randomly assigned to one of four dosages of
a drug (control, low dose, medium dose, or high dose). The body weight
of each animal, in grams, was recorded at week 0 (just prior to initiation
of treatment) and at weekly intervals for 9 weeks. Table 2.16 displays the
data from the first five animals in each group. Test for differences among
the four dosage groups using an appropriate summary statistic.

2.9 In the Iowa Cochlear Implant Project, the effectiveness of two types of
cochlear implants was studied in profoundly and bilaterally deaf patients.
In one group of 23 subjects, the “type A” implant was used. A second
group of 21 subjects received the “type B” implant. In both groups, the
electrode array was surgically implanted five to six weeks prior to electri-
cal connection to the external speech processor. A sentence test was then
administered at 1, 9, 18, and 30 months after connection. The outcome
variable of interest at each time point was the percentage of correct scores.
Table 2.17 displays the resulting data, which were originally analyzed by
Núñez Antón (1993). Test for a difference between the two implant types
using an appropriate summary statistic.

2.10 Davis (1991) discusses a clinical trial comparing two treatments for
maternal pain relief during labor. In this study, 83 women in labor were
randomized to receive an experimental pain medication (43 subjects) or
placebo (40 subjects). Treatment was initiated when the cervical dilation
was 8 cm. At 30-minute intervals, the amount of pain was self-reported by
placing a mark on a 100-mm line (0 = no pain, 100 = very much pain).
Table 2.18 displays the data from the first 20 subjects in each group. Test
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TABLE 2.13. Measurements at days 0, 90, and 180 from a pilot study of a new
treatment for AIDS

TMHR Scores Karnofsky Scores T-4 Cell Counts
ID 0 90 180 0 90 180 0 90 180
1 7.25 1.5 2.50 70 90 100 285 406 199
2 7.50 1.0 1.00 70 90 100 234 227 384
3 2.00 0.0 0.00 90 100 100 629 724 731
4 7.00 2.5 3.50 50 90 90 39 43 64
5 3.00 1.5 2.50 90 100 100 266 323 367
6 4.50 2.5 2.50 80 90 100 84 70 53
7 6.00 1.5 1.00 60 90 100 178 211 157
8 1.75 1.5 2.00 100 100 100 1076 1184 678
9 7.00 5.0 5.00 90 90 80 17 4 2
10 6.25 3.5 4.75 80 80 90 33 9 1
11 11.00 4.5 4.00 50 80 80 41 24 33
12 9.50 4.5 4.00 60 80 80 138 186 61
13 3.25 0.5 0.00 80 100 100 677 687 561
14 2.00 0.5 0.00 80 100 100 554 696 653
15 2.00 0.5 0.50 80 90 100 375 215 308
16 7.50 1.5 1.50 90 100 100 206 191 243
17 6.50 2.0 2.00 80 90 100 35 53 38
18 6.50 3.0 4.50 50 70 80 53 17 11
19 4.75 1.0 0.50 90 100 100 500 578 462
20 2.25 0.5 1.75 100 100 100 464 384 214
21 1.50 0.5 1.00 90 100 100 460 651 410
22 6.50 5.0 3.00 90 90 100 138 80 221
23 7.50 3.0 2.50 90 100 100 213 89 114
24 5.50 1.0 2.50 80 90 100 480 239 170
25 6.50 0.5 1.50 90 100 100 580 890 1024
26 2.50 1.0 1.00 90 90 100 411 256 447
27 4.00 0.5 0.50 80 100 100 585 595 327
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TABLE 2.14. Psychomotor test scores from 45 cancer patients

Day Day
Group ID 1 2 3 Group ID 1 2 3
Control 1 223 242 248 75–100 R 4 119 149 196

2 72 81 66 5 144 169 164
3 172 214 239 6 170 202 181
4 171 191 203 7 93 122 145
5 138 204 213 8 237 243 281
6 22 24 24 9 208 235 249

25–50 R 1 53 102 104 10 187 199 205
2 45 50 54 11 95 102 96
3 47 45 34 12 46 67 28
4 167 188 209 13 95 137 99
5 193 206 210 14 59 76 101
6 91 154 152 15 186 198 201
7 115 133 136 125–250 R 1 202 229 232
8 32 97 86 2 126 159 157
9 38 37 40 3 54 75 75

10 66 131 148 4 158 168 175
11 210 221 251 5 175 217 235
12 167 172 212 6 147 183 181
13 23 18 30 7 105 107 92
14 234 260 269 8 213 263 260

75–100 R 1 206 199 237 9 258 248 257
2 208 222 237 10 257 269 270
3 224 224 261
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TABLE 2.15. Plasma inorganic phosphate levels from 33 subjects
Hours after Glucose Challenge

Group ID 0 0.5 1 1.5 2 3 4 5
Control 1 4.3 3.3 3.0 2.6 2.2 2.5 3.4 4.4

2 3.7 2.6 2.6 1.9 2.9 3.2 3.1 3.9
3 4.0 4.1 3.1 2.3 2.9 3.1 3.9 4.0
4 3.6 3.0 2.2 2.8 2.9 3.9 3.8 4.0
5 4.1 3.8 2.1 3.0 3.6 3.4 3.6 3.7
6 3.8 2.2 2.0 2.6 3.8 3.6 3.0 3.5
7 3.8 3.0 2.4 2.5 3.1 3.4 3.5 3.7
8 4.4 3.9 2.8 2.1 3.6 3.8 4.0 3.9
9 5.0 4.0 3.4 3.4 3.3 3.6 4.0 4.3

10 3.7 3.1 2.9 2.2 1.5 2.3 2.7 2.8
11 3.7 2.6 2.6 2.3 2.9 2.2 3.1 3.9
12 4.4 3.7 3.1 3.2 3.7 4.3 3.9 4.8
13 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3

Nonhyper- 1 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4
insulinemic obese 2 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9

3 4.6 4.4 3.9 3.9 3.7 4.2 4.8 5.0
4 4.3 3.9 3.1 3.1 3.1 3.1 3.6 4.0
5 3.1 3.1 3.3 2.6 2.6 1.9 2.3 2.7
6 4.8 5.0 2.9 2.8 2.2 3.1 3.5 3.6
7 3.7 3.1 3.3 2.8 2.9 3.6 4.3 4.4
8 5.4 4.7 3.9 4.1 2.8 3.7 3.5 3.7
9 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5

10 4.9 5.0 4.1 3.7 3.7 4.1 4.7 4.9
11 4.8 4.3 4.7 4.6 4.7 3.7 3.6 3.9
12 4.4 4.2 4.2 3.4 3.5 3.4 3.9 4.0

Hyperinsulinemic 1 4.9 4.3 4.0 4.0 3.3 4.1 4.2 4.3
obese 2 5.1 4.1 4.6 4.1 3.4 4.2 4.4 4.9

3 4.8 4.6 4.6 4.4 4.1 4.0 3.8 3.8
4 4.2 3.5 3.8 3.6 3.3 3.1 3.5 3.9
5 6.6 6.1 5.2 4.1 4.3 3.8 4.2 4.8
6 3.6 3.4 3.1 2.8 2.1 2.4 2.5 3.5
7 4.5 4.0 3.7 3.3 2.4 2.3 3.1 3.3
8 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8
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TABLE 2.16. Body weights of 60 female rats: First five animals in each group
Week

Group ID 0 1 2 3 4 5 6 7 8 9
Control 1 152 178 198 200 214 237 240 246 524 255

2 135 152 165 173 184 200 209 208 224 235
3 142 162 184 200 220 230 239 244 259 262
4 159 183 214 233 251 269 280 283 292 295
5 159 180 196 210 216 230 237 247 255 258

Low 1 155 178 194 217 224 230 251 268 279 293
2 158 181 213 254 254 271 280 276 312 318
3 158 185 212 229 250 263 299 290 290 305
4 163 187 214 233 252 259 275 282 295 368
5 159 184 188 229 244 255 270 276 279 285

Medium 1 196 183 208 231 237 261 252 281 282 285
2 159 200 230 265 281 314 330 339 333 353
3 158 185 224 239 254 275 283 292 298 303
4 154 216 234 268 300 338 339 367 373 368
5 142 173 186 214 226 241 256 255 260 272

High 1 167 204 225 258 248 282 284 304 306 333
2 165 193 197 231 229 242 267 268 279 265
3 163 186 212 244 255 264 270 293 290 308
4 175 200 223 247 253 274 282 288 300 290
5 144 177 218 252 269 278 305 308 324 326
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TABLE 2.17. Sentence test results in 44 deaf patients
Type A Implant Type B Implant

Month Month
ID 1 9 18 30 ID 1 9 18 30
1 28.57 53.00 57.83 59.22 1 0.00 0.90 1.61
2 13.00 21.00 26.50 2 0.00 0.00 0.00
3 60.37 86.41 3 0.00 0.00
4 33.87 55.50 61.06 4 8.76 24.42
5 1.61 0.69 5 0.00 20.79 27.42 31.80
6 26.04 61.98 67.28 6 2.30 12.67 28.80 24.42
7 59.00 66.80 83.20 7 12.90 28.34
8 11.29 38.02 8 45.50 43.32 36.80
9 0.00 0.00 0.00 2.76 9 68.00 96.08 97.47 99.00

10 35.10 37.79 54.80 10 20.28 41.01 51.15 61.98
11 16.00 33.00 45.39 40.09 11 65.90 81.30 71.20 70.00
12 40.55 50.69 41.70 52.07 12 0.00 8.76 16.59 14.75
13 3.90 11.06 4.15 14.90 13 0.00 0.00 0.00 0.00
14 1.80 2.30 2.53 2.53 14 9.22 14.98 9.68
15 0.00 17.74 44.70 48.85 15 11.29 44.47 62.90 68.20
16 64.75 84.50 92.40 16 30.88 29.72
17 38.25 81.57 89.63 17 29.72 41.40 64.00
18 67.50 91.47 92.86 18 0.00 43.55 48.16
19 45.62 58.00 19 0.00 0.00
20 0.00 0.00 37.00 20 8.76 60.00
21 51.15 66.13 21 8.00 25.00 30.88 55.53
22 0.00 48.16
23 0.00 0.92
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for a difference between the groups using an appropriate summary statistic.

2.11 The National Cooperative Gallstone Study evaluated the safety of
the drug chenodiol for the treatment of cholesterol gallstones. This drug
dissolves gallstones by altering the metabolic pathway of cholesterol to re-
duce cholesterol secretion into gallbladder bile. One potential side effect,
however, was that it might also increase serum cholesterol, a known risk
factor for atherosclerotic disease. In a group of 113 patients with floating
gallstones, 65 patients received 750 mg/day of chenodiol and 48 patients
received a placebo. Serum cholesterol was measured in these patients prior
to treatment and at 6, 12, 20, and 24 months of follow-up. Many cholesterol
measurements were missing because patient follow-up was terminated, vis-
its were missed, or laboratory specimens were lost or inadequate. The two
groups have rather different missing value patterns, mainly because of the
termination of follow-up for different reasons.

Tables 2.19 and 2.20 display the data from 103 patients, 41 from the
placebo group and 62 from the high-dose chenodiol group (Wei and Lachin,
1984). Note that a few patients from each group who had only one choles-
terol measurement are excluded. Using an appropriate summary statistic,
test whether the two treatments differ with respect to their effects on serum
cholesterol levels.

2.12 Everitt (1994a, 1994b) reports the results from a 100 kilometer (km)
road race held in 1984 in the United Kingdom. The data consist of the
“split” times for 80 runners in each 10-km section of the race as well as the
age of each runner. Table 2.21 displays the data from the first 15 runners.

(a) Using an appropriate summary statistic, assess whether the “split”
times tend to increase, decrease, or remain the same across the 10-km
sections of the race.

(b) Repeat part (a) separately for the first 80 km and the last 20 km of
the race.

(c) Use an appropriate summary statistic to assess whether the associ-
ation between “split” time and section of the race changes with the
age of the runner.

2.13 In an arthritis clinical trial, 227 subjects were randomized to one
of two treatments (labeled as A and B). The outcome variable of interest
was the time (seconds) required to walk 50 feet; this was measured at
baseline (prior to the initiation of treatment) and at four-week intervals
during a 40-week treatment period. Table 2.22 displays the data from the
first 10 subjects.

(a) Suggest and defend an appropriate summary statistic for comparing
the two treatments.
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TABLE 2.18. Pain scores from 83 women in labor: First 20 subjects in each group

Self-Reported Pain Scores at 30-Minute Intervals
Group Patient 0 30 60 90 120 150 180

1 1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 2.5 2.3 14.0
3 38.0 5.0 1.0 1.0 0.0 5.0
4 6.0 48.0 85.0 0.0 0.0
5 19.0 5.0
6 7.0 0.0 0.0 0.0
7 44.0 42.0 42.0 45.0
8 1.0 0.0 0.0 0.0 0.0 6.0 24.0
9 24.5 35.0 13.0
10 1.0 30.5 81.5 67.5 98.5 97.0
11 35.5 44.5 55.0 69.0 72.5 39.5 26.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13 8.0 30.5 26.0 24.0 29.0 45.0 91.0
14 7.0 6.5 7.0 4.0 10.0
15 6.0 8.5 19.5 16.5 42.5 45.5 48.5
16 32.5 9.5 7.5 5.5 4.5 0.0 7.0
17 10.5 10.0 18.0 32.5 0.0 0.0 0.0
18 11.5 20.5 32.5 37.0 39.0
19 72.0 91.5 4.5 32.0 10.5 10.5 10.5
20 0.0 0.0 0.0 0.0 13.5 7.0

2 1 4.0 9.0 30.0 75.0 49.0 97.0
2 0.0 0.0 1.0 27.5 95.0 100.0
3 9.0 6.0 25.0
4 52.5 18.0 12.5
5 90.5 99.0 100.0 100.0 100.0 100.0 100.0
6 74.0 70.0 81.5 94.5 97.0
7 0.0 0.0 0.0 1.5 0.0 18.0 71.0
8 0.0 51.5 56.0
9 6.5 7.0 7.0 9.0 25.0 36.0 20.0
10 19.0 31.0 41.0 58.0
11 6.0 23.0 45.0 67.0 90.5
12 42.0 64.0 6.0
13 86.5 53.0 88.0 100.0 100.0
14 50.0 100.0 100.0 100.0 100.0
15 27.5 36.5 74.0 97.0 100.0 100.0 95.0
16 0.0 0.0 6.0 6.0
17 62.0 79.0 80.5 85.0 90.0 97.5 97.0
18 17.5 27.5 21.0 60.0 80.0 97.0
19 6.5 5.5 18.5 20.0 36.5 63.5 81.5
20 8.0 9.0 35.5 39.0 70.0 92.0 98.0
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TABLE 2.19. Serum cholesterol measurements from 103 patients in the National
Cooperative Gallstone Study: Placebo group

Patient Baseline Month 6 Month 12 Month 20 Month 24
1 251 262 239 234 248
2 233 218 230 251 273
3 250 258 258 286 240
4 141 143 157 162 169
5 418 371 363 384 387
6 229 218 228 244 179
7 271 289 270 296 346
8 312 323 318 383 310
9 194 220 214 256 204
10 211 232 189 230 231
11 205 299 278 259 266
12 191 248 283 268 233
13 249 217 236 266 235
14 301 270 282 287 268
15 201 214 247 274 224
16 251 257 237 266
17 277 242 249 293 306
18 294 313 295 295 271
19 212 236 235 272 287
20 230 315 300 305 341
21 206 242 236 239
22 246 205 249 225 236
23 245 192 215 214 242
24 179 202 194 239 234
25 165 142 188 192 200
26 262 274 245 275 278
27 212 216 228 221 223
28 285 292 300 319 277
29 166 171 166 186 220
30 179 206 214 189 250
31 298 280 280 328 318
32 238 267 269 268 280
33 172 180 216 183
34 191 208 162 218 206
37 282 282
38 213 249 219 209
44 171 188
45 242 268
46 197 224 214
47 230 228 266
48 373 309 332
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TABLE 2.20. Serum cholesterol measurements from 103 patients in the National
Cooperative Gallstone Study: High-dose chenodiol group

Patient Baseline Month 6 Month 12 Month 20 Month 24
1 178 246 295 228 274
2 254 260 278 245 340
3 185 232 215 220 292
4 219 268 241 260 320
5 205 232 265 242 230
6 182 213 173 200 193
7 310 334 290 286 248
8 191 204 227 228 196
9 245 270 209 255 213
10 229 200 238 259 221
11 245 293 261 297 231
12 240 313 251 307 291
13 234 281 277 235 210
14 210 252 275 235 237
15 275 231 285 238 251
16 269 332 300 320 335
17 148 180 184 231 184
18 181 194 212 217 205
19 165 242 250 249 312
20 293 276 276 278 306
21 195 190 205 217 238
22 210 230 249 240 194
23 212 224 246 271 256
24 243 271 304 273 318
25 259 279 296 262 283
26 202 214 192 239 172
27 184 192 205 253 217
28 238 272 297 282 251
29 263 283 248 334 271
30 144 226 261 227 283
31 220 272 222 246 253
32 225 260 253 202 265
33 224 273 242 274
34 307 252 316 258 283
35 313 300 313 317 397
36 231 252 267 299
37 206 177 194 194 212
38 285 291 291 268 260
41 250 269
42 175 214
43 201 219 220
44 268 296 314 330
45 202 186 253
46 260 268
48 209 207 167
49 197 218
50 248 262
51 212 253 225
52 276 326 304
53 163 179 199
54 239 243 265
55 204 203 198
56 247 211 225
57 195 250 272
58 228 228 279
59 290 264 260
60 284 288 268 261
61 217 231 276 257
62 209 200 269 233
63 200 261 264 300
64 227 247 220
65 193 189 232 211
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TABLE 2.21. Ten-kilometer “split” times for 80 runners in a 100-kilometer road
race: Runners 1–15

10-Kilometer Section
ID Age 1 2 3 4 5 6 7 8 9 10
1 39 37.0 37.8 36.6 39.6 41.0 41.0 41.3 45.7 45.1 43.1
2 39 39.5 42.2 40.0 42.3 40.6 40.8 42.0 43.7 41.0 43.9
3 36 37.0 37.8 36.6 39.6 41.0 44.8 44.5 49.4 44.6 47.7
4 . 37.1 38.0 37.7 42.4 41.6 43.5 48.7 49.7 44.8 47.0
5 34 42.2 44.5 41.9 43.4 43.0 47.2 49.1 49.9 46.8 52.3
6 46 43.0 44.6 41.2 42.1 42.5 46.8 47.5 55.8 56.6 58.6
7 35 43.2 44.4 41.0 43.4 43.0 47.2 52.4 57.3 54.4 53.5
8 47 43.2 46.7 44.8 47.5 47.4 47.7 49.9 52.1 50.7 50.0
9 30 38.5 41.4 40.1 43.2 43.2 51.5 56.7 71.5 56.2 48.2

10 . 42.5 43.1 40.6 44.5 45.4 52.3 59.7 59.3 55.0 49.6
11 48 38.0 40.1 39.1 43.8 46.6 51.9 59.2 63.5 57.6 58.4
12 39 46.0 50.4 46.8 47.4 44.1 43.4 46.3 55.0 64.9 56.2
13 32 44.8 46.0 43.1 46.5 46.3 49.0 52.5 58.4 60.9 55.2
14 43 44.8 46.0 43.1 46.5 46.3 49.0 52.5 58.4 60.9 55.2
15 35 47.0 49.4 46.8 48.6 47.8 50.8 50.3 54.0 54.4 53.6

(b) Test whether the profiles over time differ between the two treatments.

(c) Repeat part (b) for males and females separately.

(d) Summarize your conclusions from this study.
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TABLE 2.22. Measurements of time (seconds) to walk 50 feet from 227 subjects
in an arthritis clinical trial: First ten subjects

Week
ID Sex Trt. 0 4 8 12 16 20 24 28 32 36 40
1 F A 20.0 18.0 18.0 16.0 18.0 18.0 20.0 16.0 20.0 20.0 16.0
2 M B 16.0 14.0 . . . . . . . . .
3 M A 12.0 12.0 12.0 12.0 12.0 14.0 12.0 14.0 . 16.0 16.0
4 F A 18.0 14.0 18.0 18.0 18.0 16.0 18.0 20.0 . . .
5 F A 20.0 20.0 . . . . . . . . .
6 F A 18.0 18.0 12.0 16.0 16.0 16.0 12.0 14.0 14.0 12.0 14.0
7 F B 20.0 16.0 20.0 16.0 12.0 18.0 18.0 28.0 20.0 . .
8 M B 16.0 14.0 12.0 12.0 18.0 . . . . . .
9 F A 16.0 18.0 16.0 16.0 14.0 16.0 16.0 16.0 16.0 18.0 14.0

10 F B 20.0 16.0 16.0 20.0 16.0 18.0 18.0 16.0 16.0 16.0 18.0



3
Normal-Theory Methods:
Unstructured Multivariate Approach

3.1 Introduction

The univariate methods described in Chapter 2 reduce the vector of re-
peated measurements from each experimental unit to a single number. Al-
though this permits the use of simple analysis methods, the resulting loss
of information may not be desirable.

Chapters 3–6 consider alternative methods that are useful when the re-
sponse yij from subject i at time point j is normally distributed. These
approaches use the multivariate nature of a subject’s observations. Thus,
rather than reduce the vector of repeated measurements from each subject
to a single summary measurement, all of the data are used.

Chapter 3 covers the use of the unstructured multivariate approach for
one-sample and two-sample problems. In both of these settings, hypothe-
ses of interest can be tested using Hotelling’s T 2 statistic (Hotelling, 1931).
This statistic is a generalization of the usual one-sample and two-sample t
statistics for univariate outcomes. Section 3.2 reviews multivariate normal
distribution theory, Section 3.3 discusses the analysis of repeated measure-
ments from a single sample, and Section 3.4 covers the two-sample setting.
Sections 3.3 and 3.4 also include examples illustrating the use of Hotelling’s
T 2 statistic for the analysis of repeated measurements.
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3.2 Multivariate Normal Distribution Theory

3.2.1 The Multivariate Normal Distribution
Let x = (x1, . . . , xp)′ be a p-component random vector having a multi-
variate normal distribution with mean vector µ = (µ1, . . . , µp)′ and p × p
covariance matrix

Σ =

 σ11 . . . σ1p

...
. . .

...
σp1 . . . σpp

 .
The probability density function of x is

f(x1, . . . , xp) = (2π)−p/2|Σ|−1/2 exp(−0.5(x − µ)′Σ−1(x − µ))

for −∞ < xi < ∞, i = 1, . . . , p. We write this distribution as x ∼ Np(µ,Σ).
Now, consider a sample of n such vectors:

x1 = (x11, . . . , x1p)′, . . . ,xn = (xn1, . . . , xnp)′.

These data can be summarized in the n× p data matrix

X =

 x11 . . . x1p

...
. . .

...
xn1 . . . xnp

 =

 x′
1
...

x′
n

 .
The maximum likelihood estimator of µ is µ̂ = x = (x1, . . . , xp)′, where
xj =

∑n
i=1 xij/n. The maximum likelihood estimator of Σ is

Σ̂ =
1
n

A,

where A is a p× p matrix with elements ajk =
∑n

i=1(xij − xj)(xik − xk).
In matrix notation,

A =
n∑

i=1

(xi − x)(xi − x)′ =
n∑

i=1

xix
′
i − nx x′.

An unbiased estimator of Σ is given by

S =
1

n− 1
A.

3.2.2 The Wishart Distribution
Let z1, . . . ,zn be independent random vectors with zi ∼ Np(0p,Σ), where
0p is the p-component vector (0, . . . , 0)′. Let A =

∑n
i=1 ziz

′
i. The p × p
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matrix A has the (central) Wishart distribution with parameters n and Σ.
We write A ∼ Wp(n,Σ).

The probability density function of A is given by

|A|(n−p−1)/2 exp
(− 1

2 tr(Σ−1A)
)

2np/2 πp(p−1)/4 |Σ|n/2
∏p

i=1 Γ
(
(n+ 1 − i)/2

)
for A positive-definite and 0 otherwise, where Γ(x) =

∫∞
0 ux−1e−udu. In

the case where p = 1 and Σ = 1, this reduces to the density of the chi-
square distribution with n degrees of freedom (χ2

n). Note that A does not
have a density if n < p, although the distribution is nevertheless defined.

3.2.3 Wishart Matrices
Let x1, . . . ,xn be independent Np(µ,Σ) random vectors. The sample co-
variance matrix (from Section 3.2.1) is given by

S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)′.

Let A = (n − 1)S denote the matrix of corrected sums of squares and
products of multivariate normal variates. The matrix A is called a Wishart
matrix and is said to have the Wishart distribution with parameters n− 1
and Σ; we write A ∼ Wp(n− 1,Σ).

One important property of a Wishart matrix is that the sample mean
vector x and the Wishart matrix A computed from the same sample are
independent. Another useful property is that if A1, . . . ,As are independent
Wishart matrices with Ah ∼ Wp(nh,Σ), then

∑s
h=1 Ah ∼ Wp(n,Σ), where

n =
∑s

h=1 nh.

3.2.4 Hotelling’s T 2 Statistic
Let x ∼ Np(µ,Σ). Let nW be a p× p matrix, independent of x, such that
nW ∼ Wp(n,Σ). The statistic

T 2 = x′W −1x

has the T 2 distribution with noncentrality parameter

δ = µ′Σ−1µ

and degrees of freedom (df) p and n. We write T 2 ∼ T 2
p,n,δ. Hotelling (1931)

proposed this statistic and derived its distribution.
The distribution of T 2 is related to that of the ratio of independent χ2

random variables in that

F =
n− p+ 1

np
T 2
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has the noncentral F distribution with parameters p, n−p+1 and noncen-
trality parameter δ (written as Fp,n−p+1,δ). If µ = 0p, the random variable
F has the central F distribution (Fp,n−p+1).

3.2.5 Hypothesis Tests
Let x1, . . . ,xn be a random sample from Np(µ,Σ). Suppose that we wish
to test H0: µ = µ0 for some specified vector µ0 = (µ01, . . . , µ0p)′. The test
is constructed using the following results:

1.
√
n(x − µ0) ∼ Np(

√
n(µ − µ0),Σ).

2. The sample covariance matrix S is independent of x.

3. (n− 1)S ∼ Wp(n− 1,Σ).

In this case, Hotelling’s T 2 statistic is

T 2 =
(√
n(x − µ0)

)′
S−1(√n(x − µ0)

)
= n(x − µ0)

′S−1(x − µ0).

The statistic

F =
(n− 1) − p+ 1

(n− 1)p
T 2 =

n− p

(n− 1)p
T 2

has the Fp,n−p,δ distribution, where

δ = n(µ − µ0)
′Σ−1(µ − µ0).

If H0 is true, F ∼ Fp,n−p.
This test can only be used when n > p. The test based on T 2 can also

be derived as the likelihood ratio test of H0. The null distribution of T 2

is approximately valid even if the distribution of x1, . . . ,xn is not normal
(Anderson, 1984, p. 163).

Another general type of hypothesis of interest isH0: Cµ = 0c, where C is
a c×p matrix of rank c with c ≤ p. Let zi = Cxi for i = 1, . . . , n; z1, . . . ,zn

are independent random vectors from the Nc(Cµ,CΣC ′) distribution. Let

z =
1
n

n∑
i=1

zi =
1
n

n∑
i=1

Cxi = Cx.

The distribution of z is

Nc(Cµ, n−1CΣC ′),

and so
√
nz ∼ Nc(

√
nCµ,CΣC ′).
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The sample covariance matrix of z1, . . . ,zn is given by

Sz =
1

n− 1

n∑
i=1

(zi − z)(zi − z)′

=
1

n− 1

n∑
i=1

(Cxi − Cx)(Cxi − Cx)′

=
1

n− 1

n∑
i=1

C(xi − x)[C(xi − x)]′

=
1

n− 1

n∑
i=1

C(xi − x)(xi − x)′C ′

= CSC ′.

Because (n− 1)Sz = (n− 1)CSC ′ ∼ Wc(n− 1,CΣC ′) and Sz = CSC ′

is independent of z, the statistic

T 2 = (
√
nz)′S−1

z (
√
nz) = n(Cx)′(CSC ′)−1(Cx)

has the T 2
c,n−1,δ distribution with noncentrality parameter

δ = n(Cµ)′(CΣC ′)−1(Cµ).

The statistic

F =
(n− 1) − c+ 1

(n− 1)c
T 2 =

n− c

(n− 1)c
T 2 (3.1)

has the Fc,n−c,δ distribution. If H0 is true, F ∼ Fc,n−c. This test can be
used if n > c.

3.3 One-Sample Repeated Measurements

3.3.1 Methodology
Consider the one-sample layout of Table 1.3. Let yij denote the response
from subject i at time j, for i = 1, . . . , n, j = 1, . . . , t. The vectors

yi = (yi1, . . . , yit)′, i = 1, . . . , n,

are a random sample from Nt(µ,Σ), where µ = (µ1, . . . , µt)′.
Suppose that we wish to test H0:µ1 = · · · = µt. Let y∗

ij = yij −yi,j+1 for
j = 1, . . . , t − 1. The y∗

i = (y∗
i1, . . . , y

∗
i,t−1)

′ vectors are a random sample
from Nt−1(µ∗,Σ∗), where

µ∗ = (µ1 − µ2, µ2 − µ3, . . . , µt−1 − µt)′.
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The hypothesis H0:µ1 = · · · = µt is then equivalent to

H∗
0 : µ∗ = (0, . . . , 0)′.

The test of H∗
0 can be carried out using the T 2 statistic computed from

the sample mean vector and covariance matrix of the y∗
ij values. Because√

ny∗ ∼ Nt−1(
√
nµ∗,Σ∗) and (n − 1)S∗ ∼ Wt−1(n − 1,Σ∗), the statistic

T 2 is given by
T 2 = ny∗′

S∗−1
y∗ ∼ T 2

t−1,n−1,δ∗ ,

where δ∗ = nµ∗′
Σ∗−1

µ∗. The statistic

F =
(n− 1) − (t− 1) + 1

(n− 1)(t− 1)
T 2 =

n− t+ 1
(n− 1)(t− 1)

T 2

has the Ft−1,n−t+1 distribution if H∗
0 is true.

Using vector and matrix notation, y∗
i = Cyi, where C is the (t− 1) × t

matrix 
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −1

 .
Thus, y∗

i ∼ Nt−1(Cµ,CΣC ′) and

T 2 = n(Cy)′(CSC ′)−1(Cy).

The value of T 2 is invariant with respect to the specific choice of C. For
example, another choice is

C =


−1 1 0 . . . 0 0
−1 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
−1 0 0 . . . 0 1

 .
Other types of hypotheses of the general form H0: Cµ = 0 can also be
tested.

3.3.2 Examples
Table 2.1 displays data from a study in which ventilation volumes (l/min)
were measured in eight subjects under six different temperatures of inspired
dry air (Deal et al., 1979). In Section 2.2, these data were analyzed using
the summary-statistic approach. Figure 3.1 displays the response profiles
for each of the eight subjects as well as the mean profile.

Because the individual profiles display no clear pattern, this plot might
lead one to conclude that the summary-statistic approach may not be the
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FIGURE 3.1. Ventilation volumes (l/min) from eight subjects

most appropriate method to use in testing whether ventilation volume is
affected by temperature.

Let µ1, . . . , µ6 denote the mean ventilation volumes at temperatures −10,
25, 37, 50, 65, and 80◦C, respectively. Under the assumption that ventila-
tion volumes are normally distributed, Hotelling’s T 2 can be used to test
H0:µ1 = · · · = µ6. In this example, T 2 = 34.155 and

F =
n− t+ 1

(n− 1)(t− 1)
T 2 =

8 − 6 + 1
7 × 5

T 2 =
3
35
T 2 = 2.9276.

With reference to the F5,3 distribution, p = 0.20. At the 5% level of signif-
icance, there is insufficient evidence to conclude that the mean ventilation
volumes at the six temperatures differ significantly.

As a second example, Table 3.1 lists the data from a dental study in
which the height of the ramus bone (mm) was measured in 20 boys at
ages 8, 8.5, 9, and 9.5 years (Elston and Grizzle, 1962). Figure 3.2 displays
the response profiles for each of the 20 boys as well as the mean profile.

One question of interest is to determine whether bone height changes
with age. Let µ = (µ1, . . . , µ4)′ denote the vector of mean ramus bone
heights at ages 8, 8.5, 9, and 9.5 years of age, respectively. Under the
assumption that ramus bone heights are normally distributed, Hotelling’s
T 2 can be used to test H0:µ1 = · · · = µ4. The T 2 statistic is equal to 73.16
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TABLE 3.1. Ramus bone heights (mm) from 20 boys
Age (years)

Subject 8 8.5 9 9.5
1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45.0 47.0 47.3 49.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8
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FIGURE 3.2. Ramus bone heights (mm) from 20 boys
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TABLE 3.2. Orthogonal polynomial coefficients for four equally spaced time
points

Number of
Points Order

4 Linear −3 −1 1 3
Quadratic 1 −1 −1 1
Cubic −1 3 −3 1

and

F =
n− t+ 1

(n− 1)(t− 1)
T 2 =

20 − 4 + 1
19 × 3

T 2 =
17
57
T 2 = 21.82.

With reference to the F3,17 distribution, this result is highly significant
(p < 0.001).

In this example, the result that bone height changes with age in young
boys is perhaps too obvious to be of great interest. Another question of
interest is to assess whether the relationship between bone height and age
is linear. Because the four measurements are equally spaced, the test of
nonlinearity can be carried out using orthogonal polynomial coefficients
(Pearson and Hartley, 1966, Table 47).

Table 3.2 displays orthogonal polynomial coefficients for the case of four
equally spaced time points. The hypothesis that the nonlinear (quadratic
and cubic) effects of age on ramus bone height are jointly equal to zero is
assessed by testing H0: Cµ = 02, where

C =
(

1 −1 −1 1
−1 3 −3 1

)
.

In this case, the F statistic is given by Equation (3.1) with c = 2. The T 2

statistic is 0.038 and

F =
(n− 1) − c+ 1

(n− 1)c
T 2 =

n− c

(n− 1)c
T 2 =

18
38
T 2 = 0.018.

With reference to the F2,18 distribution, the p-value is 0.98. Thus, the
relationship between ramus bone height and age appears to be linear.

In this example, published tables of orthogonal polynomial coefficients for
equally spaced data were used. Although orthogonal polynomial coefficients
for unequally spaced time points are not tabulated, these can be generated
using computer programs. Another (equivalent) approach is the method of
divided differences (Hills, 1968).

Suppose that measurements are obtained at time points x1, . . . , xt. Let

dj =
1

xj+1 − xj
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for j = 1, . . . , t− 1. The test of nonlinearity is H0: Cµ = 0t−2, where C is
the (t− 2) × t matrix


−d1 d1 + d2 −d2 0 · · · 0 0 0
0 −d2 d2 + d3 −d3 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · −dt−2 dt−2 + dt−1 −dt−1

 .
For example, if the measurements in this example had instead been ob-
tained at ages 8, 8.5, 9, and 10,

d1 =
1

8.5 − 8
= 2, d2 =

1
9 − 8.5

= 2, d3 =
1

10 − 9
= 1,

and

C =
(−2 4 −2 0

0 −2 3 −1

)
.

Note that if the time points x1, . . . , xt are equally spaced, then

d1 = · · · = dt−1 = 1

and

C =


−1 2 −1 0 · · · 0 0 0

0 −1 2 −1 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · −1 2 −1

 .

3.3.3 Comments
The unstructured multivariate approach to the analysis of repeated mea-
surements from one sample assumes multivariate normality but does not
require any assumptions concerning the covariance matrix of the multi-
variate normal distribution. This approach is analogous to the univariate
paired t test.

One disadvantage of this approach is that it is necessary to estimate
the t × t covariance matrix Σ. If t is large, many degrees of freedom are
used in estimating covariance parameters. As a consequence, hypothesis
tests using this approach will have low power when the denominator df of
the F statistic is small. In addition, this method can only be used when
the number of linearly independent components of the hypothesis is less
than the number of subjects. For example, to test H0:µ1 = · · · = µt, the
number of subjects n must be greater than t. Finally, this approach can
not be easily adapted for situations in which there are missing data.
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3.4 Two-Sample Repeated Measurements

3.4.1 Methodology
The extension of the unstructured multivariate approach to the situation
when repeated measurements at t time points are obtained from two inde-
pendent groups of subjects is straightforward. Consider the data layout of
Table 1.2 for the special case where s = 2. Let yhi = (yhi1, . . . , yhit)′ denote
the vector of observations from the ith subject in group h for i = 1, . . . , nh,
h = 1, 2. We assume that the vectors y11, . . . ,y1n1

are an independent ran-
dom sample from the Nt(µ1,Σ) distribution, where µ1 = (µ11, . . . , µ1t)′.
We similarly assume that the vectors y21, . . . ,y2n2

are an independent ran-
dom sample from the Nt(µ2,Σ) distribution, where µ2 = (µ21, . . . , µ2t)′.
Note that the covariance matrices of the two distributions are assumed
equal.

One hypothesis of general interest is H0: µ1 = µ2. Based on the proper-
ties of linear combinations of multivariate normal random vectors, we have
the following results:

yh ∼ Nt

(
µh,

1
nh

Σ
)
, h = 1, 2,

y1 − y2 ∼ Nt

(
µ1 − µ2,

(
1
n1

+
1
n2

)
Σ
)
,√

n1n2

n1 + n2

(
y1 − y2

)
∼ Nt

(√
n1n2

n1 + n2

(
µ1 − µ2

)
,Σ
)
.

The pooled estimator of the covariance matrix Σ is given by

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
,

where

Sh =
1

nh − 1

nh∑
i=1

(yhi − yh)(yhi − yh)′

is the sample covariance matrix in group h for h = 1, 2. Because

(nh − 1)Sh ∼ Wt(nh − 1,Σ),

it follows that

(n1 − 1)S1 + (n2 − 1)S2 ∼ Wt(n1 + n2 − 2,Σ)

and that
(n1 + n2 − 2)S ∼ Wt(n1 + n2 − 2,Σ).

Therefore, the statistic

T 2 =
n1n2

n1 + n2

(
y1 − y2

)′
S−1(y1 − y2

)
(3.2)
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has the T 2
t,n1+n2−2,δ distribution with noncentrality parameter

δ =
n1n2

n1 + n2

(
µ1 − µ2

)′
Σ−1(µ1 − µ2

)
.

Consequently, the statistic

F =
(n1 + n2 − 2) − t+ 1

(n1 + n2 − 2)t
T 2 =

n1 + n2 − t− 1
(n1 + n2 − 2)t

T 2

has the Ft,n1+n2−t−1,δ distribution. If H0: µ1 = µ2 is true, then δ = 0 and
F ∼ Ft,n1+n2−t−1.

Tests of other hypotheses can be similarly constructed. For example,
suppose that we wish to test H0: C(µ1 − µ2) = 0c, where C is a c × t
matrix of rank c (c ≤ t). Let zhi = Cyhi for h = 1, 2. Because

y1 − y2 ∼ Nt

(
µ1 − µ2,

(
1
n1

+
1
n2

)
Σ
)
,

it follows that

z1 − z2 ∼ Nc

(
C
(
µ1 − µ2

)
,

(
n1 + n2

n1n2

)
CΣC ′

)
.

Let Szh = CShC ′ denote the sample covariance matrix of the trans-
formed observations zhi from group h, and let

Sz =
(n1 − 1)Sz1 + (n2 − 1)Sz2

n1 + n2 − 2

denote the pooled covariance matrix. Because

(n1 + n2 − 2)Sz ∼ Wc(n1 + n2 − 2,CΣC ′),

the statistic

T 2 =
n1n2

n1 + n2
(y1 − y2)

′C ′(CSC ′)−1
C(y1 − y2)

has the T 2
c,n1+n2−2,δ distribution with noncentrality parameter

δ =
n1n2

n1 + n2
(µ1 − µ2)

′C ′(CΣC ′)−1C(µ1 − µ2).

The statistic

F =
(n1 + n2 − 2) − c+ 1

(n1 + n2 − 2)c
T 2 =

n1 + n2 − c− 1
(n1 + n2 − 2)c

T 2

then has the Fc,n1+n2−c−1,δ distribution. If H0: Cµ1 = Cµ2 is true, F has
the central F distribution Fc,n1+n2−c−1.
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For example, if H0: µ1 = µ2 is rejected, a weaker, and often more realis-
tic, hypothesis is that the mean profiles in the two groups are parallel; that
is, that the µ1 and µ2 profiles differ only by a constant vertical shift. This
hypothesis of parallelism can be expressed as

H0:µ12 − µ11 = µ22 − µ21,

µ13 − µ12 = µ23 − µ22,

...
µ1t − µ1,t−1 = µ2t − µ2,t−1.

In matrix notation, this is H0: C(µ1−µ2) = 0t−1, where C is the (t−1)×t
matrix 

−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · −1 1

 .

3.4.2 Example
Potthoff and Roy (1964) describe a study conducted at the University
of North Carolina Dental School in two groups of children (16 boys and
11 girls). At ages 8, 10, 12, and 14, the distance (mm) from the center of
the pituitary gland to the pterygomaxillary fissure was measured. Table 3.3
lists the individual measurements as well as the sample means and stan-
dard deviations in both groups. Figure 3.3 displays the individual profiles
for the 16 boys, and Figure 3.4 displays the corresponding profiles for the
11 girls. Figure 3.5 shows the mean profiles in boys and girls.

Let µb = (µb,8, µb,10, µb,12, µb,14)′ and µg = (µg,8, µg,10, µg,12, µg,14)′ de-
note the mean profiles for boys and girls, respectively. One question of
interest is to assess whether the profiles for boys and girls are the same
(i.e., to test H0: µb = µg). Hotelling’s T 2 statistic is 16.51 and

F =
n1 + n2 − t− 1
(n1 + n2 − 2)t

T 2 =
16 + 11 − 4 − 1

25 × 4
T 2 =

22
100

T 2 = 3.63,

with t = 4 and n1 + n2 − t − 1 = 22 df. With reference to the F4,22
distribution, p = 0.02. At the 5% level of significance, one would conclude
that the profiles for boys and girls are not the same.

The weaker hypothesis of parallelism is given by

H0:µb,10 − µb,8 = µg,10 − µg,8,

µb,12 − µb,10 = µg,12 − µg,10,

µb,14 − µb,12 = µg,14 − µg,12.
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TABLE 3.3. Dental measurements from 16 boys and 11 girls
Group ID Age 8 Age 10 Age 12 Age 14
Boys 1 26.0 25.0 29.0 31.0

2 21.5 22.5 23.0 26.5
3 23.0 22.5 24.0 27.5
4 25.5 27.5 26.5 27.0
5 20.0 23.5 22.5 26.0
6 24.5 25.5 27.0 28.5
7 22.0 22.0 24.5 26.5
8 24.0 21.5 24.5 25.5
9 23.0 20.5 31.0 26.0

10 27.5 28.0 31.0 31.5
11 23.0 23.0 23.5 25.0
12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0

Mean 22.88 23.81 25.72 27.47
S.D. 2.45 2.14 2.65 2.09

Girls 1 21.0 20.0 21.5 23.0
2 21.0 21.5 24.0 25.5
3 20.5 24.0 24.5 26.0
4 23.5 24.5 25.0 26.5
5 21.5 23.0 22.5 23.5
6 20.0 21.0 21.0 22.5
7 21.5 22.5 23.0 25.0
8 23.0 23.0 23.5 24.0
9 20.0 21.0 22.0 21.5

10 16.5 19.0 19.0 19.5
11 24.5 25.0 28.0 28.0

Mean 21.18 22.23 23.09 24.09
S.D. 2.12 1.90 2.36 2.44
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FIGURE 3.3. Dental measurements from 16 boys
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FIGURE 3.4. Dental measurements from 11 girls
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FIGURE 3.5. Sample means of dental measurements from 16 boys and 11 girls

In matrix notation, this is H0: C(µb − µg) = 03, where

C =

−1 1 0 0
0 −1 1 0
0 0 −1 1

 .
The T 2 statistic is 8.79 and

F =
n1 + n2 − c− 1
(n1 + n2 − 2)c

T 2 =
16 + 11 − 3 − 1

25 × 3
T 2 =

23
75
T 2 = 2.70,

with c = 3 and n1 + n2 − c − 1 = 23 df. With reference to the F3,23
distribution, p = 0.07. Although one could not reject H0 at the 5% level of
significance, there is some evidence that the profiles are not parallel.

3.4.3 Comments
The extension of the unstructured multivariate approach to the situation
when repeated measurements at t time points are obtained from two in-
dependent groups of subjects requires the assumption that the covariance
matrices in the two groups are equal. The hypothesis H0:Σ1 = Σ2 can be
tested using Bartlett’s (1937) modification of the likelihood ratio test. This
test is implemented in standard statistical software, such as the DISCRIM
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procedure of SAS (SAS Institute, 1999). The asymptotic distribution of the
test criteria used in PROC DISCRIM is χ2

(s−1)t(t+1)/2, where s is the num-
ber of groups and t is the number of time points. Note that this test can be
used when s > 2. Although the likelihood ratio test is unbiased, it is not
robust to departures from multivariate normality. Parhizgari and Prakash
(1989) provide a FORTRAN subroutine implementing an improved approx-
imation to the distribution of the likelihood ratio test.

Anderson (1984, pp. 175–181) discusses the consequences and remedies
for the situation in which the covariance matrices are unequal. If Σ1 �= Σ2,
the significance level of the T 2 test of H0: µ1 = µ2 depends on Σ1 and
Σ2. If the difference between Σ1 and Σ2 is small, or if the sample sizes
n1 and n2 are large, there is no practical effect. Otherwise, the nominal
significance level of the test may be distorted.

Two tests of H0: µ1 = µ2 are possible without the assumption that
Σ1 = Σ2. First, if n1 = n2 = n/2, the null hypothesis H0: µ1 = µ2 can be
tested using a T 2

t,(n−2)/2 statistic or, equivalently, an Ft,n/2−t statistic. In
comparison, the degrees of freedom of the F statistic are t and n− t− 1 if
the assumption that Σ1 = Σ2 is made. Thus, although the numerator df
of the tests are the same, the denominator df are substantially reduced. A
much more serious shortcoming is that this test depends on the ordering
of the values in the two samples.

If n1 < n2, the hypothesis H0: µ1 = µ2 can be tested using a T 2
t,n1−1

statistic, leading to an Ft,n1−t statistic. This test is based on the difference
between the sample means (using all the data), but it sacrifices observations
in estimating the covariance matrix. In addition, the test statistic is not
unique, because it depends on the ordering of the values in the two samples.

3.5 Problems

3.1 Show that the Wp(n,Σ) distribution simplifies to the χ2
n distribution

when p = 1 and Σ = 1.

3.2 Consider the one-sample repeated measures problem with data ma-
trix as shown in Table 1.3. Suppose that the yi = (yi1, . . . , yit)′ vectors are
a random sample from the Nt(µ,Σ) distribution, where µ = (µ1, . . . , µt)′.
Let y and S denote the sample mean vector and covariance matrix of the
observations yi, and let C be a (t − 1) × t matrix of rank t − 1 satisfying
C1t−1 = 0t−1, where 1t−1 is the (t− 1)-component vector (1, . . . , 1)′. For
example, one choice for C is the matrix

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · 1 −1

 .
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The null hypothesis H0:µ1 = . . . = µt can be tested using the statistic

T 2 = n(Cy)′(CSC ′)−1(Cy).

Prove that the value of T 2 is invariant with respect to the specific choice
of C.

3.3 Table 3.4 displays data from a study of affective facial expressions
conducted in 22 subjects (Vasey and Thayer, 1987). In this study, several
pieces of music were played to each subject in an attempt to elicit selected
affective states. Trial 1 was a baseline, relaxing music condition. Trial 2 was
designed to produce positive effects, trial 3 was designed to produce agita-
tion, and trial 4 was meant to create sadness. Each trial lasted 90 seconds,
and the response variable at each trial was the mean electromyographic
(EMG) amplitude (µV) from the left brow region.

(a) Use Hotelling’s T 2 statistic to test whether the mean EMG amplitude
is the same across the four trials.

(b) Use Hotelling’s T 2 statistic to compare each of trials 2–4 to the base-
line condition (trial 1).

3.4 Table 3.5 displays data from a study of the effects of the hydrobro-
mides of L-hyoscyamine, L-hyoscine, and DL-hyoscine (scopolamine) on the
duration of sleep of ten mental patients (Cushny and Peebles, 1905; Bock,
1975, p. 465). Each of the drugs was tested a number of nights in each
subject, and the response variable is the average number of hours of sleep
per night. Test the following hypotheses using Hotelling’s T 2 statistic:

(a) None of the three hypnotic drugs has an effect different from the
control.

(b) The average effect of the three hypnotic drugs is not different from
the control.

(c) The effect of L-hyoscyamine is not different from the average effect
of L-hyoscine and DL-hyoscine.

(d) The effects of L-hyoscine and DL-hyoscine are not different.

3.5 In a pilot study of a new treatment for AIDS, TMHR scores, Karnof-
sky scores, and T-4 cell counts were measured at baseline and at 90 and 180
days after the beginning of treatment (Thompson, 1991). These data were
considered previously in Problem 2.5 and are displayed in Table 2.13. For
each variable, use Hotelling’s T 2 statistic to test whether the treatment has
an effect over time and whether the effect is linear. Would you recommend
the use of this methodology to analyze the data from this study?
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TABLE 3.4. Left brow EMG amplitudes from 22 subjects
EMG Amplitude (µV)

Subject Trial 1 Trial 2 Trial 3 Trial 4
1 143 368 345 772
2 142 155 161 178
3 109 167 356 956
4 123 135 137 187
5 276 216 232 307
6 235 386 398 425
7 208 175 207 293
8 267 358 698 771
9 183 193 631 403
10 245 268 572 1383
11 324 507 556 504
12 148 378 342 796
13 130 142 150 173
14 119 171 333 1062
15 102 94 93 69
16 279 204 229 299
17 244 365 392 406
18 196 168 199 287
19 279 358 822 671
20 167 183 731 203
21 345 238 572 1652
22 524 507 520 504

TABLE 3.5. Effects of hypnotic drugs on duration of sleep in ten subjects
Average Hours of Sleep

Subject Control L-hyoscyamine L-hyoscine DL-hyoscine
1 0.6 1.3 2.5 2.1
2 3.0 1.4 3.8 4.4
3 4.7 4.5 5.8 4.7
4 5.5 4.3 5.6 4.8
5 6.2 6.1 6.1 6.7
6 3.2 6.6 7.6 8.3
7 2.5 6.2 8.0 8.2
8 2.8 3.6 4.4 4.3
9 1.1 1.1 5.7 5.8
10 2.9 4.9 6.3 6.4
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TABLE 3.6. Left and right eye response times in seven volunteers
Left Eye Right Eye

Subject 6/6 6/18 6/36 6/60 6/6 6/18 6/36 6/60
1 116 119 116 124 120 117 114 122
2 110 110 114 115 106 112 110 110
3 117 118 120 120 120 120 120 124
4 112 116 115 113 115 116 116 119
5 113 114 114 118 114 117 116 112
6 119 115 94 116 100 99 94 97
7 110 110 105 118 105 105 115 115

3.6 Table 3.6 displays data from a study measuring response times of
the eyes to a stimulus (Crowder and Hand, 1990, p. 30). The variable of
interest was the time lag (milliseconds) between the stimulus (a light flash)
and the electrical response at the back of the cortex. In seven student
volunteers, recordings were made for left and right eyes through lenses of
powers 6/6, 6/18, 6/36, and 6/60. In the following questions, let µl1, . . . , µl4
and µr1, . . . , µr4 denote the mean values for the four left and right eye
measurements, respectively.

(a) Consider the hypothesis H0:µl1 = µl2 = · · · = µr3 = µr4 that there
are no differences among the means for the eight repeated measure-
ments. Is it possible to test this hypothesis using Hotelling’s T 2? If
so, carry out the test.

(b) Repeat (a) for the hypothesis H0:µl1 = µr1, . . ., µl4 = µr4 that there
are no differences between eyes.

(c) Repeat (a) for the hypothesis H0:µl1 = µl2 = µl3 = µl4, µr1 = µr2 =
µr3 = µr4 that there are no differences within eyes.

3.7 Table 3.7 displays data from a study examining the effectiveness of
three methods of suctioning an endotracheal tube: standard suctioning, a
new method using a special vacuum, and manual bagging of the patient
while suctioning is taking place (Weissfeld and Kshirsagar, 1992). Each
of the three methods was applied in a random order to 25 patients in
an intensive care unit. The outcome of interest, oxygen saturation, was
then measured at five time points: baseline, first suctioning pass, second
suctioning pass, third suctioning pass, and 5 minutes postsuctioning.

(a) Test whether the mean responses differ across the 15 measurements
using Hotelling’s T 2.

(b) At each of the five time points, test whether the mean responses differ
among the three methods using Hotelling’s T 2.
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TABLE 3.7. Oxygen saturation measurements from 25 intensive care unit patients

Standard New Manual Bagging
ID 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 95 96 94 97 95 94 95 95 95 94 92 97 98 97 91
2 94 94 92 93 95 96 96 95 95 94 96 99 97 99 99
3 94 93 92 91 93 92 94 93 94 92 94 96 96 98 96
4 96 98 97 98 95 98 98 99 98 97 97 95 95 92 96
5 94 93 94 95 95 94 90 93 93 95 93 96 96 96 93
6 97 99 100 99 99 98 97 98 94 98 99 99 98 99 100
7 97 90 93 91 97 95 95 96 92 97 92 91 89 92 92
8 94 95 95 95 95 93 96 96 94 95 96 92 95 94 96

10 95 96 95 94 94 97 99 100 100 99 91 92 92 93 94
11 96 96 96 96 96 100 100 100 100 100 96 96 96 96 96
12 98 96 99 97 98 99 99 98 98 99 99 99 99 99 99
13 94 89 88 79 93 97 98 98 98 96 96 94 94 92 95
14 93 93 94 94 95 93 94 95 95 94 95 96 97 97 97
15 97 100 97 98 96 100 100 99 99 100 97 96 97 97 100
16 96 97 99 100 97 96 95 95 96 97 96 94 93 94 96
17 92 93 94 93 93 92 90 91 90 93 96 100 100 100 98
18 100 99 98 99 99 96 95 97 97 96 96 96 99 99 95
19 97 96 96 96 96 98 100 100 100 99 98 98 97 99 98
20 94 97 98 98 96 98 97 96 93 100 98 95 95 96 97
21 94 97 97 95 95 96 96 96 96 97 95 83 92 93 95
22 96 96 94 94 96 97 95 95 92 96 96 98 98 98 98
23 97 98 97 96 98 99 95 93 90 99 98 99 99 98 97
24 97 98 98 99 98 100 100 100 100 100 97 97 97 96 96
25 98 100 100 100 96 95 96 97 96 94 95 94 97 98 97
26 91 90 92 92 92 94 93 94 94 94 95 93 92 93 95

(c) For each of the three methods, test whether the mean responses differ
across the five time points using Hotelling’s T 2.

(d) Summarize the results of this study.

3.8 Twelve hospitalized patients underwent a dietary treatment regimen
during which plasma ascorbic acid levels were recorded on each of seven
occasions during a 16-week period. There were two measurements prior to
treatment (weeks 1 and 2), three during treatment (weeks 6, 10, and 14),
and two after (weeks 15 and 16) the treatment regimen. The data, which
were originally reported in Crowder and Hand (1990, p. 32), are displayed
in Table 3.8.
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TABLE 3.8. Plasma ascorbic acid levels in 12 hospitalized patients
Week

Patient 1 2 6 10 14 15 16
1 0.22 0.00 1.03 0.67 0.75 0.65 0.59
2 0.18 0.00 0.96 0.96 0.98 1.03 0.70
3 0.73 0.37 1.18 0.76 1.07 0.80 1.10
4 0.30 0.25 0.74 1.10 1.48 0.39 0.36
5 0.54 0.42 1.33 1.32 1.30 0.74 0.56
6 0.16 0.30 1.27 1.06 1.39 0.63 0.40
7 0.30 1.09 1.17 0.90 1.17 0.75 0.88
8 0.70 1.30 1.80 1.80 1.60 1.23 0.41
9 0.31 0.54 1.24 0.56 0.77 0.28 0.40
10 1.40 1.40 1.64 1.28 1.12 0.66 0.77
11 0.60 0.80 1.02 1.28 1.16 1.01 0.67
12 0.73 0.50 1.08 1.26 1.17 0.91 0.87

(a) Use Hotelling’s T 2 to test the null hypothesis that there were no
changes within phases; that is, H0:µ1 = µ2, µ6 = µ10 = µ14, µ15 =
µ16.

(b) Use Hotelling’s T 2 to test the null hypothesis that the nonlinear com-
ponents of the relationship between plasma ascorbic acid and time
are equal to zero (ignoring the fact that measurements were obtained
during three phases).

3.9 Two drug treatments, both in tablet form, were compared using five
volunteer subjects in a pilot trial. There were two phases, with a washout
period in between. In each phase, blood samples were taken at times 1, 2,
3, and 6 hours after medication. The resulting antibiotic serum levels were
reported in Crowder and Hand (1990, p. 9) and are displayed in Table 3.9.
In the following questions, let µA1, µA2, µA3, and µA6 denote the mean
values at times 1, 2, 3, and 6 during phase A, and let µB1, µB2, µB3, and
µB6 denote the corresponding means during phase B.

(a) Consider the hypothesis

H0:µA1 = µB1, µA2 = µB2, µA3 = µB3, µA6 = µB6

that there is no difference between phases A and B. Is it possible to
test this hypothesis using Hotelling’s T 2? If so, carry out the test.

(b) Repeat (a) for the hypothesis

H0:µA1 = µA2 = µA3 = µA6, µB1 = µB2 = µB3 = µB6

that there are no differences among the four times for both drugs.
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TABLE 3.9. Antibiotic serum levels in five volunteers
Drug A Drug B

Subject 1 2 3 6 1 2 3 6
1 1.08 1.99 1.46 1.21 1.48 2.50 2.62 1.95
2 1.19 2.10 1.21 0.96 0.62 0.88 0.68 0.48
3 1.22 1.91 1.36 0.90 0.65 1.52 1.32 0.95
4 0.60 1.10 1.03 0.61 0.32 2.12 1.48 1.09
5 0.55 1.00 0.82 0.52 1.48 0.90 0.75 0.44

(c) Repeat (a) for the hypothesis H0:µA1 = µA2 = µA3 = µA6 that there
are no differences among the four times for drug A.

(d) Repeat (a) for the hypothesis H0:µB1 = µB2 = µB3 = µB6 that there
are no differences among the four times for drug B.

(e) Repeat (a) for the hypothesis that there is no nonlinear effect of time
for either of the two drugs.

3.10 Table 3.10 displays plasma inorganic phosphate measurements ob-
tained from 13 control and 20 obese patients 0, 0.5, 1, 1.5, 2, and 3 hours
after an oral glucose challenge (Zerbe, 1979b). The sample means are plot-
ted in Figure 3.6.

(a) At the 5% level of significance, test the null hypothesis that the co-
variance matrices in the control group and the obese group are equal.

(b) Use Hotelling’s T 2 statistic to test the null hypothesis that the group
means are the same at all six measurement times.

(c) Use Hotelling’s T 2 statistic to test whether the profiles in the two
groups are parallel.

(d) Repeat parts (a), (b), and (c) using only the first three time points
(hours 0, 0.5, and 1).

3.11 Kenward (1987) describes an experiment to compare two treatments
for controlling intestinal parasites in calves. There were 30 calves in each
of the two groups, and the weight of each calf was determined at 11 mea-
surement times. These data were previously considered in Problem 2.3 and
are partially displayed in Table 2.11.

(a) At each of the 11 measurement times, test the null hypothesis that
the mean weight for treatment 1 is equal to the mean weight for
treatment 2.
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TABLE 3.10. Plasma inorganic phosphate levels from 13 control and 20 obese
patients

Hours After Glucose Challenge
Group Patient 0 0.5 1 1.5 2 3
Control 1 4.3 3.3 3.0 2.6 2.2 2.5

2 3.7 2.6 2.6 1.9 2.9 3.2
3 4.0 4.1 3.1 2.3 2.9 3.1
4 3.6 3.0 2.2 2.8 2.9 3.9
5 4.1 3.8 2.1 3.0 3.6 3.4
6 3.8 2.2 2.0 2.6 3.8 3.6
7 3.8 3.0 2.4 2.5 3.1 3.4
8 4.4 3.9 2.8 2.1 3.6 3.8
9 5.0 4.0 3.4 3.4 3.3 3.6
10 3.7 3.1 2.9 2.2 1.5 2.3
11 3.7 2.6 2.6 2.3 2.9 2.2
12 4.4 3.7 3.1 3.2 3.7 4.3
13 4.7 3.1 3.2 3.3 3.2 4.2

Obese 1 4.3 3.3 3.0 2.6 2.2 2.5
2 5.0 4.9 4.1 3.7 3.7 4.1
3 4.6 4.4 3.9 3.9 3.7 4.2
4 4.3 3.9 3.1 3.1 3.1 3.1
5 3.1 3.1 3.3 2.6 2.6 1.9
6 4.8 5.0 2.9 2.8 2.2 3.1
7 3.7 3.1 3.3 2.8 2.9 3.6
8 5.4 4.7 3.9 4.1 2.8 3.7
9 3.0 2.5 2.3 2.2 2.1 2.6
10 4.9 5.0 4.1 3.7 3.7 4.1
11 4.8 4.3 4.7 4.6 4.7 3.7
12 4.4 4.2 4.2 3.4 3.5 3.4
13 4.9 4.3 4.0 4.0 3.3 4.1
14 5.1 4.1 4.6 4.1 3.4 4.2
15 4.8 4.6 4.6 4.4 4.1 4.0
16 4.2 3.5 3.8 3.6 3.3 3.1
17 6.6 6.1 5.2 4.1 4.3 3.8
18 3.6 3.4 3.1 2.8 2.1 2.4
19 4.5 4.0 3.7 3.3 2.4 2.3
20 4.6 4.4 3.8 3.8 3.8 3.6
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FIGURE 3.6. Mean plasma inorganic phosphate levels in 13 control subjects and
20 obese subjects
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(b) Use Hotelling’s T 2 statistic to test the null hypothesis that the treat-
ment 1 and treatment 2 mean weights are the same at all 11 mea-
surement times.

(c) Use Hotelling’s T 2 statistic to test whether the weight profiles for the
two treatments are parallel.

3.12 Forty male subjects were randomly assigned to one of two treat-
ment groups. The values of the BPRS factor measured before treatment
(week 0) and at weekly intervals for eight weeks were previously considered
in Problem 2.2 and are displayed in Table 2.10. Test whether the BPRS
response profiles are the same for the two treatments using Hotelling’s T 2

statistic.

3.13 Table 3.11 displays urinary salsolinol excretion levels (mmol) for
two groups of subjects admitted to an alcoholism treatment unit (Hand
and Taylor, 1987, p. 125). Group 1 consisted of six subjects considered
to be moderately dependent on alcohol, and group 2 consisted of eight
subjects considered to be severely dependent on alcohol. Based on graphical
assessments of normality, Hand and Taylor (1987) analyzed the logarithms
of the urinary salsolinol excretion levels.

(a) One question of interest to the researchers was whether there would
be any systematic changes in log(salsolinol) levels over the four days
of the study. Considering the 14 subjects as a single group, use
Hotelling’s T 2 statistic to test the hypothesis that the mean salsolinol
levels are unchanged across the four days.

(b) Another question of interest was whether log(salsolinol) levels in the
severely dependent group would differ from those in the moderately
dependent group. Test this hypothesis using Hotelling’s T 2 statistic.
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TABLE 3.11. Urinary salsolinol excretion levels (mmol) in 14 subjects admitted
to an alcoholism treatment unit

Subject Group Day 1 Day 2 Day 3 Day 4
1 2 0.64 0.70 1.00 1.40
2 1 0.33 0.70 2.33 3.20
3 2 0.73 1.85 3.60 2.60
4 2 0.70 4.20 7.30 5.40
5 2 0.40 1.60 1.40 7.10
6 2 2.60 1.30 0.70 0.70
7 2 7.80 1.20 2.60 1.80
8 1 5.30 0.90 1.80 0.70
9 1 2.50 2.10 1.12 1.01
10 2 1.90 1.30 4.40 2.80
11 1 0.98 0.32 3.91 0.66
12 1 0.39 0.69 0.73 2.45
13 1 0.31 6.34 0.63 3.86
14 2 0.50 0.40 1.10 8.10
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4
Normal-Theory Methods: Multivariate
Analysis of Variance

4.1 Introduction

Chapter 3 described methods for the analysis of one-sample and two-
sample problems based on Hotelling’s T 2 statistic. This chapter extends
this methodology to the situation in which there are more than two groups
of experimental units.

Section 4.2 introduces the multivariate general linear model. This model
extends the univariate linear model to the situation in which there is a
vector of responses from each experimental unit. The algebra of the multi-
variate general linear model is essentially the same as the univariate case,
with the differences that univariate variances are replaced by covariance
matrices and univariate sums of squares are replaced by sums of squares
and products (ssp) matrices. In addition, the distribution theory is anal-
ogous to that of the univariate case. In particular, the test criteria are
analogs of F statistics. In univariate analysis of variance (ANOVA), the
F tests are based on ratios of sums of squares. Because there is no such
unique way of comparing matrices, multiple test criteria are available in
the multivariate case. There is also more latitude in terms of the types of
hypotheses that can be tested.

Section 4.3 discusses the use of profile analysis for the analysis of re-
peated measurements, and Section 4.4 discusses the growth curve model.
Both of these sections also include examples illustrating the use of the
corresponding methods for the analysis of repeated measurements.
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4.2 The Multivariate General Linear Model

4.2.1 Notation and Assumptions
Consider the situation in which a t-component response vector is measured
for each of n experimental units. Let yij denote the jth component of the
response from subject i for i = 1, . . . , n and j = 1, . . . , t. Also suppose that
yij is generated from the linear model

yij = x′
iβj + eij ,

where xi = (xi1, . . . , xip)′ is a vector of p known coefficients specific to the
ith subject (and common across the t components of the response) and
βj = (β1j , . . . , βpj)′ is a vector of p unknown parameters (specific to the
jth time point). To ensure that the covariance matrix of yi = (yi1, . . . , yit)′

is positive-definite, p ≤ n− t.
Let ei = (ei1, . . . , eit)′ denote the vector of t residuals from the ith

subject, and assume that ei ∼ Nt(0t,Σ). The nt× 1 vector

e =

 e1
...

en


has the Nnt(0nt, In ⊗Σ) distribution, where In denotes the n×n identity
matrix and the operator ⊗ denotes the direct (Kronecker) product (Searle,
1982, p. 265). Thus, the yi vectors are independent Nt(µi,Σ) random
vectors with

µi =

µi1
...
µit

 =

x′
iβ1
...

x′
iβt

 .
To express the model in terms of matrices, let Y denote the n × t data

matrix

Y =

 y11 · · · y1t

. . . . . . . . . . . . .
yn1 · · · ynt

 =

 y′
1
...

y′
n

 .
Let X denote the n× p known design matrix

X =

 x11 · · · x1p

. . . . . . . . . . . . . .
xn1 · · · xnp

 =

 x′
1
...

x′
n


of rank p ≤ (n− t). Let B denote the p× t parameter matrix

B =

 β11 · · · β1t

. . . . . . . . . . . . .
βp1 · · · βpt

 = (β1, · · · ,βt).
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Let E denote the n× t matrix of random errors

E =

 e11 · · · e1t

. . . . . . . . . . . . .
en1 · · · ent

 =

 e′
1
...

e′
n

 .
The multivariate general linear model can now be written as

Y = XB + E,

where E(Y ) = XB and

Var

 y1
...

yn

 = In ⊗ Σ.

4.2.2 Parameter Estimation
The maximum likelihood estimator of B is

B̂ = (X ′X)−1X ′Y .

Note that B̂ is also the least squares estimator of B. Also note that if U j

denotes the jth column of Y , then

B̂ = (X ′X)−1X ′[U1, . . . ,U t] = (β̂1, . . . , β̂t),

where β̂j = (X ′X)−1X ′U j is the usual univariate least squares estimator
considering each column of Y as a separate variable.

The maximum likelihood estimator of Σ is

Σ̂ =
1
n

(Y − XB̂)′(Y − XB̂).

An unbiased estimator of Σ is given by

S =
1

n− p
(Y − XB̂)′(Y − XB̂).

Estimation of linear functions of the elements of B is also often of in-
terest. Let ψ = a′Bc, where a and c are p × 1 and t × 1 vectors of
constants, respectively. Note that a′ operates within time points and c
operates between time points. The estimator ψ̂ = a′B̂c has minimum
variance among all linear unbiased estimates of ψ. The variance of ψ̂ is
Var(ψ̂) = (c′Σc)[a′(X ′X)−1a].
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4.2.3 Hypothesis Testing
Consider the general hypothesis H0: ABC = D. The matrix A is an a× p
matrix (of rank a ≤ p) of coefficients permitting the testing of “within
time” hypotheses (i.e., hypotheses on the elements within given columns of
B). The matrix C is a t× c matrix (with rank c ≤ t ≤ n−p) of coefficients
permitting the testing of “between time” hypotheses (i.e., hypotheses on the
elements within given rows of B). Finally, D is an a×c matrix of constants.
This framework for hypothesis tests is very general. In particular, special
cases include A = Ip, C = It, and the elements of D all equal to zero.

Four test statistics are commonly used to test H0: ABC = D. All of
these statistics are computed using the hypothesis ssp matrix

Qh = (AB̂C − D)′[A(X ′X)−1A′]−1(AB̂C − D)

and the residual ssp matrix

Qe = C ′[Y ′Y − B̂
′
(X ′X)B̂

]
C.

The matrix Qh is analogous to the numerator of a univariate F test, and
Qe is analogous to the error sum of squares.

The likelihood ratio statistic is

Λ =
|Qe|

|Qh +Qe| =
∏ 1

1 + λi
,

where λi are the solutions of the characteristic equation

|Qh − λQe| = 0. (4.1)

This statistic is known as Wilks’ Λ (Wilks, 1932). The Pillai trace statistic
is

V = trace[Qh(Qh +Qe)−1] =
∑

θi,

where the θi values are the solutions of the characteristic equation

|Qh − θ(Qh +Qe)| = 0.

This statistic is also known as the Bartlett–Nanda–Pillai trace (Bartlett,
1939; Nanda, 1950; Pillai, 1955). The Hotelling–Lawley trace statistic is

U = trace[QhQ
−1
e ] =

∑
λi

(Lawley, 1938; Bartlett, 1939; Hotelling, 1947; Hotelling, 1951). This statis-
tic is sometimes called the Lawley–Hotelling trace criterion. Roy’s (1957)
maximum root statistic is

Θ =
λ1

1 + λ1
,
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where λ1 is the largest solution of Equation (4.1). Equivalently, Θ is the
largest solution of the characteristic equation

|Qh − θ(Qh +Qe)| = 0.

In most cases, the exact null distributions of these four test criteria
cannot be computed, and approximate tests are required. Approximate
F statistics are often used in computer programs. In certain situations,
the F approximation for the distribution of Wilks’ Λ is exact (Rao, 1973,
p. 556).

4.2.4 Comparisons of Test Statistics
The four test statistics have been compared theoretically as well as empir-
ically. Anderson (1984, pp. 330–333) summarizes many of the theoretical
and empirical comparisons among statistics. Morrison (1976, pp. 223–224)
also summarizes empirical comparisons.

The statistics Λ, V , and U have been compared based on asymptotic
expansions of their nonnull distributions in Mikhail (1965), Pillai and Jay-
achandran (1967), Lee (1971), and Rothenberg (1977). If the population
characteristic roots are roughly equal, the ordering from most powerful to
least powerful is V > Λ > U . If the roots are unequal, the ordering is
U > Λ > V . Because the population characteristic roots are unknown in
practice, these results support the general use of Λ.

With respect to empirical comparisons among statistics, Ito (1962) com-
pared the large-sample power properties of Λ and U for a simple class of
alternative hypotheses; he concluded that there was little difference be-
tween these two statistics. Pillai and Jayachandran (1967) compared all
four statistics. When the population characteristic roots were very differ-
ent, U tended to have the highest power. When the characteristic roots
were equal, V was most powerful. In the situations they considered, Θ was
least powerful.

Roy et al. (1971) also compared all four statistics. For equal population
roots, V was most powerful, followed by Λ and U . For the case of a single
large population root, Θ had the highest empirical power. In the simulation
studies of Schatzoff (1966) and Olson (1974), Θ was most powerful if the
alternative was one-dimensional. If, however, there were multiple nonzero
characteristic roots, Θ was inferior.

Anderson (1984, p. 333) also discusses the robustness of the four test
statistics. All four test procedures tend to be relatively robust to depar-
tures from normality. The limiting distributions of each criterion (suitably
standardized) for nonnormal yi are the same as when yi is normal (as long
as conditions such as bounded fourth moments are satisfied). Olson (1974)
studied the robustness under departures from covariance homogeneity and
departures from normality. Although Λ, U , and V were quite robust, Θ
was least robust.
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4.3 Profile Analysis

4.3.1 Methodology
Suppose that repeated measurements at t time points have been obtained
from s groups of subjects. Let nh denote the number of subjects in group h
for h = 1, . . . , s, and let n =

∑s
h=1 nh denote the total sample size. Let

yhij denote the response at time j from the ith subject in group h for
h = 1, . . . , s, i = 1, . . . , nh, and j = 1, . . . , t. Note that this is the repeated
measurements data layout displayed in Table 1.2.

We assume that the data vectors yhi = (yhi1, . . . , yhit)′ are independent
and normally distributed with mean µh = (µh1, . . . , µht)′ and common
covariance matrix Σ. Thus, yhi ∼ Nt(µh,Σ).

The profile analysis model is yhij = µhj + ehij , where ehij is the residual
for subject i in group h at time j. The vector ehi = (ehi1, . . . , ehit)′ is
the vector of residuals for the ith subject in group h. In terms of the
multivariate general linear model,

y′
11
...

y′
1n1

y′
21
...

y′
2n2

...

y′
s1
...

y′
sns



=



1 0 · · · 0
...

... · · · ...
1 0 · · · 0

0 1 · · · 0
...

... · · · ...
0 1 · · · 0

...

0 0 · · · 1
...

... · · · ...
0 0 · · · 1




µ11 · · · µ1t

µ21 · · · µ2t
...

...
...

µs1 · · · µst

+



e′
11
...

e′
1n1

e′
21
...

e′
2n2

...

e′
s1
...

e′
sns



,

or Y = XB+E, where Y and E are n×t matrices with rows y′
11, . . . ,y

′
sns

and e′
11, . . . ,e

′
sns

, respectively, X is n× s, and B is s× t.
Three general hypotheses are of interest in profile analysis:

H01: the profiles for the s groups are parallel (i.e., no group-by-time inter-
action);

H02: no differences among groups;

H03: no differences among time points.

Note that H01 should be tested first, because the acceptance or rejection
of this hypothesis affects how the two other hypotheses can be tested. In
addition, if H01 is rejected, we may wish to test hypotheses of the form:
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H04: no differences among groups within some subset of the total number
of time points;

H05: no differences among time points in a particular group (or subset of
groups);

H06: no differences within some subset of the total number of time points
in a particular group (or subset of groups).

Test of Parallelism

The hypothesis of parallelism is

H01:


µ11 − µ12
µ12 − µ13

...
µ1,t−1 − µ1t

 =


µ21 − µ22
µ22 − µ23

...
µ2,t−1 − µ2t

 · · · =


µs1 − µs2
µs2 − µs3

...
µs,t−1 − µst

 .
In terms of the general hypothesis H0: ABC = D,

A(s−1)×s = (Is−1,−1s−1),

Ct×(t−1) =


1 0 · · · 0

−1 1 · · · 0
0 −1 · · · 0

. . . . . . . . . . . . . . . . . .
0 0 · · · 1
0 0 · · · −1

 ,

D(s−1)×(t−1) =

 0 · · · 0
...

