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Preface

Two-level factorial designs fascinated me when, as a senior at Georgia Tech,
I was introduced to their clever structure and utility. Courses in design of ex-
periments and response surface methodology persuaded me to pursue a career
in Statistics. One year later, the eminently successful book Statistics for Ex-
perimenters by Box, Hunter, and Hunter (BHH) (1978) was published. That
book, more than any other, has enabled scientists and engineers to employ
these useful designs. I recall loaning my copy of BHH to an engineering grad-
uate student years ago, to introduce him to fractional factorial designs. To
my surprise, it was the simpler 2k full factorial designs that captured this stu-
dent’s interest. I had incorrectly assumed that he and other engineers would
already be familiar with full factorial experiments. But that was not the case;
the notion of experimenting with many factors simultaneously was completely
new. Indeed, such an idea was truly novel in the 1920s, when Sir Ronald A.
Fisher, the father of experimental design, wrote:

No aphorism is more frequently repeated in connection with field tri-
als, than that we must ask Nature few questions, or, ideally, one ques-
tion, at a time. The writer is convinced that this view is wholly mis-
taken. Nature, he suggests, will best respond to a logical and carefully
thought out questionnaire; indeed, if we ask her a single question, she
will often refuse to answer until some other topic has been discussed.
(Fisher, 1926)

Two-level factorial and fractional factorial designs, Plackett–Burman de-
signs, and two-level orthogonal arrays are now widely used. A search on Web
of Science R© in December 2008 yielded over 7000 articles mentioning factor-
ial designs and nearly 500 more mentioning Plackett–Burman designs. While
many of these factorial design applications involve factors with more than
two levels, two-level factorial designs are the most common and are the easi-
est to understand and analyze. Thus, while this book will be an introduction
to 2k full factorial designs for some, its primary objectives go beyond an in-
troduction. First, the purpose of this book is to help practitioners design and
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analyze two-level factorial designs correctly. As I reviewed published examples,
I routinely found mistakes and misunderstandings, especially in the analysis.
This book will help nonstatisticians plan and analyze factorial experiments
correctly. The following chapters contain 50 analyses of actual data from two-
level designs. By carefully studying these examples, how to properly analyze
one’s own data will become clear. In the past, I thought intelligent software
could automatically analyze the data. While it is true that statistical soft-
ware packages such as JMP R©, Design-Expert R©, and Minitab R© have made
incredible strides in the last 10 years to facilitate the analysis of these designs,
there are many details that distinguish one application from the next and ne-
cessitate subtle changes to the analysis. Nothing will replace the requirement
for an experienced user. The numerous analyses documented in this book are
intended to help build the needed expertise.

Beyond exposure to factorial designs and the knowledge to perform an
analysis correctly, this book has the further objective of making new devel-
opments accessible to practitioners. Over the last 30 years, the statistical
literature regarding two-level factorial designs has exploded. General design
of experiment books cannot cover such growth in the literature. My goal in
writing this more focused book has been to sift through the hundreds of recent
articles with new theory and methods, to decide what is most useful, and then
to summarize and illustrate that useful material.

This book’s comprehensiveness is unique. As a reference book, it will ben-
efit both practitioners and statisticians. To aid the reader, the book is divided
into three parts. For those with little or no exposure to factorial experimen-
tation, Part I: Full Factorial Designs is the most relevant material. Chapter
1 introduces the reader to the advantages of factorial experiments, presents
the basic regression models that become the foundation for the analysis, and
concludes with a four-step strategy for planning these experiments. Chapter
2 serves as a manual for data analysis. Chapter 3 concerns further design de-
tails, to improve either the precision or convenience of the experiment. Part I
concludes with Chapter 4’s extended analysis of three examples. In total, 15
full factorial experiments are analyzed in Part I.

Part II is intended for readers who are familiar with factorial designs and
encounter applications with a large number of factors—although Chapter 2’s
analysis tips and Chapter 3’s explanation of blocking structures should not
be skipped. The seven chapters of Part II all deal with fractional factorial
designs. The simplest of these, regular fractional factorial designs, are intro-
duced in Chapter 5. Following this introduction, Chapters 6–8 present both
regular fractional factorial designs and the orthogonal array designs based
on Hadamard matrices. Chapter 6 presents the most frugal designs in terms
of run size, including designs popularized by Plackett and Burman (1946),
where the number of factors is nearly as large as the number of runs. Section
6.5 even contemplates attempts to use designs with more factors than runs.
Chapter 7 presents fractional factorial designs that are somewhat less risky
in their assumptions, where the number of runs is at least twice the number



Preface xi

of factors. Chapter 8 discusses designs that are large enough to estimate the
two-factor interaction model [defined by (1.3) in Section 1.2]. Since the frac-
tional factorial designs of Part II require assumptions to interpret the data,
Chapter 9 details how one may follow these designs with additional runs either
to confirm or to clarify the results. Akin to the last two chapters of Part I,
Chapter 10 describes how to run and analyze fractional factorial experiments
with blocking restrictions, and Chapter 11 presents detailed analysis for four
more examples.

As comprehensive as Parts I and II are for full factorial and fractional
factorial designs, some details were deferred, as they were judged to be either
tangential to the main thrust or because their need is more specialized. Part III
contains this deferred material. It begins with Chapter 12’s brief introduction
to designs for fitting second-order models, complete with quadratic terms for
each factor. Two-level designs do not support estimation of such models, but
two-level designs can easily be augmented to do so. Such topics are the domain
of a field called response surface methodology; for a thorough treatment, the
reader is directed to other books. Finally, Chapter 13 covers specialized topics
related to the design choice, and Chapter 14 discusses matters of analysis.
Practical questions not covered earlier are addressed here, such as how wide
to space the levels of a quantitative factor and how to sample within runs to
study variation. The book concludes with numerous tables needed for design
construction and analysis.

The book’s final section is Section 14.7: Four Analysis Blunders to Avoid.
But more common and more serious than mistakes in the analysis is the failing
to experiment at all, or failing to plan experiments well. Discussing Coleman
and Montgomery’s (1993) “A Systematic Approach to Planning for a Designed
Industrial Experiment,” Bert Gunter (1993) writes:

(R)ational experimental planning leads inevitably to the recognition
that ALL experiments are designed experiments; the only question is
whether well or poorly. The choice is therefore not whether or not
statistical methods are used but whether or not sensible planning is
done. Sensible planning will almost always result in the application of
statistical design. Failure to do such planning will almost always lead
to wasted expenditures and poor results... (T)he absence of statistical
design in industry is the consequence of sloppy or absent experimental
planning, not just ignorance of the methods.

Successful experimentation is hard work. This book will not remove any of
the hard work. But I hope that this record of others’ successes and missteps
will encourage many readers to take up the challenge. May your efforts be
well rewarded.

As mentioned earlier, thoroughly understanding proper statistical analysis
of data requires practice. To that end, all data for examples presented in this
book are available online at http://soms.utk.edu/mee. Repeating or extend-
ing the analyses offered here is a certain means of developing your expertise
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in gaining insight through data. If, as you work through the examples, you
have questions or wish to point out a suspected error, please send e-mail to
rmee@utk.edu. Tips on using JMP and R software will be added to the web-
site in response to readers’ questions. As errors or ambiguities in the book are
found, clarifications and corrections will also be posted.

Robert Mee
Knoxville
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14.3 Semiconductor deposition 23 + 4 runs, sampling within
runs

14.4 Rock fracture model 23

14.6 Baguette quality 25−1 with 15 response variables
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Introduction to Full Factorial Designs with
Two-Level Factors

Factorial experiments with two-level factors are used widely because they
are easy to design, efficient to run, straightforward to analyze, and full of
information. This chapter illustrates these benefits. The standard regression
models for summarizing data from full factorial experiments are introduced,
and an example is given to illustrate the interpretability and use of such
models. Some statistical analysis is introduced here for the simplest case,
although most analysis tools are deferred to the next chapter. The sections
are as follows:

Section 1.1. Advantages of Full Factorial Designs

Section 1.2. Standard Regression Models for Factorial Designs with Two-
Level Factors

Section 1.3. Least Squares Estimation of a Regression Model

Section 1.4. Presenting a Fitted Model Graphically

Section 1.5. Four Steps for Planning a Successful Experiment

1.1 Advantages of Full Factorial Designs

This book explains how to plan and analyze experiments with multiple fac-
tors. Experimental factors are inputs that are purposefully changed to study
the resulting effects. Although many useful experiments involve a single vari-
able or factor, most research questions are more complicated. Rather than
asking simply, “How does increasing temperature affect strength?” we are in-
terested in knowing how temperature, belt tension, cycle speed, and a host of
other factors jointly affect the output. Initially, we consider experiments with
just two to four factors. However, later tools and applications will involve
experimentation with a dozen or more factors.

©  Springer Science + Business Media, LLC 2009DOI: 10.1007/b105081_1,
3,R.W. Mee, A Comprehensive Guide to Factorial Two-Level Experimentation
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Experimental factors can be numerical variables, such as speed and tem-
perature, or categorical, such as different suppliers of a material. Whether
numerical (e.g., 350 degrees) or categorical (e.g., supplier A), we will refer to
the values of these factors as levels. An experimental run involves a specified
level for each factor; these combinations of levels (e.g., 350 degrees and sup-
plier A) are commonly called treatment combinations (t.c.). This book focuses
on experiments with two-level factors, since such experiments are widely used
and relatively easy to analyze.

A full factorial experiment consists of every combination of the levels of
factors in the experiment. Thus, if we have k factors, each at two levels, the
full factorial consists of

2 × 2 × · · ·× 2︸ ︷︷ ︸
k

= 2k

treatment combinations. We use the symbol 2k to represent this type of factor-
ial design, not just as a calculation for the number of treatment combinations.
One reason for the popularity of having only two levels per factor is that this
enables the most economical investigation of many variables. For instance,
with four factors, increasing the number of levels from 2 to 3 increases the
size of the full factorial design from 24 = 16 to 34 = 81, 5 times larger.

Part I of this book (Chapters 1–4) addresses full factorial designs. If each
of the 2k treatment combinations is performed only once, then we have an un-
replicated 2k factorial design. If some or all of the treatment combinations are
repeated in an experiment, we will refer to the design as partially or fully repli-
cated. When the number of factors k is small, replication is common. However,
if k is large, even performing a full 2k factorial design may be both laborious
and unnecessary. Part II of this book (Chapters 5–11) presents methods based
for conducting fractional factorial designs—designs that contain only a subset
of the 2k treatment combinations. Sometimes two-level factorial designs lead
to questions that can only be answered by increasing the number of levels per
factor. Part III has some advice for what to do in such situations, as well as
additional special topics. Since this book is intended for practitioners, Parts I
and II each conclude with a chapter of case studies to reinforce the ideas and
to illustrate further how to conduct an appropriate analysis.

1.1.1 An initial example

Consider now a full factorial design with three factors. Huhtamaki Americas
is a specialty packaging organization offering food service products, consumer
packaging, and packaging machinery. A facility in California manufactures
large frozen dessert cartons for customers such as Baskin-Robbins R©. An up-
graded forming process for the carton was implemented, with start-up assis-
tance from another facility. Initial settings for four process variables were as
follows:

• Speed: 18 tubes per minute
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• Score depth: “high,” for easy fold of sidewall, and tight fit with bottom
• Mandrel temperature: 90oF, which affects adhesive curing
• Belt tension: 65.

Six months after beginning shipping product from this new process, com-
plaints of buckling containers were received from a single customer that fills
the cartons with a very dense sherbet and vanilla yogurt product. Unlike other
customers, this one does not flash-freeze cartons after filling, but instead stacks
pallets with three tiers of cartons before transporting to the freezer.

Cartons from the old forming process never buckled under this handling,
but cartons from the new forming process did. Rather than adopt more costly
remedies, such as increasing the weight of the paperboard, the Huhtamaki
facility created a team to identify new machine settings that would achieve
sufficient crush resistance. The team performed two 23 factorial experiments,
leading to adjustments in all four of the factors mentioned above.

In an initial experiment, belt tension was held constant at 65, and the
other three factors were investigated using two levels for each:

• Speed: 18 or 22 tubes per minute
• Score depth: low or high
• Temperature: 75oF or 145oF

Note that none of these changes is centered about current operating condi-
tions, but they focus on increases in speed and temperature and a decrease
in scoring depth. With three two-level factors, there are eight treatment com-
binations in the factorial design. Each was investigated twice; see Table 1.1.
The response dry crush force is the weight in pounds required to compress
a container to failure. The reported value for each run is the mean for 10
cartons.

Figure 1.1 presents a cube plot for this experiment, where each corner
is labeled with the average dry crush force for two runs. The front, lower,
right corner is closest to the current operating condition; the only difference
is using 75oF instead of 90oF. Since the mean at this corner is as good or bet-
ter than at adjacent corners, one-factor-at-a-time experiments might have led
Huhtamaki to believe the current levels were near optimal for these factors.
Instead, they performed a factorial experiment, which yielded best results
at high speed, high temperature, and low scoring depth, all of which repre-
sent changes from the current process settings. Thus, their initial experiment
identified a promising new combination of factor levels.
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Table 1.1. Huhtamaki’s initial dry crush experiment

Score Belt Dry Crush
Run Depth Speed Temperature Tension Mean

1 High 18 75 65 311.5
2 High 22 145 65 312.4
3 High 18 145 65 271.2
4 Low 22 145 65 365.6
5 Low 18 145 65 335.2
6 Low 18 75 65 315.1
7 Low 18 145 65 329.4
8 Low 22 75 65 353.8
9 High 22 75 65 286.4

10 Low 18 75 65 295.1
11 Low 22 145 65 352.4
12 High 18 75 65 299.5
13 High 18 145 65 280.6
14 High 22 75 65 261.6
15 High 22 145 65 353.2
16 Low 22 75 65 319.0

305.1 305.5

336.4 274

332.3 275.9

359 332.8

Score depthLow High

S
p
e
e
d

2
2

1
8

Temperature

75

145

Fig. 1.1. Cube plot for predicted dry crush from Huhtamaki experiment 1
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The team decided to conduct a second, briefer experiment with no replica-
tion; that is, each treatment combination was performed only once. Further,
scoring depth, which required a time-consuming tooling change to switch lev-
els, was dropped as a factor. Since promising results were obtained with low
depth, a level for which they had less experience, the second experiment was
conducted using only low scoring depth. Belt tension, which was held constant
in the first experiment, was added as a new factor. Huhtamaki’s team was in-
terested to see if the belt tension effect depended on speed or temperature,
since the belt drives the paperboard over the hot mandrel. In experiment 2,
the same levels were chosen for speed and temperature, but belt tension levels
were 60 and 75, straddling the current tension of 65. Since these three factors
could be adjusted with the machine running, there was no need to shut down
the equipment between runs. Experiment 2 is summarized in Table 1.2 and
displayed in Figure 1.2. The data suggest that the belt tension effect depends
on speed. At high speeds, a lower tension is better, whereas the opposite is
true at low speed. Once again, the best results are achieved at the high-speed,
high-temperature combination.

These experiments led Huhtamaki to change the process settings to higher
speed, low scoring depth, 145oF mandrel temperature, and a belt tension
of 60. Additional data were collected over several weeks at these settings to
validate the changes. Using control charts to monitor the process, Huhtamaki
confirmed that the process was now capable of achieving sufficiently high dry
crush values.

Table 1.2. Huhtamaki’s second dry crush experiment

Score Belt Dry Crush
Run Depth Speed Temperature Tension Mean
17 Low 18 75 75 335.8
18 Low 22 145 60 378.1
19 Low 22 145 75 345.1
20 Low 18 75 60 299.6
21 Low 22 75 60 358.8
22 Low 22 75 75 349.9
23 Low 18 145 60 341.3
24 Low 18 145 75 359.8

1.1.2 The benefits of factorial experiments

There are two primary benefits of full factorial designs:

• Benefit 1. Full factorial designs reveal whether the effect of each factor
depends on the levels of other factors in the experiment. This is the primary
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358.8 349.9

341.3 359.8

378.1 345.1
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Temperature
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145

Fig. 1.2. Cube plot for dry crush from Huhtamaki experiment 2

reason for multifactor experiments. One factorial experiment can show
“interaction effects” that a series of experiments each involving a single
factor cannot.

• Benefit 2. Full factorial designs provide excellent precision for the regres-
sion model parameter estimates that summarize the combined effects of
the factors.

Cox (1958, p. 94) explained these two benefits as follows. First, if the effect
of one or more factors depends on the levels of other factors, this information
will be recognized in a factorial experiment. If the actual model is simpler and
the effects of the factors are additive, the factorial experiment is still better,
in that all the data collected from the 2k factorial design are used to estimate
the effect for each factor. This is preferred to conducting three single-factor
experiments, where each experiment tells us nothing about the effects for two
of the three factors. Thus, whether the effects are additive or not, the factorial
design has advantages.

Cox added a sequel to Benefit 1. Since a factorial experiment examines each
factor’s effect under a range of conditions (i.e., at many combinations of levels
for the other factors), we can understand the range of validity for conclusions
about each factor. For example, if we held every other factor fixed while we
experimented with the effect of increasing speed from 18 to 22 tubes per
minute, we might conclude that increasing speed had negative consequences
if the belt tension, temperature, and score depth were not at suitable levels
for high speed. By experimenting with speed, temperature, and score depth
simultaneously, we learn whether the speed effect on crush resistance depends



1.2 Standard Regression Models for Factorial Designs with Two-Level Factors 9

on temperature and/or score depth. Also, if such a dependence is found, we
discover what temperature and score depth combinations are more conducive
to high strength at the faster speed.

Full factorial designs explore the experimental region more effectively than
do single-factor experiments. If each factor’s effect does not depend on the lev-
els of the other factors, then exploring the region using a 2k design documents
the additivity of the factor effects. If such dependencies do exist, using a 2k

design enables one to identify the combination(s) of factor levels that perform
best.

1.2 Standard Regression Models for Factorial Designs
with Two-Level Factors

In this section, we present multiple linear regression models for describing
the effect of the k factors of a 2k factorial experiment on a response. For
convenience in the statistical analysis and consistency of interpretation, most
models will use coded levels −1 and +1. For instance, we denote low score
depth, 18 tubes/min and 75oF each by the coded level −1, and high score
depth, 22 tubes/min and 145oF with 1. Using this coding, Table 1.1 is rewrit-
ten in Table 1.3, with x1, x2, and x3 representing coded score depth, speed,
and temperature, respectively.

Table 1.3. 23 factorial with coded levels for Huhtamaki experiment 1

Crush Force
Run x1 x2 x3 Mean

1 1 −1 −1 311.5
2 1 1 1 312.4
3 1 −1 1 271.2
4 −1 1 1 365.6
5 −1 −1 1 335.2
6 −1 −1 −1 315.1
7 −1 −1 1 329.4
8 −1 1 −1 353.8
9 1 1 −1 286.4

10 −1 −1 −1 295.1
11 −1 1 1 352.4
12 1 −1 −1 299.5
13 1 −1 1 280.6
14 1 1 −1 261.6
15 1 1 1 353.2
16 −1 1 −1 319.0
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We now present a series of regression models commonly used for analyzing
factorial experiments. Using x1, x2, . . . , xk to denote the coded factors is
convenient for presenting these generic models.

Model 1: Simple Additive Model for 2k Factorial

An additive model for the k factors is

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε, (1.1)

where the βj ’s are unknown regression coefficients to be estimated, ε is a ran-
dom error term, and y is an observable value of the response at the treatment
combination (x1, x2, . . . , xk). At this point, all we need to assume regarding
ε is that it comes from a probability distribution that averages zero. Later,
additional assumptions will be made about the variance or distribution of the
random error term.

For this simple model, the effect of the jth factor on the response is reflected
in the coefficient βj . If βj > 0, we expect higher values for y at xj = 1 than
at xj = −1; if βj < 0, we expect lower values for y at xj = 1. Furthermore,
for this additive model, the effect of the jth factor does not depend on the
settings of the other k − 1 factors.

A point of clarification is needed before proceeding to the next model.
Note that, on average, the difference between the response y at the two levels
for xj is βj(+1) − βj(−1) = 2βj . Some books refer to 2βj as the “effect” of
factor j. However, here we emphasize the use of regression models with ±1
coding, and so find it more natural to refer to the regression coefficient βj as
the main effect for xj .

To represent this and subsequent models more compactly, we use summa-
tion notation. For instance, the additive model (1.1) may be written as

y = β0 +
k∑

j=1

βjxj + ε. (1.2)

For many applications, the additive model provides a useful approximation for
the combined effect the factors (x1, x2, . . . , xk) have on a response y. However,
in other cases, the effects of some factors will depend markedly on the levels
of other factors. For such cases, we will use the following more complicated
models.