. . .
...

0 · · · 0

 .
Testing this hypothesis is equivalent to carrying out a one-way multivariate
analysis of variance (MANOVA) model on the t − 1 differences between
adjacent time points from each sampling unit.

Tests of No Differences Among Groups

Depending on the results of the test of H01, two tests of the hypothesis
H02 of no differences among groups are possible.

First, if the parallelism hypothesis is reasonable, the test for differences
among groups can be carried out using the sum (or average) of the repeated
observations from each subject. In this case,

A(s−1)×s = (Is−1,−1s−1),
Ct×1 = 1t,

D(s−1)×1 = 0s−1.
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Note that A is the same as for the test of parallelism (H01). Because the
s groups are independent, this test of H02 is equivalent to that from a
one-way ANOVA on the totals (or means) across time from each subject.

A multivariate test for differences among groups can also be carried out
without assuming parallelism. In this case, the null hypothesis is

H02:


µ11
µ12
...
µ1t

 =


µ21
µ22
...
µ2t

 = · · · =


µs1
µs2
...
µst

 .
In terms of the general hypothesis H0: ABC = D,

A(s−1)×s = (Is−1,−1s−1),
Ct×t = It,

D(s−1)×t =

 0 · · · 0
...

. . .
...

0 · · · 0

 .
If comparisons among groups for a subset of the t time points are of interest,
the columns of C corresponding to the excluded time points can be omitted.

Tests of No Differences Among Time Points

Depending on the results of the test of H01, two tests of H03 are possible.
If the parallelism hypothesis is reasonable, the test for differences among
time points can be carried out using the sum (or average) across groups
of the observations at each time point. In this case, the null hypothesis is
H03: ABC = D, where

A1×s = (1, . . . , 1) or (1/s, . . . , 1/s),

Ct×(t−1) =
(

It−1
−1′

t−1

)
,

D1×(t−1) = 0′
t−1.

This is equivalent to a one-sample T 2 test, as described in Section 3.3.1.
This procedure weights each of the s groups equally and is usually appro-

priate. However, if unequal group sizes result from the nature of the experi-
mental conditions, it may be desirable to use a weighted average rather than
a simple average. In this case, A = (n1, . . . , ns) or A = (n1/n, . . . , ns/n)
can be used; note that C and D are unchanged.

The hypothesis H03 can also be tested without assuming parallelism:

H03:


µ11
µ21
...
µs1

 =


µ12
µ22
...
µs2

 = · · · =


µ1t

µ2t
...
µst

 .
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In this case,

As×s = Is,

Ct×(t−1) =
(

It−1
−1′

t−1

)
,

Ds×(t−1) =

 0 · · · 0
...

. . .
...

0 · · · 0

 .
If comparisons among time points in a particular group (or subset of
groups) are of interest, the rows of A corresponding to the excluded groups
can be omitted.

4.3.2 Example
Potthoff and Roy (1964) describe a study conducted at the University
of North Carolina Dental School in two groups of children (16 boys and
11 girls). In Section 3.4.2, Hotelling’s T 2 statistic was used to compare boys
and girls at ages 8, 10, 12, and 14 years with respect to the distance (mm)
from the center of the pituitary gland to the pterygomaxillary fissure. Ta-
ble 3.3 lists the individual measurements as well as the sample means and
standard deviations in both groups. The profile analysis methods summa-
rized in Section 4.3.1 can also be used to analyze these data.

Let yb,1, . . . ,yb,16 and yg,1, . . . ,yg,11 denote the 4×1 vectors of measure-
ments from the 16 boys and 11 girls in the study. Similarly, let eb,1, . . . ,eb,16
and eg,1, . . . ,eg,11 denote the corresponding vectors of residuals. Also, let
µb = (µb,8, µb,10, µb,12, µb,14)′ and µg = (µg,8, µg,10, µg,12, µg,14)′ denote the
mean profiles for boys and girls, respectively. The profile analysis model is

y′
b,1
...

y′
b,16

y′
g,1
...

y′
g,11


=



1 0
...

1 0
0 1

...
0 1


(
µb,8 µb,10 µb,12 µb,14
µg,8 µg,10 µg,12 µg,14

)
+



e′
b,1
...

e′
b,16

e′
g,1
...

e′
g,11


,

or Y = XB + E, where Y and E are 27 × 4 matrices, X is 27 × 2, and B
is 2 × 4.

The hypothesis of parallelism is H01: ABC = 0′
3, where A = (1,−1)

and

C =


1 0 0

−1 1 0
0 −1 1
0 0 −1

 .
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Because there are only two groups, the test statistics Λ, V , U , and Θ
described in Section 4.2.3 are all equivalent to Hotelling’s T 2. As shown
in Section 3.4.2, the corresponding F statistic is 2.70. With reference to
the F3,23 distribution, the p-value of the test of H01 is 0.07. Although not
statistically significant at the 5% level of significance, there is some evidence
that the profiles are not parallel.

For purposes of illustration, the test for differences between boys and
girls assuming parallelism is carried out as follows. The null hypothesis is
H02: ABC = 0, where A = (1,−1) and C = (1, 1, 1, 1)′. This is equivalent
to a two-sample t test on the totals (or means) from each subject. The F
statistic is 9.29 with 1 and 25 df. Because p = 0.005, there is evidence that
boys and girls differ.

If we do not assume that the profiles over time for boys and girls are
parallel, the test for differences between boys and girls is the test of

H02: ABC = 0′
4,

where A = (1,−1) and C = I4. The test statistic is equivalent to the
two-sample Hotelling’s T 2 statistic [Equation (3.2)]. As was shown in Sec-
tion 3.4.2, the F statistic is 3.63. With reference to the F4,22 distribution,
p = 0.02. At the 5% level of significance, one would conclude that the
profiles for boys and girls are not the same.

The hypothesis H03 of no differences among time points for both boys
and girls can also be tested both assuming parallelism and not assuming
parallelism. Under the assumption that the profiles for boys and girls are
parallel, and weighting each group equally, the test is of H03: ABC = 0′

3,
where A = (1, 1) and

C =


1 0 0
0 1 0
0 0 1

−1 −1 −1

 . (4.2)

Because this is equivalent to a one-sample T 2 test, the four test statistics
from Section 4.2.3 are equivalent, and the resulting F statistic is 31.69 with
3 and 23 df. Thus, the means at the four time points are highly significantly
different (p < 0.001).

If we test this same hypothesis without assuming parallelism, the test is
of H03: ABC = D, where A = I2, C is given by Equation (4.2), and D is
a 2 × 3 matrix with all elements equal to zero. In testing this hypothesis,
the statistics Λ, V , U , and Θ from Section 4.2.3 are not equivalent. The
value of Wilk’s Λ is 0.16. The corresponding F statistic is 11.46 with 6 and
46 df (p < 0.001).

It will often be of interest to test whether there are differences among
time points within a single group rather than in both groups overall. In
boys, this hypothesis is tested using A = (1, 0) and C given by Equa-
tion (4.2). All four test statistics yield F = 31.89 with 3 and 23 df; thus,
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there is highly significant evidence of differences among time points for boys
(p < 0.001). The corresponding A matrix for testing this hypothesis in girls
is A = (0, 1). The F statistic is 7.09 with 3 and 23 df, with p = 0.0015.

4.4 Growth Curve Analysis

4.4.1 Introduction
Although the profile analysis model is often a convenient framework in
which to analyze repeated measurements, it does not make use of the fact
that a subject’s repeated measurements are ordered. In fact, profile analysis
is applicable in very general settings in which there is a multivariate out-
come variable for each experimental unit. Because repeated measurements
obtained over time are naturally ordered, it may be of interest to char-
acterize trends over time using low-order polynomials. The means at the
repeated time points can then be summarized by a few coefficients rather
than by the entire vector. When the number of repeated measurements t is
large, reduction to a low-order polynomial is very useful. In this case, focus
shifts from hypothesis testing to estimation of a substantive model for the
responses.

This approach to the analysis of repeated measurements is called growth
curve analysis. This extension of the standard MANOVA model was ini-
tially proposed by Potthoff and Roy (1964). An alternative formulation
was developed by Rao (1965, 1966, 1967) and Khatri (1966). Grizzle and
Allen (1969) unify and illustrate the methodology, and Kleinbaum (1973)
extends the growth curve analysis approach to accommodate missing data.
Timm (1980) gives a review of growth curve methodology, and the books
by Kshirsagar and Smith (1995) and Pan and Fang (2001) provide a com-
prehensive treatment of this topic.

Growth curve analysis is a relatively unused approach due to unfamil-
iarity with the methodology and lack of readily available software. In addi-
tion, Chapter 6 will introduce more flexible alternatives to the traditional
growth curve model that are now available. However, with a little work, it
is possible to fit growth curve models using standard MANOVA programs.

4.4.2 The Growth Curve Model
As in Section 4.3.1, suppose that repeated measurements at t time points
have been obtained from s groups of subjects. Let nh denote the number of
subjects in group h, for h = 1, . . . , s, and let n =

∑s
h=1 nh denote the total

sample size. Let yhij denote the response at time j from the ith subject in
group h for h = 1, . . . , s, i = 1, . . . , nh, and j = 1, . . . , t. For purposes of
illustrating the growth curve model, we will assume that the t time points
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are the equally spaced values 1, . . . , t. It is only necessary, however, to have
a common set of time points for each subject.

In growth curve analysis, we assume that the time trend in each group
can be described by a (q− 1)st-degree polynomial, with q ≤ t. The growth
curve model is

yhij = βh0 + βh1 j + βh2 j
2 + · · · + βh,q−1 j

q−1 + ehij , (4.3)

where ehij is the residual at time j for the ith subject in group h. This
model has sq parameters. Although the functional form of the time trend
is the same in each of the s groups, the parameters are specific to each
group.

Let yhi = (yhi1, . . . , yhit)′ denote the vector of observations from sub-
ject i in group h, and let ehi = (ehi1, . . . , ehit)′ denote the corresponding
vector of residuals. Similarly, let Y and E denote the corresponding n× t
matrices of observations and residuals, as described in Section 4.3.1.

The growth curve model is

Y = XBT + E,

where X is an n×s across-individual design matrix, B is an s×q parameter
matrix, and T is a q × t within-individual design matrix. We assume that
rank(T ) = q, where q ≤ t. Each row y′

hi = (yhi1, . . . , yhit) of the data ma-
trix Y is assumed to have an independent multivariate normal distribution
with covariance matrix Σ. Thus, E(Y ) = XBT and

Var

 y11
...

ysns

 = In ⊗ Σ.

In terms of Equation (4.3), the matrix of parameters is

B =


β10 · · · β1,q−1
β20 · · · β2,q−1
...

...
...

βs0 · · · βs,q−1

 ,
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and the design matrices X and T are given by

X =



1 0 · · · 0
...

... · · · ...
1 0 · · · 0

0 1 · · · 0
...

... · · · ...
0 1 · · · 0

...

0 0 · · · 1
...

... · · · ...
0 0 · · · 1



, T =


1 1 · · · 1
1 2 · · · t
1 4 · · · t2
...

...
...

...
1 2q−1 · · · tq−1

 .

The basic idea of the Potthoff–Roy(1964) approach to growth curve anal-
ysis is to transform the growth curve model to the usual MANOVA model
used in profile analysis. To accomplish this, let G be a t × t symmetric,
positive-definite matrix satisfying the following conditions:

1. G must be either nonstochastic or independent of Y .

2. TG−1T ′ has rank q.

If both sides of the model Y = XBT + E are postmultiplied by the t× q
matrix G−1T ′(TG−1T ′)−1, then

Y G−1T ′(TG−1T ′)−1 = XBTG−1T ′(TG−1T ′)−1

+EG−1T ′(TG−1T ′)−1

or Z = XB + E∗, where

Z = Y G−1T ′(TG−1T ′)−1

is an n× q matrix of transformed dependent variables.
The transformed data matrix Z has mean XB. The rows of Z have

independent q-variate normal distributions with covariance matrix

Σ∗ = (TG−1T ′)−1TG−1ΣG−1T ′(TG−1T ′)−1.

The growth curve model has thus been reduced to the profile analysis
model. Standard multivariate linear model theory, as described in Sec-
tion 4.2, can now be used to estimate B and test hypotheses of the form
ABC = D. In particular, the unbiased estimator of B is

B̂ = (X ′X)−1X ′Y G−1T ′(TG−1T ′)−1.
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Potthoff and Roy (1964) discuss the choice of the matrix G. They prove
that the minimum variance unbiased estimator of B is

B̂ = (X ′X)−1X ′Y Σ−1T ′(TΣ−1T ′)−1.

Therefore, although B̂ is unbiased for any G, the optimal choice is G = Σ.
Unfortunately, Σ is usually unknown in practice. Potthoff and Roy (1964)
suggest using an estimate of Σ obtained from an independent experiment.
They do not, however, develop the theory for allowing G = S, where S is
the sample covariance matrix calculated from the data used to estimate B.

The computations required prior to using standard MANOVA programs
to carry out the analysis become much simpler when q = t (i.e., when the
time trend across the t points is described by a (t−1)st degree polynomial).
Of course, this choice is less interesting because it does not make use of
low-order polynomials to describe the data. In this case,

Z = Y G−1T ′(TG−1T ′)−1 = Y G−1T ′(T ′)−1GT −1 = Y T −1,

so there is no need to choose G.
The computations become even simpler if T is chosen to be an orthog-

onal matrix. In this case, T −1 = T ′. The transformation then becomes
Z = Y T ′, and matrix inversion is not required. Bock (1963) developed
this procedure using orthogonal polynomials and Roy–Bargmann (Roy and
Bargmann, 1958) step-down F tests.

The choice q = t simplifies the computations but does not provide any
reduction to a lower-order polynomial. When q < t, the simplest choice of
G is the t× t identity matrix. In this case,

Z = Y G−1T ′(TG−1T ′)−1 = Y T ′(TT ′)−1.

If the time trends are parameterized using orthogonal polynomial coeffi-
cients, the transformation further simplifies to Z = Y T ′. Although this
simplifies the calculations and eliminates the need for matrix inversion, it
may not be the best choice in terms of power. Information is lost in reducing
Y to Z unless G = Σ or unless Σ = σ2It.

Rao (1965, 1966, 1967) and Khatri (1966) develop an alternative ap-
proach to the growth curve model. To avoid the arbitrary choice of G,
Khatri (1966) derives the maximum likelihood estimator of B. Rao consid-
ers the conditional model

E(Y |W ) = XB + WΓ

and derives a covariate-adjusted estimator of B. If q < t, identical results
are obtained from:

1. Khatri’s maximum likelihood approach;

2. Rao’s covariate-adjusted approach using t− q covariates;
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3. Potthoff and Roy’s approach using G = S.

In addition, when q < t, the Potthoff–Roy approach using G = I is equiv-
alent to not using covariates in Rao’s conditional model.

Stanek and Koch (1985) show the equivalence of parameter estimates
from growth curve models and seemingly unrelated regression (SUR) mod-
els (Zellner, 1962). Patel (1986) proposed a multivariate model for repeated
measurements designs with time-varying covariates, and Verbyla (1988)
showed that Patel’s model can be written as an SUR model. Verbyla and
Venables (1988) and Park and Woolson (1992) extend the SUR approach
to situations where parallel profiles are required and where the data are
incomplete, respectively.

4.4.3 Examples
One Sample

Although growth curve analysis is most useful in comparing multiple groups
of experimental units, the methodology will first be illustrated using an
example involving a single group of subjects.

Table 3.1 and Figure 3.2 display the data from a dental study in which the
height of the ramus bone (mm) was measured in 20 boys at ages 8, 8.5, 9,
and 9.5 years (Elston and Grizzle, 1962). In Section 3.3.2, the unstructured
multivariate approach was used to assess whether the mean ramus bone
heights differ across the four ages and whether the relationship between
ramus bone height and age is linear. The growth curve model can also be
used to analyze these data.

Let yi = (yi1, yi2, yi3, yi4)′ denote the vector of ramus bone heights at
ages 8, 8.5, 9, and 9.5 years of age for subject i, for i = 1, . . . , 20, and let
Y denote the 20 × 4 data matrix with rows y′

1, . . . ,y
′
20. Because there is a

single group of subjects, the design matrix X is the 20×1 vector (1, . . . , 1)′.
A simple initial approach is to choose q = t = 4 and to use

T =


1/2 1/2 1/2 1/2

−3/
√

20 −1/
√

20 1/
√

20 3/
√

20
1/2 −1/2 −1/2 1/2

−1/
√

20 3/
√

20 −3/
√

20 1/
√

20

 . (4.4)

This is the 4×4 matrix of standardized orthogonal polynomial coefficients.
The numerators of rows 2, 3, and 4 of T are the orthogonal polynomial
coefficients for four equally spaced time points (Table 3.2). The entries in
each row are standardized by dividing by the sum of the squares of the
values. With this choice of T ,

Z = Y G−1T ′(TG−1T ′)−1 = Y T −1 = Y T ′.
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TABLE 4.1. Results of hypothesis tests from cubic growth curve model for ramus
bone heights

Hypothesis F Statistic df p-value
β0 = 0 8113.21 1,19 < 0.001
β1 = 0 51.83 1,19 < 0.001
β2 = 0 0.04 1,19 0.848
β3 = 0 0.00 1,19 0.982
β2 = β3 = 0 0.02 2,18 0.982

Thus, it is not necessary to choose G, and matrix inversion is not required.
We will use this model to test whether the nonlinear components of the
time effect are statistically significant.

The transformed model is Z = XB + E∗, where B = (β0, β1, β2, β3).
The elements of B are the constant, linear, quadratic, and cubic effects of
age. Table 4.1 displays the F statistics, df, and p-values for tests of vari-
ous hypotheses of interest. Note that, in this application, the multivariate
general linear model test statistics Λ, V , U , and Θ are equivalent. Whereas
the constant and linear age effects are highly significant, the quadratic and
cubic effects of age are nonsignificant, both individually and jointly.

We will now model the effects of age on ramus height using a linear
growth curve model (q = 2). Although the computations are easier us-
ing standardized orthogonal polynomial coefficients, interpretation of the
results is simpler using the matrix

T =
(

1 1 1 1
8.0 8.5 9.0 9.5

)
.

We will first use G = I4. In this case,

Z = Y G−1T ′(TG−1T ′)−1 = Y T ′(TT ′)−1.

The transformation is computed as follows:

TT ′ =
(

1 1 1 1
8.0 8.5 9.0 9.5

)
1 8.0
1 8.5
1 9.0
1 9.5

 =
(

4 35
35 307.5

)
,

(TT ′)−1 =
(

61.5 −7
−7 0.8

)
,

T ′(TT ′)−1 =


5.5 −0.6
2.0 −0.2

−1.5 0.2
−5.0 0.6

 .
The transformation Z = Y T ′(TT ′)−1 thus produces a 20 × 2 matrix of
transformed dependent variables.
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TABLE 4.2. Results of linear growth curve model for ramus bone heights using
G = I4

Standard
Parameter Estimate Error F Statistic df p-value

β0 33.498 2.320 208.41 1,19 < 0.001
β1 1.896 0.263 51.83 1,19 < 0.001

Table 4.2 displays the results of fitting the model Z = XB + E∗, where
B = (β0, β1). The resulting linear model is

ramus height = 33.498 + 1.896 age.

The linear growth curve model could also have been fit using G = S,
where S is the sample covariance matrix. In this example,

G = S =


6.32997 6.18908 5.77700 5.35579
6.18908 6.44934 6.15342 5.78526
5.77700 6.15342 6.91800 6.77421
5.35579 5.78526 6.77421 7.18316

 .
The transformation Z = Y G−1T ′(TG−1T ′)−1 is computed as follows:

G−1 =


2.6933 −2.8416 0.0498 0.2334

−2.8416 4.1461 −1.5651 0.2555
0.0498 −1.5651 3.8824 −2.4379
0.2334 0.2555 −2.4379 2.0585

 ,

G−1T ′ =


0.13501 0.05932

−0.00513 0.85011
−0.07088 −1.12416

0.10952 1.65380

 ,
TG−1T ′ =

(
0.16853 1.43907
1.43907 13.29412

)
,

(TG−1T ′)−1 =
(

78.42127 −8.48897
−8.48897 0.99414

)
,

G−1T ′(TG−1T ′)−1 =


10.08419 −1.08714
−7.61849 0.88864

3.98441 −0.51587
−5.45011 0.71437

 .
The transformation Z = Y G−1T ′(TG−1T ′)−1 again produces a 20 × 2
matrix of transformed dependent variables.

Table 4.3 displays the results of fitting the model Z = XB + E∗, where
B = (β0, β1). The resulting linear model is

ramus height = 33.390 + 1.906 age.
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TABLE 4.3. Results of linear growth curve model for ramus bone heights using
G = S

Standard
Parameter Estimate Error F Statistic df p-value

β0 33.390 1.980 284.33 1,19 < 0.001
β1 1.906 0.223 73.12 1,19 < 0.001

Although the parameter estimates are similar to those from the model using
G = I4, the standard errors of the estimates are smaller when G = S is
used.

Multiple Samples

Potthoff and Roy (1964) describe a study conducted at the University
of North Carolina Dental School in two groups of children (16 boys and
11 girls). In Section 3.4.2, Hotelling’s T 2 statistic was used to compare
boys and girls at ages 8, 10, 12, and 14 years with respect to the distance
(mm) from the center of the pituitary gland to the pterygomaxillary fissure.
Section 4.3.2 illustrated the analysis of these data using profile analysis
methods. Table 3.3 lists the individual measurements as well as the sample
means and standard deviations in both groups.

The change in the pituitary–pterygomaxillary distance during growth
is important in orthodontal therapy. Thus, growth curve methods are of
interest in order to:

1. describe the distance in boys and girls as simple functions of age;

2. compare the functions for boys and girls.

As in the previous example, a useful initial approach is to fit a growth
curve model with q = t = 4 using standardized orthogonal polynomial
coefficients. Because the four measurement times are again equally spaced,
the matrix T is given by Equation (4.4). This choice eliminates the need
for matrix inversion and/or computation of the pooled covariance matrix
S because

Z = Y G−1T ′(TG−1T ′)−1 = Y T −1 = Y T ′,

where Y is the 27 × 4 data matrix used in the profile analysis model of
Section 4.3.2. Using the results of this model, we can then test the signifi-
cance of the constant, linear, quadratic, and cubic terms to determine the
appropriate degree of polynomial to consider in subsequent models.

The transformed model is Z = XB + E∗, where

X =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

)′
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TABLE 4.4. Results of hypothesis tests from cubic growth curve model for the
dental measurements data

Hypothesis F Statistic df p-value
β10 = β20 = 0 2066.22 2,25 < 0.001
β11 = β21 = 0 52.28 2,25 < 0.001
β12 = β22 = 0 1.27 2,25 0.298
β13 = β23 = 0 0.21 2,25 0.810
β12 = β13 = β22 = β23 = 0 0.68 4,48 0.611

is 27 × 2 and B is the 2 × 4 matrix

B =
(
β10 β11 β12 β13
β20 β21 β22 β23

)
.

The elements in the first row of B are the constant, linear, quadratic,
and cubic effects of age in boys, and the second row of B contains the
corresponding effects for girls.

Table 4.4 displays the F statistics, df, and p-values for tests of vari-
ous hypotheses of interest. For the tests listed in the first four rows of
Table 4.4, the multivariate general linear model test statistics Λ, V , U ,
and Θ are equivalent. The F statistic reported for the fourth hypothesis
(joint quadratic and cubic effects of age) is that from Wilks’ Λ. Whereas
the joint constant effects and joint linear age effects in boys and girls are
highly significant, the nonlinear effects of age are nonsignificant.

Given these results, fitting a linear growth curve model is appropriate.
One approach to obtaining the maximum likelihood estimators of the model
parameters is using Rao’s covariate-adjusted model. Let Z1 be the 27 × 2
matrix consisting of the first two columns of Z (the constant and lin-
ear components), and let Z2 be the 27 × 2 matrix consisting of the third
and fourth columns of Z (the quadratic and cubic components). The Rao
covariate-adjusted model is

Z1 = XB1 + Z2B2,

where

B1 =
(
β10 β11
β20 β21

)
, B2 =

(
β12 β13
β22 β23

)
.

This model used the quadratic and cubic effects as covariates.
The maximum likelihood estimates of the parameters of the linear growth

curve model can also be obtained from the Potthoff–Roy approach using
G = S, where

S =


5.41545 2.71682 3.91023 2.71023
2.71682 4.18477 2.92716 3.31716
3.91023 2.92716 6.45574 4.13074
2.71023 3.31716 4.13074 4.98574


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is the pooled sample covariance matrix. In this case, the model is

Z = XB1,

where the transformation Z = Y G−1T ′(TG−1T ′)−1 is computed as fol-
lows:

T =
(

1/2 1/2 1/2 1/2
−3/

√
20 −1/

√
20 1/

√
20 3/

√
20

)
,

G−1 = S−1 =


0.37168 −0.15407 −0.19490 0.06194

−0.15407 0.57220 0.05082 −0.33905
−0.19490 0.05082 0.43363 −0.28713

0.06194 −0.33905 −0.28713 0.63038

 ,

G−1T ′ =


0.04232 −0.21691
0.06495 −0.24067
0.00121 0.02373
0.03307 0.39293

 ,
TG−1T ′ =

(
0.07077 −0.02046

−0.02046 0.46821

)
,

(TG−1T ′)−1 =
(

14.31048 0.62545
0.62545 2.16312

)
,

G−1T ′(TG−1T ′)−1 =


0.47002 −0.44273
0.77889 −0.47998
0.03214 0.05208
0.71894 0.87063

 .
Both models give the same estimates of the constant and linear age effects
in boys and girls.

It is easier to interpret the results of the linear growth curve model if the
transformation matrix T is on the natural time scale, that is, using

T =
(

1 1 1 1
8 10 12 14

)
.

In this case, the vector of transformed dependent variables

Z = Y G−1T ′(TG−1T ′)−1

is computed as follows:

G−1T ′ =


0.08465 −0.03890
0.12989 0.35251
0.00242 0.13271
0.06613 2.48467

 ,
TG−1T ′ =

(
0.28309 2.93099
2.93099 39.59178

)
,
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TABLE 4.5. Parameter estimates from linear growth curve model using G = S

Boys Girls
Standard Standard

Estimate Error Estimate Error
Constant 15.842 0.972 17.425 1.173
Linear age 0.827 0.082 0.476 0.099

(TG−1T ′)−1 =
(

15.12612 −1.11979
−1.11979 0.10816

)
,

G−1T ′(TG−1T ′)−1 =


1.32398 −0.09000
1.57005 −0.10733

−0.11203 0.01165
−1.78200 0.19468

 .
Table 4.5 displays the parameter estimates from this model. The slopes

for boys and girls are significantly different (p = 0.01). The intercepts for
boys and girls are not significantly different (p = 0.3). All hypothesis tests
involving slopes, as well as the joint tests of intercepts and slopes, are
identical to those from the orthogonal polynomial parameterization.

Finally, the computations for the Potthoff–Roy approach are much sim-
pler with the choice G = I4. In this case, the matrix of transformed de-
pendent variables is given by

Z = Y G−1T ′(TG−1T ′)−1 = Y T ′(TT ′)−1.

This transformation is computed as follows:

TT ′ =
(

1 1 1 1
8 10 12 14

)
1 8
1 10
1 12
1 14

 =
(

4 44
44 504

)
,

(TT ′)−1 =
(

6.30 −0.55
−0.55 0.05

)
,

T ′(TT ′)−1 =


1.9 −0.15
0.8 −0.05

−0.3 0.05
−1.4 0.15

 .
Table 4.6 displays the parameter estimates from this model. The param-

eter estimates differ slightly between the two models (Tables 4.5 and 4.6).
In addition, the standard errors of the parameter estimates using G = S
(Table 4.5) are somewhat smaller.
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TABLE 4.6. Parameter estimates from linear growth curve model using G = I

Boys Girls
Standard Standard

Estimate Error Estimate Error
Constant 16.341 1.019 17.373 1.228
Linear age 0.784 0.086 0.480 0.104

4.5 Problems

4.1 Consider the profile analysis model of Section 4.3.1 for the specific
case where s = 3 and t = 4. Thus, the parameter matrix is

B =

µ11 µ12 µ13 µ14
µ21 µ22 µ23 µ24
µ31 µ32 µ33 µ34

 .
(a) Specify the matrices A and C for testing the hypothesis of paral-

lelism. Compute ABC, and verify that this transformation correctly
specifies the hypothesis of interest.

(b) Repeat (a) for the hypothesis of no differences among groups (assum-
ing parallelism).

(c) Repeat (a) for the hypothesis of no differences among groups (not
assuming parallelism).

(d) Repeat (a) for the hypothesis of no differences among time points
(assuming parallelism).

(e) Repeat (a) for the hypothesis of no differences among time points
(not assuming parallelism).

4.2 Table 4.7 displays scaled test scores for a cohort of 64 students of
the Laboratory School of the University of Chicago (Bock, 1975). These
students (36 boys, 28 girls) were tested on the vocabulary section of the
Cooperative Reading Tests at grades 8, 9, 10, and 11. Because girls com-
monly complete their physical growth earlier than boys, these data provide
an opportunity to determine whether the same is true of the development
of verbal abilities as measured by these vocabulary scores.

(a) Analyze these data using profile analysis methods. In particular, pro-
vide answers to the following questions: (1) Are the response profiles
parallel for boys and girls? (2) Are there differences between boys and
girls? If so, at which grade levels? (3) Are there differences among
grade levels?

(b) Analyze these data using growth curve techniques. Compare your
results with those from part (a).
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TABLE 4.7. Scaled vocabulary test scores from 36 boys and 28 girls

Boys Girls
Grade Grade

ID 8 9 10 11 ID 8 9 10 11
1 1.75 2.60 3.76 3.68 37 1.24 4.90 2.42 2.54
2 0.90 2.47 2.44 3.43 38 5.94 6.56 9.36 7.72
3 0.80 0.93 0.40 2.27 39 0.87 3.36 2.58 1.73
4 2.42 4.15 4.56 4.21 40 −0.09 2.29 3.08 3.35
5 −1.31 −1.31 −0.66 −2.22 41 3.24 4.78 3.52 4.84
6 −1.56 1.67 0.18 2.33 42 1.03 2.10 3.88 2.81
7 1.09 1.50 0.52 2.33 43 3.58 4.67 3.83 5.19
8 −1.92 1.03 0.50 3.04 44 1.41 1.75 3.70 3.77
9 −1.61 0.29 0.73 3.24 45 −0.65 −0.11 2.40 3.53
10 2.47 3.64 2.87 5.38 46 1.52 3.04 2.74 2.63
11 −0.95 0.41 0.21 1.82 47 0.57 2.71 1.90 2.41
12 1.66 2.74 2.40 2.17 48 2.18 2.96 4.78 3.34
13 2.07 4.92 4.46 4.71 49 1.10 2.65 1.72 2.96
14 3.30 6.10 7.19 7.46 50 0.15 2.69 2.69 3.50
15 2.75 2.53 4.28 5.93 51 −1.27 1.26 0.71 2.68
16 2.25 3.38 5.79 4.40 52 2.81 5.19 6.33 5.93
17 2.08 1.74 4.12 3.62 53 2.62 3.54 4.86 5.80
18 0.14 0.01 1.48 2.78 54 0.11 2.25 1.56 3.92
19 0.13 3.19 0.60 3.14 55 0.61 1.14 1.35 0.53
20 2.19 2.65 3.27 2.73 56 −2.19 −0.42 1.54 1.16
21 −0.64 −1.31 −0.37 4.09 57 1.55 2.42 1.11 2.18
22 2.02 3.45 5.32 6.01 58 −0.04 0.50 2.60 2.61
23 2.05 1.80 3.91 2.49 59 3.10 2.00 3.92 3.91
24 1.48 0.47 3.63 3.88 60 −0.29 2.62 1.60 1.86
25 1.97 2.54 3.26 5.62 61 2.28 3.39 4.91 3.89
26 1.35 4.63 3.54 5.24 62 2.57 5.78 5.12 4.98
27 −0.56 −0.36 1.14 1.34 63 −2.19 0.71 1.56 2.31
28 0.26 0.08 1.17 2.15 64 −0.04 2.44 1.79 2.64
29 1.22 1.41 4.66 2.62
30 −1.43 0.80 −0.03 1.04
31 −1.17 1.66 2.11 1.42
32 1.68 1.71 4.07 3.30
33 −0.47 0.93 1.30 0.76
34 2.18 6.42 4.64 4.82
35 4.21 7.08 6.00 5.65
36 8.26 9.55 10.24 10.58
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4.3 Box (1950) describes an experiment in which 30 rats were randomly
assigned to three treatment groups. Group 1 was a control group, group 2
had thyroxin added to their drinking water, and group 3 had thiouracil
added to their drinking water. Whereas there were ten rats in each of
groups 1 and 3, group 2 consisted of only seven rats (due to an unspecified
accident at the beginning of the experiment). The resulting body weights
of each of the 27 rats at the beginning of the experiment and at weekly
intervals for four weeks were previously considered in Problem 2.4 and are
displayed in Table 2.12.

(a) Analyze these data using profile analysis methods. In particular, pro-
vide answers to the following questions: (1) Are the response profiles
parallel? (2) Are there differences among the three treatment groups?
If so, at which time points? (3) Are there differences among time
points? If so, for which groups?

(b) Analyze these data using growth curve techniques. Compare your
results with those from part (a).

4.4 Koch (1970) discussed an investigation of the effects of a certain
compound (ethionine) on absorption of iron in the liver. In this study,
34 male albino rats, each weighing approximately 200 grams, were randomly
divided into 17 pairs. One animal in each pair was selected at random to
receive an experimental diet containing ethionine, whereas the other was a
pair-fed control (that is, the control animal received the same amount of
food as was eaten by the corresponding treated animal).

After seven days, the 34 rats were sacrificed, and the liver of each animal
was extracted and divided into three parts. The 17 pairs were then ran-
domized to one of two groups. In the eight pairs randomized to group 1, the
liver thirds from each animal were randomly assigned to be treated with
radioactive iron in a solution of low pH (2.0–3.0), medium pH (4.5–5.5),
or high pH (7.0–7.7) at a temperature of 37◦C. The same procedure was
followed in the nine pairs randomized to group 2, with the exception that
the liver portions were treated at 25◦C.

The response variable of interest is the amount of iron absorbed by the
variously treated liver thirds, which can be assumed to be continuous and
normally distributed. Table 4.8 displays the data from this experiment.

(a) Suppose that the data will be analyzed using the multivariate general
linear model. Let Y denote the 17 × 6 data matrix, and consider the
model E(Y ) = XB + E, where

X ′ =
(

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

)
and

B =
(
µ11 µ12 µ13 µ14 µ15 µ16
µ21 µ22 µ23 µ24 µ25 µ26

)
.
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TABLE 4.8. Iron absorption in liver thirds of 17 pairs of albino rats

Ethionine Control
Low pH Med. pH High pH Low pH Med. pH High pH

Group Pair (2.0–3.0) (4.5–5.5) (7.0–7.7) (2.0–3.0) (4.5–5.5) (7.0–7.7)
1 1 2.23 2.59 4.50 1.34 1.40 3.87

(37◦) 2 1.14 1.54 3.92 0.84 1.51 2.81
3 2.63 3.68 10.33 0.68 2.49 8.42
4 1.00 1.96 8.23 0.69 1.74 3.82
5 1.35 2.94 2.07 2.08 1.59 2.42
6 2.01 1.61 4.90 1.16 1.36 2.85
7 1.64 1.23 6.84 0.96 3.00 4.15
8 1.13 6.96 6.42 0.74 4.81 5.64

2 9 3.00 6.77 2.95 1.56 4.71 2.64
(25◦) 10 4.78 4.97 3.42 2.30 1.60 2.48

11 0.71 1.46 6.85 1.01 0.67 3.66
12 1.01 0.96 0.94 1.61 0.71 0.68
13 1.70 5.59 3.72 1.06 5.21 3.20
14 1.31 9.56 6.00 1.35 5.12 3.77
15 2.13 1.08 3.13 1.40 0.95 3.94
16 2.42 1.58 2.74 1.18 1.56 2.62
17 1.32 8.09 3.91 1.55 1.68 2.40

Specify matrices A and C for testing the following null hypotheses
of the form H0: ABC = 0:

1. There is no pH effect for either compound in either group.

2. In group 2, the effect of pH is the same for ethionine as for
control.

3. The change in response from low pH to medium pH is the same
as the change in response from medium pH to high pH for control
animals in group 1.

4. The mean responses in groups 1 and 2 are equal.

5. There is no difference between the mean responses for ethionine
and control.

6. The effect of pH is the same in group 1 as in group 2.

(b) Carry out the tests of part (a) and summarize the results.

4.5 Consider the experiment described in Problem 4.4. Could standard
growth curve techniques be used to analyze these data? If so, describe
briefly the approach you would follow. If not, state why growth curve
methodology is inappropriate.
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4.6 In an investigation of the effects of various dosages of radiation ther-
apy on psychomotor skills (Danford et al., 1960), 45 cancer patients were
trained to operate a psychomotor testing device. Six patients were not given
radiation and served as controls, whereas the remainder were treated with
dosages of 25–50 R, 75–100 R, or 125–250 R. The resulting psychomotor
test scores on the three days following radiation treatment were previously
considered in Problem 2.6 and are displayed in Table 2.14.

(a) Analyze these data using profile analysis methods. In particular, pro-
vide answers to the following questions: (1) Are the response profiles
parallel? (2) Are there differences among the four treatment groups?
If so, at which time points? (3) Are there differences among time
points? If so, for which groups?

(b) Analyze these data using growth curve techniques. Compare your
results with those from part (a).

4.7 Sixty female rats were randomly assigned to one of four dosages of a
drug (control, low dose, medium dose, or high dose). The body weights of
each animal (grams) at week 0 (just prior to initiation of treatment) and
at weekly intervals for 9 weeks were previously considered in Problem 2.8
and are partially displayed in Tables 2.16.

(a) Analyze these data using profile analysis techniques. Regardless of the
results of the test of parallelism, report the results for both analyses
(assuming parallelism, not assuming parallelism).

(b) Analyze these data using growth curve analysis techniques. Test the
fit of the degree of polynomial chosen. Use both the Potthoff–Roy
method and the maximum likelihood (covariate-adjusted) method.

(c) Which approach—part (a) or part (b)—gives the most powerful test
for differences among dosage groups? Comment, in general, concern-
ing situations in which one method would be preferred over the other.

4.8 Forty male subjects were randomly assigned to one of two treatment
groups. The values of the BPRS factor measured before treatment (week 0)
and at weekly intervals for eight weeks are displayed in Table 2.10 and were
previously considered in Problems 2.2 and 3.12.

(a) Use the method of divided differences to test whether the relationship
between BPRS and time is linear. Carry out this test in each of the
two groups and also test the joint significance of the nonlinear effects
in both groups.

(b) Repeat part (a) using orthogonal polynomial coefficients. Determine
the appropriate polynomial order that provides an adequate fit in
each of the two groups (and in both groups jointly).
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(c) Fit a quadratic growth curve model using standardized orthogonal
polynomial coefficients. Use the Potthoff–Roy approach with G = S.
Test whether the two intercept terms are jointly equal to zero, the
two linear terms are jointly equal to zero, the two quadratic terms
are jointly equal to zero, and whether the curves for the two groups
are equal. Also test the equality of the two intercepts, the two linear
terms, and the two quadratic terms, as well as the hypothesis of
parallelism.

(d) Repeat part (c) for a model on the natural time scale. Report the
estimates of the two curves and summarize the results.

(e) Compare the results with those from Problems 2.2 and 3.12.

4.9 Table 4.9 displays measurements of coronary sinus potassium (MIL
equivalents per liter) from four groups of dogs (Grizzle and Allen, 1969).
Group 1 was a control group of nine untreated dogs with coronary occlusion.
The ten animals in group 2 were given extrinsic cardiac denervation three
weeks prior to coronary occlusion, whereas the eight animals in group 3
were similarly treated immediately prior to coronary occlusion. Group 4
consisted of nine dogs treated with bilateral thoracic sympathectomy and
stellectomy three weeks prior to coronary occlusion.

(a) Determine the appropriate degree of polynomial that can be ade-
quately fitted to these data.

(b) Based on the results of part (a), fit a growth curve model and test
for differences among the four groups.

4.10 Reiczigel (1999) describes an experiment of Sterczer et al. (1996)
using two-dimensional ultrasonography to study the effect of cholagogues
on changes in gallbladder volume (GBV) in three groups of healthy dogs.
Groups 1 and 2 were administered cholechystokynin and clanobutin, re-
spectively. Group 3 was a control group. GBV values were determined im-
mediately before the administration of the test substance and at 10-minute
intervals for 120 minutes thereafter. Table 4.10 displays the data.

(a) Use the method of divided differences to test the joint significance of
the nonlinear components of the relationship between GBV and time
in the three groups.

(b) Repeat part (a) using orthogonal polynomial coefficients. Determine
the appropriate polynomial order that provides an adequate fit.

(c) Analyze these data using growth curve model methodology and sum-
marize the results.
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TABLE 4.9. Coronary sinus potassium measurements from 36 dogs
Minutes after Occlusion

Group Dog 1 3 5 7 9 11 13
1 1 4.0 4.0 4.1 3.6 3.6 3.8 3.1

2 4.2 4.3 3.7 3.7 4.8 5.0 5.2
3 4.3 4.2 4.3 4.3 4.5 5.8 5.4
4 4.2 4.4 4.6 4.9 5.3 5.6 4.9
5 4.6 4.4 5.3 5.6 5.9 5.9 5.3
6 3.1 3.6 4.9 5.2 5.3 4.2 4.1
7 3.7 3.9 3.9 4.8 5.2 5.4 4.2
8 4.3 4.2 4.4 5.2 5.6 5.4 4.7
9 4.6 4.6 4.4 4.6 5.4 5.9 5.6

2 10 3.4 3.4 3.5 3.1 3.1 3.7 3.3
11 3.0 3.2 3.0 3.0 3.1 3.2 3.1
12 3.0 3.1 3.2 3.0 3.3 3.0 3.0
13 3.1 3.2 3.2 3.2 3.3 3.1 3.1
14 3.8 3.9 4.0 2.9 3.5 3.5 3.4
15 3.0 3.6 3.2 3.1 3.0 3.0 3.0
16 3.3 3.3 3.3 3.4 3.6 3.1 3.1
17 4.2 4.0 4.2 4.1 4.2 4.0 4.0
18 4.1 4.2 4.3 4.3 4.2 4.0 4.2
19 4.5 4.4 4.3 4.5 5.3 4.4 4.4

3 20 3.2 3.3 3.8 3.8 4.4 4.2 3.7
21 3.3 3.4 3.4 3.7 3.7 3.6 3.7
22 3.1 3.3 3.2 3.1 3.2 3.1 3.1
23 3.6 3.4 3.5 4.6 4.9 5.2 4.4
24 4.5 4.5 5.4 5.7 4.9 4.0 4.0
25 3.7 4.0 4.4 4.2 4.6 4.8 5.4
26 3.5 3.9 5.8 5.4 4.9 5.3 5.6
27 3.9 4.0 4.1 5.0 5.4 4.4 3.9

4 28 3.1 3.5 3.5 3.2 3.0 3.0 3.2
29 3.3 3.2 3.6 3.7 3.7 4.2 4.4
30 3.5 3.9 4.7 4.3 3.9 3.4 3.5
31 3.4 3.4 3.5 3.3 3.4 3.2 3.4
32 3.7 3.8 4.2 4.3 3.6 3.8 3.7
33 4.0 4.6 4.8 4.9 5.4 5.6 4.8
34 4.2 3.9 4.5 4.7 3.9 3.8 3.7
35 4.1 4.1 3.7 4.0 4.1 4.6 4.7
36 3.5 3.6 3.6 4.2 4.8 4.9 5.0
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TABLE 4.10. Gallbladder volume measurements in three groups of six healthy
dogs

Minutes after Treatment
ID 0 10 20 30 40 50 60 70 80 90 100 110 120
Group 1: Cholechystokynin
1 17.70 10.35 10.78 11.44 11.20 12.38 12.68 12.30 14.00 14.64 14.96 14.18 16.78
2 17.22 11.30 11.30 13.28 14.08 13.98 14.74 15.63 17.60 17.34 17.38 17.36 17.64
3 14.24 9.20 9.40 9.62 10.10 10.08 9.60 9.70 11.23 11.20 11.96 12.20 13.98
4 39.58 26.88 26.20 29.80 31.50 32.75 34.45 35.64 36.62 38.65 38.56 39.20 39.36
5 13.33 7.15 7.82 7.94 8.40 8.94 9.28 9.95 10.40 10.95 11.70 12.10 12.35
6 16.16 8.36 9.53 9.80 9.64 9.84 10.70 11.26 12.12 12.60 13.98 14.52 14.78
Group 2: Clanobutin
1 16.35 13.65 13.10 13.58 14.03 15.45 15.58 15.56 15.62 16.10 16.28 16.74 16.25
2 15.65 13.08 12.35 12.76 13.78 13.76 13.54 14.18 14.40 15.16 15.20 15.18 13.40
3 12.68 9.68 10.70 10.98 11.12 11.78 12.02 11.95 12.16 12.25 12.40 12.55 12.54
4 21.88 15.92 15.18 17.04 18.60 18.98 19.26 20.38 21.32 21.03 21.80 21.08 22.65
5 12.78 9.03 9.28 9.54 9.38 9.88 9.94 10.14 10.34 11.50 11.83 11.78 12.08
6 15.58 11.50 11.88 12.06 12.58 12.98 13.00 13.00 13.04 13.18 13.88 13.43 13.85
Group 3: Control
1 20.75 19.83 19.98 18.84 19.10 19.50 19.75 19.64 20.00 19.13 20.15 19.45 19.43
2 13.88 13.60 13.73 13.16 13.44 13.62 13.86 13.58 14.28 14.10 13.12 13.53 13.42
3 11.92 11.74 11.84 10.90 11.75 11.45 11.98 12.38 11.70 11.48 11.80 11.20 12.03
4 26.38 26.90 27.73 27.73 27.56 28.43 27.54 26.50 27.94 27.58 27.56 27.64 28.83
5 13.30 13.18 13.52 13.43 13.40 13.25 13.28 13.24 13.44 12.98 12.60 13.48 13.08
6 13.80 13.86 13.06 13.76 13.82 13.80 13.86 13.84 13.76 13.82 13.50 13.72 13.70
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4.11 Kenward (1987) describes an experiment to compare two treatments
for controlling intestinal parasites in calves. There were 30 calves in each
of the two groups, and the weight of each calf was determined at 11 mea-
surement times. These data are partially displayed in Table 2.11 and were
previously considered in Problems 2.3 and 3.11.

(a) Use the method of divided differences to test whether the relationship
between weight and time is linear. Carry out this test in each of the
two groups and also test the joint significance of the nonlinear effects
in both groups.

(b) Repeat part (a) using orthogonal polynomial coefficients. Determine
the appropriate polynomial order that provides an adequate fit in
each of the two groups.

(c) Discuss the appropriateness of growth curve methods for analyzing
these data.

4.12 Hand and Taylor (1987, pp. 117–125) describe a study of urinary
salsolinol excretion levels in two groups of subjects admitted to an al-
coholism treatment unit. Group 1 includes six subjects considered to be
moderately dependent on alcohol, and group 2 includes eight subjects con-
sidered to be severely dependent on alcohol. This study was previously
considered in Problem 3.13, and the raw data are displayed in Table 3.11.
As in Problem 3.13, carry out the following analyses on log-transformed
urinary salsolinol levels.

(a) Use profile analysis methods to test whether the response profiles for
the two groups are parallel. Depending on the results of the test of
parallelism, use an appropriate profile analysis test to assess whether
there are differences between the two groups and differences among
the four days.

(b) Fit a cubic growth curve model using standardized orthogonal poly-
nomial coefficients. Determine the appropriate polynomial order that
provides an adequate fit in each of the two groups. Discuss the ap-
propriateness of growth curve methods for analyzing these data.



5
Normal-Theory Methods: Repeated
Measures ANOVA

5.1 Introduction

The unstructured multivariate approach described in Chapters 3 and 4
makes no assumptions concerning the covariance structure of the vector of
repeated measurements from each experimental unit. Although not making
covariance structure assumptions may be advantageous, these approaches
can result in low power to detect differences of interest. This is due to the
fact that a large number of degrees of freedom must be used to estimate
the covariance parameters.

For normally distributed responses, it would be natural to use analysis-
of-variance (ANOVA) methods if the repeated measurements were inde-
pendent. A traditional approach to the analysis of repeated measurements
is to:

1. perform a standard ANOVA, as if the observations are independent;

2. determine whether additional assumptions or modifications are re-
quired to make the analysis valid.

This method is commonly called “repeated measures ANOVA.”
Section 5.2 describes the fundamental model and assumptions for re-

peated measures ANOVA. Section 5.3 demonstrates this approach for one-
sample problems, and Section 5.4 describes the use of repeated measures
ANOVA for multisample problems. In some settings, the repeated mea-
sures ANOVA approach may be a useful alternative to the unstructured
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multivariate approach because it does not require estimation of the covari-
ance structure. However, the methods to be described in Chapter 6 offer
the advantage of allowing parsimonious modeling of the covariance struc-
ture without requiring assumptions as strict as those for repeated measures
ANOVA.

With the development of these more flexible approaches, repeated mea-
sures ANOVA is no longer as useful as it was in the past. Hence, this
chapter provides only a brief overview of this methodology.

5.2 The Fundamental Model

Assume that a continuous, normally distributed response variable is mea-
sured at each of t time points for each of n experimental units (subjects).
Let yij denote the response from subject i at time j for i = 1, . . . , n,
j = 1, . . . , t. The general basis for repeated measures ANOVA is the model

yij = µij + πij + eij . (5.1)

This model has three components. First, µij is the mean at time j for
individuals randomly selected from the same population as individual i.
The second term in Equation (5.1) is πij , the consistent departure of yij

from µij for the ith subject. Under hypothetical repetitions from the same
individual, yij has mean µij + πij . The final component of model (5.1) is
eij , the departure of yij from µij + πij for individual i at time j.

The µij parameters are called fixed effects because µij has a fixed value
irrespective of the particular individual. Because πij varies randomly over
the population of individuals, the πij parameters are called random ef-
fects. The eij parameters are random error terms. Because the fundamental
model contains both fixed and random effects, it is often called the mixed
model. Crowder and Hand (1990, p. 25) refer to µij as “an immutable con-
stant of the universe,” πij as “a lasting characteristic of the individual,”
and eij as “a fleeting aberration of the moment.”

For given j, the means and variances of the random effects πij are as-
sumed to be as follows:

E(πij) = 0,
Var(πij) = σ2

πj .

Thus, any nonzero mean is absorbed in µij , and the variance at time j is
constant over individuals. In addition, for given j,

E(eij) = 0,
Var(eij) = σ2

ej .

Thus, the error variance at time j is constant over individuals.



5.2 The Fundamental Model 105

With respect to the correlation structure of the random effects πij , it is
assumed that

Cov(πij , πi′j) = Cov(πij , πi′j′) = 0

for i �= i′ and j �= j′ (i.e., that the random effects for different subjects
are uncorrelated). A further assumption is that Cov(πij , πij′) = σπjj′ , so
that the within-subject covariances of random effects are the same across
subjects.

The error terms eij are also assumed to be uncorrelated. Thus,

Cov(eij , ei′j′) = 0

if i �= i′ or j �= j′. In addition, the random effects and the error terms are
also uncorrelated, so that

Cov(πij , ei′j′) = 0

for all i, j, i′, j′. A final distributional assumption is that the random effects
πij and the error terms eij are normally distributed.

The preceding general assumptions are often further simplified. First, the
variances σ2

πj may be assumed to be constant across time points, so that
Var(πij) = σ2

π. Similarly, σπjj′ is often assumed to be constant for all j, j′.
In addition, the variances σ2

ej of the random errors eij are often assumed
to be constant over time; that is, Var(eij) = σ2

e .
In terms of the observations yij , E(yij) = µij because E(πij) = E(eij) =

0. Furthermore,

Cov(yij , yi′j′) = E[(yij − µij)(yi′j′ − µi′j′)]
= E[(πij + eij)(πi′j′ + ei′j′)]
= E[πijπi′j′ + πijei′j′ + πi′j′eij + eijei′j′ ]. (5.2)

In simplifying Equation (5.2), first observe that

E(πijπi′j′) =
{

Var(πij) if i = i′, j = j′

Cov(πij , πi′j′) otherwise .

Because

E(πijπi′j′) =

σ
2
πj if i = i′, j = j′

σπjj′ if i = i′, j �= j′

0 if i �= i′
,

then E(πijπi′j′) = δii′σπjj′ , where

δii′ =
{

1 if i = i′

0 otherwise

and σπjj = σ2
πj .
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Because Cov(πij , ei′j′) = 0 for all i, j, i′, j′, the second and third terms
of Equation (5.2) are

E(πijei′j′) = 0, E(πi′j′eij) = 0.

Finally, the fourth term of Equation (5.2) is

E(eijei′j′) =
{

Var(eij) if i = i′, j = j′

Cov(eij , ei′j′) otherwise ,

so that

E(eijei′j′) =
{
σ2

ej if i = i′, j = j′

0 otherwise
.

This can be written as E(eijei′j′) = δii′δjj′σ2
ej .

Thus, the model specification for the first two moments of yij is

E(yij) = µij

Cov(yij , yi′j′) = δii′σπjj′ + δii′δjj′σ2
ej

= δii′(σπjj′ + δjj′σ2
ej).

Observations yij and yi′j from different individuals (i �= i′) are uncor-
related. The correlation between measurements on the same individual is
called an intraclass correlation and is given by

Corr(yij , yij′) =
σπjj′

[(σπjj + σ2
ej)(σπj′j′ + σ2

ej′)]1/2 .

In the special case where σ2
ej = σ2

e and σπjj′ = σ2
π,

ρ = Corr(yij , yij′) =
σ2

π

σ2
π + σ2

e

.

The intraclass correlation coefficient ρ ranges from 0 to 1 as σ2
π/σ

2
e ranges

from 0 to ∞.

5.3 One Sample

5.3.1 Repeated Measures ANOVA Model
Table 1.3 displays the situation where repeated measurements are obtained
from a single sample. The repeated measures ANOVA model for this case
is

yij = µ+ πi + τj + eij (5.3)

for i = 1, . . . , n and j = 1, . . . , t. In Equation (5.3), yij is the response from
subject i at time j, µ is the overall mean, πi is a random effect for subject i
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which is constant over all occasions, τj is the fixed effect of time j, and eij

is a random error component specific to subject i at time j. The random
effects πi are independent N(0, σ2

π), the random errors eij are independent
N(0, σ2

e), and the random effects πi and the random error terms eij are
independent. The fixed effects τj are assumed to satisfy the sum-to-zero
constraints

∑t
j=1 τj = 0.

In terms of the parameters of the general model given by Equation (5.1)
in Section 5.2,

• µij = µ+ τj (note that the subscript i is unnecessary);

• πij = πi (constant across time points).

The variances and covariances of the observations are

Var(yij) = Var(µ+ πi + τj + eij) = σ2
π + σ2

e ,

Cov(yij , yi′j) = 0, for i �= i′,
Cov(yij , yij′) = σ2

π, for j �= j′.

Thus, the covariance matrix of the vector yi = (yi1, . . . , yit)′ is given by

Σ =

σ
2
π + σ2

e σ2
π

. . .
σ2

π σ2
π + σ2

e


= (σ2

π + σ2
e)

 1 ρ
. . .

ρ 1

 , (5.4)

where

ρ =
σ2

π

σ2
π + σ2

e

= Corr(yij , yij′).

Although all random variables in model (5.3) are independent, the re-
peated observations from a subject are correlated. The resulting covariance
matrix given by Equation (5.4) with equal diagonal elements and equal off-
diagonal elements is said to have compound symmetry. This covariance
structure implies that the correlation between any pair of repeated obser-
vations is the same, regardless of the spacing between observations. This
assumption is highly restrictive and often unrealistic, especially when the
repeated measurements factor is time.

The ANOVA table for model (5.3) is the same as that of the two-way
mixed model with one observation per cell and no subject × time interac-
tion. Table 5.1 displays the sum of squares (SS), df, mean square (MS), and
expected MS for each source of variation. The sums of squares in Table 5.1
are computed using the observations yij , the overall mean

y.. =

∑n
i=1
∑t

j=1 yij

nt
,
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TABLE 5.1. Sums of squares, degrees of freedom, mean squares, and expected
mean squares for one-sample repeated measures ANOVA

Source SS df MS E(MS)

Time SST t− 1 MST =
SST

t− 1
σ2

e + nσ2
τ

Subjects SSS n− 1 MSS =
SSS

n− 1
σ2

e + tσ2
π

Residual SSR (n− 1)(t− 1) MSR =
SSR

(n− 1)(t− 1)
σ2

e

the means for each subject over time

yi. =

∑t
j=1 yij

t
,

and the means at each time point over subjects

y.j =
∑n

i=1 yij

n
.

The sums of squares are then defined as follows:

SST =
n∑

i=1

t∑
j=1

(y.j − y..)
2 = n

t∑
j=1

(y.j − y..)
2, (5.5)

SSS =
n∑

i=1

t∑
j=1

(yi. − y..)
2 = t

n∑
i=1

(yi. − y..)
2, (5.6)

SSR =
n∑

i=1

t∑
j=1

(yij − yi. − y.j + y..)
2. (5.7)

In addition, the symbol σ2
τ in the column of expected mean squares of

Table 5.1 represents a function of the fixed effects τj .
The sums of squares displayed in Table 5.1 can be computed using a stan-

dard ANOVA program for a two-way main-effects model with one observa-
tion per cell. The null hypothesis that there are no differences among time
periods can be tested using the statistic F = MST/MSR. Provided that the
assumptions of the model hold, this test statistic has the Ft−1,(n−1)(t−1) dis-
tribution if the null hypothesis is true. Linear contrasts of the time period
means can also be tested.

If compound symmetry holds, this F statistic provides a more power-
ful test than the approach using Hotelling’s T 2 statistic described in Sec-
tion 3.3. However, because the F test is anticonservative in the absence of
compound symmetry, rejection decisions cannot be trusted.
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TABLE 5.2. Sums of squares, degrees of freedom, and expected mean squares for
Scheffé’s one-sample repeated measures ANOVA model

Source SS df E(MS)

Time SST t− 1 σ2
e + σ2

T×S + nσ2
τ

Subjects SSS n− 1 σ2
e + tσ2

π

Time × subjects SSTS (n− 1)(t− 1) σ2
e + σ2

T×S

Scheffé (1959) gives an alternative model for the one-way repeated mea-
surements setting. Although yij , µ, and τj are defined as in Equation (5.3),
the random error components eij now include subject × time interaction as
well as measurement error. Scheffé assumes that the πi and eij components
follow a multivariate normal distribution. One important difference is that
Cov(eij , eij′) �= 0 and Cov(πi, eij) �= 0 in Scheffé’s model. Provided that
certain assumptions are satisfied, the analysis is the same for both models.
This may explain why many textbooks do not make a distinction between
the two models.

Table 5.2 displays the sum of squares, degrees of freedom, and expected
mean squares for each source of variation in Scheffé’s model. The sums of
squares SST and SSS are computed as in Equations (5.5) and (5.6). The
treatment × subjects sum of squares SSTS is the same as the residual sum
of squares SSR given by Equation (5.7). The statistic F = MST/MSTS,
where

MSTS =
SSTS

(n− 1)(t− 1)
,

tests the null hypothesis that the means at the t time points are equal.

5.3.2 Sphericity Condition
Equation (5.4) displays the covariance matrix of the observations yij from
the one-way repeated measures ANOVA model; this structure is called
compound symmetry. Although the compound symmetry condition is suf-
ficient for the F statistic used to test the null hypothesis of no differences
among time points to have the Ft−1,(n−1)(t−1) distribution, it is not nec-
essary. Compound symmetry is a special case of a more general situation,
sphericity, under which the F test is valid.

The sphericity condition can be expressed in a number of alternative
ways, including:

1. The variances of all pairwise differences between variables are equal;
that is,

Var(yij − yij′) is constant for all j, j′. (5.8)
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2. ε = 1, where

ε =
t2(σii − σ..)2

(t− 1)(S − 2t
∑
σ2

i. + t2σ2
..)
, (5.9)

and σii is the mean of the entries on the main diagonal of Σ, σ.. is
the mean of all of the elements of Σ, σi. is the mean of the entries in
row i of Σ, and S is the sum of the squares of the elements of Σ.

If compound symmetry holds, then both Var(yij) and Cov(yij , yij′) are
constant for all i and j. Then, because

Var(yij − yij′) = Var(yij) + Var(yij′) − 2Cov(yij , yij′),

it is clear that Equation (5.8) is satisfied. There are, however, other situ-
ations under which the equivalent conditions of Equations (5.8) and (5.9)
hold. Although sphericity is a more general criterion for validity of the F
test of the repeated measures ANOVA model, it is difficult to argue sub-
stantively for any patterned form of Σ other than compound symmetry.
In particular, if the variances are equal, then the covariances must also
be equal in order for the sphericity condition to be satisfied (Huynh and
Feldt, 1970). Huynh (1978) states that it would be difficult to concep-
tualize a situation that would give rise to a covariance matrix satisfying
the sphericity condition but not having compound symmetry. As a result,
Wallenstein (1982) concludes that, for all practical purposes, the required
assumption for repeated measures ANOVA should be that of compound
symmetry.

Mauchly (1940) gives a test of the sphericity condition. This test, how-
ever, has low power for small sample sizes. In addition, for large sample
sizes, the test is likely to show significance even though the effect on the F
test may be negligible. Mauchly’s test for sphericity has also been shown to
be sensitive to departures from normality; in particular, it is conservative
for light-tailed distributions and anticonservative for heavy-tailed distribu-
tions. It is also very sensitive to outliers. Because of these properties, it is
not of great practical use.

If the sphericity assumption seems unreasonable, one alternative is to use
the unstructured multivariate approach described in Chapter 3. Another
possibility is to modify the repeated measures ANOVA approach.

When sphericity does not hold, the F statistic has an approximate

Fε(t−1),ε(t−1)(n−1)

distribution, where ε, given by Equation (5.9), is a function of the actual
covariance matrix Σ (Box, 1954). It can be shown that 1/(t− 1) ≤ ε ≤ 1.

Several approaches to hypothesis testing have been suggested for the
situation where the sphericity assumption is violated. One is to adjust the
degrees of freedom of the F statistic by using the lower bound for ε. With
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ε = 1/(t−1), the Fε(t−1),ε(t−1)(n−1) distribution becomes F1,n−1. This test,
however, is very conservative.

Greenhouse and Geisser (1959) recommend adjusting the degrees of free-
dom of the F statistic using the estimator ε̂ computed from the sample
covariance matrix S using Equation (5.9). This is the maximum likelihood
estimator of ε. Adjusting the degrees of freedom using ε̂ tends to overcor-
rect the degrees of freedom and produce a conservative test. This approach
is known to be seriously biased for ε > 0.75 and n < 2t.

Huynh and Feldt (1976) proposed the estimator

ε̃ = min
(

1,
n(t− 1)ε̂− 2

(t− 1)(n− 1 − (t− 1)ε̂)

)
.

The estimator ε̃ is based on unbiased estimators of the numerator and
denominator of ε and is less biased than ε̂. It can be shown that ε̃ ≥ ε̂.
Although ε̂ is better for ε ≤ 0.5, ε̃ performs better for ε ≥ 0.75. In practice,
however, ε is unknown.

Greenhouse and Geisser (1959) suggested the following approach to the
use of repeated measures ANOVA.

1. Conduct the univariate F test under the assumption that the re-
peated measures ANOVA assumptions are satisfied.

2. If this test is not significant, then fail to reject H0.

3. If this test is significant, then conduct the conservative test using
ε = 1/(t− 1), which leads to the F1,n−1 distribution.

(a) If the conservative test is significant, then reject H0.

(b) If the conservative test is not significant, then estimate ε and
conduct an approximate test.

Although Greenhouse and Geisser proposed estimating ε by ε̂, the some-
what less conservative estimator ε̃ could also be used.

5.3.3 Example
Table 2.1 displays data from a study in which ventilation volumes (l/min)
were measured in eight subjects under six different temperatures of inspired
dry air (Deal et al., 1979). These data were analyzed using the summary-
statistic approach in Section 2.2 and using the unstructured multivariate
approach in Section 3.3.2. Let µ1, . . . , µ6 denote the mean ventilation vol-
umes at temperatures −10, 25, 37, 50, 65, and 80◦C, respectively. Under
the assumption that ventilation volumes are normally distributed, repeated
measures ANOVA can be used to test H0:µ1 = · · · = µ6.
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With reference to Table 5.1, SST = 413.867 is the sum of squares for
temperature and SSR = 935.35. The test statistic is

F =
SST/(t− 1)

SSR/[(n− 1)(t− 1)]
=

413.867/5
935.35/35

=
82.773
26.724

= 3.10.

Comparison of this value with the F5,35 distribution gives p = 0.02. At the
5% level of significance, there is sufficient evidence to reject H0.

The chi-square approximation to Mauchly’s (1940) test of the sphericity
assumption is 13.44 with 14 df (p = 0.49). Although there is insufficient
evidence to reject sphericity, this test has low power because the sample size
is small. If we follow step 3 of the Greenhouse–Geisser approach by using
ε = 1/(t − 1), the relevant F distribution is F1,7 and the corresponding
p-value is 0.12. In this case, we would fail to reject H0.

Because the conclusions of the standard repeated measures ANOVA test
and the conservative test differ, it may be of interest to estimate ε. In this
example, ε̂ = 0.5364, and the resulting p-value is 0.056. The estimator ε̃
is 0.9012, with resulting p-value 0.025. With n = 8 subjects and t = 6
time points, n < 2t and hence ε̂ is likely too conservative. The use of the
estimator ε̃ results in the conclusion that the means at the six temperatures
are not equal.

Recall that in Section 2.2 the summary-statistic approach indicated that
ventilation volume decreased significantly over time. In Section 3.3.2, how-
ever, the test of H0 using the unstructured multivariate approach was not
statistically significant at the 5% level of significance.

5.4 Multiple Samples

5.4.1 Repeated Measures ANOVA Model
Suppose that repeated measurements at t time points are obtained from
s groups of subjects. Let nh denote the number of subjects in group h,
and let n =

∑s
h=1 nh. Let yhij denote the response at time j from the ith

subject in group h for h = 1, . . . , s, i = 1, . . . , nh, and j = 1, . . . , t. Table 1.2
displays the general data layout for this setting.

There are at least three models for this situation, all resulting in the
same ANOVA table. The simplest is

yhij = µ+ γh + τj + (γτ)hj + πi(h) + ehij . (5.10)

In model (5.10), µ is the overall mean and γh is the fixed effect of group h,
with

∑s
h=1 γh = 0. In addition, τj is the fixed effect of time j, with∑t

j=1 τj = 0, and (γτ)hj is the fixed effect for the interaction of the
hth group with the jth time. The constraints on the interaction param-
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TABLE 5.3. Sums of squares, degrees of freedom, and expected mean squares for
multisample repeated measures ANOVA

Source SS df E(MS)
Group SSG s− 1 σ2

e + tσ2
π +DG

Subjects(Group) SSS(G) n− s σ2
e + tσ2

π

Time SST t− 1 σ2
e +DT

Group × Time SSGT (s− 1)(t− 1) σ2
e +DGT

Residual SSR (n− s)(t− 1) σ2
e

eters are
s∑

h=1

(γτ)hj =
t∑

j=1

(γτ)hj = 0.

The parameters πi(h) are random effects for the ith subject in the hth group.
The πi(h) are assumed to be independently normally distributed with mean
zero and variance σ2

π. Finally, the ehij parameters are independent random
error terms, with ehij ∼ N(0, σ2

e).
In terms of the parameters of the general model given by Equation (5.1)

in Section 5.2,

• µij = µ+ γh + τj + (γτ)hj ;

• πij = πi(h);

• eij = ehij .

Table 5.3 displays the sum of squares (SS), df, and expected MS for each
source of variation. In the column of expected mean squares, the quantities
labeled DG, DT , and DGT represent differences among groups, differences
among time points, and the group × time interaction, respectively.

The sums of squares in Table 5.3 are based on the following decompo-
sition of the deviations yhij − y... of each observation about the overall
mean:

yhij − y... = (yh.. − y...) + (yhi. − yh..) + (y..j − y...)
+(yh.j − yh.. − y..j + y...) + (yhij − yh.j − yhi. + yh..),

where

y... =

∑s
h=1
∑nh

i=1
∑t

j=1 yhij

nt

is the overall mean,

yh.. =

∑nh

i=1
∑t

j=1 yhij

nht
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is the mean for group h,

y..j =
∑s

h=1
∑nh

i=1 yhij

n

is the mean at time j,

yh.j =
∑nh

i=1 yhij

nh

is the mean for group h at time j, and

yhi. =

∑t
j=1 yhij

t

is the mean for the ith subject in group h.
The sums of squares are then defined as follows:

SSG =
s∑

h=1

nh∑
i=1

t∑
j=1

(yh.. − y...)
2 = t

s∑
h=1

nh(yh.. − y..)
2,

SSS(G) =
s∑

h=1

nh∑
i=1

t∑
j=1

(yhi. − yh..)
2 = t

s∑
h=1

nh∑
i=1

(yhi. − yh..)
2,

SST =
s∑

h=1

nh∑
i=1

t∑
j=1

(y..j − y...)
2 = n

t∑
j=1

(y..j − y...)
2,

SSGT =
s∑

h=1

nh∑
i=1

t∑
j=1

(yh.j − yh.. − y..j + y...)
2,

SSR =
s∑

h=1

nh∑
i=1

t∑
j=1

(yhij − yh.j − yhi. + yh..)
2.

Note that SSG, SST, and SSGT are equal to the sums of squares from a two-
factor ANOVA model (assuming that all nt observations are independent)
with effects for group, time, and the group × time interaction. The residual
sum of squares SSR is due to the subject effect nested within the cross-
classification of group × time.

The F statistic for testing for differences among groups is given by

F =
MSG

MSS(G)
=

SSG/(s− 1)
SSS(G)/(n− s)

with s− 1 and n− s df. This test requires the assumption that the within-
group covariance matrices are equal. In general, this assumption is required
for all tests of between-subjects effects.

The F statistic for testing differences among time points is given by

F =
MST

MSR
=

SST/(t− 1)
SSR/[(n− s)(t− 1)]
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TABLE 5.4. Logarithms of times (seconds) to dissolve for four groups of tablets
Fraction Remaining

Group Tablet 0.90 0.70 0.50 0.30 0.25 0.10
1 1 2.56 2.77 2.94 3.14 3.18 3.33

2 2.64 2.89 3.09 3.26 3.33 3.47
3 2.94 3.18 3.33 3.50 3.50 3.66
4 2.56 2.83 3.04 3.22 3.26 3.37
5 2.64 2.77 2.94 3.14 3.22 3.30
6 2.56 2.77 2.94 3.14 3.18 3.26

2 1 2.56 2.83 3.07 3.26 3.33 3.51
2 2.44 2.74 3.02 3.20 3.28 3.44
3 2.34 2.67 2.91 3.16 3.22 3.39
4 2.41 2.71 2.94 3.16 3.21 3.36

3 1 2.46 2.83 3.09 3.32 3.37 3.54
2 2.60 2.93 3.21 3.40 3.46 3.62
3 2.48 2.84 3.12 3.35 3.41 3.58
4 2.49 2.82 3.05 3.29 3.37 3.52

4 1 2.40 2.67 2.94 3.20 3.26 3.47
2 2.64 2.94 3.18 3.40 3.45 3.66
3 2.40 2.64 2.86 3.09 3.16 3.38

with t − 1 and (n − s)(t − 1) df. Similarly, the F statistic for testing the
significance of the group × time interaction is given by

F =
MSGT

MSR
=

SSGT/[(s− 1)(t− 1)]
SSR/[(n− s)(t− 1)]

with (s− 1)(t− 1) and (n− s)(t− 1) df. Both of these tests require the as-
sumption that the within-group covariance matrices are equal and that the
sphericity condition is satisfied. In general, these assumptions are required
for all tests of within-subjects effects.

An alternative repeated measures ANOVA model for this setting includes
an additional random effect for the subject × time interaction. This effect
is usually assumed to be uncorrelated with the random subject effect. Al-
though the expected mean squares for this model are different from those
displayed in Table 5.3, the sums of squares and test statistics are identical.

5.4.2 Example
Crowder (1996) presents data from an experiment comparing dissolution
times of pills. Table 5.4 displays the logarithms of the times, in seconds, for
each pill to reach fractions remaining of 0.9, 0.7, 0.5, 0.3, 0.25, and 0.10. The
four groups correspond to different storage conditions. Under the assump-
tion that the logarithms of the times are normally distributed, repeated
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TABLE 5.5. ANOVA table for drug dissolution data
Source SS df MS F p-value
Group 0.2038 3 0.0679 0.87 0.4798
Subjects(Group) 1.0108 13 0.0778
Fraction 10.0388 5 2.0078 3187.45 < 0.001
Group × Fraction 0.2045 15 0.0136 21.64 < 0.001
Residual 0.0409 65 0.0006

measures ANOVA can be used to test for effects due to group, fraction
remaining, and the interaction between group and fraction remaining.

Table 5.5 displays the ANOVA table for this example. Under the as-
sumptions that the within-group covariance matrices are equal and that
the sphericity condition is satisfied, there is a highly significant interac-
tion effect between group and fraction remaining. Thus, the shapes of the
profiles are not the same across the four groups.

The test of sphericity, however, is rejected. The chi-square approxima-
tion to Mauchly’s (1940) criterion is 37.21 with 14 df (p < 0.001). The
Greenhouse–Geisser estimate of ε is ε̂ = 0.454, and the Huynh–Feldt esti-
mator is ε̃ = 0.683. In this example, the adjusted tests of the fraction and
group × fraction effects based on both ε̂ and ε̃ yield p < 0.001.

The dissolution times (and their logarithms) for the type of data dis-
played in Table 5.4 are strictly increasing. Thus, the test of the effect of
the repeated measures factor (fraction remaining) is not of great interest
because it is likely to be highly significant. An alternative approach to the
analysis of such dissolution data is to use repeated measures ANOVA on
the first differences of the log-transformed times (Mauger et al., 1986).

5.5 Problems

5.1 Consider the t × t compound symmetric covariance matrix Σ with
main diagonal elements σ2 and off-diagonal elements ρσ2. Show that

ε =
t2(σii − σ..)2

(t− 1)(S − 2t
∑
σ2

i. + t2σ2
..)

is equal to 1, where σii is the mean of the entries on the main diagonal of
Σ, σ.. is the mean of all elements of Σ, σi. is the mean of the entries in
row i of Σ, and S is the sum of the squares of the elements of Σ.

5.2 Determine whether these covariance matrices satisfy the sphericity
condition:

(a) Σ =

 5 2.5 5
10 7.5

15

 . (b) Σ =

 5 2.5 7.5
15 12.5

25

 .
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TABLE 5.6. Weights of 13 male mice from birth to weaning
Day

Mouse 3 6 9 12 15 18 21
1 .190 .388 .621 .823 1.078 1.132 1.191
2 .218 .393 .568 .729 .839 .852 1.004
3 .211 .394 .549 .700 .783 .870 .925
4 .209 .419 .645 .850 1.001 1.026 1.069
5 .193 .362 .520 .530 .641 .640 .751
6 .201 .361 .502 .530 .657 .762 .888
7 .202 .370 .498 .650 .795 .858 .910
8 .190 .350 .510 .666 .819 .879 .929
9 .219 .399 .578 .699 .709 .822 .953
10 .225 .400 .545 .690 .796 .825 .836
11 .224 .381 .577 .756 .869 .929 .999
12 .187 .329 .441 .525 .589 .621 .796
13 .278 .471 .606 .770 .888 1.001 1.105

5.3 Table 5.6 displays the weights of 13 male mice measured at intervals
of three days over the 21 days from birth to weaning (Rao, 1987).

(a) Use both the unstructured multivariate approach and repeated mea-
sures ANOVA to test the null hypothesis that the means at all seven
of the measurement times are equal. Which of the two analyses do
you prefer? Why?

(b) Based on your preferred method of analysis from part (a), test the null
hypothesis that the relationship between weight and measurement
day is linear.

5.4 Problem 3.6 describes a study in which response times of the eyes to
a stimulus were measured (Crowder and Hand, 1990, p. 30). The variable of
interest was the time lag (milliseconds) between the stimulus (a light flash)
and the electrical response at the back of the cortex. In seven student
volunteers, recordings were made for left and right eyes through lenses of
powers 6/6, 6/18, 6/36, and 6/60. Table 3.6 displays the data. Use repeated
measures ANOVA to assess the effects of eye, lens strength, and eye × lens
strength interaction.

5.5 Problem 3.8 describes a study of 12 hospitalized patients who un-
derwent a dietary treatment regimen during which plasma ascorbic acid
levels were recorded on each of seven occasions during a 16-week period.
There were two measurements prior to treatment (weeks 1 and 2), three
during treatment (weeks 6, 10, and 14), and two after (weeks 15 and 16)
the treatment regimen. Table 3.8 displays the data.
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(a) Test the null hypothesis that the means at weeks 1, 2, 6, 10, 14,
15, and 16 are equal by the unstructured multivariate approach and
repeated measures ANOVA. Which of the two analyses do you prefer?
Why?

(b) Use repeated measures ANOVA to test the significance of the effects
due to phase (before treatment, during treatment, after treatment).

5.6 Cole and Grizzle (1966) describe an experiment in which 16 mongrel
dogs were divided into four groups. Groups 1 and 2 received morphine sul-
phate intravenously, and groups 3 and 4 received intravenous trimethaphan.
In addition, the dogs in groups 2 and 4 were treated so that their supplies
of available histamine were depleted at the time of treatment, whereas
groups 1 and 3 had intact histamine supplies. Table 5.7 displays blood
histamine levels (µg/ml) at minutes 1, 3, and 5 of treatment. (Note that
Cole and Grizzle replaced a missing value at 5 minutes for the second dog
in group 2 with the value 0.11.) Before completing the following analy-
ses, transform the responses by taking the base 10 logarithm to maintain
consistency with the results reported by Cole and Grizzle (1966).

(a) Ignore the factorial structure of the experiment and use repeated
measures ANOVA to assess the effects of group, time, and the group
× time interaction.

(b) Use repeated measures ANOVA to assess the effects of treatment,
histamine supply, time, and the two-way and three-way interactions
of these effects.

5.7 Table 5.8 lists repeated measurements of total cholesterol amounts
measured every four weeks for 24 weeks in 12 subjects treated with a drug
and 11 subjects treated with a placebo (Hirotsu, 1991). Use repeated mea-
sures ANOVA to assess the effects of group, week, and the group × week
interaction.

5.8 Table 3.3 lists the data from a study conducted at the University of
North Carolina Dental School in which the distance (mm) from the center of
the pituitary gland to the pterygomaxillary fissure was measured at ages 8,
10, 12, and 14 in 16 boys and 11 girls (Potthoff and Roy, 1964). Use repeated
measures ANOVA to test the significance of the effects of sex, year, and the
sex × year interaction. Comment on the validity of this methodology for
these data as well as on its usefulness relative to the analysis approaches
illustrated in Sections 3.4.2, 4.3.2, and 4.4.3.

5.9 Box (1950) describes an experiment in which 30 rats were randomly
assigned to three treatment groups. Group 1 was a control group, group 2
had thyroxin added to their drinking water, and group 3 had thiouracil
added to their drinking water. Whereas there were ten rats in each of



5.5 Problems 119

TABLE 5.7. Blood histamine levels in four groups of dogs
Histamine Minute

Group Treatment Supply Dog 1 3 5
1 Morphine Intact 1 0.20 0.10 0.08

2 0.06 0.02 0.02
3 1.40 0.48 0.24
4 0.57 0.35 0.24

2 Morphine Depleted 1 0.09 0.13 0.14
2 0.11 0.10 0.11
3 0.07 0.07 0.07
4 0.07 0.06 0.07

3 Trimethaphan Intact 1 0.62 0.31 0.22
2 1.05 0.73 0.60
3 0.83 1.07 0.80
4 3.13 2.06 1.23

4 Trimethaphan Depleted 1 0.09 0.09 0.08
2 0.09 0.09 0.10
3 0.10 0.12 0.12
4 0.05 0.05 0.05

groups 1 and 3, group 2 consisted of only seven rats (due to an unspecified
accident at the beginning of the experiment). The resulting body weights
of each of the 27 rats at the beginning of the experiment and at weekly
intervals for four weeks were previously considered in Problems 2.4 and 4.3
and are displayed in Table 2.12. Use repeated measures ANOVA to test
the significance of the effects of treatment group, week, and treatment ×
week interaction. Comment on the validity of this methodology for these
data as well as on its usefulness relative to the approaches of Problems 2.4
and 4.3.

5.10 Groves et al. (1998) discuss a randomized, double-blind clinical trial
comparing the antispastic efficacy of two drugs. In this study, 26 patients
with cerebral lesions were randomly assigned to treatment with tizani-
dine (T) or diazepam (D). One of the outcome variables in the study was
total muscle strength. This is computed as the sum of 32 upper- and lower-
limb measurements, each of which is a rating on a six-point ordinal scale
from 0 (normal strength) to 5 (no voluntary movement). The total muscle-
strength score ranges from 0 to 160, with lower scores indicating increased
strength. Table 5.9 displays total muscle-strength measurements at base-
line (week 0) and at weeks 2, 4, and 6 of treatment. Use repeated measures
ANOVA to test the significance of the effects of treatment, time, and the
treatment × time interaction.
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TABLE 5.8. Total cholesterol measurements from 23 subjects
Week

Group Subject 4 8 12 16 20 24
Drug 1 317 280 275 270 274 266

2 186 189 190 135 197 205
3 377 395 368 334 338 334
4 229 258 282 272 264 265
5 276 310 306 309 300 264
6 272 250 250 255 228 250
7 219 210 236 239 242 221
8 260 245 264 268 317 314
9 284 256 241 242 243 241
10 365 304 294 287 311 302
11 298 321 341 342 357 335
12 274 245 262 263 235 246

Placebo 1 232 205 244 197 218 233
2 367 354 358 333 338 355
3 253 256 247 228 237 235
4 230 218 245 215 230 207
5 190 188 212 201 169 179
6 290 263 291 312 299 279
7 337 337 383 318 361 341
8 283 279 277 264 269 271
9 325 257 288 326 293 275
10 266 258 253 284 245 263
11 338 343 307 274 262 309
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TABLE 5.9. Total muscle-strength scores from 26 subjects
Week

Subject Treatment 0 2 4 6
1 T 58 54 52 52
2 D 56 52 52 52
3 D 54 54 54 54
4 D 61 61 61 61
5 T 15 15 15 15
6 T 63 63 63 63
7 D 19 19 16 16
8 T 28 28 28 28
9 T 62 56 54 54
10 T 58 58 58 58
11 D 62 50 50 50
12 D 54 52 52 52
13 T 108 108 100 100
14 D 52 52 52 52
15 D 38 36 36 36
16 T 26 26 26 26
17 T 26 26 26 26
18 D 48 48 48 48
19 D 24 20 20 20
20 T 40 40 40 40
21 D 58 58 58 58
22 T 24 24 24 24
23 T 64 64 64 64
24 T 12 12 12 12
25 T 46 46 46 46
26 D 54 54 54 54
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TABLE 5.10. Body weights (g) of 15 guinea pigs
Week

Group ID 1 3 4 5 6 7
Control 1 455 460 510 504 436 466

2 467 565 610 596 542 587
3 445 530 580 597 582 619
4 485 542 594 583 611 612
5 480 500 550 528 562 576

Low dose 6 514 560 565 524 552 597
7 440 480 536 484 567 569
8 495 570 569 585 576 677
9 520 590 610 637 671 702
10 503 555 591 605 649 675

High dose 11 496 560 622 622 632 670
12 498 540 589 557 568 609
13 478 510 568 555 576 605
14 545 565 580 601 633 649
15 472 498 540 524 532 583

5.11 In an investigation of the effects of various dosages of radiation
therapy on psychomotor skills (Danford et al., 1960), 45 cancer patients
were trained to operate a psychomotor testing device. Six patients were not
given radiation and served as controls, and the remainder were treated with
dosages of 25–50 R, 75–100 R, or 125–250 R. The resulting psychomotor
test scores on the three days following radiation treatment were previously
considered in Problems 2.6 and 4.6 and are displayed in Table 2.14. Use
repeated measures ANOVA to test the significance of the effects of radiation
dosage, day, and the radiation dosage × day interaction. Comment on the
validity of this methodology for these data.

5.12 Crowder and Hand (1990) describe a seven-week study of the effect
of a vitamin E diet supplement on the growth of 15 guinea pigs. In addition
to a control group, low and high doses of vitamin E were studied (with five
animals assigned to each of the three groups). All animals were given a
growth-inhibiting substance during week 1, and treatment was initiated at
the beginning of week 5. Table 5.10 displays the body weights, in grams, of
each animal at the end of weeks 1, 3, 4, 5, 6, and 7. Use repeated measures
ANOVA to assess whether the growth profiles of the three groups differ.

5.13 Table 4.7 displays scaled test scores for a cohort of 64 students of
the Laboratory School of the University of Chicago (Bock, 1975). These
data were previously considered in Problem 4.2. Use repeated measures
ANOVA to assess whether there are differences between boys and girls and
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among grade levels, and whether the effects of grade level are the same for
boys and girls.

5.14 Hand and Taylor (1987, pp. 117–125) describe a study of urinary sal-
solinol excretion levels in two groups of subjects admitted to an alcoholism
treatment unit. Group 1 includes six subjects considered to be moderately
dependent on alcohol, and group 2 includes eight subjects considered to
be severely dependent on alcohol. This study was previously considered
in Problems 3.13 and 4.12; Table 3.11 displays the raw data. Analyze the
log-transformed urinary salsolinol levels using repeated measures ANOVA.
Test the significance of the effects of group, day, and the group × day
interaction.
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6
Normal-Theory Methods: Linear
Mixed Models

6.1 Introduction

Chapters 3, 4, and 5 have considered the situation in which a normally
distributed outcome variable is measured repeatedly from each subject or
experimental unit. The analysis of such data must account for the de-
pendence among a subject’s multiple measurements. “Classical” methodol-
ogy is based either on multivariate normal models with general covariance
structure (Chapters 3 and 4) or on univariate repeated measures ANOVA
(Chapter 5). In practice, however, repeated measurements studies are char-
acterized by:

• variation among experimental units with respect to the number and
timing of observations;

• missing data;

• time-dependent covariates.

Such features make the classical multivariate procedures difficult (or im-
possible) to apply.

This chapter considers an alternative approach based on the linear mixed
model. The theoretical base of linear mixed models is well-established, and
the methodology has applications in many areas not involving repeated
measurements. McLean et al. (1991) provide a general introduction to linear
mixed models, and Ware (1985) gives an overview of their application to
the analysis of repeated measurements.
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The linear mixed models approach to repeated measurements views the
analysis as a univariate regression analysis of responses with correlated er-
rors. One major advantage of this methodology is that it accommodates the
complexities of typical longitudinal data sets. The mixed model approach
permits specification of models determined by subject matter consider-
ations rather than by limitations of the statistical methodology. It also
allows explicit modeling and analysis of variation between subjects and
within subjects.

The use of linear mixed model methodology for the analysis of repeated
measurements is becoming increasingly common due to the development of
widely available software. In particular, the MIXED procedure of SAS (SAS
Institute, 1999) is often used. Hedeker and Gibbons (1996b) also provide
software for fitting the linear mixed model to repeated measurements.

Section 6.2 describes the linear mixed model, and Section 6.3 discusses its
application to repeated measurements. Section 6.4 presents three examples
of the use of the linear mixed model in analyzing repeated measurements
data. Finally, Section 6.5 gives some comments and cautions concerning
the use of this methodology.

6.2 The Linear Mixed Model

6.2.1 The Usual Linear Model
Let y = (y1, . . . , yn)′ be an n× 1 vector of independent observations. The
usual linear model is

y = Xβ + ε,

where β is a p × 1 vector of unknown parameters, X is an n × p model
matrix, and ε = (ε1, . . . , εn)′ is an n× 1 vector of independent errors. The
components of ε are independent with mean 0 and constant variance σ2.

The focus is to model the mean of y in terms of the unknown parameters
β, which are estimated using ordinary least squares. One generalization of
the usual linear model is to allow εi to have mean zero and variance σ2

i ; a
further generalization is to assume that ε has mean vector 0n and arbitrary
covariance matrix Σ. These generalizations are sometimes referred to as
weighted least squares and generalized least squares, respectively.

6.2.2 The Mixed Model
The linear mixed model is

y = Xβ + Zγ + ε. (6.1)

As in Section 6.2.1, y is an n×1 vector of observations, X is an n×p model
matrix, β is a p×1 vector of unknown parameters, and ε is an n×1 vector
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of errors. In addition, Z is a given n× q matrix, and γ is an unobservable
random vector of dimensions q × 1.

The random components of model (6.1) are the vectors γ and ε. The
following assumptions are made concerning these random vectors:

• E(γ) = 0q;

• Var(γ) = B;

• E(ε) = 0n;

• Var(ε) = W .

In addition, the vectors γ and ε are assumed to be uncorrelated. Note
that in this model the elements of ε are not necessarily assumed to be
independent but are allowed to have arbitrary covariance matrix. In the
linear mixed model, both the mean of y,

E(y) = Xβ,

and the variance of y,

Var(y) = ZBZ′ + W ,

can be modeled.
The elements of B and W are assumed to be known functions of an

unknown parameter vector θ = (θ1, . . . , θm)′. The parameter space for the
model is taken to be {(β,θ): θ ∈ Ω}, where Ω is the set of θ values for
which Var(y) is positive-definite. When W = σ2I and Z = 0, the mixed
model reduces to the standard linear model.

6.2.3 Parameter Estimation
Estimation of the random effects (variance components) of model (6.1) has
been a longstanding problem. Common practice for balanced analysis of
variance (ANOVA) was to equate mean squares to their expectations. Hen-
derson (1953) developed widely used analogous techniques for unbalanced
data. In the past, maximum likelihood (ML) estimation of the fixed effects
and variance components was not commonly used due to computational
difficulties. This required the numerical solution of a constrained nonlinear
optimization problem. Harville (1977) reviewed previous work, unified the
methodology, and described iterative ML algorithms for obtaining param-
eter estimates.

In addition to computational difficulties, ML estimates of variance com-
ponents are biased downward. Patterson and Thompson (1971) proposed
the alternative restricted maximum likelihood (REML) approach; this is
also sometimes called residual maximum likelihood. The REML estimation
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approach applies ML estimation techniques to the likelihood function as-
sociated with a set of “error contrasts” rather than to that associated with
the original observations. This accounts for the loss of degrees of freedom
resulting from estimation of the fixed effects and gives less biased estimates
of the variance components. The bias issue is especially important when
the number of parameters is not small relative to the total number of obser-
vations. The REML approach yields the standard ANOVA-based estimates
in balanced random and mixed ANOVA models (unlike ML estimation).

As an example, consider the estimation of σ2 in the usual linear model
y = Xβ + ε, where y is the n× 1 data vector, X is an n× p model matrix
of rank p, and ε ∼ Nn(0n, σ

2In). The MLE of σ2 is

σ̃2 =
(y − Xβ̂)′(y − Xβ̂)

n
,

where β̂ = (X ′X)−1X ′y. The REML estimate of σ2 is the minimum
variance unbiased estimator

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n− p
.

The bias of the MLE is

E(σ̃2 − σ2) = −σ2
( p
n

)
,

which is negative and worsens as p increases.

6.2.4 Background on REML Estimation
As mentioned in Section 6.2.3, REML estimation applies maximum like-
lihood estimation techniques to the likelihood function associated with a
set of “error contrasts” rather than to that associated with the original
observations. An error contrast is a linear combination a′y of the elements
of y such that E(a′y) = 0 for any β (i.e., if a′X = 0′

p).
As an example, let S = In − PX , where PX = X(X ′X)−1X ′ is the

orthogonal projection matrix onto the column space of X. The expected
value of Sy is

E(Sy) = (In − PX )Xβ = Xβ − Xβ = 0n.

Each element of Sy is an error contrast. It is a well-known result from
linear models theory that although S is n×n its rank is n− p. Thus, there
are some redundancies among the elements of Sy.

A natural question is:

• How many essentially different error contrasts can be included in a
single set?
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One can show that any set of error contrasts contains at most n−p linearly
independent error contrasts, where the error contrasts a′

1y, . . . ,a
′
ky are

linearly independent if a1, . . . ,ak are linearly independent vectors.
Let A be an n × (n − p) matrix such that A′A = In−p and AA′ =

In − PX . One can show that w = A′y is a vector of n − p linearly
independent error contrasts. (It is not, however, the only such vector.)

The REML approach applies maximum likelihood estimation techniques
to w = A′y rather than to y. Under the assumed model,

y ∼ Nn(Xβ,V ),

where V = ZBZ′ + W . Then,

w ∼ Nn−p(0n−p,A
′V A).

It is natural to ask whether the estimator θ̂ obtained by maximizing

fw(w; θ),

the likelihood function associated with the vector w of error contrasts, is
the same as that obtained by maximizing the likelihood function associated
with any other vector of n − p linearly independent error contrasts. One
can show that if u = C ′y is any vector of n− p linearly independent error
contrasts, the likelihood function associated with u is a scalar multiple of
fw(w; θ) that does not depend on θ.

Apart from an additive constant that does not depend on θ, the log-
likelihood function LR(θ; y) associated with any vector of n − p linearly
independent error contrasts is

LR(θ; y) = −1
2

[
log |V | + log |X ′V −1X| + (y − Xβ̂)′V −1(y − Xβ̂)

]
,

where β̂ = (X ′V −1X)−1X ′V −1y. In comparison, the log-likelihood func-
tion for y is

LM (θ; y) = −1
2

log |V | − 1
2
(y − Xβ̂)′V −1(y − Xβ̂).

The only difference is that LR(θ; y) has the additional term

−1
2

log |X ′V −1X|.

The estimator θ̂ is an REML estimator of θ if LR(θ; y) attains its maximum
value at θ = θ̂.

Special cases of the REML approach were considered by earlier authors.
Anderson and Bancroft (1952) and Russell and Bradley (1958) developed
REML estimation approaches for some specific balanced ANOVA models.
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Thompson (1962) extended these results to all balanced ANOVA models. In
the usual linear model (Section 6.2.1), the REML equations have a unique
solution that coincides with the minimum variance unbiased estimator

σ̂2
REML =

(y − Xβ̂)′(y − Xβ̂)
n− p

.

In balanced mixed and random ANOVA models, the REML equations have
an explicit unique solution coinciding with the ANOVA estimate. In gen-
eral, however, the problem of obtaining an REML estimate of θ requires
iterative methods of maximizing the nonlinear function LR(θ; y) subject
to the constraint θ ∈ Ω. Algorithms such as Newton–Raphson and the
method of scoring can be used.

6.3 Application to Repeated Measurements

Let yi = (yi1, . . . , yiti
)′ be the ti × 1 vector of responses from subject i for

i = 1, . . . , n. The general linear mixed model for longitudinal data is

yi = Xiβ + Ziγi + εi, i = 1, . . . , n, (6.2)

where Xi is a ti × b model (design) matrix for subject i, β is a b× 1 vector
of regression coefficients, γi is a g×1 vector of random effects for subject i,
Zi is a ti × g design matrix for the random effects, and εi is a ti × 1 vector
of within-subject errors.

The γi vectors are assumed to be independent Ng(0g,B), and the εi

vectors are assumed to be independent Nti(0ti ,W i). In addition, the γi

and εi vectors are assumed to be independent.
Thus, the vectors y1, . . . ,yn are independent Nti(Xiβ,V i), where

V i = ZiBZ ′
i + W i.

The matrices Xi, Zi, and W i are subject-specific.
This model is very general because subjects can have varying numbers

of observations and because the observation times can differ among sub-
jects. The within-subject covariance matrix W i is assumed to depend on i
only through its dimension ti; that is, any unknown parameters in W i

do not depend on i. A wide variety of covariance structures for γi and
εi can be considered. In particular, the MIXED procedure of SAS (SAS
Institute, 1999) implements more than 20 distinct covariance structures,
and additional possibilities are described by Byrne and Arnold (1983),
Jennrich and Schluchter (1986), Muñoz et al. (1992), Zimmerman and
Núñez Antón (1997), Pourahmadi (1999), and Núñez Antón and Zimmer-
man (2000).

The general linear mixed model for repeated measures has been studied
by several authors. Although essentially similar, the various approaches
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differ in terms of motivation and notation, assumptions concerning the
random effects, and methods of obtaining ML and REML parameter esti-
mates. Some of the main references are Laird and Ware (1982), Jennrich
and Schluchter (1986), Laird et al. (1987), Diggle (1988), Lindstrom and
Bates (1988), Jones and Boadi-Boateng (1991), and Jones (1993).

Laird and Ware (1982) consider the linear mixed model as a two-stage
random-effects model. In the first stage, they assume that the model for
the ith subject is

yi = Xiβ + Ziγi + εi.

The vectors ε1, . . . , εn are assumed to be independent N(0ti ,W i). The
vector of regression coefficients β and the subject-specific vectors γi are
considered to be fixed.

In the second stage, γ1, . . . ,γn are assumed to be independent N(0g,B)
and γi and εi are assumed independent. Thus, y1, . . . ,yn are independent
N(Xiβ,ZiBZ ′

i +W i). Laird and Ware (1982) call this the conditional in-
dependence model if W i = σ2Iti . In this case, the ti responses yi1, . . . , yiti

are independent, conditional on γi.
Laird and Ware (1982) discuss Bayesian and non-Bayesian formulations

of the model. The EM algorithm is used to obtain ML and REML param-
eter estimates. In this formulation, unobservable random parameters are
estimated, not missing data.

Jennrich and Schluchter (1986) approach the model from a different
perspective. They consider the problem of how to analyze unbalanced or
incomplete repeated measures. They use a general linear model for ex-
pected responses and arbitrary structural models for the within-subject
variances and covariances. The Jennrich and Schluchter (1986) model is
yi = Xiβ + εi, where ε1, . . . , εn are independent Nti

(0ti
,Σi). The covari-

ance matrix Σi is assumed to be a function of a vector θ of q unknown
covariance parameters.

The motivation for the Jennrich and Schluchter (1986) formulation of
the model is that estimation of the vector of regression parameters β is
of primary interest. Efficiency, however, may be improved by modeling Σi

parsimoniously. This is especially important when sample sizes are small
and the data are unbalanced. The ability to model Σi allows examination
of alternative covariance structures.

Jennrich and Schluchter (1986) consider specifically an important special
case that they call the incomplete data model. This is useful when a fixed
number t of measurements are to be obtained from each subject but not all
responses are observed. In this case, each Σi is a submatrix of a t×t matrix
Σ = Σ(θ). Table 6.1 displays several important structural models for Σ
in the incomplete data model. Note that in the Jennrich and Schluchter
formulation, the use of the covariance model

Σi = ZiBZ ′
i + W i
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TABLE 6.1. Covariance structures in the incomplete data model
Structure q Description
Independent observations 1 Σ = σ2It

Compound symmetry 2 Σ = σ2It + σ2
b1t1′

t

Random effects (g effects) 1 + g(g + 1)/2 Σ = ZBZ′ + σ2It

First-order autoregressive 2 σij = σ2ρ|i−j|

Toeplitz (banded) t σij = θk, k = |i− j| + 1
Unstructured t(t+ 1)/2 σij = σji

yields the linear mixed model as a special case.
Jennrich and Schluchter describe Newton–Raphson and Fisher scoring al-

gorithms for obtaining ML estimates. The Newton–Raphson method uses
the score vector and Hessian matrix to iteratively compute new estimates
of β and θ from current values. The Fisher scoring algorithm replaces the
Hessian matrix by its expectation; this is often more robust than Newton–
Raphson to poor starting values. They also develop a generalized EM
(GEM) algorithm for computing REML estimates. In this algorithm, the
likelihood is increased (rather than maximized) at each M step. The GEM
algorithm is restricted to the incomplete data model but has the advantage
of being able to fit covariance matrices with large numbers of parameters.

Jennrich and Schluchter (1986) describe how to compute standard error
estimates from the inverse of the Fisher information matrix (when Fisher
scoring is used) and from the empirical information matrix (when Newton–
Raphson is used). They conclude that standard error estimates from the
empirical information matrix are preferable when the data are incomplete.
Although their GEM algorithm does not produce standard errors for the
elements of θ, these can be obtained by taking a single Newton–Raphson
or Fisher scoring step after convergence.

Jennrich and Schluchter (1986) also compare computational algorithms.
The Newton–Raphson algorithm has a quadratic convergence rate and gen-
erally converges in a small number of iterations (but with a higher cost per
iteration). The GEM algorithm has the lowest cost per iteration but may
require a large number of iterations. The Fisher scoring algorithm is inter-
mediate in terms of cost per iteration and number of iterations; the cost
per iteration is often not much less than Newton–Raphson, but it can re-
quire a much higher number of iterations. They conclude that when q, the
number of covariance parameters, is small, the Newton–Raphson algorithm
is preferred because this method is not restricted to the incomplete data
model and because convergence is generally fast. With large q, however,
as when fitting an unstructured covariance matrix to more than ten time
points, only the GEM algorithm is feasible.

Laird et al. (1987) study the use of the EM algorithm for ML and REML
estimation in model (6.2). They consider both the incomplete data model



6.3 Application to Repeated Measurements 133

of Jennrich and Schluchter (1986) and the random-effects model of Laird
and Ware (1982). In the incomplete data model, the EM algorithm re-
quires an iterative M step within each iteration (or the use of Jennrich
and Schluchter’s GEM algorithm). The covariates for both observed and
missing observations must be specified. The choice affects the rate, but not
the point, of convergence. In the random-effects model, the observed data
are the measurements actually collected, and the total data set consists of
the observed data plus unobservable random parameters and error terms.
Thus, there are no missing data in the traditional statistical sense.

Laird et al. (1987) conclude that the random-effects model is more gen-
eral and includes the incomplete data model as a special case. This avoids
specification of covariates for missing observations and eliminates the need
for GEM or iterations within each M step (in a broad class of models).
Dempster et al. (1981) and Laird et al. (1987) provide computing formulas
for ML and REML estimation using the EM algorithm; Laird et al. (1987)
also discuss the choice of starting values for the EM iterations and give two
methods of speeding convergence of the EM algorithm.

Diggle (1988) considers the model

yi = Xiβ + εi,

where εi ∼ N(0ti ,Σi) and

Σi = τ2I + ν2J + σ2R(ti).

In this model, J is a square matrix with elements of 1, ti = (ti1, . . . , tini
)′

is the vector of measurement times for subject i, and R(t) is a symmetric
matrix with (k, l)th element equal to exp(−α|tk − tl|c), where c = 1 or
2. The case c = 1 corresponds to the continuous-time analog of a first-
order autoregressive process, whereas c = 2 provides a smoother process
(Bartlett, 1966, Chapter 5). Thus, the within-subject covariance structure
has four parameters: τ2, ν2, σ2, and α. The parameters are estimated using
ML and REML, and the empirical semivariogram of residuals is used to
suggest an appropriate correlation structure.

Lindstrom and Bates (1988) consider the special case of model (6.2) when
W i = σ2Iti . They develop efficient implementations of Newton–Raphson
and EM algorithms for ML estimation and make improvements to Jennrich
and Schluchter’s (1986) ML algorithm to speed convergence and ensure a
positive-definite covariance matrix for the random effects at each iteration.
Lindstrom and Bates (1988) also compare the Newton–Raphson and EM
algorithms in fitting models to two data sets: one with 11 subjects and
an average of 28 observations/subject, and the other with 74 subjects and
an average of 11 observations/subject. They conclude that the Newton–
Raphson algorithm is generally preferable based on the number of iterations
and the average time per iteration.

Jones and Boadi-Boateng (1991) and Jones (1993) consider model (6.2)
when each subject is observed at different and unequally spaced time points.
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The repeated measurements from each subject are assumed to be either un-
correlated or to have a continuous-time first-order autoregressive structure.
Jones proposes an alternative method of estimation in which a state space
representation of the model is used, the likelihood is calculated using the
Kalman filter, and ML estimates are obtained using a nonlinear optimiza-
tion program. An advantage of this approach is that the likelihood can be
calculated recursively without using large (ti × ti) matrices.

Weiss and Lazaro (1992) discuss graphical methods that are useful in
conjunction with linear mixed models. They study the use of parallel plots
(Draper, 1987; Laird and Lange, 1987; Wegman, 1990) for examining the
raw data and residuals from models fit to repeated measurements. These
plots are useful in determining how well a particular model fits the data
and in identifying outlying observations.

6.4 Examples

6.4.1 Two Groups, Four Time Points, No Missing Data
Potthoff and Roy (1964) describe a study conducted at the University
of North Carolina Dental School in two groups of children (16 boys and
11 girls). In Section 3.4.2, Hotelling’s T 2 statistic was used to compare
boys and girls at ages 8, 10, 12, and 14 years with respect to the distance
(mm) from the center of the pituitary gland to the pterygomaxillary fissure.
Sections 4.3.2 and 4.4.3 illustrated the analysis of these data using profile
analysis and growth curve methods, respectively. Table 3.3 lists the indi-
vidual measurements as well as the sample means and standard deviations
in both groups.

Jennrich and Schluchter (1986) fit several types of linear models to these
data. Although REML estimation might be preferred, the results that fol-
low are based on the use of ML estimation to match their results.

Jennrich and Schluchter’s first model is

yhij = βhj + εhij ,

where yhij is the distance at time j for subject i in group h for h = 1 for
males, h = 2 for females, and j = 8, 10, 12, 14. The vectors of residuals

εhi = (εhi8, . . . , εhi,14)′

are assumed to be independent with common unstructured covariance ma-
trix W . In this model, the parameter estimates β̂hj are the sample means
in group h at time j. The estimated covariance matrix is

Ŵ =


5.0143 2.5156 3.6206 2.5095
2.5156 3.8748 2.7103 3.0714
3.6206 2.7103 5.9775 3.8248
2.5095 3.0714 3.8248 4.6164

 . (6.3)
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Using the MIXED procedure of SAS (SAS Institute, 1999), the likelihood
ratio (LR) statistic (−2 log likelihood) is −2LL = 416.51.

Model 2 assumes a linear relationship between distance and age, with
separate lines for boys and girls:

yhij = αh + βhj + εhij (6.4)

for h = 1, 2 and j = 8, 10, 12, 14. As in Model 1, the residual vectors εhi are
assumed to be independent with common unstructured covariance matrix
W . This model is equivalent to the Potthoff–Roy growth curve model with
G = S, as described in Section 4.4.2.

Because the −2LL statistic from Model 1 is equivalent to that from a
model parameterized with separate linear, quadratic, and cubic age effects
for each sex, the LR test can be used to compare the fit of Model 2 with that
of Model 1. For Model 2, −2LL = 419.48; thus, the LR statistic comparing
these models is

419.48 − 416.51 = 2.97.

Because Model 1 has 18 parameters (eight fixed effects and ten variance
parameters) and Model 2 has 14 parameters (four fixed effects and ten
variance parameters), the LR statistic has an asymptotic chi-square distri-
bution with 18 − 14 = 4 degrees of freedom (df). Because p = 0.56, the
assumption of a linear relationship for each sex seems reasonable.

Model 3 again assumes a linear relationship between distance and age
but with a common slope for boys and girls. Thus, the model is

yhij = αh + βj + εhij

for h = 1, 2 and j = 8, 10, 12, 14. As in Models 1 and 2, the residual vectors
εhi are assumed to be independent with common unstructured covariance
matrix W . The LR statistic comparing Models 2 and 3 is

426.15 − 419.48 = 6.68

with 14−13 = 1 df and p = 0.01. Because the slopes for boys and girls differ
significantly, all subsequent models will use the same model for the means
as Model 2 [Equation (6.4)]; the goal will be to examine the adequacy of
restricted covariance structures.

One possible reduced covariance structure is a banded covariance matrix.
In this example, t = 4, and the covariance matrix W for Model 4 has four
parameters:

W =


θ1 θ2 θ3 θ4
θ2 θ1 θ2 θ3
θ3 θ2 θ1 θ2
θ4 θ3 θ2 θ1

 .
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The estimated covariance matrix from Model 4 is

Ŵ =


4.9438 3.0506 3.4053 2.3421
3.0506 4.9438 3.0506 3.4053
3.4053 3.0506 4.9438 3.0506
2.3421 3.4053 3.0506 4.9438

 .
The LR test comparing Model 4 with Model 2 is

424.64 − 419.48 = 5.17

with 14 − 8 = 6 df and p = 0.52. Thus, the banded covariance model
appears to provide an adequate fit relative to the unstructured covariance
matrix.

Model 5 considers the first-order autoregressive (AR–1) covariance struc-
ture. In this model, the covariance matrix W has elements wij = σ2ρ|i−j|

for i, j = 1, . . . , 4. The estimated covariance parameters are σ̂2 = 4.8910
and ρ̂ = 0.6071. Thus, the estimated covariance matrix from Model 5 is

Ŵ =


4.8910 2.9696 1.8030 1.0947
2.9696 4.8910 2.9696 1.8030
1.8030 2.9696 4.8910 2.9696
1.0947 1.8030 2.9696 4.8910

 . (6.5)

The LR test comparing Model 5 with Model 2 is

440.68 − 419.48 = 21.2

with 14 − 6 = 8 df and p = 0.007. Thus, the AR–1 structure does not
provide an adequate fit. Comparison of the estimate of W from the AR–1
model [Equation (6.5)] with that from the unstructured covariance model
[Equation (6.3)] shows that the covariance estimates between ages 8 and 12,
between ages 10 and 14, and between ages 8 and 14 are underestimated by
the AR–1 model.

Models 1–5 are all of the form

yi = Xiβ + εi,

where the error vectors εi are independently distributed with mean vector
E(εi) = 04 and arbitrary covariance matrix Var(εi) = W . Although W
was parameterized using as few as two parameters (Model 5) and as many
as ten parameters (Models 1, 2, and 3), no additional random effects were
included in these models.

Model 6 is a random coefficients model with a random intercept and
slope for each subject and independent random errors. The model is

yhij = ahi + bhij + εhij ,
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where (
ahi

bhi

)
∼ N2

((
αh

βh

)
,B

)
and the random errors εhij are independent N(0, σ2). The covariance ma-
trix B of the random effects is unstructured with variances σ2

α and σ2
β and

covariance σαβ .
The estimated intercept and slope parameters from Model 6 are

Males : α̂1 = 16.34, β̂1 = 0.784;
Females : α̂2 = 17.37, β̂2 = 0.480.

The estimated matrix of random effects is

B̂ =
(
σ̂2

α σ̂αβ

σ̂αβ σ̂2
β

)
=
(

4.55691 −0.19825
−0.19825 0.02376

)
,

and the estimate of the residual variance is σ̂2 = 1.716.
Model 7 is the random intercept model with independent random errors.

The model is
yhij = ahi + βhj + εhij ,

where the intercepts ahi are independent N(αh, σ
2
α) and the random errors

εhij are independent N(0, σ2). The estimated intercept and slope param-
eters from Model 7 are the same as those from Model 6. The estimated
random effects are σ̂2

α = 3.0306 and σ̂2 = 1.8746.
The LR statistic comparing Models 6 and 7 is

428.64 − 427.81 = 0.83

with 8−6 = 2 df and p = 0.66. Thus, the random intercept model provides
an adequate fit. Note that the LR statistic may not have an asymptotic
χ2 distribution in situations where hypothesized parameters are on the
boundaries of the parameter space, as is the case when testing whether
variance components are equal to zero.

The random intercept model (Model 7) is equivalent to the model

yhij = αh + βhj + εhij ,

where the vectors of residuals εhi are independent N4(04,W ) with

W =


σ2 ρσ2 ρσ2 ρσ2

ρσ2 σ2 ρσ2 ρσ2

ρσ2 ρσ2 σ2 ρσ2

ρσ2 ρσ2 ρσ2 σ2


(Model 8). This matrix of variances and covariances has the compound
symmetry structure given by Equation (5.4) of Section 5.3.1.
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The estimate of W from Model 8 is

Ŵ =


4.9052 3.0306 3.0306 3.0306
3.0306 4.9052 3.0306 3.0306
3.0306 3.0306 4.9052 3.0306
3.0306 3.0306 3.0306 4.9052

 .
The estimated fixed effects and the −2LL statistic are identical to those
from the random intercept model (Model 7).

The LR statistic comparing Model 8 (equivalently, Model 7) with Model 2
is

428.64 − 419.48 = 9.16

with 14−6 = 8 df and p = 0.33. Thus, the compound symmetry covariance
structure provides an adequate fit for these data.

The only simpler model (Model 9) is

yhij = αh + βhj + εhij ,

where the εhij random variables are independent N(0, σ2). Model 9 as-
sumes that the repeated measurements from each experimental unit are
independent. The LR test comparing Model 9 with Model 2 is

478.24 − 419.48 = 58.8

with 14 − 5 = 9 df and p < 0.001. Thus, this assumption is not reasonable.
Although Models 2, 4, 6, 7, and 8 all fit the data, compound symmetry
(Model 8, equivalent to Model 7) requires only six parameters and is most
parsimonious.

In attempting to choose the “best” covariance structure, the LR test can
be used when two models with the same fixed-effects parameters are fit to
the data using ML or REML estimation and one model is a constrained
version of the other. Potential problems of using the LR test to compare
covariance models include:

1. Parameters may be on the boundary of the parameter space.

2. The models being compared may not be nested.

Two other model selection criteria are Akaike’s (1973) information cri-
terion (AIC) and Schwarz’s (1978) Bayesian information criterion (BIC).
Both the AIC and the BIC penalize the log-likelihood for the number of
parameters and/or number of observations.

Most statistical references define the AIC as

AIC = −2LL + 2p,

where p is the number of model parameters. Similarly, the BIC is usually
defined as

BIC = −2LL + p log(n),
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TABLE 6.2. Model selection using AIC and BIC
Model Covariance Structure AIC BIC

2 Unstructured −219.739 −233.149
4 Banded −216.322 −221.686
5 AR–1 −222.341 −225.023
6 Random intercept and slope −217.903 −223.267
8 Compound symmetry −216.320 −219.002
9 Simple −240.121 −241.462

where n is the number of observations. The model with the smallest AIC
(BIC) is deemed best. The BIC has an increased penalty for overfitting
compared with the AIC, and the two criteria may not agree as to which
model is best. Jones (1993, pp. 46–47) recommends the use of the AIC as
follows:

“I prefer to use AIC with the slight variation that models that
are within two units of the lowest AIC are considered to be com-
petitive models for the best. From the competitive models, the
one with the fewest parameters is usually selected. This version
of AIC has some theoretical justification (Duong, 1984).”

As implemented in the MIXED procedure of SAS (SAS Institute, 1999),
the AIC and BIC can be used to compare models with the same fixed effects
but different covariance structures. Because Models 2, 4, 5, 6, 8, and 9 all fit
a linear relationship between distance and age with separate lines for boys
and girls, the alternative covariance structures can be compared. Table 6.2
displays the values of the AIC and BIC for these models. The MIXED
procedure uses the definitions

AIC = LL − q,

BIC = LL − (q/2) log(n),

where q is the effective number of covariance parameters (those not esti-
mated to be on a boundary constraint). Thus, the model with the largest
AIC (BIC) is deemed best. In this example, both criteria identify the com-
pound symmetry covariance structure (equivalent to the random intercept
model) as the “best” covariance model.

6.4.2 Three Groups, 24 Time Points, No Missing Data
In a randomized, double-blind, parallel group, placebo-controlled study,
patients with postoperative pain were randomly assigned to one of three
groups: treatment A (41 patients), treatment B (41 patients), or placebo
(40 patients). Subjects enrolled in the study received a single dose of their
assigned treatment when they reported moderate to severe postoperative
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FIGURE 6.1. Mean rescue medication use by treatment group

pain. The primary outcome variable was the quantity of rescue medication
used; this was recorded at hourly intervals for 24 hours after dosing. Ta-
ble 6.3 displays the data from the first ten subjects in each of the three
treatment groups.

Because the outcome variable is a count of the number of rescue medica-
tions received, the use of normal-theory methods may not be the most ap-
propriate for these data. The analysis plan of the study protocol, however,
specified the use of linear model methods to compare the three treatments
with respect to the amount of rescue medication taken over the 24-hour
interval. Although the protocol stated that the specific comparisons of in-
terest were treatment A versus placebo and treatment B versus placebo,
the choice of covariance model was not specified.

Figure 6.1 displays the mean rescue medication use at each hour in each
of the three groups. Beginning at hour 2 and continuing through the first
16 hours, the mean rescue medication use is consistently higher in the
placebo group than in either of the two treatment groups. In all three
groups, the relationship between rescue medication use and time appears
to be nonlinear.

The analysis of these data is complicated by the fact that there are
24 repeated measurements per subject. One is therefore limited in the types
of covariance structures that can be considered. For example, it will not be
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TABLE 6.3. Hourly use of rescue medications for postoperative pain: First ten
subjects in each of the three treatment groups

Hour
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Group A
4 1 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1
6 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

12 3 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 2 1 0
13 1 0 2 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0
14 2 5 6 3 3 1 2 2 4 6 3 3 2 1 4 1 1 1 0 4 2 4 2 4
19 2 2 3 1 4 2 3 3 4 2 2 3 2 1 2 2 2 1 1 1 2 1 0 1
22 3 2 1 2 1 3 2 4 8 4 3 3 2 6 1 5 4 5 4 2 3 3 5 5
29 1 3 0 3 2 1 1 1 1 1 2 1 2 1 2 2 1 1 0 1 2 3 1 2
30 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
34 4 4 6 7 4 5 5 5 3 4 3 3 5 2 2 0 0 0 0 0 0 1 1 3
Group B
3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 4 1 1 1 1 1 0 3 1 0 3 2 2 1 0 0 1 0 3 2 2 0 2 2
8 3 2 1 2 2 2 2 0 0 4 2 0 2 0 0 0 0 0 3 1 1 0 1 6

11 1 3 4 3 3 7 2 2 2 2 0 3 3 1 2 1 1 2 2 4 4 4 1 0
15 4 6 3 2 7 3 2 2 5 5 5 6 3 0 3 2 0 2 2 1 3 3 2 3
20 2 2 0 0 0 0 0 1 1 1 0 0 0 2 0 0 1 2 0 0 0 0 0 0
24 1 0 0 0 2 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0
25 3 3 0 1 1 1 2 0 1 1 0 1 2 1 1 1 1 0 0 1 2 1 1 5
26 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1
31 0 0 0 0 0 0 0 2 2 2 2 3 1 0 1 2 1 0 1 0 4 1 2 1
Group C
1 1 2 2 1 2 3 1 2 2 3 0 2 4 2 1 1 1 1 0 1 1 1 0 3
7 5 4 2 2 1 4 3 4 5 1 5 4 5 5 2 4 2 2 1 0 3 6 1 2

16 4 5 6 5 5 4 4 5 4 3 3 4 2 4 5 3 0 2 3 2 3 3 2 2
17 2 0 0 1 0 0 2 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1
21 3 2 1 2 1 1 0 1 0 1 1 0 0 1 2 4 1 0 2 0 1 1 0 1
23 1 0 2 4 0 2 1 0 0 1 1 1 0 1 2 1 0 1 4 3 1 3 1 0
27 3 1 0 1 1 1 0 1 1 1 1 2 1 2 0 3 1 0 1 1 3 2 3 3
28 2 3 4 4 1 0 0 2 1 0 0 1 2 0 1 1 1 0 1 1 0 1 1 1
32 2 1 1 2 3 2 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0
33 2 1 1 1 4 1 5 1 2 3 2 1 1 2 1 3 1 0 1 0 2 0 3 0
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FIGURE 6.2. Variances and covariances of rescue medication use by hour

feasible to compare the adequacy of a reduced covariance model relative to
the “full” (unstructured) model because the unstructured covariance model
is a 24 × 24 covariance matrix with 300 parameters.

Figure 6.2 displays the estimated variances and covariances at hours 1–
24. These are computed using the data from all 122 subjects combined.
At each hour, the variance is plotted with the symbol “a.” The one-lag
covariance between hour h and hour h + 1 is denoted by “b,” the covari-
ance between hour h and hour h + 2 by “c,” and so on. Thus, whereas
23 symbols are plotted at hour 1, at hour 24 only the variance is plotted.
One key observation from Figure 6.2 is that the variances do not appear
to be constant over time.

Let yi = (yi1, . . . , yi,24)′ denote the vector of repeated measurements
from subject i for i = 1, . . . , 122, and let V i = ZiBZ ′

i + W i denote the
covariance matrix of yi. One parsimonious covariance model that could be
considered in the analysis of these data is the AR–1 model. In this case,
the (k, k′) element of V i is

vkk′ = σ2ρ|k−k′|.

A second potential model adds an additional random error term to the
AR–1 structure. In this case,

vkk′ = σ2ρ|k−k′| + σ2
e .
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TABLE 6.4. Results from analyses of rescue medication data

Covariance Structure
AR–1 plus Random Intercept

AR–1 Random Error and Slope

Treatment effect p-value 0.010 0.189 0.198

A − Placebo
Estimate −0.329 −0.339 −0.304
S.E. 0.138 0.243 0.229
p-value 0.018 0.163 0.185

B − Placebo
Estimate −0.399 −0.419 −0.395
S.E. 0.138 0.243 0.229
p-value 0.004 0.085 0.085

AIC −4942.2 −4775.0 −4798.9
BIC −4945.0 −4779.3 −4804.5

A four-parameter covariance model is the random-effects model with a
random intercept and slope. In this model,

B =
(
σ2

α σαβ

σαβ σ2
β

)
, Wi = σ2I24.

Using each of these three assumed covariance structures, preliminary
models showed that the effect of time was nonlinear and that the pro-
files for the three treatment groups were parallel. Thus, the final model
included main effects for treatment group, linear time, and quadratic time.
The parameters of this model were estimated using REML for each of the
three assumed covariance structures. Table 6.4 displays the p-values of the
2 df test that there is no treatment effect. Table 6.4 also displays the es-
timated mean differences between treatment A and placebo and between
treatment B and placebo, as well as the standard errors and p-values from
the tests that the differences are equal to zero.

The test of the treatment effect is significant (p = 0.01) using the AR–1
covariance model but not significant with the two other covariance models.
Although the estimated mean differences between each of the two treat-
ment groups and the placebo group are of roughly the same magnitude,
the standard errors of the estimated differences are much larger in the
three-parameter (AR–1 plus random error) and four-parameter (random
intercept and slope) covariance models than in the two-parameter model
(AR–1).
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FIGURE 6.3. Variances and covariances of rescue medication use by lag: AR–1
covariance model

The last two rows of Table 6.4 display the AIC and BIC criteria for these
three covariance structure models. Both of these criteria would select the
“AR–1 plus random error” covariance structure as the “best” model.

Because this example has a common set of time points for all subjects and
no missing data, the estimated variances and covariances from each of the
three covariance structure models can be displayed graphically. Figure 6.3
displays the observed variances and covariances as well as the predicted co-
variance structure from the AR–1 covariance model. The observed variances
and covariances are the same as those plotted in Figure 6.2. In Figure 6.3,
however, the horizontal axis is the lag between observations instead of the
hour. Thus, the variances at hours 1–24 are plotted at lag 0, the covari-
ances between measurements one hour apart are plotted at lag 1, and so
on. Although the predicted variance (lag 0) and the predicted covariance
for lag 1 approximate the average of the corresponding observed quantities
reasonably well, the predicted covariances at higher lags are much smaller
than the observed covariances.

Figure 6.4 similarly displays the observed variances and covariances as
well as the predicted covariance structure from the “AR–1 plus random
error” covariance model. The addition of the random error term provides
a much-improved approximation to the empirical covariance structure.

Finally, Figure 6.5 displays the observed variances and covariances as
well as the predicted covariance structure from the random intercept and
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FIGURE 6.4. Variances and covariances of rescue medication use by lag: AR–1
plus random error covariance structure

slope model. In this model, the predicted variances and covariances depend
not only on the lag but also on the time point. Figure 6.6 displays this
covariance structure using time, rather than lag, on the horizontal axis, as
in Figure 6.2. The random intercept and slope model provides considerable
flexibility in modeling the covariance structure.

6.4.3 Four Groups, Unequally Spaced Repeated
Measurements, Time-Dependent Covariate

Jones and Boadi-Boateng (1991) discuss the analysis of data from 619 sub-
jects with and without a single hereditary kidney disease and with and
without hypertension. Table 6.5 displays the sample sizes in the four groups
of subjects. The response variable of interest is the reciprocal of serum cre-
atinine (SCR); the values of this variable range from 0.028 to 2.5. The
explanatory variables are group and patient age (which ranges from 18 to
84 years). Observations were taken at arbitrary times from each subject,
and the number of observations per subject ranges from 1 to 22. Table 6.6
lists the data from the first 50 subjects.

Jones and Boadi-Boateng (1991) fit a model assuming a linear relation-
ship between SCR and age, with separate lines for each of the four groups.
Thus, there are eight fixed coefficients (intercept and slope for each of the
four groups). In this example, the structural (fixed effects) part of the
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FIGURE 6.5. Variances and covariances of rescue medication use by lag: Random
intercept and slope covariance structure
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FIGURE 6.6. Variances and covariances of rescue medication use by hour: Ran-
dom intercept and slope covariance structure
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TABLE 6.5. Measurements of serum creatinine reciprocals from 619 subjects:
Sample sizes in the four groups

Kidney Sample
Group Disease Hypertensive Size

1 Yes Yes 294
2 Yes No 103
3 No Yes 73
4 No No 149

model will be parameterized with an intercept and slope for group 1 and
incremental intercept and slope parameters in each of groups 2–4.

With respect to the covariance structure, Jones and Boadi-Boateng use
a model with six parameters. First, they assume a random intercept and
slope for each subject so that the matrix Zi from Equation (6.2) is

Zi =

 1 ti1
...

...
1 tini

 ,
where subject i has ni repeated measurements. The covariance matrix of
the random effects is

B =
(
σ2

α σαβ

σαβ σ2
β

)
.

The random intercept and slope model is often used in conjunction
with the within-subject covariance structure assuming independence of ob-
servations (i.e., with W i = σ2Ini

). In their analysis, Jones and Boadi-
Boateng (1991) instead assume that the within-subject covariance structure
is a continuous-time AR–1 process with observational error. A continuous-
time AR–1 process has correlation function

ρ(τ) = e−φ|τ |,

where τ is the time interval between two observations and φ is the positive
continuous-time autoregression coefficient. A continuous-time AR–1 pro-
cess sampled at equally spaced intervals of time produces a discrete-time
AR–1 process (Pandit and Wu, 1983).

If observations are sometimes obtained at time points that are quite
close together, or if replicate observations are obtained at the same time
point from a given subject, the AR–1 structure alone would require the
observations to be very similar (or exactly the same if they are replicates).
The addition of an observational error parameter σ2

0 to the AR–1 struc-
ture (Jones, 1981) is often more realistic because this allows replicates to
be different. Thus, the matrix W i from Equation (6.2) has diagonal ele-
ments σ2 + σ2

0 and off-diagonal elements σ2e−φ|τ |, where τ is the spacing
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TABLE 6.6. Serum creatinine reciprocals from 619 subjects: First 50 subjects
ID Grp Age SCR ID Grp Age SCR ID Grp Age SCR
1 1 35.765 0.182 20 1 44.397 1.429 39 2 42.116 1.250
1 1 37.990 0.088 20 1 49.884 1.111 40 1 53.552 1.250
2 2 24.997 1.429 21 2 23.420 1.667 40 1 67.677 0.769
2 2 27.441 1.111 21 2 31.086 1.429 40 1 73.541 0.526
2 2 30.524 1.429 21 2 36.720 1.250 40 1 74.776 0.385
3 1 51.083 0.156 22 4 21.509 2.000 40 1 75.863 0.400
3 1 52.386 0.116 22 4 41.511 1.429 40 1 75.959 0.400
3 1 52.805 0.087 22 4 43.699 1.250 41 4 64.512 1.250
3 1 52.997 0.067 23 3 26.623 1.250 41 4 70.371 1.250
4 4 51.255 0.667 23 3 39.450 0.769 41 4 71.713 1.250
5 4 18.355 1.250 23 3 40.865 0.833 41 4 73.027 1.250
5 4 19.619 1.000 23 3 42.864 0.833 42 1 58.398 0.625
6 4 28.956 1.250 23 3 45.703 0.833 42 1 63.893 0.526
7 4 26.062 2.000 23 3 46.697 0.769 42 1 65.196 0.303
7 4 32.799 1.429 23 3 47.535 0.714 42 1 66.612 0.370
7 4 33.714 1.429 24 4 39.636 0.769 43 1 40.764 1.250
7 4 35.346 1.429 25 4 22.242 1.000 43 1 53.175 0.145
7 4 39.918 1.429 25 4 36.140 0.909 43 1 54.456 0.154
7 4 45.960 1.250 26 3 18.393 1.111 44 1 54.385 0.087
8 4 54.152 0.625 26 3 26.346 0.833 44 1 54.505 0.093
8 4 59.781 1.111 26 3 38.741 0.833 45 1 53.279 1.250
9 4 45.128 1.429 27 4 30.182 0.667 45 1 60.088 0.833
9 4 52.632 1.111 28 3 20.252 1.429 45 1 66.546 0.588
9 4 54.987 1.429 28 3 34.404 1.429 45 1 66.872 0.714
9 4 56.304 1.111 29 4 40.572 0.769 45 1 67.896 0.588

10 4 29.262 1.111 30 3 22.201 1.250 45 1 71.943 0.625
10 4 48.923 1.250 30 3 34.664 0.909 45 1 72.096 0.556
11 3 47.773 1.111 30 3 40.408 0.909 45 1 72.197 0.250
12 2 31.305 1.000 31 3 26.752 0.909 46 3 55.880 1.000
13 2 25.697 0.833 31 3 33.180 0.909 46 3 57.725 1.111
13 2 31.305 1.111 32 3 24.657 0.769 46 3 61.777 1.667
14 4 32.638 1.111 32 3 30.204 1.111 47 1 46.702 1.111
15 4 30.645 1.429 33 1 27.176 0.909 47 1 53.555 1.250
15 4 36.487 0.833 34 4 21.098 1.111 47 1 60.244 1.000
16 4 24.372 1.000 34 4 24.805 2.000 47 1 66.669 0.714
16 4 27.600 1.000 35 4 21.443 1.429 48 3 58.094 1.667
16 4 33.550 1.000 36 2 22.787 1.250 48 3 64.520 1.111
17 2 25.906 1.667 36 2 44.559 0.714 48 3 64.556 1.250
17 2 32.104 2.000 37 1 19.663 0.909 49 3 65.730 1.000
18 4 30.242 1.111 38 2 29.916 0.909 49 3 72.025 1.429
19 4 24.027 1.250 38 2 36.879 0.833 50 4 64.205 1.000
20 1 30.034 1.429 39 2 26.765 1.250 50 4 70.606 1.000
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TABLE 6.7. Parameter estimates from the analysis of serum creatinine reciprocals
from 619 subjects

Standard
Group Parameter Estimate Error p-value

1 intercept 1.4060 0.0553 < 0.001
slope −0.0185 0.0013 < 0.001

2 intercept increment 0.0839 0.1033 0.417
slope increment 0.0033 0.0029 0.264

3 intercept increment −0.3594 0.1133 0.002
slope increment 0.0179 0.0026 < 0.001

4 intercept increment −0.1782 0.0863 0.039
slope increment 0.0148 0.0023 < 0.001

between observations. The complete covariance model then has six param-
eters (σ2

α, σαβ , σ
2
β , σ

2, τ, σ2
0).

Although Jones and Boadi-Boateng (1991) obtain ML estimates of the
parameters using the Kalman filter to evaluate the likelihood, which is
then maximized using a nonlinear optimization program, ML and REML
estimates can also be obtained using general-purpose programs such as
the MIXED procedure (SAS Institute, 1999). Table 6.7 displays REML
estimates of the fixed effects as well as estimated standard errors and p-
values from the tests that the specified parameter is equal to zero. In all
four groups, the serum creatinine reciprocal is estimated to decrease as age
increases. The rate of decrease is greatest in group 1 and is nearly zero in
group 3. The rates of decrease in groups 1 and 2 are similar. The intercept
is greatest in group 2, followed by groups 1, 4, and 3.

6.5 Comments

6.5.1 Use of the Random Intercept and Slope Model
The random intercept and slope model with

B =
(
σ2

α σαβ

σαβ σ2
β

)
and W i = σ2I, where I is an identity matrix with dimensions equal to
the number of repeated measurements from the ith subject, is often used.
This model is both intuitively appealing and also enables one to model the
covariance structure using only four parameters. However, the random in-
tercept and slope model has a potential shortcoming in that the covariance
matrix of the vector yi of observations from subject i is nonstationary.
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In the case where measurements are obtained from each subject at the
equally spaced time points j = 1, . . . , t, general expressions for the variances
and covariances of the observations yij are:

Var(yij) = σ2
α + 2jσαβ + j2σ2

β + σ2,

Cov(yij , yij′) = σ2
α + (j + j′)σαβ + jj′σ2

β .

Thus, if σαβ > −σ2
β , then Var(yij) will increase monotonically over time.

In terms of the correlation coefficient

ρ =
σαβ

σασβ
,

this condition is
ρ > −σβ

σα
.

In many applications, however, the variances of observations are constant,
or nearly constant, over time.

The general relationships for arbitrary time point j are as follows:

• if j > −σαβ/σ
2
β , the variances Var(yij) increase after time j;

• if j < −σαβ/σ
2
β , the variances Var(yij) decrease up to time j.

Only if σαβ = −0.5(2j + 1)σ2
β are the jth and (j + 1)st variances equal;

in this case, all subsequent variances increase over time, and all previous
variances decrease over time. These consequences of the random intercept
and slope model do not appear to be widely known and also appear not to
be realistic in many applications.

In Section 6.4.1, Model 6 is the random intercept and slope model. The
estimated matrix of random effects is

B̂ =
(

4.55691 −0.19825
−0.19825 0.02376

)
.

The features observed in this example occur in many applications of this
model, namely,

• σ̂αβ is negative.

• σ̂2
β is close to zero.

If the time points are relabeled 1, 2, 3, 4 instead of 8, 10, 12, 14, the
estimated matrix of random effects is

B̂ =
(

3.03319 −0.11140
−0.11140 0.09504

)
.
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Because −σ̂αβ/σ̂
2
β = 0.11140/0.09504 = 1.17, the variances increase from

time 2 (age 10) onward (and possibly also from time 1). The resulting
estimated covariance matrix of the observations yhi = (yhi1, . . . , yhi4)′ is

4.6216 2.8891 2.8727 2.8563
2.8891 4.6839 3.0464 3.1251
2.8727 3.0464 4.9363 3.3938
2.8563 3.1251 3.3938 5.3787

 .
The estimated variances increase monotonically over time. In comparison,
the pooled estimate of the covariance matrix of yhi is

5.4155 2.7168 3.9102 2.7102
2.7168 4.1848 2.9272 3.3172
3.9102 2.9272 6.4557 4.1307
2.7102 3.3172 4.1307 4.9857

 .
Unlike the structure imposed by the random intercept and slope model, the
empirical variances show no consistent pattern across the four time points.

Although intuitively appealing, the random intercept and slope model is
not the best-fitting one for this example. This conclusion is consistent with
the results presented in Section 6.4.1. Note, however, that the assumptions
of the random intercept and slope model appear to provide an adequate
model for the example of Section 6.4.2.

6.5.2 Effects of Choice of Covariance Structure on Estimates
and Tests

In the first example (Section 6.4.1), the number of time points was small,
the time points were equally spaced, there were no missing data, and all
covariates were categorical. In such cases, one can readily carry out likeli-
hood ratio tests to compare the fit of alternative covariance models. When
the number of time points is large (as in the example of Section 6.4.2) or
when the time points at which the repeated measurements are obtained
vary from subject to subject (as in the example of Section 6.4.3), it is not
possible to compare the fit of a reduced covariance model to that of the
unstructured model. In such situations, the choice of covariance model can
have a substantial effect on the results of the analysis.

As an example, the final model for the serum creatinine data of Sec-
tion 6.4.3 had eight fixed effects and six random effects. The fixed effects
were an intercept and slope for group 1 and incremental intercept and slope
parameters in each of groups 2–4. The covariance model consisted of a ran-
dom intercept and slope for each subject (three parameters), plus a three-
parameter within-subject covariance structure (continuous-time AR–1 pro-
cess with observational error).
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To illustrate the effect of the choice of covariance model on the analysis
results, the same fixed-effects model (separate lines in each of the four
groups) was fit using nine alternative covariance structure models:

1. continuous time AR–1 with observational error (three parameters);

2. continuous time AR–1 (two parameters);

3. compound symmetry (two parameters);

4. random intercept and slope plus continuous time AR–1 with obser-
vational error (six parameters);

5. random intercept and slope plus continuous time AR–1 (five param-
eters);

6. random intercept and slope plus independent within-subject errors
(four parameters);

7. random intercept plus continuous time AR–1 with observational error
(four parameters);

8. random intercept plus continuous time AR–1 (three parameters);

9. random intercept plus independent within-subject errors (two param-
eters).

Figure 6.7 plots the parameter estimates for the age effect in group 1 and
the intercept and age increments in groups 2–4. The parameterization is the
same as was described in Section 6.4.3. The plot symbols 1–9 correspond
to the nine covariance models just listed.

The estimated slopes (age effects) are not greatly affected by the choice
of covariance model. There is, however, considerable variability in the esti-
mates of the intercept increments in groups 2–4. In particular, four of the
nine estimated intercept increments in group 2 are positive, whereas the
remaining estimates are negative.

Figure 6.8 similarly displays the p-values from the tests that the in-
cremental effects in groups 2–4 are equal to zero. With reference to the
conventional α = 0.05 level of significance, the intercept increments in
groups 2 and 4, as well as the age increment in group 2, are highly sta-
tistically significant under some covariance models and very nonsignificant
under others.

This example illustrates the importance of carefully selecting a reason-
able covariance model. Even in situations where the conclusions are not
affected as dramatically as in this example, the choice of an appropriately
parsimonious covariance structure can improve the efficiency of inferences
concerning the mean structure and provide better estimates of standard
errors of estimated parameters (Diggle et al., 1994). In some settings, as
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FIGURE 6.7. Parameter estimates from nine alternative covariance models used
in the analysis of serum creatinine reciprocals from 619 subjects
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in the examples of Sections 6.4.1 and 6.4.2, likelihood ratio tests and mea-
sures such as the AIC and BIC are useful tools for choosing an appropriate
covariance model. In this context, Diggle (1988) recommends that a model
for the mean structure first be fit and that it is preferable to overfit, rather
than underfit, this model. The fit of reduced covariance models can then be
investigated relative to an initial, more general covariance structure. Dig-
gle et al. (1994) and Dawson et al. (1997) review other methods, includ-
ing scatterplot matrices, for assessing the correlation structure of repeated
measurements data. Zimmerman (2000) describes and illustrates the use of
another graphical diagnostic, the Partial-Regression-on-Intervenors Scat-
terplot Matrix (PRISM).

6.5.3 Performance of Linear Mixed Model Test Statistics and
Estimators

Overall et al. (1999), Ahn et al. (2000), and Park et al. (2001) have investi-
gated the performance of linear mixed model test statistics and estimators
in simulation studies. In the Park et al. (2001) study, the properties of three
types of test statistics were compared:

1. unstructured multivariate approach using Wilks’ Λ;

2. linear mixed model approach using ML estimation;

3. linear mixed model approach using REML estimation.

The case of two groups and four time points was considered. The model
for the mean in group h at time j was µhj = βh0 + βh1j, where

β20 = β10 + δ0, β21 = β11 + δ1.

The parameter δ0 is the intercept difference, and δ1 is the slope difference.
Two hypotheses were of interest:

• equality of groups (H0: δ0 = δ1 = 0);

• parallelism (H0: δ1 = 0).

This scenario is similar to the example of Section 6.4.1.
Data were generated from five correlation models: AR–1 with ρ = 0.3

and ρ = 0.7, compound symmetry with ρ = 0.3 and ρ = 0.7, and an
unstructured covariance model. The unstructured covariance model was
the 4 × 4 covariance matrix given by Equation (6.3) in Section 6.4.1.

The linear mixed model analyses were carried out using four assumed
correlation structures: independence, AR–1, compound symmetry, and un-
structured. Sample sizes of 15 and 25 observations/group and several values
of (δ0, δ1) were considered; 1000 replications were carried out for each com-
bination of factors.
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Figure 6.9 displays the empirical sizes of the test of equality of group
effects. The horizontal axis lists the total sample size and true correlation
structure under which the data were generated. The proportion of 1000
replications for which the null hypothesis was rejected is displayed on the
vertical axis. In these simulations, the parameters δ0 and δ1 were both equal
to zero.

In this simulation study, the unstructured multivariate approach tends to
have test sizes closest to the nominal 5% level. The linear mixed model ap-
proach tends to yield anticonservative tests. For a given assumed correlation
structure, the sizes of the REML tests are smaller (closer to the nominal
level) than those of the ML tests. Whereas the unstructured multivariate
approach is robust to the true correlation structure, the performance of the
linear mixed model tests depends highly on the structures of the true and
assumed correlation models. It is somewhat surprising that the unstruc-
tured multivariate approach is preferred, even in a four-parameter model
with a 4 × 4 covariance matrix and a total sample size of only 30 subjects.

Figure 6.10 similarly displays the empirical sizes of the test of paral-
lelism. In these simulations, δ1 was equal to zero. The results for testing
parallelism are somewhat different from those for testing group effects. A
possible reason is that the test for parallelism is based on the differences
among adjacent responses, which might be less sensitive to the correlation
structure than the responses themselves. The unstructured multivariate ap-
proach tends to have test sizes closest to the nominal 5% level. The linear
mixed model approach tends to yield anticonservative tests. For a given
assumed correlation structure, the sizes of REML tests are smaller (closer
to the nominal level) than those of ML tests. The linear mixed model ML
and REML tests assuming independence are conservative.

Finally, Figure 6.11 displays empirical powers of the tests of parallelism
for total sample sizes of n = 30 (top panel) and n = 50 (bottom panel).
The horizontal axis lists the values of δ1 and the true correlation model
under which the data were generated. The proportion of 1000 replications
for which the null hypothesis was rejected is displayed on the vertical axis.
Because the tests based on the linear mixed model are often anticonser-
vative when the null hypothesis is true, it is not surprising that they also
tend to sometimes reject more often when the null hypothesis is false. Still,
the tests based on the use of the unstructured multivariate model perform
well.

6.6 Problems

6.1 Suppose that repeated measurements are obtained at time points
1, . . . , t for each of n subjects. Consider the mixed model

yi = Xβ + Zγi + εi
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for i = 1, . . . , n, where yi is the t × 1 vector of responses for subject i, X
is the t× 2 design matrix 

1 1
1 2
...

...
1 t

 ,
β′ = (β0, β1), Z = (1, . . . , 1)′, γi are independent N(0, σ2), the t×1 vectors
εi are independent N(0, σ2

eIt), where It is the t × t identity matrix, and
γi and εi are independent. Derive the variance–covariance matrix of yi.

6.2 Table 3.1 and Figure 3.2 display the data from a dental study in
which the height of the ramus bone (mm) was measured in 20 boys at
ages 8, 8.5, 9, and 9.5 years (Elston and Grizzle, 1962). These data were
previously analyzed in Sections 3.3.2 and 4.4.3.

(a) Using maximum likelihood estimation, fit a linear model for the rela-
tionship between bone height and age using the unstructured covari-
ance model. Compare the estimates of the intercept and slope, as well
as their standard errors, with those from the growth curve analysis
using G = S presented in Section 4.4.3.

(b) Investigate the appropriateness of simplified covariance structures. In
particular, test the adequacy of the banded, first-order autoregressive,
compound symmetry, and independence covariance structures versus
the unstructured covariance model.

(c) Fit the random coefficients model with a random intercept and a
random slope. How does the fit of this model compare with that from
the random coefficients model with a random intercept?

(d) Which model for these data do you prefer? Why?

6.3 In the example of Section 6.4.1, the unstructured covariance model
was used while successive models for the mean structure were considered.
Once the linear model with separate intercepts for boys and girls was se-
lected, simplified covariance structures were then investigated.

(a) Using the model with a separate mean at each time point for each
sex (Model 1 from Section 6.4.1), investigate the appropriateness of
simplified covariance structures. In particular, test the adequacy of
the banded, first-order autoregressive, compound symmetry, and in-
dependence covariance structures versus the unstructured covariance
model.

(b) Repeat part (a) using REML estimation instead of maximum likeli-
hood.
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6.4 Patel (1991) discusses the analysis of a randomized, double-blind
clinical trial comparing two treatments for rheumatoid arthritis. Table 6.8
displays grip-strength measurements at baseline and at visits 1, 2, and 3
following the initiation of treatment for the 67 subjects included in this
trial. Because grip strengths are expected to be higher in males than in
females, sex is a stratification factor. Use linear mixed model methods to
test whether grip strength is affected by treatment.

6.5 In a randomized, multicenter, double-blind, placebo-controlled trial
of botulinum toxin type B (BotB) in patients with cervical dystonia, eligi-
ble subjects from nine U.S. sites were randomized to one of three groups:
placebo (36 subjects), 5000 units of BotB (36 subjects), or 10,000 units of
BotB (37 subjects). The primary outcome variable was the total score on
the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS-Total).
The TWSTRS-Total, which measures severity, pain, and disability of cervi-
cal dystonia, is a numerical score ranging from 0 to 87; high scores indicate
impairment. The TWSTRS-Total was administered at baseline (week 0)
and at weeks 2, 4, 8, 12, and 16 following treatment. Table 6.9 displays the
age (years), sex, and TWSTRS-Total scores for the first 35 subjects.

(a) Using the unstructured covariance model, fit a fifth-order polynomial
model to the data from each of the three groups.

(b) Using the structural model of part (a), investigate whether the covari-
ance structure can be simplified to a more parsimonious covariance
model.

(c) Using the covariance model from part (b), fit an appropriate reduced
model for the effect of time.

(d) Using the model from part (c), test for parallelism of the profiles for
the three groups and, if appropriate, simplify your model.

(e) Based on your final model, test the null hypothesis that the estimated
TWSTRS-Total means at week 4 are equal for the three groups. Also
compare each of the two BotB groups to the placebo group.

6.6 Table 4.7 displays scaled test scores for a cohort of 64 students of the
Laboratory School of the University of Chicago (Bock, 1975). These data
were previously considered in Problems 4.2 and 5.13.

(a) Use the unstructured covariance model to fit a cubic polynomial
model with separate coefficients for boys and girls.

(b) Using the structural model of part (a), investigate whether the covari-
ance structure can be simplified to a more parsimonious covariance
model.



162 6. Normal-Theory Methods: Linear Mixed Models

TABLE 6.8. Grip-strength measurements from 67 subjects in a clinical trial com-
paring two treatments for rheumatoid arthritis

Visit Visit
ID Sex Trt. 0 1 2 3 ID Sex Trt. 0 1 2 3
1 M 2 120 130 150 120 41 M 2 200 245 290 280
2 F 1 80 80 86 80 42 M 1 300 300 300 300
3 F 2 60 80 60 60 43 M 2 172 170 170 146
4 F 1 64 80 80 70 44 M 1 238 278 170 158
5 F 1 40 60 . . 45 M 2 158 140 152 150
6 F 2 50 70 70 70 46 F 1 110 82 98 110
7 F 2 80 75 90 90 47 M 2 150 220 168 139
8 F 1 40 50 30 40 48 F 1 180 165 150 160
9 F 1 70 90 110 90 49 F 2 55 60 65 55

10 F 2 80 100 80 90 50 F 1 155 150 170 185
13 F 2 80 60 65 70 51 F 2 130 130 160 125
15 F 1 70 80 95 110 52 F 1 55 105 70 88
17 F 2 58 50 80 80 53 M 2 135 155 215 170
18 F 1 70 80 86 . 54 M 1 200 230 220 240
19 F 1 70 60 70 80 55 F 2 115 95 105 110
20 F 2 60 60 80 60 56 M 2 75 170 220 240
21 F 1 50 80 90 90 57 M 1 130 155 170 125
22 F 2 80 90 120 130 58 M 2 150 200 185 163
23 F 2 60 90 94 100 59 F 1 95 90 90 116
24 F 1 40 60 60 65 61 M 2 155 101 93 120
25 M 2 300 300 300 300 62 F 2 135 120 144 135
26 M 1 175 161 210 230 63 F 1 90 135 95 .
27 M 1 165 215 245 265 64 F 1 145 140 164 .
28 M 2 179 232 285 . 65 F 2 60 85 85 .
29 M 1 175 134 215 139 67 F 2 40 45 76 75
30 F 2 75 131 95 105 70 F 1 34 51 87 .
31 M 2 209 260 200 125 71 F 2 104 107 . .
34 M 1 178 165 140 175 72 F 2 60 60 55 58
35 M 1 220 220 189 158 73 M 2 190 240 210 173
36 M 2 200 200 200 232 74 M 1 215 230 243 245
37 F 2 150 108 160 160 75 M 2 265 275 255 270
38 M 1 90 146 140 130 76 M 1 207 220 . .
39 M 2 300 300 300 300 79 M 1 225 220 250 235
40 F 1 140 156 140 150
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TABLE 6.9. TWSTRS-total scores from 109 patients with cervical dystonia: First
35 subjects

Week
Site ID Treatment Age Sex 0 2 4 8 12 16
1 1 5000U 65 F 32 30 24 37 39 36
1 2 10000U 70 F 60 26 27 41 65 67
1 3 5000U 64 F 44 20 23 26 35 35
1 4 Placebo 59 F 53 61 64 62 . .
1 5 10000U 76 F 53 35 48 49 41 51
1 6 10000U 59 F 49 34 43 48 48 51
1 7 5000U 72 M 42 32 32 43 42 46
1 8 Placebo 40 M 34 33 21 27 32 38
1 9 5000U 52 F 41 32 34 35 37 36
1 10 Placebo 47 M 27 10 31 32 6 14
1 11 10000U 57 F 48 41 32 35 57 51
1 12 Placebo 47 F 34 19 21 24 28 28
2 1 Placebo 70 F 49 47 44 48 44 44
2 2 5000U 49 F 46 35 45 49 53 56
2 3 10000U 59 F 56 44 48 54 49 60
2 4 5000U 64 M 59 48 56 55 57 58
2 5 10000U 45 F 62 60 60 64 67 66
2 6 Placebo 66 F 50 53 52 57 61 54
2 7 10000U 49 F 42 42 43 33 37 43
2 8 Placebo 54 F 53 56 52 54 55 51
2 9 5000U 47 F 67 64 65 64 62 64
2 10 Placebo 31 M 44 40 32 36 42 43
2 11 10000U 53 F 65 58 55 . 56 60
2 12 5000U 61 M 56 54 52 48 52 53
2 13 Placebo 40 M 30 33 25 29 32 32
2 14 5000U 67 M 47 . 54 43 46 50
3 1 10000U 54 F 50 43 51 46 49 53
3 2 Placebo 41 F 34 29 27 21 22 22
3 3 5000U 66 M 39 41 33 39 37 37
3 4 Placebo 68 F 43 31 29 28 33 38
3 5 10000U 41 F 46 26 29 33 45 56
3 6 5000U 77 M 52 44 47 50 50 49
3 7 10000U 41 M 38 19 20 27 29 32
3 8 Placebo 56 M 33 38 40 48 49 44
3 9 5000U 46 F 28 16 11 7 13 21
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(c) Using the covariance model from part (b), fit an appropriate reduced
model for comparing the profiles over time for boys and girls.