Model 2: Two-Factor Interaction Model for 2k Factorial

y = β0 +
k∑

j=1

βjxj +
k−1∑
i=1

k∑
j=i+1

βi·jxixj + ε, (1.3)

In addition to the k+1 terms in model (1.2), the two-factor interaction model
(1.3) contains k(k−1)/2 additional terms of the form βi·jxixj . As earlier for βj ,
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βi·j is an unknown coefficient to be estimated, whereas xixj is the product of
levels for factors xi and xj . To understand how this “interaction term” alters
the model, consider the following simple numerical example for E(y), the
expected or average value of y. Suppose E(y) = 50+10x1+20x2−5x1x2. Then
the expected values at the four treatment combinations of the 22 factorial are
as given in Figure 1.3.

1 1x 1 1x Average across 

the levels of 1x

2 1x 50 – 10 + 20 + 5 

= 65

50 + 10 + 20 – 5 

= 75

50 + 20

= 70

2 1x 50 – 10 – 20 – 5 

= 15

50 + 10 – 20 + 5 

= 45

50 – 20

= 30

Average across 

the levels of 2x

50 – 10

= 40

50 + 10

= 60

Fig. 1.3. Numerical example: E(y) = 50 + 10x1 + 20x2 - 5x1x2

If we average across the levels for x2, we obtain the equation E(y) =
50 + 10x1, with E(y) equal to 40 and 60 at x1 = −1 and x1 = 1, respectively.
If we average instead across the levels for x1, we obtain E(y) = 50 + 20x2,
with E(y) equal to 30 and 70 at x2 = −1 and x2 = 1, respectively. Thus,
in an interaction model with ±1 coding for the factor levels, the main effects
represent the effects of each factor, averaging over the levels of the other
factors.

Now consider the interaction term −5x1x2. At x2 = +1, the equation for
E(y) becomes

E(y) = 50 + 10x1 + 20(1) − 5x1(1) = 70 + 5x1,

whereas at x2 = −1 the equation simplifies to

E(y) = 50 + 10x1 + 20(−1) − 5x1(−1) = 30 + 15x1.

So the effect of factor x1 depends on the level of x2. This is what we mean by
interaction. Depending on the level of x2, we have a regression coefficient for
x1 of either β1 + β1·2 = 5 or β1 − β1·2 = 15.

Although the two-factor interaction model (1.3) is much more flexible than
the additive model, their is no guarantee that either model is adequate. For
cases with k > 2 factors, one can add higher-order interactions. A model
guaranteed to fit any occasion is the saturated model.
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Model 3: Saturated Model for 2k Factorial

y = β0 +
k∑

i=1

βixi +
k−1∑
i=1

k∑
j=i+1

βi·jxixj +
k−2∑
i=1

k−1∑
j=i+1

k∑
l=j+1

βi·j·lxixjxl

+ . . . + β1·2···kx1x2 · · ·xk + ε, (1.4)

This model contains all possible interactions, up to and including the k-
factor interaction. Since this saturated model contains 2k β’s to be estimated,
it will fit the average response perfectly at each of the 2k treatment combina-
tions of the full factorial.

At times we will find it useful to fit the saturated model, even though
we hope that a much simpler model will be adequate. When fitting simpler
models, we will follow the principle of hierarchy of effects; that is, if the k-
factor interaction is included in the model, we will necessarily retain all lower-
order terms. In general, a model is hierarchical if, for every term included, all
lower-order terms involving subsets of the factors in that term are included.
For instance, including the three-factor interaction β1·2·3 implies the inclusion
of the interactions β1·2, β1·3, β2·3, as well as the three main effects.

Higher-order interactions can arise, and so it is useful to have models
that include them. However, models with higher-order interactions are more
difficult to interpret, as they preclude a simple description of the effect of the k
factors on a response. Since models are intended to provide useful summaries,
we will typically seek the most parsimonious (i.e., simplest) model that fits
well enough to suit our purposes. George Box’s astute observation is relevant:
“All models are wrong, but some are useful.” Often, simpler models are more
useful.

1.3 Least Squares Estimation of a Regression Model

Except for the case of deterministic computer models, we never know E(y). In
every other situation, the response we see at a given treatment combination
can change from one observation to the next. We use the random term ε in
the models of the previous section to account for this variation. Section 1.2
assumed only that E(ε) = 0. Now, to estimate the coefficients in these models
efficiently, it is necessary to make further assumptions.

Suppose our k-factor experiment consists of 2k treatment combinations,
each observed n ≥ 1 times. For each of these N = n2k experimental runs,
we observe a response that we generically label yi, (i = 1, . . . , N). Whatever
model we fit, whether the additive model (1.1) or the saturated model (1.4),
or something in between, it is common to assume that the errors ε1, . . . ,ε N are
independently distributed with variance σ2. Given this assumption, standard
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least squares provides an efficient estimator for the regression coefficients. We
introduce the simple form of the least squares estimators and the necessary
matrix notation and then return to the example from Section 1.1.

Let xij denote the level of factor xj for the ith run of the experiment. Then
the additive model (1.1) for our N observations is

⎡
⎢⎢⎢⎣

y1

y2

...
yN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 x11 · · · x1k

1 x21 · · · x2k

...
...

. . .
...

1 xN1 · · · xNk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β0

β1

...
βk

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε1
ε2
...

εN

⎤
⎥⎥⎥⎦ (1.5)

or, equivalently,
Y = Xβ + ε,

where Y, X, β, and ε denote vectors and the matrix corresponding to (1.5).
The least squares estimator for β of the additive model is denoted b and

is computed using

b ≡

⎡
⎢⎢⎢⎣

b0

b1

...
bk

⎤
⎥⎥⎥⎦ = (X′X)−1X′Y. (1.6)

Equation (1.6) simplifies greatly because, for a full factorial experiment with
each treatment combination replicated n times,

X′X = NIk+1, (1.7)

where Iν denotes an identity matrix of dimension ν. Thus, (1.6) simplifies to

b = X′Y/N. (1.8)

Since the first column of X is all 1’s, and the subsequent columns are half 1’s
and half −1’s, the solution in (1.8) is given by

b0 =
N∑

i=1

yi/N ≡ ȳ (1.9a)

and, for j = 1, . . . , k,

bj =
N∑

i=1

xijyi/N = 0.5(ȳj=+ − ȳj=−), (1.9b)

where ȳj=+ and ȳj=− denote means based on the N/2 observations where
xij = +1 and xij = −1, respectively. Not only are these least squares esti-
mators simple to compute, their variances are also simple. Because (X′X)−1
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is a diagonal matrix with all diagonals of 1/N , b0, b1, . . ., bk are uncorrelated,
each with variance

Var(bj) = σ2/N, (1.10)

provided the errors ε1, . . . ,ε N are independently distributed with common
variance σ2. To use (1.10), we need an estimate for the error variance σ2.
This will be discussed momentarily. First, however, we discuss estimation of
the regression coefficients for other models in addition to (1.1).

The preceding discussion in this section pertains to the least squares es-
timators of the simple additive model based on an equally replicated full 2k

factorial design. The same simplicity holds if we fit other models such as (1.3)
and (1.4). For any equally replicated 2k factorial design, every interaction col-
umn is orthogonal to every other column. Table 1.4 illustrates this result for
a 23 factorial.

Table 1.4. Intercept, main effect and interaction columns for 23 factorial

1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

1 –1 –1 –1 1 1 1 –1
1 1 –1 –1 –1 –1 1 1
1 –1 1 –1 –1 1 –1 1
1 1 1 –1 1 –1 –1 –1
1 –1 –1 1 1 –1 –1 1
1 1 –1 1 –1 1 –1 –1
1 –1 1 1 –1 –1 1 –1
1 1 1 1 1 1 1 1

Table 1.4 gives the model matrix for the saturated model (1.4) for the case
with k = 3 factors, n = 1, and N = 8. Let X denote this matrix. Note that
here X′X = 8I8. Since the interaction columns are orthogonal to the other
columns, including interaction columns in X increases the dimension of X′X
but does not change its simple form. This is true for any equally replicated 2k.
Hence, the simple estimators (1.9a)–(1.9b) are not affected by the inclusion of
interaction terms. Further, the interaction coefficients have the same simple
form; for example, for the two-factor interaction involving the first two factors,

b1·2 =
N∑

i=1

xi1xi2yi/N = 0.5(ȳ1·2=+ − ȳ1·2=−), (1.11)

where ȳ1·2=+ and ȳ1·2=− denote means based on N/2 observations where
xi1xi2 = +1 and xi1xi2 = −1, respectively. The extension to other interactions
should be obvious.

The fact that X′X is a diagonal matrix adds great simplicity to model
fitting. In a typical multiple regression setting, one uses stepwise regression
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or all-subsets regression to choose a model. However, when X′X is diagonal,
the estimates do not change for terms in the model as other terms are added
or dropped. Thus, we can fit a saturated model and use this full model to
ascertain which terms to retain in a more parsimonious reduced model. To
recognize which terms to retain, however, we will need an estimate for σ2.

Suppose one fits a saturated model for a 2k factorial with n observations
per treatment combination. Let ȳi denote the average of the n observations
taken at the same treatment combination as the ith observation. Partition the
variation in the responses y1, . . . , yN as in Table 1.5.

Table 1.5. Analysis of variance partition for a saturated model

Source Degrees of Freedom Sum of Squares

Model (saturated) 2k − 1 SSsat =
∑N

i=1(ȳi − ȳ)2

Pure error (n − 1)2k SSpe =
∑N

i=1(yi − ȳi)2

Total (corrected) N − 1 SStot =
∑N

i=1(yi − ȳ)2

Sample variances are computed by dividing sums of squares by their de-
grees of freedom. These sample variances in the analysis of variance are cus-
tomarily called mean squares by statisticians, since a variance is the average
(i.e., mean) of squared differences. The total variance for this sample,

Total mean square = SStot/(N − 1)

corresponding to the last row of Table 1.5, reflects the variation in the data
about the overall mean ȳ; its degrees of freedom are N − 1 since it is based
on the variation of N yi values about a single mean.

The pure error variance reflects the variation in the N yi values about
the average at each treatment combination (refer to the middle row of Table
1.5). Replication makes possible such an estimate of σ2. Later we will discuss
estimates for σ2 that are model dependent; that is, the validity of those es-
timators will depend on the unknown β’s. In contrast, the error variation in
Table 1.5 depends only on having valid replication and so is called “pure er-
ror.” The degrees of freedom for pure error can be expressed as either N − 2k

or as (n−1)2k. Both of these correspond to intuitive explanations of the error
mean square. The first expression indicates that this is the variance of N yi

values about predicted values from a model with 2k estimated parameters.
The second expression indicates that from each of the 2k treatment combina-
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tions we have n − 1 degrees of freedom for estimating σ2 and that the pure
error variance pools all of these into one estimator.

Finally, the saturated model mean square shown as the first line in Ta-
ble 1.5 reflects how much variation is “explained” by the model and is the
variance of the predicted values about the overall mean. Since the ȳi values
are computed from a model with 2k − 1 regression coefficients in addition to
b0, these are the model degrees of freedom. Since the model and pure error
degrees of freedom (df) sum to N − 1, and the model and pure error sum of
squares sum to SStot, any row of Table 1.5 is easily determined given the other
two. This partitioning of the sum of squares is called an analysis of variance
(ANOVA) because it partitions the total variation of y into two parts: that
explained by the model and that which is not explained.

We illustrate these calculations for the Huhtamaki experiment 1 data in
Table 1.3. The fitted saturated model is

ŷ = 315.125 − 18.075x1 + 10.425x2 + 9.875x3 − 4.075x1x2

−2.575x1x3 + 10.475x2x3 + 11.625x1x2x3. (1.12)

This fitted model reproduces the mean value at each treatment combination
exactly, as in Figure 1.1. Table 1.6 shows the degrees of freedom, sum of
squares, and mean squares for fitting the saturated model.

Table 1.6. ANOVA for Huhtamaki experiment 1 data

Source df Sum of Squares Mean Squares
Model (saturated) 7 12,816.07 1,830.87
Pure error 8 2,165.48 270.68
Total (corrected) 15 14,981.55

The pure error sum of squares has 8 df. This is the combination of n−1 = 1
df at each of the eight treatment combinations. The eight variances based on
the pairs of yi values at each treatment combination are displayed in Figure
1.4. The pure error sum of squares is the sum of the individual variances mul-
tiplied by the df n − 1; the pure error mean square 270.68 is the average of
these eight variances. We are not surprised that the eight sample variances
displayed in Figure 1.4 vary greatly, because each is based on only 1 df. The
mean square pure error combines these eight variances into a single estimate,
based on the assumption that Var(ε) is constant across the experimental re-
gion.

The validity of the pure error mean square depends on more than the
assumption of a constant variance Var(ε)= σ2. It depends even more criti-
cally on the independence of the εi’s from run to run. Spacing out runs from
the same treatment combination is one means of ensuring this independence.
Randomizing the run order of the treatment combinations both accomplishes
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such spacing and helps guard against bias from possible confounding sources
of variation. For more about run order, see Section 13.5.1.

200 72

605.52 307.52

16.82 44.18

87.12 832.32

Score depthLow High

S
p
e
e
d

2
2

1
8

Temperature

75

145

Fig. 1.4. Cube plot for variance of two yi values at each treatment combination
from Huhtamaki experiment 1

Let MSsat and MSpe denote mean squares calculated from the partitioning
in Table 1.5. Then the ratio

Fsat = MSsat/MSpe (1.13)

is used to test that all the true β coefficients besides β0 in (1.4) are zero.
Large values of Fsat indicate that at least some β coefficients are not zero and
that their terms are needed in a model to explain variation in y. “Large” is
determined relative to the percentiles of an F distribution with ν1 = 2k − 1
df in the numerator and ν2 = N − 2k df for the denominator. The observed
significance level (i.e., p-value) for this test is P (Fν1,ν2 > Fsat).

Using the mean squares in Table 1.6, we compute Fsat = 1830.87/270.68 =
6.76. Since the upper 1% point of the F7,8-distribution is approximately 6.2,
based on interpolation in the Appendix B table, P (F7,8 > 6.76) < 0.01; the
exact p-value is .0075. Such a small probability is compelling evidence that
this model accounts for some systematic variation in dry crush; at least some
of the β’s are not zero.

Typically, we are more interested in tests for individual coefficients. Let s
denote any subset of the numbers {1, 2, . . . , k}. Then a test statistic to test
the hypothesis

H0 : βs = 0

is the t-ratio



18 1 Introduction to Full Factorial Designs with Two-Level Factors

t = bs/(MSpe/N)1/2. (1.14)

The denominator in (1.14) is commonly named the standard error of the
coefficient bs. The usual test involves a two-sided alternative hypothesis, HA :
βs �= 0, in which case the p-value for the test is

P (|tν | > t) = 2P (tν > t),

where, in general, tν is a Student’s t random variable and ν is the degrees of
freedom for the mean square in the calculated standard error. Here ν = N−2k,
the pure error degrees of freedom.

If the errors ε in model (1.4) are normally distributed—in addition to being
independently distributed with variance σ2—then the F -test and t-tests just
presented are exact. These tests can also be motivated as approximations to
randomization tests (see Box, Hunter and Hunter 2005, pp. 75–98). Additional
details about estimation of σ2, as well as choice and assessment of reduced
models, are deferred until Chapter 2.

Now we return to our example. Using the mean square error from Table
1.6 to estimate σ2, the standard error for each coefficient in (1.12) is

(270.68/16)1/2 = 4.113.

Standard statistical software produces the following output related to the
coefficients of this fitted model:

Term Estimate Std Error t p-value
Intercept 315.125 4.113 76.61 <.0001
x1 −18.075 4.113 −4.39 0.0023
x2 10.425 4.113 2.53 0.0350
x3 9.875 4.113 2.40 0.0431
x1 ∗ x2 −4.075 4.113 −0.99 0.3508
x1 ∗ x3 −2.575 4.113 −0.63 0.5487
x2 ∗ x3 10.475 4.113 2.55 0.0343
x1 ∗ x2 ∗ x3 11.625 4.113 2.83 0.0223

If a true coefficient βs = 0, then the p-value for its t-test follows a uniform
distribution between 0 and 1. If no factors had an effect, then we would
expect to see about half of the p-values larger than .50 and half smaller than
.50. On average, only one of the seven would be less than 1/7 = .14. Instead,
we see five of the seven p-values smaller than .05. This is evidence that all
three main effects and the two largest interactions represent true effects for
crush resistance. Since we require a hierarchical model and the highest-order
interaction is statistically significant, no simplification of the model is possible.

The signs of the main effects indicate a general preference for low score
depth, high speed, and high temperature for achieving higher crush resis-
tance. However, given the two important interactions, they too must be con-
sidered. The Speed*Temperature and Depth*Speed*Temperature interaction
estimates (b2·3 and b1·2·3) are nearly the same. Thus, when x1 = −1, these
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terms cancel one another, and when x1 = +1, they sum. For high score depth,
the fitted model for dry crush is

ŷ = [315.125 − 18.075(1)] + [10.425 − 4.075(1)]x2

+[9.875 − 2.575(1)]x3 + [10.475 + 11.625(1)]x2x3

= 297.05 + 6.35x2 + 7.3x3 + 22.1x2x3.

Here, the interaction term dominates the main effects, so that the preferred
level for temperature depends on the speed. At low score depth, the fitted
model is simpler:

ŷ = [315.125 − 18.075(−1)] + [10.425 − 4.075(−1)]x2

+[9.875 − 2.575(−1)]x3 + [10.475 + 11.625(−1)]x2x3

= 333.2 + 14.5x2 + 12.45x3 − 1.15x2x3.

Here the effects of speed and temperature are both positive and essentially
additive.

1.4 Presenting a Fitted Model Graphically

Graphics are useful for displaying the results of an experiment. Interaction
plots are an excellent means to assist with the interpretation. In general,
an interaction plot displays the predicted y values for all combinations of
two or more factors, averaging over the levels of factors not involved in the
interaction. For instance, for the second Huhtamaki experiment (refer to Table
1.2), the Speed*Tension effect was believed to be important. This effect is
displayed twice in Figure 1.5. In each plot, the same four means are displayed,
with Speed or Tension on the horizontal axis and the response on the vertical
axis. The second factor in identified by labels inside the plot. In the first plot,
we see that the Speed effect on crush resistance is positive at low tension
but disappears at high tension. In the second plot, we see that the Tension
effect on crush resistance is positive at 18 tubes per minute but negative at
22 tubes per minute. When presenting results for a fitted model, choose the
display that communicates most effectively. In this case, either is satisfactory.
However, when one factor is qualitative and the other is quantitative, it is
generally preferred to place the quantitative factor on the horizontal axis.

Three-factor interaction plots are needed less often but are necessary for
interpretation when a three-factor interaction coefficient is large. We illustrate
two options using the first Huhtamaki experiment. Figure 1.6 displays the
predicted values for the eight Depth*Speed*Temperature means. From this
graph we see that generally increasing Temperature improves crush resistance,
with the only exception being for high Score depth at the lower Speed. When
constructing this graph, it is best to use the same range for the vertical axis.
Alternatively, the four combinations for two factors can be displayed in a



20 1 Introduction to Full Factorial Designs with Two-Level Factors

290

310

330

350

370

D
ry

 C
ru
s
h

L
S

 M
e
a

n
s

18 22

Speed

60

75Tension=75

Tension=60

290

310

330

350

370

D
ry

 C
ru
s
h

L
S

 M
e
a

n
s

60 75

Belt Tension

18

22

Speed=18

Speed=22

Fig. 1.5. Two versions of the Speed*Tension interaction plot from Huhtamaki ex-
periment 2

single graph; see Figure 1.7. In either figure, the higher Temperature provides
greater crush resistance—except for Speed = 18 and high Score depth, the
combination that Huhtamaki previously operated this process.

Except when k = 2 or 3, interaction graphs such as Figures 1.5 or Figures
1.6 and 1.7 focus on just a subset of the terms in the model. To display the
model more fully we use cube plots and profiler plots. Cube plots have been
used extensively throughout this chapter to display the predicted response
(or variance) at each treatment combination. The profiler plot (as provided
by JMP software) displays estimated E(y) values for a fitted model, and
confidence bounds for those estimates, at any combination of the levels of the
factors. When the factors are represented as nominal categories, the profiler
plot displays this predicted response and the effect of moving one factor at a
time from that location. For instance, in Figure 1.8 we see the model from the
perspective of (Depth = Low; Speed = 18, Temperature = 75); the predicted
value here is 305.5, and no adjacent corner is superior.
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Fig. 1.6. Three-factor interaction plot for Huhtamaki experiment 1
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If the factors are continuous variables so that any setting is allowed, JMP’s
profiler plot is more useful. Consider Figure 1.9, which is a display for the sat-
urated model (1.12), taken from the perspective of (Depth = Low, Speed =
18, Temperature = 75). Since both Speed and Temperature are set halfway
between their low and high levels, this is the center of the right face of the
cube plot (1.1). The displayed effect for Score depth in Figure 1.9 has two
interpretations. Based on interpolation with the model in (1.12), this is the
Score depth effect at the specified (Speed, Temperature) combination. It also
represents the Score depth effect, averaging over the levels for Speed and Tem-
perature. Comparing Figures 1.8 and 1.9, we see the impact of interactions,
since the slopes of the lines have changed.