6.7 Forty male subjects were randomly assigned to one of two treatment
groups. The values of the BPRS factor measured before treatment (week 0)
and at weekly intervals for eight weeks are displayed in Table 2.10 and were
previously considered in Problems 2.2, 3.12, and 4.8.

(a) Using maximum likelihood estimation and the unstructured covari-
ance model, fit a quadratic model with separate intercepts, linear
terms, and quadratic terms in the two treatment groups. Test equal-
ity of intercepts, equality of linear terms, equality of quadratic terms,
joint equality of linear and quadratic terms, and joint equality of
treatments.

(b) Fit an appropriate reduced model based on the results of part (a).
Compare the fit of this model to the model from part (a) using a
likelihood ratio test.

(c) Investigate the appropriateness of simplified covariance structures for
your model from part (b). In particular, test the adequacy of the
banded, first-order autoregressive, compound symmetry, and inde-
pendence covariance structures versus the unstructured covariance
model.

6.8 Parkinson’s disease is a neurodegenerative disease associated with
aging. The treatment regimen most commonly used to alleviate the signs
and symptoms of Parkinson’s disease is levodopa. Although levodopa is an
effective treatment, its continued use often causes adverse effects on motor
function and mental state. Therefore, it is of interest to develop alternative
treatments that will enable decreased use of levodopa.

In a clinical trial conducted to determine whether use of an experimental
dopamine D2 agonist can replace the use of levodopa, 25 patients with
Stage II through IV Parkinson’s disease were randomized to one of five
groups: placebo, 8.4 mg, 16.8 mg, 33.5 mg, or 67 mg of the experimental
drug. The primary outcome variable was the daily levodopa usage (mg).
Table 6.10 displays the data from days 1 to 14 of this study.

(a) The study protocol specified that the five groups would be compared
with respect to the predicted mean daily levodopa use at day 14
from a linear mixed model. The model was to incorporate separate
mean parameters for each of study days 1, 2, and 3 and a linear
regression for study days 4–14. The covariance model was to include
a random intercept (at day 4) and slope for each subject. Based on
these specifications, test whether the predicted mean daily levodopa
use at day 14 is the same for the five groups; also compare each of
the four experimental drug dosages to the placebo group.
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TABLE 6.10. Levodopa usage of 25 patients with Parkinson’s disease
Day

ID Dose 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 33.5 200 700 1000 800 1000 1000 900 900 800 900 1000 1000 1000 1000
2 67.0 100 300 400 500 700 700 700 700 700 700 700 700 700 700
3 0.0 0 150 150 150 150 150 150 150 200 200 250 300 300 300
4 8.4 0 100 200 300 400 400 400 500 600 600 600 600 800 800
5 16.8 150 300 400 250 300 325 450 450 450 450 600 600 600 600
6 67.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8.4 250 625 750 1450 1700 1700 1700 1700 1375 1375 1700 1700 1500 1950
9 33.5 0 0 300 450 500 500 650 650 650 650 650 650 650 700

10 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 8.4 200 500 500 500 500 500 600 600 600 600 600 600 600 600
12 33.5 50 150 150 150 150 150 150 150 150 150 150 150 200 200
13 0.0 125 375 375 375 375 375 375 625 625 625 625 625 625 625
14 67.0 175 325 400 425 475 400 350 325 400 325 350 367 300 .
15 33.5 300 250 350 400 350 300 300 200 200 150 0 0 0 150
16 8.4 400 400 800 800 800 800 800 1000 1000 1000 800 1000 1000 1000
17 16.8 0 300 300 300 300 300 300 300 300 300 300 300 300 600
18 0.0 400 1200 1200 1700 1700 1700 1700 1700 1700 1650 1650 1800 1750 1750
19 67.0 0 0 0 0 100 150 150 150 150 150 150 300 200 200
20 67.0 300 500 500 600 800 600 600 700 700 700 700 700 700 700
21 33.5 250 750 625 875 1125 1000 1125 1125 1000 1125 1125 1125 1125 1125
22 16.8 125 0 300 300 300 200 400 400 500 500 500 500 600 500
23 8.4 200 0 150 150 150 150 200 200 200 350 350 350 350 600
24 0.0 100 200 150 150 150 150 150 150 300 300 300 300 300 300
25 16.8 200 450 500 500 600 500 500 600 550 550 550 600 600 600

(b) Repeat part (a) using the covariance structure incorporating only a
random intercept at day 4 for each subject.

6.9 Crépeau et al. (1985) describe a study of the effect of halothane on re-
sponses to irreversible myocardial ischemia and subsequent infarction. The
experiment consisted of inducing a heart attack in rats exposed to different
concentrations of halothane (group 1: 0%, group 2: 0.25%, group 3: 0.5%,
group 4: 1%). Table 6.11 displays blood pressure measurements (mm Hg) at
up to nine time points ranging from one minute to 240 minutes after heart
attack induction. Investigate the effect of halothane dose on blood pressure
using an appropriate linear model, and justify your choice of covariance
structure.

6.10 Section 5.4.2 discusses data from an experiment comparing dissolu-
tion times of a certain type of pill under four different storage conditions
(Crowder, 1996). Table 5.4 displays the logarithms of the times, in seconds,
for each pill to reach fractions remaining of 0.9, 0.7, 0.5, 0.3, 0.25, and 0.10.
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TABLE 6.11. Blood pressure measurements (mm Hg) following heart attack in-
duction in 43 rats

Minutes after Ligation
Grp ID 1 5 10 15 30 60 120 180 240
1 1 112.5 100.5 102.5 102.5 107.5 107.5 95.0 102.5 100.5

2 92.5 102.5 105.0 100.0 110.0 117.5 97.5 102.5 112.5
3 132.5 125.0 115.0 112.5 110.0 110.0 127.5 . .
4 110.0 110.0 . . . . . . .
5 122.5 127.5 . . . . . . .
6 102.5 107.5 107.5 102.5 90.0 112.5 107.5 110.0 112.5
7 42.5 42.5 . . . . . . .
8 107.5 80.0 . . . . . . .
9 110.0 130.0 115.0 105.0 112.5 110.0 115.0 102.5 92.5

10 97.5 97.5 80.0 82.5 82.5 102.5 100.0 95.0 95.0
11 90.0 70.0 85.0 85.0 92.5 97.5 107.5 97.5 90.0

2 1 115.0 115.0 107.5 107.5 112.5 107.5 112.5 107.5 107.5
2 120.0 . . . . . . . .
3 125.0 125.0 120.0 120.0 117.5 125.0 122.5 120.0 120.0
4 95.0 90.0 95.0 90.0 100.0 107.5 100.0 100.0 92.5
5 97.5 70.0 . . . . . . .
6 87.5 65.5 85.0 90.0 105.0 90.0 85.0 87.5 100.0
7 90.0 87.5 97.5 95.0 100.0 95.0 102.5 . .
8 97.5 92.5 57.5 55.0 90.0 97.5 110.0 115.0 105.0
9 107.5 107.5 145.0 110.0 105.0 105.0 112.5 . .

10 102.5 130.0 85.0 80.0 127.5 97.5 117.5 102.5 127.5
3 1 107.5 107.5 102.5 102.5 102.5 97.5 98.5 102.5 92.5

2 67.5 20.0 . . . . . . .
3 97.5 108.5 94.5 102.5 102.5 107.5 117.5 112.5 .
4 105.0 105.0 . . . . . . .
5 85.0 60.0 . . . . . . .
6 100.0 105.0 105.0 105.0 110.0 110.0 115.0 107.5 105.0
7 95.0 95.0 90.0 100.0 100.0 100.0 95.0 90.0 100.0
8 85.0 92.5 92.5 92.5 90.0 110.0 100.0 102.5 87.5
9 82.5 77.5 75.0 65.5 65.0 72.5 72.5 67.5 67.5

10 92.5 75.0 40.0 35.0 . . . . .
11 62.5 75.0 115.0 110.0 100.0 100.0 . . .

4 1 70.0 67.5 67.5 77.5 77.5 77.5 72.5 65.0 55.0
2 45.0 37.5 45.0 45.0 47.5 45.0 50.0 45.0 50.0
3 52.5 22.5 90.0 65.0 60.0 65.5 52.5 47.5 57.5
4 100.0 100.0 100.0 100.0 97.5 92.5 . . .
5 47.5 30.0 . . . . . . .
6 102.5 90.0 . . . . . . .
7 115.0 110.0 100.0 110.0 105.0 105.0 105.0 105.0 105.0
8 97.5 97.5 97.5 105.0 95.0 92.5 92.5 92.5 92.5
9 95.0 125.0 130.0 125.0 115.0 117.5 110.0 105.0 102.5

10 72.5 87.5 65.0 57.5 92.5 82.5 57.5 50.0 50.0
11 105.0 105.0 105.0 105.0 102.5 100.0 95.0 92.5 87.5
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Based on the relevant kinetic considerations for diffusion of a small tablet
in a large reservoir, Crowder considers the linear model

y = β0 + β1x,

where x = 1 − f2/3 and y is the time elapsed until fraction f of the pill
remains. Note that Table 5.4 displays the values of log(y).

(a) Use REML estimation with a random intercept and slope for each
tablet to fit Crowder’s model to these data. Parameterize the model
with a separate intercept and slope for each of the four groups.

(b) Test whether the rate of dissolution is the same for the four groups
of tablets.

6.11 In a double-blind, placebo-controlled study, patients with postop-
erative pain were randomly assigned to one of three groups: treatment A,
treatment B, or placebo. Subjects enrolled in the study received a single
dose of their assigned treatment when they reported moderate to severe
postoperative pain. The primary outcome variable was the quantity of res-
cue medication used; this was recorded at hourly intervals for 24 hours
after dosing. Table 6.3 displays the data from the first ten subjects in
each treatment group; Section 6.4.2 discusses the analysis of the repeated
hourly measurements. The study protocol specified a secondary analysis
to be carried out after combining the data over prespecified time intervals
(0–3 hours, 4–6 hours, 7–12 hours, 13–24 hours). In this analysis, there are
four repeated measurements, each computed as the average of the hourly
measurements obtained during the interval.

(a) Using REML estimation to fit the model with a separate mean at each
time point in each of the three groups, investigate the appropriateness
of simplified covariance structures. In particular, test the adequacy of
the banded, random intercept and slope, random intercept, first-order
autoregressive, compound symmetry, and independence covariance
structures versus the unstructured covariance model.

(b) Using the covariance model identified in part (a), determine an appro-
priate reduced model for the effect of treatment and time on rescue
medication use.

(c) Summarize the results and conclusions of your analysis.
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7
Weighted Least Squares Analysis of
Repeated Categorical Outcomes

7.1 Introduction

The methods described in previous chapters are useful in the analysis of
continuous, normally distributed outcome variables. This chapter intro-
duces and discusses the use of weighted least squares methods for the anal-
ysis of repeated categorical outcomes.

The weighted least squares (WLS) methodology was the first general ap-
proach to the analysis of repeated measurements when the response variable
is categorical. Grizzle et al. (1969) summarized previous research and pro-
vided the first systematic description of this general and versatile approach
to the analysis of categorical data. Although Grizzle et al. (1969) consid-
ered two examples involving repeated measurements, Koch and Reinfurt
(1971) and Koch et al. (1977) first discussed specifically the general use of
this methodology in analyzing categorical repeated measurements.

The WLS approach makes no assumptions concerning the time depen-
dence among the repeated measurements. This methodology is inherently
nonparametric because it is based only on the multinomial sampling model
for count data. Although this is a versatile approach, it is limited to sit-
uations in which the categorical response variable has only a few possible
outcomes, all covariates are categorical, the number of measurement times
is small, and the sample size is relatively large within each category of the
cross-classification of response and time.

Section 7.2 presents the fundamental ideas of the WLS approach and its
application to the analysis of categorical data. This material is not specific
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to the analysis of repeated measurements and can be omitted by readers
who are already familiar with this background information. Section 7.3
then describes the basic application of the methodology to repeated mea-
surements. Finally, Section 7.4 describes how the WLS approach can be
used to accommodate missing data.

7.2 Background

7.2.1 The Multinomial Distribution
The WLS approach is based on the multinomial sampling model. Thus, the
multinomial distribution is first defined, and some key results are presented.
Johnson et al. (1997) provide an extensive discussion of this distribution.

Consider a sequence of n independent trials. On each trial, one of c mu-
tually exclusive and exhaustive events E1, . . . , Ec occurs. Let πi = Pr(Ei)
denote the probability that the event Ei occurs, where 0 < πi < 1 and∑c

i=1 πi = 1. The πi values are assumed to remain constant across the
n trials.

The probability that E1 occurs x1 times, . . ., Ec occurs xc times is given
by

f(x1, . . . , xc) =
n!

x1!x2! · · · xc!
πx1

1 πx2
2 · · · πxc

c ,

where xi ≥ 0 and
∑c

i=1 xi = n. The random vector x = (x1, . . . , xc)′ has
the multinomial distribution with parameters n and π = (π1, . . . , πc)′; we
write x ∼ Mc(n,π). Note that the binomial distribution is the same as the
M2(n,π) distribution.

The moments of the multinomial distribution are

E(xi) = nπi, for i = 1, . . . , c,
Var(xi) = nπi(1 − πi), for i = 1, . . . , c,

Cov(xi, xj) = −nπiπj , for i �= j = 1, . . . , c.

The variance–covariance matrix of x = (x1, . . . , xc)′ is given by

Var(x) =


nπ1(1 − π1) −nπ1π2 . . . −nπ1πc

−nπ1π2 nπ2(1 − π2) . . . −nπ2πc

...
...

...
...

−nπ1πc −nπ2πc . . . nπc(1 − πc)

 .
This variance–covariance matrix can be written as n(Dπ − ππ′), where
Dπ is a diagonal matrix with the vector π = (π1, . . . , πc)′ on the main
diagonal. Note that because the c components of x sum to one, Var(x) is
a singular covariance matrix.
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The maximum likelihood estimators of π1, . . . , πc are given by pi = xi/n
for i = 1, . . . , c. Because E(pi) = πi, the vector p = (p1, . . . , pc)′ is an
unbiased estimator of π = (π1, . . . , πc)′. The variance–covariance matrix of
p is

Var(p) =
1
n


π1(1 − π1) −π1π2 . . . −π1πc

−π1π2 π2(1 − π2) . . . −π2πc

...
...

...
...

−π1πc −π2πc . . . πc(1 − πc)


=

1
n

(Dπ − ππ′).

As n → ∞, the asymptotic distribution of
√
n(p−π) isNc(0c,Dπ−ππ′).

A consistent estimator of Var(p) is

V p =
1
n


p1(1 − p1) −p1p2 . . . −p1pc

−p1p2 p2(1 − p2) . . . −p2pc

...
...

...
...

−p1pc −p2pc . . . pc(1 − pc)


=

1
n

(Dp − pp′).

The vector p = (p1, . . . , pc)′ has an approximate multivariate normal distri-
bution with mean vector π and variance–covariance matrix V p. Note that
this multivariate normal distribution is singular because the components
of p sum to one.

7.2.2 Linear Models Using Weighted Least Squares
Because the covariance matrix of the vector of multinomial proportions
has unequal diagonal elements and nonzero off-diagonal elements, the as-
sumptions of ordinary least squares are not satisfied. This section describes
weighted least squares, a generalization of ordinary least squares that per-
mits observations to be correlated and have nonconstant variance.

Using the notation commonly used in discussions of linear models, let

y = (y1, . . . , yn)′

be an n× 1 vector of observations. Suppose that

y ∼ Nn(Xβ,V ),

where X is an n× p design (model) matrix with p ≤ n, β is a p× 1 vector
of parameters, and V is the n × n variance–covariance matrix of y. The
linear model is

y = Xβ + ε,
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where ε ∼ Nn(0n,V ).
The basic idea of weighted least squares is to transform the observations

y = (y1, . . . , yn)′ to other variables y∗ that satisfy the assumptions of the
usual linear model with independent and identically distributed random
errors; that is,

y∗ = X∗β + ε∗,

where ε∗ ∼ Nn(0n, In).
A unique nonsingular symmetric matrix V 1/2 exists such that

V 1/2V 1/2 = V .

Multiplying both sides of the equation y = Xβ + ε by V −1/2 yields

V −1/2y = V −1/2Xβ + V −1/2ε.

Thus, we have y∗ = X∗β + ε∗, where y∗ = V −1/2y, X∗ = V −1/2X, and
ε∗ = V −1/2ε.

In this case, E(ε∗) = E(V −1/2ε) = V −1/2E(ε) = 0n and

Var(ε∗) = Var(V −1/2ε)

= V −1/2Var(ε)V −1/2′

= V −1/2V V −1/2

= V −1/2(V 1/2V 1/2)V −1/2

= In.

Let b = β̂ denote the least squares estimator of β. This estimator is
found by minimizing the error sum of squares (SSE), which is given by

SSE =
n∑

i=1

e∗
i
2

= (y∗ − X∗b)′(y∗ − X∗b)

= (V −1/2y − V −1/2Xb)′(V −1/2y − V −1/2Xb)

= [V −1/2(y − Xb)]′[V −1/2(y − Xb)]

= (y − Xb)′V −1/2′
V −1/2(y − Xb)

= (y − Xb)′V −1(y − Xb)
= (y′ − b′X ′)V −1(y − Xb)
= y′V −1y − 2b′X ′V −1y + b′X ′V −1Xb.

The first derivative with respect to b is

∂SSE
∂b

= −2X ′V −1y + 2X ′V −1Xb.
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Setting this equal to zero gives

X ′V −1Xb = X ′V −1y.

If X is of full rank, b = (X ′V −1X)−1(X ′V −1y).
Because b is a linear function of y, b is normally distributed with mean

E(b) = (X ′V −1X)−1X ′V −1E(y) = (X ′V −1X)−1X ′V −1Xβ = β

and variance

Var(b) = Var[(X ′V −1X)−1X ′V −1y]
= (X ′V −1X)−1X ′V −1Var(y)[(X ′V −1X)−1X ′V −1]′

= (X ′V −1X)−1X ′V −1V V −1X(X ′V −1X)−1

= (X ′V −1X)−1(X ′V −1X)(X ′V −1X)−1

= (X ′V −1X)−1.

The total sum of squares (SST) is given by

SST = y∗′y∗ = (V −1/2y)′V −1/2y = y′V −1/2V −1/2y = y′V −1y.

The SSE is given by

SSE = y′V −1y − 2b′X ′V −1y + b′X ′V −1Xb

= y′V −1y − b′X ′V −1y − b′X ′V −1y + b′X ′V −1Xb

= y′V −1y − b′X ′V −1y − b′(X ′V −1y − X ′V −1Xb)
= y′V −1y − b′X ′V −1y

−b′(X ′V −1y − X ′V −1X(X ′V −1X)−1X ′V −1y)
= y′V −1y − b′X ′V −1y − b′(X ′V −1y − X ′V −1y)
= y′V −1y − b′X ′V −1y.

Because X ′V −1y = X ′V −1Xb,

SSE = y′V −1y − b′X ′V −1Xb = y′V −1y − (Xb)′V −1Xb

= SST − SSR,

where SSR is the regression sum of squares.
For theoretical purposes, it is useful to express SSE as a quadratic form

in y:

SSE = y′V −1y − b′X ′V −1y

= y′V −1y − [(X ′V −1X)−1(X ′V −1y)]′X ′V −1y

= y′V −1y − y′V −1X(X ′V −1X)−1X ′V −1y

= y′Ly,
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where L = V −1 − V −1X(X ′V −1X)−1X ′V −1. It can be shown that the
rank of L is n− p, provided that V is of full rank n and that X is of full
rank p.

The fit of the model can be tested using the minimum value of SSE

W = min SSE = y′V −1y − (Xb)′bV −1Xb.

If the model fits, then W has a chi-square distribution with n− p degrees
of freedom (χ2

n−p).
If the model fits, additional hypotheses of the form H0: Cβ = 0c may be

tested, where C is a c× p coefficient matrix. Because

b ∼ Np

(
β, (X ′V −1X)−1),

it follows that
Cb ∼ Nc

(
Cβ,C(X ′V −1X)−1C ′).

The Wald statistic

WC = (Cb)′[C(X ′V −1X)−1C ′]−1Cb

has a χ2
c distribution if H0 is true.

The estimated parameter vector b yields predicted (smoothed) observa-
tions ŷi. The vector ŷ = (ŷ1, . . . , ŷn)′ is given by

ŷ = Xb = X(X ′V −1X)−1X ′V −1y.

The mean and variance of ŷ are

E(ŷ) = E(Xb) = Xβ,

Var(ŷ) = Var(Xb) = XVar(b)X ′ = X(X ′V −1X)−1X ′.

The fit of the model can also be examined by studying the residuals
ri = yi − ŷi. The residual vector r = (r1, . . . , rn)′ is given by

r = y − ŷ = y − X(X ′V −1X)−1X ′V −1y.

The mean of r is

E(r) = E(y − ŷ) = Xβ − Xβ = 0n,

and the variance of r is

Var(r) = Var[(In − X(X ′V −1X)−1X ′V −1)y]
= (In − X(X ′V −1X)−1X ′V −1)V ×

(In − V −1X(X ′V −1X)−1X ′)
= (V − X(X ′V −1X)−1X ′)(In − V −1X(X ′V −1X)−1X ′)
= V − X(X ′V −1X)−1X ′.
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7.2.3 Analysis of Categorical Data Using Weighted Least
Squares

We now describe the use of weighted least squares to model a univari-
ate categorical outcome variable. Grizzle et al. (1969) and Agresti (1990,
pp. 458–462) provide a more detailed discussion of the application of the
WLS approach to the analysis of a univariate response.

The general framework is as follows. In any experiment or study, two
types of data are collected from each subject or experimental unit:

1. a description of the subpopulation or configuration of experimental
conditions to which each experimental unit belongs;

2. a description of the outcome(s) for each experimental unit.

Variables of the first type are often called independent variables or factors,
and variables of the second type are called dependent variables or response
variables.

The underlying idea of the WLS approach to the analysis of categori-
cal data is to structure the data as a two-way contingency table, where
the rows of the table represent the subpopulations defined by the cross-
classification of the factors (independent variables) and the columns rep-
resent the response variable (or, if there is more than one response, the
cross-classification of the response variables). Using this factor-response
framework, the data in any multidimensional contingency table can be
regarded as the frequencies with which units belonging to the same sub-
population are classified into the same combination of response categories.
Table 7.1 displays the cell counts nij , the underlying unknown probabilities
πij , and the observed proportions pij = nij/ni+, where ni+ =

∑r
j=1 nij .

The vector of responses n′
i = (ni1, . . . , nir) for the ith subpopulation has

the Mr(ni+,πi) distribution, where πi = (πi1, . . . , πir)′. Because the rows
of Table 7.1 are independent, the sr × 1 vector n′ = (n′

1, . . . ,n
′
s) has the

product-multinomial distribution with likelihood function

Pr(n) =
s∏

i=1

ni+!
r∏

j=1

π
nij

ij /nij !.

Let pi = (pi1, . . . , pir)′ denote the r × 1 vector of observed proportions
from the ith subpopulation, where pij = nij/ni+. Using the results of
Section 7.2.1, E(pi) = πi and

Cov(pi) = V i = [Dπi − πiπ
′
i]/ni+,

where Dπi is a diagonal matrix with the elements of πi on the main
diagonal. In addition, the asymptotic distribution of

√
ni+(pi − πi) is

Nr(0r, ni+V i). The matrix V i can be consistently estimated by

V̂ i = [Dpi
− pip

′
i]/ni+.
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TABLE 7.1. Notation for the WLS approach to categorical data analysis
Observed Frequencies

Response Category
Subpopulation 1 · · · r Total

1 n11 · · · n1r n1+
...

...
...

...
s ns1 · · · nsr ns+

Underlying Probabilities
Response Category

Subpopulation 1 · · · r Total
1 π11 · · · π1r 1
...

...
...

...
s πs1 · · · πsr 1

Observed Proportions
Response Category

Subpopulation 1 · · · r Total
1 p11 · · · p1r 1
...

...
...

...
s ps1 · · · psr 1
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Now, let p = (p′
1, . . . ,p

′
s)

′ denote the sr × 1 vector of observed pro-
portions from all s subpopulations. The mean of p is E(p) = π, where
π = (π′

1, . . . ,π
′
s)

′ and the covariance matrix of p is the sr × sr matrix

V =


V 1 0(r×r) · · · 0(r×r)

0(r×r) V 2 0(r×r)
...

. . .
0(r×r) 0(r×r) V s

 .
Let n++ =

∑s
i=1 ni+. If n++ → ∞ and ni+/n++ → ci > 0, then the

asymptotic distribution of
√
n++(p − π) is multivariate normal with mean

vector 0sr and covariance matrix n++V .
The vector p then has an approximate multivariate normal distribution

with mean vector π and covariance matrix V . Because V depends on
the unknown true probabilities πij , we will replace it by the consistent
estimator

V̂ =


V̂ 1 0(r×r) · · · 0(r×r)

0(r×r) V̂ 2 0(r×r)
...

. . .
0(r×r) 0(r×r) V̂ s

 .
Thus, the vector p is approximately distributed as Nsr(π, V̂ ).

Now, let F (π) = (F1(π), . . . , Fu(π))′ be a vector of u linearly indepen-
dent response functions of interest, where u ≤ s(r−1). Each of the functions
is required to have continuous partial derivatives through order 2. Let

F (p) = (F1(p), . . . , Fu(p))′

denote the corresponding sample response functions, and let Q = (∂F /∂π)
denote the u×sr matrix of partial derivatives evaluated at the sample pro-
portions p. Then, F (p) is approximately distributed as Nu(F (π), V̂F ),
where V̂F = QV̂ Q′. Although V̂ is singular, V̂F is a nonsingular covari-
ance matrix.

Although a wide variety of functions F (p) can be considered, a few types
of functions are commonly used. In particular, F (π) = Aπ, where A is a
matrix of known constants, is appropriate when the response functions are
linear functions of the underlying probabilities. In this case, V̂F = AV̂ A′.
Many other useful functions can be generated as a sequence of linear, log-
arithmic, and exponential operators on the vector π. The advantage of
specifying the functions of interest in this way is that V̂F can then be es-
timated using the chain rule (Grizzle et al., 1969). This topic is described
further in Section 7.2.4.

We can now use weighted least squares to fit models of the form

F (π) = Xβ,
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where X is a u× t full-rank matrix of known constants (t ≤ u) and β is a
t× 1 vector of unknown parameters.

The procedure can be summarized as follows.

1. Lay out the data in the factor-response framework, as shown in Ta-
ble 7.1.

2. Determine the number of response functions you wish to analyze from
each subpopulation. (Note that there are at most r− 1 linearly inde-
pendent response functions per subpopulation.)

3. Determine the type of response function(s) you wish to analyze from
each subpopulation (e.g., proportions, mean scores, logits, cumulative
logits).

4. Specify the response functions F (p).

5. Specify a linear model relating the response functions to the indepen-
dent variables: F (π) = Xβ.

6. Estimate the parameters using WLS.

7. Evaluate the goodness-of-fit of the model.

8. Test hypotheses of interest concerning model parameters.

9. Interpret the results of the fitted model.

7.2.4 Taylor Series Variance Approximations for Nonlinear
Response Functions

When the response functions of interest are nonlinear functions of the
vector of underlying multinomial proportions, the approximate variances
and covariances of the response functions are computed using Taylor se-
ries approximations. This section discusses Taylor series approximations
for a function of a scalar random variable, then for a scalar function of
a random vector, and finally for a vector of functions of a random vec-
tor. The results for linear, logarithmic, and exponential functions are then
summarized, followed by a description of the use of the chain rule for ap-
proximating variances of functions that can be defined using a sequence of
linear, logarithmic, and exponential functions.

Univariate Taylor Series Approximations

Let X be a random variable with known mean and variance:

E(X) = µ, Var(X) = E[(X − µ)2] = σ2.
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Let Y = g(X), where the continuous function g(x) has first and second
derivatives. Suppose that exact calculation of E(Y ) and Var(Y ) is difficult.
One approach is to expand g(X) in a Taylor series about µ and use this
series representation to approximate E(Y ) and Var(Y ).

The first three terms of this expansion are

g(X) = g(µ) + g′(µ)(X − µ) +
1
2
g′′(µ)(X − µ)2.

The approximation for the mean of Y is

E(Y ) .= E
[
g(µ)+g′(µ)(X−µ)+

1
2
g′′(µ)(X−µ)2

]
= g(µ)+

1
2
g′′(µ)Var(X).

Using the linear term only, E(Y ) .= g(µ). Similarly, the approximation for
the variance of Y is

Var(Y ) = E
[(
g(X) − E[g(X)]

)2]
.= E

[(
g(µ) + g′(µ)(X − µ) − g(µ)

)2]
= E

[(
g′(µ)(X − µ)

)2]
=
(
g′(µ)

)2 E
[
(X − µ)2

]
=
(
g′(µ)

)2 Var(X).

Multivariate Taylor Series Approximations

Now, let X = (X1, . . . , Xn)′ be a random vector with known mean vector
µ and covariance matrix Σ. Let Y = g(X1, . . . , Xn), where g(x1, . . . , xn) is
a continuous function with first and second partial derivatives. Expanding
g(X) in a Taylor series about µ yields

g(X) = g(µ) +
n∑

i=1

∂g

∂µi
(Xi − µi) +

1
2

n∑
i=1

n∑
j=1

∂2g

∂µi∂µj
(Xi − µi)(Xj − µj),

where
∂g

∂µi
=

∂g

∂Xi

∣∣∣
X=µ

,
∂2g

∂µi∂µj
=

∂2g

∂Xi∂Xj

∣∣∣
X=µ

.

Let

g(1)(µ) =
(
∂g

∂µ1
, . . . ,

∂g

∂µn

)
be the row vector of first partial derivatives. Then,

Y = g(X1, . . . , Xn) .= g(µ) +
(
g(1)(µ)

)
(X − µ).

The approximate mean and variance of Y are

E(Y ) .= E[g(µ)] +
(
g(1)(µ)

)
E(X − µ) = g(µ)
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and

Var(Y ) = E
[(
g(X) − E[g(X)]

)2]
.= E

[(
g(µ) +

(
g(1)(µ)

)
(X − µ) − g(µ)

)2]
= E

[(
g(1)(µ)(X − µ)

)2]
= E

[(
g(1)(µ)

)
(X − µ)(X − µ)′(g(1)(µ)

)′]
=
(
g(1)(µ)

)
E
[
(X − µ)(X − µ)′](g(1)(µ)

)′
=
(
g(1)(µ)

)
Σ
(
g(1)(µ)

)′
.

Taylor Series Approximations for Multiple Functions of a
Random Vector

Let X = (X1, . . . , Xn)′ be a random vector with known mean vector µ and
covariance matrix Σ. Let Y = (Y1, . . . , Ym)′, where Yi = gi(X1, . . . , Xn),
for i = 1, . . . ,m. From the results for a univariate function of a random
vector,

E(Yi)
.= gi(µ),

Var(Yi)
.=
(
g
(1)
i (µ)

)
Σ
(
g
(1)
i (µ)

)′
.

The covariance between Yi and Yj is approximated as follows:

Cov(Yi, Yj) = E
[(
Yi − E(Yi)

)(
Yj − E(Yj)

)]
.= E

[[
g
(1)
i (µ)

]
(X − µ)

[
g
(1)
j (µ)

]
(X − µ)

]
= E

[[
g
(1)
i (µ)

]
(X − µ)(X − µ)′[g(1)

j (µ)
]′]

=
[
g
(1)
i (µ)

]
E
[
(X − µ)(X − µ)′][g(1)

j (µ)
]′

=
[
g
(1)
i (µ)

]
Σ
[
g
(1)
j (µ)

]′
.

Now, let
( ∂g

∂µ

)
denote the m × n matrix whose ith row is g(1)

i (µ). The

(i, j) element of
( ∂g

∂µ

)
is

∂gi

∂Xj

∣∣∣
X=µ

. The approximate mean and covari-

ance matrix of Y are

E(Y ) .= g(µ),

Var(Y ) .=
( ∂g

∂µ

)
Σ
( ∂g

∂µ

)′
.



7.2 Background 181

Variance Approximations for Special Classes of Functions

Let X = (X1, . . . , Xn) be a random vector with mean vector µ and covari-
ance matrix Σ.

First, although Taylor series approximations are not necessary in this
case, consider the class of linear functions of X. Let A be an m×n matrix
of constants, and let Y = AX be an m×1 vector of functions of X defined
by

Y = F (X) = AX

=

 a11 . . . a1n
...

...
am1 . . . amn

X1
...
Xn



=


∑n

j=1 a1jXj

...∑n
j=1 amjXj

 =

 F1(X)
...

Fm(X)

 .
The partial derivatives are given by

∂Fi

∂X
= (ai1, . . . , ain)

for i = 1, . . . ,m and

( ∂F

∂X

)
=


∂F1

∂X
...

∂Fm

∂X

 = A.

Therefore,

Var(Y ) =
( ∂F

∂X

)
Σ
( ∂F

∂X

)′
= AΣA′.

Now, consider the n × 1 function vector Y of componentwise natural
logarithms of X. We write Y = log(X), where yi = Fi(xi) = log(xi), for
i = 1, . . . , n. The partial derivatives are given by

∂F1

∂X
= (1/X1, 0, . . . , 0)

∂F2

∂X
= (0, 1/X2, 0, . . . , 0)

...
∂Fn

∂X
= (0, . . . , 0, 1/Xn).
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Therefore,

∂F

∂X
=



∂F1

∂X
∂F2

∂X
...

∂Fn

∂X


=


1/X1 0 · · · 0

0 1/X2 · · · 0
...

...
. . . 0

0 0 · · · 1/Xn

 .

Evaluated at X = µ, we have

∂F

∂X

∣∣∣
X=µ

=


1/µ1 0 · · · 0

0 1/µ2 · · · 0
...

...
. . . 0

0 0 · · · 1/µn

 = D−1
µ ,

where Dµ is a diagonal matrix with elements equal to µ1, . . . , µn. Then,

Var(Y ) .=
( ∂F

∂X

∣∣∣
X=µ

)
Σ
( ∂F

∂X

∣∣∣
X=µ

)′
= D−1

µ ΣD−1
µ .

Now, consider the n×1 vector Y of componentwise exponential functions
of X. We write Y = exp(X), where yi = Fi(xi) = exp(xi), for i = 1, . . . , n.
The partial derivatives are given by

∂F1

∂X
= (eX1 , 0, . . . , 0)

∂F2

∂X
= (0, eX2 , 0, . . . , 0)

...
∂Fn

∂X
= (0, . . . , 0, eXn).

Therefore,

∂F

∂X
=



∂F1

∂X
∂F2

∂X
...

∂Fn

∂X


=


eX1 0 · · · 0
0 eX2 · · · 0
...

...
. . . 0

0 0 · · · eXn

 .

Evaluated at X = µ,

∂F

∂X

∣∣∣
X=µ

=


eµ1 0 · · · 0
0 eµ2 · · · 0
...

...
. . . 0

0 0 · · · eµn

 = Deµ ,
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where Deµ is a diagonal matrix with elements equal to eµ1 , . . . , eµn . There-
fore,

Var(Y ) .=
( ∂F

∂X

∣∣∣
X=µ

)
Σ
( ∂F

∂X

∣∣∣
X=µ

)′
= DeµΣDeµ .

The preceding results for variances of linear, logarithmic, and exponential
functions can be combined to approximate the variances and covariances
of compound functions. Two types of compound functions are commonly
used:

F (X) = A2 log(A1X),
G(X) = exp

(
A2 log(A1X)

)
= exp

(
F (X)

)
.

In this case, we wish to approximate V F = Var
(
F (X)

)
and V G =

Var
(
G(X)

)
.

First, let F 1(X) = A1X. The variance of F 1(X) is

V F 1
= Var

(
F 1(X)

)
= A1ΣA′

1.

Now, let F 2(X) = log
(
F 1(X)

)
= log(A1X). The variance approximation

for F 2(X) is

V F 2
= Var

(
F 2(X)

)
= Var

(
log
(
F 1(X)

))
.= D−1

F 1
V F 1

D−1
F 1

= D−1
F 1

A1ΣA′
1D

−1
F 1
.

Finally, let F (X) = A2F 2(X) = A2 log(A1X). The variance approxima-
tion for F (X) is

V F = Var
(
F (X)

)
= Var

(
A2F 2(X)

)
= A2V F 2

A′
2

.= A2D
−1
F 1

A1ΣA′
1D

−1
F 1

A′
2.

Now, consider the function G(X) = exp
(
A2 log(A1X)

)
= exp

(
F (X)

)
.

The variance approximation for G(X) is

V G = Var
(
G(X)

)
= Var

(
exp(F (X))

)
.= D

eF
V F D

eF

= D
eF

A2D
−1
F 1

A1ΣA′
1D

−1
F 1

A′
2DeF

.

This approach can be used for other types of compound response func-
tions that can be expressed as combinations of linear, logarithmic, and
exponential transformations.
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7.3 Application to Repeated Measurements

7.3.1 Overview
The description of the WLS approach in Section 7.2.3 is applicable when
there is a univariate response variable with r levels. The approach is equally
applicable when there are multiple response variables for each experimental
unit. In this case, r represents the number of levels defined by the cross-
classification of the levels of the response variables.

In repeated measures applications, there are multiple response functions
per subpopulation, and the correlation structure induced by the repeated
measurements from each subject must be taken into consideration. In the
general situation in which a c-category outcome variable is measured at
t time points, the cross-classification of the possible outcomes results in
r = ct response profiles. The response functions of interest could then be
the t(c− 1) correlated marginal proportions, generalized logits, or cumula-
tive logits. Alternatively, if the response variable is ordinal, the analysis of
t correlated mean scores might be of interest.

Provided that the appropriate covariance matrix is computed for these
correlated response functions, the WLS computations are no different from
those described in Section 7.2. Koch and Reinfurt (1971) and Koch et al.
(1977) first described the application of WLS to repeated measures cate-
gorical data. Stanish et al. (1978), Stanish and Koch (1984), Woolson and
Clarke (1984), Stanish (1986), Agresti (1988, 1989), Landis et al. (1988),
Stanek and Diehl (1988), Davis (1992), and Park and Davis (1993) further
developed this methodology and illustrated various aspects of the use of
the WLS approach in analyzing categorical repeated measures.

The basic ideas will be introduced by way of several examples.

7.3.2 One Population, Dichotomous Response, Repeated
Measurements Factor Is Unordered

Grizzle et al. (1969) analyze data in which 46 subjects were treated with
each of three drugs (A, B, and C). The response to each drug was recorded
as favorable (F) or unfavorable (U). The null hypothesis of interest is that
the marginal probability of a favorable response is the same for all three
drugs. Because the same 46 subjects were used in testing each of the three
drugs, the estimates of the three marginal probabilities are correlated. Ta-
ble 7.2 displays the responses to each of the three drugs for each subject.

In terms of the factor-response framework discussed in Section 7.2.3,
there is a single population (s = 1). Because there are c = 2 possible
outcomes at each of t = 3 time points, there are

r = ct = 23 = 8
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TABLE 7.2. Favorable and unfavorable drug responses from 46 subjects
Drug Drug

Subject A B C Subject A B C
1 F F U 24 U F U
2 U U U 25 F F U
3 U U F 26 U U U
4 F F U 27 F U U
5 U U U 28 U U F
6 F F U 29 U U U
7 F F F 30 F F U
8 F F U 31 F F F
9 F U U 32 F U F
10 U U F 33 F F U
11 F F U 34 U F F
12 U F U 35 U F U
13 F F F 36 F F U
14 F F U 37 F F U
15 U F F 38 F F F
16 F U F 39 F U U
17 U U U 40 U U F
18 F F U 41 F F U
19 F U U 42 U U U
20 U U F 43 U U F
21 F F F 44 F F U
22 F F U 45 F F F
23 F F U 46 U F U
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TABLE 7.3. Drug response data displayed in the WLS framework
Response Profile (Drugs A, B, C)
F F F F U U U U
F F U U F F U U
F U F U F U F U Total

Number of subjects 6 16 2 4 2 4 6 6 46

potential response profiles. Table 7.3 displays the same data as Table 7.2
but this time in the general WLS framework.

Let pi denote the observed proportion of subjects in the ith response
profile (ordered from left to right as displayed in Table 7.3), and let

p = (p1, . . . , p8)′.

Similarly, let π = (π1, . . . , π8)′ denote the vector of population probabilities
estimated by p. For example, π1 = Pr(FFF) is the probability of a favorable
response to all three drugs. Now, let pA, pB , and pC denote the marginal
proportions with a favorable response to drugs A, B, and C, respectively,
and let πA, πB , and πC denote the corresponding marginal probabilities.
For example,

πA = Pr(FFF or FFU or FUF or FUU).

Note that p1, . . . , p8 are the underlying multinomial proportions from
the cross-classification of the values of the response variable at the three
occasions, and pA, pB , and pC are the marginal proportions. Similarly,
π1, . . . , π8 are the underlying multinomial probabilities, and πA, πB , and πC

are marginal probabilities. Although the same symbol is used for both types
of proportions (probabilities), the differing types of subscripts are sufficient
to distinguish these in this example. The vectors p and π, however, refer
to the underlying multinomial proportions and probabilities, respectively.

The vector of response functions F (p) = (pA, pB , pC)′ can be computed
by the linear transformation F (p) = Ap, where

A =

 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 .
The first row of A sums p1, p2, p3, and p4 to compute the proportion of
subjects with a favorable response to drug A. Similarly, the second row of
A sums p1, p2, p5, and p6 to yield the proportion with a favorable response
to drug B. Finally, the corresponding proportion for drug C is computed
by summing p1, p3, p5, and p7. The resulting vector of response functions
is

F (p) =

 0.60870
0.60870
0.34783

 .
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The hypothesis of marginal homogeneity specifies that the marginal prob-
abilities of a favorable response to drugs A, B, and C are equal. This hy-
pothesis can be tested by fitting a model of the form F (π) = Xβ, where
X is a known model matrix and β is a vector of unknown parameters. The
most straightforward approach might be to fit the model

F (π) =

 1
1
1

β.
Because there are three response functions and one parameter, the lack-of-
fit statistic W has 3 − 1 = 2 degrees of freedom (df). With this choice of
model matrix X, the statistic W tests marginal homogeneity.

Using the model matrix X = (1, 1, 1)′, the value of W is 6.58. With
reference to the χ2

2 distribution, p = 0.037. Therefore, the hypothesis of
marginal homogeneity is rejected.

Another approach to this problem would be to fit a saturated model with

X =

 1 1 0
1 0 1
1 −1 −1

 , β =

 µ
α1
α2

 .
This model includes an overall intercept and two parameters for the drug
effect, which is parameterized using a “sum-to-zero” parameterization. Be-
cause this model is saturated, there are 0 df for lack of fit. In this case, the
hypothesis of marginal homogeneity is specified as H0: Cβ = 0, where

C =
(

0 1 0
0 0 1

)
.

The vector of estimated parameters is b = (0.5217, 0.0870, 0.0870)′, and
the test of marginal homogeneity is

WC = (Cb)′[C(X ′V −1X)−1C ′]−1Cb = 6.58

with 2 df, as before.

7.3.3 One Population, Dichotomous Response, Repeated
Measurements Factor Is Ordered

Table 7.4 displays data from a longitudinal study of the health effects of
air pollution (Ware et al., 1988). Agresti (1990) reported data from one
component of this study, in which 1019 children were examined annually
at ages 9, 10, 11, and 12 years. At each examination, the response variable
was the presence or absence of wheezing. The questions of interest include:

• Does the prevalence of wheezing change with age?
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TABLE 7.4. Classification of 1019 children by wheezing status
Presence of Wheezing Number of

Age 9 Age 10 Age 11 Age 12 Children
Yes Yes Yes Yes 94
Yes Yes Yes No 30
Yes Yes No Yes 15
Yes Yes No No 28
Yes No Yes Yes 14
Yes No Yes No 9
Yes No No Yes 12
Yes No No No 63
No Yes Yes Yes 19
No Yes Yes No 15
No Yes No Yes 10
No Yes No No 44
No No Yes Yes 17
No No Yes No 42
No No No Yes 35
No No No No 572

Number of subjects 1019

• Is there a quantifiable trend in the age-specific prevalence rates?

In this example, there are c = 2 values of the outcome variable at each
time point, t = 4 time points, and ct = 24 = 16 response profiles. Note that
Table 7.4 displays the counts for each of the 16 response profiles rather
than the individual responses at the four time points for each child.

Let p denote the 16 × 1 vector of proportions corresponding to the mul-
tiway cross-classification of response at the four ages (ordered as shown in
Table 7.4), and let Px denote the marginal prevalence of wheezing at age x
for x = 9, . . . , 12. The response functions of interest are given by

F (p) = (P9, P10, P11, P12)′ = Ap,

where A is the 4 × 16 matrix
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 .
Thus, we have

F (p) =


P9
P10
P11
P12

 =


0.26006
0.25025
0.23553
0.21197

 .
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The question of whether the prevalence of wheezing changes with age is
addressed by testing marginal homogeneity—that is, by testing

H0: Π9 = Π10 = Π11 = Π12,

where Πx denotes the marginal probability of wheezing at age x. Several
possible models of the form F (π) = Xβ can be used to test this hypothesis.
For example, the test of H0 is given by the lack-of-fit statistic W if the
model matrix

X =


1
1
1
1


is used. Alternatively, the saturated model could be fit using the model
matrix

X =


1 1 0 0
1 0 1 0
1 0 0 1
1 −1 −1 −1

 .
In this case, the test of H0 is the test that the last three components of β
are jointly equal to zero.

A useful approach that facilitates further model reduction, however, is
the model F (π) = X1β, where

X1 =


1 −3 1 −1
1 −1 −1 3
1 1 −1 −3
1 3 1 1

 , β =


β0
β1
β2
β3

 .
This model parameterizes the effect of age using orthogonal polynomial
coefficients for equally spaced time points (Pearson and Hartley, 1972, Ta-
ble 47). The hypothesis of marginal homogeneity is H0: Cβ = 0, where

C =

 0 1 0 0
0 0 1 0
0 0 0 1

 .
Because WC = 12.85 with 3 df, this hypothesis is rejected (p = 0.005).
This model also permits testing of the linear (H0:β1 = 0) and nonlinear
(H0:β2 = β3 = 0) components of the age effect. Although the linear com-
ponent is highly significant (WC = 11.88 with 1 df, p = 0.0006), the test
of nonlinearity is not significant (WC = 0.54 with 2 df, p = 0.76).

The results of the saturated model motivate the reduced model

F (π) = X2β,
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where

X2 =


1 0
1 1
1 2
1 3

 , β =
(
β0
β1

)
.

The lack-of-fit statistic W is 0.54 with 2 df, indicating that the model pro-
vides a good fit. In this model, the estimated parameters have substantive
interpretations. The intercept, β̂0 = 0.263, is the predicted probability of
wheezing at age 9. The estimated standard error of β̂0 is 0.013. Similarly,
β̂1 = −0.016 is the estimated annual decline in the marginal probability
of wheezing. The estimated standard error of β̂1 is 0.005, and the Wald
statistic assessing the significance of this parameter is highly significant
(WC = 12.3 with 1 df, p = 0.0005). Predicted marginal probabilities of
wheezing at each age can then be estimated along with their standard
errors.

In the preceding model, the marginal probability of wheezing at age x
was modeled as a linear function of age:

Πx = β0 + β1(x− 9), x = 9, 10, 11, 12.

It may also be of interest to analyze these data on the logit scale using the
response functions

Lx = log
( Πx

1 − Πx

)
.

In this case, the effect of age is multiplicative (instead of additive), predicted
marginal probabilities are constrained to be between 0 and 1, and the
estimated parameters have odds-ratio interpretations.

The marginal logit response functions can be defined as

F (p) = A2 log(A1p),

where p is the 16 × 1 vector of multinomial proportions corresponding to
the ordering in Table 7.4, A1 is the 8 × 16 matrix

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


,

and A2 is the 4 × 8 matrix
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

 .
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Observe that rows 1, 3, 5, and 7 of A1 calculate the marginal proportions
with wheezing present at ages 9–12, respectively, whereas rows 2, 4, 6, and
8 calculate the corresponding marginal proportions with wheezing absent.
The four rows of A2 then compute the marginal logits at ages 9–12, re-
spectively. F (p) is then the 4 × 1 vector of observed marginal logits

L̂9
L̂10
L̂11
L̂12

 =


−1.046
−1.097
−1.177
−1.313

 .
We can now use the model matrix

X2 =


1 0
1 1
1 2
1 3


to fit the same model F (π) = X2β as was fit on the proportion scale. This
model also provides a good fit to the observed data (W = 0.67 with 2 df,
p = 0.72), indicating that the nonlinear effects of age are nonsignificant.
In addition, the linear effect of age is highly significant (WC = 11.77 with
1 df, p < 0.001). The results of these tests are similar to those from the
linear model on the proportion scale.

The predicted model is

L̂x = −1.028 − 0.088x.

Thus, we estimate that the log-odds in favor of wheezing decrease by 0.088
per year. Therefore, the estimated odds of wheezing are e−0.088 = 0.92
times as great at age x than at age x− 1. Equivalently, we can state that
the estimated odds against wheezing are 1.09 (= 1/0.92) times as high at
age x than at age x− 1.

In this example, the model hypothesizing a linear relationship between
the response variable and age provided a good fit to the data both on the
probability scale and also on the logit scale. Both models provide the same
general conclusion—namely, that the probability of wheezing decreases as
age increases. In general, the choice between an additive model on the prob-
ability scale and a multiplicative model on the logit scale might be based
on subject matter considerations or on considerations related to model fit.

7.3.4 One Population, Polytomous Response
When the response is dichotomous, there is one response function per time
point. Therefore, if there are t time points, the test of marginal homogeneity
has t−1 df. If the response variable yij has c possible outcomes, then there
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are at most c − 1 linearly independent response functions per time point.
In this case, the test of marginal homogeneity has (c− 1)(t− 1) df.

As an example, Table 7.5 displays data from the Iowa 65+ Rural Health
Study (Cornoni-Huntley et al., 1986). In this example, 1926 elderly individ-
uals were followed over a six-year period. Each individual was surveyed at
years 0, 3, and 6. One of the variables of interest was the number of friends
reported by each respondent. This was an ordered categorical variable with
possible values 0 friends, 1–2 friends, and 3 or more friends. Table 7.5 dis-
plays the cross-classification of the responses at years 0, 3, and 6 for these
1926 individuals. The goal is to determine whether the distribution of the
number of reported friends is changing over time.

In this example, there are c = 3 values of the outcome variable at each
time point, t = 3 time points, and ct = 33 = 27 response profiles. Note that
Table 7.5 displays the counts for each of the 27 response profiles rather
than the individual responses at the three time points for each subject.

Let p denote the 27 × 1 vector of proportions corresponding to the mul-
tiway cross-classification of response at the three survey years (ordered as
shown in Table 7.5). Also, let pij denote the marginal proportion of sub-
jects at year i in response category j for i = 0, 3, 6 and j = 0, 1, 3. Note
that the index 1 for j represents the category of 1–2 friends, and the index
3 represents the category 3+ friends. As in Section 7.3.2, the subscripts are
sufficient to distinguish marginal proportions from underlying multinomial
proportions.

One choice for the vector of linearly independent response functions is to
select the first two marginal proportions at each time point. In this case,

F (p) = (p00, p01, p30, p31, p60, p61)′ = Ap,

where A is the 6 × 27 matrix
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

 .

The resulting vector of response functions is

F (p) =


0.196
0.238
0.122
0.229
0.084
0.181

 .

The question of whether the distribution of the number of friends changes
over the three survey years is addressed by testing marginal homogeneity—
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TABLE 7.5. Classification of 1926 Iowa 65+ Study participants by number of
friends

Number of
Year 0 Year 3 Year 6 Subjects

0 0 0 31
0 0 1–2 22
0 0 3+ 54
0 1–2 0 15
0 1–2 1–2 25
0 1–2 3+ 50
0 3+ 0 22
0 3+ 1–2 20
0 3+ 3+ 139

1–2 0 0 11
1–2 0 1–2 13
1–2 0 3+ 30
1–2 1–2 0 12
1–2 1–2 1–2 64
1–2 1–2 3+ 82
1–2 3+ 0 13
1–2 3+ 1–2 44
1–2 3+ 3+ 189
3+ 0 0 9
3+ 0 1–2 21
3+ 0 3+ 44
3+ 1–2 0 18
3+ 1–2 1–2 55
3+ 1–2 3+ 121
3+ 3+ 0 31
3+ 3+ 1–2 85
3+ 3+ 3+ 706

Total number of subjects 1926
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that is, by testing

H0:π00 = π30 = π60, π01 = π31 = π61,

where πij denotes the marginal probability of being in response category j
at year i for i = 0, 3, 6 and j = 0, 1, 3. This hypothesis can be tested by
fitting the model F (π) = Xβ, where

X =


1 0
0 1
1 0
0 1
1 0
0 1

 , β =
(
β0
β1

)
.

In this parameterization, β0 is the probability of having 0 friends, and
β1 is the probability of having 1–2 friends; both of these probabilities
are assumed to be common across the three surveys. The test of H0 is
given by the lack-of-fit statistic W . In this example, W = 184.23 with
6 − 2 = 4 df, indicating a highly significant departure from marginal ho-
mogeneity (p < 0.001).

For nominal response variables, the natural linear response functions are
marginal proportions. For ordinal response variables, other types of lin-
ear response functions that can be considered include cumulative marginal
proportions and mean scores.

Provided that meaningful scores can be assigned to the levels of an or-
dered categorical response variable, one can analyze the change in the mean
score over time (rather than the change in the entire distribution). We now
have a single response function per time point and the hypothesis of ho-
mogeneity of means over time has t− 1 df (instead of (c− 1)(t− 1) df).

In the general situation, consider an ordinal or discrete numeric response
variable with c categories measured at each of t time points. Let aj denote
the score assigned to the jth level of the response for j = 1, . . . , c. Let
F 1(p) = A1p denote the ct× 1 vector of marginal proportions, where p is
the ct × 1 vector of underlying multinomial proportions and A1 is a ct× ct

matrix. The t× 1 vector of marginal mean scores is given by

F 2(p) = A2
(
F 1(p)

)
,

where A2 is the t× ct matrix
a1 · · · ac 0 · · · 0 · · · 0 · · · 0
0 · · · 0 a1 · · · ac

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 0 · · · 0 · · · a1 · · · ac

 .
In this example, one possible choice of scores for the response categories

0, 1–2, 3+ is a1 = 0, a2 = 1.5, a3 = 4. The 3 × 1 vector of marginal mean



7.3 Application to Repeated Measurements 195

scores can be computed as

F (p) = A2
(
A1(p)

)
,

where

A1 =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1


and

A2 =

 0 1.5 4 0 0 0 0 0 0
0 0 0 0 1.5 4 0 0 0
0 0 0 0 0 0 0 1.5 4

 .
Of course, because the score for the first category is 0, the definition of

the mean-score response functions can be simplified by omitting the first,
fourth, and seventh rows of A1 and the first, fourth, and seventh columns
of A2. In this case, we have

A1 =


0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1


and

A2 =

 1.5 4 0 0 0 0
0 0 1.5 4 0 0
0 0 0 0 1.5 4

 .
With either choice of matrices A1 and A2, F (p) is the 3 × 1 vector of

correlated marginal mean scores m̂0
m̂3
m̂6

 =

 2.62
2.94
3.21

 .
If we fit the model F (π) = Xβ, where X ′ = (1, 1, 1), the hypothesis of
marginal homogeneity of mean scores is tested using the lack-of-fit statistic
W . The value of this statistic is 178.5 with 3−2 = 1 df, indicating a highly
significant departure from marginal homogeneity (p < 0.001).
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One could also fit the model F (π) = Xβ, where

X =

 1 0
1 3
1 6

 , β =
(
β0
β1

)
.

This model assumes that there is a linear trend in the marginal mean scores
over time. The lack-of-fit statistic W = 0.42 with 1 df tests the hypothesis
that the nonlinear component of the relationship between the mean score
and time is equal to zero (p = 0.52). The estimated intercept is β̂0 = 2.629
with an estimated standard error of 0.035. The estimated slope from this
model is β̂1 = 0.098 with an estimated standard error of 0.007. The test of
H0:β1 = 0 indicates that the linear effect of survey year is highly significant
(WC = 178.0 with 1 df, p < 0.001). The resulting model is

m̂j = 2.629 + 0.098j, j = 0, 3, 6.

Under the assumption that the marginal mean score represents the mean
number of friends, this model indicates that the mean number of friends is
estimated to increase by 0.098 per year.

7.3.5 Multiple Populations, Dichotomous Response
The previous examples involved the analysis of correlated response func-
tions from a single population. This section extends the methodology to
situations in which there are multiple groups of subjects.

The Iowa 65+ Rural Health Study (Cornoni-Huntley et al., 1986) fol-
lowed a cohort of elderly males and females over a six-year period. At each
of three surveys, the response to one of the variables of interest, church
attendance, was classified as “yes” if the subject attends church regularly,
or “no” if the subject does not attend church regularly. Table 7.6 displays
the data from the 1311 females and 662 males who responded to all three
surveys. Interest focuses on determining whether church attendance rates
are changing over time, whether the attendance rates differ between females
and males, and whether the observed patterns of change over time are the
same for females and males.

When you obtain repeated measures data from multiple populations, you
are interested not only in the effect of the repeated measures factor but also
in the effect of the explanatory variables defining the multiple populations.
In fact, when there are explanatory variables (factors) in a study involving
repeated measures, there are three different types of variation:

• main effects and interactions of the repeated measurement factors
(within-subjects variation);

• main effects and interactions of the explanatory variables (between-
subjects variation);
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TABLE 7.6. Classification of 1973 Iowa 65+ Study participants by regular church
attendance

Regularly Attended Church at
Sex Year 0 Year 3 Year 6 Count

Female Yes Yes Yes 904
Yes Yes No 88
Yes No Yes 25
Yes No No 51
No Yes Yes 33
No Yes No 22
No No Yes 30
No No No 158

Male Yes Yes Yes 391
Yes Yes No 36
Yes No Yes 12
Yes No No 26
No Yes Yes 15
No Yes No 21
No No Yes 18
No No No 143

• interactions between the explanatory variables and the repeated mea-
surement factors.

In this example, there are two populations (females, males). Because a
dichotomous response variable is measured at each of three time points
(the repeated measurement factor), there are r = 23 = 8 response profiles.
The between-subjects variation is due to differences between females and
males, and the within-subjects variation is due to differences among time
points. The analysis investigates both sources of variation as well as the
variation due to their interaction.

Let ph denote the underlying 8×1 multinomial proportion vector in sub-
population h, where h = 1 for females and h = 2 for males. The components
of ph are ordered as shown in Table 7.6. Suppose that the response func-
tions of interest in this example are the marginal proportions phj of subjects
from population h who regularly attend church at year j for h = 1, 2 and
j = 0, 3, 6. In each subpopulation, let F (ph) denote the 3 × 1 vector of
marginal proportions:

F (ph) = (ph0, ph3, ph6)′.
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In the case of multiple populations, the response functions are defined for
each subpopulation. In population h, F (ph) = Aph, where

A =

 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 .
In this example,

F (p1) =

 0.815
0.799
0.757

 , F (p2) =

 0.702
0.699
0.659

 , F (p) =
(

F (p1)
F (p2)

)
.

The estimated covariance matrix of F (p) is the 6 × 6 matrix

V̂ F =
(

V̂ F 1
0(3×3)

0(3×3) V̂ F 2

)
,

where V̂ F h
is the estimated covariance matrix of F (ph).

One approach to the analysis of these data is first to fit a saturated
model with separate parameters for females and males. Consider the model
F (π) = X1β, where

X1 =


1 −1 1 0 0 0
1 0 −2 0 0 0
1 1 1 0 0 0
0 0 0 1 −1 1
0 0 0 1 0 −2
0 0 0 1 1 1

 , β =


β10
β11
β12
β20
β21
β22

 .

In this parameterization, βh0, βh1, and βh2 are the intercept, linear time
effect, and quadratic time effect for subpopulation h. Because the surveys
were equally spaced, orthogonal polynomial coefficients are used for the
time effects. Based on the results of hypothesis tests of interest concerning
the parameters of the saturated model, we will then fit an appropriate
reduced model.

Table 7.7 displays the coefficient matrices C for testing several hypothe-
ses of the form H0: Cβ = 0 along with the corresponding test statistics
WC , degrees of freedom, and p-values. The effect of survey year is highly
significant in both sexes combined as well as in females and males sepa-
rately. In addition, the linear effect of survey year is significant in females,
in males, and jointly. The joint test of nonlinearity in females and males
is nearly significant, as are the separate tests of nonlinearity in females
and in males. Finally, whereas the intercepts for females and males differ
significantly, both the linear and quadratic survey-year effects do not differ
significantly between females and males.
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TABLE 7.7. Results of hypothesis tests from the saturated marginal probability
model for the church attendance data

Hypothesis C WC df p-value
No year effect 0 1 0 0 0 0 41.45 4 < 0.001

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

No year effect in females 0 1 0 0 0 0 30.46 2 < 0.001
0 0 1 0 0 0

No year effect in males 0 0 0 0 1 0 11.00 2 0.004
0 0 0 0 0 1

No linear year effect 0 1 0 0 0 0 38.20 2 < 0.001
0 0 0 0 1 0

No linear year effect 0 1 0 0 0 0 29.23 1 < 0.001
in females

No linear year effect 0 0 0 0 1 0 8.97 1 0.003
in males

No quadratic year effect 0 0 1 0 0 0 5.74 2 0.057
0 0 0 0 0 1

No quadratic year effect 0 0 1 0 0 0 2.97 1 0.085
in females

No quadratic year effect 0 0 0 0 0 1 2.76 1 0.096
in males

Equality of intercepts 1 0 0 −1 0 0 30.04 1 < 0.001

Equality of linear 0 1 0 0 −1 0 0.61 1 0.435
year effects

Equality of quadratic 0 0 1 0 0 −1 0.19 1 0.664
year effects
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TABLE 7.8. Results of hypothesis tests from the reduced marginal probability
model for the church attendance data

Hypothesis C WC df p-value
No linear year effect 0 0 1 0 37.67 1 < 0.001
No quadratic year effect 0 0 0 1 5.47 1 0.019
Equality of intercepts 1 −1 0 0 30.63 1 < 0.001

A reasonable reduced model is F (π) = X2β, where

X2 =


1 0 −1 1
1 0 0 −2
1 0 1 1
0 1 −1 1
0 1 0 −2
0 1 1 1

 , β =


β10
β20
β1
β2

 .

In this parameterization, β10 and β20 are intercepts for females and males,
respectively, and β1 and β2 are the common linear and quadratic effects of
survey year. The lack-of-fit statistic W has 2 df and tests the hypothesis
that the interaction between sex and survey year is equal to zero. Because
W = 0.87 with 2 df, this model provides a good fit to the observed data.

Table 7.8 displays the coefficient matrices C for testing several hypothe-
ses of the form H0: Cβ = 0 along with the corresponding test statistics
WC , degrees of freedom, and p-values. Both the linear and quadratic
survey-year effects are significantly different from zero. In addition, the
intercepts for females and males are significantly different.

The parameter estimates are

β̂10 = 0.7905, β̂20 = 0.6865, β̂1 = −0.0265, β̂2 = −0.00489.

Thus, the estimated probability of regular church attendance decreases over
time. The rate of change is nonlinear; the decrease from year 0 to year 3 is
less than the decrease from year 3 to year 6. At each time point, females are
more likely than males to attend church regularly. The estimated difference
in the probability of regular church attendance between females and males
is 0.7905 − 0.6865 = 0.104.

To produce parameter estimates that are more easily interpretable, this
model will be refit on the natural time scale (years) instead of using or-
thogonal polynomial coefficients. The model is F (π) = X3β, where

X3 =


1 0 0 0
1 0 3 9
1 0 6 36
0 1 0 0
0 1 3 9
0 1 6 36

 , β =


β10
β20
β1
β2

 .
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The lack-of-fit statistic W , the test of nonlinearity (H0:β2 = 0), and the
test of equality of intercepts (H0:β10 = β20) are unchanged from the pre-
vious model. However, the test of H0:β1 = 0 yields WC = 0.05 with 1 df
(p = 0.83). This is because the linear and quadratic survey-year effects are
highly correlated using this parameterization.

The parameter estimates are now

β̂10 = 0.8122, β̂20 = 0.7081, β̂1 = 0.000932, β̂2 = −0.00163.

Using this parameterization, the intercepts β̂10 and β̂20 are the estimated
probabilities of regular church attendance at year 0 for females and males,
respectively. Although β̂1 is positive, the magnitude of β̂2 ensures that
the results are identical with those from the model parameterized using
orthogonal polynomial coefficients. Also note that the estimated difference
in the probability of regular church attendance between females and males
is 0.8122 − 0.7081 = 0.104, the same as from the model F (π) = X2β.

One might also choose to model these data on the logit scale using the
response functions

F (p) =
(

F (p1)
F (p2)

)
,

where F (ph) is now the 3 × 1 vector of logits of marginal proportions:

F (ph) =


log
( ph0

1 − ph0

)
log
( ph3

1 − ph3

)
log
( ph6

1 − ph6

)
 .

In this case,
F (ph) = A2 log(A1ph),

where

A1 =


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1


and

A2 =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 .
The results of the saturated model F (π) = X1β are similar to those

of the corresponding model on the probability scale. The reduced model
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TABLE 7.9. Results of hypothesis tests from the reduced marginal logit model
for the church attendance data

Hypothesis C WC df p-value
No linear year effect 0 0 1 0 35.44 1 < 0.001
No quadratic year effect 0 0 0 1 4.98 1 0.026
Equality of intercepts 1 −1 0 0 31.45 1 < 0.001

F (π) = X2β, where

X2 =


1 0 −1 1
1 0 0 −2
1 0 1 1
0 1 −1 1
0 1 0 −2
0 1 1 1

 , β =


β10
β20
β1
β2

 ,

also produces results similar to those of the model on the probability scale.
The lack-of-fit statistic W has 2 df and tests the hypothesis that the in-
teraction between sex and survey year is equal to zero. Because W = 2.47
with 2 df (p = 0.29), this model provides a good fit to the observed data.

Table 7.9 displays the coefficient matrices C for testing several hypothe-
ses of the form H0: Cβ = 0 along with the corresponding test statistics
WC , degrees of freedom, and p-values. Both the linear and quadratic
survey-year effects are significantly different from zero. In addition, the
intercepts for females and males are significantly different.

The parameter estimates are β̂10 = 1.3241, β̂20 = 0.7911, β̂1 = −0.1385,
and β̂2 = −0.0260. Thus, the estimated logit of the probability of regular
church attendance decreases over time. The rate of change is nonlinear; the
decrease from year 0 to year 3 is less than the decrease from year 3 to year 6.
At each time point, females are more likely than males to attend church
regularly. The estimated difference in the logit of the probability of regular
church attendance between females and males is 1.3241 − 0.7911 = 0.533.
At each time point, the odds of regularly attending church are estimated
to be e0.533 = 1.7 times higher for females than for males.

Although both models provide a reasonable fit to the observed data, the
fit of the marginal logit model is not quite as good as the fit of the corre-
sponding model on the marginal probability scale (based on a comparison
of the lack-of-fit statistics W ). Figure 7.1 displays the observed marginal
proportions and predicted marginal probabilities of regular church atten-
dance from the two models. In this example, there is little to distinguish
between the two models.
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FIGURE 7.1. Observed proportions and predicted probabilities of regular church
attendance
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7.4 Accommodation of Missing Data

7.4.1 Overview
Data collected in longitudinal studies are often incomplete. Generally, some
of the individuals who are intended to be followed over time will fail to
provide information at one or more of the scheduled follow-up times. An
observation may be missing by design, at random, or due to known or
unknown characteristics of the subject.

Many of the standard methods for the analysis of repeated measurements
require complete data. In a longitudinal study, the analysis of complete
cases can lead to a substantial reduction in sample size. The WLS approach
can be modified to handle missing data that are missing completely at ran-
dom (MCAR). This extension was first described by Stanish et al. (1978).
Woolson and Clarke (1984), Landis et al. (1988), and Park and Davis (1993)
provided further developments and applications.

7.4.2 Ratio Estimation for Proportions
Consider a one-sample repeated measures study with a categorical re-
sponse. Suppose that there are n subjects and t time points, and that yij

is a categorical response variable with c possible outcomes, for i = 1, . . . , n
and j = 1, . . . , t. If there are no missing data, there are ct potential response
profiles.

If, however, “missing” is also considered to be a category of response,
there are c + 1 potential outcomes at each time point. In this case, the
number of response profiles is (c + 1)t − 1. The factor “−1” is due to the
fact that observations with a missing value at every time point are excluded.

Let πjl denote the marginal probability of response category l at time j
for j = 1, . . . , t, l = 1, . . . , c. This marginal probability can be estimated
by π̂jl, where

π̂jl =
number of subjects in category l at time j

number of subjects with a response at time j
.

The tc× 1 vector

π̂ = (π̂11, . . . , π̂1c, . . . , π̂t1, . . . , π̂tc)′

can be calculated as
π̂ = exp

(
A2 log(A1p)

)
,

where p is the ((c+ 1)t − 1) × 1 vector of proportions corresponding to the
multiway cross-classification of the response at the t time points.

The matrix A1 is a t(c+ 1) × ((c+ 1)t − 1) matrix whose rows compute
the proportions displayed in Table 7.10. The matrix A2 is the tc× t(c+ 1)
matrix It ⊗ [Ic,−1c], where ⊗ denotes the direct (Kronecker) product
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TABLE 7.10. Rows of matrix A1 for ratio estimation of proportions
Row Proportion of Subjects with:

1 response category 1 at time 1
2 response category 2 at time 1
...

...
c response category c at time 1

c+ 1 nonmissing response at time 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(t− 1)(c+ 1) + 1 response category 1 at time t
(t− 1)(c+ 1) + 2 response category 2 at time t

...
...

(t− 1)(c+ 1) + c response category c at time t
(t− 1)(c+ 1) + c+ 1 nonmissing response at time t

[= t(c+ 1)]

(Searle, 1982, p. 265). Because the elements of π̂ are linearly dependent,
additional transformations can then be used to compute marginal propor-
tions, marginal logits, marginal mean scores, or other types of response
functions of interest. In practice, the matrices A1 and A2 can often be
simplified to compute only the specific marginal proportions of interest.

This methodology is more clearly demonstrated by example.

7.4.3 One Population, Dichotomous Response
The Muscatine Coronary Risk Factor Study was a longitudinal study of
coronary risk factors in school children. From 1971 to 1981, six biennial
cross-sectional school screens were completed. In this study, children cur-
rently enrolled in school were eligible to participate, and about 70% of
eligible children were screened. One variable of interest was obesity. Height
and weight were measured on each participating child, from which relative
weight was computed (the ratio of the child’s weight to the median weight
in the sex–age–height group).

Woolson and Clarke (1984) analyzed data on the prevalence of obesity in
1977, 1979, and 1981. In their analysis, children with relative weight greater
than 110% of the median weight were classified as obese. Table 7.11 displays
the cross-classification of the cohort of males who were 7–9 years old in 1977
by obesity status in 1977, 1979, and 1981. Of this group of 522 children, 356
participated in the 1977 survey, 375 participated in the 1979 survey, and 380
participated in the 1981 survey. However, only 225 children participated in
all three surveys.

In this example, the response is dichotomous (c = 2) and there are t = 3
time points. Thus, the underlying multinomial vector of probabilities π has

(c+ 1)t − 1 = 33 − 1 = 27 − 1 = 26
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TABLE 7.11. Classification of 522 7–9 year old males from the Muscatine Coro-
nary Risk Factor Study by obesity status

Classified as Obese in:
1977 1979 1981 Number of Children
Yes Yes Yes 20
Yes Yes No 7
Yes Yes Missing 11
Yes No Yes 9
Yes No No 8
Yes No Missing 1
Yes Missing Yes 3
Yes Missing No 1
Yes Missing Missing 7
No Yes Yes 8
No Yes No 8
No Yes Missing 3
No No Yes 15
No No No 150
No No Missing 38
No Missing Yes 6
No Missing No 16
No Missing Missing 45

Missing Yes Yes 13
Missing Yes No 3
Missing Yes Missing 4
Missing No Yes 2
Missing No No 42
Missing No Missing 33
Missing Missing Yes 14
Missing Missing No 55
Total 522
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components, ordered as shown in Table 7.11. Let π77, π79, and π81 denote
the marginal probability of being classified as obese at year 1977, 1979,
and 1981, respectively. Similarly, let p77, p79, and p81 denote the observed
marginal proportions classified as obese at the three time points. These
marginal proportions are estimated using all available data from each time
point.

The response functions F (p) = (p77, p79, p81)′ can be computed as

F (p) = exp
(
A2 log(A1p)

)
,

where A1 is the 6 × 26 matrix
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

 ,

and

A2 =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 .
The general approach of first computing the marginal proportions and then
applying subsequent transformations, as described in Section 7.4.2, could
have been followed. The computation of the response functions for this
example was simplified, however, by first computing the proportions who
were obese at years 1977, 1979, and 1981 (rows 1, 3, and 5 of A1) along
with the proportions who had a nonmissing response at years 1977, 1979,
and 1981 (rows 2, 4, and 6 of A1). The marginal proportions of interest are
then the pairwise differences on the log scale (matrix A2).

The resulting vector of response functions is

F (p) =

 0.188
0.205
0.237

 .
We will first fit the model F (π) = Xβ, where

X =

 1 0
1 2
1 4

 , β =
(
β0
β1

)
.

In this parameterization, β0 is the probability of obesity in 1977 and β1 is
the linear effect of year. The lack-of-fit statistic W tests the null hypothesis
that the nonlinear effect of year is equal to zero. In this example, W = 0.15
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TABLE 7.12. Classification of 225 7–9 year old males from the Muscatine Coro-
nary Risk Factor Study who participated in all three surveys

Classified as Obese in:
1977 1979 1981 Number of Children
Yes Yes Yes 20
Yes Yes No 7
Yes No Yes 9
Yes No No 8
No Yes Yes 8
No Yes No 8
No No Yes 15
No No No 150

Total 225

with 3 − 2 = 1 df, indicating that the linear model provides a good fit
(p = 0.70).

The parameter estimates are β̂1 = 0.186 and β̂2 = 0.012, with estimated
standard errors of 0.020 and 0.006, respectively. The test of H0:β1 = 0
tests marginal homogeneity. Because WC = 3.83 with 1 df, there is some
evidence that the probability of obesity is not the same at the three surveys
(p = 0.05). The resulting model is

π̂x = 0.1863 + 0.0120(x− 77), for x = 77, 79, 81.

Thus, we estimate that the probability of obesity is increasing by 0.012 per
year.

Suppose that subjects with missing data had instead been excluded from
the analysis. Table 7.12 displays the data from the subset of 225 children
who participated in all three surveys. In this case, the response functions

F (p) = (p77, p79, p81)′ = (0.19556, 0.19111, 0.23111)′

are computed as
F (p) = Ap,

where

A =

 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 .
If we again fit the model

F (π) =

 1 0
1 2
1 4

(β0
β1

)
,
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the lack-of-fit statistic is W = 0.95 with 3 − 2 = 1 df, indicating that the
linear model provides a good fit (p = 0.33). However, the test of H0:β1 = 0
is not significant (WC = 1.49 with 1 df, p = 0.22).

One would then conclude that the model hypothesizing marginal homo-
geneity,

F (π) =

 1
1
1

β,
is appropriate. The lack-of-fit statistic is WC = 2.44 with 2 df (p = 0.30).
The conclusion from this model would be that the prevalence of obesity is
not changing significantly across the three surveys. The estimated proba-
bility of obesity from this model is β̂ = 0.204 with an estimated standard
error of 0.022.