For more complicated models, surface plots and contour plots are also com-
mon for displaying fitted models, but these are of less use for models fit from
two-level designs. This chapter recommended the use of regression models
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with coded factors, but all graphics in this chapter were obtained using mod-
els with actual factor names and levels rather than coded levels. Coded labels
and factors are more convenient for model selection and statistical tests. How-
ever, once the appropriate model is identified, it is helpful to obtain graphical
output utilizing actual factor and level names, since doing so increases the
readability of the figures. Gladly, some statistical software will automate such
coding.

1.5 Four Steps for Planning a Successful Experiment

Successful experiments, such as Huhtamaki’s two experiments, generally re-
quire hard work from many individuals. Practical experience teaches us that
experiments rarely go as planned and that misunderstandings among those in-
volved are difficult to avoid. Fortunately, imperfect experiments generally pro-
vide some useful insight. The most detailed summary of experiment planning
in the industrial environment is by Coleman and Montgomery (1993). Moen,
Nolan, and Provost (1998) provided a briefer strategy. The steps presented
here are primarily a synthesis of these two sources. Hahn (1984) provided a
series of examples that is particularly instructive for young statisticians who
will be assisting others in planning experiments.

The four steps summarized in this section and listed in Figure 1.10 high-
light the sequence of decisions needed to prepare for an experiment. Coleman
and Montgomery (CM) (1993) provided further details regarding each issue.
Both CM and Moen et al. (1998) emphasized the importance of documen-
tation of the planning process and provided a master guide sheet as well as
separate forms for various steps.

           PREP: Four Steps to a Successful Experiment

Purpose: Set the objectives and identify current state of knowledge. 

Responses: Select the primary responses to be measured. 

Experimental factors and region: Determine factors and other 

variables of interest.  Choose factor levels. 

Plan Details: Choose the experimental design.  Establish a schedule 

and responsibilities.  Practice analysis for the chosen design. 

Fig. 1.10. Summary of planning steps
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Step 1: Set the objectives and identify current state of knowledge.

Coleman and Montgomery (1993) noted that “writing the objective is harder
than it appears to most experimenters.” Determining the objectives and gath-
ering background information are done in concert, because the initial descrip-
tion of what we hope to learn is usually modified when we discover what others
know about the process being investigated. In an industrial setting, involving
a team of individuals in the early planning stages is most valuable. Although
doing so may appear to slow the planning process, avoiding the inefficiencies
of “naive empiricism and duplication of effort” (CM, p. 4) pays off in the end.
Careless, hasty experimentation is the surest means of building resistance to
future experimentation.

Objectives should be stated in practical terms, emphasizing what future
actions will potentially be impacted. Doing so will help gain buy-in from
those whose support is needed to carry the project to conclusion. A statistical
description of the objectives will be added in subsequent planning steps. For
experiments pertaining to a large, multifaceted program, Barton’s (1997) goal
hierarchy plot will be useful.

Step 2: Select the primary responses to be measured.

Most experiments entail a small number of primary responses that relate di-
rectly to the objectives. Ability to measure the characteristics of interest both
accurately and precisely is essential; Wheeler and Lyday (1989) is a helpful
reference. Invalid measurements can mislead. This author recalls George Box
describing how apparent gains from indigo experiments at Imperial Chemical
in the 1940s never materialized. What was the culprit? After the fact, it was
discovered that the measurements for indigo were also sensitive to an impu-
rity, so that the experiments led to conditions producing not more indigo but
more impurity instead. Insufficient measurement precision is a more common
problem. Imprecise measurements can render an experiment ineffective by so
increasing the error variation that systematic effects of interest do not stand
out above the background variation.

Each objective specified in Step 1 should be linked to one or more responses
to be measured. At this step we must specify what functions of each measured
responses is of interest. For quantitative responses, do our objectives relate
only to the mean, or are we also concerned about variability in the response?
More will be said in Section 13.3 about the within-run sampling needed to
study variation. If the response is not easily quantified, is there some quasi-
numerical (or ordinal scale) that can be applied, or must we resort to a simple
yes/no response. Yes/no responses are less informative than quantitative and
ordinal responses, so more data will be required if we do have only yes/no
results. Sample size issues for yes/no data are discussed in Section 13.1.2.
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Step 3: Determine factors and other variables of interest. Choose
factor levels.

Depending on the objective and current state of knowledge, this step may or
may not begin by brainstorming. If the experiment is a screening experiment
whose purpose is to identify factors that affect the response, then it is critical
to be thorough in listing the possibilities. This list will depend on the objective
of the experiment; that is, candidate factors for changing the mean thickness
of a deposition process will differ somewhat from candidates for decreasing
the variation in thickness. Even when the experimental factors of interest are
specified in the objective statement from Step 1, it is important to identify
other variables that potentially affect the response. In addition to the variables
that are varied as experimental factors, other possibly influential variables
should be identified and held fixed during the course of the experiment—or
at least held fixed within blocks. Variables that cannot be held fixed should
be measured, since such measurements may prove useful for the subsequent
analysis. It is important to record any changes that arise during the course of
the experiment. In addition, it is useful to identify additional outputs of the
process to measure that might correlate with the primary responses. Thus,
the conclusion of this step is four lists:

• Variables to be varied as factors
• Variables to be held constant—or only varied between blocks
• Hard-to-control variables that can be measured
• Secondary responses that may correlate with primary responses

The choice of factor levels is essential to the success of two-level designs.
Devoting an entire section to this choice (Section 13.2) emphasizes its im-
portance. Prior knowledge or the use of trial runs is essential to the proper
choice of levels for quantitative factors. A level for each held-constant variable
must also be specified. For applications where there is debate about this level,
consider the question, “What level is likely to render the experiment more
informative?”

Step 4: Choose the experimental design. Establish a schedule and
responsibilities. Practice the analysis for the chosen design.

As will be described in Chapter 3, an experimental design involves more than
determining the treatment structure—that is, which treatment combinations
are to be performed. It also involves the unit structure. The unit structure
specifies the use of blocking and randomization. Answers to the following
questions are needed to arrive at a proposed design:

• How long will each individual run take and how much experimental mate-
rial is required?

• How much time is required between runs for changes in factor settings and
time to reach steady state?
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• Is the between-run time lengthened substantially by a small set of hard-
to-change factors?

• What are the major sources of error variation associated with the re-
sponses?

• How likely are interactions to be important? What interactions are ex-
pected to be the most likely?

The efficiency of an experimental design for detecting systematic effects is
largely contingent on properly anticipating the sources of random variation.
For instance, if the measurements themselves are imprecise and we are in-
terested in the mean response, then sample multiple items within each run
and use the average of these measurements as the response. If batch-to-batch
variation is substantial, then either treat batch as a blocking variable or blend
batches together to create more homogeneous raw material.

Generally, several designs should be considered. Factor relation diagrams
(see Section 4.3.3) are helpful for documenting specifically what is intended by
each possible design. These visual aids have proven very helpful for contrasting
alternative designs, especially when teams are involved.

The schedule should involve preparation for the experiment, including all
equipment, materials, and training. The schedule should also document the
timing and sequencing of the runs. For many experiments, this sequence spec-
ifies both a processing/manufacturing phase and a measurement phase. Com-
bining likely main effects and interactions and anticipated sources of variation,
a simulation model can be constructed generating pseudo-data and an analysis
performed. Performing such a practice analysis before the data are collected
will ensure that one recognizes the aliasing and confounding implied by the
selected design.

In addition to practicing the analysis, it is generally helpful to perform
one or two trial runs. From these runs, one can verify how long it takes to
set up and perform a run, whether we are capable of controlling variables as
specified, whether we can measure the responses as indicated, and whether
the results correspond to our expectations. Ideal candidates for trial runs are
the treatment combinations expected to give the worst and best (or highest
and lowest) responses. Results vastly different than our expectations in the
time or results may cause us to reconsider the design or choice of levels.

The next chapter focuses on the many tools available for analyzing two-
level factorial designs.
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Analysis of Full Factorial Experiments

This chapter details how to analyze 2k factorial experiments and is organized
as follows:

Section 2.1. Analysis Strategy Overview

Section 2.2. Analysis of Numerical Responses with Replication

Section 2.3. The Inclusion of Centerpoint Replicates

Section 2.4. Analysis of Numerical Responses Without Replication

Section 2.5. Normal Plot of Effects and Other Analysis Tools

Section 2.6. Diagnostics for a Fitted Model

Section 2.7. Transformations of the Response

Section 2.8. Analysis of Counts, Variances, and Other Statistics

Section 2.9. Unequal Replication and Unequal Variance

Section 2.10. The Impact of Missing Treatment Combinations

2.1 Analysis Strategy Overview

The following four-step strategy is recommended for the analysis of 2k factorial
experiments.

2.1.1 Step 1: Study the variation in y

Begin with a histogram of the response data y and observe the range and
distribution of values. If the distribution is evenly spread, then fitted models
will not be overly affected by just a small subset of the data. If the distribution
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is severely skewed, or there are a few values far removed from the others, then
the fitted models will attempt to account for this prominent variation while
largely ignoring the rest.

The shape of the distribution of y can be altered by the use of a non-
linear transformation. Section 2.7 explains how such transformations may be
employed to find a satisfactory simpler model, to stabilize the error variance,
or to emphasize the variation at the lower or upper end of the range for y.
If the treatment combinations are replicated, then one should examine the
within-treatment-combination variation to check for consistency.

In addition to plotting the data, one should understand how the actual
y values were obtained, since this may provide insight regarding the error
variation. How large is the measurement error variance for the measurement
system involved? Does the variability in y increase or decrease as the mean
for y increases? Is y a count, a ratio, a standard deviation, or some other
statistic? Section 2.8 provides guidance for each of these cases.

2.1.2 Step 2: Fit a “full” model

Step 2 begins by fitting a “full” model. For most situations, this will be the full
factorial model (1.4). Rather than fitting a simpler model from the start and
assuming it to be adequate, we prefer to fit a complex model and so confirm
what terms are not needed. There are exceptions [e.g., for cases of missing
treatment combinations (Section 2.10) or with prior knowledge that certain
interactions are not needed] where it is preferred to begin with a simpler
model. However, the typical initial model for analyzing 2k experiments will
be the full factorial model (1.4).

How we proceed after fitting a complex model will depend on whether the
experiment includes replication—that is, were runs repeated at some or all of
the treatment combinations? Sections 2.2–2.5 will discuss methods and tools
appropriate for the different cases that arise. The objective is to determine
which terms are useful for explaining the variation in y and providing insight
into the factor effects.

2.1.3 Step 3: Find an adequate simpler model

Now fit a reduced (i.e., simpler) model, as appears reasonable following Step
2. The purpose here is not to determine the significance of the remaining
terms but rather to perform diagnostics to determine whether the reduced
model adequately explains the variation in the response (see Section 2.6). If
the residual analysis indicates problems, then some remedy is required, such
as adding terms to the model, questioning aberrant yi values, or transforming
the response. Once a satisfactory model is obtained, one may proceed to Step
4.



2.2 Analysis of Numerical Responses with Replication 29

2.1.4 Step 4: Interpret and utilize the final model(s)

Use graphs to summarize the results of the satisfactory model. Express the
conclusions in the natural units for each factor and the response. If a trans-
formation for y was involved in the analysis, quantitative results should also
be expressed in terms of the original measurement rather than simply on the
transformed scale. If two competing models seem reasonable, compare them to
see in what respects they differ. For instance, do they differ regarding the pre-
ferred level for each factor? Do their predicted values differ at the treatment
combination(s) of interest?

2.2 Analysis of Numerical Responses with Replication

As in Section 1.3, here we consider the simplest (although not necessarily
common) case, where the 2k treatment combinations of a full factorial are
each replicated n times in a manner that yields N = n2k observations with
independently distributed errors. Section 1.3 discussed t-tests for individual
coefficients, as well as a test involving all the saturated model’s coefficients.

Following tests for individual coefficients, one proceeds in Step 3 of the
analysis strategy to fitting a reduced model with, say, r coefficients, including
the intercept, b0, with 1 < r < 2k. Let Xred denote the N × r model matrix,
let bred denote the vector of least squares estimates for the reduced model

bred = (Xred
′Xred)−1Xred

′Y = Xred
′Y/N,

and let Ŷ = (ŷ1, . . . , ŷN )′ denote the vector of predicted values

Ŷ = Xredbred.

The partitioning of the sum of squares corresponding to this reduced model
is given in Table 2.1.

Table 2.1. Analysis of variance for a reduced model

Source df SS

Model (reduced) r − 1
∑N

i=1(ŷi − ȳ)2

Lack-of-fit 2k − r
∑N

i=1(ȳi − ŷi)2

Pure error N − 2k
∑N

i=1(yi − ȳi)2

Total (corrected) N − 1
∑N

i=1(yi − ȳ)2
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Table 2.1 expands Table 1.5, in that the saturated model’s degrees of
freedom and sum of squares are partitioned into two parts: the reduced model
and lack-of-fit. The reduced model captures variation explained by the reduced
model. Lack-of-fit contains variation that is explained by the saturated model
but which is missed by the reduced model. In settings such as this, most
statistical software will construct two F -tests:

• Lack-of-fit test. This is a test that the reduced model is adequate (i.e.,
that it explains all the systematic variation in the yi values). The test
statistic is

Flof = MSlof/MSpe,

where MSlof and MSpe denote the mean squares for lack-of-fit and pure
error, respectively, computed from Table 2.1. The degrees of freedom for
this test are ν1 = 2k − r and ν2 = N − 2k, and the p-value is P (Fν1,ν2 >
Flof). A small p-value indicates that at least one of the β’s for terms
omitted from the model is not zero; in this case, one should consider adding
terms. A large p-value indicates that the reduced model is consistent with
the observed data.

• Reduced model test. This is a test of significance for the terms in the
reduced model. It is computed as

Fred = MSred/MSE,

where the denominator is the mean square error (MSE) for the reduced
model obtained by pooling lack-of-fit and pure error as follows:

MSE =
SSlof + SSpe

N − r
.

This MSE combines MSpe, an estimate for σ2 based on replication, with
MSlof , an estimate for σ2 that is dependent on the assumption that the
reduced model is correct. A small p-value is an indication that the model
is useful for explaining variation in the yi’s, or, equivalently, that at least
some of the β’s corresponding to terms in the model are not zero.

If both Flof and Fred have large p-values (e.g., more than 5 or 10%), then the
factors have no recognizable effect on E(y).

We illustrate these F -tests for the first Huhtamaki experiment, taking the
additive model (1.2) as our reduced model. The resulting lack-of-fit test is

Source df SS MS Flof p-value
Lack-of-fit 4 4289.64 1072.41 3.96 0.0463
Pure error 8 2165.48 270.69
Total error 12 6455.12

This test, which is statistically significant at α = .05 indicates that this simple
model does not account for all the systematic variation in dry crush resistance.
Hence, one or more of the four omitted interactions is active. The correspond-
ing F -test for the significance of the fitted reduced model is
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Source df SS MS Fred p-value
Model 3 8,526.43 2,842.14 5.28 0.0149
Error 12 6,455.12 537.93
Total (corrected) 15 14,981.55

Note that because the MSlof is nearly four times the MSpe, the MSE is inflated
by the systematic variation in MSlof , reducing the size of Fred as well as any
t statistics computed as

t = bs/(MSE/N)1/2. (2.1)

If there are sufficient degrees of freedom from replication, then it is safer to
just use (1.14) rather than (2.1). Here, with both F -tests statistically signifi-
cant, we would conclude that the additive model is useful but that it can be
improved by the addition of interaction terms.

In summary, replication of the factorial treatment combinations serves two
purposes. First, it provides information about the error variance. Replication
at each treatment combination yields MSpe as an estimate for σ2 and pro-
vides some ability to check the assumption that Var(ε) is constant across the
experimental region (something we will explore later). In addition, replication
at the 2k treatment combinations increases the precision for each estimated
coefficient. When the error variance is substantial, experiments with small N
may have too little power to detect effects of practical importance. The issue
of sample size to achieve sufficient power is relevant for every application, and
is addressed in Section 13.1.

2.3 The Inclusion of Centerpoint Replicates

Taking n > 1 replicates at every treatment combination, as was assumed in
Section 2.2, can be quite costly, especially if there are four or more factors.
One option to economize on runs is to collect replicates at only a subset of the
treatment combinations (Dykstra 1959). However, such unequal replication
forfeits the orthogonality of the columns of X and so complicates the analysis.
Section 2.9 will address how to analyze unbalanced factorial designs in general.
Now consider an alternative economical approach to replication.

2.3.1 Centerpoint replication with all factors quantitative, with
Example 2.1

When all of the factors are quantitative, an alternative to replicating some or
all of the 2k treatment combinations is to perform replicate runs at the center
of the design. Replication at the center does not improve the precision of
estimates for factorial effects, but it serves two other purposes. First, collecting
data at the center provides a check on linearity of the factor effects. If the
model is to be used for interpolation, this check is critical. If the centerpoint
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runs indicate severe nonlinearity, then one often augments the design with
additional treatment combinations to support estimation of a full second-
order model. See Chapter 12 for details.

As with any true replication, centerpoint replication provides an estimate
for σ2. Runs at the center do not affect the orthogonality of a design and
so do not cause the complication that arises from partial replication of fac-
torial treatment combinations. This method is recommended for estimating
σ2, provided: (i) all the factors are quantitative, (ii) the constant variance
assumption for ε is reasonable, and (iii) an unreplicated 2k provides enough
precision for estimating factorial effects.

Example 2.1: 25 with seven centerpoint runs
Consider now a five-factor example from Bouler et al. (1996). The ex-

periment was conducted to improve the compressive strength of a calcium
phosphate ceramic intended as a bone substitute. Biphasic calcium phosphate
(BCP) is a blend of two materials denoted HA and β-TCP. BCP containing
pores with diameter ≥ 100 μm promotes bone formation but generally has
reduced strength. The purpose of the experiment is to create stronger BCP
with such macropores. The factors and their levels are presented in Table 2.2.