7.4.4 Multiple Populations, Dichotomous Response
As a second illustration of the use of the WLS methodology to accommo-
date missing data, we return to the “church attendance” example of Sec-
tion 7.3.5. Table 7.6 displayed the data from the 1973 individuals (1311 fe-
males, 662 males) who responded to all three surveys. In fact, this study
included 3085 subjects (1935 females, 1150 males). Whereas subjects with
missing data were excluded from the analyses described in Section 7.3.5,
we will now analyze the data displayed in Table 7.13. As indicated in Ta-
ble 7.13, there were a substantial number of missing values. Most occur
at the end of a sequence of nonmissing responses and were due largely to
deaths or losses to follow-up.

As in Section 7.3.5, interest focuses on determining whether church at-
tendance rates are changing over time, whether the attendance rates differ
between females and males, and whether the observed patterns of change
over time are the same for females and males. The exclusion of subjects
with incomplete data resulted in a substantially reduced sample size (from
3085 subjects to 1973 subjects). We will now use all available data at each
time point by estimating the marginal probabilities of regular church at-
tendance using ratios of sums of underlying multinomial proportions.

In this example, a dichotomous response variable (c = 2) was scheduled
to be measured at t = 3 time points. Including “missing” as a possible
response gives

(c+ 1)t − 1 = 33 − 1 = 26

potential response profiles. Table 7.13 shows, however, that only 23 of these
potential response profiles were observed. (There were no occurrences of
the profiles Missing–Missing–No, Missing–Missing–Yes, or Missing–Yes–
No). Therefore, the underlying vector ph of multinomial proportions in
subpopulation h, where h = 1 for females and h = 2 for males, has 23 com-
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TABLE 7.13. Classification of 3085 Iowa 65+ Study participants by regular
church attendance

Attend Church Regularly at Frequency
Year 0 Year 3 Year 6 Female Male Total
Missing No Missing 3 2 5
Missing No No 1 3 4
Missing No Yes 1 1 2
Missing Yes Missing 2 2 4
Missing Yes Yes 2 0 2

No Missing Missing 101 122 223
No Missing No 11 5 16
No Missing Yes 3 2 5
No No Missing 71 86 157
No No No 158 143 301
No No Yes 30 18 48
No Yes Missing 14 5 19
No Yes No 22 21 43
No Yes Yes 33 15 48
Yes Missing Missing 195 125 320
Yes Missing No 4 0 4
Yes Missing Yes 18 9 27
Yes No Missing 28 16 44
Yes No No 51 26 77
Yes No Yes 25 12 37
Yes Yes Missing 170 110 280
Yes Yes No 88 36 124
Yes Yes Yes 904 391 1295

Total 1935 1150 3085
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ponents. Similarly, πh, the vector of underlying multinomial probabilities,
is also 23 × 1.

As in Section 7.3.5, the response functions of interest are the marginal
proportions phj of subjects from population h who regularly attend church
at year j for h = 1, 2 and j = 0, 3, 6. In each subpopulation,

F (ph) = (ph0, ph3, ph6)′

is computed as F (ph) = exp
(
A2 log(A1ph)

)
, where A1 is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1


and

A2 = I3 ⊗ (1,−1) =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 .
In this example,

F (p1) =

 0.770
0.770
0.752

 , F (p2) =

 0.635
0.654
0.657

 , F (p) =
(

F (p1)
F (p2)

)
.

We will first fit the same saturated model as was considered in Sec-
tion 7.3.5. The model is F (π) = X1β, where

X1 =


1 −1 1 0 0 0
1 0 −2 0 0 0
1 1 1 0 0 0
0 0 0 1 −1 1
0 0 0 1 0 −2
0 0 0 1 1 1

 , β =


β10
β11
β12
β20
β21
β22

 .

In this parameterization, βh0, βh1, and βh2 are the intercept, linear time
effect, and quadratic time effect for subpopulation h. Because the surveys
were equally spaced, orthogonal polynomial coefficients are used for the
time effects.

Table 7.14 displays the coefficient matrices C for testing several hypothe-
ses of the form H0: Cβ = 0 along with the corresponding test statistics
WC , degrees of freedom, and p-values. In contrast to the results of the
analysis of the complete data (Table 7.7), the 4-df test of the year effect is
not significant in both sexes combined as well as in females and males sepa-
rately. The tests of the linear and quadratic components of the survey-year
effect are also not statistically significant.
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TABLE 7.14. Results of hypothesis tests from the saturated marginal probability
model for the church attendance data

Hypothesis C WC df p-value
No year effect 0 1 0 0 0 0 6.00 4 0.199

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

No year effect in females 0 1 0 0 0 0 3.28 2 0.194
0 0 1 0 0 0

No year effect in males 0 0 0 0 1 0 2.73 2 0.256
0 0 0 0 0 1

No linear year effect 0 1 0 0 0 0 4.19 2 0.123
0 0 0 0 1 0

No linear year effect 0 1 0 0 0 0 2.44 1 0.118
in females

No linear year effect 0 0 0 0 1 0 1.75 1 0.186
in males

No quadratic year effect 0 0 1 0 0 0 1.83 2 0.401
0 0 0 0 0 1

No quadratic year effect 0 0 1 0 0 0 1.36 1 0.244
in females

No quadratic year effect 0 0 0 0 0 1 0.47 1 0.493
in males

Equality of intercepts 1 0 0 −1 0 0 50.81 1 < 0.001

Equality of linear 0 1 0 0 −1 0 3.90 1 0.048
year effects

Equality of quadratic 0 0 1 0 0 −1 0.01 1 0.922
year effects
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These results suggest fitting a model with separate intercepts for females
and males. The model F (π) = X2β, where

X2 =


1 0
1 0
1 0
1 1
1 1
1 1

 , β =
(
β1
β2

)
,

incorporates an intercept for females (β1) and an incremental effect for
males (β2). This model provides an adequate fit to the observed data
(W = 6.00 with 4 df, p = 0.2). The estimated probability of regular church
attendance for females is β̂1 = 0.7660 with an estimated standard error of
0.0086. Because β̂2 = −0.1225, the probability of regular church attendance
is estimated to be 0.1225 less for males than for females. The Wald test of
H0:β2 = 0 is (

β̂2

s.e.(β̂2)

)2

=
(−0.1225

0.0158

)2

= 60.12

with 1 df, indicating that the intercept difference is highly significant.
The analysis of all data results in a similar conclusion concerning the dif-

ference between females and males as does the analysis of the complete data
(Section 7.3.5). The two analyses, however, give quite different conclusions
concerning the effect of survey year.

As in Section 7.3.5, we might prefer to analyze the data on the logit scale
rather than on the probability scale. Consider the response functions

F (p) =
(

F (p1)
F (p2)

)
,

where F (ph) is now the 3 × 1 vector of logits of marginal proportions:

F (ph) =


log
( ph0

1 − ph0

)
log
( ph3

1 − ph3

)
log
( ph6

1 − ph6

)
 .

These response functions are computed via the transformation

F (ph) = A2 log(A1ph),

where

A1 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0


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and

A2 = I3 ⊗ (1,−1) =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 .
Row 1 of A1 computes the proportion of subjects who regularly attend
church at year 0; row 2 computes the proportion who do not regularly
attend church at year 0. Rows 3–4 and 5–6 of A1 compute these proportions
at year 3 and year 6, respectively. The rows of A2 then compute the logit
response functions at years 0, 3, and 6.

The logit model with an intercept for females and an incremental effect
for males (F (π) = X2β) provides an adequate fit to the data (W = 6.07
with 4 df, p = 0.19). The estimated logit of the probability of regular church
attendance for females is β̂1 = 1.181 with an estimated standard error of
0.048. Because β̂2 = −0.594, the logit of the probability of regular church
attendance is estimated to be 0.594 less for males than for females. Hence,
we estimate that the odds of regular church attendance are e−0.594 = 0.55
times as high for males as for females (or e0.594 = 1.8 times higher for
females than for males). The Wald test of H0:β2 = 0 is(

β̂2

s.e.(β̂2)

)2

=
(−0.594

0.075

)2

= 62.5

with 1 df, indicating that the intercept difference is highly significant.

7.4.5 Assessing the Missing-Data Mechanism
The example considered in Sections 7.3.5 and 7.4.4 illustrates the situation
where the analysis of complete cases gives different conclusions than the
analysis of all available data. Park and Davis (1993) describe a test of the
missing-data mechanism for repeated categorical data. The basic idea is to
fit a single model to two subgroups (subjects with complete data, subjects
with incomplete data) and then to test whether the parameter estimates
for the complete cases are significantly different (individually and jointly)
from the parameter estimates for the incomplete cases. This methodology
will be illustrated using the church attendance data displayed in Table 7.13.

If we again consider analyzing the data on the marginal proportion scale,
let

F (ph) = (ph0c, ph3c, ph6c, ph0i, ph3i, ph6i)′

denote the 6×1 vector of response functions from population h for h = 1, 2,
where h = 1 for females and h = 2 for males. In this case, the third subscript
is “c” for subjects with complete data and “i” for subjects with one or more
missing responses. Thus, the response function vector

F (p) = (F (p1),F (p2))
′
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now has 12 components. The response functions in population h are com-
puted as

F (ph) = exp
(
A2 log(A1ph)

)
,

where A1 is



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0
0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0


and

A2 =


1 0 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 −1

 .

Rows 1–4 of A1 compute relevant proportions from the subgroup of sub-
jects who responded to all three surveys. The first three rows of A1 compute
the proportions who attended church regularly at years 0, 3, and 6, respec-
tively, and row 4 of A1 computes the proportion who responded to all three
surveys. Rows 5–10 of A1 compute relevant proportions from the subgroup
of subjects who had at least one missing response. Rows 5–6 compute the
numerator (proportion who attend church regularly) and denominator (pro-
portion who responded) of the marginal proportion at year 0. Rows 7–8 and
9–10 compute the corresponding quantities for years 3 and 6, respectively.

Similarly, rows 1–3 of A2 pertain to subjects who responded to all three
surveys; these rows compute the difference between the logarithm of the
proportion who attended church regularly at year j and the logarithm of the
proportion who responded to all three surveys, for j = 0, 3, 6, respectively.
Rows 4–6 of A2 pertain to subjects who had at least one missing response
and compute the difference between the logarithm of the proportion who
attended church regularly at year j and the logarithm of the proportion
who responded at year j, for j = 0, 3, 6, respectively.
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The resulting response functions are

F (p1) =


p10c

p13c

p16c

p10i

p13i

p16i

 =


0.815
0.799
0.757
0.675
0.644
0.600

 , F (p2) =


p20c

p23c

p26c

p20i

p23i

p26i

 =


0.702
0.699
0.659
0.542
0.520
0.600

 .

By referring to the observed counts displayed in Table 7.13, it is not difficult
to check the computation of these response functions. For example, the
observed proportion of males with incomplete data at year 0 or year 3 who
regularly attended church at year 6 is

p26i =
1 + 0 + 2 + 9

3 + 1 + 0 + 5 + 2 + 0 + 9
=

12
20

= 0.6.

Similarly, the observed proportion of females with incomplete data at year 0
or year 6 who regularly attended church at year 3 is

p13i =
2 + 2 + 14 + 170

3 + 1 + 1 + 2 + 2 + 71 + 14 + 28 + 170
=

188
292

= 0.644.

As in Section 7.4.4, we will first fit a saturated model with separate in-
tercepts, linear year effects, and quadratic year effects in each of the four
subpopulations (complete females, complete males, incomplete females, in-
complete males). The model is F (π) = X1β, where

X1 =



1 −1 1 0 0 0 0 0 0 0 0 0
1 0 −2 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 1 0 0 0
0 0 0 0 0 0 1 0 −2 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 1 −1 1 0 0 0 0 0 0
0 0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 0 −2
0 0 0 0 0 0 0 0 0 1 1 1


and

β = (β10c, β11c, β12c, β20c, β21c, β22c, β10i, β11i, β12i, β20i, β21i, β22i)′.

The parameters βh0c, βh1c, and βh2c are the intercept, linear, and quadratic
effects among subjects with complete data from population h, and βh0i,
βh1i, and βh2i are the corresponding parameters from subjects with incom-
plete data.
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We first test whether the parameters from subjects with complete data
are equal to the corresponding parameters from subjects with incomplete
data. The null hypothesis is

β10c = β10i, β11c = β11i, β12c = β12i, β20c = β20i, β21c = β21i, β22c = β22i.

In matrix notation, we wish to test H0: Cβ = 0, where

C =


1 0 0 0 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1

 .
Because WC = 82.7 with 6 df, the difference between subjects with com-
plete data and subjects with incomplete data is highly significant (p <
0.001).

To determine a parsimonious model for the data, one can also test addi-
tional hypotheses comparing complete and incomplete cases. For example,
we can test whether the time effects in subjects with complete data are
the same as those in subjects with incomplete data. The null hypothesis is
H0:β11c = β11i, β12c = β12i, β21c = β21i, β22c = β22i, or H0: Cβ = 0, where

C =


0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1

 .
Because WC = 1.58 with 4 df, this hypothesis is not rejected (p = 0.81).

These results motivate fitting a reduced model with separate intercepts
for complete females, incomplete females, complete males, and incomplete
males (four parameters) and common linear and quadratic time effects for
females (two parameters) and for males (two parameters). The model is

F (π) = X2β,

where

X2 =



1 0 −1 1 0 0 0 0
1 0 0 −2 0 0 0 0
1 0 1 1 0 0 0 0
0 1 −1 1 0 0 0 0
0 1 0 −2 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 0 −1 1
0 0 0 0 1 0 0 −2
0 0 0 0 1 0 1 1
0 0 0 0 0 1 −1 1
0 0 0 0 0 1 0 −2
0 0 0 0 0 1 1 1



, β =



β10c

β10i

β11
β12
β20c

β20i

β21
β22


.
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The parameters βh0c and βh0i are the intercepts for subjects with complete
and incomplete data from population h, and βh1 and βh2 are the linear and
quadratic time effects in population h.

This model provides a good fit to the data (WC = 1.58 with 4 df,
p = 0.81). One hypothesis of interest is equality of time effects for females
and males; that is,

H0:β11 = β21, β12 = β22

or, equivalently, H0: Cβ = 0, where

C =
(

0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

)
.

Because WC = 1.01 with 2 df, the time effects in males and females are
not significantly different (p = 0.60).

This motivates a further reduced model with four intercepts (complete
and incomplete females and males) and common linear and quadratic time
effects (two parameters). The model is F (π) = X3β, where

X3 =



1 0 0 0 −1 1
1 0 0 0 0 −2
1 0 0 0 1 1
0 1 0 0 −1 1
0 1 0 0 0 −2
0 1 0 0 1 1
0 0 1 0 −1 1
0 0 1 0 0 −2
0 0 1 0 1 1
0 0 0 1 −1 1
0 0 0 1 0 −2
0 0 0 1 1 1



, β =


β10c

β10i

β20c

β20i

β1
β2

 .

The parameters β1 and β2 are the linear and quadratic time effects, assumed
to be common across complete and incomplete females and males. This
model provides a good fit to the data (WC = 2.58 with 6 df, p = 0.86).
In addition, both components of the effect of survey year are statistically
significant (linear: WC = 40.7 with 1 df, p < 0.001; quadratic: WC = 4.9
with 1 df, p = 0.03).

To produce parameter estimates that are more easily interpretable, this
model will be refit on the natural time scale (years) instead of using or-
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TABLE 7.15. Parameter estimates from the final marginal probability model for
the church attendance data

Standard
Parameter Estimate Error
Complete female intercept 0.8128 0.0103
Incomplete female intercept 0.6710 0.0182
Complete male intercept 0.7089 0.0166
Incomplete male intercept 0.5426 0.0223
Linear year −0.0001 0.0040
Quadratic year −0.0015 0.0007

thogonal polynomial coefficients. The model is F (π) = X4β, where

X4 =



1 0 0 0 0 0
1 0 0 0 3 9
1 0 0 0 6 36
0 1 0 0 0 0
0 1 0 0 3 9
0 1 0 0 6 36
0 0 1 0 0 0
0 0 1 0 3 9
0 0 1 0 6 36
0 0 0 1 0 0
0 0 0 1 3 9
0 0 0 1 6 36



, β =


β10c

β10i

β20c

β20i

β1
β2

 .

The lack-of-fit statistic W and the test of nonlinearity (H0:β2 = 0) are
unchanged from the previous model. The test of H0:β1 = 0, however, yields
WC = 0.00 with 1 df (p = 0.99). This is because the linear and quadratic
survey-year effects are highly correlated using this parameterization.

Table 7.15 displays the parameter estimates and their standard errors.
Because the profiles over time are parallel across the four groups of subjects
(complete females, incomplete females, complete males, incomplete males),
the results of this model are easy to interpret. In each subpopulation, the
estimated probability of regular church attendance decreases nonlinearly
over time. The decrease from year 0 to year 3 is greater than the decrease
from year 3 to year 6. In addition, the probability of regular church atten-
dance is highest for females with complete data, followed by males with
complete data, females with incomplete data, and males with incomplete
data.

The test of equality of the four intercepts is highly significant (WC =
150.9 with 3 df, p < 0.001). In addition, Table 7.16 displays the results of
other joint and pairwise comparisons among intercepts. All of these tests
are statistically significant.
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TABLE 7.16. Results of hypothesis tests on intercepts from the final marginal
probability model for the church attendance data

Comparison Test C WC df p-value
Females vs. Joint 1 0 −1 0 0 0 50.5 2 < 0.001
males 0 1 0 −1 0 0

Complete 1 0 −1 0 0 0 30.6 1 < 0.001

Incomplete 0 1 0 −1 0 0 20.0 1 < 0.001

Complete vs. Joint 1 −1 0 0 0 0 81.9 2 < 0.001
incomplete 0 0 1 −1 0 0

Females 1 −1 0 0 0 0 46.9 1 < 0.001

Males 0 0 1 −1 0 0 36.1 1 < 0.001

As was seen in the two other analyses of these data (complete cases
only: Section 7.3.5; all data: Section 7.4.4), this analysis also leads to the
conclusion that females are more likely to attend church regularly than
are males. This analysis also shows that, within each sex, the subjects
who responded to all three surveys are significantly more likely to attend
regularly than are subjects with at least one missing response. Although the
analysis of the complete cases only also revealed a statistically significant
decrease in the estimated probability of regular church attendance over
time, this was not identified in the analysis of all data that did not allow
separate parameters for complete and incomplete cases (Section 7.4.4).

7.5 Problems

7.1 Suppose that a dichotomous response variable (coded as 0 or 1) is
measured at two time points for each of n subjects. The proportion of
subjects in each of the 22 = 4 combinations of the cross-classification of
time and response can be summarized in the vector p = (p1, . . . , p4)′, as
shown in Table 7.17.

(a) State the matrix A for defining the vector of response functions

F (p) = Ap = (P1, P2)′,

where Pi is the marginal proportion with response = 1 at time i.
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TABLE 7.17. Response proportions for a dichotomous outcome measured at two
time points

Response
Time 1 Time 2 Proportion

0 0 p1
0 1 p2
1 0 p3
1 1 p4

(b) Find V F = AV A′, where V = 1
n (Dp − pp′) and Dp is a diagonal

matrix with the vector p on the main diagonal.

(c) Consider the model F (p) = Xβ, where β is a scalar and X ′ = (1, 1).
Find and interpret the weighted least squares estimator of β.

7.2 Suppose that a dichotomous response variable (coded as 0 or 1)
is measured at four equally spaced time points for each of n subjects.
The proportion of subjects in each of the 24 = 16 combinations of the
cross-classification of time and response can be summarized in the vector
p = (p1, . . . , p16)′, as shown in Table 7.18.

(a) State the matrix A for defining the vector of response functions

F (p) = Ap = (P1, P2, P3, P4)′,

where Pi is the marginal proportion with response = 1 at time i.

(b) Consider the model F (p) = Xβ, where β′ = (β1, β2, β3) and

X =


1 0 0
1 1 0
1 1 1
1 1 1

 .
Interpret the parameters β1, β2, and β3.

(c) With respect to the model from part (b), state the hypothesis that
is tested by the lack-of-fit statistic.

(d) Suppose that the model from part (b) provides a good fit to the
observed data. Specify the matrix C for testing H0: Cβ = 0 that the
marginal probabilities of response = 1 at the four time points are
equal.
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TABLE 7.18. Response proportions for a dichotomous outcome measured at four
time points

Response at Time:
1 2 3 4 Proportion
0 0 0 0 p1
0 0 0 1 p2
0 0 1 0 p3
0 0 1 1 p4
0 1 0 0 p5
0 1 0 1 p6
0 1 1 0 p7
0 1 1 1 p8
1 0 0 0 p9
1 0 0 1 p10
1 0 1 0 p11
1 0 1 1 p12
1 1 0 0 p13
1 1 0 1 p14
1 1 1 0 p15
1 1 1 1 p16

7.3 Suppose that an ordered categorical response (coded as 0 = none,
1 = moderate, 2 = severe) is measured at months 0, 2, and 6 for each of
n subjects. The proportion of subjects in each of the 33 = 27 combinations
of the cross-classification of month and response can be summarized in
the vector p = (p1, . . . , p27)′, as shown in Table 7.19. Let πjk denote the
marginal probability of response k at month j for j = 0, 2, 6 and k = 0, 1, 2.
Suppose that you wish to analyze the cumulative logit response functions

Lj1 = log
(

πj0

πj1 + πj2

)
, Lj2 = log

(
πj0 + πj1

πj2

)
, for j = 0, 2, 6.

(a) Define this vector of response functions F (p) as a sequence of linear,
logarithmic, and/or exponential transformations of p.

(b) State the degrees of freedom for testing the hypothesis of marginal
homogeneity using these response functions.

(c) Repeat parts (a) and (b) for analyzing the marginal mean scores at
each of the three time points (using the scores 0, 1, and 2 for none,
moderate, and severe, respectively.

7.4 Consider a study in which an ordered categorical response with three
levels (0 = none, 1 = moderate, 2 = severe) is measured at three time
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TABLE 7.19. Response proportions for an ordered categorical outcome measured
at three time points

Response at Month:
0 2 6 Proportion
0 0 0 p1

1 p2
2 p3

1 0 p4
1 p5
2 p6

2 0 p7
1 p8
2 p9

1 0 0 p10
1 p11
2 p12

1 0 p13
1 p14
2 p15

2 0 p16
1 p17
2 p18

2 0 0 p19
1 p20
2 p21

1 0 p22
1 p23
2 p24

2 0 p25
1 p26
2 p27
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points from a large number of subjects in each of two groups. Let

L = (L111, L112, L121, L122, L131, L132, L211, L212, L221, L222, L231, L232)′

denote the 12×1 vector of cumulative logit response functions, where Lhjk

is the kth cumulative logit at time j in group h for h = 1, 2, j = 1, 2, 3,
k = 1, 2. Thus, in group h at time j,

Lhj1 = log
(

Pr(response = 0)
Pr(response = 1 or 2)

)
, Lhj2 = log

(
Pr(response = 0 or 1)

Pr(response = 2)

)
.

Consider the model L = Xβ, where

X =



1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 2 0
0 1 0 1 0 2
1 0 1 0 3 0
0 1 0 1 0 3
1 0 −1 0 1 0
0 1 0 −1 0 1
1 0 −1 0 2 0
0 1 0 −1 0 2
1 0 −1 0 3 0
0 1 0 −1 0 3



.

(a) If this model is fit using weighted least squares, state in words the
hypothesis tested by the lack-of-fit statistic.

(b) Specify the coefficient matrix C for testing the hypothesis H0: Cβ =
0 of no group effect.

(c) Repeat part (b) for the hypothesis of no time effect.

7.5 Suppose that a dichotomous response with possible values 0 and 1
is measured at months 0, 2, and 5 for each of n subjects from a single
population. Because the response may be missing at any of the three time
points, the proportion of subjects in each of the 33 − 1 = 26 combinations
of the cross-classification of time and response can be summarized in the
vector p = (p1, . . . , p26)′, as shown in Table 7.20.

(a) Let F (p) = (L0, L2, L5)′, where

Lj = log
(

Pr(response 1 at time j)
Pr(response 0 at time j)

)
denotes the log-odds of response = 1 at time j for j = 0, 2, 5. De-
fine this vector of response functions F (p) as a sequence of linear,
logarithmic, and/or exponential transformations of p.
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(b) Now, suppose that F (p) = (P0, P2, P5)′, where Pj is the probability
of response = 1 at time j for j = 0, 2, 5. Using all available data,
define this vector of response functions F (p) as a sequence of linear,
logarithmic, and/or exponential transformations of p.

(c) If you wish to model these data using the weighted least squares
approach to fit models of the form F (p) = Xβ, discuss the factors
you would consider in deciding whether to use the response functions
Lj or Pj .

7.6 Two diagnostic procedures (standard and test) were evaluated on
each of two occasions in 793 subjects (MacMillan et al., 1981). At each
of the four treatment–time combinations, the response was categorized as
negative or positive. Table 7.21 displays the cross-classification of the four
results for each subject.

(a) Test the null hypothesis that the marginal probability of a negative
result is the same across the four treatment–time combinations.

(b) Fit a model permitting separate tests of the effects of time, treatment,
and time × treatment interaction.

(c) Fit a reduced model incorporating only those effects that are judged
to be statistically significant.

(d) Summarize the results of your analysis.

7.7 In the Iowa 65+ Rural Health Study (Cornoni-Huntley et al., 1986),
1926 elderly individuals were followed over a six-year period. Each individ-
ual was surveyed at years 0, 3, and 6. One of the variables of interest was
the number of friends reported by each respondent. This was an ordered
categorical variable with possible values 0 friends, 1–2 friends, and 3 or
more friends. Table 7.5 displays the cross-classification of the responses at
years 0, 3, and 6 for these 1926 individuals; Section 7.3.4 illustrated the
analysis of marginal proportions and marginal mean scores.

(a) Analyze the cumulative marginal proportions; that is, the two re-
sponse functions at each time point are Pr(no friends) and Pr(less
than three friends). Test the hypothesis of marginal homogeneity of
the distributions across the three times and investigate whether linear
time trends are sufficient to describe the results.

(b) Compare your results from part (a) with those obtained from the
analysis of marginal proportions presented in Section 7.3.4.

7.8 In a randomized experiment designed to determine whether driver
education reduces the number of collisions and violations among teenage
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TABLE 7.20. Response proportions for a dichotomous outcome measured at three
time points

Response at Month
0 2 5 Proportion
0 0 0 p1

1 p2
Missing p3

1 0 p4
1 p5

Missing p6
Missing 0 p7

1 p8
Missing p9

1 0 0 p10
1 p11

Missing p12
1 0 p13

1 p14
Missing p15

Missing 0 p16
1 p17

Missing p18
Missing 0 0 p19

1 p20
Missing p21

1 0 p22
1 p23

Missing p24
Missing 0 p25

1 p26
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TABLE 7.21. Diagnostic test results from 793 subjects
Time 1 Time 2

Standard Test Standard Test Count
Negative Negative Negative Negative 509
Negative Negative Negative Positive 4
Negative Negative Positive Negative 17
Negative Negative Positive Positive 3
Negative Positive Negative Negative 13
Negative Positive Negative Positive 8
Negative Positive Positive Negative 0
Negative Positive Positive Positive 8
Positive Negative Negative Negative 14
Positive Negative Negative Positive 1
Positive Negative Positive Negative 17
Positive Negative Positive Positive 9
Positive Positive Negative Negative 7
Positive Positive Negative Positive 4
Positive Positive Positive Negative 9
Positive Positive Positive Positive 170
Total 793

drivers (Stock et al., 1983), eligible students were randomized to one of
three groups: (a) safe performance curriculum (SPC), (b) pre-driver licens-
ing curriculum (PDL), (c) control. At the time of the study, the 70-hour
SPC was considered to be the most advanced and thorough high school
driver education program in the U.S. In contrast, the PDL was a 30-hour
course containing only the minimum training required to pass a license test.
Students assigned to the control group received no formal driver education
coursework through the school system and were expected to be taught
to drive by their parents and/or private driver-training schools. Follow-up
data concerning the occurrence of collisions and moving violations were
obtained using records from the state Department of Motor Vehicles.

Table 7.22 displays data from 2409 males who were randomized to the
control group and followed for four years. During each year of follow-up,
it was determined whether the subject had been cited for any traffic vi-
olations. The goal is to assess the relationship between the probability of
having a traffic violation (more precisely, the probability of one or more
violations) and year of follow-up.

(a) Test the null hypothesis that the probability of a traffic violation is
the same at each of the four years. If the null hypothesis of equality
of proportions is rejected, carry out separate pairwise comparisons
between years.
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TABLE 7.22. Traffic violation data from 2409 male subjects in the control group
of the driver education study

Traffic Violation Status
Year 1 Year 2 Year 3 Year 4 Count

No No No No 731
No No No Yes 310
No No Yes No 256
No No Yes Yes 196
No Yes No No 156
No Yes No Yes 121
No Yes Yes No 114
No Yes Yes Yes 152
Yes No No No 61
Yes No No Yes 40
Yes No Yes No 45
Yes No Yes Yes 39
Yes Yes No No 47
Yes Yes No Yes 42
Yes Yes Yes No 46
Yes Yes Yes Yes 53

Total 2409

(b) Test the null hypothesis that the relationship between the probability
of a traffic violation and year of follow-up is linear.

(c) Fit a polynomial model for predicting the probability of a violation as
a function of follow-up year. Report the goodness-of-fit of this model
and plot observed and predicted probabilities.

7.9 In a longitudinal study of coronary risk factors in children (Woolson
and Clarke, 1984), biennial cross-sectional school screens were conducted
from 1971 to 1981. At each screening, height and weight were measured on
participating children, from which relative weight was computed (the ratio
of the child’s weight to the median weight in the sex–age–height group).
Children with relative weight greater than 110% of the median weight were
classified as obese. Table 7.11 displays the results from the 1977, 1979,
and 1981 surveys for the cohort of males who were 7–9 years old in 1977.
Section 7.4.3 illustrated the fitting of models for the proportion classified
as obese.

(a) Let Lx = log
(
πx/(1 − πx)

)
, where πx is the marginal probability of

being classified as obese at year x for x = 77, 79, 81. Using all of the
data, fit the model Lx = α + β(x − 77) via weighted least squares.
Comment on the fit of the model and the statistical significance of
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TABLE 7.23. Responses from 975 parents at three interviews concerning the
problems of rearing children

Problem in the Years of
Previous Week Education

Time1 Time2 Time3 11+ < 11
Yes Yes Yes 135 95
Yes Yes No 26 32
Yes No Yes 30 33
Yes No No 32 30
No Yes Yes 79 74
No Yes No 29 35
No No Yes 65 57
No No No 94 129

the resulting parameter estimates. Give an odds-ratio interpretation
of the estimate of β.

(b) Repeat part (a) using the subgroup of 225 children who participated
in all three surveys. Compare the results and interpretations of the
two models.

7.10 Duncan (1985) describes a study in which parents participated in
discussions concerning the problems of rearing children. At each of three
interviews, subjects were asked to respond to the question, “In the past
week, did any of your children come to you with a problem that was both-
ering them?” The first interview took place prior to the discussions, the
second interview was conducted at the conclusion of the 6–8 week period
in which the discussions took place, and the third interview occurred 6–8
weeks after the discussion period ended. Table 7.23 displays the responses
from 485 subjects with fewer than 11 years of education and from 490 sub-
jects with at least 11 years of education. Using the probability of a “yes”
response as the outcome variable, fit one or more models to answer the
following questions:

(a) Are the changes over the three interviews in the probability of a “yes”
response the same for the two groups of subjects?

(b) Are there changes over time in the probability of a “yes” response?

(c) Are there differences between the two groups of subjects with respect
to the overall probability of responding “yes”?

7.11 Mislevy (1985) gives counts of correct and incorrect responses for
four items from the arithmetic reasoning test of the Armed Services Voca-
tional Aptitude Battery from samples of white males, white females, black
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TABLE 7.24. Correct (1) and incorrect (0) responses to four items from the
Armed Services Vocational Aptitude Battery from samples of white males, white
females, black males, and black females

Item White White Black Black
1 2 3 4 Males Females Males Females
0 0 0 0 23 20 27 29
0 0 0 1 5 8 5 8
0 0 1 0 12 14 15 7
0 0 1 1 2 2 3 3
0 1 0 0 16 20 16 14
0 1 0 1 3 5 5 5
0 1 1 0 6 11 4 6
0 1 1 1 1 7 3 0
1 0 0 0 22 23 15 14
1 0 0 1 6 8 10 10
1 0 1 0 7 9 8 11
1 0 1 1 19 6 1 2
1 1 0 0 21 18 7 19
1 1 0 1 11 15 9 5
1 1 1 0 23 20 10 8
1 1 1 1 86 42 2 4

males, and black females. Table 7.24 displays the cross-classification of cor-
rect (1) and incorrect (0) responses for the four items in each of the four
samples. In analyzing these data, note that there is no order to the four
responses from each subject.

(a) Develop a model for predicting the logit of the probability of a correct
response as a function of item number, sex, and race.

(b) Repeat part (a) using the probability of a correct response as the
outcome variable.

7.12 Table 7.25 displays collision data from the first three years of the
driver education experiment described in Problem 7.8 for 14,127 individuals
with complete follow-up. The response variable is “Yes” if the individual
was involved in one or more collisions during the year and “No” otherwise.
We wish to determine whether randomization to one of the two driver
education groups affects the probability of being involved in a collision
and, if so, how long any effects persist.

(a) Using the logit of the probability of a collision as the response vari-
able, fit a saturated model including effects for program, sex, time,
and all interactions.
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TABLE 7.25. Collision data from 14,127 participants in the driver education
study

Year 1 = No Year 1 = Yes
Year 2 Year 2 Year 2 Year 2
= No = Yes = No = Yes
Year 3 Year 3 Year 3 Year 3

Program Sex No Yes No Yes No Yes No Yes Total
SPC M 1467 295 305 79 190 68 60 19 2483

F 1659 218 217 28 120 30 17 4 2293
PDL M 1495 264 278 80 206 52 46 25 2446

F 1618 228 191 24 122 12 17 3 2215
Control M 1552 288 271 94 167 47 55 23 2497

F 1640 217 185 24 96 13 16 2 2193

(b) After moving any nonsignificant interactions to the error space, fit a
reduced factorial model involving the factors program, sex, follow-up
year, and their interactions (again using named effects rather than
an explicitly specified design matrix). Justify your choice of model by
documenting the results of any preliminary models that you first fit
to the data.

(c) Suppose that the investigator is interested in summarizing these data
in terms of a model with separate program and sex effects for each of
the three years of follow-up. Fit an equivalent model to part (b) with
nested effects rather than factorial effects. Partition the two degrees
of freedom (df) for differences among programs into two “meaningful”
1-df effects.

(d) Based on the results from part (c), fit a reduced model that ade-
quately explains the variation in the observed data. Summarize your
final model in terms of the estimated parameters and predicted odds
ratios.

7.13 Table 7.26 displays the wheezing status (yes, no) of 537 children
from Steubenville, Ohio at ages 7, 8, 9, and 10 years of age (Fitzmaurice
and Laird, 1993). In 187 of these children, the child’s mother was a regular
smoker. Analyze these data to determine how the logit of the probability of
wheezing is affected by maternal smoking, child’s age, and the interaction
between maternal smoking and child’s age. Summarize your results.

7.14 Using the data from Problem 7.7 (as displayed in Table 7.5), let
pj,0, pj,1−2, and pj,3+ denote the marginal probabilities of each response
category at time j, for j = 0, 3, 6, and consider the following three sets of
response functions:
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TABLE 7.26. Wheezing status of 537 children from Steubenville, Ohio

Maternal Smoking
No Yes

No. of No. of
Age 7 Age 8 Age 9 Age 10 Children Age 7 Age 8 Age 9 Age 10 Children
No No No No 237 No No No No 118

Yes 10 Yes 6
Yes No 15 Yes No 8

Yes 4 Yes 2
Yes No No 16 Yes No No 11

Yes 2 Yes 1
Yes No 7 Yes No 6

Yes 3 Yes 4
Yes No No No 24 Yes No No No 7

Yes 3 Yes 3
Yes No 3 Yes No 3

Yes 2 Yes 1
Yes No No 6 Yes No No 4

Yes 2 Yes 2
Yes No 5 Yes No 4

Yes 11 Yes 7
Total 350 187



7.5 Problems 233

• logits:
Lj1 = ln(pj,1−2/pj,0), Lj2 = ln(pj,3+/pj,0);

• adjacent-category logits:

Lj1 = ln(pj,1−2/pj,0), Lj2 = ln(pj,3+/pj,1−2);

• cumulative logits:

Lj1 = ln
(
(pj,1−2 + pj,3+)/pj,0

)
, Lj2 = ln

(
pj,3+/(pj,0 + pj,1−2)

)
.

For each of these sets of response functions:

(a) Fit a saturated model incorporating linear and nonlinear time effects.

(b) Test whether the linear and quadratic time effects are significantly
different from zero (for each response function as well as for both
response functions simultaneously).

(c) Test whether the linear (quadratic) effects are the same for the two
response functions.

(d) If warranted, fit a reduced model including only those time effects
that are significantly different from zero and using common effects
for the two response functions.

(e) Interpret the parameter estimates from your final model in terms of
odds ratios.

Which of the three analyses leads to the simplest interpretation of the data?

7.15 Of the 15,541 students who participated in the driver education
trial considered in Problems 7.8 and 7.12, nearly 95% (14,714) completed
at least one year of follow-up. Table 7.27 displays collision data from the
first three years of the study for these subjects. The response variable is
“Yes” if the individual was involved in one or more collisions during the
year, “No” if the individual was not involved in a collision, and “Unk” if
follow-up information was not available.

(a) Using the probability of a collision as the response, fit a saturated
model including effects for program, sex, time, and all interactions.

(b) After moving any nonsignificant interactions to the error space, fit a
reduced factorial model involving the factors program, sex, follow-up
year, and their interactions. Justify your choice of model by docu-
menting the results of any preliminary models that you first fit to the
data.
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(c) Suppose that the investigator is specifically interested in summarizing
these data in terms of a model involving separate effects for each year
of follow-up. Fit an equivalent model to part (b) with nested effects
rather than factorial effects. Partition the two df for differences among
programs into two “meaningful” 1-df effects.

(d) Based on the results from part (c), fit a reduced model that ade-
quately explains the variation in the observed data. Summarize your
final model in terms of the estimated parameters and predicted prob-
abilities.

7.16 In a placebo-controlled clinical trial of the efficacy of a new drug for
treating a skin condition, patients were randomly assigned to one of two
groups (drug, placebo). Prior to treatment, each patient was evaluated to
determine the initial severity of the skin condition (moderate or severe).
At three follow-up visits, patients were evaluated according to a five-point
ordinal response scale defining extent of improvement (1 = rapidly improv-
ing, 2 = slowly improving, 3 = stable, 4 = slowly worsening, 5 = rapidly
worsening). Table 7.28 displays the ordinal response scores at visits 1, 2,
and 3 for the 88 patients in the active treatment group and the 84 patients
in the placebo group (Stanish et al., 1978; Landis et al., 1988).

(a) Using all available data, determine a parsimonious factorial model
for the mean improvement scores as a function of treatment, initial
status, and visit. Justify your choice of model by documenting the
results of any preliminary models that you first fit to the data.

(b) Reparameterize your factorial model from part (a) to have separate
incremental effects from visit 1 to visit 2 and from visit 2 to visit 3
in each treatment group. Test the equality of the visit effects in the
two groups.

(c) Based on the results of part (b), fit a reduced model that explains
the variation in mean scores using as few parameters as possible.
Interpret the results of your final model.

7.17 With reference to the longitudinal study of coronary risk factors in
children described in Section 7.4.3 and Problem 7.9 (Woolson and Clarke,
1984), Table 7.29 displays the cross-classification of obesity outcomes in
1977, 1979, and 1981 for 4856 children from ten age–sex populations (five
2-year age intervals for males and females). There are many patterns of
participation over the course of the study due to absences, children entering
school, children leaving school, and other factors.

(a) Using all available data, model the marginal probability of obesity as
a quadratic function of age (using the midpoints of the age intervals)
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TABLE 7.27. Collision data from 14,714 participants in the driver education
study

SPC PDL Control
Year Year Year

Sex 1 2 3 n Sex 1 2 3 n Sex 1 2 3 n
M No Unk Unk 41 M No Unk Unk 33 M No Unk Unk 31

No No Unk 34 No No Unk 30 No No Unk 29
No No No 1467 No No No 1495 No No No 1552
No No Yes 295 No No Yes 264 No No Yes 288
No Yes Unk 11 No Yes Unk 16 No Yes Unk 21
No Yes No 305 No Yes No 278 No Yes No 271
No Yes Yes 79 No Yes Yes 80 No Yes Yes 94
Yes Unk Unk 11 Yes Unk Unk 8 Yes Unk Unk 8
Yes No Unk 4 Yes No Unk 2 Yes No Unk 1
Yes No No 190 Yes No No 206 Yes No No 167
Yes No Yes 68 Yes No Yes 52 Yes No Yes 47
Yes Yes Unk 3 Yes Yes Unk 4 Yes Yes Unk 2
Yes Yes No 60 Yes Yes No 46 Yes Yes No 55
Yes Yes Yes 19 Yes Yes Yes 25 Yes Yes Yes 23

F No Unk Unk 34 F No Unk Unk 45 F No Unk Unk 48
No No Unk 35 No No Unk 49 No No Unk 36
No No No 1659 No No No 1618 No No No 1640
No No Yes 218 No No Yes 228 No No Yes 217
No Yes Unk 7 No Yes Unk 6 No Yes Unk 9
No Yes No 217 No Yes No 191 No Yes No 185
No Yes Yes 28 No Yes Yes 24 No Yes Yes 24
Yes Unk Unk 9 Yes Unk Unk 8 Yes Unk Unk 4
Yes No Unk 4 Yes No Unk 2 Yes No Unk 1
Yes No No 120 Yes No No 122 Yes No No 96
Yes No Yes 30 Yes No Yes 12 Yes No Yes 13
Yes Yes Unk 1 Yes Yes Unk 0 Yes Yes Unk 0
Yes Yes No 17 Yes Yes No 17 Yes Yes No 16
Yes Yes Yes 4 Yes Yes Yes 3 Yes Yes Yes 2
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TABLE 7.28. Improvement scores from 172 subjects in a randomized trial of a
new drug for treating a skin condition

Active Treatment Placebo Treatment
Initial Visit Initial Visit Initial Visit Initial Visit

ID Status 1 2 3 ID Status 1 2 3 ID Status 1 2 3 ID Status 1 2 3
1 Mod 3 . 3 45 Mod 1 1 1 1 Mod 4 3 3 45 Mod 3 . 5
2 Mod 3 2 2 46 Sev 3 3 4 2 Mod 4 4 4 46 Sev 4 3 4
3 Sev 3 2 2 47 Mod 2 2 1 3 Sev 4 5 4 47 Mod 2 3 3
4 Mod 2 2 1 48 Mod 2 1 1 4 Mod 4 4 5 48 Sev 3 3 3
5 Mod 3 2 2 49 Sev 2 1 1 5 Mod 4 4 4 49 Sev 3 3 3
6 Sev 2 1 3 50 Sev 2 2 2 6 Sev 4 4 4 50 Sev 4 3 3
7 Sev 1 1 1 51 Sev 3 2 1 7 Sev 4 . . 51 Mod 3 3 3
8 Sev 1 1 1 52 Sev 2 1 1 8 Mod 4 4 . 52 Mod 4 4 4
9 Sev 5 . . 53 Sev 2 2 1 9 Mod 2 2 . 53 Mod 1 1 1

10 Mod 1 1 1 54 Sev 2 2 1 10 Sev 3 3 4 54 Mod 2 2 .
11 Sev 4 4 4 55 Mod 1 1 1 11 Mod 4 4 4 55 Mod 2 2 2
12 Sev 3 1 1 56 Mod 1 1 1 12 Mod 4 4 . 56 Mod 4 4 .
13 Sev 1 1 1 57 Mod 2 2 1 13 Sev 4 4 . 57 Mod 1 1 2
14 Sev 3 3 3 58 Mod 2 2 1 14 Sev 4 5 . 58 Mod 2 3 3
15 Sev 1 1 1 59 Mod 1 1 1 15 Sev 4 4 . 59 Mod 4 3 3
16 Mod 1 1 . 60 Mod 3 2 1 16 Mod 4 . . 60 Mod 3 3 3
17 Mod 4 4 4 61 Mod 2 2 2 17 Sev 1 1 . 61 Sev 3 3 4
18 Mod 3 . . 62 Mod 1 1 1 18 Mod 4 4 4 62 Mod 3 3 4
19 Sev . 1 . 63 Mod 3 1 1 19 Sev 3 3 3 63 Mod 3 3 3
20 Mod 3 3 3 64 Mod 2 2 2 20 Sev 4 4 4 64 Mod 5 . .
21 Sev 2 2 2 65 Mod 3 2 2 21 Sev 2 2 2 65 Mod 2 2 1
22 Sev 3 2 2 66 Mod 3 3 2 22 Sev 4 4 . 66 Mod 4 4 4
23 Sev 4 . . 67 Mod 1 1 1 23 Sev 2 2 2 67 Mod 4 3 3
24 Sev 2 2 2 68 Mod 1 1 1 24 Mod 3 3 . 68 Sev 2 2 1
25 Sev 2 2 1 69 Mod 3 3 3 25 Sev 4 4 . 69 Sev 4 4 4
26 Sev 3 3 3 70 Mod 1 1 1 26 Sev 4 3 3 70 Sev 4 4 4
27 Mod 1 1 1 71 Mod 2 2 2 27 Sev 5 . . 71 Sev 4 3 4
28 Sev 3 1 1 72 Mod 2 2 1 28 Mod 1 . 1 72 Mod 4 4 .
29 Sev 2 2 1 73 Sev 2 1 1 29 Mod 4 2 4 73 Sev 4 3 3
30 Mod 2 . 1 74 Mod 4 3 3 30 Sev 5 . . 74 Sev 2 2 2
31 Mod 3 4 4 75 Sev 3 . . 31 Sev 4 5 . 75 Mod 4 4 .
32 Sev 2 2 2 76 Mod 2 1 1 32 Sev 4 4 3 76 Sev 4 3 3
33 Sev 2 1 1 77 Sev . 3 2 33 Sev 3 4 4 77 Sev 4 3 3
34 Sev 3 4 4 78 Sev 3 . . 34 Sev 4 3 3 78 Sev 3 3 3
35 Sev 1 1 1 79 Sev 2 2 2 35 Mod 1 1 2 79 Sev 2 2 1
36 Sev 1 1 1 80 Sev 2 2 2 36 Sev 2 2 3 80 Mod 4 3 3
37 Sev . 4 4 81 Sev 2 2 1 37 Mod 2 2 3 81 Sev 4 4 4
38 Sev 3 2 1 82 Sev 2 1 1 38 Mod 3 5 5 82 Mod 4 4 3
39 Sev 1 . 1 83 Mod 1 1 . 39 Mod 2 2 2 83 Sev 4 3 3
40 Sev 1 1 1 84 Mod 2 1 1 40 Sev 3 3 3 84 Mod 4 3 3
41 Mod 2 1 . 85 Mod 3 2 2 41 Mod 3 3 3 .
42 Sev 2 1 1 86 Sev 2 2 1 42 Sev 4 3 3 .
43 Mod 1 1 1 87 Sev 1 1 1 43 Sev 4 4 5 .
44 Sev 2 2 2 88 Sev 2 1 1 44 Sev 4 . . .
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with separate intercepts and linear and quadratic age parameters for
males and females. Does this model provide an adequate fit to the
observed data?

(b) Test hypotheses regarding the equality of the constant, linear, and
quadratic parameters for males and females. Use the results to fit a
reduced model.

(c) Consider “completeness” to be an additional stratification variable,
and refit the model from part (a) with separate parameters for com-
plete and incomplete cases. Test the hypothesis that the correspond-
ing parameter estimates for complete and incomplete cases are equal.

(d) Using the results of part (c), fit one or more reduced models that
combine parameters for complete and incomplete cases, as appropri-
ate.

(e) Compare the results from parts (b) and (d); comment on any differ-
ences in the conclusions of the two models.
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TABLE 7.29. Classification of 4856 children from the Muscatine Coronary Risk
Factor Study by obesity status

N=not obese
O=obese Males Females
M=missing Age in 1977 (yrs.) Age in 1977 (yrs.)

1977 1979 1981 5–7 7–9 9–11 11–13 13–15 5–7 7–9 9–11 11–13 13–15
N N N 90 150 152 119 101 75 154 148 129 91
N N 0 9 15 11 7 4 8 14 6 8 9
N O N 3 8 8 8 2 2 13 10 7 5
N O 0 7 8 10 3 7 4 19 8 9 3
O N N 0 8 7 13 8 2 2 12 6 6
O N 0 1 9 7 4 0 2 6 0 2 0
O O N 1 7 9 11 6 1 6 8 7 6
O O 0 8 20 25 16 15 8 21 27 14 15
N N M 16 38 48 42 82 20 25 36 36 83
N O M 5 3 6 4 9 0 3 0 9 15
O N M 0 1 2 4 8 0 1 7 4 6
O O M 0 11 14 13 12 4 11 17 13 23
N M N 9 16 13 14 6 7 16 8 31 5
N M O 3 6 5 2 1 2 3 1 4 0
O M N 0 1 0 1 0 0 0 1 2 0
O M O 0 3 3 4 1 1 4 4 6 1
M N N 129 42 36 18 13 109 47 39 19 11
M N O 18 2 5 3 1 22 4 6 1 1
M O N 6 3 4 3 2 7 1 7 2 2
M O O 13 13 3 1 2 24 8 13 2 3
N M M 32 45 59 82 95 23 47 53 58 89
O M M 5 7 17 24 23 5 7 16 37 32
M N M 33 33 31 23 34 27 23 25 21 43
M O M 11 4 9 6 12 5 5 9 1 15
M M N 70 55 40 37 15 65 39 23 23 14
M M O 24 14 9 14 3 19 13 8 10 5



8
Randomization Model Methods for
One-Sample Repeated Measurements

8.1 Introduction

In many settings in which the response variable is categorical, the WLS
approach described in Chapter 7 cannot be used. For example, the sam-
ple size may be too small, the number of time points may be too large,
and/or the response variable may have too many possible values. In ad-
dition, the methods described in Chapters 3–6 for analyzing continuous
response variables are also often inapplicable. For example, the distribu-
tion of the outcome variable may be markedly nonnormal. This chapter
describes an alternative methodology based on the randomization model
and the multiple hypergeometric distribution.

The randomization model approach is useful for assessing the strength
of association between a response variable and a repeated measurements
factor in a relatively assumption-free context. This methodology applies to
both categorical and continuous outcomes. The basic idea is that the data
from each subject or experimental unit are structured as a two-way table
of counts. The levels of the repeated measurements factor define the rows
of this table, and the values of the outcome variable define the columns.
One then carries out a stratified analysis of multiple two-way tables, where
each subject (experimental unit) defines a stratum. This approach does not
require random sampling of subjects from some underlying probabilistic
framework.

The randomization model test statistics are valid when sample sizes are
too small to warrant the use of other large-sample methods. This is be-
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cause the sample size requirements for validity of asymptotic tests apply
to across-strata (across-subject) totals rather than to within-strata totals.
The methodology also easily accommodates missing data (provided that
the missing-data mechanism is MCAR, as described in Section 1.4).

There are, however, several limitations of the randomization model ap-
proach to the analysis of repeated measurements. The major limitation
is that the use of this methodology is restricted to one-sample problems.
Thus, although it is possible to test the strength of association between
the response variable and the repeated measurements factor, one cannot
assess the influence of additional covariates. In addition, this approach
provides hypothesis testing procedures only; estimation of parameters and
their standard errors, as well as construction of confidence intervals, is not
generally possible. Another shortcoming is that the scope of inference is
restricted to the actual subjects under study rather than to some broad
population that the subjects might conceptually represent. Finally, the
randomization model test statistics are insensitive to alternatives in which
associations vary in direction across strata (subjects).

The randomization model approach is based on the use of Cochran–
Mantel–Haenszel (CMH) test statistics. Landis et al. (1978) give a general
overview of the three types of CMH statistics. Landis et al. (1988) and
Crowder and Hand (1990, Section 8.6) describe the use of these procedures
in analyzing repeated measurements.

We first introduce the special case where a binary response variable is
measured at two time points for each experimental unit. Section 8.2 pro-
vides background material on the hypergeometric distribution, and Sec-
tion 8.3 applies these results to the analysis of repeated measurements. We
then consider the more general case where a response variable with c levels
is measured at t time points for c > 2 and t > 2. Section 8.4 describes
the multiple hypergeometric distribution, and Section 8.5 applies the re-
sults to the repeated measurements setting. Section 8.6 describes the use of
the randomization model approach when there are missing data, and Sec-
tion 8.7 discusses the use of this methodology when the response variable
is continuous rather than categorical.

8.2 The Hypergeometric Distribution and
Large-Sample Tests of Randomness
for 2 × 2 Tables

8.2.1 The Hypergeometric Distribution
Consider a population of n objects, of which n.1 are of type 1 and n− n.1
are of type 2. Suppose that a random sample of size n1. is selected from
this population (without replacement). Let the random variable X denote
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TABLE 8.1. Hypergeometric sampling model
Sampled Type 1 Type 2 Total

Yes X n1. −X n1.

No n.1 −X n− n1. − n.1 +X n− n1.

Total n.1 n− n.1 n

the number of type 1 objects in the sample. Table 8.1 displays the data
from such an experiment in a 2 × 2 contingency table.

The probability function of the random variable X is

Pr(X = x) =
(
n.1

x

)(
n− n.1

n1. − x

)/(
n

n1.

)

=

n.1!
x!(n.1 − x)!

(n− n.1)!
(n1. − x)!(n− n.1 − n1. + x)!

n!
n1.!(n− n1.)!

=
n.1! (n− n.1)!n1.! (n− n1.)!

n!x!(n.1 − x)!(n1. − x)!(n− n.1 − n1. + x)!
(8.1)

for max(0, n1. + n.1 − n) ≤ x ≤ min(n1., n.1). The random variable X has
the hypergeometric distribution with parameters n, n1., and n.1; we write
this as X ∼ H(n, n1., n.1).

The hypergeometric distribution has mean and variance given by

E(X) =
n1.n.1

n
, (8.2)

Var(X) =
n1.(n− n1.)n.1(n− n.1)

n2(n− 1)
. (8.3)

Note that n.1/n is the proportion of objects of type 1, and n1. is the sample
size. Thus, E(X) is equivalent to the mean of the binomial distribution with
sample size n = n1. and success probability π = n.1/n, and Var(X) is then

nπ(1 − π) × n− n1.

n− 1
.

When n is much larger than n1., the hypergeometric variance is only slightly
smaller than the corresponding binomial variance.

8.2.2 Test of Randomness for a 2 × 2 Contingency Table
Consider a sample of n observations classified with respect to two dichoto-
mous variables. Table 8.2 displays the resulting frequencies as a 2 × 2 con-
tingency table. If the row and column marginal totals are fixed (either by
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TABLE 8.2. Cell frequencies for a 2 × 2 contingency table
Row Column Variable

Variable Level 1 Level 2 Total
Level 1 n11 n12 n1.

Level 2 n21 n22 n2.

Total n.1 n.2 n

design or by conditioning), then the distribution of n11, the count in the
(1,1) cell of Table 8.2, is H(n, n1., n.1).

Under the null hypothesis of randomness, the probability function of n11
is

f(n11) =
n1.!n2.!n.1!n.2!

n!n11!n12!n21!n22!

for max(0, n1. + n.1 − n) ≤ n11 ≤ min(n1., n.1). Using Equations (8.2)
and (8.3) for the mean and variance of a hypergeometric random variable,

E(n11) =
n1.n.1

n
, (8.4)

Var(n11) =
n1.n2.n.1n.2

n2(n− 1)
. (8.5)

A large-sample test of randomness is based on the statistic

Q =

(
n11 − E(n11)

)2
Var(n11)

,

which has an asymptotic χ2
1 distribution. This statistic differs slightly from

the usual Pearson chi-square statistic

X2 =
2∑

i=1

2∑
j=1

(nij − m̂ij)2

m̂ij
,

where m̂ij = ni.n.j/n. One can show that

Q =
n− 1
n

X2.

8.2.3 Test of Randomness for s 2 × 2 Contingency Tables
Consider a set of s independent 2 × 2 tables with the counts in the hth
table denoted as shown in Table 8.3. The null hypothesis of interest in this
situation is:

H0: no association between the row and column variables in any of the s
tables.
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TABLE 8.3. Cell frequencies for table h

Row Column Variable
Variable Level 1 Level 2 Total
Level 1 nh11 nh12 nh1.

Level 2 nh21 nh22 nh2.

Total nh.1 nh.2 nh

If the row and column marginal totals in each table are fixed, the nh11
counts are independent hypergeometric random variables with

nh11 ∼ H(nh, nh1., nh.1).

If H0 is true,

E(nh11) =
nh1.nh.1

nh
,

Var(nh11) =
nh1.nh2.nh.1nh.2

n2
h(nh − 1)

.

Now, let X =
∑s

h=1 nh11. This random variable has mean and variance
given by

E(X) =
s∑

h=1

E(nh11) =
s∑

h=1

nh1.nh.1

nh
,

Var(X) =
s∑

h=1

Var(nh11) =
s∑

h=1

nh1.nh2.nh.1nh.2

n2
h(nh − 1)

.

H0 can then be tested using the statistic

Q =
(X − E(X))2

Var(X)
, (8.6)

which has an asymptotic null χ2
1 distribution.

The statistic Q is the Mantel–Haenszel statistic (Mantel and Haenszel,
1959), one of the most widely used tools in the analysis of epidemiologic
and medical data. The asymptotic null distribution of Q is valid when s is
small, provided that the stratum-specific totals {nh} are large. The statistic
Q also has an asymptotic χ2

1 distribution when s is large, even if the counts
{nh} are small.

The value of Q will be large when nh11 −E(nh11) is consistently positive
or consistently negative across strata. If the direction of the association
changes dramatically across strata, that is, if nh11 − E(nh11) is positive in
some strata and negative in others, the Mantel–Haenszel test will have low
power for detecting an overall association.
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TABLE 8.4. Contingency table layout for data from the ith subject
Row Response Category
Time + − Total

1 ni11 ni12 1
2 ni21 ni22 1

Total ni.1 ni.2 2

8.3 Application to Repeated Measurements:
Binary Response, Two Time Points

Suppose that a dichotomous outcome (coded as “+” or “−”) is measured at
t = 2 time points for each of n subjects. Let yij denote the response of the
ith subject at time j for j = 1, 2 and i = 1, . . . , n. The data from subject i
can be displayed in a 2 × 2 contingency table, as shown in Table 8.4. Note
that in each row of Table 8.4 one of the nijk values will be equal to 0 and
one will be equal to 1.

Table 8.5 displays the four possible 2 × 2 tables. Using Equations (8.4)
and (8.5) from Section 8.2.2, the expected value and variance of the (1, 1)
cell for each of the four table types are also displayed. Let a, b, c, and d
denote the number of subjects from each of the four types; note that

n = a+ b+ c+ d.

The statisticQ [Equation (8.6) from Section 8.2.3] is computed as follows:

X =
n∑

i=1

ni11

= (a× 1) + (b× 1) + (c× 0) + (d× 0)
= a+ b,

E(X) =
n∑

i=1

E(ni11)

=
(
a× 1

)
+
(
b× 1

2

)
+
(
c× 1

2

)
+
(
d× 0

)
= a+

b+ c

2
,

Var(X) =
n∑

i=1

Var(ni11)

=
(
a× 0

)
+
(
b× 1

4

)
+
(
c× 1

4

)
+
(
d× 0

)
=

b+ c

4
.



8.3 Repeated Measurements: Binary Response, Two Time Points 245

TABLE 8.5. Four possible tables for the case of a binary response measured at
two time points

No. of
Type of Table Subjects E(ni11) Var(ni11)

Response
Time + − Total

1 1 0 1 a 1 0
2 1 0 1

Total 2 0 2

Response
Time + − Total

1 1 0 1 b 1/2 1/4
2 0 1 1

Total 1 1 2

Response
Time + − Total

1 0 1 1 c 1/2 1/4
2 1 0 1

Total 1 1 2

Response
Time + − Total

1 0 1 1 d 0 0
2 0 1 1

Total 0 2 2



246 8. Randomization Model Methods

TABLE 8.6. Summary 2 × 2 table
Time 2

Time 1 + − Total
+ a b a+ b
− c d c+ d

Total a+ c b+ d n

Finally, we have

Q =

(
X − E(X)

)2
Var(X)

=

(
a+ b−

(
a+

b+ c

2

))2

b+ c

4

=
(b− c)2

b+ c
.

If we display the data in a summary 2 × 2 table as shown in Table 8.6, the
test based on the Mantel–Haenszel statistic Q is shown to be equivalent to
McNemar’s (1947) test.

With respect to the sample size required for the use of this test, Mantel
and Fleiss (1980) proposed a validity criterion for Q for the general case
of s 2 × 2 tables. Their discussion was in terms of the minimum (Li) and
maximum (Ui) possible values of ni11, the (1, 1) cell count for the ith table.
Using the layout of Table 8.4,

Li = max(0, ni11 − ni22), Ui = min(ni1., ni.1).

Provided that each of the two quantities
n∑

i=1

E(ni11) −
n∑

i=1

Li,

n∑
i=1

Ui −
n∑

i=1

E(ni11)

exceeds 5, the χ2
1 distribution should adequately approximate the exact dis-

tribution of Q. In the repeated measures setting, this requirement simplifies
to b+ c ≥ 10.

8.4 The Multiple Hypergeometric Distribution and
Large-Sample Tests of Randomness
for r × c Tables

The multiple hypergeometric distribution extends this methodology for the
analysis of one-sample repeated measurements to situations where there are
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more than two time points or when the response variable has more than
two possible outcomes.

8.4.1 The Multiple Hypergeometric Distribution
Consider a population of n objects, of which n.1 are of type 1, . . ., n.t

are of type t; note that n =
∑t

j=1 n.j . Suppose that s successive random
samples of size n1., . . . , ns. are selected from this population without re-
placement. Let Xij denote the number of elements of type j in sample i
for i = 1, . . . , s, j = 1, . . . , t. The probability that the ith sample contains
xij elements of type j is given by

f({xij}) =

s∏
i=1

ni.!
t∏

j=1

n.j !

n!
s∏

i=1

t∏
j=1

xij !

.

The random vector X = (X11, . . . , Xst)′ has the multiple hypergeometric
distribution with parameters n, {ni.}, and {n.j}; we denote this by

X ∼ H
(
n, {ni.}, {n.j}

)
.

This distribution simplifies to the hypergeometric distribution [Equa-
tion (8.1)] if s = t = 2. To avoid confusion with similar distributions, it
should be noted that this is not the same as the multivariate hypergeometric
distribution discussed in Bishop et al. (1975, p. 450). It is also not the same
as the multiple hypergeometric distribution discussed by Lehmann (1998,
p. 381). It is, however, equivalent to the generalized multiple hypergeomet-
ric distribution discussed in Lehmann (1998, pp. 382–383).

The expected values, variances, and covariances of the components of
the random vector X are as follows:

E(Xij) =
ni.n.j

n
,

Var(Xij) =
ni.(n− ni.)n.j(n− n.j)

n2(n− 1)
,

Cov(Xij , Xij′) =
−ni.(n− ni.)n.jn.j′

n2(n− 1)
,

Cov(Xij , Xi′j) =
−ni.ni′.n.j(n− n.j)

n2(n− 1)
,

Cov(Xij , Xi′j′) =
ni.ni′.n.jn.j′

n2(n− 1)
.

A general expression for the variances and covariances is

Cov(Xij , Xi′j′) =
ni.(δii′n− ni′.)n.j(δjj′n− n.j′)

n2(n− 1)
,
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TABLE 8.7. Cell frequencies for an r × c table
Row Column Variable

Variable 1 · · · j · · · c Total
1 n11 · · · n1j · · · n1c n1.

...
...

...
...

...
i ni1 · · · nij · · · nic ni.

...
...

...
...

...
r nr1 · · · nrj · · · nrc nr.

Total n.1 · · · n.j · · · n.c N

where δij = 1 if i = j and 0 otherwise.

8.4.2 Test of Randomness for an r × c Contingency Table
Consider a sample of N observations classified with respect to two cate-
gorical variables. The resulting frequencies can be displayed in an r × c
contingency table, as shown in Table 8.7. If the row and column marginal
totals are fixed (either by design or by conditioning), then

{nij} ∼ H
(
N, {ni.}, {n.j}

)
.

Let n = (n11, . . . , n1c, . . . , nr1, . . . , nrc)′ denote the rc × 1 vector of ob-
served frequencies, and let

m = E(n) = (m11, . . . ,m1c, . . . ,mr1, . . . ,mrc)′

denote the corresponding vector of expected frequencies. The expected
value of nij is

mij =
ni.n.j

N
= Npi.p.j ,

where pi. = ni./N for i = 1, . . . , r and p.j = n.j/N for j = 1, . . . , c. Also let

p∗. = (p1., . . . , pr.)′

denote the r × 1 vector of row marginal proportions, and let

p.∗ = (p.1, . . . , p.c)′

denote the c×1 vector of column marginal proportions. Using direct (Kro-
necker) product notation (Searle, 1982, p. 265),

E(n) = N(p∗. ⊗ p.∗).
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Let Σ denote the rc× rc variance–covariance matrix of n; note that this
covariance matrix is singular. The elements of Σ are given by

Cov(nij , ni′j′) =
ni.(δii′N − ni′.)n.j(δjj′N − n.j′)

N2(N − 1)

=
N2

N − 1
pi.(δii′ − pi′.)p.j(δjj′ − p.j′),

where δij = 1 if i = j and 0 otherwise. In matrix notation,

Σ =
N2

N − 1
(Dp∗.

− p∗.p
′
∗.) ⊗ (Dp.∗ − p.∗p

′
.∗),

where Dp∗.
and Dp.∗ are diagonal matrices with the elements of p∗. and

p.∗ on the main diagonal.
The asymptotic distribution of N−1/2(n−m) is Nrc

(
0rc, N

−1Σ
)

(Birch,
1965). If the sample size N is large, n has an approximate Nrc(m,Σ)
distribution; note that this is a singular multivariate normal distribution.

Let A = (Ir−1,0r−1) ⊗ (Ic−1,0c−1) be an (r − 1)(c − 1) × rc matrix,
and let G = A(n − m) denote the (r − 1)(c− 1) × 1 vector of differences
between the observed and expected frequencies (under the null hypothesis
of randomness), where the linear transformation matrix A eliminates the
last row and last column.

Under the null hypothesis of randomness,

E(G) = 0(r−1)(c−1),

Var(G) = AΣA′.

Because G has an approximate N(r−1)(c−1)(0(r−1)(c−1),AΣA′) distribu-
tion under H0,

Q = G′(AΣA′)−1G

is the large-sample quadratic form statistic for testing H0. If the null hy-
pothesis of randomness is true, then the approximate distribution of Q is
χ2

(r−1)(c−1). It can be shown that

Q =
N − 1
N

X2,

where X2 is the usual Pearson chi-square statistic

X2 =
r∑

i=1

c∑
j=1

nij −mij

mij
.

8.4.3 Test of Randomness for s r × c Tables
Consider a set of s independent r × c tables, with the counts in the hth
table as shown in Table 8.8. The null hypothesis of interest in this situation
is
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TABLE 8.8. Cell frequencies for table h

Row Column Variable
Variable 1 · · · j · · · c Total

1 nh11 · · · nh1j · · · nh1c nh1.

...
...

...
...

...
i nhi1 · · · nhij · · · nhic nhi.

...
...

...
...

...
r nhr1 · · · nhrj · · · nhrc nhr.

Total nh.1 · · · nh.j · · · nh.c Nh

H0: no association between the row and column variables in any of the s
tables.

The basic idea is to measure components from each stratum, add the com-
ponents across strata, and compute a chi-square statistic based on these
sums.

If the row and column marginal totals in each table are fixed, the vectors
nh = (nh11, . . . , nhrc)′ are independent multiple hypergeometric random
variables with

nh ∼ H
(
Nh, {nhi.}, {nh.j}

)
.

If H0 is true, E(nhij) = nhi.nh.j/Nh and

Cov(nhij , nhi′j′) =
nhi.(δii′Nh − nhi′.)nh.j(δjj′Nh − nh.j′)

N2
h(Nh − 1)

,

where δij = 1 if i = j and 0 otherwise.
Let

ph∗. = (ph1., . . . , phr.)′

denote the r×1 vector of row marginal proportions in the hth table, where
phi. = nhi./Nh, for i = 1, . . . , r, and let

ph.∗ = (ph.1, . . . , ph.c)′

denote the corresponding c × 1 vector of column marginal proportions,
where ph.j = nh.j/Nh for j = 1, . . . , c. Using matrix notation,

mh = E(nh) = Nh(ph∗. ⊗ ph.∗), (8.7)

Σh =
N2

h

Nh − 1
(Dph∗.

− ph∗.p
′
h∗.) ⊗ (Dph.∗ − ph.∗p

′
h.∗), (8.8)

where Dph∗.
and Dph.∗ are diagonal matrices with the elements of ph∗.

and ph.∗ on the main diagonal, respectively.
Also let

A = (Ir−1,0r−1) ⊗ (Ic−1,0c−1),
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and let Gh = A(nh −mh) denote the (r−1)(c−1)×1 vector of differences
between the observed and expected frequencies (under the null hypothesis
of randomness) in the hth table. Let G =

∑s
h=1 Gh. Because the s tables

are independent,

E(G) =
s∑

h=1

E(Gh) = 0(r−1)(c−1),

Var(G) = V G =
s∑

h=1

Var(Gh) =
s∑

h=1

AΣhA′,

if H0 is true.
Because G is approximately N(r−1)(c−1)(0(r−1)(c−1),V G) under H0, the

large-sample quadratic form statistic for testing H0 is

QG = G′V −1
G G.

This is known as the Cochran–Mantel–Haenszel (CMH) general association
statistic. If H0 is true, QG has an approximate χ2

(r−1)(c−1) distribution.
The asymptotic distribution of QG is linked to the total sample size N =∑s

h=1Nh rather than to the stratum-specific sample sizes. The statistic
QG can be used when the row and column variables are nominal. The null
hypothesis is tested in terms of (r−1)(c−1) linearly independent functions
of the observed counts.

If the CMH statistic QG is significant, then there is an association be-
tween the row and column variables in at least one of the s strata. However,
the power of QG is directed toward average partial association alternatives.
If certain observed frequencies consistently exceed (or are exceeded by)
their corresponding expected frequencies, then these quantities reinforce
one another when combined across strata. The statistic QG has low power
for detecting associations that are not consistent across strata.

If r = c = 2, QG is the Mantel–Haenszel statistic [Equation (8.6)]. If
s = 1,

QG =
N − 1
N

X2,

where X2 is the usual Pearson chi-square statistic.

8.4.4 Cochran–Mantel–Haenszel Mean Score Statistic
Consider a set of s independent r×c tables with the counts in the hth table
as displayed in Table 8.8. Now, suppose that the column variable is ordinal
and that appropriate scores bh1, . . . , bhc can be assigned to the levels of the
column variable. In this case, we may wish to test

H0: no association between the row and column variables in any of the s
tables
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versus the alternative that the r mean scores differ, on average, across
tables.

Under H0, and conditional on the row and column marginal totals in
each table, nh = (nh11, . . . , nhrc)′ are independent multiple hypergeometric
random variables with

nh ∼ H
(
Nh, {nhi.}, {nh.j}

)
.

If H0 is true, mh = E(nh) and Σh = Var(nh) are given by Equations (8.7)
and (8.8), respectively.

Let Ah = (Ir−1,0r−1) ⊗ (bh1, . . . , bhc), and let Mh = Ah(nh − mh) de-
note the (r−1)×1 vector of differences between the observed and expected
mean scores (under the null hypothesis of randomness) in the hth table.
Let M =

∑s
h=1 Mh. Because the s tables are independent,

E(M) =
s∑

h=1

E(Mh) = 0r−1,

Var(M) = V M =
s∑

h=1

Var(Mh) =
s∑

h=1

AhΣhA′
h,

if H0 is true. Because the distribution of M under H0 is approximately
Nr−1(0r−1,V M ), the large-sample quadratic form statistic for testing H0
is

QM = M ′V −1
MM .

If H0 is true, QM is approximately χ2
r−1.

The statistic QM is known as the CMH mean score statistic. The asymp-
totic distribution of QM is linked to the total sample size N =

∑s
h=1Nh

rather than to the stratum-specific sample sizes. The null hypothesis is
tested in terms of (r − 1) linearly independent functions of the observed
mean scores. The statistic QM is directed at location-shift alternatives, and
assesses the extent to which the mean scores in certain rows consistently
exceed (or are exceeded by) the mean scores in other rows. Note that this
statistic can only be used when the column variable is ordinal or inter-
val and when it is possible to assign reasonable scores to the levels of the
column variable. In this case, the mean score in each row is interpretable.

If rank scores (using midranks for tied observations) are used, then QM is
equivalent to well-known nonparametric tests. If s = 1 and r = 2, QM is the
Wilcoxon–Mann–Whitney statistic (Wilcoxon, 1945; Mann and Whitney,
1947). If s = 1 and r > 2,QM is the Kruskal–Wallis (1952) statistic. If s > 1
and nhi. = 1 for i = 1, . . . , r and h = 1, . . . , s, then QM is Friedman’s (1937)
chi-square statistic.

If r = 2 and the rank scores are standardized by dividing by the stratum-
specific sample size Nh, then QM is equivalent to van Elteren’s (1960) test
for combining Wilcoxon rank sum tests across a set of strata. These scores
are also known as standardized midrank scores or modified ridit scores.
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8.4.5 Cochran–Mantel–Haenszel Correlation Statistic
Again, consider a set of s independent r×c tables with the counts in the hth
table as displayed in Table 8.8. Suppose that the row and column variables
are both ordinal or interval and that scores ah1, . . . , ahr and bh1, . . . , bhc

can be reasonably assigned to the row variable and column variable, re-
spectively. In this case, we may wish to test

H0: no association between the row and column variables in any of the s
tables

versus the alternative that there is a consistent positive (or negative) asso-
ciation between the row scores and the column scores across tables.

Let Ah = (ah1, . . . , ahr) ⊗ (bh1, . . . , bhc) be a row vector with rc com-
ponents, and let Ch = Ah(nh − mh) denote the difference between the
observed and expected association scores (under the null hypothesis of
randomness) in the hth table. Let C =

∑s
h=1 Ch. Because the s tables

are independent,

E(C) =
s∑

h=1

E(Ch) = 0,

Var(C) = VC =
s∑

h=1

Var(Ch) =
s∑

h=1

AhΣhA′
h,

if H0 is true. Because C is approximately N(0, VC) under H0, the large-
sample quadratic form statistic for testingH0 is QC = C2/VC . The statistic
QC is the CMH correlation statistic. If H0 is true, QC has an approximate
χ2

1 distribution.
As with the CMH statistics QG and QM , the asymptotic distribution

of QC is linked to the total sample size N =
∑s

h=1Nh rather than to the
stratum-specific sample sizes. QC is directed at correlation alternatives, the
extent to which there is a consistent positive (or negative) linear association
between the row and column scores. If s = 1, then QC = (N − 1)r2, where
r is the Pearson correlation coefficient between the row and column scores.

8.5 Application to Repeated Measurements:
Polytomous Response, Multiple Time Points

8.5.1 Introduction
Suppose that a categorical response variable with c possible outcomes is
measured at t time points for each of n subjects. Let yij denote the response
from subject i at time j for i = 1, . . . , n and j = 1, . . . , t. Each yij takes on
one of the possible values 1, . . . , c. We wish to test whether the marginal
distribution of the response is the same at each of the t time points.
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TABLE 8.9. Contingency table layout for data from the ith subject
Response Category

Time 1 · · · c Total
1 ni11 · · · ni1c 1
...

...
...