Table 2.2. Factors and levels for Bouler et al.’s (1996) ceramic experiment

Levels
Factors −1 0 1
x1 HA in BCP (%) 45 60 75
x2 Weight of naphthalene (%) 30 45 60
x3 Diameter of macropores (μm) 100 300 500
x4 Isostatic compaction (kPa) 1090 1630 2180
x5 Sintering temperature (oC) 900 1000 1100

The 25 = 32 factorial treatment combinations were performed without
replication; that is, n = 1. In addition, n0 = 7 samples were made at the
coded treatment combination (0, 0, 0, 0, 0). Bouler et al.’s (1996) work does
not mention any randomization of order in preparing or testing the samples.
The observed compressive strengths ranged from 0 to 59.1 mPa. Table 2.3
presents the results for all 25 + n0 = 39 runs, sorted by compressive strength.
Note that 10 of the 39 samples showed no compressive strength, including all
8 combinations with x2 = 1 and x3 = −1; that is, all combinations with a
high weight of the smallest-diameter naphthalene. Clearly, this combination
is not satisfactory.
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Table 2.3. Bouler et al.’s (1996) ceramic strength data

Sorted Strength
Run x1 x2 x3 x4 x5 (mPa)

1 −1 1 −1 −1 −1 0.0
2 1 1 −1 −1 −1 0.0
3 1 1 1 −1 −1 0.0
4 −1 1 −1 1 −1 0.0
5 1 1 −1 1 −1 0.0
6 −1 1 −1 −1 1 0.0
7 1 1 −1 −1 1 0.0
8 1 1 1 −1 1 0.0
9 −1 1 −1 1 1 0.0

10 1 1 −1 1 1 0.0
11 −1 1 1 −1 −1 2.0
12 −1 −1 −1 −1 −1 2.2
13 −1 −1 −1 1 −1 2.9
14 1 1 1 1 −1 3.3
15 −1 1 1 1 −1 4.2
16 1 −1 −1 −1 −1 5.1
17 −1 −1 1 −1 −1 6.5
18 1 −1 −1 −1 1 7.0
19 1 −1 1 −1 1 7.0
20 1 −1 1 −1 −1 8.0
21 0 0 0 0 0 10.8
22 0 0 0 0 0 11.5
23 −1 −1 1 1 −1 11.7
24 0 0 0 0 0 11.8
25 1 −1 1 1 −1 12.3
26 1 −1 −1 1 −1 12.9
27 0 0 0 0 0 13.0
28 −1 1 1 1 1 13.2
29 0 0 0 0 0 13.4
30 0 0 0 0 0 13.9
31 1 1 1 1 1 14.1
32 0 0 0 0 0 14.5
33 1 −1 1 1 1 16.7
34 −1 1 1 −1 1 17.8
35 −1 −1 −1 1 1 23.4
36 1 −1 −1 1 1 25.7
37 −1 −1 1 −1 1 46.0
38 −1 −1 −1 −1 1 48.3
39 −1 −1 1 1 1 59.1
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Table 2.4. Analysis of variance for Bouler et al. (1996) data

Source df SS MS
Model (full factorial) 31 7034.15 226.908
Lack-of-fit (nonlinearity) 1 18.22 18.224
Pure error 6 11.12 1.853
Total (corrected) 38 7063.49

As in Table 2.1, we construct an ANOVA with partitions for model, lack-
of-fit, and pure error (see Table 2.4). Since we have fit a model containing all
(linear) main effects and interactions, the lack-of-fit term has just 1 df, and is
a check for nonlinearity (or curvature) of the factor effects. The nonlinearity
sum of squares is based on the difference between the average response at
the n0 centerpoint replicates and the average at the N factorial treatment
combinations:

SSnonlin =
(Mean@Center − Mean@Factorials)2

n−1
0 + N−1

. (2.2)

Here, the mean strength for the 7 centerpoint replicates and 32 factorial treat-
ment combinations are 12.7 and 10.92, respectively, and (2.2) equals 18.22.
This lack-of-fit is small compared to the variation explained by the model
(MSmodel = 226.9), but is large compared to pure error (MSpe = 1.85). Thus,
while this lack-of-fit test is statistically significant (Flof = 9.83; p = .02),
accounting for this minimal curvature would make little difference in our pre-
dicted values in the interior of the design region. Since the centerpoint mean
exceeds the average at the factorial points, a model that ignores this curvature
will give slightly pessimistic predictions near the center of the experimental
region.

In addition to F -tests, software will report R-square (a.k.a. the coefficient
of determination) from the ANOVA for a fitted model:

R2 = SSModel/SSTotal.

R2 is the proportion of total variation that is explained by the fitted model.
Here, the full factorial model’s R2 = 7034.15/7063.49 = 0.996, which is very
high, reflecting the practical insignificance of the lack-of-fit.

Results similar to Table 2.4 are typical for processes with little error vari-
ation. If the pure error mean square is close to zero, virtually every term
of a saturated model will be statistically significant. Here we might question
whether the variation at the centerpoint replicates accurately reflects the true
run-to-run error variation. The error term ε consists of errors from several
sources, including the following:

• Measurement error in the testing of compressive strength
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• Inhomogeneity of the materials used
• Other uncontrollable errors at each stage in the process of mixing, com-

pressing, and heating the ceramic

For true replication, all of these sources affect each observation independently.
However, if a shortcut was taken by preparing as a batch the material for all
seven centerpoint specimens, then these specimens may vary less in strength
than would be the case if this step were performed seven times, once for each
specimen. Whether this is the case or not, the nonlinearity in compressive
strength observed is not large enough to make a substantial difference to the
fitted model.

Both the design and analysis for Bouler et al.’s (1996) experiment warrant
further discussion. From reading their work, it appears that the materials
may have been prepared in larger batches and then sampled to apply the
compaction and temperature levels. If this is the case, the distribution of the
εi’s is affected, which alters how one should analyze the data (see Sections
3.5 and 3.6). Further, the fact that one-fourth of the observations showed no
measurable strength calls into question using a single linear model for strength
based on all the data. If zero strength indicates that the ceramic powder did
not bond, then perhaps the 10 observations with yi = 0 should be handled
differently when constructing a model for strength. We return to this example
later (Section 4.3) to address these issues.

2.3.2 Centerpoint replication with one or two qualitative factors

How can we replicate economically when some of the factors are qualitative? If
all factors but one are quantitative, then collect centerpoint runs for the quan-
titative factors at both levels of the qualitative factor. For instance, Ellekjaer,
Ilseng, and Naes (1996) conducted a cheese processing experiment in which
just one of the factors, melting salt, was qualitative. They included 6 center
runs—3 with melting salt A and 3 with melting salt B—along with the 32 fac-
torial runs. If there are only two qualitative factors, one might collect one or
two centerpoint runs at each of the four qualitative factor level combinations.

2.4 Analysis of Numerical Responses Without
Replication

2.4.1 Model-dependent estimators for σ2, with Example 2.2

Many two-level full factorial and fractional factorial experiments are run with-
out any replication. In such cases, one can still produce useful estimates for
the error variance σ2, but these estimates are model dependent; that is, some
assumptions must be made about the model in order to estimate the error
variance. Three general approaches have been used, which depend on slightly
different assumptions:
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1. Mean Square Error From an Assumed Model: Prior to data analy-
sis, assume a model less than the saturated model. Use the MSE from
this fitted model to estimate σ2. Provided all omitted terms have true
coefficients of zero, this yields an unbiased estimator for σ2.

2. Mean Square Error From Final Fitted Model: Analyze the data,
and arrive at a satisfactory reduced model. Use the MSE for this model
to estimate σ2. Here, the MSE is an unbiased estimator for σ2 only if
the nonzero β’s are so large that one always selects the same model. On
subsequent pages, RMSE = MSE1/2 is the acronym for root mean square
error and will serve as an estimator for σ.

3. Robust Estimator for σ From Saturated Model: Fit a saturated
model and use the estimates nearest to zero to construct an estimate
for σ. We will use Lenth’s (1989) estimator (explained below). Here one
assumes that a majority of the terms for the saturated model have true
coefficients that are zero. This assumption is known as effect sparsity.

Approach 1 for estimating σ2 is valid, provided the assumed model is
correct. For example, with an unreplicated 24 factorial, we might assume that
no three-factor or higher-order interactions exist and fit the model (1.3). The
resulting ANOVA will have 10 df for the model and 5 df for error. Provided
β1·2·3 = β1·2·4 = β1·3·4 = β2·3·4 = β1·2·3·4 = 0, the MSE is a valid estimator
for σ2.

Although approach 2 is commonly used in practice to estimate σ2, it is
the most subjective method and entails dangers that can make it unreliable.
For instance, if one naively selects a model by excluding only a few of the
smallest estimates (e.g., using backward elimination regression), the MSE for
the reduced model will generally be much smaller than σ2. As a result, many
inactive terms may appear statistically significant.

We now introduce Lenth’s method and compare it with the first two meth-
ods for estimating σ2, using data from a chemistry experiment.

Example 2.2: Unreplicated 24 isatin experiment
Consider now the data from Davies (1954, p. 275). This 24 experiment

involved a laboratory investigation of yield for a derivative of the chemical
isatin. Table 2.5 lists the four factors of interest to the chemist and the levels
used in this initial investigation. The 24 treatment combinations were each
performed once in random order. Table 2.6 lists the yield in grams per 10 g.
of base material. The range 6.04 – 6.79 for yield seems rather small. Because
this is an initial investigation into the process, the chemist had no knowledge of
σ2 but believed that three-factor and higher-order interactions were unlikely.
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Table 2.5. Factors and levels for isatin yield experiment (Davies 1954)

Levels
Factors −1 1
x1 Acid strength (%) 87 93
x2 Reaction time (min) 15 30
x3 Amount of acid (mL) 35 45
x4 Reaction temperature (oC) 60 70

Table 2.6. Coded treatment combinations sorted by isatin yield

x1 x2 x3 x4 Yield
1 −1 −1 −1 6.04
1 1 −1 1 6.08

−1 −1 −1 −1 6.08
1 −1 1 −1 6.09

−1 1 1 −1 6.12
1 1 1 1 6.23

−1 −1 1 −1 6.31
1 1 1 −1 6.36
1 −1 1 1 6.38
1 1 −1 −1 6.43

−1 1 1 1 6.49
−1 1 −1 −1 6.53

1 −1 −1 1 6.68
−1 1 −1 1 6.73
−1 −1 1 1 6.77
−1 −1 −1 1 6.79

These data are used to illustrate the potential advantages and disadvan-
tages of the three methods for estimating σ2:

1. Assuming away higher-order interactions, we fit model (1.3) with four
main effects and six two-factor interactions, and obtain the analysis of
variance

Source df SS MS F
Model 10 0.8525 0.08525 2.216
Error 5 0.1923 0.03847
Total (corrected) 15 1.0448

Diagnostics (as explained in Section 2.6) for this fitted model show no
outliers or systematic patterns. Although the usefulness of this model is
questionable, given F = 2.216 (p-value = .20), the MSE = 0.038 provides
a valid estimate for σ2, provided the true regression coefficients for the
five higher-order interactions are zero. The resulting t-tests are as follows:
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Term Estimate Std Error t-Ratio p-Value
Intercept 6.3819 0.0490 130.16 <.0001
x1 −0.0956 0.0490 −1.95 .1086
x2 −0.0106 0.0490 −0.22 .8370
x3 −0.0381 0.0490 −0.78 .4720
x4 0.1369 0.0490 2.79 .0384
x1x2 −0.0006 0.0490 −0.01 .9903
x1x3 0.0169 0.0490 0.34 .7447
x1x4 −0.0806 0.0490 −1.64 .1610
x2x3 −0.0331 0.0490 −0.68 .5293
x2x4 −0.1256 0.0490 −2.56 .0505
x3x4 −0.0131 0.0490 −0.27 .7996

With b4 = 0.137, we conclude that, averaging over the levels of the other
factors, increasing temperature to 70oC improves yield. However, since
b2·4 = −0.126, the temperature effect may be influenced by Reaction
time. At 15 min, the estimated temperature effect is 0.137− 0.126(−1) =
0.263, whereas at 30 min, the estimated temperature effect essentially
disappears. A Time*Temperature interaction plot would display this, and
would indicate a preference for the 15-min, 70oC combination.

2. Using a forward selection regression procedure with α = .05 to select a
hierarchical model for yield, we include two two-factor interactions, x1x4

and x2x4, and the three main effects x1, x2, and x4. The analysis of
variance for this fitted hierarchical model is as follows

Source df SS MS F
Model 5 0.8044 0.16088 6.690
Error 10 0.2405 0.02405
Total (corrected) 15 1.0448

What has changed from the previous analysis? We have dropped five terms
from model (1.3) with hardly any decrease in the model sums of squares.
The smaller MSE also results in a significant F statistic for the model
(p-value = .0055) and smaller standard errors and smaller p-values for the
estimated coefficients:

Term Estimate Std Error t-Ratio p-Value
Intercept 6.3819 0.0388 164.62 <.0001
x1 −0.0956 0.0388 −2.47 .0333
x2 −0.0106 0.0388 −0.27 .7896
x4 0.1369 0.0388 3.53 .0054
x1x4 −0.0806 0.0388 −2.08 .0642
x2x4 −0.1256 0.0388 −3.24 .0089

Now, three or four effects appear to be statistically significant. With 10
df for error, twice the error degrees of freedom for Method 1, one might
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presume that MSE = 0.024 provides a better estimate for σ2. However,
it is also possible that this MSE is smaller because we have overfit the
model by including terms that have larger estimates just by chance.

3. Fit a saturated model to the ±1 coded factors and use the many coefficient
estimates near zero to estimate σ. A Pareto plot of the 15 estimates is
given in Figure 2.1. Lenth’s (1989) procedure for estimating σ/N1/2, the
standard error of these estimates, is as follows:
• Determine the median absolute estimate for the main effects and in-

teractions from a saturated model and compute s0 as 1.5 times this
median. Here, s0 = 1.5(0.038125) = 0.0572.

• Exclude all estimates that exceed 2.5s0 in magnitude and recompute
the median. Here, no estimates exceed 2.5s0 = 0.143, so the median
remains 0.038125.

• Compute PSE = 1.5 × median (of estimates less than 2.5s0). Here,
PSE = 0.0572.

Lenth’s pseudo-standard-error (PSE) is an estimator for the standard er-
ror of the coefficients. Note how much larger it is than the standard error
of 0.0388 from Method 2 above. Lenth’s method provides a reasonable
estimate for σ/N1/2, provided only a few coefficients differ from zero. If
this assumption is not correct, then Lenth’s PSE will tend to overesti-
mate σ/N1/2. Lenth’s PSE = 0.0572 corresponds to an estimate for σ
of PSE(N1/2) = 0.0572(161/2)= 0.2288. [Haaland and O’Connell (1995)
show that the PSE is slightly biased upward when m is small, but the bias
is only about 1% for m = 15.]
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Fig. 2.1. Pareto plot of estimates from a saturated model for Davies’s 24 experiment
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These methods produced three different estimates for the error variance,
ranging from Method 2’s 0.024 to Method 3’s N(PSE)2 = 0.052. Which coeffi-
cient estimates are statistically significant also varies from method to method.
Which fitted model is best and which estimate is closest to the true σ2 are
unknown. For now, we discuss the possible interaction terms and then return
to the discussion about estimators for σ2.

With Method 1, x2 ∗ x4 is the only statistically significant interaction.
From its interaction plot
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we conclude that 15 min at 70oC is preferable. With Method 2, we include an
additional term or two that involve acid concentration (x1). The model with
5 df yields the following cube plot for predicted yield:
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If this model is correct, both low acid strength and shorter time are best when
the process is run at 70oC. Note, however, that the predicted yield of 6.83
seems too optimistic, since no runs performed this well. If one were searching
for still greater yields, then it seems reasonable to shift the experimental region
in this direction and to experiment further with these factors.
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It is sometimes the case that these methods differ even more in both their
estimate for σ2 and in the number of terms that are statistically significant.
Choosing models without regard for statistical significance will surely lead
to MSEs that underestimate σ2. (See blunder-to-avoid #3 in Section 14.7.)
To lessen the possible downward bias estimating σ2 using a reduced model’s
MSE, we adopt the following conventions:

• Restrict final models to be hierarchical. For the isatin data, the MSE for
Method 2 would have been even smaller than 0.024 if x2 had been excluded
due to its large p-value.

• Always include main effect terms when analyzing full factorial designs.
Daniel (1959, p. 317) offered the following advice for constraining the use
of negligible terms as part of an error variance estimate:

Nominate all effects, interactions and block contrasts1 that are
thought likely to be important before the experiment is completed.
The corresponding contrasts are then to be excluded from further
arbitrary allocation to error... Only those not nominated will be
studied for possible allocation to error.

Presumably prior to the isatin experiment, all four main effects were con-
sidered somewhat likely to be important. If so, then the variation explained
by the x3 term should not be pooled with error.

Fitting a model with all main effects ensures that practitioners are not
misled by computer output reporting lack-of-fit tests when there is no repli-
cation. For the isatin model chosen under Method 2, some software would
partition the error variation and report a lack-of-fit test with 2 df for lack-of-
fit and 8 df for pure error. Since there is no replication, there can be no pure
error. However, when a model with only three factors is fit to a 24 experiment,
the software views the data as a replicated 23. Such confusion is avoided if
one always includes the main effects. Further, retaining all the main effects
in the model documents explicitly the relative unimportance of factors with
negligible coefficients. Alternatively, JMP allows the user to designate a factor
as “excluded,” so that although not appearing in the model, it is recognized
as a factor in the experiment. By this feature we may avoid spurious lack-of-fit
tests.

With Methods 1 and 2, the MSE is used to estimate the error variance,
and so the Student’s t distribution is used to compute p-values for tests of
individual coefficients. How to conduct tests based on Lenth’s PSE will be
addressed in the next subsection.

1The term “contrast” refers to a linear combination of the observations for which
the coefficients sum to zero; i.e., the sum N

i=1 ciyi is a contrast if N
i=1 ci = 0. All

main effect and interaction columns correspond to contrasts; see Table 1.4.
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2.4.2 Tests for effects using Lenth’s PSE

The previous subsection introduced the use of Lenth’s PSE as a means of
estimating the error variance without any replication, provided a majority of
the true coefficients are zero. The steps in computing PSE are as follows:

• Determine s0, 1.5 times the median absolute estimate from a saturated
model fit to the ±1 coded factors.

• Exclude any estimates that exceed 2.5s0 and recompute the median.
• Compute PSE = 1.5 × median (of estimates less than 2.5s0 in magnitude).

The logic behind this estimator is as follows. Suppose no effects are present
so that E(bi) = 0 and Var(bi) = E(b2

i ) = σ2/N. Then one could use the average
square of the bi’s to estimate σ2/N. The median might also be used as an
estimator that is more robust to outliers (i.e., to actual effects). Rather than
using the median of the b2

i ’s in an estimate for σ2, Lenth (1989) proposed using
the median of the |bi|’s to estimate a multiple of σ. Since approximately half
of a normal distribution with a mean of zero is between −σ/1.5 and σ/1.5,
and the other half is further from the mean, s0 is an initial rough estimate
for the standard deviation of the bi’s. By excluding estimates that are more
than 2.5s0 in magnitude, we eliminate estimates that appear to represent true
effects. The remaining set of estimates is thus more nearly purged of estimates
corresponding to β’s that are not zero. Even if we compute the median from
a list of estimates corresponding to effects, most of which are zero but with
a few nonzero, the robustness of the median to outliers ensures that the PSE
will not be greatly biased.

For cases with no error degrees of freedom, statistical software will often
offer the option of computing Lenth t statistics as bi/PSE. Percentiles of the
sampling distribution of these statistics under the null hypothesis of no effects
were estimated via simulation by Ye and Hamada (2000). The first part of Ap-
pendix C contains these IER critical values for Lenth t statistics. IER stands
for “individual error rate,” since these critical values (cIER

α ) are computed to
limit the probability of a Type I error for each individual test across the set
of tests. Occasionally in this book, we provide p-values, computed by simu-
lation using JMP or the code in Appendix C, when analyzing unreplicated
experiments via Lenth’s procedure. For those wishing to conduct tests for a
specified level α, simply use the IER critical values in Appendix C. Simulation
is used to obtain critical values and p-values, since attempts at approximating
the distribution of Lenth t statistics with a Student’s t distribution have not
achieved sufficient accuracy (Edwards and Mee 2008).

Consider again the example of Davies (1954). Table 2.7 gives the estimates
for the saturated model, the PSE, Lenth t statistics, and p-values obtained by
simulation. For software that does not furnish these p-values, an approxima-
tion for each p-value can be obtained using Appendix C. For instance, from
the IER table in Appendix C we know that b1, with Lenth t = −1.672 has
p-value slightly above .10, since cIER

.10 = 1.701 > 1.672.



2.4 Analysis of Numerical Responses Without Replication 43

Table 2.7. Estimates and p-values based on Lenth PSE for isatin data

Term Estimate PSE Lenth t p-Value
Intercept 6.3819 .0572
x1 −0.0956 0.0572 −1.672 .103
x2 −0.0106 0.0572 −0.186 .861
x3 −0.0381 0.0572 −0.667 .500
x4 0.1369 0.0572 2.393 .037
x1 ∗ x2 −0.0006 0.0572 −0.011 .992
x1 ∗ x3 0.0169 0.0572 0.295 .783
x2 ∗ x3 −0.0331 0.0572 −0.579 .598
x1 ∗ x4 −0.0806 0.0572 −1.410 .160
x2 ∗ x4 −0.1256 0.0572 −2.197 .048
x3 ∗ x4 −0.0131 0.0572 −0.230 .828
x1 ∗ x2 ∗ x3 0.0744 0.0572 1.301 .190
x1 ∗ x2 ∗ x4 −0.0506 0.0572 −0.885 .354
x1 ∗ x3 ∗ x4 −0.0031 0.0572 −0.055 .960
x2 ∗ x3 ∗ x4 0.0619 0.0572 1.082 .265
x1 ∗ x2 ∗ x3 ∗ x4 0.0094 0.0572 0.164 .876

To understand better the performance of Lenth’s t statistics versus IER
critical values, consider the case for α = .05 and 15 estimates, where the
critical value is cIER

.05 = 2.156; that is, we test all 15 estimates and declare
ones larger in magnitude than 2.156(PSE) to be statistically significant. Since
α = .05 and 15(.05) = 0.75, we expect, on average, 0.75 effects to be declared
statistically significant, if in fact all true coefficients are zero.

To illustrate this, one million sets of 15 normal random variables with zero
means were simulated. From each set, the PSE was calculated and the number
of “estimates” found to exceed 2.156(PSE) was determined. The resulting
distribution was as follows:

No. of Significant Effects Found Frequency Freq./106

0 604,881 0.6049
1 208,926 0.2089
2 94,398 0.0944
3 46,574 0.0466
4 23,907 0.0239
5 12,643 0.0126
6 6,130 0.0061
7 2,426 0.0024
8 94 0.0001
9 18 0.0000

10 3 0.0000

This distribution has a mean of 0.75, as required by using α = .05 for 15
tests. Note that the risk of making one or more type I errors is 1 − 0.6049
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= 0.3951, or nearly 40%. This larger risk is called the experimentwise error
rate (EER). It is informative to report both the individual error rate and the
experimentwise error rate for a test procedure. Thus, for 2.156, the individual
error rate is 0.05, whereas the experimentwise error rate is 0.395.

To control the experimentwise error rate, one may use the cEER
α critical

value table in Appendix C or those provided by Ye and Hamada (2000). These
values were obtained by simulating max{|b1|, |b2|, ..., |bm|}/PSE under the null
hypothesis of no effects. For instance, for 15 contrasts and α = .10, the EER
critical value from Appendix C is cEER

.10 = 3.505. (Its individual error rate is
about 0.011, and the expected number of Type I errors is 15(0.011) = 0.17
when using the critical value 3.505.) In Table 2.7, no Lenth t statistics exceed
3.505; the largest is 2.393, which corresponds to an experimentwise error rate
of 0.29 (i.e., if no true effects were present, nearly 30% of the time, one would
obtain a largest Lenth t of 2.393 or greater). In experiments of this size,
often controlling the individual error rate offers sufficient protection. However,
when an experiment contains 26 or more treatment combinations, the number
of eligible terms becomes so large that either controlling the experimentwise
error rate or using a smaller α (e.g., .01) for IER is reasonable.

2.4.3 Alternatives to Lenth’s t test

Hamada and Balakrishnan (1998) compared two dozen test procedures for
unreplicated factorial designs. Most of these methods are intended to control
the IER for each test. Lenth’s method using IER critical values is one of the
simplest, and it performs satisfactorily in terms of power. In Section 14.2,
other more recent alternatives are discussed briefly.

Lenth’s method, as originally proposed, is not the best for controlling
the EER. A step-down version for Lenth’s method proposed by Ye, Hamada,
and Wu (2001) is certainly preferable. Section 14.2.1 illustrates this method
and discusses some other alternatives for controlling the experimentwise error
rate, including a simple step-up approach that utilizes standard F statistics
for backward elimination regression. Section 14.2.2 makes the case that con-
trolling EER is not usually of practical interest and argues for the intuitive
alternative of controlling the proportion of Type I errors among all effects
declared significant.

Finally, for any procedure such as Lenth (1989) based on the assumption
of effect sparsity, be sure to fit a saturated model, since the method is based
on the preponderance of negligible estimates. If one fits less than a saturated
model, there will exist error degrees of freedom and software will use the
MSE in constructing t-tests instead of the PSE, even if there is just 1 df for
error. For 2k factorial designs with no replication except at the center, most
software will ignore the PSE. When the pure error degrees of freedom are very
small and the sparsity of effects assumption is reasonable, then it is prudent
to combine the MSE with the estimate for σ2 that comes from Lenth’s PSE.
Section 14.1 presents two means for doing so.
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2.5 Normal Plot of Effects and Other Analysis Tools

2.5.1 Normal and half-normal plot of effect estimates

Long before Lenth (1989) promoted the testing for effects in unreplicated
experiments based on the sparsity of effects principle, Daniel (1959, 1976)
and others urged that the effect estimates be plotted. If the sparsity of effects
assumption is true, then for a 2k factorial design, the majority of estimators
for the coefficients in the saturated model (1.4) follow a normal distribution
with mean 0 and variance σ2/2k. The m = 2k − 1 estimates (excluding the
intercept) are ordered from smallest to largest and plotted versus the standard
normal quantiles ZPi

(i = 1, ..., m), where we use Blom’s (1958) recommended
proportions

Pi = (i − 0.375)/(m + 0.25). (2.3)

For example, with m = 15, the largest estimate is plotted versus Z14.625/15.25 =
1.739 and the smallest estimate versus −1.739. In the normal plot of estimates,
most are expected to fall along a line with an intercept of zero and (unknown)
slope of σ/N1/2, where, here, N = 2k. For instance, Figure 2.2 shows the
plot of the 15 estimated factorial effects from Table 2.7. The fitted line was
constrained to have an intercept of zero and a slope equal to Lenth’s PSE =
0.0572. The fact that a few of the 15 estimates fall below the line on the left
and above the line on the right is weak evidence that these estimates corre-
spond to effects that are present (i.e., βs �= 0). The closer the estimates fall
along the line, the more consistent the data are with an assumption of no true
effects.

Since the statistical significance of an estimate is generally based on its
size |bs|, a half-normal plot is seen as more useful than a normal plot by some
(see Daniel 1959). For a half-normal plot of effects, we sort the absolute values
of the estimates from smallest to largest and plot these versus the standard
normal quantiles ZQi

(i = 1, ...,m), where

Qi = 0.5 + (i − 0.055)/(2m + 1.2). (2.4)

Use of the proportions (2.4) was determine empirically and appears to be more
accurate that Daniel’s choice of 0.5+(i−0.5)/2m. For a more accurate closed-
form approximation of half-normal order statistic expected values, see Olguin
and Fearn (1997, p. 460). A half-normal plot for the estimates in Table 2.7 is
given in Figure 2.3. This plot reveals even more prominently the possibility
of two or more active effects.

Statistical software such as JMP and Minitab automates the plotting of
effects as in Figures 2.2 and 2.3, labeling the larger estimates. Such software
may use different formula than (2.3) and (2.4), resulting in slight differences in
the appearance of the plots. For example, JMP 7.0 uses Pi = i/(m+1), which
results in less extreme ZPi

, whereas MINITAB 14 provides several options,
with Pi = (i − 0.3)/(m + 0.4) as the default.
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2.5.2 Bayesian analysis of 2k factorial designs

Box and Meyer (1986) proposed an intuitive method for analyzing unrepli-
cated 2k experiments that does not involve tests of significance. Rather, it
supposes that some fraction 1−α of the effects are zero and that the remain-
ing proportion α come from a normal distribution with a variance that is sub-
stantially larger than σ2/N , the error variance for the estimates. A Bayesian
framework combines these prior assumptions with the data and produces a
“posterior” probability for each effect that it comes from the subset of active
effects. For the isatin 24 experiment, the posterior probabilities as computed
by JMP 7.0 are displayed in Figure 2.4.
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Fig. 2.4. Posterior probabilities for effects in isatin experiment; K = 10, α = .20

Note that the estimates reported by JMP in Figure 2.4 are actually Lenth
t statistics (refer to Table 2.7). For 13 of the 15 estimates, the posterior prob-
ability is lower than the prior probability of .2. The larger the magnitude of
the estimate, the larger the posterior probability. However, even the largest
estimate (b4 = 0.13 with Lenth t = 2.393) only has a posterior probability of
.35. Thus, although there is some evidence for one or two effects, that evidence
is not compelling.

Recall that using an individual error rate of 0.05, the two largest estimates
are statistically significant, whereas controlling the EER at 0.25 or smaller,
no effects are statistically significant. The posterior probabilities in Figure
2.4 were obtained assuming 20% of effects are active and that they have a
variance 10 times σ2/N (since JMP’s K = 10). Since the largest estimates



48 2 Analysis of Full Factorial Experiments

were not much larger than the others, even the largest estimates are deemed
more likely to correspond to null effects. However, if we lower K to 5, the
posterior probabilities for b4 and b2·4 increase to 0.59 and 0.51, respectively.
The conclusion is still that the evidence for these effects being active is rather
weak, given a prior expectation that 3/15 = 20% of the effects would be active.
For more details on the computations, see Box and Meyer (1986, 1993). For a
comparison of the Bayesian approach with Lenth’s method, see Haaland and
O’Connell (1995).

2.6 Diagnostics for a Fitted Model

The residual ei is the difference between the ith observed response yi and the
corresponding predicted value ŷi from a fitted model—that is, ei = yi− ŷi (i =
1, ..., N). Residuals indicate the extent of disagreement between an assumed
model and the actual data, and so provide a means of checking both the
tentative model for E(y) and the assumptions regarding ε.

2.6.1 Plotting residuals versus predicted y

Plotting ei versus ŷi is particularly helpful for assessing model adequacy, pro-
vided there are enough error degrees of freedom. (The error degrees of freedom
indicate the amount of information in the residuals.) To illustrate this point,
consider several residual plots for the Bouler et al. (1996) data discussed in
Section 2.3. Figure 2.5a displays residuals versus predicted values for the full
factorial model as summarized in the Table 2.4 ANOVA. Here, we have only
7 df for error: 1 df for lack-of-fit and 6 df for pure error. This residual plot is
not very useful, since it simply shows the pure error variation among the cen-
terpoint runs and the statistically significant lack-of-fit due to the centerpoint
residuals being predominantly positive. (If one were to fit a saturated model
by adding the term x1

2, then the residuals for all the factorial points would
be zero, and the residuals for the center runs would average zero. Plotting
these residuals would have no value.)

Consider a second residual versus predicted plot based on a reduced model
that eliminates all interactions involving x3 or x4. With 22 interactions re-
moved, this model has 29 df for error, and its residuals are displayed in Figure
2.5b. This residual plot is more useful. First, it shows that the pure error vari-
ation at the center is small compared with the variation in other residuals, so
that the lack-of-fit for this reduced model must be statistically significant. In
addition, there is more variation in compressive strength when the expected
compressive strength is above 30. Finally, residuals corresponding to the 10
observations with zero compressive strength have predicted values ranging
from −3.4 to 6.7. Overall, this residual plot reflects an unsatisfactory model.
In Section 2.7 we will discuss how using a transformation for y can improve
the model fit in such occasions. For instance, if we fit the same model (with
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Fig. 2.5. Residual plots for (a) full factorial model for y = strength; (b) reduced
model for y = strength; (c) reduced model for y = (strength)1/2
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29 df for error) to the square root of compressive strength, as seen in Figure
2.5c, the variation in the residuals appears more consistent across the range of
predicted values and only 1 of the 10 observations with yi = 0 has a negative
predicted value (−0.4).

Residual versus predicted plots are particularly helpful for spotting vio-
lations of the assumption of constant Var(ε). When there is replication at
several or all of the treatment combinations, there exist tests for checking the
equality of Var(ε). Common tests available in software include Bartlett’s test
for equality of variances and the more robust tests by O’Brien (1979, 1981).

2.6.2 Plotting residuals versus run order

Plotting residuals versus ŷi is only one of several useful means for examining
the residuals. When the data are time (or spatially) ordered, it is important
to plot the residuals versus that order. Such a plot is displayed in Figure 11.2,
where a possible shift in the measurement process is revealed. Autocorrela-
tion of the errors is another possibility related to time-ordered experimental
runs. Use the Durbin–Watson statistic to check for first-order autocorrelation.
When applying this test using any software, be sure to have the data sorted
by run order. The Durbin–Watson test is more important when one is experi-
menting with a highly variable process where such correlation is deemed likely.
Although randomization of run order does not eliminate trend or autocorrela-
tion for ε, it does offer protection against the effects of such problems in most
situations (Box, Hunter, and Hunter 2005, pp. 404f). For further discussion,
see Section 13.5.

2.6.3 Plotting residuals in normal quantile plot

When there is a large amount of data and R2 is low, then the distribution of ε
becomes important. In such cases, one may construct a normal quantile plot
of the residuals. For instance, see Figure 4.9. By contrast, when R2 is above
90%, the distribution of ε has minimal importance, since the distribution of
the residuals will reflect lack-of-fit more than it will the actual distribution of
ε. For this reason, we do not routinely construct a normal plot of residuals for
examples in this book.

2.6.4 Identifying outliers using Studentized residuals

Spurious yi values are a serious concern, especially for small, unreplicated ex-
periments, because of their influence on the fitted model. However, an obser-
vation that appears to be an outlier under one model may appear reasonable
under a different model. For instance, the large negative residual displayed in
Figure 2.5b is problematic if the error variance is constant. However, if the
error variation increases as strength increases, then the same observation no
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longer appears extreme. The less data one has, the more ambiguity exists re-
garding how to interpret such runs. A simple, practical approach to handling
suspected outliers is to fit models both with and without the runs, to see their
impact on the conclusions. Daniel (1959, pp. 331f) pointed out that for two-
level factorials, a single outlier will bias every effect estimate by (±) the same
amount and that this will alter the half-normal plot of effect estimates to have
no clump of estimates at zero. The case study in Section 4.2 will illustrate
how to address the problem of more outliers.

Literature about outliers in regression is extensive. Beckman and Cook
(1983, Section 4.2) provided an excellent overview; see also Gray and Woodall
(1994). The Studentized residual is defined as

ri = ei/[(1 − hii)MSE]1/2, (2.5)

where hii is the (i, i)th element of the “hat” matrix X(X′X)−1X′. For a 2k

factorial (with n ≥ 1 observations at each treatment combination and no
centerpoint runs), hii = r/N, where r is the number of columns in X.

The distribution of the maximum Studentized residual can be simulated
for any model matrix X. Appendix D provides a simple simulation program
that may be used to determine upper (10th and 5th) percentiles for the max-
imum (in absolute value) Studentized residual, and the probability of getting
a maximum residual as large as that observed for a particular model. This
provides a quick reference regarding whether any observations may be consid-
ered outliers. Gray and Woodall (1994) showed that the maximum value for
(2.5) is (N − r)1/2. When the degrees of freedom for error are 4 or less, there
is no point checking for extreme outliers.

If the ith observation is deleted and the same model fit to the data, the
error sum of squares will decrease by e2

i /(1−hii) and the ith “deleted residual,”
the difference between yi and the predicted value for the omitted observation,
is

di = ei/(1 − hii). (2.6)

The Studentized version of (2.6) is the same as (2.5), except that the estimate
for σ2 is based on MSE(−i), the mean square error with the ith observation
excluded, which is

MSE(−i) = [SSE − e2
i /(1 − hii)]/[N − r − 1], (2.7)

where SSE is the error sum of squares,
∑N

j e2
j . The most convenient means

for computing (2.6) is to add a dummy variable column to the X matrix with
the value 1 for the ith row and 0 otherwise. The regression coefficient for this
column will equal the deleted residual (2.6), the MSE will equal (2.7) and the
t statistic for the coefficient of the dummy column will equal the Studentized
residual for the ith observation. Typically, an observation attracted attention
simply because it had one of the largest residuals. Based on the Bonferroni
inequality, one may multiply the p-value by N to get the approximate prob-
ability that the biggest residual would be larger than this just by chance.
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We now illustrate these computations with a small example to reinforce
the concepts. Suppose we fit the isatin yield data from Table 2.6 with a model
containing all four main effects and the x2∗x4 interaction and consider whether
any residual is unusually large. (Perhaps that is the reason we saw few signif-
icant terms.) The largest residual is for the fifth observation, with y5 = 6.12
and ŷ5 = 6.4175. With MSE = 0.3212/10,

e5 = y5 − ŷ5 = 6.12 − 6.4175 = −0.2975,

r5 = e5/[(1 − h55)MSE]1/2 = −0.2975/[(1 − 6/16)0.03212]1/2 = −2.0997.

This is not unusually large. Using the simulation program in Appendix D, we
determine that there is a 39.5% chance of getting a Studentized residual this
far from zero.

If one were to delete the fifth observation and refit the model, the predicted
value for this observation is 6.596 and

d5 = 6.12 − 6.596 = −0.2975/(1 − 6/16) = −0.476.

If instead of deleting this observation, one adds a dummy variable for the fifth
observation, the estimated model becomes

Term Estimate Std Error t-Ratio p-Value
Intercept 0.412 0.0370 11.113 .000
x1 −0.125 0.0370 −3.385 .008
x2 0.019 0.0370 0.516 .618
x3 −0.008 0.0370 −0.226 .826
x4 0.107 0.0370 2.892 .018
x2*x4 −0.155 0.0370 −4.195 .002
Dummy5 −0.476 0.1787 −2.664 .026

with mean square error

MSE(−5) = [0.3212 − (−0.2975)2/(1 − 6/16)]/[16 − 6 − 1]
= 0.1796/9 = 0.0200.

The standardized deleted residual for y5 is −2.664 (p-value = .026). However,
a p-value as small as .026 is typical for the most extreme outlier. Multiplying
by N = 16, we obtain 16(.026) = 0.414; this Bonferroni upper bound is only
slightly larger than the exact probability of .395 found using the Appendix D
simulation. Assuming that this model is correct, there is no indication of any
outliers among these data.

In Chapter 4, we analyze case studies in which many outliers will be evi-
dent.
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2.7 Transformations of the Response

Example 2.3. Drill Advance Rate for 24

Daniel (1976) introduced the use of transformations for y in a section titled
“Looking for Simple Models.” His 24 example involving the advance rate of a
stone drill illustrates clearly the potential advantages. The data are displayed
in Figure 2.6.
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Fig. 2.6. Cube plot of Example 2.3 advance rate data from Daniel (1976)

Fitting a saturated model to these data, we obtain a half-normal plot of
the effects (see Figure 2.7). This plot is pleasing, in that three of the main
effects have statistically significant estimates, based on their Lenth t statistics.
A reduced model would certainly contain these three terms and possibly the
xSpeed ∗ xFlow and xSpeed ∗ xMud interactions, since their estimates also stand
off the line. The resulting model,

ŷ = 6.15 + 1.65xFlow + 3.22xSpeed + 1.14xMud

+0.75xFlow ∗ xSpeed + 0.80xFlow ∗ xMud, (2.8)

explains 95% of the variation in advance rate. However, the normal plot of ef-
fects for the saturated model (Figure 2.8) looks peculiar in that all 15 estimates
are positive, so that the estimates are far from the line through the origin;
there is no clump of estimates centered about 0. In addition, the residuals
from the reduced model (2.8) are more scattered at large predicted advance
rates (see Figure 2.9). All of these plots indicate that we are missing some
systematic variation with our model, even though R2 = .95.

Daniel (1976) fitted models for nine different transformations of y = ad-
vance rate, including different powers of y, and the log transformations

ln(y + c) (2.9)
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Fig. 2.9. Residuals versus predicted advance rate for reduced model (2.5) for
Daniel’s drill 24

with different constant shifts c. The family of transformations (2.9) is valid,
provided c > −min{y1, ..., yN}. The most popular set of transformations today
is the family proposed by Box and Cox (1964):

y(λ) =

⎧⎨
⎩

(yλ − 1)/(λẏλ−1), if λ �= 0

ln(y) ẏ, if λ = 0
(2.10)

where ẏ is the geometric mean ẏ =
∏N

i=1 y
1/N
i . By normalizing the power

transformation as in (2.10), the value of λ for which the error sum of squares
is minimized is the maximum likelihood estimator for λ. Since the normalized
transformation nearly makes the total sum of squares for y(λ) invariant to λ,
the λ that minimizes the SSE essentially maximizes R2.

Suppose we fit an additive model in the four factors for advance rate. A
plot of the error sum of squares for different transformations −2 ≤ λ ≤ 2 as
produced by JMP is shown in Figure 2.10. JMP searches the grid {−2, −1.8,
−1.6, ..., 2} and determines that transformed values corresponding to λ = 0
have the smallest error sum of squares for the additive model.

The actual maximum likelihood estimator here is λ̂ = −0.05, but taking λ
= 0 is simpler and produces essentially the same result. A 95% confidence in-
terval for λ is the interval of values that produce an error sum of squares below
the horizontal line in Figure 2.10. For details on the computation, see Box and
Cox (1964) or Montgomery and Peck (1992). In Figure 2.10 this confidence in-
terval is narrow for two reasons. First, the ratio maximum{yi}/minimum{yi}
= 9.7. When this ratio is less than 2, nonlinear transformations will have lit-
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Fig. 2.10. Error sum of squares from additive model for different transformations
of advance rate, −2 ≤ λ ≤ 2

tle effect on the result, and we will be indifferent to models for a wide range
of λ. By contrast, when the maximum is an order of magnitude larger than
the minimum, nonlinear transformations have a pronounced effect, and so
some transformations are clearly better than others. Second, we considered
different transformations for the additive model, which leaves much of the
variation unexplained. If one were to choose a model with more terms, then
many different λ’s may explain most all the variation, and so again the choice
for the best λ will not be so clearly indicated. For instance, if the Box–Cox
transformation is applied fitting the two-factor interaction model to Daniel’s
data, the confidence interval for λ is (−1.23, 0.05); from this fit, either the log
or reciprocal transformation is acceptable. We prefer the log transformation
because the histogram for ln(yi) is less skewed than the histogram for 1/yi.
In addition, the resulting model matches the engineering expectation that the
factor effects might be multiplicative.