...
t nit1 · · · nitc 1

Total ni.1 · · · ni.c t

Define the indicator variables

nijk =
{

1, if subject i is classified in response category k at time j,
0, otherwise,

for i = 1, . . . , n, j = 1, . . . , t, k = 1, . . . , c. The data from subject i can be
displayed in a t× c contingency table, as in Table 8.9. In each row of this
t× c table, one of the nijk values will be equal to 1 and the remaining nijk

values will be equal to 0. The column marginal total ni.k is the number
of times that subject i was classified in response category k; note that
0 ≤ ni.k ≤ t.

Under the assumption that the column marginal totals {ni.k} are fixed,
the null hypothesis of “no partial association” between the row dimension
(time) and the column dimension (response) can be tested using QG. In
this context, there are n strata, one for each subject. The “no partial as-
sociation” hypothesis is the same as the “interchangeability” hypothesis
of Madansky (1963). This null hypothesis implies marginal homogeneity
in the distribution of the response across the t time points. Although the
data in each table are sparse (all counts will be 0 or 1), the asymptotic
distribution is linked to the total sample size N =

∑s
h=1Nh.

When used in the analysis of repeated measurements, the CMH statistic
QG is equivalent to McNemar’s (1947) test if c = 2 and t = 2. If c = 2
and t > 2, QG is equivalent to Cochran’s (1950) Q test. If c > 2 and
t > 2, then QG is equivalent to Birch’s (1965) Lagrange multiplier test and
Madansky’s (1963) interchangeability test. The asymptotic distribution of
QG is χ2

(t−1)(c−1); both the row variable (repeated measurements factor)
and the column variable (response) are treated as nominal.

If the response variable is ordinal, the mean score statistic QM is also
applicable; the asymptotic distribution of the test statistic is χ2

t−1. If both
the repeated measurements factor and the response variable are ordinal,
the correlation statistic QC can be used. This statistic has an asymptotic
χ2

1 distribution. In repeated measures applications, QM tests equality of
means across the levels of the repeated measurements factor, and QC tests
for linear association between the response variable and the repeated mea-
surements factor.
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TABLE 8.10. Drug response data from subject i

Response
Drug F U Total

A ni11 ni12 1
B ni21 ni22 1
C ni31 ni32 1

Total ni.1 ni.2 3

8.5.2 The General Association Statistic QG

Grizzle et al. (1969) analyze data in which 46 subjects were treated with
each of three drugs (A, B, and C). The response to each drug was recorded
as favorable (F) or unfavorable (U). Table 7.2 displays the data. In Chap-
ter 7, the weighted least squares approach was used to test the null hy-
pothesis that the marginal probability of a favorable response is the same
for all three drugs.

Let nijk = 1 if subject i’s response to drug j is category k and 0 otherwise.
The data from the ith subject can be displayed in a 3×2 contingency table,
as shown in Table 8.10. The CMH statistic QG can be used to test the null
hypothesis that, for each subject, the total number of favorable responses
(ni.1) is distributed at random with respect to the three drugs. The result
(QG = 8.5 with 2 df, p = 0.01) supports the conclusion that the response
profiles of the three drugs are different. The weighted least squares approach
(Section 7.3.2) provided a similar conclusion.

8.5.3 The Mean Score Statistic QM and the Correlation
Statistic QC

Table 8.11 displays data from a study of the efficacy of steam inhalation in
the treatment of common cold symptoms (Macknin et al., 1990). Eligible
subjects had colds of recent onset (symptoms of nasal drainage, nasal con-
gestion, and sneezing for 3 days or less). Subjects were given two 20-minute
steam inhalation treatments, after which severity of nasal drainage was self-
assessed for four days. The outcome variable at each day was ordinal with
four categories:

0 = no symptoms;
1 = mild symptoms;
2 = moderate symptoms;
3 = severe symptoms.

The goal of the analysis is to assess whether symptom severity improves
following treatment.

With respect to the methods that have been discussed in previous chap-
ters, normal-theory methods (Chapters 3–6) are not appropriate because
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TABLE 8.11. Nasal drainage severity scores from 30 subjects
ID Day 1 Day 2 Day 3 Day 4
1 1 1 2 2
2 0 0 0 0
3 1 1 1 1
4 1 1 1 1
5 0 2 2 0
6 2 0 0 0
7 2 2 1 2
8 1 1 1 0
9 3 2 1 1

10 2 2 2 3
11 1 0 1 1
12 2 3 2 2
13 1 3 2 1
14 2 1 1 1
16 2 3 3 3
17 2 1 1 1
18 1 1 1 1
20 2 2 2 2
21 3 1 1 1
22 1 1 2 1
23 2 1 1 2
24 2 2 2 2
25 1 1 1 1
26 2 2 3 1
27 2 0 0 0
28 1 1 1 1
29 0 1 1 0
30 1 1 1 1
31 1 1 1 0
32 3 3 3 3
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the response is categorical with only four possible values. Because there are

ct = 44 = 256

potential response profiles, the sample size is too small for validity of the
WLS approach. Although randomization model methods appear to be ap-
propriate, the sample size is probably too small to permit use of QG with
9 df. In any event, the general association statistic will have low power.

Because the response is ordinal, mean symptom scores across the four
days can be compared using QM . This test with 3 df requires the assign-
ment of scores to the values of the ordinal outcome variable. Under the
assumption that the values none, mild, moderate, and severe are equally
spaced, one choice is to use the values 0, 1, 2, 3 as scores (as displayed in
Table 8.11). The resulting value of QM is 4.93, with a p-value of 0.18. Rank
scores could also be considered; this choice yields QM = 3.35, p = 0.34.
The null hypothesis of equality of mean scores across the four days would
not be rejected at the 5% level of significance using either set of scores.

The correlation statistic QC can also be used to test whether there is
a significant linear association between time and response. Because the
repeated measurements factor is ordered and the values are equally spaced,
integer scores are appropriate. Using integer scores for the response gives
QC = 4.36 with 1 df, p = 0.04. If rank scores for the response are used
instead, QC = 2.68 with 1 df, p = 0.10.

This example illustrates that the conclusion of an analysis can be af-
fected by the choice of scores. In particular, the use of rank scores leads
to a less clear conclusion regarding the statistical significance of QC . Some
authors recommend the routine use of rank scores in preference to the ar-
bitrary assignment of scores; see, for example, Fleiss (1986, pp. 83–84). As
demonstrated by Graubard and Korn (1987), however, rank scores can be
a poor choice when the column margin is far from uniformly distributed.
This is because rank scores also assign a spacing between the levels of the
categories. This spacing is generally not known by the data analyst and
may not be as powerful as other spacings for certain patterns of differences
among distributions. Graubard and Korn (1987) recommend that scores
be specified whenever possible. If the choice of scores is not apparent, they
recommend integer (or equally spaced) scores.

When there is no natural set of scores, Agresti (1990, p. 294) recom-
mends that the data be analyzed using several reasonably assigned sets of
scores to determine whether substantive conclusions depend on the choice
of scores. This type of sensitivity analysis seems especially appropriate in
this example, because the results assuming equally spaced scores differ from
those obtained using rank scores. For example, the scores 0, 1, 3, 5 assume
that the “moderate” category is equally spaced between the “mild” and
“severe” categories, whereas “no symptoms’ and “mild symptoms” are less
far apart. Another possibility would be 0, 1, 2, 4; this choice places severe
symptoms further from the three other categories.
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8.6 Accommodation of Missing Data

8.6.1 General Association Statistic QG

Consider again the drug response data analyzed in Section 8.5.2. With
reference to Table 7.2, the observed responses of subject 1 were favorable
to drugs A and B and unfavorable to drug C. Now, suppose that the drug
B response was missing. One approach would be to exclude this subject
from the analysis. In this case,

G =
46∑

h=2

Gh =
(

3.667
3.667

)
,

Var(G) =
46∑

h=2

Var(Gh) =
(

7.333 −3.667
−3.667 7.333

)
,

and QG = G′(Var(G)
)−1

G = 7.333.
The exclusion of subject 1, however, does not allow us to use the in-

formation that the response to drug A (C) was favorable (unfavorable).
Alternatively, the data from subject 1 can be displayed as shown in Ta-
ble 8.12. In this case,

n1 =


1
0
0
0
0
1

 m1 =


.5
.5
.0
.0
.5
.5

 .

The variance–covariance matrix of n1 is then

Σ1 =


0.25 −0.25 0.00 0.00 −0.25 0.25

−0.25 0.25 0.00 0.00 0.25 −0.25
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

−0.25 0.25 0.00 0.00 0.25 −0.25
0.25 −0.25 0.00 0.00 −0.25 0.25

 .

The components of QG from subject 1 are

G1 = A(n1 − m1) =
(

1 0 0 0 0 0
0 0 1 0 0 0

)


0.5
−0.5

0.0
0.0

−0.5
0.5

 =
(

0.5
0

)
,

Var(G1) = AΣ1A
′ =
(

0.25 0
0 0

)
.
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TABLE 8.12. Drug response data from subject 1 (with drug B response assumed
to be missing)

Response
Drug F U Total

A 1 0 1
B 0 0 0
C 0 1 1

Total 1 1 2

With the addition of the partial data from subject 1,

G = G1 +
46∑

h=2

Gh

=
(

0.5
0

)
+
(

3.667
3.667

)
=
(

4.167
3.667

)
,

Var(G) = Var(G1) +
46∑

h=2

Var(Gh)

=
(

0.25 0
0 0

)
+
(

7.333 −3.667
−3.667 7.333

)
=
(

7.583 −3.667
−3.667 7.333

)
.

Thus, QG = G′(Var(G)
)−1

G = 8.094. In this case, the use of partial data
from one of the subjects increased the strength of the evidence against H0.

As a second example, consider the Muscatine Coronary Risk Factor
Study example of Section 7.4.3. Table 7.11 displays the cross-classification
of 522 7–9-year-old males by obesity status at survey years 1977, 1979, and
1981. At each survey, the response was “Yes” if the subject was classified
as obese, “No” if the subject was not obese, and “Missing” if the subject
did not respond to this survey. In Section 7.4.3, these data were analyzed
using the WLS approach.

Table 8.13 displays the proportion of boys classified as obese at each
year. Results are displayed for all subjects who provided a response at a
given year as well as for the subgroup of 225 boys who responded to all
three surveys.

The general association statistic QG can be used to test the null hypoth-
esis that the marginal probability of obesity is the same across the three
survey years. Using only the 225 subjects with complete data, QG = 2.66
with 2 df, p = 0.26. If all available data are used instead, the value of QG
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TABLE 8.13. Summary of results of Muscatine Coronary Risk Factor Study
All Data Complete Cases

Year n % Obese n % Obese
1977 356 18.8 225 19.6
1979 375 20.5 225 19.1
1981 380 23.7 225 23.1

TABLE 8.14. Nasal drainage severity scores from two subjects with incomplete
data

ID Day 1 Day 2 Day 3 Day 4
15 3 3 2
19 3 1 0

increases to 4.18, with p = 0.12. Although the use of all available data
yields a larger value of the test statistic, neither analysis leads to rejection
of the null hypothesis of marginal homogeneity. In Section 7.4.3, the use of
a model for predicting the marginal probability of obesity as a linear func-
tion of survey year provided nearly significant evidence of a linear trend
(p = 0.05).

8.6.2 Mean Score Statistic QM

Section 8.5.3 considered data from a study of the efficacy of steam inhala-
tion in the treatment of common cold symptoms. Each of the 30 subjects
included in Table 8.11 had complete data. Table 8.14 displays the data from
two subjects (ID 15 and ID 19) that were not included in the analyses of
Section 8.5.3. Both subjects’ data support the hypothesis that symptoms
improve over time and can be included in the computation of QM .

Using the symptom scores 0, 1, 2, and 3 for the categories none, mild,
moderate, and severe, respectively, the mean score statistic for the complete
cases is computed as follows:

Ah =

 1 0 0 0
0 1 0 0
0 0 1 0

⊗ ( 0 1 2 3 ) ,

Mh = Ah(nh − mh),

for h = 1, . . . , 30. For the complete cases,

M =
30∑

h=1

Mh =

 4.5
0.5
0.5

 ,
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TABLE 8.15. Observed cell frequencies for subjects 15 and 19
Subject 15 Subject 19
Response Response

Day 0 1 2 3 Sum Day 0 1 2 3 Sum
1 0 0 0 0 0 1 0 0 0 1 1
2 0 0 0 1 1 2 0 0 0 0 0
3 0 0 0 1 1 3 0 1 0 0 1
4 0 0 1 0 1 4 1 0 0 0 1

Sum 0 0 1 2 3 Sum 1 1 0 1 3

TABLE 8.16. Expected cell frequencies for subjects 15 and 19
Subject 15 Subject 19
Response Response

Day 0 1 2 3 Sum Day 0 1 2 3 Sum
1 0 0 0 0 0 1 1/3 1/3 0 1/3 1
2 0 0 1/3 2/3 1 2 0 0 0 0 0
3 0 0 1/3 2/3 1 3 1/3 1/3 0 1/3 1
4 0 0 1/3 2/3 1 4 1/3 1/3 0 1/3 1

Sum 0 0 1 2 3 Sum 1 1 0 1 3

V M =
30∑

h=1

AhΣhA′
h =

 7.750 −2.583 −2.583
7.750 −2.583

7.750

 ,
QM = M ′V −1

MM = 4.94,

with 3 df (p = 0.18). This result was previously reported in Section 8.5.3.
If we now include the two subjects with missing data, Table 8.15 displays

the observed contingency tables for subjects 15 and 19. Table 8.16 similarly
displays the corresponding tables of expected frequencies. The contribution
of subject 15 to QM is

A15(n15 − m15) = ( 0 0.333 0.333 )′
,

A15Σ15A
′
15 =

 0 0 0
0.222 −0.111

0.222

 .
Similarly, the contribution of subject 19 to QM is

A19(n19 − m19) = ( 1.667 0 −0.333 )′
,

A19Σ19A
′
19 =

 1.556 0 −0.778
0 0

1.556

 .
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Using both the complete and the incomplete cases,

M =

 4.5
0.5
0.5

+

 0
0.333
0.333

+

 1.667
0

−0.333

 =

 6.167
0.833
0.500

 ,
V M =

 7.750 −2.583 −2.583
7.750 −2.583

7.750

+

 0 0 0
0.222 −0.111

0.222


+

 1.556 0 −0.778
0 0

1.556


=

 9.306 −2.583 −3.361
7.972 −2.694

9.528

 .
The mean score statistic using complete and incomplete cases is

QM = M ′V −1
MM = 7.44

with 3 df (p = 0.06). The inclusion of the two additional subjects (15 and
19) with incomplete data leads to a larger value of the test statistic.

8.6.3 Correlation Statistic QC

The two subjects with incomplete data can also be used in computing QC .
First, the correlation statistic for the complete cases is computed as follows
(using the scores 1–4 for time and 0–3 for symptoms):

Ah = ( 1 2 3 4 ) ⊗ ( 0 1 2 3 ) ,
Ch = Ah(nh − mh),

C =
30∑

h=1

Ch = −15,

VC =
30∑

h=1

AhΣhA′
h = 51.667,

QC = C ′V −1
C C = (−15)2/51.667 = 4.355,

as given in Section 8.5.3.
The contributions of subjects 15 and 19 are:

A15(n15 − m15) = −1, A15Σ15A
′
15 = 0.667,

A19(n19 − m19) = −4.67, A19Σ19A
′
19 = 10.889.
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Using both complete and incomplete cases:

C = −15 − 1 − 4.667 = −20.667,
VC = 51.667 + 0.667 + 10.889 = 63.222,
QC = (−20.667)2/63.222 = 6.76,

with 1 df (p = 0.009). Again, the inclusion of the two subjects with incom-
plete data leads to a larger value of the test statistic.

8.7 Use of Mean Score and Correlation Statistics
for Continuous Data

Although the randomization model tests were originally developed for strat-
ified two-way contingency tables, the statistics QM andQC can also be used
to analyze a continuous response measured at multiple time points or under
multiple conditions. Section 8.5.1 described the use of the CMH tests in an-
alyzing a categorical response variable with c possible outcomes measured
at t time points. If the response variable is continuous, so that each of the n
subjects has a unique response at each time point, then c = nt will be very
large. In this case, the t× c contingency table for each subject (Table 8.9)
will have nt columns. Although the general association statistic QG will
not be applicable, QM can be used to test whether the mean scores across
the t time points are equal, and QC can be used to test whether there is a
linear association between time and response.

As an example, Table 3.1 and Figure 3.2 display the data from a den-
tal study in which the height of the ramus bone (mm) was measured in
20 boys at ages 8, 8.5, 9, and 9.5 years (Elston and Grizzle, 1962). In
Section 3.3.2, the unstructured multivariate approach was used to assess
whether the mean ramus bone heights differed across the four ages and
whether the relationship between ramus bone height and age was linear.
Growth curve analysis (Section 4.4.3) and analysis using the linear mixed
model (Problem 6.2) were also illustrated using this example. If the as-
sumptions of normal-theory methods are not justified, the randomization
model statistics QM and QC can also be used to analyze these data.

Because the response variable has 57 unique values, each subject has an
underlying 4 × 57 contingency table. Using the actual values of the ramus
bone height as scores, QM = 41.293 with 3 df (p < 0.001). Thus, there
is a highly significant difference among the four means. Additionally using
the scores 8, 8.5, 9, and 9.5 for age, QC = 41.290 with 1 df (p < 0.001).
This indicates that there is a strong linear association between ramus bone
height and age.

If the value of t is very large, or if the number and spacing of the mea-
surements vary among subjects, QM will no longer be applicable. The 1-df
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TABLE 8.17. Analysis of serum creatinine reciprocals from 619 subjects using
the CMH statistic QC

Group QC p-value
1 — —
2 2.80 0.094
3 4.68 0.031
4 7.31 0.007

test based on QC , however, can still be used. As an example, Section 6.4.3
discusses the analysis of data from 619 subjects with and without a single
hereditary kidney disease and with and without hypertension (Jones and
Boadi-Boateng, 1991). The response variable of interest is the reciprocal of
serum creatinine (SCR); the values of this variable range from 0.028 to 2.5.
The explanatory variables are group and patient age (which ranges from 18
to 84 years). Observations were taken at arbitrary times from each subject,
and the number of observations per subject ranges from 1 to 22. Table 6.6
gives a partial listing of the data.

It is not possible to use CMH statistics to investigate differences among
the four groups of subjects or to develop a model for the effect of age
on SCR. If normal-theory methods are not appropriate, however, the CMH
correlation statisticQC can be used in each group to test the null hypothesis
of no association between age and SCR versus the alternative hypothesis
of a linear association.

Table 8.17 displays the test statistic and p-value in each of the four
groups. Group 1 has both the largest sample size and the most numbers
of repeated measurements/subject. Thus, it is not possible to compute
QC using standard computer programs because these are designed for the
analysis of categorical data. In each of groups 3 and 4, there is statistically
significant evidence of an association between age and SCR.

8.8 Problems

8.1 Suppose that a dichotomous outcome (coded as “+” or “−”) is mea-
sured at t = 2 time points for each of n subjects. The data from subject i
can be displayed in a 2 × 2 contingency table, as shown in Table 8.4. Ap-
ply the Mantel and Fleiss (1980) validity criterion described in Section 8.3
to this situation and show that this requirement simplifies to b + c ≥ 10,
where b (c) is the number of subjects with response “+” (“−”) at time 1
and response “−” (“+”) at time 2.

8.2 Consider the study described in Problem 7.5, in which a dichotomous
response with possible values 0 and 1 is measured at months 0, 2, and 5 for
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each of n subjects from a single population. Suppose that you wish to test
the null hypothesis of no association between the probability of response 1
and month using the randomization model approach.

(a) Under what circumstances would this approach be preferred over the
weighted least squares approach?

(b) What are the respective degrees of freedom of the statistics QG, QM ,
and QC?

(c) Discuss the factors you would consider in deciding which one of the
statistics QG, QM , and QC you would use.

(d) If you analyzed the data using the correlation statistic QC , what
scores would you recommend for the row and column variables?

8.3 In a longitudinal study of health effects of air pollution, 1019 children
were examined annually at ages 9, 10, 11, and 12 (Ware et al., 1988; Agresti,
1990). At each examination, the response variable was the presence or
absence of wheezing. Table 7.4 displays the data; Section 7.3.3 describes
the analysis of these data using the weighted least squares approach.

(a) Which, if any, of the randomization model statistics can be used to
test whether there is an association between wheezing and age?

(b) Analyze these data using all appropriate randomization model statis-
tics, and summarize the results.

(c) For these data, what are some of the advantages and disadvantages
of the randomization model approach relative to the weighted least
squares approach?

8.4 Macknin et al. (1990) studied the efficacy of steam inhalation in the
treatment of common cold symptoms. In this study, 32 patients with colds
of recent onset (symptoms of nasal drainage, nasal congestion, and sneezing
for three days or less) were given two 20-minute steam inhalation treat-
ments, and the severity of various types of symptoms was self-assessed for
four days. Table 8.18 displays the nasal congestion ratings, where 0 = no
symptoms, 1 = mild symptoms, 2 = moderate symptoms, 3 = severe symp-
toms, and . denotes missing values. Section 8.5.3 discussed the analysis of
another response variable from this study.

(a) Which randomization model statistics can be used to test whether
nasal congestion severity improves following treatment?

(b) Using the scores 0, 1, 2, and 3 for nasal congestion severity and the
scores 1, 2, 3, and 4 for days following treatment, analyze these data
using all appropriate randomization model statistics and summarize
the results.
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(c) Repeat part (b) using rank scores for nasal congestion severity and
the scores 1, 2, 3, and 4 for days following treatment.

8.5 Table 8.18 also displays sneezing severity ratings from the Mack-
nin et al. (1990) study previously considered in Section 8.5.3 and Prob-
lem 8.4. The scale 0 = no symptoms, 1 = mild symptoms, 2 = moderate
symptoms, and 3 = severe symptoms was again used, and . denotes missing
values.

(a) Which randomization model statistics can be used to test whether
sneezing severity improves following treatment?

(b) Using the scores 0, 1, 2, and 3 for sneezing severity and the scores
1, 2, 3, and 4 for days following treatment, analyze these data using
all appropriate randomization model statistics and summarize the
results.

(c) Repeat part (b) using rank scores for sneezing severity and the scores
1, 2, 3, and 4 for days following treatment.

8.6 Deal et al. (1979) measured ventilation volumes (l/min) of eight sub-
jects under six different temperatures of inspired dry air. Table 2.1 displays
the resulting data.

(a) Which, if any, of the randomization model statistics can be used to
test whether there is an association between ventilation volume and
temperature?

(b) Analyze these data using all appropriate randomization model statis-
tics and summarize the results.

(c) Sections 2.2, 3.3.2, and 5.3.3 illustrated the analysis of these data
using the summary-statistic, unstructured multivariate, and repeated
measures ANOVA approaches. Discuss the similarities and differences
(and the reasons for differences) between the results of these methods
and your results from part (b).

8.7 Problem 5.3 considered the weights of 13 male mice measured at
intervals of three days over the 21 days from birth to weaning (Rao, 1987);
Table 5.6 displays the data.

(a) Which, if any, of the randomization model statistics can be used to
test whether there is an association between weight and age?

(b) Analyze these data using all appropriate randomization model statis-
tics and summarize the results.
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TABLE 8.18. Nasal congestion and sneezing severity scores from 32 subjects
Congestion Sneezing

ID Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4
1 1 1 2 1 1 1 1 1
2 1 1 0 0 0 0 0 0
3 2 2 2 1 1 1 1 1
4 2 2 2 2 0 0 0 0
5 0 0 2 0 1 0 1 0
6 2 2 1 1 1 1 0 0
7 3 2 2 3 0 0 0 0
8 1 1 2 0 0 1 1 0
9 1 1 1 1 0 0 0 0

10 3 2 2 3 2 1 2 2
11 1 1 1 0 0 0 0 0
12 2 3 2 2 2 2 1 1
13 1 2 2 1 0 2 1 1
14 1 1 0 0 1 1 0 0
15 . 3 2 1 . 0 0 0
16 2 3 3 3 1 2 1 0
17 0 2 1 0 0 0 0 0
18 3 1 3 1 1 0 1 1
19 2 . 3 1 . 2 0 0
20 0 0 0 0 0 0 0 0
21 2 1 1 1 2 1 1 1
22 2 2 2 2 0 0 0 0
23 1 1 0 2 0 0 0 0
24 2 1 1 1 1 0 0 0
25 2 2 1 0 1 1 1 0
26 2 3 2 1 . 1 0 1
27 1 0 0 0 1 0 0 0
28 2 2 2 2 1 1 1 0
29 0 1 1 0 3 1 1 0
30 2 1 1 1 1 1 1 1
31 2 2 1 1 1 1 1 0
32 2 3 3 3 1 1 2 2
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TABLE 8.19. Lesion severity data from 14 puppies
Pulse Duration (ms)

Animal 2 4 6 8 10
6 0 0 5 0 3
7 0 3 3 4 5
8 0 3 4 3 2
9 2 2 3 0 4
10 0 0 4 4 3
12 0 0 0 4 4
13 0 4 4 4 0
15 0 4 0 0 0
16 0 3 0 1 1
17 . . 0 1 0
19 0 0 1 1 0
20 . 0 0 2 2
21 0 0 2 3 3
22 . 0 0 3 0

8.8 Problem 2.1 describes a study to test whether pH alters action po-
tential characteristics following administration of a drug; Table 2.9 displays
the response variable of interest (Vmax), which was measured at up to four
pH levels for each of 25 subjects.

(a) Which, if any, of the randomization model statistics can be used to
test whether there is an association between Vmax and pH?

(b) Analyze these data using all appropriate randomization model statis-
tics and summarize the results.

8.9 Researchers at the C.S. Mott Children’s Hospital, Ann Arbor, Michi-
gan, investigated the effect of pulse duration on the development of acute
electrical injury during transesophageal atrial pacing in dogs (Landis et al.,
1988). This procedure involves placing a pacemaker in the esophagus. Each
of the 14 animals available for experimentation then received atrial pacing
at pulse durations of 2, 4, 6, 8, and 10 milliseconds (ms), with each pulse
delivered at a separate site in the esophagus for 30 minutes. The response
variable, lesion severity, was classified according to depth of injury by histo-
logic examination using an ordinal staging scale from 0 to 5 (0 = no lesion,
5 = acute inflammation of extraesophageal fascia). Table 8.19 displays the
resulting data (with missing observations denoted by .). Using appropri-
ate statistical methods, determine whether there is an association between
lesion severity and pulse duration.

8.10 An investigator from the University of Iowa Department of Speech
Pathology and Audiology studied the effects of induced velopharyngeal
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TABLE 8.20. Velopharyngeal fatigue measurements from ten subjects
Air Pressure (cm H2O)

Subject Sex 0 5 15 25 35
1 F 0.012 0.001 −0.029 −0.136 −0.104
2 M −0.027 −0.096 −0.123 −0.229 −0.322
3 M 0.033 −0.136 −0.214 −0.180 .
4 F 0.049 −0.019 0.024 −0.191 −0.678
5 M 0.009 −0.036 0.050 0.012 0.041
6 F −0.082 −0.119 −0.041 −0.099 −0.463
7 M −0.060 0.203 0.045 −0.053 −0.072
8 F 0.013 0.093 −0.251 −0.210 −0.294
9 M 0.090 −0.150 −0.107 −0.326 −0.634
10 F 0.049 −0.110 −0.027 . .

fatigue in adults with normal speech mechanisms. The subjects’ task was
to repeat the syllable /si/ 100 times while an external load was placed
on the velopharyngeal mechanism. The external load consisted of various
levels of air pressure (0 as a control, 5, 15, 25, and 35 cm H2O relative to
atmospheric pressure) delivered to the nasal passages via a tube and nasal
mask assembly. Fatigue was defined by the slope of the regression line fit
to the data from each subject under each condition. Table 8.20 shows the
fatigue measurements from the ten subjects who participated in the study.

(a) Consider these data to be from a single sample of ten subjects; that
is, ignore the fact that there are five males and five females. Test
whether there is an association between fatigue and air pressure using
appropriate statistical methods. Justify the approach you choose.

(b) Again considering these data to be from a single sample of ten sub-
jects, test whether the relationship between fatigue and air pressure
is linear; that is, test whether the nonlinear components of the rela-
tionship are equal to zero.

(c) Using appropriate statistical methods, test whether the effect of air
pressure on fatigue is the same for males and females. Justify your
choice of approach.

8.11 As part of a protocol for the University of Iowa Mental Health Clin-
ical Research Center, 44 schizophrenic patients participated in a four-week
antipsychotic medication washout (Arndt et al., 1993). The severity of ex-
trapyramidal side effects was assessed just prior to discontinuation of an-
tipsychotic medication and at weeks 1, 2, 3, and 4 during the washout pe-
riod. Table 2.4 displays the resulting ratings on the Simpson–Angus scale
(a score ranging from 0 to 40); Section 2.2 discusses the analysis of these
data using the summary-statistic approach.
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Use the randomization model mean score and correlation statistics to test
whether there is an association between Simpson–Angus ratings and time
since medication withdrawal. Justify your choice of scores for the response
variable.

8.12 Table 8.21 displays ratings on the Abnormal Involuntary Movement
Scale (AIMS) for the 44 schizophrenic patients considered in Problem 8.11
and in Section 2.2. Use the randomization model mean score and correlation
statistics to test whether there is an association between AIMS ratings and
time since medication withdrawal. Justify your choice of scores for the
response variable.

8.13 Table 8.22 displays ratings on the IMPACT scale for the 44 schizo-
phrenic patients considered in Problems 8.11 and 8.12 and in Section 2.2.
This rating scale assesses the total impact of symptoms on a patient’s func-
tioning. Use the randomization model mean score and correlation statistics
to test whether there is an association between IMPACT ratings and time
since medication withdrawal. Justify your choice of scores for the response
variable.
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TABLE 8.21. Weekly AIMS ratings from 44 schizophrenic patients
Patient Week 0 Week 1 Week 2 Week 3 Week 4

1 6 6 0 0 4
2 8 11 . 19 6
3 3 4 8 8 9
4 14 10 13 23 8
5 3 10 12 3 7
6 2 3 1 0 0
7 7 . 15 9 9
8 . . 9 12 6
9 8 12 0 0 0
10 2 3 4 3 1
11 1 0 0 0 0
12 0 0 0 0 .
13 2 0 0 0 0
14 9 4 0 4 1
15 0 0 0 0 0
16 3 0 16 9 8
17 2 13 12 19 4
18 0 0 . . .
19 0 3 3 1 0
20 0 7 16 13 13
21 0 4 0 0 .
22 0 2 11 14 18
23 0 0 0 0 0
24 3 0 0 4 5
25 2 0 6 4 3
26 9 20 8 6 11
27 0 0 0 . .
28 0 0 2 2 .
29 9 4 3 3 1
30 2 0 0 1 0
31 0 0 5 2 0
32 0 0 0 0 0
33 0 0 0 2 0
34 0 0 0 0 0
35 0 5 3 3 4
36 0 0 0 0 0
37 5 9 8 5 2
38 0 4 5 2 1
39 0 0 2 1 0
40 0 0 0 . .
41 0 0 0 0 0
42 0 0 0 0 .
43 0 0 0 0 0
44 3 1 0 0 3
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TABLE 8.22. Weekly IMPACT ratings from 44 schizophrenic patients
Patient Week 0 Week 1 Week 2 Week 3 Week 4

1 2 9 0 0 3
2 3 4 . 9 3
3 2 4 2 2 2
4 9 4 5 9 4
5 0 0 1 0 0
6 0 3 1 0 0
7 5 . 5 5 3
8 . . 3 4 2
9 3 4 0 0 0
10 2 2 3 4 1
11 1 0 0 0 0
12 0 0 0 0 .
13 4 0 0 0 0
14 7 3 0 2 1
15 0 0 0 0 0
16 4 0 0 0 4
17 3 8 8 8 2
18 0 0 . . .
19 0 1 1 1 0
20 0 5 6 6 7
21 0 1 0 0 .
22 0 0 4 4 5
23 0 0 0 0 0
24 3 0 0 1 2
25 2 0 0 0 0
26 4 5 3 2 5
27 0 0 0 . .
28 0 0 0 0 .
29 5 2 4 2 1
30 0 4 3 0 0
31 0 0 5 2 0
32 0 0 0 0 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0 0 2 2 2
36 0 0 0 0 0
37 4 4 3 4 2
38 0 1 3 1 1
39 0 0 2 2 0
40 0 0 0 . .
41 0 0 0 0 0
42 0 0 0 0 .
43 0 0 0 0 0
44 0 1 0 0 1



9
Methods Based on Extensions of
Generalized Linear Models

9.1 Introduction

In many applications in which the response variable of interest has a con-
tinuous distribution, the normal-theory methods described in Chapters 3–6
may be inappropriate. In addition, in situations where the response vari-
able is categorical, the WLS (Chapter 7) and randomization model (Chap-
ter 8) approaches are not always applicable. For example, although the
WLS methodology is often a useful approach to the analysis of repeated
binary and ordered categorical outcome variables, it can only accommo-
date categorical explanatory variables. In addition, the WLS methodology
requires a sufficiently large sample size for the marginal response func-
tions at each time point within each subpopulation from the multiway
cross-classification of the explanatory variables to have an approximately
multivariate normal distribution. The randomization model approach is
useful only in one-sample problems. Thus, neither of these methodologies
for categorical outcomes can be used in the general repeated measurements
setting.

In the case of a univariate response for each experimental unit, classi-
cal linear models are useful for analyzing normally distributed outcomes
with constant variance. The extension to the class of univariate generalized
linear models permits the analysis of both categorical and continuous re-
sponse variables. For example, generalized linear model methodology can
be used to analyze normal, Poisson, binomial, and gamma outcome vari-
ables; generalizations for ordered categorical data are also available.
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This chapter considers extensions of generalized linear model method-
ology to the repeated measurements setting. As background, Section 9.2
reviews the basic ideas and concepts of univariate generalized linear mod-
els, and Section 9.3 discusses the ideas of quasilikelihood. Readers who are
already familiar with this material, or those who are only interested in
applications to repeated measurements, can skip these two sections. Sec-
tion 9.4 provides an overview of methods for the analysis of repeated mea-
surements, and Section 9.5 discusses the GEE methodology of Liang and
Zeger (1986). Section 9.6 gives a brief overview of subsequent developments
and extensions of GEE, and Section 9.7 briefly reviews extensions of gener-
alized linear model methodology that incorporate random effects. Finally,
Section 9.8 discusses the analysis of ordered categorical repeated measure-
ments.

9.2 Univariate Generalized Linear Models

9.2.1 Introduction
The term “generalized linear model” was first introduced in a landmark pa-
per by Nelder and Wedderburn (1972). Generalized linear models extend
classical linear models for independent normally distributed random vari-
ables with constant variance to other types of outcome variables. Wedder-
burn (1974) further extended the applicability of generalized linear models
by introducing quasilikelihood. Generalized linear model methodology en-
ables a wide range of different problems of statistical modeling and inference
to be put in an elegant unifying framework; these problems include anal-
ysis of variance, analysis of covariance, and regression models for normal,
binary, Poisson, and other types of outcomes.

The unifying theory of generalized linear models has impacted the way
such statistical methods are taught. It has also provided greater insight
into connections between various statistical procedures and has led to con-
siderable further research. McCullagh and Nelder (1989) provide a compre-
hensive account of the theory and applications of generalized linear models;
Aitkin et al. (1989) and Dobson (1990) provide excellent introductions to
the subject.

As a simple example, consider a sample of n experimental units. Let
yi be a response variable and let xi denote an explanatory variable, for
i = 1, . . . , n. In the usual (Gaussian) linear model, we assume that

yi = β0 + β1xi + σεi,

where ε1, . . . , εn are independent N(0, 1) random variables. An equivalent
way of writing the model is as

yi ∼ N(µi, σ
2),
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where y1, . . . , yn are independent and µi = β0 +β1xi. The objectives of this
model are to use the explanatory variable to characterize the variation in
the mean of the response distribution across experimental units and hence
to learn about the relationship between the explanatory variable and the
response variable.

Frequently, interest lies in formulating regression models for responses
that have other continuous or discrete distributions. Although the objective
is to model the mean, it often must be modeled indirectly via the use of
a transformation. In the case of a single explanatory variable, the model
might be of the form

g(µi) = β0 + β1xi.

The error distribution must also be generalized, usually in a way that com-
plements the choice of the transformation g. This leads to a very broad
class of regression models.

Generalized linear models have three components: the random compo-
nent, the systematic component, and the link between the random and sys-
tematic components. The random component identifies the response vari-
able y and assumes a specific probability distribution for y. The systematic
component specifies the explanatory variables used as predictors in the
model. The link function describes the functional relationship between the
systematic component and the expected value of the random component.
As a whole, a generalized linear model relates a function of the mean to the
explanatory variables through a prediction equation having linear form.

9.2.2 Random Component
Let y1, . . . , yn be independent random variables from the distribution

f(y; θ, φ) = exp
{
yθ − b(θ)
a(φ)

+ c(y, φ)
}

(9.1)

for some specific functions a(·), b(·), and c(·). If φ is known, this is an
exponential-family model with canonical parameter θ. It may or may not
be a two-parameter exponential family if φ is unknown. Many common
discrete and continuous distributions are members of this general family
of probability distributions, such as the normal, gamma, binomial, and
Poisson distributions.

Let l(θ, φ; y) denote the log-likelihood function considered as a function
of θ and φ:

l(θ, φ; y) = log
(
f(y; θ, φ)

)
=
yθ − b(θ)
a(φ)

+ c(y, φ).

It is convenient to find the mean and variance of y using properties of the
score function

U =
∂

∂θ

[
l(θ, φ; y)

]
.
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To find the moments of U , we use the fact that

∂

∂θ

[
log
(
f(y; θ, φ)

)]
=

1
f(y; θ, φ)

∂

∂θ

[
f(y; θ, φ)

]
. (9.2)

Taking the expectation of both sides of Equation (9.2) yields∫
∂

∂θ

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)dy =

∫
∂

∂θ

[
f(y; θ, φ)

]
dy. (9.3)

Under certain regularity conditions, the right-hand side of Equation (9.3)
is ∫

∂

∂θ

[
f(y; θ, φ)

]
dy =

∂

∂θ

[∫
f(y; θ, φ)dy

]
=

∂

∂θ

[
1
]

= 0

because
∫
f(y; θ, φ)dy = 1. Therefore, E(U) = 0.

Differentiating both sides of Equation (9.3) with respect to θ gives

∂

∂θ

[∫
∂

∂θ

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)dy

]
=

∂

∂θ

[∫
∂

∂θ

[
f(y; θ, φ)

]
dy

]
. (9.4)

Provided that the order of differentiation and integration can be inter-
changed, the right-hand side of Equation (9.4) is

∂2

∂θ2

[∫
f(y; θ, φ)dy

]
= 0

and the left-hand side is∫
∂

∂θ

[
∂

∂θ

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)

]
dy

=
∫ {

∂2

∂θ2

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)

+
∂

∂θ

[
log
(
f(y; θ, φ)

)] ∂
∂θ

[
f(y; θ, φ)

]}
dy. (9.5)

From Equation (9.2),

∂

∂θ

[
f(y; θ, φ)

]
= f(y; θ, φ)

∂

∂θ

[
log
(
f(y; θ, φ)

)]
.

The second term of the right-hand side of Equation (9.5) then simplifies to

∂

∂θ

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)

∂

∂θ

[
log
(
f(y; θ, φ)

)]
=
(
∂

∂θ

[
log
(
f(y; θ, φ)

)])2

f(y; θ, φ).
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Therefore, Equation (9.4) becomes∫
∂2

∂θ2

[
log
(
f(y; θ, φ)

)]
f(y; θ, φ)dy

+
∫ (

∂

∂θ

[
log
(
f(y; θ, φ)

)])2

f(y; θ, φ)dy = 0,

or

E
[
∂2

∂θ2

[
log
(
f(y; θ, φ)

)]]
+ E
[(

∂

∂θ

[
log
(
f(y; θ, φ)

)])2]
= 0.

In terms of the score function

U =
∂

∂θ

[
l(θ, φ; y)

]
,

we have E(U ′)+E(U2) = 0, where ′ denotes differentiation with respect to
θ. Thus,

E(U) = 0,
Var(U) = E(U2) − [E(U)]2 = E(U2)

= −E(U ′).

The variance of U is called the information.
Because

l(θ, φ; y) =
yθ − b(θ)
a(φ)

+ c(y, φ),

the score function is

U =
∂

∂θ

[
l(θ, φ; y)

]
=
y − b′(θ)
a(φ)

.

Therefore, E(Y ) = a(φ)E(U)+b′(θ) = b′(θ), because E(U) = 0. The deriva-
tive of U with respect to θ is

U ′ =
∂

∂θ

[
y − b′(θ)
a(φ)

]
=

−b′′(θ)
a(φ)

.

Because E(U2) = −E(U ′),

E

[(
Y − b′(θ)
a(φ)

)2
]

=
b′′(θ)
a(φ)

and Var(Y ) = b′′(θ)a(φ). Note that the variance of y is a product of two
functions; b′′(θ) is called the variance function and is denoted V (µ).
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As an example, suppose that y is normally distributed with mean µ and
variance σ2. Because

f(y) =
1√

2πσ2
exp{−(y − µ)2/(2σ2)}

= exp
{

− 1
2σ2

(
y2 − 2yµ+ µ2)− 1

2
log(2πσ2)

}
= exp

{
yµ− µ2/2

σ2 − 1
2

(
y2

σ2 + log(2πσ2)
)}

,

θ = µ, φ = σ2, b(θ) = θ2/2, a(φ) = φ. Therefore,

E(Y ) = b′(θ) = θ = µ,

Var(Y ) = b′′(θ)a(φ) = 1 × φ = σ2.

The variance function is V (µ) = 1, and the dispersion parameter is φ = σ2.
As a second example, suppose that y has the Poisson distribution with

mean µ. Because

f(y) = µy exp(−µ)/y!
= exp

{
y log(µ) − µ− log(y!)

}
= exp

{
y log(µ) − exp

(
log(µ)

)− log(y!)
}
,

θ = log(µ), a(φ) ≡ 1, and b(θ) = eθ. Therefore,

E(Y ) = b′(θ) = eθ = µ,

Var(Y ) = b′′(θ)a(φ) = eθ = µ.

In this case, the variance function is V (µ) = µ and the dispersion parameter
is φ = 1.

As a final example, suppose that y has the binomial distribution with
parameters n and π. In this case,

f(y) =
(
n

y

)
πy(1 − π)n−y

= exp
{

log
(
n

y

)
+ y log(π) + (n− y) log(1 − π)

}
= exp

{
y log
( π

1 − π

)
+ n log(1 − π) + log

(
n

y

)}
and θ = log

(
π/(1 − π)

)
, a(φ) = 1. Because

n log(1 − π) = −n log
( 1

1 − π

)
= −n log

(
1 +

π

1 − π

)
,

b(θ) = n log
(
1 + exp(θ)

)
. Therefore,

E(Y ) = b′(θ) = neθ/(1 + eθ) = nπ,

Var(Y ) = b′′(θ)a(φ) = neθ/(1 + eθ)2 = nπ(1 − π).
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9.2.3 Systematic Component
The systematic component of a generalized linear model specifies the ex-
planatory variables. These enter linearly as predictors on the right-hand
side of the model equation. For example, suppose that each yi has an asso-
ciated p×1 vector of covariates xi = (xi1, . . . , xip)′. The linear combination
ηi = β0 + β1xi1 + · · · + βpxip is called the linear predictor.

Some {xj} may be based on others in the model. For example, x3 = x1x2
allows for interaction between x1 and x2 in their effects on y. As another
example, x3 = x2

1 allows for a curvilinear effect of x1.

9.2.4 Link Function
The link between the random and systematic components specifies how

µ = E(y)

relates to the explanatory variables in the linear predictor. One can model
the mean µ directly or model a monotonic, differentiable function g(µ) of
the mean. The model formula specifies that

g(µ) = β0 + β1x1 + · · ·βpxp.

The function g is called the link function.
The link function g relates the linear predictor ηi to the expected value

µi of yi. Link functions that map the parameter space for the mean to the
real line are preferred in order to avoid numerical difficulties in estimation.

The simplest link function is the identity link: g(µ) = µ. This choice of
link models the mean directly. The identity link specifies a linear model for
the mean response:

µ = β0 + β1x1 + · · ·βpxp.

This is the form of an ordinary regression model for a continuous response.
Other link functions permit the mean to be nonlinearly related to the pre-

dictors. For example, g(µ) = log(µ) models the log of the mean. This might
be appropriate when µ cannot be negative. A generalized linear model with
this link is called a loglinear model.

The function
g(µ) = log

( µ

1 − µ

)
is called the logit link. This choice is often appropriate when µ is between 0
and 1—for example, when µ is a probability. A generalized linear model
using this link is called a logit model.

9.2.5 Canonical Links
Each probability distribution for the random component has one special
function of the mean that is called its natural parameter. For example, the
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natural parameter for the normal distribution is the mean itself. Similarly,
the log of the mean is the natural parameter for the Poisson distribution,
and the logit of the success probability is the natural parameter for the
Bernoulli distribution.

The link function that uses the natural parameter as g(µ) is called the
canonical link. The canonical link functions for the normal, Poisson, and
Bernoulli distributions are:

Normal : g(µ) = µ;
Poisson : g(µ) = log(µ);

Bernoulli : g(µ) = log
(
µ/(1 − µ)

)
.

Although other links are possible, the canonical links are most common
in practice. Use of the canonical link function leads to inference for the
regression parameters based solely on sufficient statistics.

Let y1, . . . , yn be independent random variables with distributions given
by Equation (9.1). The log-likelihood function for y1, . . . , yn is

l =
n∑

i=1

l(θi, φ; yi) =
1

a(φ)

n∑
i=1

yiθi − 1
a(φ)

n∑
i=1

b(θi) +
n∑

i=1

c(yi, φ).

Let xi denote the vector of covariate values corresponding to the ith ob-
servation yi, and let β denote the vector of regression parameters. If

θi = ηi = g(µi) = x′
iβ,

the first term of l is
1

a(φ)

n∑
i=1

yix
′
iβ.

Let X = (x1, . . . ,xn)′ denote the n× p matrix of covariate values from
all n subjects, and let y = (y1, . . . , yn)′. The p × 1 vector X ′y with jth
component

∑n
i=1 xijyi is a sufficient statistic for β, and η = θ is called the

canonical link function.
The canonical links lead to desirable statistical properties of the model,

particularly in small samples. There is usually no a priori reason, however,
why the systematic effects in a model should be additive on the scale given
by that link. Thus, although it is convenient if effects are additive on the
canonical link scale, quality of fit should be the primary model-selection
criterion. Fortunately, the canonical links are usually quite sensible on sci-
entific grounds.

For example, in classical linear models for normally distributed response
variables, the identity link is plausible because both η and µ can take any
value on the real line. In other situations, however, the identity link may
not be appropriate.



9.2 Univariate Generalized Linear Models 281

As an example, because the mean µ of the Poisson distribution is greater
than zero, the identity link is less attractive (because η = x′

iβ may be neg-
ative). In addition, because models for counts based on independence lead
naturally to multiplicative effects, the log link η = log(µ) is reasonable.
Because the inverse function is µ = eη, additive effects contributing to η
become multiplicative effects contributing to µ, and µ is necessarily posi-
tive.

For binary response variables, 0 < µ < 1. A desirable link function
should map the interval (0, 1) to the real line. The logit function satisfies
this requirement. In addition, use of the logit link for binary responses leads
to parameters with odds-ratio interpretations.

9.2.6 Parameter Estimation
Overview

Maximum likelihood (ML) estimates of the parameter vector β can be
obtained by iterative weighted least squares. The dependent variable is z
rather than y, where z is a linearized form of the link function applied to
y. The weights are functions of the fitted values µ̂. The process is iterative
because both the adjusted dependent variable z and the weight depend on
the fitted values, for which only current estimates are available.

Maximum Likelihood Estimation

The log-likelihood for independent responses y1, . . . , yn is

l =
n∑

i=1

li =
n∑

i=1

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
.

Under certain regularity conditions, the global maximum of l is the solution
of

∂l

∂βj
= 0

for j = 1, . . . , p. By the chain rule,

∂li
∂βj

=
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

for j = 1, . . . , p.
In evaluating this partial derivative, first observe that

∂li
∂θi

=
yi − b′(θi)
a(φ)

=
yi − µi

a(φ)
.

Because µi = b′(θi),

∂µi

∂θi
= b′′(θi) =

Var(yi)
a(φ)

= V (µi).
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Because ηi =
∑p

j=1 xijβj ,
∂ηi

∂βj
= xij .

Therefore,

∂li
∂βj

=
yi − µi

a(φ)
a(φ)

Var(yi)
∂µi

∂ηi
xij

=
(yi − µi)xij

Var(yi)
∂µi

∂ηi
.

Thus, the ML estimate of β = (β1, . . . , βp)′ is the solution of the equations

Uj =
n∑

i=1

(yi − µi)xij

Var(yi)
∂µi

∂ηi
= 0

for j = 1, . . . , p. Note that this depends on the density f only through the
mean and variance. In general, these equations are nonlinear and must be
solved numerically using iterative methods.

ML Estimation Using the Newton–Raphson Method

The multidimensional analog of Newton’s method requires the p×p matrix
of second derivatives

∂2l

∂βj∂βk
.

The mth approximation to β̂ is then given by

b(m) = b(m−1) −
[

∂2l

∂βj∂βk

]−1

β=b(m−1)
× U (m−1),

where [
∂2l

∂βj∂βk

]
β=b(m−1)

is the matrix of second derivatives of l evaluated at the estimate of β from
the (m − 1)st iteration and U (m−1) is the vector of first derivatives of l
evaluated at the estimate of β from the (m− 1)st iteration.

Score Function and Information Matrix

Before describing an alternative method of ML estimation, we first define
the score function and information matrix. Let y1, . . . , yn be independent
random variables whose probability distributions depend on parameters
θ1, . . . , θp, where p ≤ n. Let li(θ; yi) denote the log-likelihood function of
yi, where θ = (θ1, . . . , θp)′. The log-likelihood function of y1, . . . , yn is

l(θ, y) =
n∑

i=1

li(θ; yi),
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where y = (y1, . . . , yn)′.
The total score with respect to θj is defined as

Uj =
∂l(θ; y)
∂θj

=
n∑

i=1

∂li(θ; yi)
∂θj

.

By the same argument as for the univariate case,

E
[
∂li(θ; yi)
∂θj

]
= 0,

so E(Uj) = 0 for j = 1, . . . , p.
The information matrix I is defined as the variance–covariance matrix

of U = (U1, . . . , Up)′. The elements of

I = E
[
(U − E(U))(U − E(U))′] = E[UU ′]

are

Ijk = E[UjUk] = E
[
∂li
∂θj

∂li
∂θk

]
.

By an argument analogous to that used in the univariate case (single
random variable, single parameter),

E
[
∂li
∂θj

∂li
∂θk

]
= E
[
− ∂2li
∂θj∂θk

]
.

Thus, the elements of the information matrix are also given by

Ijk = E
[
− ∂2l

∂θj∂θk

]
.

ML Estimation Using the Method of Scoring

An alternative to the Newton–Raphson approach involves replacing the
matrix of second derivatives by the matrix of expected values

E
[

∂2l

∂βj∂βk

]
.

This variation was first introduced in the context of probit analysis by
Fisher (1935) in the appendix of a paper by Bliss (1935). Because

E
[

∂2l

∂βj∂βk

]
= −E

[
∂l

∂βj

∂l

∂βk

]
= −I,

an alternative iterative procedure is given by

b(m) = b(m−1) +
[I(m−1)]−1

U (m−1),
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where I(m−1) denotes the information matrix evaluated at b(m−1). Multi-
plication of both sides of the previous equation by I(m−1) gives

I(m−1)b(m) = I(m−1)b(m−1) + U (m−1).

For generalized linear models, the (j, k)th element of I is

Ijk = E
[
∂li
∂βj

∂li
∂βk

]
= E

[
(yi − µi)xij

Var(yi)
∂µi

∂ηi

(yi − µi)xik

Var(yi)
∂µi

∂ηi

]
= E

[
(yi − µi)2 xij xik

[Var(yi)]2

(
∂µi

∂ηi

)2
]

=
xij xik

Var(yi)

(
∂µi

∂ηi

)2

.

Thus, I = X ′WX, where W is the n× n diagonal matrix with elements

wii =
1

Var(yi)

(
∂µi

∂ηi

)2

.

The iterative procedure can now be written as

X ′WXb(m) = X ′WXb(m−1) + U (m−1).

The jth row of the p× n matrix X ′W is

(x1jw11, . . . , xnjwnn) =

(
x1j

Var(y1)

(
∂µ1

∂η1

)2

, . . . ,
xnj

Var(yn)

(
∂µn

∂ηn

)2
)
,

and the jth component of U is

Uj =
n∑

i=1

(yi − µi)xij

Var(yi)
∂µi

∂ηi
.

Now, let v denote the n× 1 vector with ith component

(yi − µi)
∂ηi

∂µi
.

U (m−1) can now be written as X ′Wv(m−1), and the iterative procedure
becomes

X ′WXb(m) = X ′WXb(m−1) + X ′Wv(m−1) = X ′Wz.
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The n× 1 vector z has elements

zi = x′
ib

(m−1) + (yi − µi)
∂ηi

∂µi
,

where µi and ∂ηi

∂µi
are evaluated at b(m−1).

Provided that X ′WX has rank p, the vector of parameter estimates is
given by

b(m) = (X ′WX)−1X ′Wz.

This solution has the same form as for a linear model fitted using weighted
least squares. However, because z and W depend on b, the solution must
be obtained iteratively. The adjusted dependent variable zi can be written
as

zi = η̂i + (yi − µ̂i)
∂ηi

∂µi
,

where the derivative of the link is evaluated at µ̂i. Because the first-order
approximation to g(y) is

g(y) ≈ g(µ) + (y − µ)g′(µ) = η + (y − µ)
∂η

∂µ
,

zi is a linearized form of the link function applied to the data.

ML Estimation for Canonical Links

When the canonical link

ηi = θi =
p∑

j=1

xijβj = x′
iβ

is used, then
∂µi

∂ηi
=
∂µi

∂θi
=
∂b′(θi)
∂θi

= b′′(θi).

In this case,

∂li
∂βj

=
(yi − µi)xij

Var(yi)

(
∂µi

∂ηi

)
=

(yi − µi)xij

Var(yi)
b′′(θi) =

(yi − µi)xij

a(φ)

because Var(yi) = b′′(θi)a(φ). Thus,

Uj =
∂l

∂βj
=

n∑
i=1

(yi − µi)xij

a(φ)

for j = 1, . . . , p.
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The (j, k) component of the matrix of second derivatives is

∂2l

∂βj∂βk
= −

n∑
i=1

xij

a(φ)

(
∂µi

∂βk

)
for j, k = 1, . . . , p. Because these components do not depend on the obser-
vations yi, . . . , yn,

∂2l

∂βj∂βk
= E
[

∂2l

∂βj∂βk

]
.

Thus, the Newton–Raphson and Fisher scoring algorithms are identical.

9.3 Quasilikelihood

9.3.1 Introduction
Most statisticians agree on the importance of the likelihood function in
statistical inference. To construct a likelihood function, however, we must
know (or postulate) probability distributions for random variables. In some
cases, there may be no theory available on the specific random mechanism
by which the data were generated. In other situations, the appropriate
theoretical probability distribution may be inadequate to accommodate the
complexities of the observed data. For example, the variance of the response
may exceed the nominal variance (overdispersion). Another possibility is
that the underlying theoretical model may be too complicated to permit
parameter estimation and statistical inference.

In such cases, however, we may still have substantial information about
the data, such as:

• type of response variable (discrete, continuous, nonnegative, symmet-
ric, skewed, etc.);

• whether the observations are statistically independent;

• how the variability of the response changes with the average response;

• the likely nature of the relationship between the mean response and
one or more covariates.

In such situations, quasilikelihood is a method for statistical inference when
it is not possible to construct a likelihood function (Wedderburn, 1974; Mc-
Cullagh, 1983). This estimation technique possesses many of the advantages
of maximum likelihood estimation without requiring full distributional as-
sumptions.

Let y = (y1, . . . , yn)′ be a vector of independent random variables with
mean vector µ = (µ1, . . . , µn)′. Let β = (β1, . . . , βp)′ be a vector of un-
known parameters with p ≤ n. We will assume that the parameters of
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interest, β, relate to the dependence of µ on a vector of covariates x. This
will be denoted by the notation that yi has mean µi(β).

We will also assume that Var(yi) = φV (µi), where V (·) is a known
function and φ is a possibly unknown scale parameter. Thus,

Var(y) = φV (µ),

where V (µ) is a matrix with diagonal elements V (µ1), . . . , V (µn) and off-
diagonal elements of zero.

It is important to note that φ is assumed to be constant for all subjects
and does not depend on β and that Var(yi) depends only on µi. This latter
assumption is mathematically necessary but is also physically sensible. It
would be permissible to have Var(yi) = φVi(µi); that is, a possibly different
functional relationship for each observation.

9.3.2 Construction of a Quasilikelihood Function
Consider the random variable

Ui =
yi − µi

φV (µi)
.

Ui has the following properties in common with a log-likelihood derivative:

E(Ui) = 0,

Var(Ui) = E(U2
i ) =

E[(yi − µi)2]
[φV (µi)]2

=
1

φV (µi)
,

E
(
∂Ui

∂µi

)
= E

[−φV (µi) − (yi − µi)φV ′(µi)
[φV (µi)]2

]
= − 1

φV (µi)
= −Var(Ui).

Most first-order asymptotic theory connected with likelihood functions is
founded on the preceding three properties. Thus, it should not be surprising
that the integral

Q(µi; yi) =
∫ µi

yi

yi − t

φ V (t)
dt,

if it exists, should behave like a log-likelihood function for µi. We refer to
Q(µi; yi) as the quasilikelihood for µi based on data yi (or, more correctly,
as the log quasilikelihood). Because the components of y are independent,
the quasilikelihood for the complete data is

Q(µ; y) =
n∑

i=1

Q(µi; yi).
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As an example, suppose that the random variable y has the N(µ, σ2)
distribution. Then, V (µ) = 1 and φ = σ2. In this case,

U =
y − µ

σ2 .

The quasilikelihood function is

Q(µ, y) =
∫ µ

y

y − t

σ2 dt

=
1
σ2

[
yt− t2

2

]µ
y

=
1
σ2

[
yµ− µ2

2
− y2 +

y2

2

]
=

1
2σ2

[
2yµ− µ2 − y2

]
= − (y − µ)2

2σ2 .

This is equivalent to the log-likelihood for the N(µ, σ2) distribution.
As a second example, suppose that y ∼ P (µ). In this case, V (µ) = µ,

φ = 1, and

U =
y − µ

µ
.

The quasilikelihood function is

Q(µ, y) =
∫ µ

y

y − t

t
dt

=
∫ µ

y

(y
t

− 1
)

=
[
y log(t) − t

]µ
y

= y log(µ) − µ− y log(y) + y.

In comparison, the log-likelihood for the P (µ) distribution is

y log(µ) − µ− log(y!).

The log-likelihood and the quasilikelihood differ only with respect to terms
not involving the parameter µ.

As a third example, suppose that y has the Bernoulli distribution B(1, π).
Then, µ = π, V (µ) = µ(1 − µ), and φ = 1. In this case,

U =
y − π

π(1 − π)
.
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The quasilikelihood function is

Q(π, y) =
∫ π

y

y − t

t(1 − t)
dt

=
∫ π

y

[
y

t
+
y − 1
1 − t

]
dt

=
[
y log(t) − (y − 1) log(1 − t)

]π
y

= y log
( π

1 − π

)
+ log(1 − π) − y log

( y

1 − y

)
− log(1 − y).

In comparison, the log-likelihood for B(1, π) is

y log
( π

1 − π

)
+ log(1 − π) + log

(
1
y

)
.

These differ only with respect to terms not involving the parameter π.

9.3.3 Quasilikelihood Estimating Equations
If we treat the quasilikelihood function as if it were a “true” log-likelihood,
the estimate of βj satisfies the equation

0 =
∂Q(µ; y)
∂βj

=
n∑

i=1

∂Q(µi; yi)
∂βj

=
n∑

i=1

∂Q(µi; yi)
∂µi

(
∂µi

∂βj

)
=

n∑
i=1

yi − µi

φV (µi)

(
∂µi

∂βj

)
.

In terms of matrices and vectors, let

y(n×1) = (y1, . . . , yn)′,

µ(n×1) = (µ1, . . . , µn)′,

V (n×n) =


V (µ1) 0 · · · 0

0 V (µ2)
...

. . .
0 V (µn)

 ,
D(n×p) =

(∂µ

∂β

)
,

where the (i, j) component of D is

∂µi

∂βj
.
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The quasilikelihood estimating equation is

U(β̂) = 0p, (9.6)

where
U(β) = D′V −1(y − µ)/φ.

U(β) is called the quasiscore function.
The covariance matrix of U(β), which is also the negative expected value

of
∂U(β)
∂β

,

is I = D′V −1D/φ. For quasilikelihood functions, the matrix I plays the
same role as the Fisher information for ordinary likelihood functions. In
particular, the asymptotic covariance matrix of the vector β̂ is

Var(β̂) = I−1 = φ(D′V −1D)−1.

McCullagh (1983) discusses consistency, asymptotic normality, and opti-
mality of the quasilikelihood estimator β̂.

Starting with an arbitrary estimate b(0) sufficiently close to β, the se-
quence of parameter estimates generated by the Newton–Raphson method
with Fisher scoring is

b(m) = b(m−1) +
[I(m−1)]−1

U (m−1)

= b(m−1) +
[
φ(D′V −1D)−1]× [D′V −1(y − µ)/φ

]
= b(m−1) + (D′V −1D)−1D′V −1(y − µ),

where µ, D, and V are evaluated at µ(m−1). An important property of
the estimation procedure is that it does not depend on the value of φ. For
theoretical purposes, it is helpful to imagine the iterative procedure starting
at b(0) = β. The preceding iterative procedure now shows that the one-step
estimator is a linear function of the data; approximate unbiasedness and
asymptotic normality follow.

In the preceding respects, the quasilikelihood behaves just like an or-
dinary log-likelihood. The one exception is in the estimation of φ. The
conventional estimator of φ is a moment estimator based on the residual
vector y − µ̂, namely

φ̂ =
1

n− p

n∑
i=1

(yi − µ̂i)2

V (µ̂i)
=

X2

n− p
,

where X2 is the generalized Pearson statistic (McCullagh and Nelder, 1989,
p. 34).
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9.3.4 Comparison Between Quasilikelihood and Generalized
Linear Models

The random component of a generalized linear model assumes a specific
distribution for the response yi. Quasilikelihood assumes only a form for
the functional relationship between the mean and the variance of yi. The
quasilikelihood estimating equations for β are

n∑
i=1

yi − µi

φV (µi)

(
∂µi

∂βj

)
= 0, j = 1, . . . , p.

In comparison, the likelihood equations for generalized linear models are

n∑
i=1

(yi − µi)xij

Var(yi)

(
∂µi

∂ηi

)
= 0, j = 1, . . . , p.

Because
∂µi

∂βj
=
∂µi

∂ηi

∂ηi

∂βj
=
∂µi

∂ηi
xij

and
Var(yi) = φV (µi),

the quasilikelihood estimating equations have the same form as the general-
ized linear model likelihood equations. Quasilikelihood estimation, however,
makes only second-moment assumptions about the distribution of yi rather
than full distributional assumptions. Quasilikelihood can also be motivated
in terms of least squares; see, for example, Crowder and Hand (1990).

9.4 Overview of Methods for the Analysis of
Repeated Measurements

9.4.1 Introduction
Statistical researchers have developed several related types of extensions of
generalized linear model and quasilikelihood methods for the analysis of re-
peated measurements. These methods are useful for both discrete and con-
tinuous response variables, including normal, Poisson, binary, and gamma
responses. Generalizations for ordered categorical data have also been stud-
ied.

These approaches offer some significant advantages over some of the other
types of methods discussed in earlier chapters. First, the number of re-
peated measurements per experimental unit need not be constant, and the
measurement times need not be the same across subjects. The linear mixed
models approach (Chapter 6) can accommodate this type of data when
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the response is normally distributed, and randomization model methods
(Chapter 8) can be used for nonnormal and categorical data from a single
sample. However, the general WLS approach for the analysis of categorical
data (Chapter 7) cannot be used in this setting.

In addition, the extensions of generalized linear model methodology for
the analysis of repeated measurements accommodate discrete or continu-
ous, time-independent or time-dependent covariates. The categorical-data
methods of Chapters 7 and 8 are not applicable in this case. Missing data
can also be accommodated, with the restriction that the missing-data mech-
anism must be MCAR (missing completely at random).

Before discussing specific methods, three general types of extensions of
generalized linear model methodology to the analysis of repeated measure-
ments will first be introduced:

• marginal models;

• random-effects models;

• transition models.

This categorization of approaches to the analysis of repeated measure-
ments using extensions of generalized linear models was discussed by Zeger
and Liang (1992). The Ashby et al. (1992) annotated bibliography of meth-
ods for the analysis of correlated categorical data also classifies methods
into one of these three types. The distinctions among these types of models
are especially important for categorical response variables.

Neuhaus (1992) reviews generalized linear model methods for the anal-
ysis of repeated measurements for the case where the response is a binary
variable. In addition to marginal, random effects, and transition models,
he also discusses a fourth general category: response conditional models.
The model proposed by Rosner (1984) exemplifies this approach. Neuhaus
and Jewell (1990) show that response conditional models are useful only
when estimation of covariate effects is not of prime interest and attention
is instead focused on the dependence of responses within clusters.

9.4.2 Marginal Models
Let yij denote the response at time j from subject i. In marginal models,
the marginal expectation µij = E(yij) is modeled as a function of explana-
tory variables. The marginal expectation is the average response over the
subpopulation that shares a common value of the covariate vector. Note
that this is what is modeled in a cross-sectional study. Associations among
repeated observations are modeled separately from the marginal mean and
variance of the response vector.

The assumptions can be outlined as follows:
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1. The marginal expectation µij is related to the covariates through a
known link function g:

g(µij) = x′
ijβ,

where x′
ij = (xij1, . . . , xijp) is a vector of covariates specific to sub-

ject i at time j and β is a p× 1 vector of regression parameters.

2. The marginal variance of yij is related to the marginal expectation
µij via

Var(yij) = φV (µij),

where V is a known variance function and φ is a possibly unknown
scale parameter.

3. The covariance between yij and yij′ is a known function of µij , µij′ ,
and a vector of unknown parameters α.

Note that the marginal regression coefficients have the same interpretation
as coefficients from a cross-sectional analysis.

9.4.3 Random-Effects Models
In random-effects models, heterogeneity between individuals arising from
unmeasured variables is accounted for by including subject-specific random
effects in the model. These random effects are assumed to account for all
of the within-subject correlation present in the data. Conditional on the
values of the random effects, the responses are assumed to be independent.

The assumptions can be outlined as follows:

1. Given a vector bi of subject-specific effects for the ith subject, the
conditional mean of yij satisfies the model

g
(
E(yij |bi)

)
= x′

ijβ + z′
ijbi,

where g is a known link function and zij is a vector of covariates for
subject i at time j.

2. yi1, . . . , yiti are independent given bi for each i = 1, . . . , n.

3. b1, . . . , bn are independent and identically distributed with probabil-
ity density function f .

9.4.4 Transition Models
In transition models for the analysis of repeated measurements, the obser-
vations yi1, . . . , yiti from subject i are correlated because yij is explicitly
influenced by the past values yi1, . . . , yi,j−1. The past outcomes are treated
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as additional predictor variables. The conditional expectation of the current
response, given the past responses, is assumed to follow a generalized linear
model. The linear predictor component of the model includes the original
covariates as well as additional covariates that are known functions of past
responses.

Thus, the general form of the model is

g
(
E(yij |yi1, . . . , yi,j−1)

)
= x′

ijβ +
s∑

r=1

fr(yi1, . . . , yi,j−1;α1, . . . , αs),

where f1, . . . , fs are functions of previous observations and, possibly, of an
unknown parameter vector α = (α1, . . . , αs)′. In addition, the conditional
variance of yij , given the past, is proportional to a known function of the
conditional mean; that is,

Var(yij |yi1, . . . , yi,j−1) = φV
(
E(yij |yi1, . . . , yi,j−1)

)
,

where V is a known variance function and φ is an unknown scale parameter.
Korn and Whittemore (1979), Kalbfleisch and Lawless (1985), Muenz

and Rubinstein (1985), Wong (1986), Bonney (1987), Kaufmann (1987),
Ware et al. (1988), and Zeger and Qaqish (1988), among others, have pro-
posed and studied the use of transition models for various problems.

9.4.5 Comparisons of the Three Approaches
In the case of linear models for continuous, normally distributed responses,
the three approaches can be formulated to have regression coefficients with
the same interpretation; that is, coefficients from random effects and tran-
sition models can have marginal interpretations. Categorical outcome vari-
ables, however, require nonlinear link functions. In this case, the three
approaches give different interpretations for the regression coefficients.

Transition models express the conditional mean of yij as a function of
covariates and past responses. Transition models are appropriate when it is
reasonable to assume that responses follow a stochastic process depending
on the individual only through the values of the measured covariates. As
discussed in Neuhaus (1992), transition models are most appropriate for
assessing the effects of within-cluster (time-dependent) covariates adjusted
for the subject’s response history. Because covariate effects must be inter-
preted as being adjusted for the subject’s response history, the effects of
cluster-level (time-independent) covariates may be poorly estimated using
the transition model approach.

The use of random-effects models is often referred to as a “subject-
specific” or “cluster-specific” approach (Zeger et al., 1988; Neuhaus et al.,
1991). In random-effects models, heterogeneity among individuals is ex-
plicitly modeled using individual-specific effects. The regression coefficients
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have interpretations in terms of the influence of covariates on both an in-
dividual’s response and on the average response of the population.

In contrast, the use of marginal models is referred to as a “population-
averaged” approach. Parameters in marginal models only have interpreta-
tions in terms of the influence of covariates on the population-averaged re-
sponse. Marginal models are appropriate when statistical inferences about
the population average are the focus (i.e., when the scientific objectives
are to characterize and contrast populations of subjects). This difference
should be considered when deciding between marginal and random-effects
models for a particular application. When the scientific focus is on an in-
dividual’s response, random-effects models are preferable. When the focus
is on the population-averaged response, a marginal model may be a better
choice.

Although marginal models and random-effects models are both useful,
in many types of studies marginal models may be the most appropri-
ate. For example, in a clinical trial comparing a treatment group with
a control group, estimation of the average difference between control and
treatment is generally most important. In addition, Zeger et al. (1988),
Neuhaus et al. (1991), and Graubard and Korn (1994) recommend the use
of marginal models when all covariates are time-independent. Lindsey and
Lambert (1998), however, present an opposing view that although marginal
models may sometimes be appropriate for descriptive observational studies,
they should only be used with great care in causal experimental settings,
such as clinical trials. A practical advantage is that software for fitting
marginal models is more widely available.

Another distinction among these three general approaches is that mar-
ginal models model the effects of covariates on the marginal expectations. In
addition, a model for the association among observations from each subject
must also be specified. Random-effects and transition models model the
covariate effects and within-subject associations through a single equation.

9.5 The GEE Method

9.5.1 Introduction
The generalized estimating equations (GEE) methodology for the analysis
of repeated measurements is a marginal model approach that was proposed
by Liang and Zeger (1986); see also Zeger and Liang (1986). The GEE ap-
proach is an extension of quasilikelihood to longitudinal data analysis (an
extension of the generalized linear model estimating equation to multi-
variate responses). The method is semiparametric in that the estimating
equations are derived without full specification of the joint distribution of a
subject’s observations. Instead, we specify only the likelihood for the (uni-
variate) marginal distributions and a “working” covariance matrix for the
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vector of repeated measurements from each subject. The GEE approach
is now sometimes referred to as GEE1 to distinguish it from more recent
extensions.

The GEE method yields consistent and asymptotically normal solutions,
even with misspecification of the time dependence. The estimating equa-
tions reduce to the score equations for multivariate normal outcomes. The
method avoids the need for multivariate distributions by only assuming a
functional form for the marginal distribution at each time point. The covari-
ance structure is treated as a nuisance. Instead, the GEE approach relies on
the independence across subjects to estimate consistently the variance of
the regression coefficients (even when the assumed correlation is incorrect).

The GEE method is feasible in many situations where maximum likeli-
hood approaches are not because the full multivariate distribution of the
response vector is not required. For example, five binary responses per
subject give a multinomial distribution with 25 − 1 = 31 independent pa-
rameters. With GEE, however, only the five marginal probabilities and at
most 5 × 4/2 = 10 correlations are estimated. In addition, the efficiency
loss relative to maximum likelihood is often minimal. Another advantage
is that continuous and categorical covariates can be handled.

Zeger (1988), Zeger et al. (1988), and Liang et al. (1992) provide further
background on the GEE methodology. A related method is to estimate a
separate parameter vector at each time point and then combine the esti-
mates (Wei and Stram, 1988; Moulton and Zeger, 1989).

9.5.2 Methodology
Overview

The first step of the GEE method is to relate the marginal response

µij = E(yij)

to a linear combination of the covariates,

g(µij) = x′
ijβ,

where yij is the response for subject i at time j, xij = (xij1, . . . , xijp)′

is the corresponding p × 1 vector of covariates, and β = (β1, . . . , βp)′ is a
p × 1 vector of unknown parameters. The vector β characterizes how the
cross-sectional response distribution depends on the explanatory variables.
Finally, g(·) is the link function.

The second step of the GEE approach is to describe the variance of yij

as a function of the mean,

Var(yij) = V (µij)φ,
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where V (·) is the variance function and φ is a possibly unknown scale
parameter. For normally distributed responses, natural choices are

g(µij) = µij , V (µij) = 1, Var(yij) = φ.

If the response variable is binary, the choices

g(µij) = log
(

µij

1 − µij

)
, V (µij) = µij(1 − µij), φ = 1,

are often used. If the response variable is a Poisson count,

g(µij) = log(µij), V (µij) = µij , φ = 1,

are often used.
The third step is to choose the form of a ti × ti “working” correlation

matrix Ri(α) for each yi = (yi1, . . . , yiti
)′. The (j, j′) element of Ri(α)

is the known, hypothesized, or estimated correlation between yij and yij′ .
This working correlation matrix may depend on a vector of unknown pa-
rameters α, which is the same for all subjects. Thus, we assume that Ri(α)
for each subject is known except for a fixed number of parameters α that
we must estimate from the data. Although this correlation matrix can dif-
fer from subject to subject, we commonly use a working correlation matrix
R = R(α) that approximates the average dependence among repeated
observations over subjects.

Working Correlation Matrix

We should choose the form of R to be consistent with the empirical corre-
lations. R is called a working correlation matrix because with nonnormal
responses the actual correlation among a subject’s outcomes may depend
on the mean values and hence on x′

ijβ. The GEE method yields consis-
tent estimates of the regression coefficients and their variances, even with
misspecification of the structure of the covariance matrix. In addition, the
loss of efficiency from an incorrect choice of R is inconsequential when the
number of subjects is large.

Several choices for the working correlation structure have been suggested
(Liang and Zeger, 1986). One choice is the independence working correla-
tion model with R = I. This choice is motivated by the fact that when the
number of subjects is large relative to the number of observations per sub-
ject, the correlation influence is often small enough so that ordinary least
squares regression coefficients are nearly efficient. The correlation among
repeated measurements, however, may have a substantial effect on the es-
timated variances of the parameters and hence must be taken into account
to make correct inferences. These considerations suggest the independence
working model with R = I. With this choice, solving the GEE is the same
as fitting the usual regression models for independent data. Hence, one can
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use available software to obtain parameter estimates. The correct variance,
however, is not supplied in standard software packages. This working model
leads to consistent estimates of the parameter vector and its covariance ma-
trix given only that the regression model is specified correctly.

Another choice of working correlation matrix is to choose R equal to a
completely specified matrix R0. Choosing R0 close to the true (unknown)
correlation gives increased efficiency. Unfortunately, the choice is usually
not obvious.

The exchangeable working correlation model has elements Rjj′ = α.
Thus, this model assumes that the correlation between measurements at
any two observation times is constant. The exchangeable correlation struc-
ture is induced in a normal-theory random-effects model with a random
intercept for each subject. Although the assumption of constant correlation
between any two repeated measurements may not be justified in a longi-
tudinal study, it is often reasonable in situations in which the repeated
measurements are not obtained over time. For example, the exchangeable
working correlation model might be reasonable if the independent experi-
mental units were households and responses were obtained from each family
member living in the household or if the independent experimental units
were classrooms and responses were obtained from each student in the
classroom.

The first-order autoregressive model (AR–1) has elements Rjj′ = α|j−j′|.
In this model, the correlation decreases as the distance between the time
points increases. When the responses yij are normally distributed, this is
the correlation structure of the continuous time analog of the first-order
autoregressive process. The AR–1 model is a natural one to consider when
measurements are taken repeatedly over time. One shortcoming is that
the correlations decay very quickly as the spacing between observations
increases; this was illustrated in the example of Section 6.4.2.

Another choice for a working correlation matrix is the stationary m-
dependent model with elements

Rjj′ =
{
α|tj−tj′ | if |tj − tj′ | ≤ m
0 if |tj − tj′ | > m

,

where tj is the jth observation time.
The most general model is the unspecified working correlation matrix

with elements Rjj′ = αjj′ . In the case of a common set of t time points
for each subject, this model has t(t − 1)/2 parameters to be estimated.
Although the unspecified working correlation model is most efficient, it is
useful only when there are relatively few observation times. In addition,
the occurrence of missing data complicates estimation of R because the
estimate obtained using nonmissing data is not guaranteed to be positive-
definite.

In choosing a working correlation matrix, the nature of the problem may
suggest a structure. For example, for repeated measurements obtained over
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time, the AR–1 or unstructured models may be useful. When the repeated
measurements are not naturally ordered, such as when measurements are
obtained from multiple individuals within a family, the exchangeable model
may be useful. When the number of experimental units is large and the clus-
ter sizes are small, the choice of R often has little impact on the estimation
of β. In this case, the independence model may suffice.

When there are many repeated measurements per experimental unit,
modeling the correlation structure may result in increased efficiency. Con-
sideration of alternative working correlation structures may be useful in
this case.

Generalized Estimating Equation

The fourth step of the GEE approach is to estimate the parameter vector β
and its covariance matrix. For the ith subject, let Ai be the ti × ti diagonal
matrix with V (µij) as the jth diagonal element. Also let Ri(α) be the ti×ti
“working” correlation matrix for the ith subject. The working covariance
matrix for yi = (yi1, . . . , yiti

)′ is

V i(α) = φA
1/2
i Ri(α)A1/2

i .

The GEE estimate of β is the solution of

U(β) =
n∑

i=1

(
∂µi

∂β

)′[
V i(α̂)

]−1
(yi − µi) = 0p, (9.7)

where α̂ is a consistent estimate of α and 0p is the p× 1 vector (0, . . . , 0)′.
The estimating equation given by Equation (9.7) is analogous to the

quasilikelihood estimating equation of Equation (9.6) in Section 9.3.3. Be-
cause Equation (9.7) depends on unknown parameters β, α, and φ, Liang
and Zeger (1986) propose replacing φ and α by consistent estimators φ̂(β)
and α̂(β, φ). These are estimated using functions of the standardized Pear-
son residuals

rij =
yij − µ̂ij√

[Vi]jj

. (9.8)

The exact form of the estimator of α depends on the choice of the working
correlation matrix Ri(α). Liang and Zeger (1986) propose residual-based
estimators for the unknown parameters of several different working corre-
lation structures.

The form of the GEE was chosen so that inferences about β are insensi-
tive to an incorrect choice of V i. Information in the first sample moment
is used to estimate β; information in the second sample moment is used to
weight the data efficiently. Choosing the working correlation matrix to be
close to the true correlation structure increases efficiency.
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Solving the GEE

The solution is found by iterating between quasilikelihood methods for
estimating β and a robust method for estimating α as a function of β. The
procedure is as follows:

1. Given current estimates of Ri(α) and φ, calculate an updated esti-
mate of β using iteratively reweighted least squares.

2. Given the estimate of β, calculate the standardized Pearson residuals
rij given by Equation (9.8).

3. Use the residuals rij to consistently estimate α and φ.

4. Repeat steps 1, 2, and 3 until convergence.

Robust Variance Estimate

One approach to estimating the variance–covariance matrix of β̂ would be
to use the inverse of the Fisher information matrix,

V̂ar(β̂) = M−1
0 , (9.9)

where

M0 =
n∑

i=1

(
∂µ̂i

∂β

)′
V −1

i

(
∂µ̂i

∂β

)
and V i = V i(α̂). This is called the “model-based” estimator of Var(β̂). As
shown by Royall (1986), Equation (9.9) will not provide a consistent esti-
mator of Var(β̂) unless the underlying model is correct. In the analysis of
repeated measurements, we are unlikely to be sure that the chosen working
correlation model is the true correlation structure.

Liang and Zeger (1986) recommend that the variance–covariance matrix
of β̂ be estimated by

V̂ar(β̂) = M−1
0 M1M

−1
0 , (9.10)

where

M1 =
n∑

i=1

(
∂µ̂i

∂β

)′
V −1

i (yi − µ̂i)(yi − µ̂i)
′V −1

i

(
∂µ̂i

∂β

)
.

This estimator of Var(β̂) was defined by Royall (1986) and is known as
the “robust” or “information sandwich” estimator. The estimator given by
Equation (9.10) is a consistent estimator of Var(β̂) even if Ri(α) is not the
true correlation matrix of yi.
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Thus, a useful feature of the GEE approach is that the large sample
properties of β̂ and V̂ar(β̂) depend only on the correct specification of the
model for the mean

g(µij) = x′
ijβ.

In particular, the GEE estimators are robust to departures of the working
correlation matrix from the true correlation structure. Note that if the
true correlation structure is correctly modeled, then Var(yi) = V i and
Equation (9.10) simplifies to

V̂ar(β̂) = M−1
0 M1M

−1
0 = M−1

0 M0M
−1
0 = M−1

0 ,

which is the model-based estimator given by Equation (9.9).

Hypothesis Tests

After estimating the vector of regression coefficients β̂, it may be of interest
to test hypotheses concerning the elements of β. Consider hypotheses of
the form

H0: Cβ = d,

where C is a c × p matrix of constants imposing c linearly independent
constraints on the elements of β and d is a p × 1 vector of constants.
Because β̂ is asymptotically normal, the Wald statistic

QC = (Cβ̂ − d)′[CV̂ar(β̂)C ′]−1(Cβ̂ − d)

has an asymptotic χ2
c distribution if H0 is true.

9.5.3 Example
Spasmodic torticollis is a chronic neurological disorder that affects the mus-
cles of the neck, causing the head to pull, turn, or jerk toward the shoulder.
Some patients also experience shaking movements of the head and arms.
The cause is unknown, and there is no known cure. One treatment for spas-
modic torticollis is injections of botulinum toxin into multiple sites in the
contracting muscles of the neck. This has been found to be helpful both in
relieving pain and in lessening spasms.

A randomized, double-blind clinical trial of a new source of botulinum
toxin type A was conducted in 75 patients with spasmodic torticollis. Pa-
tients previously untreated with botulinum toxin were randomized to one
of four groups:

1. placebo (20 subjects);

2. 250 units of botulinum toxin A (19 subjects);

3. 500 units of botulinum toxin A (18 subjects);
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TABLE 9.1. Clinical global ratings at weeks 2, 4, and 8 from 75 patients with
spasmodic torticollis: First ten subjects

CGR (0 = poor, 1 = good)
Subject Group Age Sex Week 2 Week 4 Week 8

1 Placebo 82 F 0 0 0
2 500 41 F 0 0 0
3 250 62 F 0 0 1
4 1000 63 M 0 0 1
5 500 40 M 1 1 1
6 250 43 F 1 1 1
7 1000 56 F 0 0 0
8 Placebo 48 F 0 0 0
9 1000 34 F 0 1 1
10 500 35 M 0 0 0

4. 1000 units of botulinum toxin A (18 subjects).

Following a single injection, patients were evaluated at weeks 2, 4, and 8.
One of the primary outcome variables was a clinical global rating (CGR),

which was coded as a dichotomous variable:

• 1 = symptom free or mild symptoms;

• 0 = moderate or severe symptoms.

The covariates of interest were treatment group, age, sex, and week. Age
was quantitative and ranged from 26 to 82 years with a mean of 47 years.
There were 39 males and 36 females in the study. With six exceptions, the
data are complete:

• two patients (both in the 500-unit group) have no follow-up data;

• one patient in the 1000-unit group has a missing value at week 2;

• one patient in the 1000-unit group has a missing value at week 4;

• two patients from the placebo group have missing values at week 8.

The marginal probabilities of a good response are 32% at week 2, 36%
at week 4, and 34% at week 8. Table 9.1 displays the data from the first
ten subjects.

Because the response variable is dichotomous and there is a continuous
covariate, analysis using a generalized linear model methodology seems
appropriate. The first issue is the type of model: marginal, random-effects,
or transitional. Marginal models are appropriate when inferences about the
average response in the subpopulation sharing a common covariate vector
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value are the focus. In a clinical trial, estimating the average difference
between treatments is generally the most important goal. Thus, a marginal
model seems appropriate for this example.

Because the response variable is binary, the logit link function and the
binomial variance function will be used. The response variable will be de-
fined to be the logit of the probability of a good response. Let yij denote
the response from subject i at time j for i = 1, . . . , 75 and j = 1, . . . , 3,
where

yij =
{

1 if the CGR is “good” (symptom-free or mild symptoms)
0 if the CGR is “poor” (moderate or severe symptoms) .

Also, let xij = (xij1, . . . , xijp)′ denote a p × 1 vector of covariates for
subject i at time j. The regression model is

log
(

µij

1 − µij

)
= x′

ijβ,

where µij = E(yij) and β = (β1, . . . , βp)′ is a p × 1 vector of unknown
parameters.

Using the GEE methodology, a working correlation matrix also must
be specified. Because there are only three time points, the unstructured
model has only three correlation parameters to be estimated and is thus
reasonable to consider. In addition, because the data are nearly complete,
there will not likely be difficulties in estimating the parameters of this
working correlation model. For purposes of comparison, the independence
and exchangeable working correlation structures will also be considered.

The covariates to be considered include treatment group, age, sex, and
week. One parameterization of treatment group is in terms of three indica-
tor variables:

D250 =
{ 1 for 250 units

0 otherwise
, D500 =

{ 1 for 500 units
0 otherwise

,

D1000 =
{ 1 for 1000 units

0 otherwise
.

Using this parameterization, it will be possible to assess the effects of each
botulinum toxin dosage relative to the placebo and also to test the linear
and nonlinear components of dosage (using the spacing 0, 250, 500, 1000).
Age is a quantitative covariate, and the binary covariate for sex will be
equal to 1 for males and 0 otherwise. The time effect will be parameterized
using two indicator variables:

W4 =
{ 1 if week = 4

0 otherwise
, W8 =

{ 1 if week = 8
0 otherwise

.

In addition, interactions among these covariates will also be considered.
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TABLE 9.2. Spasmodic torticollis clinical trial: Wald tests of interaction effects
from model 1

Effect Chi-square df p-value
Age × week 0.30 2 0.84
Sex × week 0.16 2 0.92
Dose × week 4.83 6 0.56
All interactions 5.97 10 0.82

Model 1 includes the covariates age, sex, dosage (three indicator vari-
ables), week (two parameters), and the interactions between week and each
of age, sex, and dosage. Based on the parameterization of the week ef-
fect, the interaction terms estimate the incremental effects of age, sex, and
dosage at each of weeks 4 and 8. Thus, there are 18 regression parameters
(including the intercept). The focus of this model is on assessing differential
effects of age, sex, and dosage over time.

Table 9.2 displays the Wald chi-square statistic, degrees of freedom (df),
and p-value for testing each interaction effect. These are computed as

β′
∗Σ̂

−1
∗ β∗,

where β∗ is the subset of β of interest and Σ̂∗ is the estimated covariance
matrix of β∗. None of these tests of interaction appear to be statistically
significant. The results obtained from the independence and exchangeable
working correlation structures (not shown) are similar.

Because model 1 has a large number of parameters relative to the number
of observations, separate models including all of the main effects and only
one of the interaction effects displayed in Table 9.2 were also fit. In each of
these four models, there was also no evidence of interactions with week.

Model 2 includes the main effects of age, sex, dosage, and week (eight
regression parameters, including the intercept). Table 9.3 displays Wald
tests of the effects included in this model. Similar results were obtained
using the independence and exchangeable working correlation structures.
Relative to the conventional 5% level of significance, the effects of age and
sex are not individually statistically significant. The joint test of these two
effects, however, is significant. Because the week effect is nonsignificant,
these two terms will first be omitted.

Model 3 includes the main effects of age, sex, and dosage (six regression
parameters, including the intercept). Table 9.4 displays Wald tests of the
effects included in this model. The joint effects of age and sex are again
statistically significant at the 5% level of significance. The 3-df test of the
dosage effect is also significant (p = 0.02), as are the 1-df tests comparing
the 500-unit and 1000-unit dosages to the placebo.

Table 9.5 displays the estimated regression parameters from Model 3. The
odds of a good response versus a poor response decrease as age increases,
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TABLE 9.3. Spasmodic torticollis clinical trial: Wald tests from model 2
Effect Chi-square df p-value
Age 3.45 1 0.06
Sex 2.21 1 0.14
Age and sex 6.47 2 0.04
Dose 9.90 3 0.02

250 vs placebo 1.62 1 0.20
500 vs placebo 6.65 1 0.01
1000 vs placebo 6.83 1 0.01

Nonlinear dose 3.11 2 0.21
Week 0.52 2 0.77

TABLE 9.4. Spasmodic torticollis clinical trial: Wald tests from model 3
Effect Chi-square df p-value
Age 3.41 1 0.06
Sex 2.41 1 0.12
Age and sex 6.64 2 0.04
Dose 9.80 3 0.02

250 vs placebo 1.44 1 0.23
500 vs placebo 6.33 1 0.01
1000 vs placebo 6.76 1 0.01

Nonlinear dose 2.81 2 0.25

TABLE 9.5. Spasmodic torticollis clinical trial: Parameter estimates from model 3

Standard
Covariate Estimate Error Odds Ratio
Age −0.03 0.02 0.97
Male sex −0.66 0.42 0.52
250 units 0.87 0.72 2.39
500 units 1.87 0.74 6.49
1000 units 1.91 0.73 6.73
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TABLE 9.6. Spasmodic torticollis clinical trial: Wald tests from model 4
Effect Chi-square df p-value
Age 3.83 1 0.050
Sex 2.60 1 0.107
Age and Sex 7.19 2 0.027
Linear dose 9.28 1 0.002

TABLE 9.7. Spasmodic torticollis clinical trial: Parameter estimates from model 4

Standard
Covariate Estimate Error Odds Ratio
Age −0.03 0.02 0.97
Male sex −0.70 0.43 0.50
Linear dose 0.44 0.14 1.55

are lower for males than for females, and increase as dosage increases. In
particular, the odds of a favorable response are estimated to be 0.97 times
as high for each one-year increase in age. In addition, the odds of a favorable
response are 0.52 times as high for males as for females. Although the non-
linear effect of dosage was not statistically significant (p = 0.25, Table 9.4),
the parameter estimates displayed in Table 9.5 indicate that the effects of
the 500-unit and 1000-unit dosages are similar and are both roughly twice
as large (on the logit scale) as the effect of the 250-unit dosage.

Because the nonlinear effects of dosage are not statistically significantly
different from zero, one might also choose to fit a model with a quantitative
effect for dosage. This would allow interpretation of the dosage effect using
a single parameter. Model 4 is similar to model 3, with the exception that
it includes dosage as a linear term (coded as 0 for placebo, 1 for 250 units,
2 for 500 units, and 4 for 1000 units). Tables 9.6 and 9.7 display the Wald
tests and estimated regression parameters, respectively.

The joint effects of age and sex are again statistically significant at the 5%
level of significance. The 1-df test of the dosage effect is also significant (p =
0.002). The odds of a good response versus a poor response are estimated
to increase by 1.55 for each 250-unit increase in dosage.

In model 3, the test of nonlinearity of the dosage effect is not significant
(chi-square= 2.81 with 2 df, p = 0.24). However, the parameter estimates
of the effects for the two highest dosages (500 and 1000 units) are nearly
identical and are roughly twice as large as those for the 250-unit dosage
(Table 9.5). Thus, the model with indicator effects for dosage may be most
appropriate.

Using the same covariates as were used in model 3, Table 9.8 displays the
parameter estimates, standard errors, and z statistics (estimate/standard
error) for models fit using the unstructured, exchangeable, and indepen-
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TABLE 9.8. Spasmodic torticollis clinical trial: Parameter estimates from model
3 using three different working correlation models

Regression Coefficient
Working Standard

Covariate Correlation Estimate Error z

Age Unstructured −0.0286 0.0155 −1.85
Exchangeable −0.0281 0.0152 −1.85
Independence −0.0285 0.0153 −1.86

Male sex Unstructured −0.6577 0.4240 −1.55
Exchangeable −0.6740 0.4244 −1.59
Independence −0.7221 0.4262 −1.69

250 units Unstructured 0.8698 0.7246 1.20
Exchangeable 0.9073 0.7320 1.24
Independence 0.9850 0.7325 1.34

500 units Unstructured 1.8704 0.7433 2.52
Exchangeable 1.8517 0.7491 2.47
Independence 1.9294 0.7508 2.57

1000 units Unstructured 1.9059 0.7329 2.60
Exchangeable 1.9062 0.7399 2.58
Independence 1.9614 0.7393 2.65

dence working correlation models. All three working correlation models
give similar estimates of the parameters and their standard errors. The
estimated working correlation matrices, however, are quite different. Using
the unstructured working correlation model,

Runstructured =

 1.00 0.67 0.43
0.67 1.00 0.45
0.43 0.45 1.00

 .
In comparison,

Rexchangeable =

 1.00 0.49 0.49
0.49 1.00 0.49
0.49 0.49 1.00


and

Rindependence =

 1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

 .
It is also of interest to compare the results from the GEE method to those

from carrying out separate univariate logistic regression analyses at each of
the three time points. Table 9.9 displays the parameter estimates, standard
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TABLE 9.9. Spasmodic torticollis clinical trial: Parameter estimates from GEE
model 3 and univariate logistic regression models

Regression Coefficient
Covariate Model Estimate Standard Error z

Age GEE −0.029 0.016 −1.85
Week 2 −0.034 0.025 −1.37
Week 4 −0.020 0.024 −0.81
Week 8 −0.034 0.025 −1.33

Male sex GEE −0.658 0.424 −1.55
Week 2 −0.824 0.551 −1.50
Week 4 −0.737 0.547 −1.35
Week 8 −0.650 0.567 −1.15

250 units GEE 0.870 0.725 1.20
Week 2 0.893 0.819 1.09
Week 4 1.359 0.906 1.50
Week 8 0.708 0.953 0.74

500 units GEE 1.870 0.743 2.52
Week 2 1.300 0.824 1.58
Week 4 2.314 0.910 2.54
Week 8 2.220 0.918 2.42

1000 units GEE 1.906 0.733 2.60
Week 2 1.379 0.842 1.64
Week 4 2.348 0.918 2.56
Week 8 2.187 0.921 2.37

errors, and z statistics (estimate/standard error) for GEE model 3 as well
as for univariate logistic regression models fit using the data from week 2
only, week 4 only, and week 8 only. Although the parameter estimates
from the univariate models differ somewhat across the three time points,
the differences are not large relative to the estimated standard errors. In
addition, the standard error estimates from the GEE model are smaller
than those from the univariate models.

9.5.4 Hypothesis Tests Using Wald Statistics
In the example of Section 9.5.3, hypotheses concerning regression param-
eters were tested using Wald statistics. One disadvantage of Wald tests of
hypotheses about individual parameters or sets of parameters is that such
tests are dependent on the measurement scale (not invariant to transforma-
tions). Another disadvantage of Wald tests is that they require estimation
of the covariance matrix of the vector of parameter estimates. Estimates of
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variances and covariances may be unstable if the sample size (number of
independent experimental units) is small or if the number of repeated mea-
surements per experimental unit is large. In the example of Section 9.5.3,
there were only three time points and 73 subjects from whom the outcome
variable was observed on one or more of the three occasions. In this case,
Wald tests may perform reasonably well.

In the context of sample-survey analysis, Shah et al. (1977) discuss strate-
gies for making adjustments to Wald statistics based on the number of clus-
ters (independent experimental units) to produce test statistics with better
properties for moderate sample sizes. In particular, they propose a modifi-
cation of the Wald statistic based on the same type of transformation used
in transforming Hotelling’s T 2 statistic to the F distribution. This test is
more conservative than the Wald test. LaVange et al. (2001) suggest that
the Wald and F -transform p-values be used as lower and upper bounds for
judging the robustness of the actual p-value. As the number of independent
experimental units increases, these statistics give similar conclusions.

Rotnitzky and Jewell (1990) and Boos (1992) discuss the use of “work-
ing” score and likelihood ratio tests for GEE. Hanfelt and Liang (1995)
also consider approximate likelihood ratio tests. Although likelihood ratio
tests are not implemented in standard software packages, version 8 of SAS
(SAS Institute, 1999) provides the Rotnitzky and Jewell (1990) score tests
in the GENMOD procedure.

9.5.5 Assessing Model Adequacy
Rotnitzky and Jewell (1990) consider the problem of assessing the closeness
of the working correlation matrix R(α) to the true correlation structure.
Inferences regarding the regression coefficients β can be made using:

1. the robust variance estimator M−1
0 M1M

−1
0 ;

2. the model-based variance estimator M−1
0 .

The first estimator is consistent even if R(α) is misspecified. It may, how-
ever, be inefficient. The second estimator assumes that R(α) is correctly
specified.

Consider testing the hypothesis that the first q components of β are
equal to specified values. Rotnitzky and Jewell (1990) show that if variance
estimation is based on M−1

0 , the Wald statistic is asymptotically equal to

c1X1 + c2X2 + · · · cqXq,

where c1 ≥ c2 ≥ · · · ≥ cq ≥ 0 are the eigenvalues of a matrix Q and Q is a
function of (

∂µi

∂β

)
,
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V i, and Ai. In addition, X1, . . . , Xq are independent χ2
1 random variables.

Examination of the weights cj provides information on how close the
working correlation matrix R(α) is to the true correlation structure and on
the effect of a particular choice of V i on the inference about the components
of β. The asymptotic mean and variance of the Wald statistic are

∑
cj and

2
∑
c2j , respectively.

If V i is close to Cov(yi), then

c1 =
∑

cj/q, c2 =
∑

c2j/q,

will both approximately equal 1. Points close to (1, 1) in a plot of c1 versus
c2 for different choices of R(α) indicate reasonable choices of the work-
ing correlation structure. Note that c1 and c2 can be computed without
computation of the individual eigenvalues:

qc1 = trace(Q), qc2 = trace(Q2).

Probability statements about c1 and c2 would, however, require the null
distribution of Q̂. Hadgu et al. (1997) and Hadgu and Koch (1999) demon-
strate the use of this approach.

Pan (2001a) describes another approach for assessing the adequacy of
the working correlation matrix. He proposes a modified Akaike criterion
for GEE called the QIC, where the likelihood is replaced by the quasilike-
lihood and the penalty term also takes a modified form. This criterion can
be used both for choosing the working correlation matrix in the estimat-
ing equation and for selecting explanatory variables to be included in the
model. Albert and McShane (1995) assess the correlation structure using
variograms, and Heagerty and Zeger (1998) propose a new diagnostic (the
lorelogram) for assessing the correlation structure for repeated measure-
ments of a categorical outcome variable.

Preisser and Qaqish (1996) propose regression diagnostics to be used
with the GEE approach. They consider leverage and residuals to measure
the influence of a subset of observations on the estimated regression param-
eters and on the estimated values of the linear predictor. In addition, they
provide computational formulas that correspond to the influence of a sin-
gle observation and of an entire cluster of correlated observations. Barnhart
and Williamson (1998) propose an overall goodness-of-fit test for GEE when
the response is binary; this is based on the Hosmer and Lemeshow (2000)
approach for logistic regression.

9.5.6 Sample Size Estimation
Liu and Liang (1997) present a general approach for computing sample
size and power for studies involving correlated observations. Their ap-
proach is a multivariate extension of work by Self and Mauritsen (1988) and
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Self et al. (1992), who proposed methods for sample size and power calcula-
tions in the context of generalized linear models. Liu and Liang (1997) use
GEE methodology to extend this approach to studies with correlated ob-
servations. Based on the GEE method, a quasiscore test statistic is used to
derive the sample size needed. Liu and Liang (1997) provide general results
as well as simplified sample size formulas for some special cases, including
linear regression with repeated measurements and the two-sample problem
with a repeated binary response. Their simplified expressions for the binary
case assume the exchangeable correlation structure. They demonstrate the
adequacy of their formula using simulation.

Shih (1997) and Rochon (1998) describe alternative methodologies for
sample size and power calculations in GEE. Shih’s approach is based on the
standardized statistic (parameter estimate divided by estimate of standard
error) using the GEE estimator of the variance of the parameter of interest.
Pan (2001b) further describes Shih’s (1997) approach and derives explicit
formulas for several special cases when the response variable is binary.
Rochon (1998) bases his approach on the noncentral version of the Wald
chi-square statistic and uses the damped exponential family of correlation
structures described by Muñoz et al. (1992) for the working correlation ma-
trix. Rochon (1998) presents applications to repeated binary, count, and
continuous outcome variables and provides a table for two-group compar-
isons when the response is binary. Lee and Dubin (1994) and Lipsitz and
Fitzmaurice (1994) also discuss sample size estimation; their approaches
are restricted to the case of repeated binary responses.

9.5.7 Studies of the Properties of GEE
Several researchers have reported the results of empirical studies of the
properties of GEE estimators and test statistics (Paik, 1988; Lipsitz et al.,
1991; Emrich and Piedmonte, 1992; Sharples and Breslow, 1992; Park, 1993;
Hall, 1994; Li, 1994; Lipsitz et al., 1994a; Gunsolley et al., 1995; Hendricks
et al., 1996; among others). Most of these studies have focused on the use
of the GEE method for analyzing binary response variables. The results
will be briefly summarized in terms of the sample size n (number of inde-
pendent experimental units), the number of time points t, and the number
of covariates p.

Lipsitz et al. (1991) simulated binary data with n = 100, t = 2, p = 1, and
seven correlation structures. They reported that the parameter estimates
were biased slightly upward and that the bias increased as the magnitude of
the correlation among repeated measurements increased. Confidence inter-
val coverage probabilities were close to the nominal 95% level. Additional
simulations with n = 40 led to convergence problems (except with the
independence working correlation model).

Emrich and Piedmonte (1992) simulated binary data with n = 20, t = 64,
p = 4, and four correlation structures. In all cases considered, parameter
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estimates were unbiased. Type I error rates, however, were inflated from
the nominal 5% level. These ranged to as high as 8% for tests of individual
parameters and to as high as 17% for joint tests.

Lipsitz et al. (1994a) simulated binary data with n = 15, 30, and 45,
t = 3, p = 4, and three exchangeable correlation structures. Type I error
rates were close to the nominal 5% level, and confidence interval coverage
probabilities were close to the nominal 95% level.

Li (1994) simulated binary data with n = 25, 50, 100, and 200; t = 3,
p = 1, 2, and 3, and four correlation structures. Empirical test sizes and
confidence interval coverage proportions were close to nominal levels. He
reported convergence problems using the GEE methodology with the un-
structured correlation structure when n = 25. Li (1994) also studied the
properties of WLS estimates and confidence intervals. The WLS approach
performed as well as the GEE approach, even when n = 25.

Hall (1994) simulated binary data with n = 80, t = 4, p = 3, and
seven correlation structures. He studied the bias and mean square error of
the estimates of the regression parameters and concluded that the GEE
methodology provides satisfactory performance.

Hendricks et al. (1996) evaluated the properties of GEE in the context of
a study with geographic clustering and a binary outcome variable. Although
GEE accounted for the intracluster correlation when present, estimates of
the intracluster correlation were negatively biased when no intracluster
correlation was present. In addition, and possibly related to the negatively
biased estimates of intracluster correlation, they also found inflated type I
error estimates from the GEE method.

Paik (1988) investigated the small-sample properties of the GEE ap-
proach for correlated gamma data. With t = 4 and p = 1, point estimates
and confidence intervals perform satisfactorily if n ≥ 30. With t = 4 and
p = 4, point estimates and confidence intervals perform satisfactorily if
n ≥ 50.

Park (1993) simulated multivariate normal data with n = 30 and 50,
t = 4, p = 3, and missing-data probabilities of 0.1, 0.2, and 0.3. For n = 30,
confidence interval coverage probabilities were less than nominal levels. For
n = 50, coverage probabilities are close to nominal levels. Park (1993) com-
pared GEE estimators with normal-theory maximum likelihood estimators
and reported that GEE estimators are more sensitive to the occurrence of
missing data.

9.5.8 Computer Software
Karim and Zeger (1988) wrote the first widely available program for the
GEE method. This was a SAS macro written using the SAS IML proce-
dure. Lipsitz and Harrington (1990) published a SAS macro. Davis (1993)
published a FORTRAN program for GEE. Although not as user-friendly
as the SAS macros, it can be run on any type of computer. Carey (1994)
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wrote an S-PLUS program that is available from STATLIB. The SUDAAN
software package (SUDAAN, 2001), the SAS GENMOD procedure (SAS
Institute, 1999), and the STATA statistical package (Hardin and Hilbe,
2001; STATA Corporation, 2001) can also be used.

9.5.9 Cautions Concerning the Use of GEE
First, the GEE method is semiparametric (not nonparametric). Correct
specification of the marginal mean and variance are required. In addition,
missing data cannot depend on observed or unobserved responses. A mod-
erate to large number of independent experimental units (n) is required.
The bias and efficiency for finite samples may depend on:

• number of experimental units (n);

• distribution of cluster sizes;

• magnitudes of the correlations among repeated measurements;

• number and type of covariates.

Another caution concerns the use of GEE with time-dependent covari-
ates. Pepe and Anderson (1994) show that when there are time-dependent
covariates in the regression model, β̂ may not always be a consistent esti-
mator of β. In this case, one must either:

1. use a diagonal working covariance matrix;

2. verify that the marginal expectation E(yij |xij) is equal to the partly
conditional expectation E(yij |xi1, . . . , xiti).

Condition 2 is that the outcome at a particular time point does not de-
pend on covariate values at other time points, after controlling for the
covariate values at the particular time point. Note that the second condi-
tion is trivially satisfied when the covariates are time-independent. Pepe
and Anderson (1994) describe some general classes of correlation structures
for which condition 2 does and does not hold.

Crowder (1995) also points out a potential shortcoming of the GEE
methodology. He shows that, in some cases, the parameters involved in
the specification of the working correlation matrix are subject to an uncer-
tainty of definition that can lead to a breakdown of the asymptotic proper-
ties of the estimators. This situation does not occur when the independence
working correlation model is used.
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9.6 Subsequent Developments

9.6.1 Alternative Procedures for Estimation of GEE
Association Parameters

As described in Section 9.5.2, the second step of the GEE iteration pro-
cedure uses the standardized Pearson residuals defined by Equation (9.8).
Although this choice may be most appropriate for continuous, normally dis-
tributed outcomes, it may not be best for categorical response variables. In
univariate generalized linear models, other types of residuals have been con-
sidered. Modifying the GEE estimation procedure to use a type of residual
more appropriate to the response variable might lead to better properties.

Anscombe (1953) proposed defining a residual using a function A(y)
instead of y. The function A is chosen to make the distribution of A(y)
more normal and is given by ∫

dµ

V 1/3(µ)
.

Application of this approach to generalized linear models is described in
McCullagh and Nelder (1989).

In particular, for Poisson outcomes, Anscombe residuals are defined by

rA
ij =

3
2 (y2/3

ij − µ̂
2/3
ij )

µ̂
1/6
ij

.

Similarly, the function A(y) for binary outcomes is

A(y) =
∫ y

0
t−1/3(1 − t)−1/3dt.

This can be computed using algorithms for computing the incomplete beta
function I( 2

3 ,
2
3 ).

Another type of residual is the deviance residual. In univariate general-
ized linear models with outcomes y1, . . . , yn, the deviance is often used as
a measure of discrepancy. The deviance residual is the signed square root
of the contribution of each observation to the likelihood ratio statistic for
comparing the model under investigation to the full model with n param-
eters. For Poisson outcomes, the deviance residual is

rD
ij = sign(yij − µ̂ij)

√
2(yij log(yij/µ̂ij) − yij + µ̂ij).

For binary outcomes,

rD
ij =
{−√2 | log(1 − π̂ij)| if yij = 0√

2 | ln(π̂ij)| if yij = 1
,
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where π̂ij is the predicted probability at the current value of β.
Park et al. (1998) study the use of alternative residuals in the second

step of the GEE estimation procedure. They investigate the use of Pear-
son, Anscombe, and deviance residuals in a model for generating corre-
lated Poisson and binary responses with arbitrary covariance structure.
Park et al. (1998) show that there are no clear distinctions among methods.
The properties of the GEE estimates, confidence intervals, and test sizes
are satisfactory using all three types of residuals. In particular, empirical
test sizes for a nominal test at the 5% level of significance are between
4% and 6% for all sample sizes considered. The only notable difference is
that estimation using deviance residuals gives lower power than Pearson or
Anscombe residuals. Park et al. (1998) conclude that there is no compelling
reason to consider use of alternatives to Pearson residuals.

Lipsitz et al. (1991) propose a different approach to modeling the GEE
association parameters. For binary outcomes, they study using the odds
ratio as the measure of association instead of the Pearson correlation co-
efficient. This is also considered by Liang et al. (1992). One advantage of
this approach is that the odds ratio may be easier to interpret than the
correlation coefficient. Other advantages are that pairwise odds ratios are
not constrained by the marginal probabilities and are also not constrained
to be in the interval (−1, 1). One shortcoming is that this approach applies
only to binary outcomes. In a simulation study with n = 100, t = 2, and
p = 1, the parameter estimates from the odds-ratio association model ap-
pear to be slightly more efficient. The difference between using the odds
ratio and using the Pearson correlation coefficient, however, is not large.

Carey et al. (1993) develop an approach for binary repeated measure-
ments similar to that of Lipsitz et al. (1991). The Carey et al. (1993) al-
ternating logistic regressions (ALR) methodology simultaneously regresses
the response on explanatory variables as well as modeling the association
among responses in terms of pairwise odds ratios. The ALR algorithm it-
erates between a logistic regression using first-order generalized estimating
equations to estimate regression coefficients and a logistic regression of each
response on others from the same experimental unit using an appropriate
offset to update the odds-ratio parameters. The ALR algorithm is now
implemented in the SAS GENMOD procedure (SAS Institute, 1999).

Chaganty (1997) also presents an alternative method for estimating the
vector of GEE association parameters α. Chaganty’s approach is an exten-
sion of the method of generalized least squares. Instead of using moment-
based estimators of α, Chaganty’s quasi-least squares (QLS) method es-
timates α by minimizing a generalized error sum of squares. Shults and
Chaganty (1998) extend the QLS approach to unequally spaced and un-
balanced data. Chaganty and Shults (1999) discuss the asymptotic bias
of the QLS estimator of α and provide modified QLS estimators that are
consistent under several working correlation models.
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9.6.2 Other Developments and Extensions
Lipsitz et al. (1994a) propose a one-step estimator to circumvent conver-
gence problems associated with the GEE estimation algorithm. In a simu-
lation study with a binary response, n = 15, 30, and 45, t = 3, and p = 4,
the performance of the one-step estimator is similar to that of the fully it-
erated estimator. They recommend the one-step approach when the sample
size is small and the association between binary responses is high. In this
case, the fully iterated GEE algorithm often has convergence problems.

Robins et al. (1995) propose an extension of GEE that allows for the
missing-data mechanism to be missing at random (MAR) rather than miss-
ing completely at random (MCAR). Thus, the probability that yij is miss-
ing may depend on past values of the outcome and covariates. The Robins
et al. (1995) approach, however, requires the correct specification of a model
for the probability of nonresponse.

Paik (1997) also proposes a modification of GEE to handle missing out-
comes when the missing-data mechanism is MAR. Xie and Paik (1997a,
1997b) discuss the situation when the covariates are missing at random
and the outcome variable is missing completely at random.

Lipsitz et al. (2000) also discuss missing-data issues. They propose a
modification of GEE for the case where the response variable is binary
that yields less bias than the standard GEE approach when the missing-
data mechanism is MAR rather than MCAR.

Rotnitzky and Wypij (1994) propose a general approach for calculating
the asymptotic bias of GEE estimators calculated from incomplete data.
In an example, they show that use of the exchangeable working correlation
structure can result in a larger bias than the independence working cor-
relation model. Fitzmaurice et al. (2001) compare GEE estimators of the
association parameters in terms of finite sample and asymptotic bias under
a variety of dropout processes.

9.6.3 GEE1 and GEE2
Prentice (1988) considers the special case of binary data and proposes a
GEE estimator of the vector α of correlation parameters. In Prentice’s
approach, there are two estimating equations: one for the mean structure
and one for the correlation structure. Prentice (1988) shows that this leads
to improved efficiency relative to the original GEE formulation. Zhao and
Prentice (1990), Prentice and Zhao (1991), and Liang et al. (1992) fur-
ther develop this approach. Hall (2001) summarizes the various extensions
proposed by these authors.

The original Liang and Zeger (1986) GEE methodology combines an es-
timating equation for regression (first-moment) parameters with moment-
based estimators for the association (second-moment) parameters α. Pren-
tice (1988) and Prentice and Zhao (1991) extend Liang and Zeger’s work
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by replacing the moment-based approach to estimating second-moment pa-
rameters with an ad hoc estimating equation for these quantities. This
is actually a generalization of the Liang and Zeger (1986) approach be-
cause the moment-based estimators can be recovered as special cases of
the ad hoc estimating equation. This generalization has two important
benefits: increased efficiency—particularly with respect to estimation of
second-moment parameters—and increased flexibility to model the covari-
ances among within-subject responses.

This generalization is often called GEE1. The term “GEE1” is also used
to refer to either the GEE of Liang and Zeger (1986) or the Prentice and
Zhao (1991) generalization. The defining characteristic of both of these
methods is that they operate as if regression and association parameters
are orthogonal to each other, even when they are not (Liang et al., 1992,
p. 10). This ensures consistency of the regression parameter estimates even
when the covariance model is misspecified.

Zhao and Prentice (1990), Prentice and Zhao (1991), and Liang et al.
(1992) also consider an alternative equation for simultaneous estimation of
the regression parameters β and covariance parameters α. This requires
modeling the third and fourth moments of yij instead of just the mean and
variance. This extension is called GEE2.

One distinction between GEE1 and GEE2 is that in GEE1 the regression
parameters β are considered to be orthogonal to the association parame-
ters α (even though, in general, they are not). The GEE1 approach gives
consistent estimates of β even when the association structure is modeled
incorrectly. In contrast, the GEE2 approach gives consistent estimates of
β and α only when the marginal means and associations are modeled cor-
rectly. In this case, GEE2 provides parameter estimates that have high
efficiency relative to maximum likelihood. The GEE1 methodology gives
slightly less efficient estimates of β but may give inefficient estimates of α.
GEE2, however, sacrifices the appeal of requiring only first- and second-
moment assumptions.

Although one method cannot be recommended uniformly over the other,
one criterion is to use GEE1 if estimation of the regression parameters is
the primary focus. On the other hand, if efficient estimation of the vector
of association parameters is of interest and if the model for the covariance
structure is known to be correctly specified, then the use of GEE2 is recom-
mended. In practice, because the correct model for the association structure
is not often known, GEE1 may be more appropriate in general. In addition,
software implementing the GEE1 approach is more widely available.

9.6.4 Extended Generalized Estimating Equations (EGEE)
Hall (1994) and Hall and Severini (1998) also attempt to improve on GEE1
by taking a unified approach to the estimation of the regression and asso-
ciation parameters. Whereas Liang and Zeger’s (1986) original work has
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a close connection to quasilikelihood and Prentice and Zhao (1991) moti-
vated their GEE2 work through the ideas of pseudomaximum likelihood
estimation (Gouriéroux et al., 1984), Hall and Severini’s (1998) extended
GEE (EGEE) approach uses ideas from extended quasilikelihood (Nelder
and Pregibon, 1987; McCullagh and Nelder, 1989).

The EGEE approach provides estimating equations for regression and
association parameters simultaneously that make only first- and second-
moment assumptions. Through simulations and asymptotic relative effi-
ciency comparisons, they show that EGEE has efficiency properties compa-
rable to GEE2 and often substantially better than GEE1. If the correlation
structure is correctly specified, the EGEE approach estimates the vector of
association parameters α efficiently (like GEE2). Although consistency of
α̂ requires correct covariance specification, the EGEE approach does not
require the correct covariance structure specification for consistency of the
regression parameter estimates.

Hall (2001) shows that the EGEE approach is a special case of GEE1.
In particular, EGEE amounts to estimation of the correlation structure
by maximizing a Gaussian likelihood function, an approach that Crow-
der (1992) recommended for the analysis of generalized linear models with
clustered data. Hall (2001) also develops a true extended quasilikelihood
approach for the clustered data case.

9.6.5 Likelihood-Based Approaches
Fitzmaurice and Laird (1993), Molenberghs and Lesaffre (1994), and Hea-
gerty and Zeger (1996) develop likelihood-based approaches that use a
marginal mean regression parameter and require full specification of the
joint multivariate distribution through higher-moment assumptions. These
marginal approaches are computationally intensive even in situations with
a small number of repeated measurements for each independent experimen-
tal unit. Heagerty (1999) presents an alternative parameterization of the
logistic model for binary repeated measurements and studies both likeli-
hood and estimating equation approaches to parameter estimation. A key
feature of Heagerty’s (1999) marginal model approach is that individual-
level predictions or contrasts are also possible.

9.7 Random-Effects Models

Random-effects models for repeated measurements analysis in the general-
ized linear model framework are more difficult to fit than marginal models.
Evaluation of the likelihood (or even the first two moments) requires nu-
merical methods in most cases. In addition, the properties of the resulting
estimates and test statistics have not been studied as extensively as for the
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GEE method. Although software for random-effects models is becoming
more widely available, this topic will not be covered extensively.

Mauritsen (1984) proposes a mixed-effects model known as the logistic
binomial. The logistic binomial model eases the computation burden and
is available in the Egret software package (Cytel Software, 2000).

Conaway (1990) develops a random-effects model for binary data based
on the complementary log-log link and a log-gamma random-effects distri-
bution. This model yields a closed-form expression for the full likelihood,
thus simplifying likelihood analysis. The regression parameters, however,
do not have log odds-ratio interpretations. Pulkstenis et al. (1998) extends
Conaway’s model to the analysis of binary repeated measurements subject
to informative dropout.

One approach to avoiding numerical integration is to approximate the
integrands with simple expansions whose integrals have closed forms (Sti-
ratelli et al., 1984; Breslow and Clayton, 1993). These approximate tech-
niques give effective estimates of the fixed effects but are biased for esti-
mating random effects and the random-effects variance matrix (Zeger and
Liang, 1992).

Waclawiw and Liang (1993) propose an alternative strategy based on
optimal estimating equations. Zeger and Karim (1991) describe a Bayesian
approach using Gibbs sampling. Other authors who have considered gen-
eralized linear models with random effects include Gilmour et al. (1985),
Schall (1991), Longford (1994), and Ten Have et al. (1998).

The SAS macro GLIMMIX fits generalized linear mixed models using
restricted pseudolikelihood (REPL). This approach is discussed in Wolfin-
ger and O’Connell (1993). The Breslow and Clayton (1993) and Wolfinger
and O’Connell (1993) procedures are similar in that both use the gener-
alized mixed-model equations. However, the Breslow–Clayton procedure,
which they call penalized quasilikelihood, assumes that the scale parame-
ter φ is equal to one. The Wolfinger–O’Connell method assumes that φ is
an unknown parameter to be estimated.

For the mixed-effects logistic model, estimates of fixed effects and vari-
ance components are biased under some common conditions, including sit-
uations where there are moderate to large variance components—that is,
moderate to large within-cluster correlation—and when the cluster sizes
(number of repeated measurements per experimental unit) are small to
moderate. This was shown by Breslow and Lin (1995) and Kuk (1995).
These authors provide methods that reduce the bias, but these are not yet
implemented in GLIMMIX.

Version 8 of SAS (SAS Institute, 1999) provides a procedure, PROC
NLMIXED, for fitting nonlinear models with fixed and random effects. Es-
timation techniques are not the same as those used in the earlier NLINMIX
and GLIMMIX macros. Parameters are estimated by maximizing an ap-
proximation to the likelihood integrated over the random effects. Different
integral approximations are available, including adaptive Gaussian quadra-
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ture and a first-order Taylor series approximation. A variety of alternative
optimization techniques are available to carry out the maximization; the
default is a dual quasi-Newton algorithm.

The general topics of nonlinear mixed models and generalized linear
mixed models for repeated measurements are discussed in the books by
Davidian and Giltinan (1995), Vonesh and Chinchilli (1996), and McCul-
loch and Searle (2000). Reviews of a variety of methods for analyzing re-
peated measurements using extensions of generalized linear model method-
ology are provided by Neuhaus (1992), Zeger and Liang (1992), Fitzmaurice
et al. (1993), Liang and Zeger (1993), and Pendergast et al. (1996).

9.8 Methods for the Analysis of Ordered
Categorical Repeated Measurements

9.8.1 Introduction
There are at least three general approaches to the analysis of repeated mea-
surements when the response variable at each time point or measurement
condition is an ordered categorical response.

One approach is to use the CMH mean score and correlation tests de-
scribed in Chapter 8. These tests, however, are applicable only in the one-
sample setting. Landis et al. (1988) review this approach to the analysis of
repeated ordered categorical responses.

The weighted least squares approach described in Chapter 7 can also
be used. Models for polytomous logit, cumulative logit, and mean score
response functions can be considered for one-sample and multisample re-
peated measurements settings. Unless sample sizes are quite large, however,
only mean score models may be feasible.

This section will briefly introduce and discuss the use of methods based
on extensions of generalized linear model methodology. Various extensions
of the GEE method have been proposed and studied by Stram et al. (1988),
Agresti et al. (1992), Kenward and Jones (1992), Liang et al. (1992),
Miller et al. (1993), Kenward et al. (1994), Lipsitz et al. (1994b), Gange
et al. (1995), Williamson et al. (1995), Heagerty and Zeger (1996), and
Lesaffre et al. (1996). Most of these methods are based on the univariate
proportional-odds model (Walker and Duncan, 1967; McCullagh, 1980).
Heagerty and Zeger (1996) also extend the Carey et al. (1993) alternat-
ing logistic regressions (ALR) methodology to repeated ordered categorical
outcome variables.

Random-effects models for the analysis of ordered categorical repeated
measurements have also been studied. Ten Have (1996) extends the Cona-
way (1990) random-effects model based on the complementary log-log link
and a log-gamma random-effects distribution to accommodate ordered cat-
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egorical responses. This approach yields a closed-form marginal likelihood.
Pulkstenis et al. (2001) further extend this approach to the analysis of or-
dered categorical repeated measurements subject to informative dropout.
Crouchley (1995) also uses complementary log-log link models with con-
jugate log-gamma random effects to analyze repeated ordered categorical
responses.

Harville and Mee (1984) and Jansen (1990) use the EM algorithm in
conjunction with approximations or numerical integration to fit mixed-
effects ordinal probit models. Ezzet and Whitehead (1991) and Hedeker
and Gibbons (1994) employ numerical integration to fit mixed-effects cu-
mulative logistic regression models. Agresti and Lang (1993) develop a
maximum likelihood constrained equations approach for fitting cumula-
tive logit models to clustered ordered categorical data that is analogous to
binary response conditional likelihood estimation. Zhaorong et al. (1992)
and McGilchrist (1994) describe estimation approaches for mixed-effects
cumulative probability models using various link functions. Ten Have et al.
(1996), Gibbons and Hedeker (1997), and Sheiner et al. (1997) also study
random-effects models for the analysis of ordered categorical repeated mea-
surements.

Although computer programs for analyzing repeated measurements of an
ordered categorical response are available, the development and ease of use
of such software lags behind that of programs for the analysis of other types
of repeated measurements. Lipsitz et al. (1994b) and Shaw et al. (1994) de-
scribe SAS macros, and Davis and Hall (1996) give a FORTRAN program.
The MULTILOG procedure of the SUDAAN software package can also
be used. Hedeker and Gibbons (1996a) provide a computer program for
the analysis of ordered categorical outcomes using a random-effects model.
More recently, version 8 of the SAS GENMOD procedure (SAS Institute,
1999) now provides the Miller et al. (1993) and Lipsitz et al. (1994) exten-
sion of GEE to repeated categorical repeated measurements.

In Section 9.8.4, the Stram et al. (1988) methodology for the analysis of
repeated ordered categorical outcomes will be described. As background,
cumulative logit models for univariate ordered categorical outcomes and the
univariate proportional-odds model will first be introduced in Sections 9.8.2
and 9.8.3, respectively. Section 9.8.5 applies the Miller et al. (1993) and
Lipsitz et al. (1994) extension of GEE to the example considered in Sec-
tion 9.8.4.

9.8.2 Univariate Cumulative Logit Models for Ordered
Categorical Outcomes

When the response variable is dichotomous, models in which the response
function is the logit of the probability of the outcome of interest are com-
monly used. For categorical responses with more than two outcomes, mul-
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tiple logit models can be used. When the categorical response is ordered,
however, it is often advantageous to construct logits that account for cat-
egory ordering and are less affected by the number or choice of categories
of the response. For example, if a new category is formed by combining
adjacent categories of the old scale, the form of the conclusions should be
unaffected.

Although multiple logit models for unordered polytomous outcomes re-
strict consideration to only two response categories at a time, this is un-
necessary when the response categories are ordered. Instead, logits can be
formed by grouping categories that are contiguous on the ordinal scale.
These considerations lead to models based on cumulative response proba-
bilities, from which cumulative logits are defined.

Consider a response variable Y with c+ 1 ordered categories labeled as
0, 1, . . . , c. The cumulative response probabilities are

γj = Pr(Y ≤ j), j = 0, 1, . . . , c.

Thus, γ0 = π0, γ1 = π0+π1, . . . , γc = 1, where πj = Pr(Y = j). Cumulative
logits are then defined as

λj = log
(

γj−1

1 − γj−1

)
, j = 1, . . . , c.

Note that each cumulative logit uses all c+1 response categories. A model
for λj is similar to an ordinary logit model for a binary response, where
categories 0 to j − 1 form the first category and categories j to c form the
second category.

9.8.3 The Univariate Proportional-Odds Model
Model

The proportional-odds model is

λj(x) = αj + x′β

for j = 1, . . . , c, where x′ = (x1, . . . , xp) is a vector of explanatory variables
and β′ = (β1, . . . , βp) is a vector of unknown parameters. Note that the
relationship between xk and a dichotomized response Y does not depend
on j, the point of dichotomization. In this model, ordinality is an integral
feature, and it is unnecessary to assign scores to the categories.

Some authors consider the equivalent model

λj(x) = αj − x′β.

The negative sign ensures that large values of x′β lead to an increase in
the probability of higher-numbered categories.
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Parameter Interpretation

For individuals with covariate vectors x∗ and x, the odds ratio for response
below category j is

Ψj(x∗,x) =
Pr(Y < j | x∗)
Pr(Y ≥ j | x∗)

/
Pr(Y < j | x)
Pr(Y ≥ j | x)

=
exp{λj(x∗)}
exp{λj(x)}

= exp{λj(x∗) − λj(x)}
= exp{(αj + x∗′β) − (αj + x′β)}
= exp{x∗′β − x′β}
= exp{(x∗ − x)′β}.

Note that Ψj(x∗,x) does not depend on j.

Motivation

Suppose that the underlying continuous (and perhaps unobservable) re-
sponse variable is Z and that the ordered categorical response Y is pro-
duced via cutoff points α1, . . . , αc. The categories of Y are envisaged as
contiguous intervals on the continuous scale, and the points of division αj

are assumed to be unknown. In this case,

Y =


0 if Z ≤ α1
1 if α1 < Z ≤ α2
...

...
c− 1 if αc−1 < Z ≤ αc

c if Z > αc

.

The common effect β for different j in the proportional-odds model can
be motivated by assuming that a regression model holds when the response
is measured more finely (Anderson and Philips, 1981). First, suppose that
Z has the standard logistic distribution under some set of standard baseline
conditions, so that

Pr(Y ≤ j) = Pr(Z ≤ αj+1) =
eαj+1

1 + eαj+1

for j = 0, . . . , c− 1. Also suppose that the effect of explanatory variables is
represented by a simple location shift of the distribution of Z. In this case,
Z + x′β has the standard logistic distribution.

Under these assumptions,

Pr(Y ≤ j − 1) = Pr(Z ≤ αj)
= Pr(Z + x′β ≤ αj + x′β)

=
exp(αj + x′β)

1 + exp(αj + x′β)
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for j = 1, . . . , c. Therefore,

λj(x) = log
(

Pr(Y ≤ j − 1)
1 − Pr(Y ≤ j − 1)

)

= log


exp(αj + x′β)

1 + exp(αj + x′β)

1 − exp(αj + x′β)
1 + exp(αj + x′β)


= αj + x′β

for j = 1, . . . , c.

Comments

Because the c− 1 response curves are constrained to have the same shape,
the proportional-odds model cannot be fit using separate logit models for
each cutpoint. In addition, unlike other logit models, the proportional-odds
model is not equivalent to a log-linear model.

Walker and Duncan (1967) and McCullagh (1980) give Fisher scoring
algorithms for iterative calculation of maximum likelihood estimates of
the parameters of the proportional-odds model. The iterative procedure
is similar to the Newton–Raphson method, except expected (rather than
observed) values are used in the second-derivative matrix.

One caution concerning the use of the proportional-odds model is that
it is not difficult to find examples of nonproportional odds (Peterson and
Harrell, 1990). Therefore, the model may not be applicable in every situa-
tion in which the response is an ordered categorical variable. On the other
hand, Hastie et al. (1989) analyze a study with an ordered categorical out-
come with 13 categories. Although ordinary linear regression techniques are
commonly used for an ordered response with that many categories, they
show that such an analysis gives misleading results and demonstrate the
appropriateness of the proportional-odds model.

9.8.4 The Stram–Wei–Ware Methodology for the Analysis of
Ordered Categorical Repeated Measurements

Introduction

Stram et al. (1988) proposed one of the first approaches to the analy-
sis of repeated measurements when the response is an ordered categorical
variable. Their approach is applicable when the response is obtained at a
common set of time points for each experimental unit. At each time point,
the marginal distribution of the response variable is modeled using the
proportional-odds regression model. The parameters of these models are
assumed to be specific to each occasion and are estimated by maximizing
the occasion-specific likelihoods.
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The joint asymptotic distribution of the estimates of these occasion-
specific regression coefficients is obtained without imposing any parametric
model of dependence on the repeated observations. The vector of estimated
regression coefficients is asymptotically multivariate normal with a covari-
ance matrix that can be estimated consistently. The Stram et al. (1988)
approach provides procedures to test hypotheses about covariates at a sin-
gle time point (occasion-specific) and a single covariate across time points
(parameter-specific) and to estimate pooled effects of covariates across time
points. This approach allows for both time-dependent covariates and miss-
ing data. The missing-data mechanism is, however, assumed to be MCAR
(missing completely at random). Davis and Hall (1996) describe a FOR-
TRAN program implementing the Stram et al. (1988) approach.

Methodology

Let yij denote the response at time j from the ith experimental unit (sub-
ject) for i = 1, . . . , n and j = 1, . . . , t. Also, let K denote the number of
levels of the ordered categorical response variable; these will be indexed by
k = 1, . . . ,K. Now, let

y∗
ijk =

{
1 if yij = k,
0 otherwise,

for k = 1, . . . ,K. It is now possible to consider the vectors of indicator
variables

y∗
ij = (y∗

ij1, . . . , y
∗
ijK)′

instead of the yij values.
In addition, at each time j and for each individual i, suppose that a

p-dimensional vector of covariates xij = (xij1, . . . , xijp)′ is observed. When
xij takes the observed value x, let ζjk(x) = Pr(y∗

ijk = 1), and let

γjk(x) =
k∑

l=1

ζjl(x)

for each j and k. Thus, γjk(x) is the cumulative probability Pr(yij ≤ k)
for all i. According to the proportional-odds model,

λjk(x) = αjk − x′βj

for j = 1, . . . , t and k = 1, . . . ,K, where

λjk(x) = log
(

γjk(x)
1 − γjk(x)

)
and βj is a p-dimensional vector of unknown parameters that may depend
on j. Notice that in this model a positive regression parameter implies that
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the odds of observing a large value of yij increase as the covariate increases.
Because βj does not depend on k, the model makes the strong assumption
that the additive effect of a covariate on the log odds that yij ≤ k does not
depend on k.

To accommodate missing data, let

δij =
{ 1 when xij and yij are observed,

0 otherwise.

It is assumed that, for each i and j, δij may depend on xij but is condi-
tionally independent of yij given xij . In addition, given xij , the indicator
variables δij are assumed to be independent of αjk and βj . For each time
j = 1, . . . , t, (y∗

ij ,xij , δij) are assumed to be independent and identically
distributed across individuals i = 1, . . . , n. Under the MCAR assumption,
the missing-data mechanism can be ignored, and occasion-specific estimates
of the parameters βj and αj = (αj1, . . . , αjK)′ can be obtained by max-
imizing the log-likelihood function at time j, as given in Equation (A.1)
on page 636 of Stram et al. (1988). The vector

(
α̂′

j , β̂
′
j

)′ is asymptotically
normal with mean (α′

j ,β
′
j)

′ and a covariance matrix that can be estimated
consistently using expression (A.2) on p. 636 of Stram et al. (1988).

Hypotheses concerning occasion-specific parameters of the form

H0: Cjβj = 0c

can be tested using the Wald statistic

Wj = (Cjβ̂j)
′(CjV̂ar(β̂j)C

′
j)

−1(Cjβ̂j),

where Cj is a c× p matrix of constants. Under H0, the statistic Wj has an
asymptotic χ2

c distribution. With βl = (β1l, . . . , βtl)′ and Cl a c× t matrix
of constants, parameter-specific hypotheses of the form H0: Clβl = 0c can
be similarly tested.

Parameters specific to the lth covariate, βl, can be combined to obtain
a pooled estimate

βl =
t∑

j=1

wj β̂jl

of the covariate’s effect across time. In general, w = (w1, . . . , wt)′ is any
vector of weights summing to one. However, the estimator β

∗
l , which uses

w∗ =
(
1′

tV̂ar(β̂l)1t

)−1V̂ar(β̂l)
−11t,

has the smallest asymptotic variance among all linear estimators βl.

Example

In a clinical trial comparing the effects of varying dosages of an anes-
thetic on postsurgical recovery, 60 young children undergoing outpatient
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TABLE 9.10. Recovery room scores from a clinical trial in 60 children undergoing
outpatient surgery: First five subjects from each group

Surgery Recovery Room
Dosage Age Duration Scores at Minute
(mg/kg) ID (months) (minutes) 0 5 15 30

15 1 36 128 3 5 6 6
2 35 70 3 4 6 6
3 54 138 1 1 1 4
4 47 67 1 3 3 5
5 42 55 5 6 6 6

20 1 22 75 1 1 1 6
2 49 42 1 1 1 6
3 36 58 2 3 3 6
4 43 60 1 1 2 3
5 23 64 5 6 6 6

25 1 26 103 1 1 0 3
2 28 89 3 6 6 6
3 41 51 2 3 4 4
4 46 93 1 1 5 6
5 37 45 2 3 6 6

30 1 46 72 4 6 6 6
2 38 85 2 4 6 6
3 59 54 4 5 5 6
4 16 100 1 1 1 1
5 65 113 2 3 3 5

surgery were randomized to one of four dosages (15, 20, 25, and 30 mg/kg)
of an anesthetic, with 15 children assigned to each dosage group (Davis,
1991). Recovery scores were assigned upon admission to the recovery room
(minute 0) and at minutes 5, 15, and 30 following admission. The response
at each of the four time points was an ordered categorical variable ranging
from 0 (least favorable) to 6 (most favorable). In addition to the dosage,
patient age (in months) and duration of surgery (in minutes) were two co-
variates of potential interest. Table 9.10 displays the data from the first
five subjects in each group.

In the first model we will fit to these data (model 1), the covariate vector
for subject i at time j includes:

xij1 =
{

1 20 mg/kg dose
0 otherwise

,

xij2 =
{

1 25 mg/kg dose
0 otherwise

,

xij3 =
{

1 30 mg/kg dose
0 otherwise

,
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TABLE 9.11. Anesthesia clinical trial: Parameter estimates from model 1
Regression Coefficient

Time Standard
Covariate Point Estimate Error Est./S.E.
20 mg/kg 1 −0.105 0.799 −0.13

vs. 2 −0.249 0.758 −0.33
15 mg/kg 3 −0.558 0.724 −0.77

4 0.194 0.897 0.22

25 mg/kg 1 −0.634 0.770 −0.82
vs. 2 −0.441 0.771 −0.57

15 mg/kg 3 −0.072 0.688 −0.10
4 −0.371 0.837 −0.44

30 mg/kg 1 −1.010 0.751 −1.34
vs. 2 −0.675 0.735 −0.92

15 mg/kg 3 −0.701 0.708 −0.99
4 −0.465 0.884 −0.53

Age 1 −0.011 0.018 −0.61
(months) 2 −0.011 0.018 −0.61

3 −0.028 0.020 −1.45
4 −0.014 0.020 −0.70

Duration 1 −0.012 0.008 −1.40
of 2 −0.003 0.007 −0.41

surgery 3 −0.008 0.007 −1.14
(minutes) 4 −0.018 0.009 −1.92

xij4 = age (months),
xij5 = duration of surgery (minutes).

Note that all covariates are time-independent.
Table 9.11 displays the parameter estimates from Model 1. Because

Stram et al. (1988) use the parameterization

λjk(x) = αjk − x′βj

at each time point j, parameter estimates with positive signs are associated
with an increased probability of higher (more favorable) responses.

Nearly all of the estimated regression coefficients are negative. This
indicates that the probability of a more favorable outcome decreases as
the dosage, age of the patient, or duration of the surgical procedure in-
creases. There is no consistent evidence (across time) of statistically signif-
icant effects due to dosage, age, or duration of surgery. The test statistics
“Est./S.E.” in Table 9.11 are approximately N(0, 1), and none are individ-
ually significant based on a two-sided test at the 5% level of significance.
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The Stram et al. (1988) procedure permits time-specific hypothesis tests.
In particular, the hypothesis that the joint effect of all covariates is not
significantly different from zero can be tested at each time point. This
hypothesis is

H0:βj1 = · · · = βj5 = 0

for j = 1, . . . , 4. The resulting p-values at times 1–4 are 0.44, 0.91, 0.46,
and 0.31, respectively.

Hypotheses concerning subsets of the parameters at each time point can
also be tested. For example, the hypothesis that the overall dosage effect
is not significantly different from zero at each time point is

H0:βj1 = βj2 = βj3 = 0.

The p-values from this test at times 1–4 are 0.55, 0.82, 0.68, and 0.86,
respectively. One might also wish to test whether the nonlinear components
of the dosage effect are significantly different from zero. Because the dosages
are equally spaced, this hypothesis is

H0:βj1 = βj2 − βj1, βj1 = βj3 − βj2

for j = 1, . . . , 4. The resulting p-values at times 1–4 are 0.95, 0.99, 0.63,
and 0.88, respectively.

Although the results of model 1 give little evidence of any statistically
significant effects of covariates on recovery scores, a simpler model treating
dosage as a quantitative variable may also be of interest. This is justified
based on the fact that the nonlinear dosage effects are nonsignificant at all
four time points. Model 2 thus includes the covariates:

xij1 = dosage (mg/kg),
xij2 = age (months),
xij3 = duration of surgery (minutes).

Table 9.12 displays the parameter estimates.
The Stram et al. (1988) procedure also permits parameter-specific hy-

pothesis tests. Table 9.13 displays the null hypotheses and p-values from
several parameter-specific tests from model 2. For each of the three covari-
ates, the hypothesis that the parameters at the four time points are jointly
equal to zero is not rejected. Because it is also true that the hypothesis
of equality of effects across time is not rejected for any of the covariates,
pooled estimates of effect may still be of interest.

Table 9.14 displays the pooled estimates of the effects of dosage, age, and
surgery duration. The odds of having a recovery score higher than a given
cutpoint are estimated to be:

• e−0.0460 = 0.955 times as high per 1 mg/kg increase in dosage;



330 9. Methods Based on Extensions of Generalized Linear Models

TABLE 9.12. Anesthesia clinical trial: Parameter estimates from model 2
Regression Coefficient

Time Standard
Covariate Point Estimate Error Est./S.E.
Dosage 1 −0.070 0.049 −1.43

2 −0.044 0.047 −0.95
3 −0.033 0.046 −0.72
4 −0.037 0.056 −0.66

Age 1 −0.013 0.016 −0.81
2 −0.011 0.017 −0.62
3 −0.025 0.019 −1.32
4 −0.017 0.019 −0.93

Duration 1 −0.012 0.007 −1.57
of 2 −0.003 0.007 −0.45

surgery 3 −0.008 0.007 −1.12
4 −0.017 0.009 −1.94

TABLE 9.13. Anesthesia clinical trial: Parameter-specific hypothesis tests from
model 2

Hypothesis Chi-square df p-value
No dosage effect
H0:β11 = β21 = β31 = β41 = 0 2.10 4 0.72

No age effect
H0:β12 = β22 = β32 = β42 = 0 2.84 4 0.58

No surgery duration effect
H0:β13 = β23 = β33 = β43 = 0 7.95 4 0.09

Equality of dosage effects
H0:β11 = β21 = β31 = β41 0.89 3 0.83

Equality of age effects
H0:β12 = β22 = β32 = β42 1.82 3 0.61

Equality of surgery duration effects
H0:β13 = β23 = β33 = β43 5.84 3 0.12

TABLE 9.14. Anesthesia clinical trial: Pooled estimates of effects from model 2
Variable Estimate S.E. Est./S.E.
Dosage −0.0460 0.0424 −1.09
Age −0.0143 0.0162 −0.88
Surgery duration −0.0091 0.0065 −1.40
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TABLE 9.15. Anesthesia clinical trial: Parameter estimates from GEE model
Variable Estimate S.E. Est./S.E.
Dosage 0.0380 0.0297 1.28
Age 0.0139 0.0109 1.28
Surgery duration 0.0071 0.0046 1.55

• e−0.0143 = 0.986 times as high per 1 month increase in age;

• e−0.0091 = 0.991 times as high per 1 minute increase in surgery dura-
tion.

Although there is modest evidence of an effect due to surgery duration,
there is essentially no evidence that dosage or age influence postsurgical
recovery.

9.8.5 Extension of GEE to Ordered Categorical Outcomes
The Stram et al. (1988) methodology models the data at each time point
and then combines the resulting parameter estimates. This approach re-
quires a common set of time points for each experimental unit. The SAS
GENMOD procedure (SAS Institute, 1999) now provides the capability to
analyze repeated ordered categorical outcomes using the GEE approach
as extended by Miller et al. (1993) and Lipsitz et al. (1994). Using the
GEE approach, the number of repeated measurements per experimental
unit need not be constant, and the measurement times need not be the
same across experimental units. As with the Stram et al. (1988) method-
ology, the proportional-odds model is used for the marginal distribution.
At this time, the only working correlation model available for the analysis
of repeated ordered categorical outcomes using the GENMOD procedure
is the independence model.

Table 9.15 displays the results from fitting a model including the covari-
ates dosage (mg/kg), age (months), and surgery duration (minutes). This
model includes the same covariates as were included in model 2 fit using
the Stram et al. (1988) methodology (Section 9.8.4). The parameter esti-
mates from the GEE approach (Table 9.15) are similar in magnitude (but
of opposite sign) to the pooled estimates of effects displayed in Table 9.14.
Although the standard errors displayed in Table 9.15 are somewhat smaller
than those in Table 9.14, the conclusions from the two approaches are the
same. Based on the parameterization used by the SAS GENMOD proce-
dure, the odds of having a recovery score higher than a given cutpoint are
estimated to be:

• e−0.0380 = 0.963 times as high per 1 mg/kg increase in dosage;

• e−0.0139 = 0.986 times as high per 1 month increase in age;
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TABLE 9.16. Anesthesia clinical trial: Parameter estimates from GEE model
including time in the recovery room as an additional covariate

Variable Estimate S.E. Est./S.E.
Dosage 0.0428 0.0364 1.18
Age 0.0163 0.0132 1.24
Surgery duration 0.0096 0.0054 1.77
Time in recovery room −0.0946 0.0109 −8.66

• e−0.0071 = 0.993 times as high per 1 minute increase in surgery dura-
tion.

The GEE approach would also allow one to include the main effect of
time in the recovery room (minutes) as a factor in the model. This variable
takes on the values 0, 5, 15, and 30. Table 9.16 displays the results from
this model. The effect of time in the recovery room is highly significant
(p < 0.0001). The odds of having a recovery score higher than a given
cutpoint are estimated to be e0.0946 = 1.1 times as high per minute spent
in the recovery room. Interactions between the other covariates and time
in the recovery room could also be investigated using the GEE approach.

9.9 Problems

9.1 Let y1, . . . , yn be a random sample from a distribution with mean µ
and variance proportional to µ2; that is, Var(yi) = φµ2.

(a) Find the quasilikelihood function Q(µ, y) for estimating µ.

(b) For the special case where the variance of yi is equal to µ2 (i.e., when
φ = 1), derive the quasilikelihood estimator of µ.

(c) Now, suppose that the distribution of yi is exponential with param-
eter µ; that is,

f(y) =
1
µ
e−y/µ, y > 0.

In this case, E(yi) = µ and Var(yi) = µ2. Show that the log-likelihood
function for y1, . . . , yn is equivalent to the quasilikelihood function
from part (b).

(d) With reference to part (c), express the distribution of y in terms
of Equation (9.1). Find the mean, variance, variance function, and
dispersion parameter of y using the properties of the score function
from Section 9.2.2.
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9.2 Let y1, . . . , yn be a random sample from a distribution with mean µ
and variance proportional to µ3; that is, Var(yi) = φµ3.

(a) Find the quasilikelihood function Q(µ, y) for estimating µ.

(b) For the special case where the variance of yi is equal to µ3 (i.e., when
φ = 1), derive the quasilikelihood estimator of µ.

(c) Now, suppose that the distribution of yi is inverse Gaussian with
parameter µ; that is,

f(y) =
(

1
2πy3

)1/2

exp
(−(y − µ)2

2µ2y

)
, y > 0.

In this case, E(yi) = µ and Var(yi) = µ3. Show that the log-likelihood
function for y1, . . . , yn is equivalent to the quasilikelihood function
from part (b).

9.3 Consider the experiment described in Problem 4.4. Let yij denote
the amount of iron absorbed at condition j from pair i for i = 1, . . . , 17
and j = 1, . . . , 6, where j = 1, 2, 3 refer to low, medium, and high pH for
ethionine and j = 4, 5, 6 refer to low, medium, and high pH for control.
Suppose that the GEE approach is to be used to assess the effect of group,
compound, and pH on iron absorption. Specify a single working correlation
matrix that incorporates all of the following constraints:

• Ethionine observations are equally correlated.

• Control observations are equally correlated.

• The correlation between observations for which the pH levels are
equal, but the compounds are different, is constant.

• There is no correlation between observations for which the pH levels
and compounds are different.

9.4 Suppose that repeated measurements of a time-to-event variable are
obtained in a study and that the repeated failure times are always observed
(i.e., there are no censored failure times). Assume that the marginal dis-
tributions of these repeated failure times are approximately exponentially
distributed, and consider the use of the GEE methodology for analysis of
these data.

(a) What variance function would you recommend?

(b) What link function would you recommend? Why?

9.5 In a clinical trial comparing two treatments for a respiratory illness,
patients from two investigative sites were randomly assigned to active treat-
ment or placebo. Of the 111 subjects included in the study, 54 were assigned
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to the active treatment group and 57 were assigned to the placebo group.
During treatment, respiratory status was determined at four visits using
a five-point ordered categorical scale (0 = worst, 4 = best). Covariates of
potential interest are site, sex, age, and baseline respiratory status (coded
on the same five-point ordered categorical scale). Table 9.17 displays the
data from the first ten subjects from each of the two sites. Every subject
had complete data for the response and covariates at all four visits.

Davis (1991) and other authors treated respiratory status at baseline
and at the four subsequent visits as a dichotomous variable, categorized as
“poor” (values of 0, 1, and 2) versus “good” (values of 3 and 4).

(a) Fit a marginal model using the logit of the probability of a good
response as the outcome variable and including treatment, site, sex,
age, and baseline respiratory status as covariates. Justify your choice
of working correlation matrix.

(b) Report estimated odds ratios (good response versus a poor response)
for the effects of treatment, site, sex, age, and baseline status.

(c) Summarize the results of your analyses.

9.6 In the Iowa 65+ Rural Health Survey, elderly individuals were fol-
lowed over a six-year period (at years 0, 3, and 6). One question asked at
each survey was “Do you regularly (at least once a month) attend religious
meetings or services?” Table 7.6 displays the answers to this question from
1973 individuals who responded at years 0, 3, and 6.

(a) Use the GEE approach and the independence working correlation
model to fit a logistic model for predicting church attendance as a
function of sex, survey year, and the sex × year interaction.

(b) Based on the results of tests of nonlinearity and parallelism, fit an
appropriate reduced model to the data.

(c) Comment on how the results from parts (a) and (b) are affected by
the choice of alternative working correlation structures.

(d) How do your results compare with those from the marginal logit
model fit using weighted least squares (Section 7.3.5)? Which method
seems more appropriate for these data?

9.7 Potthoff and Roy (1964) describe a study conducted at the University
of North Carolina Dental School in which the distance (mm) from the center
of the pituitary gland to the pterygomaxillary fissure was measured at
ages 8, 10, 12, and 14 in 16 boys and 11 girls. Table 3.3 lists the individual
measurements as well as the sample means and standard deviations in
both groups. Sections 3.4.2, 4.3.2, 4.4.3, and 6.4.1, as well as Problems 5.8
and 6.3, considered other methods for the analysis of these data.
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TABLE 9.17. Respiratory status at four visits: First ten subjects from each of
the two sites

Site ID Trt. Sex Age Baseline Visit 1 Visit 2 Visit 3 Visit 4
1 1 P M 46 2 2 2 2 2

2 P M 28 2 0 0 0 0
3 A M 23 3 3 4 4 3
4 P M 44 3 4 3 4 2
5 P F 13 4 4 4 4 4
6 A M 34 1 1 2 1 1
7 P M 43 2 3 2 4 4
8 A M 28 1 2 2 1 2
9 A M 31 3 3 4 4 4

10 P M 37 3 2 3 3 2
2 1 P F 39 1 2 1 1 2

2 A M 25 2 2 4 4 4
3 A M 58 4 4 4 4 4
4 P F 51 3 4 2 4 4
5 P F 32 3 2 2 3 4
6 P M 45 3 4 2 1 2
7 P F 44 3 4 4 4 4
8 P F 48 2 2 1 0 0
9 A M 26 2 3 4 4 4

10 A M 14 1 4 4 4 4
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(a) Use the GEE approach and the independence working correlation
structure to model the pituitary–pterygomaxillary fissure distance as
a linear function of age. Parameterize the model in terms of an overall
intercept and slope with separate intercept and slope increments for
females. Test the following null hypotheses:

H0: equality of intercepts and slopes for males and females;

H0: equality of intercepts for males and females;

H0: equality of slopes for males and females.

(b) Compare the estimated coefficients of the resulting linear relation-
ships for males and females with those from growth curve analysis
and mixed linear models, as presented in Sections 4.4.3 and 6.4.1.