The fitted additive model for predicted ln(advance rate) is:

̂ln(y) = 1.600 + 0.065xLoad + 0.290xFlow + 0.577xSpeed + 0.163xMud. (2.11)

Taking the exponential of (2.11) produces an estimate for the median (not
the mean) advance rate:

eln(y) = 4.953(1.067)xLoad(1.336)xFlow(1.781)xSpeed(1.177)xMud

since e1.6 = 4.953, e.065 = 1.067, etc. The predicted median rates range from
1.66 to 14.8.

In Daniel’s drill example, the simple additive model in ln(advance rate)
accounted for 98.5% of the variation, whereas modeling advance rate directly
would have required a model with many terms to achieve an R2 so large.
There are additional reasons for considering transformations. First, if there
is substantial error variation and the variance is not constant, then ordinary
least squares estimation loses efficiency. When the error variation depends on
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E(y), then choosing a suitable function f and modeling f(y) rather than y
directly can resolve the unequal variance problem and keep the estimation
simple. This is the case for the Bouler et al. (1996) data; recall the improved
residual plot in Figure 2.5c for y = (strength)1/2.

In this section, we have addressed applications in which the choice of a
transformation f(y) is determined empirically. Sometimes the nature of the
response y suggests what transformation is appropriate. For example, when
y is a count, following a Binomial or Poisson distribution, known transfor-
mations will stabilize the variance (see Sections 2.8.1 and 2.8.2). Another
common response is the standard deviation. Section 2.8.3 details why the log
transformation is appropriate for variances and standard deviations.

2.8 Analysis of Counts, Variances, and Other Statistics

For some experiments, responses are counts. For example,

• number of flaws in a door panel
• number of respondents to an email solicitation
• number of defective parts in a sample of 20

Counting the number of good (or bad) parts is not as informative as col-
lecting quantitative data on each part. For example, it is better to measure the
breaking strength on each of a sample of parts than it is to simply know how
many failed at a certain stress. However, in some applications, quantitative
data are either too expensive or impossible to collect and count data are all
that are available. Count data routinely violate the assumption of constant
variance for ε, and so specialized methods are required. The simplest of these
methods is to use least squares for a transformation of the response. When
the sample sizes at each treatment combination are large, use of least squares
is often justified. For cases where sample sizes are smaller, other methods are
recommended. After discussing and illustrating the options for count data,
we discuss the common case of modeling a variance and then briefly mention
analyzing correlations, ratios, lifetimes, directions, and functional responses.

2.8.1 Modeling Binomial proportions

When the measured outcome at a treatment combination is the proportion of
n trials having a characteristic of interest, the Binomial distribution is gener-
ally appropriate. Let c denote the number of cases having the characteristic
of interest and let p̂ = c/n denote the observed proportion. If the outcomes
of the individual trials are independently distributed and the number of trials
is fixed, then c has a Binomial distribution with parameters n and p, where
p = E[p̂]. There are two problems associated with modeling p̂. First, since the
variance of p̂ depends on p, any factor that affects the mean also affects the
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variance. Thus, the typical constant variance assumption will be violated. Sec-
ond, since 0 ≤ p ≤ 1, a fitted model for p may result in predicted proportions
outside the feasible range.

Var(p̂) = p(1 − p)/n is maximum at p = .5 and is relatively stable over
the interval .3 ≤ p ≤ .7. However, for problems where the proportions are not
confined to this range and where least squares estimation is to be used, it is
best to model some function of p̂ that stabilizes the variance. One option is

fa(p̂) = arcsin(
√

p̂).

Figure 2.11 shows how this function is essentially linear over the range .3 ≤
p̂ ≤ .7, but it accentuates differences among more extreme values for p̂, where
p̂ is less variable.
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Fig. 2.11. fa(p) = arcsin(
√

p) transformation; slope ≈ 1 for .3 ≤ p ≤ .7

Freeman and Tukey (1950) recommended a modification to the transfor-
mation fa(p̂). The Freeman–Tukey transformation for Binomial proportions
is

fFT(p̂) = fa[p̂n/(n + 1)] + fa[(p̂n + 1)/(n + 1)]

= arcsin[
√

c/(n + 1)] + arcsin[
√

(c + 1)/(n + 1)], (2.12)

where c is the number of cases out of n with the characteristic of interest.
Note that this transformation depends on both p̂ (or c) and n.
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Figure 2.12 shows the variance of fa(p̂) and fFT(p̂) for n = 10 and Figure
2.13 shows the same for n = 40. Reference lines are drawn at 1/n and 1−1/n
in each figure. In Figure 2.12, Var(p̂) = p(1 − p)/n is also displayed. For
n = 10, over the interval .1 ≤ p ≤ .9, Var(p̂) ranges from .009 to .025, a
max/min ratio of 2.78. Both variance-stabilizing transformations do much
better. For fa(p̂), the max/min ratio is = 0.04202/0.02857 = 1.45, whereas
the Freeman–Tukey transformation has the max/min ratio of 0.09998/0.0913
= 1.095. Freeman and Tukey (1950) stated that (2.12) produces variances
within ±6% of 1/(n + 0.5) for almost all cases where the expected proportion
p is between 1/n and 1 − 1/n. This corresponds to data where the expected
count is at least 1 and not more than n − 1. For n = 40, the max/min ratio
for the variance over the interval .025 ≤ p ≤ .975 is 1.61 for fa(p̂) and 1.12
for fFT(p̂). Use of (2.12) as the response is recommended provided one has
few sample proportions of 0 or 1. Given a fitted model for (2.12), the inverse
transformation (Miller 1978) is

p̂(f) = 0.5{1 − sgn(cos f)[1 − (sin f + (sin f − 1/sin f)/n)2]1/2},
where f is the predicted value for fFT and sgn(cos f) denotes the sign of cos
f .
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Arber et al. (2006) conducted a 24 factorial experiment to see how gender,
age, race, and social class affected physicians’ diagnoses and follow-up recom-
mendations for simulated coronary heart disease patients. N = 256 physicians
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took part, with 16 assigned to each treatment combination, 8 from the United
States and 8 from the United Kingdom. Thus, for analyses that ignore country,
n = 16 per treatment combination, and the Freeman–Tukey transformation
(2.9) will effectively stabilize the variance at 1/16.5 for p in the interval (.067,
.933). For analyses of individual country data, n = 8, and so the range of
p for which the variance of the Freeman–Tukey transformed proportions is
near 1/8.5 is constrained to (0.125, 0.875). Since several of the characteris-
tics of interest occurred for over 90% or less than 10% of the doctors, the
country-specific data cannot be effectively analyzed using least squares and
the response fFT(p̂).

When some expected counts are close to zero or n, a linear model for
p or fFT(p) may not be suitable. An alternative is to model the log-odds,
ln[p/(1 − p)], with estimation via maximum likelihood rather than least
squares. Two advantages of modeling the log-odds are (i) any predicted value
for the log-odds corresponds to a value for p within the interval (0,1) and
(ii) the models are meaningful to interpret. For instance, the additive model
(1.3) translates into a model of independence, whereas models with some in-
teractions are interpretable in terms of conditional independence. Although
maximum likelihood estimation may require iteration, the required software
is widely available. For a useful reference, see Collett (2002).
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2.8.2 Modeling Poisson count data

Example 2.4: 24 factorial with y = number of blemishes
Hsieh and Goodwin (1986) described an experiment to reduce the number

imperfections in a grille used by a Chrysler assembly plant. Porosity problems
caused the blemishes, and a 16-run experiment was performed in search of a
remedy. Four factors were Mold pressure (x1), Priming method (x2), Thicken-
ing process (x3), and Viscosity (x4). Pressure and Viscosity are quantitative
factors, although the actual levels used were not reported; the other two fac-
tors are qualitative. The 16 treatment combinations in the order listed by the
authors are shown in Table 2.8, along with the total number of “pop” defects
observed for each. The observed counts range from 3 to 99 pops. We are not
told whether a single part or multiple parts were inspected at each treatment
combination.

Table 2.8. Hsieh and Goodwin (1986) experiment

x1 x2 x3 x4 Total No. Pops, c
−1 −1 1 −1 66
−1 −1 −1 −1 19
−1 1 1 1 3
−1 1 −1 1 7
−1 1 −1 −1 4
−1 1 1 −1 17
−1 −1 −1 1 99
−1 −1 1 1 5

1 1 1 −1 4
1 1 −1 −1 3
1 −1 1 1 5
1 −1 −1 1 14
1 −1 −1 −1 7
1 −1 1 −1 14
1 1 −1 1 5
1 1 1 1 8

If flaws arise individually and independently, then the data will follow a
Poisson distribution; refer to any probability book for details (e.g., Ross 1998).
Modeling Poisson counts c using ordinary least squares is not recommended,
since any factor that affects the mean also affects the variance. For the Poisson
distribution, the mean and variance are equal. Thus, if the factors do affect
the mean, then the assumption of constant variance will be violated. Several
alternative approaches are more appropriate:

• Use the simple, variance-stabilizing transformation
√

c. Think of this trans-
formation as taking each observation c and dividing by an estimate of its



62 2 Analysis of Full Factorial Experiments

standard deviation,
√

c. If we divided c by its true standard deviation,√
E(c), the resulting standardized variable c/

√
E(c) would have a vari-

ance of 1, whatever E(c) is. Because the numerator and denominator of
c/
√

c are correlated,
√

c has a variance smaller than 1 but one that is
insensitive to E(c).

• Use the Freeman and Tukey (1950) transformation for Poisson counts,
FT(c) = (

√
c +

√
c + 1)/2.

• Model c directly, using an estimation method other than least squares—for
example, weighted least squares or maximum likelihood of a generalized
linear model (GLM) (see Wu and Hamada 2000, p. 568). However, model-
ing c directly causes the coefficient estimators to be correlated, due to the
nonconstant variance.

Figure 2.14 displays the variance of
√

c, (
√

c +
√

c + 1)/2, and c on the
same plot as a function of E(c). The right axis labels values for Var(c), and
the straight line y = x indicates the equality of E(c) and Var(c). The left axis
denotes the variance for both transformations of c. The curve with the smaller
peak near 0.4 is Var(

√
c) and the curve with the peak of 0.5 for E(c) = 1 is

for the Freeman–Tukey transformation. The Freeman–Tukey transformation
is essentially perfect for stabilizing the variance if E(c) ≥ 5, but it is slightly
worse than

√
c if some expected counts are below 2.5.
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For the Hsieh and Goodwin data, with one-fourth of the data being 3 or 4,
we opt for the simpler square root transformation, since the Freeman–Tukey
transformation is not better at stabilizing the variance for expected counts
of 3 or less. Fitting a full factorial model for y = (number of pops)1/2, we
obtain the 15 least squares estimates and display these in a half-normal plot
(see Figure 2.15). In addition to drawing a line through the origin with a
slope equal to Lenth’s PSE (= 0.517), we draw a second line with a slope of
[0.3/16]1/2 = 0.137, which would be the approximate standard error of the
least squares estimates if in fact the data followed a Poisson distribution. (The
variance of 0.3 in this calculation is taken from Figure 2.14.) The discrepancy
between these two lines indicates that either the sparsity of effects assumption
is violated, making Lenth’s PSE too large, or the actual standard error is
much larger than 0.137 because the “pop” defects do not follow a Poisson
distribution. We suspect the latter, since otherwise a saturated model would
be required to account for the observed data. The largest two estimates (in
magnitude) are b2 = −1.11 and b3·4 = −1.05, both with Lenth t statistics
exceeding 2. This is evidence that the priming method coded “+1” is preferred,
and that which thickening process is better depends on the viscosity factor’s
level. The third largest effect is for mold pressure (b1 = −0.88); although not
statistically significant, it suggested to Hsieh and Goodwin that the higher
pressure is better.
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2.8.3 Modeling variances

In Section 2.6.1, we discussed plotting residuals versus ŷ to verify that the
assumption of constant variance is reasonable. For non-negative response vari-
ables where the ratio max(yi)/min(yi) is large, we often find it necessary to
use a transformation to satisfy the constant variance assumption. In that
earlier discussion, however, the mean was primary; checking for equality of
variance was a secondary concern. We now consider a different context, in
which modeling variability is of primary interest.

Many process improvement applications involve sampling multiple items
within each run in order to determine whether within-run variability is smaller
at certain treatment combinations. When looking for differences in variability,
taking only one or two observations per treatment combination renders an
experiment useless. Instead, with primary interest on within-run variability,
samples of m = 10 or more observations are recommended. For the analysis,
one computes the standard deviation si or variance s2

i for each sample and
then proceeds to model this measure of dispersion. If the m values from a
sample are independent, normally distributed observations with some mean
μi and variance σ2

i , then the sample variance s2
i is distributed as a multiple

of a chi-square random variable; in particular,

s2
i ∼ [σ2

i /(m − 1)]χ2
m−1

and Var(s2
i ) = 2σ4

i /(m−1). Thus, if we fit a regression model for s2
i and have

any effects for E(s2
i ), then the constant Var(ε) assumption will not hold. For

this reason, the logarithm is the default variance-stabilizing transformation
for standard deviations and variances, since

Var[ln(s2
i )] = Var[ln(χ2

m−1)]

does not depend on σ2
i . Bartlett and Kendall (1946) is an early reference

regarding the logarithm as a variance-stabilizing transformation for sample
variances and standard deviations.

It was mentioned previously that a random sample of size m ≥ 10 is rec-
ommended when studying variation. This is because the precision of a sample
variance is poor when the degrees of freedom are few. Given the above result
for the chi-squared distribution, the coefficient of variation (CV) for a sample
variance of m independent normally distributed observations is [2/(m−1)]1/2.
Thus, for m = 10 observations, the CV is 47%; that is, the standard error for
the sample variance is still nearly half as large as the variance we are estimat-
ing.

When our response is ln(s2
i ), the degrees of freedom in s2

i determines the
variance of the error term in our model. In particular, suppose s2

i is the vari-
ance of m independent identically distributed observations from a normal
distribution; then

Var[ln(s2
i )] ≈ 2/(m − 2).
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This approximation is excellent for large degrees of freedom and is adequate
for m as small as 4. Thus, for a sample of size m = 10, we anticipate a RMSE
near [2/(10 − 2)]1/2 = 0.5 for ln(s2

i ), or 0.25 for ln(si), provided the data are
normally distributed.

Kramschuster et al. (2005) reported two 32-run experiments involving in-
jection molding. For each run, they achieved a steady state and then selected a
sample of 10 parts. After aging the parts, m = 5 parts per run were carefully
measured for shrinkage and warpage. The means of these five observations
were effective for finding several active effects for each dimension. However, if
one attempts to fit a model to the standard deviations they report, no effects
are found. In their case, analysis of the standard deviations is secondary, and
measuring five parts per run carefully was quite time-consuming. However,
for experiments for which variability is of primary concern, larger samples are
generally necessary.

This book does not give any attention to methods for detecting differ-
ences in variability from unreplicated designs with no subsampling within
runs—even though statisticians have proposed methods for attempting such
an analysis. The basic strategy has been to fit a model for the mean, compute
residuals, and then use the residuals to discover dispersion effects (i.e., factors
that change the variability). For those interested in such methods, see the
assessment by Brenneman and Nair (2001). Their concluding remark explains
why these methods are not discussed here. “(T)he analysis of location and dis-
persion effects is intrinsically a difficult problem. In unreplicated experiments,
it is really a minefield, one that needs to be maneuvered very carefully. George
Box once compared this to trying to squeeze every last bit of water out of a
wet towel. If you squeeze too hard, things start breaking down and you can
end up making erroneous conclusions” (p. 403).

The first case study in Chapter 4 analyzes a 23 factorial with both true
replication of runs (n = 6) and within-run sampling (m = 25), where impor-
tant differences in within-run variability are found. The samples within each
run are unstructured. In some studies of within-run variability, the physical
layout suggests likely patterned differences. Section 13.3 discusses advantages
of structured samples rather than random samples for variability experiments,
and Section 14.3 illustrates the analysis of such data.

2.8.4 Modeling other statistics

Just as count data and variances have default transformations that facilitate
the analysis, so do other statistics. Sample correlations r are bounded by the
interval [−1, 1], and have more variability when E(r) is near the middle of that
range. The default variance-stabilizing transformation for sample correlations,
as devised by Sir Ronald Fisher, is

f(r) = 0.5 ln[(1 + r)/(1 − r)].

Recent work by Fujisawa (2000) reinforces this transformation’s usefulness.
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Ratios (y) constrained to the interval [0, 1] may be transformed using the
beta transformation advocated by Rocke (1993):

fB(y; λ) =
∫ y

0

tλ−1(1 − t)λ−1 ∂t. (2.13)

Examples include yield of refining and chemical processes, compositional data,
and shrinkage measurements. This beta transformation family includes as spe-
cial cases the arcsin(

√
p) and ln[p/(1 − p)] transformations mentioned earlier

in Section 2.8.1. Rocke also suggested a generalization of (2.13) where the
exponents for t and 1 − t are allowed to differ.

The logarithm is a useful transformation for lifetime data, t. If the original
distribution can be assumed to be lognormal, then y = ln(t) is normally
distributed, and if t follows a two-parameter Weibull distribution, then ln(t)
has an extreme value distribution. In both of these cases, the distribution for
ln(t) is summarized by a location parameter and a scale parameter. Thus,
we typically fit a model for E[ln(t)], with the hope that the variability of
the residuals is nearly constant. The interpretability of the fitted model is
facilitated by connecting parameters on the ln(t) scale to parameters of the
distribution for t. The log transformation also applies when the response is
an order statistic from a lifetime distribution; see, for example, Example 6.5.

Directional response data are often analyzed assuming the von Mises dis-
tribution (for responses on a circle) or the von Mises–Fisher distribution (for
higher dimensions). Anderson and Wu (1995, 1996) fitted models for both
location and dispersion for replicated angular data from a 24 factorial design.
Anderson-Cook (2001) showed how to model the correlation between an an-
gular response and a continuous response. These methods are relevant for any
cyclic response, including time of day (or week or year).

Sometimes the response is a profile or function rather than a scalar. Walker
and Wright (2002) analyzed density profiles for fiberboard products. Nair,
Taam, and Ye (2002) analyze a compression strength profile for plastic foam.
Nair et al. also analyze the audible noise and current of alternators as a func-
tion of speed. For each of these examples, the response for the ith experimental
run is a sequence of (yij , xij), where the xij ’s are univariate and fixed. As-
suming the sequence of xij ’s is the same for all runs, one approach is to fit a
model for each j = 1, ..., J . Nair et al. (2002) took this approach to analyze
both the compression strength profiles and the noise output for alternators,
in part because no simple functions was adequate to describe the observed
data. Shen and Faraway (2004) showed how to conduct inferences for the fit-
ted profiles, whereas Shen and Xu (2007) described diagnostic procedures. A
second approach is to fit a curve to the data for each run and then to model
some summary measure of each fitted curve. Nair et al. (2002) fitted a three-
parameter nonlinear model for each run of the alternator current experiment
and then modeled the logarithm of different functions of these parameter es-
timates. For similar analyses for repeated measures (i.e., longitudinal) data,
see Yang, Shen, Xu, and Shoptaw (2007) and Engel (2008).
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2.9 Unequal Replication and Unequal Variance

Sometimes a design has unequal replication that was planned. For instance,
Snee (1985) replicated 4 of the 16 distinct treatment combinations in an ex-
periment that involved several qualitative factors (which precluded the use of
replicated center runs). For such planned imbalance, X′X is not diagonal, but
it may be block diagonal or have some other structure that may be exploited
in the analysis (Dykstra 1959, Liao and Chai 2009).

In other cases, some intended runs fail to produce data, or we discard
outlier observations, and end up with unequal replication that is unplanned.
Let ni denote the number of observations at each of the i = 1, . . . , 2k treatment
combinations. Here we consider the case where ni ≥ 1 for all i (i = 1, . . . , 2k);
that is, we have a full factorial with unequal replication. In the next section
we consider applications where ni = 0 for some i.

With unequal replication of a full factorial, one can estimate the satu-
rated model (1.4) but due to the lack of balance some regression coefficient
estimates change when other terms are dropped from the model. There is
some disagreement about which tests are most appropriate (Nelder and Lane
1995, Langsrud 2001). We illustrate the issues using data similar to Dykstra’s
(1959) 23 example. Table 2.9 reports the 12 responses for this experiment that
contained replication at half of the treatment combinations.

Table 2.9. Partially replicated 23 factorial

x1 x2 x3 Observations
−1 −1 −1 18.4, 20.6

1 −1 −1 25.1
−1 1 −1 24.3

1 1 −1 24.4, 26.2
−1 −1 1 20.4

1 −1 1 25.8, 27.0
−1 1 1 23.6, 24.6

1 1 1 27.9

Fitting a saturated model, we obtain a MSE = 5.26/4 = 1.315. The fitted
model and t statistics are listed in Table 2.10. The standard error for each
coefficient in the saturated model is σ/(10.6̄)1/2, rather than σ/(12)1/2, due
to correlations among pairs of estimates.
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Table 2.10. Saturated model for partially replicated 23 factorial

Term Estimate Std Error t-Ratio p-Value
Intercept 24.125 0.351 68.71 <.0001
x1 2.050 0.351 5.84 .0043
x2 1.275 0.351 3.63 .0221
x3 0.575 0.351 1.64 .1768
x1 ∗ x2 −0.850 0.351 −2.42 .0727
x1 ∗ x3 0.400 0.351 1.14 .3182
x2 ∗ x3 0.025 0.351 0.07 .9467
x1 ∗ x2 ∗ x3 0.300 0.351 0.85 .4410

If the design were balanced, a reduced model could be selected in a single step.
One might choose a reduced model with two, three, or four terms depending
on whether one retains the x1 ∗ x2 interaction and whether one follows the
practice of retaining all main effects for full factorial designs (as was mentioned
in Section 2.4). Regardless of which model is chosen, for balanced designs
estimates for the terms in the model are unaffected, as are their t statistics if
they are based on the pure error mean square.

Lack of balance complicates the choice of a model. Four possible fitted
models are displayed in Figure 2.16. The columns for x3 and x1 ∗ x2 are
correlated with a correlation of −1/3. If both terms are included in the model,
as is the case in the reduced model with four terms, the estimates are different
than when only one of these terms is included. This causes some ambiguity,
since each estimate is larger when the other is omitted. Here, the other columns
are orthogonal because of the careful choice of which four runs are replicated.
In other nonorthogonal situations, all estimates may be correlated.

So how should one approach model selection? For a full 2k with unequal
replication, stepwise regression procedures are useful. First, fit the saturated
model and use backward elimination for models restricted to be hierarchical.
Then apply forward selection, again requiring hierarchical models, to see if
the same model is obtained. For the data in Table 2.9, using α = .05, both
procedures lead to reduced model 3 in Figure 2.16.

Unequal replication is particularly common when the responses are from
voluntary participants. If the assignment to treatment combinations is made
before one knows which participants will respond, then the number of par-
ticipants contacted needs to be large enough (i) to avoid empty cells and
(ii) to avoid large correlations among the columns of the model matrix. Let
n denote the number of participants invited per treatment combination (so
that, in total, N = 2kn are invited) and let π denote a (conservative) guess
for the proportion of participants who will agree to participate. Then hav-
ing n ≥ 5/π is sufficient to avoid empty cells. However, when the realized
2k sample sizes are random, the distribution for the correlation between two
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Parameter Estimates for Reduced Model 1 

Term   Estimate Std Error t Ratio Prob>|t|
Intercept  24.0250 0.476 50.46 <.0001
X1  2.0417 0.476 4.29 0.0020
X2  1.1417 0.476 2.40 0.0400
   
Parameter Estimates for Reduced Model 2 

Term   Estimate Std Error t Ratio Prob>|t|
Intercept  24.0250 0.404 59.52 <.0001
X1  2.0417 0.404 5.06 0.0010
X2  1.1417 0.404 2.83 0.0222
X3  0.8583 0.404 2.13 0.0661

Parameter Estimates for Reduced Model 3 

Term   Estimate Std Error t Ratio Prob>|t|
Intercept  24.0250 0.346 69.54 <.0001
X1  2.0417 0.346 5.91 0.0004
X2  1.1417 0.346 3.30 0.0108
X1*X2  -1.0417 0.346 -3.01 0.0167

Parameter Estimates for Reduced Model 4 

Term   Estimate Std Error t Ratio Prob>|t|
Intercept  24.0250 0.307 78.18 <.0001
X1  2.0417 0.307 6.64 0.0003
X2  1.1417 0.307 3.71 0.0075
X3  0.5750 0.326 1.76 0.1211
X1*X2  -0.8500 0.326 -2.61 0.0350

Fig. 2.16. Four reduced models for partially replicated 23

columns of X is symmetric about 0, with a standard deviation of approxi-
mately [(1−π)/(2knπ)]1/2. For a 23, nπ = 8 expected responses per treatment
combination may seem sufficient, but if π = 0.1, [(1 − π)/(2knπ)]1/2 = 0.12,
so about 5% of the correlations will exceed .24 in magnitude. The smaller the
expected proportion π, the larger the expected number responding is required
to avoid large correlations.

We now turn to the second topic of this section: unequal variance. If the
error variance, σ2, is not constant, then the least squares estimators will be
correlated, even if X′X is diagonal. These correlations do not bias the ordinary
least squares (OLS) estimators, but they do make OLS inefficient. When the
variance of the response is a function of the mean E(y), using a variance-
stabilizing transformation resolves this difficulty by changing the model to
one where OLS is appropriate. If replication is sufficient to estimate precisely
the error variance for each run, then weighted least squares may be applied,
weighting by the reciprocal of the estimated variances (see Section 14.4). This
standard modification to least squares is discussed in most linear regression
books. Its use is unnecessary when the unexplained variation is negligible.
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2.10 The Impact of Missing Treatment Combinations

When all 2k treatment combinations have at least one observation, one can
fit the full factorial model (1.4) or any reduced model. In such cases, unequal
replication results in correlated estimates of the coefficients but does not alter
which models can be fit. Suppose instead that there are m > 0 factorial treat-
ment combinations with no data. Then one must omit at least m coefficients
from the full factorial model. Because the likelihood of missing treatment
combinations is greatest for unreplicated 2k factorials, we focus on that case.

Our approach to analyzing 2k factorials with missing observations will be
first to fit a saturated hierarchical model. If only one observation is missing,
the saturated model is the full factorial model with the k-factor interaction
omitted. If two or more observations are missing, there are several options.
The details will be shown later.

For this section we use the following notation: N = 2k is the intended
number of runs, of which m are missing, and r is the number of columns for
the model matrix X. If r = N − m, the model is saturated.

2.10.1 One missing treatment combination

If any single observation is lost from an unreplicated 2k factorial, (X′X)−1 has
a simple structure. Diagonal elements equal (N − r + 1)/[N(N − r)] and off-
diagonal elements equal ±1/[N(N −r)]. For the saturated model (r = N −1),
this implies that Var(bi) = 2σ2/N , double what it would have been for the
complete 2k, and all estimates are correlated with a correlation of ±.5. If
fewer terms are included in the model, these correlations ±1/(N − r + 1)
decrease in magnitude and the variances are reduced. Even then, the loss
of orthogonality has a much greater impact on the analysis than does the
reduction of the sample size.

Draper and Stoneman (1964) present the following example. The full data
appear in the Figure 2.17 cube plot, and a half-normal plot of effects is shown
in Figure 2.18a. No simple model will account for these data, primarily due
to the observation y = 44. Upon investigation, it was learned that at the high
level for all three factors, “the experimental material changed its form.” If this
observation is treated as missing in the analysis, the two-factor interaction
model can be estimated. Under this saturated model, the predicted value for
the (+1, +1, +1) treatment combination is ŷ = 28, 16 less than 44.

The half-normal plot in Figure 2.18b of the six (correlated) coefficients
indicates no effect for x3. The reduced model

ŷ = 12.75 + 7.25x1 − 0.75x2 + 2.75x1 ∗ x2

fits the data very well, except near the high level for all factors.
Contrast the two half-normal plots in Figure 2.18. In the second plot, the

clump of estimates near zero for the model fitting only the seven treatment
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Fig. 2.17. Draper and Stoneman 23

combinations indicates that a model with only a few terms will fit very well.
In contrast, fitting a model to all eight observations produces a clump of
estimates in the range 2–3. Daniel (1959) observed that a single outlier with
large error E would affect all the estimated coefficients by ±E/N , pushing a
majority of estimates for negligible effects away from zero. Thus, half-normal
plots like those in Figures 2.18a and 2.18b are indicative of a simple model
accounting for all but one of the observed y values.

Note that the fitted model corresponding to Figure 18b assumes that the
three-factor interaction coefficient is zero. If this assumption were not correct,
then all the regression coefficients would be biased by ±β1·2·3. In general, with
one observation missing, the bias for each coefficient from assuming away the
highest-order interaction is ±β1·2...k/(N−r). Thus, a clump of estimates close
to zero (as in Figure 2.18b) adds credence to the assumption that the highest
order interaction is zero.

2.10.2 Two or more missing treatment combinations

To fit a hierarchical model with m > 1 missing observations, there may be
several hierarchical saturated models that can be estimated from the data.
Using software to fit a model with all terms except the highest-order interac-
tion will result in m − 1 linear dependencies. Use these “singularity details,”
as they are labeled in some software, to determine which choices one has for
removing m−1 additional terms. For each possible saturated model, view the
half-normal plot for (correlated) estimated effects. Finding a clump of esti-
mates close to zero is consistent with the assumption that the omitted effects
are negligible and that a further simplification of the model is possible. We
now illustrate such an analysis for Daniel’s drill data (Figure 2.6) by omitting
the observed values with the two lowest advance rates (1.68 and 1.98) and the
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highest advance rate (16.3). Fitting a model with r = 15 to the N − m = 13
observations produces the following singularities:

Intercept = xFlow ∗ xSpeed ∗ xMud + · · ·
= −xLoad ∗ xFlow ∗ xSpeed − xLoad ∗ xFlow ∗ xMud − xLoad ∗ xSpeed ∗ xMud + · · ·
(which we have simplified by skipping main effects and two-factor interac-
tions). There is no choice regarding the xFlow ∗xSpeed ∗xMud interaction; since
we have no data at the (−1, −1, −1) combinations for these factors, this term
must be omitted. However, because the second singularity involves the other 3
three-factor interactions, this linear dependency may be removed by omitting
any one of these interactions. So there are three possible hierarchical models
with r = 13 that we may estimate (see Table 2.11). Each one results in a
model with three significant main effects and bLoad never stands out above
the clump of estimates near zero.

Table 2.11. Coefficients for three saturated models for ln(y), treating three
observations from Daniel’s drill data as “missing”

Term Model 1 Model 2 Model 3 Std Error
Intercept 1.535 1.535 1.556 σ/41/2

Load 0.038 0.039 0.060 σ/81/2

Flow 0.307 0.307 0.307 σ/81/2

Speed 0.594 0.594 0.594 σ/81/2

Mud 0.181 0.181 0.181 σ/81/2

Load*Flow −0.036 −0.036 −0.036 σ/81/2

Load*Speed −0.014 −0.014 −0.014 σ/81/2

Load*Mud 0.014 0.014 0.014 σ/81/2

Flow*Speed −0.088 −0.088 −0.067 σ/41/2

Flow*Mud −0.071 −0.070 −0.049 σ/41/2

Speed*Mud −0.014 −0.014 0.007 σ/41/2

Load*Flow*Speed −0.021 −0.021 σ/81/2

Load*Flow*Mud −0.001 0.021 σ/81/2

Load*Speed*Mud 0.001 0.021 σ/81/2

Flow*Speed*Mud
Load*Flow*Speed*Mud

To test for statistical significance requires a modification to Lenth’s pro-
cedure, since the estimates are correlated. For details, see Edwards and Mee
(2008). The success of finding three significant main effects for this example
should not diminish the serious loss of information here. If all 16 observations
are available, the standard errors are σ/(16)1/2. The loss of three observations
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doubles the standard error for three estimated two-factor interactions in the
saturated model, causing a severe loss of power for detecting these effects.

Because of the correlations that result when we fit a saturated model to a
factorial with missing observations, it is important to estimate the coefficients
using a reduced model. Here, the fitted reduced model is

̂ln(y) = 1.583 + 0.279xFlow + 0.566xSpeed + 0.152xMud. (2.14)

[Compare with (2.11).] The advantage of the estimates in (2.14) is that their
standard errors are σ/(11)1/2, smaller than the standard errors in Table 2.11.
However, this benefit comes at a risk of bias to the estimated coefficients, if
in fact omitted terms are active.

Because a saturated model can have highly inflated standard errors when
treatment combinations are missing, a further step to model selection is to
use some form of forward selection regression, adding interaction terms to
a main effects model. For our example, fitting models with only one of the
two-factor interactions with the large standard errors in Table 2.11 eliminates
the largest correlations and enables one to better assess the presence of these
terms. Here, no additional useful terms are found.

A final comment is in order. Because the loss of observations is so detri-
mental to an unreplicated 2k factorial, such a design is not recommended
unless the experimentation and measurement processes are very dependable.
If such a design is run and several observations are lost, one may consider
a subsequent set of runs to repair the original design. In such cases, it is
advisable to run not only the missing observations but also some duplicate
treatment combinations that were satisfactory, to account for a possible shift
in the process since the initial 2k was attempted (see Section 9.6).



3

Common Randomization Restrictions

The examples presented in Chapters 1 and 2 were either unreplicated full
factorial designs with random assignment of treatment combinations to runs
or they were replicated experiments obtained without any restriction to run
order. Some experiments are too large to be run effectively in this manner.
Hence, they are divided into several smaller experiments, commonly called
blocks. Having some difficult-to-change factors is a second reason for restrict-
ing the assigned order for treatment combinations. In such cases, the assign-
ment is restricted to make the experiment more convenient to conduct. This
chapter presents the details of how to construct such designs, and how to
analyze the resulting data. The sections are as follows:

Section 3.1. Sources of Variation and a Design’s Unit Structure

Section 3.2. Treatment*Unit Interactions

Section 3.3. Blocking: Partitioning a Factorial into Smaller Experiments

Section 3.4. Analyzing Randomized Block Factorial Designs

Section 3.5. Split-Unit Designs

Section 3.6. Analyzing Split-Unit Designs

Section 3.7. Multiway Blocking

3.1 Sources of Variation and a Design’s Unit Structure

Before a physical experiment is conducted, one should consider not only the
factors to be studied but also the likely sources of extraneous variation. The
more that one understands the sources of variation and their magnitude, the
more efficient an experiment may be planned. There are four basic approaches
for dealing with extraneous variation:
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1. Eliminate sources of variation by holding them constant. For in-
stance, an entire experiment might be performed using a single homoge-
neous batch of raw material. Doing so eliminates batch-to-batch variation
from the experiment. In other situations, we exercise more careful control
to reduce the variation of process inputs such as temperature. Although
not entirely eliminating a source of variation, reducing it achieves the
primary benefit.

2. Isolate sources of variation by partitioning the experiment into
smaller sets of runs performed under homogeneous conditions.
For instance, if the full factorial experiment will require several batches of
raw material, we may systematically partition the treatment combinations
into subsets and utilize one batch per subset. This chapter will describe
how best to partition the treatment combinations of a 2k factorial. The
subsequent analysis will isolate any between-batch variation so that the
error variance consists of the smaller, within-batch variation.

3. Measure the sources of variation and incorporate these in the
data analysis. Suppose that each run of an experiment requires a com-
plete raw material batch. In this situation, we cannot eliminate batch-to-
batch variation or isolate it. However, if we measure batch characteristics
that impact the response variable, then the variation that batch differences
produce in the response may be accounted for in the data analysis. This
is done using (analysis of covariance) regression models that incorporate
our supplementary measurements as explanatory variables. For details,
see Silknitter, Wisnowski, and Montgomery (1999).

4. Use sufficient replication to overwhelm the unexplained varia-
tion. The larger the extraneous variation, the more replications are re-
quired to make any systematic factor effects evident. So if the options for
controlling, isolating, or explaining extraneous variation are not practical,
increasing the amount of replication can achieve the desired precision.

Experiments discussed in Chapters 1 and 2 were based on Approach 1 or
4; that is, either recognized sources of variation were controlled or the replica-
tion was sufficient to average away the background variation. In either case,
nothing is known about the error associated with individual runs. Some might
think Approach 1 is the ideal, since by eliminating sources of variation, small
experiments will reveal systematic differences resulting from the treatment
combinations. However, the potential downside for such experiments is that
the results may have limited validity. If a single batch of raw material is used,
we will not know from the data how similar the factor effects will be for other
batches. Sir Ronald Fisher articulated this potential disadvantage:

The exact standardization of experimental conditions, which is often
thoughtlessly advocated as a panacea, always carries with it the real
disadvantage that a highly standardized experiment supplies direct
information only in respect of the narrow range of conditions achieved
by standardization. (Fisher 1950)
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Thus, although Approach 1 is successful for identifying factor effects by
maintaining a small error variance, it is poorly suited for generalizing those
results. Approach 2 is intended to achieve the high precision without the
disadvantage related to high uniformity. Consider again the example of an
experiment that utilizes batches of a raw material. Using several batches over
the course of the experiment avoids the limitation cited above by Fisher. The
design technique of orthogonal blocking described in this chapter enables the
experimenter to make the variation from different batches separable from the
differences due to main effects and most interactions. Other advantages of
blocking include the following:

• Blocking enables increasing the size of an experiment without increasing
the (unexplained) error variation.

• A blocked design is better in situations in which extenuating circumstances
produce a series of failed runs. When such problems are confined to a single
block, the simplest remedy is often to discard data for that block and (if
necessary) repeat that entire block of treatment combinations.

• For industrial experiments, a sequence of smaller experiments may be more
manageable that one very large design. For example, access to a production
line for experimentation may be limited to brief time periods between
scheduled production periods.

Sources of variation that may serve as blocking factors include the following:

• material: batches of raw material
• equipment: multiple machines that perform the same function
• people: different operators
• location: different environments
• time-related: different shifts or days

The purpose of a typical experiment is not to study blocking factors. Thus,
we may control several of these sources of variation simultaneously. If we
conduct an experiment over several days, we would commonly declare each
day (or even smaller time period) as a block. Within each block we would
plan to avoid changes of batches, operators, etc., and such changes would be
allowed or even encouraged between blocks.

To speak further about block designs, we introduce the term experimen-
tal unit. In general, an experimental unit refers to the entity to which the
treatment combinations are assigned and to the entity being measured. For
an agricultural field experiment, the experimental unit is typically a plot of
ground. Each treatment combination represents a set of conditions applied to
a plot, and each response value is the measured outcome that results from a
particular experimental unit and its assigned treatment combination. For ex-
periments involving factors applied to people, individuals or groups of people
become the experimental unit. For a manufacturing process, the experimental
unit refers both to what is produced (and subsequently measured) and to the



78 3 Common Randomization Restrictions

material that was utilized to make the item. For Huhtamaki’s experiments
described in Chapter 1, the experimental unit is the carton.

As mentioned earlier, each y value we obtain reflects the influence of the
experimental unit and its assigned treatment combination. If the same treat-
ment combination were applied to every experimental unit in an experiment,
all the observed variation would be attributable to differences in the experi-
mental units, plus random measurement error. (In agriculture, such variability
studies are called uniformity trials.) Any prior understanding about differences
in the experimental units can be used to design a more efficient factorial ex-
periment. For instance, if one process step involves use of a kiln or furnace,
knowing about the inherent variation assignable to different locations within
the kiln could be used to design an experiment with regions having homoge-
neous conditions as blocks. Always we seek to minimize the variation within
blocks, but we allow or even promote differences between blocks.

For the experiments in Chapters 1 and 2, nothing was discussed about unit
variation. That is because important sources of extraneous variation recog-
nized in advance are held fixed throughout the experiment for a completely
randomized design, and one does not utilize any knowledge about the remain-
ing underlying variation in the units to create the design. In contrast, designs
with blocking are arranged by grouping experimental units into homogeneous
subsets. Thus, understanding unit-to-unit variation plays a more prominent
role for randomized block designs and the closely related split-unit designs.
For further reading, Bisgaard (1994) provides a very nice discussion about the
usefulness of blocking for two-level factorial designs. See Cox and Reid (2000,
Chapters 3-4) for a more general discussion about blocking.

3.2 Treatment*Unit Interactions

Every observed y reflects the influence of its treatment combination and its
experimental unit. A common assumption is that these effects are additive;
for example, that

y = unit value + treatment effect + measurement error.

When this additivity assumption holds, the true factor effects do not depend
on which experimental units are included in the experiment.