(c) Repeat part (a) using the exchangeable and unspecified working cor-
relation structures, and compare the results to those from the inde-
pendence working correlation structure.

(d) Use the GEE approach and the independence working correlation
structure to model the pituitary–pterygomaxillary fissure distance as
a cubic function of age. Parameterize the model in terms of an overall
intercept and linear, quadratic, and cubic age effects, with separate
corresponding incremental effects for females. Test the null hypothesis
that the nonlinear age effects are jointly equal to zero.

9.8 In a longitudinal study conducted in a group of 188 nuns, dietary bal-
ance and bone measurement tests were scheduled to be completed at five-
year intervals. All of the study participants were between 35 and 45 years
of age at the start of the study (in the mid-1960s). Due to dropouts and
missed visits, the number of repeated measurements per participant ranges
from 1 to 4. The outcome variable of interest was the adjusted absorption
of calcium (CA Abs.); the covariates of potential interest were age, body
surface area (BSA), body-mass index (BMI), dietary calcium (Diet. CA),
urine calcium (Urine CA), endogenous fecal calcium (EFC), total intesti-
nal calcium (TIC), dietary phosphorus, caffeine intake, and calcium balance
(CA Bal.). All of the covariates are time-dependent. Table 9.18 displays the
data from the first ten subjects.

(a) Develop a regression model for predicting calcium absorption as a
parsimonious function of the covariates.

(b) Summarize the effects of the covariates included in your final model
on the outcome.

9.9 Vonesh and Carter (1987) describe a study of the ultrafiltration char-
acteristics of hollow fiber dialyzers. A total of 41 dialyzers were evaluated
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TABLE 9.18. Calcium measurements at five-year intervals from a cohort of 188
nuns: First ten subjects

CA Diet. Urine Diet. CA
ID Age Abs. BSA BMI CA CA EFC TIC Phos. Caff. Bal.
1 45.17 0.442 1.80 27.14 0.222 0.052 0.076 0.124 0.658 371.3 −0.053
1 50.25 0.566 1.83 28.54 0.167 0.056 0.050 0.091 0.637 371.3 −0.012
1 55.25 0.195 1.91 30.56 0.422 0.063 0.076 0.106 0.857 210.7 −0.002
2 41.00 0.308 1.71 22.14 0.776 0.109 0.142 0.170 1.035 482.0 −0.110
2 46.33 0.322 1.72 20.62 0.902 0.160 0.151 . 1.192 185.7 .
2 51.25 0.205 1.75 21.30 0.648 0.108 0.116 0.162 0.935 389.2 −0.005
2 56.42 0.330 1.76 22.73 0.519 0.155 0.114 0.147 0.702 634.0 −0.132
3 44.08 0.302 1.96 25.55 0.518 0.046 0.146 0.178 0.996 175.0 −0.084
3 49.83 0.235 1.95 25.86 0.701 0.064 0.126 0.185 1.224 103.5 0.089
3 54.00 0.145 1.97 27.60 0.627 0.090 0.108 0.130 1.096 229.2 −0.069
3 58.92 0.180 1.98 28.03 0.525 0.023 0.157 0.201 0.928 548.0 −0.045
4 35.67 0.219 1.81 22.30 1.354 0.034 0.158 0.189 1.594 160.7 0.068
4 40.92 0.230 1.80 20.98 1.302 0.184 0.124 0.158 1.581 . 0.063
4 45.92 0.165 1.74 19.47 1.256 0.130 0.140 0.159 1.502 179.6 −0.084
4 50.75 0.135 1.82 21.47 0.773 0.151 0.101 . 1.051 779.0 .
5 37.25 0.527 1.66 19.64 0.261 0.055 0.119 0.169 0.690 321.3 −0.077
5 42.42 0.314 1.62 18.75 0.353 0.071 0.065 0.093 0.888 285.6 −0.019
5 49.08 0.280 1.68 20.42 0.689 0.162 0.088 0.120 1.065 464.1 −0.032
6 37.25 0.503 1.63 19.91 0.234 0.067 0.080 0.123 0.753 260.7 −0.050
6 43.50 0.411 1.65 18.76 0.649 0.154 0.086 . 1.043 150.0 .
7 39.83 0.253 1.68 25.49 1.220 0.161 0.058 0.064 1.526 . −0.041
7 51.17 0.305 1.54 20.18 0.523 0.136 0.093 0.144 1.175 25.0 −0.007
7 55.17 0.170 1.66 25.16 0.599 0.082 0.101 0.131 1.015 41.0 −0.019
8 38.58 0.201 1.65 23.42 1.041 0.250 0.105 0.136 1.456 . −0.084
8 43.42 0.300 1.68 24.31 0.552 0.217 0.061 0.097 0.948 . −0.024
8 48.42 0.250 1.68 24.23 1.216 0.310 0.115 0.169 1.628 . 0.046
8 53.33 0.210 1.69 25.78 1.196 0.263 0.147 0.176 1.464 24.0 −0.144
9 36.83 0.327 1.62 22.29 0.494 0.052 0.134 0.163 1.069 482.0 −0.082

10 38.67 0.259 1.56 20.95 0.720 0.079 0.131 0.149 1.004 210.7 −0.108
10 43.83 0.240 1.58 21.49 0.526 0.071 0.085 0.129 0.900 150.0 0.053
10 48.75 0.310 1.55 20.98 0.517 0.106 0.101 0.148 0.813 210.7 −0.017
10 54.00 0.150 1.52 21.07 0.637 0.092 0.129 0.145 1.080 366.0 −0.140
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among three sites, with each site using a different type of dialysate de-
livery system to monitor transmembrane pressure. For each dialyzer, the
ultrafiltration rate (UFR) was measured at several different values of the
transmembrane pressure (TMP). Table 9.19 displays the data from the first
five units at each of the three sites. Use the GEE methodology to assess
the effects of site and TMP on UFR.

9.10 In a longitudinal study of fluoride intake, infants were enrolled at
birth and followed over time. During the first nine months of the study,
total fluoride intake (mg/kg body weight) was assessed at months 1.5, 3, 6,
and 9. The data set contains 4151 observations from 1363 infants. Table 9.20
lists the variables in the file.

(a) Descriptively summarize the data; that is, describe the number and
pattern of observations per subject and the distributions of the co-
variates and outcome variable (total fluoride intake).

(b) Fit a marginal model for predicting fluoride intake as a function of
age and the covariates. Test nonlinearity of the age effect and simplify
the model accordingly.

(c) Starting from the model incorporating the appropriate effect of age,
as well as all other covariates, find a parsimonious reduced model.
Interpret the resulting parameter estimates.

(d) Augment your final model by including interactions between age and
each of the covariates in your final model. Test for interactions with
age and use the results to develop a final model. Interpret the resulting
parameter estimates and compare them with part (c).

9.11 Fitzmaurice and Lipsitz (1995) discuss a clinical trial in which 51 pa-
tients with arthritis were randomized to one of two treatments: auranofin
(A) or placebo (P). Each subject had at most five binary self-assessment
measurements of arthritis (0 = poor, 1 = good). The self-assessments were
scheduled at baseline (week 0) and at weeks 1, 5, 9, and 13. Randomization
to auranofin or placebo occurred following the week 1 assessment. Thus, the
treatment remains the same at all time points for patients in the placebo
group. In the auranofin group, however, treatment is a time-dependent co-
variate with the change from placebo to auranofin occurring at week 5.
Table 9.21 displays the data from this study.

(a) Using the logit of the probability of a good response as the outcome
variable, fit a model including the main effects of time, sex, age, and
treatment.

(b) Based on the results of part (a), fit and interpret the results of an
appropriate reduced model.
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TABLE 9.19. Ultrafiltation rates (ml/hour) at various transmembrane pressures
from 41 dialyzers: First five units from each site

Site Unit TMP UFR Site Unit TMP UFR
1 1 160.0 600 2 3 365.0 1470

1 265.0 1026 3 454.0 1890
1 365.0 1470 4 146.0 570
1 454.0 1890 4 265.0 1026
2 164.0 516 4 365.0 1470
2 260.5 930 4 454.0 1890
2 355.0 1380 5 149.0 360
2 451.0 1770 5 265.0 1026
3 156.0 480 5 365.0 1470
3 260.0 1026 5 454.0 1890
3 363.0 1470 3 1 183.0 600
3 466.0 1890 1 265.0 1026
4 160.0 528 1 365.0 1470
4 265.0 1026 1 454.0 1890
4 365.0 1470 2 160.5 480
4 454.0 1890 2 265.0 1026
5 157.0 540 2 365.0 1470
5 265.0 1026 2 454.0 1890
5 365.0 1470 3 149.5 510
5 454.0 1890 3 265.0 1026

2 1 166.0 540 3 365.0 1470
1 265.0 1026 3 454.0 1890
1 365.0 1470 4 188.5 600
1 454.0 1890 4 265.0 1026
1 444.5 1716 4 365.0 1470
2 156.0 426 4 454.0 1890
2 265.0 1026 5 208.0 720
2 365.0 1470 5 265.0 1026
2 454.0 1890 5 365.0 1470
3 143.5 390 5 454.0 1890
3 265.0 1026
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TABLE 9.20. Variables included in the data set from the longitudinal study of
fluoride intake

Col. Variable Comments
1–4 ID subject identifier
7–9 age months; values are 1.5, 3, 6, 9
11 sex 1 = male, 0 = female
13 race 1 = white, 0 = non-white, . = missing
15 mother’s age 1 = 30+ years, 0 = less than 30 years
17 mother’s education 1 = high school graduate (but not

college graduate), 0 = otherwise
19 1 = college graduate, 0 = otherwise
21 first child in the family 1 = yes, 0 = no
23 number of children 1 = two children at home,

in the family 0 = otherwise
25 1 = three or more, 0 = otherwise
27 annual household 1 = $30,000 or more,

income 0 = less than $30,000, . = missing
29–40 total fluoride intake mg/kg (. = missing)
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TABLE 9.21. Self-assessments at five time points from 51 subjects in an arthritis
clinical trial

ID Sex Age Group Week 0 Week 1 Week 5 Week 9 Week 13
1 M 48 A 1 1 1 1 1
2 M 29 A 1 1 1 1 1
3 M 59 P 1 1 1 1 1
4 F 56 P 1 1 1 1 1
5 M 33 P 1 1 1 1 1
6 M 61 P 1 1 0 1 1
7 M 63 A 0 0 1 . .
8 M 57 P 1 0 1 1 1
9 M 47 P 1 1 1 0 1

10 F 42 A 0 0 1 . 0
11 M 62 A 1 1 1 1 1
12 M 42 P 1 1 1 1 1
13 M 50 A 1 1 1 1 1
14 F 47 A 1 1 . . .
15 M 45 P 0 0 0 1 1
16 M 55 A 1 1 1 1 1
17 M 56 A 1 1 1 1 1
18 M 57 P 1 1 1 1 1
19 F 57 P 1 1 1 0 .
20 M 45 A 1 0 1 0 1
21 M 29 A 1 1 0 . .
22 F 51 A 0 0 1 1 0
23 F 65 P 1 1 0 1 0
24 F 50 A 1 1 1 0 1
25 M 65 A 1 1 1 1 1
26 F 58 P 1 1 0 0 0
27 F 62 A 0 1 1 1 1
28 F 35 A 1 1 1 1 1
29 M 28 A 1 1 1 1 1
30 M 41 A 1 1 1 . .
31 M 40 P 1 0 1 0 1
32 M 33 P 0 0 0 0 0
33 F 60 P 0 0 0 0 0
34 M 62 A 1 0 1 1 1
35 M 45 P 1 1 0 1 1
36 M 64 P 0 0 0 0 0
37 M 55 P 0 0 0 1 1
38 M 57 A 1 1 1 1 .
39 M 51 P 1 1 0 1 1
40 F 57 A 1 1 1 1 1
41 M 37 P 1 0 1 . 1
42 M 52 A 0 1 1 1 .
43 M 52 P 1 1 . 1 1
44 M 46 A 1 1 1 1 1
45 M 63 A 0 0 1 0 .
46 M 60 P 1 1 0 0 0
47 M 63 A 0 1 . 0 0
48 F 33 P 1 0 0 1 .
49 M 60 A 0 0 1 1 1
50 M 58 A 1 1 1 1 1
51 M 37 P 0 0 0 1 0
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TABLE 9.22. Number of hospital visits per quarter during a one-year period for
73 children: First ten subjects

Age Maternal Quarter
ID (months) Sex Smoking 1 2 3 4
1 63 M Yes 5 0 0 1
2 8 M Yes 3 4 2 2
3 31 M Yes 0 0 1 2
4 33 M Yes 2 0 1 1
5 24 F Yes 1 0 0 0
6 34 F Yes 2 0 2 0
7 16 M Yes 7 0 1 2
8 20 M Yes 2 4 5 2
9 57 M Yes 0 0 0 0

10 59 M Yes 2 0 2 0

9.12 In an example considered by Karim and Zeger (1988), quarterly
data were obtained from 73 children over a one-year period. The response
of interest was the number of visits to the hospital. Because complete data
were obtained from each child, there are a total of 73×4 = 292 observations.
Potential covariates include sex, maternal smoking status, and age of the
child at the beginning of the study (in months); each of these covariates is
time-independent. In addition, the effect of quarter (1–4) is also of interest.
Table 9.22 displays the data from the first ten subjects.

(a) Fit a regression model investigating the relationship between the
number of hospital visits and age, sex, maternal smoking status, and
quarter.

(b) Based on the results of part (a), fit a reduced model and summarize
the results.

9.13 Hadgu and Koch (1999) discuss a dental clinical trial conducted
in 109 healthy adult volunteers, aged 18–55 years, with preexisting plaque
but without advanced periodontal disease. Prior to enrollment in the study,
subjects were screened for a minimum of 20 sound natural teeth. The sub-
jects were then randomized to one of two new mouthrinses (A and B) or to
a control mouthrinse (C). The sample sizes in groups A, B, and C were 39,
34, and 36 subjects, respectively. During the study, subjects used their as-
signed mouthrinse twice daily for six months. Plaque was scored at baseline,
at three months, and at six months using the Turesky modification of the
Quigley–Hein index. Other variables of interest are sex, age, and smoking
status. Table 9.23 displays the data from the first ten subjects.
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TABLE 9.23. Dental plaque measurements from 109 subjects in a clinical trial
comparing three mouthrinses: First ten subjects

Month
Subject Sex Age Smoker Group 0 3 6

1 F 23 No B 2.33 0.56 0.90
2 F 24 Yes C 2.46 1.73 1.58
3 F 42 No A 2.65 1.42 1.25
4 F 29 Yes C 2.89 2.61 1.91
5 F 48 Yes A 2.13 2.48 1.63
6 M 27 No C 3.00 2.75 1.89
7 F 38 Yes B 2.53 1.00 0.89
8 M 24 No B 2.61 2.11 1.61
9 F 27 No A 2.70 0.00 0.59
10 F 33 No A 2.48 0.10 0.12

(a) The distributions of the plaque measurements are skewed, especially
at months 3 and 6. Suggest appropriate link and variance functions
for analyzing these data.

(b) Using your recommended link and variance functions from part (a),
carry out analyses to provide answers to the following questions:

– Are the experimental mouthrinses more effective than the con-
trol mouthrinse in inhibiting the development of dental plaque?

– What are the effects of sex, age, smoking status, and time?

9.14 Problem 6.8 described a study conducted to determine whether use
of an experimental dopamine D2 agonist can replace the use of levodopa. In
this study, 25 patients with Stage II through IV Parkinson’s disease were
randomized to one of five groups: placebo or 8.4 mg, 16.8 mg, 33.5 mg,
or 67 mg of the experimental drug. One of the outcome variables was a
clinical global rating (CGI), which was assessed at days 2, 7, and 14. This
was an ordered categorical variable and was coded as follows:

1 = very much worse;
2 = much worse;
3 = slightly worse;
4 = no change;
5 = slightly improved;
6 = much improved;
7 = very much improved.

Table 9.24 displays the data. The placebo group is denoted by dose = 0.0.
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TABLE 9.24. Clinical global impression ratings from 25 patients with Parkinson’s
disease

ID Dose Day 2 Day 7 Day 14
1 33.5 2 4 4
2 67.0 2 3 4
3 0.0 3 3 4
4 8.4 3 3 2
5 16.8 3 3 3
6 67.0 5 5 5
7 16.8 4 4 4
8 8.4 4 3 2
9 33.5 3 3 3

10 0.0 4 4 3
11 8.4 4 4 4
12 33.5 5 4 3
13 0.0 5 3 4
14 67.0 3 7 6
15 33.5 5 5 5
16 8.4 3 6 4
17 16.8 3 3 3
18 0.0 6 5 6
19 67.0 5 3 3
20 67.0 3 3 4
21 33.5 3 5 5
22 16.8 6 5 5
23 8.4 3 3 3
24 0.0 4 4 5
25 16.8 3 3 3

(a) Fit the proportional-odds model with CGI as the outcome variable
and treatment group, day, and the group × day interaction as covari-
ates.

(b) Based on the results of part (a), fit an appropriate reduced model.

9.15 Problem 9.5 considered a clinical trial comparing two treatments for
a respiratory illness; Table 9.17 displays the data from the first ten subjects
from each of the two sites.

(a) Fit the proportional-odds model with respiratory status as the out-
come variable, and treatment, center, sex, age, and baseline respira-
tory status as covariates. As in Problem 9.5, treat baseline respiratory
status as a dichotomous covariate (“poor” versus “good”).
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(b) Based on the results of part (a), fit an appropriate reduced model. For
each covariate included in this model, test the null hypothesis that
the effects of the covariate are the same at the four measurement
times.

(c) Summarize the results of your analyses.
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10
Nonparametric Methods

10.1 Introduction

Most of the methods considered in previous chapters require distributional
assumptions on either the joint distribution of a subject’s repeated mea-
surements or on the marginal distributions at each time point. For example,
Chapters 3, 4, 5, and 6 assume that the vectors of repeated measurements
have a multivariate normal joint distribution, either with an arbitrary co-
variance structure (Chapters 3 and 4) or with some type of structured
covariance matrix (Chapters 5 and 6). In Chapter 7, the underlying model
for the weighted least squares (WLS) approach is the multinomial distri-
bution. Although the distributional assumptions are much weaker for the
methods discussed in Chapter 9, one still must make some basic assump-
tions concerning the marginal distributions at each time point.

Although the methods of these previous chapters are adequate and ap-
propriate for many types of studies, there are several reasons why the use
of nonparametric methods may be indicated. First, when the response vari-
able is continuous, the assumption of multivariate normality is not always
reasonable. In other situations involving a continuous outcome variable, the
actual distribution may be unknown. Thus, the use of standard parametric
procedures is subject to criticism regarding both validity and optimality.

Another situation where nonparametric approaches may be useful is
when the response is an ordered categorical variable with a relatively large
number of possible outcomes. In such situations, the WLS approach is likely
to be inapplicable due to sample size limitations. In addition, the assump-
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tions of specific ordinal data methods such as the proportional-odds model
may be inappropriate.

In all of these situations, nonparametric methods for analyzing repeated
measurements may be of use. In addition, nonparametric methods may be
of interest as a means of confirming the results of a parametric analysis or
in assessing the sensitivity of the results to the assumptions of the selected
parametric model.

This chapter discusses the use of nonparametric methods for the anal-
ysis of repeated measurements. Section 10.2 provides a brief overview of
a variety of nonparametric approaches, and the remainder of the chap-
ter considers some specific approaches that are likely to be useful in the
analysis of repeated measurements. Section 10.3 reviews multivariate mul-
tisample tests for complete data, and Section 10.4 discusses two-sample
tests for incomplete data. Although these approaches are not included in
standard statistical software packages, special-purpose computer programs
are available.

10.2 Overview

A wide variety of nonparametric methods for the analysis of repeated mea-
surements have been developed and studied. Koch et al. (1980) provided
an early review and bibliography.

Perhaps the simplest nonparametric approach is to use the summary-
statistic method (Chapter 2) in conjunction with nonparametric summary
measures of association and nonparametric tests. For example, in the one-
sample setting (Table 1.3), interest may focus on assessing the extent of
association between the response variable and the repeated measurements
factor. If the Spearman rank correlation coefficient between the response
variable and the repeated measurements variable is used as the summary
statistic for each subject, then the sign test or the Wilcoxon signed rank
test can be used to test whether the median of the distribution of the
summary statistic is equal to zero. In the multisample setting (Table 1.2),
similar methods can be used. For example, the Wilcoxon–Mann–Whitney
(if s = 2) or Kruskal–Wallis (if s > 2) tests can be used to assess whether
the distribution of the summary statistic is the same across the s groups.

One general class of nonparametric methods includes procedures that can
be classified as multivariate generalizations of univariate distribution-free
methods. This approach includes standard asymptotically distribution-free
tests for multivariate one-sample and multisample problems that can be
used in the repeated measurements setting. There are several such rank-
based methods appropriate for the analysis of data from continuous multi-
variate distributions. When there are no missing values, multivariate one-
sample tests for complete data can be used to analyze repeated measure-
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ments. These include multivariate generalizations of the sign and Wilcoxon
signed rank tests. Puri and Sen (1971, Chapter 4) and Hettmansperger
(1984, Chapter 6) discuss these approaches. For complete repeated mea-
surements from multiple samples, multivariate multisample tests are avail-
able. These nonparametric analogs of MANOVA include multivariate gener-
alizations of the Kruskal–Wallis and Brown–Mood (Brown and Mood, 1951)
median tests and related methods discussed in Puri and Sen (1971, Chap-
ter 5). Section 10.3.2 describes these methods.

Another type of nonparametric approach is the use of asymptotically
distribution-free analogs of general parametric procedures for the analysis
of multivariate normally distributed outcome variables. Bhapkar (1984)
discusses nonparametric counterparts of Hotelling’s T 2 statistic and profile
analysis. Sen (1984) studies nonparametric analogs of the Potthoff and
Roy (1964) growth curve model.

The use of randomization model methods is another nonparametric ap-
proach to the analysis of repeated measurements. Chapter 8 describes ran-
domization model analyses for one-sample repeated measurements based
on Cochran–Mantel–Haenszel (CMH) statistics. Several common nonpara-
metric test procedures are special cases of CMH tests. These include the
tests of Friedman (1937), Durbin (1951), Benard and van Elteren (1953),
and Page (1963) as well as the aligned ranks test introduced by Hodges
and Lehmann (1962) and further studied by Koch and Sen (1968). Finally,
Zerbe and Walker (1977) and Zerbe (1979a, 1979b) discuss methods for
randomization analysis of growth curves.

Wei and Lachin (1984) and Wei and Johnson (1985) study distribution-
free methods for the two-sample case (Table 1.2 with s = 2) when the
data are incomplete. These approaches allow the missing-value patterns
in the two samples to be different but require the assumption that the
missing-value mechanism be independent of the response. Davis (1991,
1994) provides a further discussion of these methods and a computer pro-
gram. Lachin (1992) proposes additional test statistics and provides esti-
mators of the treatment difference. Palesch and Lachin (1994) extend these
methods to more than two groups, and Thall and Lachin (1988), Davis and
Wei (1988), and Davis (1996) study related methods for special types of
situations with incomplete data. Section 10.4 describes the Wei–Lachin and
Wei–Johnson procedures.

Another potential approach to the analysis of repeated measurements
when the underlying parametric assumptions are not satisfied is the rank
transform method, which consists of replacing observations by their ranks
and performing a standard parametric analysis on the ranks (Conover and
Iman, 1981). Unfortunately, the rank transform method has been shown
to be inappropriate for many common hypotheses (Akritas 1991, 1993).
Thompson (1991) and Akritas and Arnold (1994) provide valid asymptotic
tests based on the rank transform for selected hypotheses of interest in sev-
eral repeated measurements models. Kepner and Robinson (1988) consider



350 10. Nonparametric Methods

the one-sample situation of Table 1.3 under the assumption that the re-
peated measurements yij from the ith subject are equally correlated. They
show the relationships between the rank transform method and the rank
tests of Koch (1969) and Agresti and Pendergast (1986) for testing the null
hypothesis of no time effect.

Müller (1988), Diggle et al. (1994, Chapter 3), and Kshirsagar and Smith
(1995, Chapter 10) discuss nonparametric regression methods for the anal-
ysis of repeated measurements, including kernel estimation, weighted local
least squares estimation, and smoothing splines. Hart and Wehrly (1986)
study the theoretical properties of kernel regression estimation for repeated
measurements and show how the case of correlated errors changes the be-
havior of a kernel estimator. Altman (1990) demonstrates that the stan-
dard techniques for bandwidth selection perform poorly when the errors
are correlated. Raz (1989) describes an analysis procedure for repeated
measurements that combines nonparametric regression methods and the
randomization tests of Zerbe (1979b).

10.3 Multivariate One-Sample and Multisample
Tests for Complete Data

10.3.1 One Sample
For the one-sample case with no missing data, Hettmansperger (1984,
Chapter 6) and Puri and Sen (1971, Chapter 4) study multivariate gen-
eralizations of the sign and Wilcoxon signed rank tests. In the one-sample
repeated measurements setting of Table 1.3 with no missing data, let θj de-
note the median of the marginal distribution of the response at time j for
j = 1, . . . , t. By transforming each of the n vectors yi = (yi1, . . . , yit)′ to a
(t−1)-component vector of differences y∗

i = (yi1−yi2, . . . , yi,t−1−yit)′, these
methods can then be used to test the null hypothesis that θ1 = · · · = θt.
Hettmansperger (1984) provides an example of this approach.

10.3.2 Multiple Samples
Hettmansperger (1984) considers the two-sample situation with complete
data; the test statistic is a multivariate version of the Wilcoxon–Mann–
Whitney test. Puri and Sen (1971, Chapter 5) discuss multivariate gen-
eralizations of the Brown–Mood (1951) and Kruskal–Wallis (1952) tests
for the multivariate multisample situation with complete data. Based on
these results, Schwertman (1982) provides a computer algorithm for two
of these tests, the multivariate multisample rank sum test and the mul-
tivariate multisample median test. These methods can be applied to the
situation where repeated measurements are obtained from multiple samples
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(Table 1.2), as described later. Schwertman (1985) describes this approach
in further detail and gives an example of its application to the analysis of
repeated measurements.

The general problem considered by Puri and Sen (1971) is that of test-
ing the equality of s multivariate distributions F1, . . . , Fs, where Fh is a
t-variate cumulative distribution function (cdf). When the underlying dis-
tributions F1, . . . , Fs are multivariate normal, they can differ only in their
mean vectors and covariance matrices. For nonnormal Fh, however, differ-
ences among distributions may be due to a variety of reasons. In particular,
equality of location vectors and covariance matrices does not imply that
F1 = · · · = Fs.

Puri and Sen (1971) assume that the cdfs Fh have a common unspecified
form but differ in their location (or scale) vectors. They consider the general
null hypothesis H0:F1(x) = · · · = Fs(x) for all x = (x1, . . . , xt)′, where
Fh ∈ Ω and Ω is the class of continuous cdfs. The general alternative
hypothesis is that the distributions Fh are not all equal.

In the context of repeated measurements, suppose that responses are
obtained at t time points from subjects in s groups, where nh is the sample
size (number of independent experimental units) in group h for h = 1, . . . , s.
Let Fh(x) denote the t-variate cdf in group h. Assume that the cdfs Fh(x)
have a common unspecified form with possible differences in their location
(or scale) parameters. For example, suppose that Fh(x) = F (x + ∆h),
where ∆h = (∆h1, . . . ,∆ht)′. The null hypothesis of no difference among
groups across all time points tests

H0:∆1 = · · · = ∆s = (0, . . . , 0)′.

The omnibus alternative hypothesis is that ∆1, . . . ,∆s are not all equal.
Let n = n1 + · · · + ns and consider the n × t data matrix organized

as in Table 1.2. Let R denote the n × t matrix of ranks resulting from
ranking each of the t columns of the data matrix (all groups combined) in
ascending order. Under H0, each column of R is a random permutation
of the numbers 1, . . . , n; thus, R has (n!)t possible realizations. Two such
matrices are said to be permutationally equivalent if one can be obtained
from the other by a rearrangement of its rows. Let R∗ denote the matrix
that has the same row vectors as R but is arranged so that its first column
is ordered 1, . . . , n. The matrix R∗ has (n!)t−1 possible realizations.

The t components of yhi = (yhi1, . . . , yhit)′ are, in general, stochastically
dependent. Thus, the joint distribution of the elements of R (or R∗) will
depend on the unknown distribution F , even when

H0:F1(x) = · · · = Fs(x) = F (x)

is true. Let R∗ denote the set of all (n!)t−1 possible realizations of R∗. The
unconditional distribution of R∗ over R∗ depends on F1, . . . , Fs. When
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F1(x) = · · · = Fs(x), the n random vectors

y11, . . . ,y1n1
,y21, . . . ,y2n2

, . . . ,ys1, . . . ,ysns

are independent and identically distributed.
The joint distribution of the yhi is invariant under any permutation

among themselves. Thus, the conditional distribution of R over the set of
n! possible permutations of the columns of R∗ is uniform under

H0:F1(x) = · · · = Fs(x) = F (x);

that is,

Pr(R = r|S(R∗), H0) = 1/n!

for all r ∈ S(R∗). Puri and Sen (1971) define P as the conditional (per-
mutational) probability measure generated by the n! equally likely possible
permutations of the columns of R∗. They show that any statistic that de-
pends explicitly on R has a completely specified conditional distribution
under P.

Let Rij denote the (i, j)th element of R, let Eij = J(Rij/(n + 1)) for
some function J satisfying Puri and Sen’s (1971, p. 95) conditions, and let
Ehj denote the average rank score at the jth time point in the hth sample.
Puri and Sen (1971) derive a general test statistic L, which is a weighted
sum of s quadratic forms in Eh − E., where Eh is the t × 1 vector of
average rank scores from the hth sample and E. is the vector of average
rank scores from all samples combined. The jth component of E. is E.j .
The conditional distribution of L given R∗ is the same under H0 regardless
of F (x). Under H0, the t(s−1) contrasts Ehj −E.j are stochastically small
in absolute value.

The test criterion L rejects H0 if any of these contrasts are numeri-
cally too large. Unless n and t are both small, exact application of the
permutation test based on L is difficult. Puri and Sen (1971) show that
the asymptotic null distribution of L is χ2

t(s−1). They also note that L is
asymptotically equivalent to the likelihood ratio test based on Hotelling’s
T 2 statistic. Two specific tests of this type are the multivariate multisample
rank sum test and the multivariate multisample median test.

Multivariate Multisample Rank Sum Test

For each sample at each time point, the multivariate multisample rank sum
test (MMRST) compares the difference between the sample average rank
and the combined-data average rank. Let rh denote the t × 1 vector of
average ranks from group h, with elements rhj =

∑nh

i=1 rhij/nh, where rhij

is the rank of the jth response from the ith subject in sample h. Let r.

denote the average rank vector (t × 1) for the combined samples; the jth
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component of r. is

r.j =

s∑
h=1

nh∑
i=1

rhij

s∑
h=1

nh

.

The test statistic is

LRS =
s∑

h=1

nh(rh − r.)′V −1(rh − r.),

where the covariance matrix V has elements

Vjl =

(
s∑

h=1

nh∑
i=1

rhijrhil

/ s∑
h=1

nh

)
− r.jr.l.

The statistic LRS tests the hypothesis of no differences in the multivariate
response profiles from the s samples; the asymptotic null distribution of
this statistic is χ2

t(s−1). If t = 1, LRS reduces to the Kruskal–Wallis test.
Schwertman (1982) provides a FORTRAN subroutine for computing the
MMRST.

Multivariate Multisample Median Test

Similarly, for each sample at each time point, the multivariate multisam-
ple median test (MMMT) compares differences between proportions of re-
sponses less than or equal to the median to the corresponding combined-
data proportions. Let ph denote the t×1 vector of proportions from the hth
sample that are less than or equal to the median of the combined samples.
The jth component of ph is phj =

∑nh

i=1 xhij/nh, where

xhij =
{

1 if rhij ≤∑s
h=1 nh/2

0 otherwise
.

Let p. denote the t × 1 vector of proportions of observations from the
combined samples that are less than or equal to the median of the combined
samples, with elements

p.j =

s∑
h=1

nh∑
i=1

xhij

s∑
h=1

nh

.

The test statistic is

LM =
s∑

h=1

nh(ph − p.)
′V −1(ph − p.),
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where the covariance matrix V has elements

Vjl =

(
s∑

h=1

nh∑
i=1

xhijxhil

/ s∑
h=1

nh

)
− p.jp.l.

The statistic LM tests the hypothesis of no differences in the multivariate
response profiles from the s samples. The asymptotic null distribution of
LM is χ2

t(s−1). If t = 1, LM reduces to the Brown–Mood (1951) several-
sample median test. Schwertman (1982) gives a FORTRAN subroutine for
computing the MMMT.

Examples

Problem 3.10 considered plasma inorganic phosphate measurements ob-
tained from 13 control and 20 obese patients 0, 0.5, 1, 1.5, 2, and 3 hours
after an oral glucose challenge (Zerbe, 1979b). Table 3.10 displays the data,
and the sample means are plotted in Figure 3.6. Even though the relation-
ship between plasma inorganic phosphate level and time is not monotonic,
the multivariate nonparametric tests of Puri and Sen (1971) can be used
to make an overall comparison between the two groups. Using the mul-
tivariate multisample rank sum test, the chi-square statistic is 21.5 with
6 df (p < 0.001). The multivariate multisample median test gives a less
significant result (chi-square = 16.2, df = 6, p = 0.013).

As a second example, Section 2.3 considered a clinical trial conducted
in 59 epileptic patients (Leppik et al., 1987). In this study, patients suf-
fering from simple or complex partial seizures were randomized to receive
either the antiepileptic drug progabide (31 patients) or a placebo (28 pa-
tients). At each of four successive postrandomization visits, the number of
seizures occurring during the previous two weeks was reported. The medical
question of interest is whether progabide reduces the frequency of epileptic
seizures. Table 2.7 displays the seizure counts during the successive two-
week periods for the first ten patients in the progabide group and the first
ten patients in the placebo group. Figure 2.2 displays side-by-side modified
box plots (Moore and McCabe, 1993, pp. 42–43) for the two treatments at
each assessment time.

In Section 2.3, these data were analyzed using the summary-statistic
approach. The two groups can also be compared using the multivariate
nonparametric tests of Puri and Sen (1971). During each two-week period,
there appears to be a slight tendency for seizure counts to be lower in
progabide-treated patients than in placebo-treated patients. For example,
the median number of seizures in the progabide group at weeks 2, 4, 6, and 8
is 4, 5, 4, and 4, respectively. The corresponding medians in the placebo
group are 5, 4.5, 5, and 5, respectively. Using the multivariate multisample
rank sum test, the chi-square statistic is 5.47 with 4 df (p = 0.24). The
multivariate multisample median test gives an even less significant result
(chi-square = 3.46, df = 4, p = 0.48). As in the analyses presented in
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Section 2.3, there is little evidence of significant differences between the
two groups.

10.4 Two-Sample Tests for Incomplete Data

10.4.1 Introduction
Wei and Lachin (1984) and Wei and Johnson (1985) studied general meth-
ods for comparing two samples of incomplete repeated measurements. The
methods make no assumptions concerning the distribution of the response
variable. The missing-value patterns in the two groups are allowed to be
different, and both “embedded” (within the sequence of repeated measure-
ments from a subject) and “tail” (at the end of the sequence of repeated
measurements) missing observations can be accommodated. The missing-
data mechanism, however, must be independent of the response, and these
methods are limited to two-group comparisons.

10.4.2 The Wei–Lachin Method
Wei and Lachin (1984) propose and study a family of asymptotically dist-
ribution-free tests for equality of two multivariate distributions. Their ap-
proach, which was motivated and developed for the analysis of multivariate
censored failure-time data, provides natural generalizations of the log-rank
and Gehan–Wilcoxon tests for survival data. The Wei and Lachin (1984)
methodology is based on a commonly used random-censorship model (Kalb-
fleisch and Prentice, 1980), which assumes that the censoring vectors for
each subject are mutually independent and also independent of the un-
derlying failure-time vectors. The methodology is also applicable to the
analysis of repeated measurements with missing observations.

Let yhi = (yhi1, . . . , yhit)′ denote the repeated observations from sub-
ject i in group h, for h = 1, 2 and i = 1, . . . , nh. Let Fh(x) denote the
multivariate cumulative distribution function (cdf) of the repeated obser-
vations from group h, for h = 1, 2, where x = (x1, . . . , xt)′. The Wei–Lachin
statistic for testing

H0:F1(x) = F2(x)

against the general alternative that F1(x) �= F2(x) is

X2
W = W ′Σ̂

−1
W W ,

where W ′ = (W1, . . . ,Wt) is a vector of test statistics comparing groups 1
and 2 at each of the t time points, and Σ̂W is a consistent estimator of
Var(W ) given by Theorem 1 of Wei and Lachin (1984). Apart from a scale
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factor, the jth component of W is

Wj =
n1∑
i=1

n2∑
i′=1

δ1ij δ2i′j φ(y1ij , y2i′j),

where

φ(x, y) =

{ 1 if x > y
0 if x = y

−1 if x < y
, (10.1)

and δhij is 1 if yhij is observed and 0 otherwise. Thus, at each time point j,
comparisons between groups 1 and 2 are made for all i, i′ for which y1ij and
y2i′j are both observed. The asymptotic null distribution of the statistic
X2

W is χ2
t .

In many studies, the detection of stochastic ordering of the distributions
F1 and F2 is of primary interest. For example, the alternative hypothesis
H1 may be that F1j(x) ≤ F2j(x) for each pair (F1j , F2j) of marginal cdfs,
j = 1, . . . , t. Under this alternative, the observations from group 1 tend to
be larger than those from group 2 at each time point. For this situation,
Wei and Lachin (1984) proposed the statistic

zW =
e′W√
e′Σ̂W e

,

where e′ is the t-component vector (1, . . . , 1). The asymptotic null distri-
bution of zW is normal with mean zero and variance one [N(0, 1)]. If the
alternative hypothesis is F1j(x) ≤ F2j(x) for j = 1, . . . , t, the null hypothe-
sis is rejected when zW is a large positive value. Similarly, if the alternative
hypothesis is F1j(x) ≥ F2j(x), large negative values lead to rejection.

Makuch et al. (1991) provide a FORTRAN subroutine for computing
the Wei–Lachin omnibus statistic X2

W and linear combination statistic zW .
Although their interest was in the analysis of multivariate censored failure-
time data, they give instructions for adapting their algorithm to the general
repeated measures setting. Davis (1994) provides a program for the analysis
of repeated measurements that calculatesX2

W , zW , and other test statistics.
The two methods give the same results for X2

W and zW (apart from a sign
change).

10.4.3 The Wei–Johnson Method
The Wei and Lachin (1984) methodology is based on a random-censorship
model, and the focus is on an omnibus test of equality versus a general
alternative. In contrast, Wei and Johnson (1985) focus primarily on op-
timal methods of combining dependent tests and propose a class of two-
sample nonparametric tests for incomplete repeated measurements based
on two-sample U statistics. Their motivation is that if a researcher wishes
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to draw an overall conclusion regarding the superiority of one treatment
over another (across time), then a univariate one-sided test that combines
the results at individual time points is more appropriate than an omnibus
two-sided test of H0:F1(x) = F2(x).

Before describing the Wei–Johnson (1985) methodology, we first review
one-sample and two-sample U statistics.

One-Sample U Statistics

Let F denote a family of cumulative distribution functions, let X1, . . . , Xn

be a random sample from a distribution with cdf F ∈ F , and let γ denote
a parameter to be estimated. The parameter γ is said to be estimable of
degree r for the family F if r is the smallest sample size for which there
exists a function h(x1, . . . , xr) such that

E[h(X1, . . . , Xr)] = γ

for every distribution F ∈ F . The function h(x1, . . . , xr) is a statistic that
does not depend on F and is called the kernel of the parameter γ. The
function h(x1, . . . , xr) is assumed to be symmetric in its arguments; that
is,

h(x1, . . . , xr) = h(xα1 , . . . , xαr
)

for every permutation (α1, . . . , αr) of the integers 1, . . . , r.
A one-sample U statistic for the estimable parameter γ of degree r is

created with the symmetric kernel h(x1, . . . , xr) by forming

U(X1, . . . , Xn) =
(
n

r

)−1 ∑
β∈B

h(Xβ1 , . . . , Xβr ),

where B =
{
β|β is one of the

(
n
r

)
unordered subsets of r integers chosen

without replacement from the set {1, . . . , n}}.
As an example of a one-sample U statistic, let F denote the class of all

univariate distributions with finite first moment γ, and let X1, . . . , Xn be
a random sample from a distribution with cdf F ∈ F . Because E(X1) = γ,
the mean γ is an estimable parameter of degree 1 for the family F . Using
the kernel h(x) = x, the U -statistic estimator of the mean is

U(X1, . . . , Xn) =
(
n

1

)−1 n∑
i=1

h(Xi) =
1
n

n∑
i=1

Xi = X.

An important theorem due to Hoeffding (1948) (see also Randles and
Wolfe, 1979, p. 82) establishes the asymptotic normality of standardized
one-sample U statistics; this is an example of a central limit theorem for
dependent variables. Let X1, . . . , Xn be a random sample from a distribu-
tion with cdf F ∈ F , let γ be an estimable parameter of degree r with
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symmetric kernel h(x1, . . . , xr), and let

U(X1, . . . , Xn) =
(
n

r

)−1 ∑
β∈B

h(Xβ1 , . . . , Xβr ),

where B consists of the unordered subsets of r integers chosen without
replacement from {1, . . . , n}. If E[h2(X1, . . . , Xr)] < ∞, and if

ζ1 = E[h(X1, . . . , Xr)h(X1, Xr+1, . . . , X2r−1)] − γ2

is positive, then the statistic
√
n[U(X1, . . . , Xn) − γ]

has a limiting N(0, r2ζ1) distribution.

Two-Sample U Statistics

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from pop-
ulations with cumulative distribution functions F (x) and G(y), respec-
tively, from a family of cumulative distribution functions F . A parame-
ter γ is estimable of degree (r, s) for distributions (F,G) in the family F
if r and s are the smallest sample sizes for which there exists a function
h(x1, . . . , xr, y1, . . . , ys) such that

E[h(X1, . . . , Xr, Y1, . . . , Ys)] = γ

for all distributions (F,G) ∈ F . The function h(x1, . . . , xr, y1, . . . , ys) is
called the two-sample kernel of the parameter γ. The kernel

h(x1, . . . , xr, y1, . . . , ys)

is assumed to be symmetric separately in its xi components and in its yi

components.
A two-sample U statistic for the estimable parameter γ of degree (r, s)

is created with the kernel h(x1, . . . , xr, y1, . . . , ys) by forming

U(X1, . . . , Xm, Y1, . . . , Yn) =

∑
α∈A

∑
β∈B

h(Xα1 , . . . , Xαr
Yβ1 , . . . , Yβs

)(
m

r

)(
n

s

) ,

where A (B) is the collection of subsets of r (s) integers chosen without
replacement from the integers {1, . . . ,m} ({1, . . . , n}). Note that sample
sizes m ≥ r and n ≥ s are required.

As an example of a two-sample U statistic, let F be the class of univariate
distributions with finite first moment γ. Let X1, . . . , Xm and Y1, . . . , Yn



10.4 Two-Sample Tests for Incomplete Data 359

be independent random samples from distributions with cdfs F and G,
respectively, where F,G ∈ F . Because E(X1) = µX and E(Y1) = µY , the
mean difference γ = µY −µX is an estimable parameter of degree (1, 1) for
the family F . Using the kernel h(x, y) = y− x, the U -statistic estimator of
the mean difference is

U(X1, . . . , Yn) =
[(
m

1

)(
n

1

)]−1 m∑
i=1

n∑
j=1

h(Xi, Yj)

=
1
mn

m∑
i=1

n∑
j=1

(Yj −Xi)

= Y −X.

Lehmann (1951) established the asymptotic normality of standardized
two-sample U statistics by extending Hoeffding’s (1948) theorem. Consid-
ering only the special case of r = s = 1, let X1, . . . , Xm and Y1, . . . , Yn

be independent random samples from distributions with cdfs F and G, re-
spectively, where F,G ∈ F , let h(·) be a symmetric kernel for an estimable
parameter γ of degree (1, 1), and let U be the U -statistic estimator of γ.
Also, let N = m+ n and let

0 < λ = lim
N→∞

m

N
< 1.

Define ζ1,0 and ζ0,1 by

ζ1,0 = E[h(X1, Y1)h(X1, Y2)] − γ2,

ζ0,1 = E[h(X1, Y1)h(X2, Y1)] − γ2.

If E[h2(X1, Y1)] < ∞, and if

σ2 =
ζ1,0

λ
+

ζ0,1

1 − λ
> 0,

then the limiting distribution of the statistic
√
N(U − γ) is N(0, σ2).

Joint Limiting Distribution of Correlated Two-Sample U
Statistics

Lehmann (1963) proved a general theorem, which will be stated here for
the special case of several two-sample U statistics, each of degree (1, 1).

Let X1, . . . ,Xm and Y 1, . . . ,Y n be independent random samples from
distributions with t-variate cdfs F and G, respectively. Thus,

Xi = (Xi1, . . . , Xit)′

for i = 1, . . . ,m, and
Y j = (Yj1, . . . , Yjt)′
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for j = 1, . . . , n. Let U1, . . . , Ut be two-sample U statistics with symmetric
kernel h(x, y), where Uk estimates γk of degree (1, 1) and is given by

Uk = (mn)−1
m∑

i=1

n∑
j=1

h(Xik, Yjk)

for k = 1, . . . , t. Also, let N = m+ n and let

λ = lim
N→∞

m

N
.

The joint limiting distribution of
√
N(U1 − γ1), . . . ,

√
N(Ut − γt)

is t-variate normal with zero mean vector and covariance matrix Σ with
elements

σk,k′ =
ζ1(k,k′)

λ
+
ζ2(k,k′)

1 − λ
.

The quantities ζ1(k,k′) and ζ2(k,k′) are defined by

ζ1(k,k′) = Cov
[(
h(X1k, Y1k) − γk

)
,
(
h(X1k′ , Y2k′) − γk′

)]
= E[h(X1k, Y1k)h(X1k′ , Y2k′)] − γkγk′ ,

ζ2(k,k′) = Cov
[(
h(X1k, Y1k) − γk

)
,
(
h(X2k′ , Y1k′) − γk′

)]
= E[h(X1k, Y1k)h(X2k′ , Y1k′)] − γkγk′ ,

for k, k′ = 1, . . . , t.

Wei–Johnson Methodology

The Wei–Johnson (1985) procedure for the analysis of repeated measure-
ments is based on the preceding theory for correlated two-sample U statis-
tics. The test statistic at the jth time point is

Uj =
√
n1 + n2

n1n2

n1∑
i=1

n2∑
i′=1

δ1ij δ2i′j φ(y1ij , y2i′j),

where yhij is the observation at time j from subject i in group h for h = 1, 2,
i = 1, . . . , nh, and j = 1, . . . , t. In addition,

δhij =
{ 1 if yhij is observed

0 otherwise
,

and φ(x, y) is a kernel function. If E[φ2(y1ij , y2i′j)] < ∞ for j = 1, . . . , t
and n1/(n1 + n2) → c, with 0 < c < 1, as n1 + n2 → ∞, then the vector

U = (U1, . . . , Ut)′
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has an asymptotic null N(0t,ΣU ) distribution. If E[φ4(y1ij , y2i′j)] < ∞ for
j = 1, . . . , t, then the elements of the variance–covariance matrix ΣU of
U = (U1, . . . , Ut)′ can be estimated consistently by

σ̂jk =
n1 + n2

n1
σ̂1jk +

n1 + n2

n2
σ̂2jk,

where

σ̂1jk =
1

n1n2(n2 − 1)

n1∑
i=1

n2∑
l �=l′=1

δ1ij δ1ik δ2lj δ2l′k φ(y1ij , y2lj)φ(y1ik, y2l′k)

and

σ̂2jk =
1

n2n1(n1 − 1)

n2∑
l=1

n1∑
i �=i′=1

δ1ij δ1i′k δ2lj δ2lk φ(y1ij , y2lj)φ(y1i′k, y2lk).

Let Σ̂U denote the estimated covariance matrix of the vector of test
statistics U . Because the null distribution of U is approximately multi-
variate normal with mean vector 0t and variance–covariance matrix Σ̂U ,
the hypothesis H0:F1(x1, . . . , xt) = F2(x1, . . . , xt) can be tested against a

general alternative using the statistic X2
U = U ′Σ̂

−1
U U . If H0 is true, this

statistic has an asymptotic χ2
t distribution. A univariate one-sided test that

combines the results at individual time points can be based on the linear
combination

c′U =
t∑

j=1

cjUj ,

where c′ = (c1, . . . , ct) is a vector of weights. Under H0, the statistic

zU =
c′U√
c′Σ̂Uc

is asymptotically N(0, 1).
The simplest choice for the vector c is to weight each component equally;

that is, to choose c′ = (1, . . . , 1). Another possibility is to weight by the
reciprocals of the variances using

c′ =
(

1
σ̂11

, . . . ,
1
σ̂tt

)
. (10.2)

Under the assumption that the test statistics at the individual time points
are estimates of a common effect, the optimal weights are given by

c′ = (1, . . . , 1)Σ̂
−1
U (10.3)
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(O’Brien, 1984; Ashby, Pocock, and Shaper, 1986). In practice, however,
this assumption may not hold. In addition, Bloch and Moses (1988) show
that, in general, the use of simple weights often results in little loss of effi-
ciency. Note that if the values of the test statistics differ considerably across
time points, the weights given by Equation (10.3) may give a result that is
quite different from that using equal weights or weighting by precision.

Wei and Johnson (1985) suggest several choices for the kernel function
φ(x, y). If Equation (10.1) is used, the Wei–Johnson vector of test statistics
U and the Wei–Lachin vector of test statistics W are equivalent, apart from
a scale factor. The consistent estimators of the variances and covariances
of the components of the vector of test statistics, however, are different.
The two methods will usually give similar results.

10.4.4 Examples
Complete Data

Although the Wei–Lachin (1984) and Wei–Johnson (1985) procedures were
developed for the two-sample case with incomplete data, these procedures
can also be applied when there are no missing data. Using the data from
the Leppik et al. (1987) clinical trial conducted in 59 epileptic patients
(partially displayed in Table 2.7 and previously considered in Sections 2.3
and 10.3.2), the Wei–Lachin vector of test statistics at the four time points
is W ′ = (−0.4700,−0.0375,−0.2008,−0.3685) with estimated covariance
matrix

Σ̂W =


0.0788 0.0529 0.0460 0.0509
0.0529 0.0804 0.0538 0.0556
0.0460 0.0538 0.0789 0.0501
0.0509 0.0556 0.0501 0.0775

 .
The Wei–Lachin omnibus chi-square statistic for testing equality of distri-
butions is X2

W = W ′Σ̂
−1
W W = 5.66 with 4 df (p = 0.23).

The Wei–Johnson procedure using the kernel function of Equation (10.1)
gives a vector U of test statistics equivalent (apart from a scale factor) to
the Wei–Lachin W but uses a different estimator of the covariance matrix.
Weighting each time point equally, the Wei–Johnson univariate statistic

c′U√
c′Σ̂Uc

,

with c′ = (1, . . . , 1), is equal to −1.09. With reference to the N(0, 1) dis-
tribution, the two-sided p-value is 0.14.

Incomplete Data

Problem 2.10 describes a clinical trial comparing two treatments for mater-
nal pain relief during labor (Davis, 1991). In this study, 83 women in labor
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were randomized to receive an experimental pain medication (43 subjects)
or placebo (40 subjects). Treatment was initiated when the cervical dilation
was 8 cm. At 30-minute intervals, the amount of pain was self-reported by
placing a mark on a 100-mm line (0 = no pain, 100 = very much pain).
Table 2.18 displays the data from the first 20 subjects in each group.

Because the repeated pain scores are both nonnormal and incomplete, it
seems appropriate to compare the two groups using the Wei–Lachin or the
Wei–Johnson procedures. Based on the data from minutes 30, 60, 90, 120,
150, and 180, the Wei–Lachin vector of test statistics is

W ′ = (−0.3941,−0.6017,−0.7551,−0.7287,−0.4972,−0.2976),

with estimated covariance matrix

Σ̂W =


0.0794 0.0479 0.0284 0.0178 0.0114 0.0057
0.0479 0.0585 0.0316 0.0208 0.0155 0.0064
0.0284 0.0316 0.0368 0.0197 0.0111 0.0036
0.0178 0.0208 0.0197 0.0265 0.0148 0.0054
0.0114 0.0155 0.0111 0.0148 0.0132 0.0057
0.0057 0.0064 0.0036 0.0054 0.0057 0.0052

 .

The Wei–Johnson procedure using the kernel function of Equation (10.1)
gives the vector of test statistics

U ′ = (−1.5784,−2.4100,−3.0245,−2.9185,−1.9916,−1.1918),

with estimated covariance matrix

Σ̂U =


1.3298 0.9268 0.6557 0.4182 0.2429 0.1433
0.9268 1.1120 0.7783 0.5576 0.3625 0.2114
0.6557 0.7783 0.9337 0.7511 0.4985 0.2555
0.4182 0.5576 0.7511 0.7790 0.5016 0.2528
0.2429 0.3625 0.4985 0.5016 0.4189 0.2234
0.1433 0.2114 0.2555 0.2528 0.2234 0.1819

 .

Table 10.1 displays the standardized test statistics (statistic/standard
error) for the Wei–Lachin and Wei–Johnson methods at each of the six time
points. The signs of the test statistics indicate that, at each time point, the
pain scores are lower (better) in the experimental group than in the placebo
group. Although the two methods yield similar conclusions, the Wei–Lachin
standardized statistic is larger in absolute value (more significant) than the
Wei–Johnson statistic at every time point. The Wei–Lachin omnibus chi-
square statistic for testing equality of distributions is highly significant
(X2

W = W ′Σ̂
−1
W W = 30.1 with 6 df, p < 0.001), whereas the omnibus

Wei–Johnson statistic is marginally significant (X2
U = U ′Σ̂

−1
U U = 11.9

with 6 df, p = 0.065).
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TABLE 10.1. Wei–Lachin and Wei–Johnson analyses of labor pain clinical trial

Standardized Test Statistic
Wei–Lachin Wei–Johnson

Time point (minute):
30 −1.40 −1.37
60 −2.49 −2.28
90 −3.94 −3.13

120 −4.47 −3.31
150 −4.33 −3.08
180 −4.11 −2.79

Linear combinations:
Equal weights −3.88 −3.06
Reciprocals of variances [Equation (10.2)] −4.85 −3.28
Optimal [Equation (10.3)] −4.42 −2.11

Table 10.1 also displays standardized values of three linear combinations
of the statistics calculated at the separate time points. For both meth-
ods, all three linear combination statistics indicate a significant difference
between the two groups with respect to the N(0, 1) reference distribution.

10.5 Problems

10.1 Box (1950) describes an experiment in which 30 rats were randomly
assigned to three treatment groups. Group 1 was a control group, group 2
had thyroxin added to their drinking water, and group 3 had thiouracil
added to their drinking water. Although there were ten rats in each of
groups 1 and 3, group 2 consisted of only seven rats (due to an unspecified
accident at the beginning of the experiment). The resulting body weights
of each of the 27 rats at the beginning of the experiment and at weekly
intervals for four weeks were previously considered in Problems 2.4, 4.3,
and 5.9 and are displayed in Table 2.12.

(a) Use nonparametric methods to test whether the body-weight distri-
butions differ among the three groups.

(b) Compare your results with those from Problems 2.4, 4.3, and 5.9.

10.2 In an investigation of the effects of various dosages of radiation
therapy on psychomotor skills (Danford et al., 1960), 45 cancer patients
were trained to operate a psychomotor testing device. Six patients were not
given radiation and served as controls, and the remainder were treated with
dosages of 25–50 R, 75–100 R, or 125–250 R. The resulting psychomotor
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test scores on the three days following radiation treatment were previously
considered in Problems 2.6, 4.6, and 5.11 and are displayed in Table 2.14.

(a) Use nonparametric methods to test whether the distributions of the
psychomotor test scores differ among the four groups.

(b) Compare your results with those from Problems 2.6, 4.6, and 5.11.

10.3 Potthoff and Roy (1964) describe a study conducted at the Univer-
sity of North Carolina Dental School in which the distance (mm) from the
center of the pituitary gland to the pterygomaxillary fissure was measured
at ages 8, 10, 12, and 14 in 16 boys and 11 girls. Table 3.3 lists the indi-
vidual measurements as well as the sample means and standard deviations
in both groups.

(a) Let Fb and Fg denote the multivariate cumulative distribution func-
tions for boys and girls, respectively. Use nonparametric methods to
test H0:Fb = Fg.

(b) Sections 3.4.2, 4.3.2, 4.4.3, and 6.4.1, as well as Problems 5.8, 6.3,
and 9.7, considered several other methods for the analysis of these
data. Compare the results from part (a) to the tests of equality of
groups presented in Sections 3.4.2, 4.3.2, 4.4.3, and 6.4.1.

10.4 Koziol et al. (1981) describe an experiment in which 30 mice were
injected with mouse colon carcinoma cells. Five days later, the mice were
randomly divided into three groups of ten mice each. The groups were
then given different immunotherapy regimens. Group A received injections
of tissue culture medium around the growing tumor, group B received in-
jections of tissue culture medium and normal spleen cells, and group C
received injections of normal spleen cells, immune RNA, and tumor anti-
gen. Table 10.2 displays tumor volumes (mm3) at days 7, 11, 12, 13, 14, 15,
and 17. Compare the three immunotherapy regimens using an appropriate
nonparametric procedure.

10.5 Amini and Patel (1984) report the results of a study to detect dif-
ferences in the percentage of erythrocyte survival among three genetically
different groups of 7–8-week-old female mice. Groups 1, 2, and 3 consisted
of 11, 8, and 11 mice, respectively. For each mouse, the percentage of ery-
throcytes surviving was measured at ionic concentrations of 0.3, 0.35, 0.4,
0.45, 0.5, and 0.55. Table 10.3 displays the data. Use a nonparametric
method to test whether the multivariate distributions in the three groups
are the same.

10.6 Eighty subjects with multiple sclerosis participated in a randomized,
placebo-controlled trial studying the efficacy of fampridine, a compound to
enhance nerve conduction. Prior to the initiation of treatment, the time
required to walk a specified distance was measured for each subject. The
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TABLE 10.2. Tumor volumes (mm3) in three groups of ten mice
Day

Group ID 7 11 12 13 14 15 17
A 1 35.3 157.1 122.5 217.6 340.3 379.0 556.6

2 19.6 152.2 129.6 176.6 213.9 317.9 356.4
3 27.0 122.4 196.1 196.1 332.2 388.9 469.3
4 55.0 95.0 205.9 205.9 270.0 307.3 405.1
5 24.6 168.8 135.3 196.0 340.2 340.4 507.3
6 12.6 85.0 70.1 225.1 225.1 289.0 317.9
7 35.2 129.8 180.0 274.7 420.1 340.3 507.2
8 29.8 157.0 126.8 202.5 225.0 307.2 320.1
9 70.0 129.7 196.0 205.8 375.7 419.1 421.2

10 29.5 156.9 176.7 225.0 289.0 372.6 379.2
B 1 48.6 115.3 90.8 176.5 317.9 421.2 529.2

2 66.7 289.0 215.6 268.8 388.8 487.4 551.3
3 24.5 143.7 115.0 90.7 194.3 559.6 629.3
4 14.4 84.7 135.2 191.2 176.4 356.4 397.1
5 10.8 70.0 80.0 118.3 156.8 215.6 268.8
6 11.3 15.0 205.8 289.0 346.8 529.2 629.2
7 18.0 56.7 115.3 96.8 177.5 268.8 320.0
8 60.0 166.6 166.7 324.0 420.0 440.0 634.8
9 29.4 152.1 122.4 186.3 186.3 274.7 485.1

10 41.1 186.2 176.6 274.6 361.0 379.1 440.0
C 1 12.5 108.0 96.8 186.2 202.5 213.9 379.1

2 23.4 129.6 176.5 196.6 320.0 397.1 500.0
3 22.2 65.0 176.4 191.3 213.8 274.6 405.0
4 11.2 52.9 70.0 129.6 152.1 303.5 415.0
5 66.6 147.0 260.1 420.0 460.0 653.4 806.4
6 11.4 115.2 65.1 32.0 10.8 3.2 1.4
7 22.1 55.0 115.2 55.0 93.6 118.8 118.3
8 40.5 156.8 65.0 84.7 191.2 291.5 400.0
9 32.0 44.6 108.9 258.8 247.5 405.0 372.6

10 10.0 118.3 166.6 176.4 186.2 340.2 361.0
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TABLE 10.3. Percentage of erythrocytes surviving at six ionic concentrations
from 30 female mice

Ionic Concentration
Group ID 0.3 0.35 0.4 0.45 0.5 0.55

1 1 94.1 97.2 94.6 87.3 33.1 5.6
2 100.0 100.0 100.0 93.7 35.6 3.7
3 100.0 100.0 98.3 90.3 29.1 0.0
4 100.0 99.9 96.0 87.7 35.9 2.8
5 100.0 100.0 97.7 82.4 31.8 0.0
6 88.9 90.3 90.9 81.7 28.7 0.0
7 100.0 98.4 98.9 79.8 23.1 0.0
8 100.0 93.9 100.0 92.3 32.1 2.1
9 96.3 95.2 92.1 82.2 26.6 0.0

10 99.5 99.8 94.5 84.2 22.5 0.0
11 97.6 97.3 94.6 90.4 45.9 0.0

2 1 100.0 100.0 94.2 76.9 14.2 0.0
2 97.5 98.1 92.3 71.3 10.2 0.0
3 93.2 96.6 89.8 69.2 10.0 0.0
4 95.7 98.7 89.8 76.4 0.3 0.0
5 82.9 89.2 82.4 68.8 12.0 0.0
6 100.0 100.0 92.2 81.2 14.5 0.0
7 100.0 100.0 98.9 67.1 12.5 0.0
8 97.9 99.5 94.8 76.4 19.5 0.0

3 1 100.0 96.4 94.4 82.1 19.4 1.3
2 98.6 97.7 88.1 80.4 11.8 0.0
3 100.0 100.0 100.0 100.0 17.1 0.0
4 100.0 95.8 89.2 78.5 17.0 0.0
5 100.0 100.0 97.3 17.8 17.7 0.0
6 89.3 92.1 88.4 71.9 14.4 0.0
7 100.0 100.0 100.0 82.7 21.6 0.0
8 99.8 95.3 97.7 76.5 10.8 0.0
9 91.4 95.0 94.4 85.8 30.2 0.0

10 100.0 99.4 97.9 81.5 7.3 0.0
11 97.8 100.0 96.2 77.6 10.7 0.0
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TABLE 10.4. Ambulation time improvements at weeks 2, 4, and 6 from 80 sub-
jects with multiple sclerosis: Subjects 1–10

Ambulation Time Improvement (seconds)
Subject Treatment Week 2 Week 4 Week 6

1 Fampridine 7.72 1.42 6.74
2 Fampridine −8.18 . .
3 Placebo −0.45 −1.11 −0.34
4 Placebo 0.65 −1.38 −5.88
5 Fampridine 4.15 4.20 11.04
6 Placebo 1.31 1.15 1.23
7 Placebo 0.59 0.29 0.86
8 Placebo 1.02 2.86 2.61
9 Placebo −44.09 −20.42 17.99
10 Fampridine 3.30 4.11 1.34

process was repeated at weeks 2, 4, and 6 during treatment, and the out-
come variable was the change from baseline in ambulation time. Because
this was computed as the baseline value minus the follow-up value, positive
numbers indicate improvement. Table 10.4 displays the data from the first
ten subjects. Use nonparametric methods to compare the fampridine and
placebo groups with respect to the ambulation time changes at weeks 2, 4,
and 6.

10.7 In the Iowa Cochlear Implant Project, the effectiveness of two types
of cochlear implants was studied in profoundly and bilaterally deaf pa-
tients. In one group of 23 subjects, the “type A” implant was used. A
second group of 21 subjects received the “type B” implant. In both groups,
the electrode array was surgically implanted five to six weeks prior to elec-
trical connection to the external speech processor. A sentence test was then
administered at 1, 9, 18, and 30 months after connection. The outcome vari-
able of interest at each time point was the percentage of correct scores. The
resulting data were previously considered in Problem 2.9 and are displayed
in Table 2.17.

(a) Test whether there is a difference between the two types of implants
using nonparametric methods.

(b) Compare your results with those from Problem 2.9.

10.8 Problem 2.11 discussed data from the National Cooperative Gall-
stone Study, which investigated the safety of the drug chenodiol for the
treatment of cholesterol gallstones. Tables 2.19 and 2.20 display serum
cholesterol measurements prior to treatment and at 6, 12, 20, and 24 months
of follow-up for patients in the placebo and high-dose chenodiol groups, re-
spectively (Wei and Lachin, 1984). Use a nonparametric test to compare
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the chenodiol and placebo groups with respect to the changes in cholesterol
levels (from baseline) at months 6, 12, 20, and 24.

10.9 Crépeau et al. (1985) describe an investigation of the effects of three
treatment regimens on induced tumors in mice. In this experiment, 45 mice
were injected subcutaneously with mouse colon carcinoma cells. Five days
later, when the induced tumors were palpable, the mice were randomly
divided into three groups of 15 mice each. Group 1 was a control group,
group 2 received normal spleen cells only, and group 3 received normal
spleen cells, immune RNA, and tumor antigen. Table 10.5 displays sub-
sequent tumor volumes (mm3) at days 10, 11, 12, 13, 14, 15, 17, 18, 19,
and 20. Compare the three immunotherapy regimens using an appropriate
nonparametric procedure.

10.10 Volberding et al. (1990) describe a randomized, placebo-controlled
study of AZT in adults with asymptomatic HIV infection. In this study,
CD4+ cell counts were measured at weeks 8, 16, 32, and 48 from 497 sub-
jects treated with 1500 mg/day of zidovudine (AZT) and 459 subjects
treated with a placebo. There are numerous missing values, especially at
the later time points. Table 10.6 displays the data from the first 50 sub-
jects. Use appropriate nonparametric methods to test whether the CD4+
distributions are the same in the two groups.
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TABLE 10.5. Tumor volumes (mm3) in 45 mice

Day
Group ID 10 11 12 13 14 15 17 18 19 20

1 1 40.5 56.7 72.6 90.8 135.2 151.2 177.5 177.5 172.5 191.3
2 25.6 32.0 35.2 40.5 72.6 90.8 126.8 126.8 126.8 143.7
3 32.0 40.5 66.6 96.8 151.2 180.0 270.0 281.6 332.8 356.3
4 19.6 48.6 70.0 96.8 151.2 180.0 247.5 332.8 487.4 505.4
5 10.8 25.6 56.7 75.0 129.6 176.4 303.5 420.0 560.0 600.4
6 50.0 50.0 58.4 65.0 85.0 115.2 202.5 202.5 225.4 258.8
7 25.6 35.2 52.7 90.8 115.2 129.6 156.8 156.8 176.4 191.3
8 22.1 48.6 75.0 84.7 90.8 100.8 176.4 277.5 356.4 356.4
9 10.8 25.6 48.6 50.0 84.7 100.8 180.0 277.5 420.0 487.4

10 10.8 25.6 60.0 65.0 78.7 90.0 156.8 202.5 361.0 388.8
11 17.2 25.6 48.6 52.7 143.7 186.2 243.2 243.2 281.6 332.8
12 25.6 56.7 90.8 90.8 90.8 126.8 191.3 191.3 191.3 217.6
13 4.8 19.6 65.0 75.0 126.8 180.0 307.8 332.8 356.4 487.4
14 25.6 40.5 84.7 90.8 147.0 152.1 225.0 247.5 388.8 419.1
15 5.3 35.2 90.8 90.8 96.8 115.2 152.1 152.1 176.4 247.5

2 1 17.2 25.6 60.0 75.0 156.8 186.2 236.3 281.6 343.0 388.8
2 48.6 66.6 100.8 115.2 160.6 243.2 317.9 419.1 505.4 556.6
3 5.3 5.3 6.3 19.6 52.7 129.6 281.6 307.8 388.8 487.4
4 19.6 25.6 48.6 35.2 78.7 78.7 85.0 156.8 317.9 487.4
5 25.6 50.0 84.7 84.7 84.7 115.2 205.8 307.8 523.5 556.8
6 55.0 75.0 100.8 115.2 186.2 247.5 332.8 356.4 419.1 460.0
7 25.6 40.5 56.7 65.0 84.7 156.8 225.4 225.4 225.4 247.5
8 17.2 32.0 56.7 65.0 96.8 115.2 169.0 191.3 258.8 343.0
9 10.8 22.1 48.6 65.0 143.7 176.4 202.8 225.4 292.5 388.8

10 12.6 25.6 52.7 90.8 202.5 247.5 388.8 419.1 453.6 620.0
11 25.6 48.6 96.8 96.8 96.8 160.6 247.5 247.5 247.5 303.5
12 22.1 48.6 78.7 90.8 115.2 126.8 176.4 191.3 281.6 303.5
13 32.0 56.7 100.8 100.8 115.2 186.2 235.2 281.6 345.6 388.8
14 65.0 84.7 143.7 143.7 156.8 180.0 225.0 276.0 303.5 303.5
15 28.8 32.0 52.7 65.0 100.8 180.0 276.0 307.8 346.8 388.8

3 1 4.8 7.5 19.6 28.8 60.0 78.7 100.8 135.2 191.3 191.3
2 1.4 3.2 6.3 10.8 28.8 32.0 60.0 78.7 115.2 168.8
3 1.4 2.3 4.8 2.3 1.4 19.6 25.6 28.8 41.6 41.6
4 4.8 4.8 4.8 10.8 28.8 25.6 22.1 10.8 6.3 2.3
5 1.8 4.8 12.6 17.2 48.6 70.0 152.1 152.1 156.8 176.4
6 4.0 7.5 32.0 32.0 55.0 60.0 70.0 84.7 108.9 115.2
7 0.4 2.3 4.0 6.3 7.5 7.5 7.5 6.3 1.4 1.4
8 1.4 1.4 3.2 6.3 17.2 32.0 78.7 78.7 86.4 135.2
9 1.4 4.0 7.5 10.8 14.4 22.1 50.0 70.0 84.7 100.8

10 1.4 1.4 1.4 6.3 19.6 22.1 28.8 28.8 36.5 40.5
11 1.4 3.2 7.5 10.8 32.0 48.6 66.6 78.7 118.3 156.8
12 0.6 0.4 0.0 3.2 10.8 10.8 12.6 19.6 44.8 32.0
13 1.4 1.4 0.4 0.4 1.4 6.3 12.6 19.6 28.8 28.8
14 1.4 1.4 1.4 3.2 19.6 28.8 40.5 40.5 44.6 56.7
15 1.4 1.4 3.2 10.8 32.0 32.0 32.0 22.1 19.6 19.6
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TABLE 10.6. CD4+ cell counts at four time points from a clinical trial in adults
with asymptomatic HIV infection: First 50 subjects

Week Week
ID Trt. 8 16 32 48 ID Trt. 8 16 32 48
1 P 476 432 510 425 26 P . 423 517 632
2 P 216 337 264 321 27 P 578 575 574 740
3 A 672 614 326 494 28 P 257 244 202 .
4 A 287 329 426 368 29 P 480 528 390 464
5 P 166 250 . . 30 A 330 412 456 233
6 A 375 312 94 183 31 A 489 787 515 520
7 A 486 475 546 246 32 A 122 70 63 .
8 A 545 226 475 428 33 P 756 414 967 920
9 A 362 332 368 370 34 P 504 483 406 384

10 P 288 215 266 225 35 P 264 480 344 .
11 A 513 344 210 . 36 P 630 714 525 554
12 A 286 354 179 191 37 A 706 728 . .
13 A 421 371 . 492 38 A 70 . . .
14 A 143 192 135 121 39 A 300 299 . .
15 P 484 350 271 . 40 A 588 464 . .
16 P 287 405 . . 41 A 548 446 650 721
17 A 365 278 377 334 42 P 235 220 570 320
18 A 480 390 510 . 43 P 253 . . .
19 P 668 320 630 426 44 A 317 270 206 189
20 P 337 306 401 351 45 A 522 378 400 320
21 A 477 556 505 529 46 A 162 308 444 406
22 A 528 477 525 811 47 A 529 399 477 474
23 A 521 458 543 425 48 A 314 276 231 358
24 A 432 483 391 465 49 P 134 203 165 88
25 A 440 392 . . 50 A 309 . . .
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Zimmerman, D. L. and Núñez Antón, V. A. (1997). Structured antede-
pendence models for longitudinal data. In Gregoire, T. G., Brillinger,
D. R., Diggle, P. J., Russek-Cohen, E., Warren, W. G., and Wolfin-
ger, R., editors, Modelling Longitudinal and Spatially Correlated Data.
Methods, Applications, and Future Directions, pages 63–76. Springer-
Verlag, New York.



Author Index

Agresti, A., 175, 184, 187, 257,
265, 320, 321, 350

Ahn, C., 8, 155
Aitkin, M., 274
Akaike, H., 138
Akritas, M.G., 349
Albert, P.S., 7–9, 294–296, 310
Allen, D.M., 83, 99
Altman, D.G., 15
Altman, N.S., 350
Amara, I.A., 348
Amini, S.B., 365
Anderson, C.B., 8
Anderson, D., 274
Anderson, G.L., 313
Anderson, J.A., 323
Anderson, R.D., 319
Anderson, R.L., 129
Anderson, T.W., 48, 61, 77
Andreasen, N.C., 269
Angus, J.W., 18
Anscombe, F.J., 314
Arndt, S., 18, 269
Arnold, S.F., 130, 349
Ashby, D., 362

Ashby, M., 292

Bacchetti, P., 292
Bailey, K.R., 7
Balakrishnan, N., 170
Baltes, P.B., 10
Bancroft, T.A., 129
Bargmann, R.E., 86
Barnhart, H.X., 310
Bartlett, M.S., 60, 76, 133
Barton, C.N., 9
Bates, D.M., 131, 133
Beal, S.L., 321
Becker, C., 225
Benard, A., 349
Bhapkar, V.P., 349
Bijnens, L., 321
Birch, M.W., 249, 254
Bishop, Y.M.M., 247
Bliss, C.I., 283
Bloch, D.A., 9, 362
Boadi-Boateng, F., 131, 133, 145,

147, 149, 264
Bock, R.D., 62, 86, 94, 122, 161
Bonney, G.E., 294



406 Author Index

Boos, D.D., 13, 309
Botha, J.L., 324
Box, G.E.P., 32, 96, 110, 118, 364
Bradley, R.A., 129
Breslow, N.E., 311, 319
Brock, D.B., 192, 196, 225
Brown, C.H., 8
Brown, G.W., 349, 350, 354
Byrne, P.J., 130

Campbell, M.J., 15
Carey, V.C., 130, 311, 312, 315,

320
Carr, G.J., 28
Carroll, R.J., 7
Carter, R.L., 336
Carter, W.H., 155
Chaganty, N.R., 315
Chilko, D., 116
Chinchilli, V.M., v, vi, 10, 311,

320
Clarke, W.R., 184, 204, 205, 228,

234
Clayton, D.G., 319
Cnaan, A., 9
Cochran, W.G., 254
Cole, J.W.L., 118
Collins, J.W., 311, 312
Colmerauer, M.E.M., 365
Conaway, M.R., 7, 319, 320
Conover, W.J., 349
Cook, R.D., 8
Cook, R.J., 8
Cornoni-Huntley, J., 192, 196, 225
Craig, A.T., v
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Muñoz, A., 8, 130, 311
Murphy, J.R., 33

Nanda, D.N., 76
Nelder, J.A., 274, 290, 314, 318
Nesselroade, J.R., 10
Neter, J., vi
Neuhaus, J.M., 292, 294, 295, 320
Newton, M.A., 320
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