Often a replicated factorial experiment is conducted in blocks such that
each block is a single 2k. This is called a complete block design, because each
block has the complete set of treatment combinations. Since it is possible to
estimate all of the factorial effects from each block, a complete block design
makes it easy to check for consistency of factorial effects across the differ-
ent blocks. Sanders, Leitnaker, and McLean (2001) described the benefits of
checking for consistency of factorial effects from one block to the next. Rather
than simply assuming that block and treatment effects are additive, we pre-
fer to verify that this is the case by either fitting a model for each block
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separately or analyzing the data together utilizing an initial full model with
Block*Factor interactions. When the differences between the blocks are very
large, the likelihood for Block*Factor interactions is greater. The next section
describes the use of incomplete blocks; that is, blocks where only a subset of
the treatment combinations appear in each block. Leitnaker and Mee (2001)
explain how to inspect for block-by-factor interactions in such cases.

3.3 Blocking: Partitioning a Factorial into Smaller
Experiments

This section addresses situations in which 2k treatment combinations of a full
factorial design are divided into subsets, and the subsets are performed as sep-
arate experiments. Although these subsets could be of many sizes, attractive
statistical properties are achieved if the subsets are of equal size. Suppose we
divide the 2k treatment combinations into 2b subsets of size 2k−b. For instance,
if k = 5 and b = 2, then we have 2b = 4 subsets of size 2k−b = 8. Rather
than randomly allocating the 32 treatment combinations into 4 subsets, the
treatment combinations are split into subsets systematically using carefully
chosen interaction columns. Consider the following example.

3.3.1 Example 3.1 constructed: A 25 factorial with four blocks

We illustrate running a factorial design in blocks using the five-factor ex-
periment of Hoàng et al. (2004). This experiment was conducted to identify
interaction effects for different additives in linear low-density polyethylene
(LLDPE) film. Here we introduce how the experiment was conducted, and
later, in Section 3.4, we analyze the data. Table 3.1 identifies the five addi-
tives by type. Note that the factors are labeled with uppercase letters rather
than as x1, x2, .... Using letters avoids the need for subscripts and will later
provide a means of compactly labeling the treatment combinations.

Table 3.1. Factors and levels for Hoàng et al. (2004) 25 design

Levels
Factors −1 1
A Antioxidant A (ppm) 0 400
B Antioxidant B (ppm) 0 1000
C Acid scavenger (ppm) 0 1000
D Antiblock agent (ppm) 0 2000
E Slip additive (ppm) 0 800

The full 25 experiment would have taken at least 3 days to complete.
Thus, as a precaution, it was decided to divide the full experiment into four
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subsets. Table 3.2 lists the 32 treatment combinations in the order they were
performed. Rather than randomizing the run order from 1 to 32, the design
was constructed as follows. The ADE and ABC interaction columns were
used to partition the treatment combinations into four subsets. Note that each
of these columns is the product of three factors; for example, ABC denotes the
product A×B×C. ADE alone splits the 32 treatment combinations into 2 sets
of 16, while ADE and ABC together split the treatment combinations into 4
sets of 8. Why these two interactions were used will be discussed momentarily.
Once the full design is split into subsets, the order of the blocks, as well as
the order of the runs within each subset or block, is randomized.

What are the benefits of restricting the run order in this manner? First,
suppose the experiment requires four days to complete and that day-to-day
differences cause the response to be systematically higher or lower some days.
With four different days, there are three degrees of freedom for “Between
Days.” ADE and ABC represent two of these degrees of freedom. The third
is the “generalized interaction” of these two:

ADE × ABC = A2BCDE = BCDE

(since A2, or any column squared, becomes a column of 1’s). Thus, if the ABC
and ADE columns are constant (+1 or −1) within a day, then so is BCDE.
Hence, the interaction contrasts ABC, ADE, and BCDE together capture all
of the day-to-day differences. Any day-to-day differences that might arise will
bias our estimates for these three interactions but not the other effects. We say
that the interactions ABC, ADE, and BCDE are confounded with blocks.
This means that any effect due to blocks is mixed up with these interaction
effects, and we cannot separate them.

The confounding of three interactions with blocks ensures that the main
effects and other interaction contrasts are all orthogonal to blocks. For in-
stance, note that for each block in Table 3.2, there are four +1’s and four
−1’s for each factor. This is true not only for the five main effects but also for
all interactions except for ABC, ADE, and BCDE. Thus, by arranging the
treatment combinations in this manner, we sacrifice information about three
higher-order interactions while shielding the remaining 31 − 3 = 28 estimates
from day-to-day differences. Since the shortest interaction confounded with
blocks involves three factors, we say that this blocking scheme has estimabil-
ity of 2. Sun, Wu, and Chen (1997) defined a block design to have estimability
e if all factorial effects up to order e are estimable, clear of block effects, but
one or more interactions of length e + 1 is confounded with blocks. For a 25

in four blocks, the maximum estimability is 2.
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Table 3.2. Hoàng et al. (2004) 25 design in four blocks

Block A B C D E ADE ABC
1 −1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 1 1 −1 −1
1 1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1 −1
1 1 −1 1 1 −1 −1 −1
2 −1 −1 1 1 1 −1 1
2 1 −1 −1 −1 1 −1 1
2 1 −1 −1 1 −1 −1 1
2 −1 1 −1 −1 −1 −1 1
2 −1 −1 1 −1 −1 −1 1
2 1 1 1 −1 1 −1 1
2 1 1 1 1 −1 −1 1
2 −1 1 −1 1 1 −1 1
3 −1 −1 −1 1 −1 1 −1
3 1 1 −1 −1 −1 1 −1
3 1 −1 1 −1 −1 1 −1
3 1 −1 1 1 1 1 −1
3 1 1 −1 1 1 1 −1
3 −1 1 1 1 −1 1 −1
3 −1 −1 −1 −1 1 1 −1
3 −1 1 1 −1 1 1 −1
4 −1 −1 1 −1 1 1 1
4 1 −1 −1 −1 −1 1 1
4 1 −1 −1 1 1 1 1
4 −1 1 −1 −1 1 1 1
4 −1 1 −1 1 −1 1 1
4 1 1 1 1 1 1 1
4 −1 −1 1 1 −1 1 1
4 1 1 1 −1 −1 1 1

The cube plot in Figure 3.1 provides a visualization of this partitioning
of runs into blocks. If we were to randomly assign the numbers 1–4 to the 32
treatment combinations, the results would not be as balanced as we see here.
Each block of eight runs is uniformly spread over the experimental region. For
any pair of factors, each block produces a replicated 22. This is guaranteed
here because the estimability is 2; that is, no main effect or two-factor interac-
tion is confounded with blocks. If we were to randomly assign the treatment
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combinations to blocks, most factorial effect contrasts would be correlated
with block-to-block differences and the analysis would be difficult.
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Fig. 3.1. Block number for treatment combinations in Hoàng et al.’s 25

3.3.2 General recipe for partitioning a 2k into 2b blocks

The case of two blocks is simplest. For a full factorial, one should create
two blocks using the highest-order interaction to make the estimability e =
k − 1. All main effects and interactions besides the k-factor interaction are
orthogonal to blocks. This is equivalent to separating the runs with an even
number of factors at the high level from those with an odd number of factors
at the high level. Consider the case of a 24 factorial, displayed in Table 3.3.
The eight treatment combinations with zero, two, or four factors at the high
level form the even block, and the eight treatment combinations with either
one or three factors at the high level form the odd block. Here treatment
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combinations are denoted by strings of lowercase letters, where the presence
(absence) of a letter indicates that factor is at the high (low) level. Yates (1935)
introduced this notation. The treatment combination with all factors low is
denoted by (1). As a brief aside, the block with this treatment combination is
called the principal block, and its elements satisfy the mathematical properties
of a subgroup; that is, the product of any two treatment combinations in this
block is also in this block. For more detail, see John (1998, p. 136).

Table 3.3. 24 in two blocks

Even Block A B C D Odd Block
(1) −1 −1 −1 −1

1 −1 −1 −1 a
−1 1 −1 −1 b

ab 1 1 −1 −1
−1 −1 1 −1 c

ac 1 −1 1 −1
bc −1 1 1 −1

1 1 1 −1 abc
−1 −1 −1 1 d

ad 1 −1 −1 1
bd −1 1 −1 1

1 1 −1 1 abd
cd −1 −1 1 1

1 −1 1 1 acd
−1 1 1 1 bcd

abcd 1 1 1 1

The case of four blocks is nearly as simple. To minimize the number of
lower-order interactions that are confounded with blocks, each factor must
appear in two of the three interactions confounded with blocks. Thus, on
average, these interactions are 2k/3 long. If k is a multiple of three, then the
three interactions confounded with blocks can be of equal length. Otherwise,
there must be one interaction of odd length and two interactions of even length
closest to 2k/3. For instance, for k = 3, . . . , 9, the three confounded effects
can be as follows:

• Three factors: AB, AC, BC
• Four factors: ABC, ABD, CD
• Five factors: ABC, ADE, BCDE
• Six factors: ABCE, ABDF, CDEF
• Seven factors: ABCDF, ABCEG, DEFG
• Eight factors: ABCDG, ABEFH, CDEFGH
• Nine factors: ABCDEH, ABCFGJ, DEFGHJ
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There is one other case that permits a general solution, the case for blocks
of size 2 (i.e., b = k − 1). By confounding all even-length interactions with
blocks, all main effects and odd-length interactions are orthogonal to blocks,
and so we have estimability of 1. The case of 23 in four blocks illustrates this
choice for blocking. The eight treatment combinations are grouped into four
blocks as follows:

AB = -1 AB = 1 

AC = -1 a bc c ab 

AC =  1 b ac (1) abc 

Note that each pair of treatment combinations forming a block has one high
level and one low level for each factor. This makes each main effect contrast
orthogonal to blocks, no matter the number of factors. For instance, for four
factors, the blocking is given in Table 3.4, where seven interactions are con-
founded with blocks: AB, AC, BC, AD, BD, CD, and ABCD.

Table 3.4. 24 in eight blocks

Block A B C D t.c.∗

1 –1 –1 –1 –1 (1)
1 1 1 1 abcd

2 1 –1 –1 –1 a
–1 1 1 1 bcd

3 –1 1 –1 –1 b
1 –1 1 1 acd

4 1 1 –1 –1 ab
–1 –1 1 1 cd

5 –1 –1 1 –1 c
1 1 –1 1 abd

6 1 –1 1 –1 ac
–1 1 –1 1 bd

7 –1 1 1 –1 bc
1 –1 –1 1 ad

8 1 1 1 –1 abc
–1 –1 –1 1 d

∗t.c. = treatment combination

Thus, for either two or four blocks, or for blocks of size 2, it is straightfor-
ward to construct orthogonal blocks that maximize the order of estimability
e and confound with blocks the minimum number of interactions of length
e+1. For other cases (i.e., for 3 ≤ b ≤ k−2), there is no general characteriza-
tion of the confounded effects for optimal blocking. We know that the 2b − 1
confounded interactions should contain each factor 2b−1 times, but the best
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choice of interactions must be found by computer search. Sun, Wu, and Chen
(1997) found the best blocking schemes for up to k = 8 factors. Appendix E
presents these optimal designs, or their equivalent.

In practice, the maximum block size is often limited by the physical con-
straints under which the experiment is run. For instance, if the experiment
must be conducted over several days, with large day-to-day variation possible,
then the block size should not exceed the number of runs that can be per-
formed in a day. Suppose further that several batches of raw material are used
each day. Then several batches of raw material may be blended in order to
perform all of the runs each day under homogeneous conditions. If this is not
feasible, then smaller blocks may be chosen corresponding to the number of
runs that can be completed from a single batch; in this case, experimentation
each day would consist of several blocks. Thus, although physical constraints
influence the number of runs that can be accomplished under uniform condi-
tions, some choice of block size often remains. We illustrate the practical use
of Appendix E for such an example.

Suppose we have five factors and wish to conduct an experiment in small
blocks, with size yet to be determined. The full array of orthogonal blocking
choices are as follows:

• Two blocks of size 16: e = 4
• Four blocks of size 8: e = 2
• Eight blocks of size 4: e = 1
• Sixteen blocks of size 2: e = 1

If we are interested in most two-factor interactions, blocks of size 2 would
not be considered further (unless the variation in larger blocks is excessive
and it is feasible to perform several replicates of the 25). For blocks of size 4,
only two two-factor interactions, BD and CE, are confounded with blocks,
and the remaining eight two-factor interaction contrasts are orthogonal to
blocks. If, in advance, we suspect that there are two interactions (involving
different factors) that we do not suspect as being active, we might opt for an
eight-block design, assigning factors to the letters A–E so that BD and CE
correspond to interactions deemed unlikely. Of course, if blocks of size 8 could
be performed with the same within-block consistency as blocks of size 4, then
one could use four blocks of size 8 and have a design with estimability 2.

If experimental units within the same block are very similar, so that the
error variation within blocks is small, then blocking increases the efficiency of
estimates for effects orthogonal to blocks. Generally, the smaller the block size,
the smaller the error variance. However, the smaller the block, the more effects
are confounded with blocks, so this improvement of efficiency for some esti-
mates comes at the loss of information for other interactions. In the extreme,
we have blocks of size 2 created by confounding all two-factor interactions
(and other even length interactions) with blocks.

When the block sizes are very small, it is common to perform more than
one replicate of the 2k in order to gain some information about additional
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effects. There are two means of doing this. One is to change the confounding
scheme from replicate to replicate, so that no interaction of possible interest is
confounded with blocks in every replicate. Such blocking is named partial con-
founding. Yates’s (1937) partial confounding example is analyzed in Section
3.4.3. Quenouille and John (1971) presented replicated designs with partial
confounding for blocks of size 2 for up to eight factors. Yang and Draper (2003)
considered every partial confounding option for blocks of size 2 for k = 2, 3, 4,
or 5 factors and several replicates. See also Butler (2006) for optimal partial
confounding for blocks of size 2 and 4. Kerr (2006) discussed how microarray
applications may call for 2k factorial designs in blocks of size 2.

The alternative approach is to keep the confounding the same from repli-
cate to replicate but to estimate interactions confounded with blocks using
interblock information. Section 3.4.4’s example by Sheesley (1985) illustrates
such a design and analysis.

On rare occasions, a choice other than orthogonal blocking should be con-
sidered. The most likely situation is when blocks of size 3 make practical sense
but size 4 is not possible, or blocks of size 6 is possible, but size 8 is not. In
these cases, use of nonorthogonal blocks of size 3 (6) will likely provide more
information than having orthogonal blocks of size 2 (or 4). Optimal design
algorithms may be used for constructing such irregular-sized blocks (see, e.g.,
Cook and Nachtsheim 1989, Nguyen 2001). See Section 11.4 for analysis of
such a design.

Finally, we consider the use of centerpoint replicates for 2k designs run
in blocks. The common approach is to place the same number of centerpoint
replicates in each block. This was done by Hoàng et al. (2004), who added one
centerpoint run to each block, producing blocks of size 9; see Table 3.5. This
maintains the orthogonality. However, since their four centerpoint replicates
appear in different blocks, no pure error estimate of the within block variance
is available. To achieve such an estimate, one would need multiple centerpoint
runs in some blocks.

3.4 Analyzing Randomized Block Factorial Designs

We now illustrate the analysis of four factorial experiments that were each
conducted as randomized block designs, with blocking determined by con-
founding interaction effects. The first example is from Hoàng et al. (2004),
where the block effects appear negligible. The second example is from Davies
(1954), for which block effects are substantial. The third example illustrates
partial confounding, since a different interaction is confounded with blocks in
each replicate. The fourth example, taken from Sheesley (1985), illustrates an
analysis that uses between-block information to estimate an interaction con-
founded with blocks in each replicate. Figure 3.2 provides a general summary
of these examples.
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Example Treatment 

combinations 

No. of 

replicates

No. of 

blocks

Block

size

Interactions confounded 

with blocks 

3.1 2
5

1 4 8 ABC, ADE, BCDE

3.2 2
3
 2 4 4 ABC in each replicate

3.3 2
3
 4 8 4 Different interaction in 

each replicate 

3.4 2
2
 4 8 2 AB in each replicate

Fig. 3.2. List of randomized incomplete block examples

3.4.1 Example 3.1 analyzed: Randomized block experiment with
negligible block effects

The run order and response data for Hoàng et al’s (2004) 25 in four blocks,
each with one centerpoint run, appear in Table 3.5. Each block is a separate
day, and the nine runs were performed sequentially. The responses are two
stability measures (melt flow rate after the first and third extruder passes;
S1 and S3, respectively), a yellowness index after the third pass (Y I), and a
measure of long-term oxidation at 100oC (T ); specifically, T is the number of
hours until a carbonyl index reaches a specified level. We analyze the stability
measure S3.

1

2

3

4

5

6

7

S
3

Block 1 Block 2 Block 3 Block 4

Fig. 3.3. S3 versus blocks for Hoàng et al.’s 25
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Table 3.5. Hoàng et al. (2004) 25 design in four blocks

Block A B C D E S1 S3 Y I T
1 −1 1 1 1 1 1.02 2.90 −12.8 365
1 −1 −1 −1 −1 −1 0.67 1.80 −13.4 240
1 −1 −1 −1 1 1 0.37 2.29 −11.9 265
1 1 1 −1 −1 1 1.28 6.30 −13.0 1900
1 1 −1 1 −1 1 0.91 4.49 −11.5 1780
1 −1 1 1 −1 −1 0.79 2.20 . 365
1 1 1 −1 1 −1 1.29 6.07 −12.3 1310
1 1 −1 1 1 −1 0.49 3.78 −6.2 1220
1 0 0 0 0 0 1.06 4.29 -11.1 920
2 −1 −1 1 1 1 0.70 2.30 −14.2 335
2 1 −1 −1 −1 1 1.06 4.59 −10.5 1480
2 1 −1 −1 1 −1 0.95 3.69 −12.0 1305
2 −1 1 −1 −1 −1 0.68 2.50 −11.9 310
2 0 0 0 0 0 1.05 4.30 -10.2 1020
2 −1 −1 1 −1 −1 0.39 1.59 −9.6 290
2 1 1 1 −1 1 1.25 6.47 −8.8 1740
2 1 1 1 1 −1 1.30 6.08 −7.2 1290
2 −1 1 −1 1 1 1.00 3.09 −12.7 330
3 −1 −1 −1 1 −1 0.37 1.69 −12.2 275
3 1 1 −1 −1 −1 1.28 6.20 −9.0 1830
3 1 −1 1 −1 −1 0.90 3.70 −7.5 1615
3 1 −1 1 1 1 1.14 4.30 −8.2 1130
3 1 1 −1 1 1 1.29 6.30 −11.3 1380
3 −1 1 1 1 −1 0.47 2.39 −13.7 345
3 −1 −1 −1 −1 1 0.45 2.19 −14.1 400
3 −1 1 1 −1 1 0.96 3.20 −16.0 410
3 0 0 0 0 0 1.04 3.99 -9.5 900
4 −1 −1 1 −1 1 0.67 2.49 −15.2 310
4 1 −1 −1 −1 −1 1.19 4.19 −7.3 1640
4 1 −1 −1 1 1 0.84 4.18 −7.3 1400
4 −1 1 −1 −1 1 0.61 2.59 −13.5 275
4 −1 1 −1 1 −1 0.86 2.39 −15.5 335
4 1 1 1 1 1 1.29 6.40 −8.7 1515
4 0 0 0 0 0 1.10 4.41 -10.5 810
4 −1 −1 1 1 −1 0.46 1.85 −15.2 300
4 1 1 1 −1 −1 1.22 6.28 −8.4 1800

This design is a single replicate of a 25 factorial, with four centerpoint
replicates. Figure 3.3 plots the S3 data by block, using asterisks to mark
the center runs. For this response there is little or no difference due to blocks.
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Additionally, some curvature may be present, since the center runs are slightly
above average.

It is simplest to analyze the data first, ignoring the blocking and without
the centerpoint runs. Thus, we fit a saturated model to the 25 and examine
a normal plot of the 31 orthogonal estimates; see Figure 3.4. Lenth’s PSE =
0.0375, and the four effects with prominently large estimates form a hierar-
chical model and have Lenth t statistics ranging from 6.4 to 38.0. The next
largest Lenth t statistic is −1.77 (for CDE). Thus, the choice of a reduced
model with three main effects and one interaction is obvious. The three inter-
action contrasts confounded with blocks (ABC, ADE, and BCDE) all have
t statistics of .73 or less, so there is no evidence that the blocks differ from
one another for this response. While there could have been differences from
one day (block) to the next, no effect on S3 is apparent. The simple reduced
model, ignoring blocks,

Ŝ3 = 3.765 + 1.424A + 0.695B + 0.379AB + 0.240E (3.1)

explains R2 = 99% of the variation, and the residual plot shows no outliers.
This reduced model has a mean square error of 0.0321 and standard errors
for the estimated coefficients of (0.0321/32)1/2 = 0.032, only slightly smaller
than Lenth’s PSE.
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Fig. 3.4. Half-normal plot of effects from saturated model for S3 from 25
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Now we must consider the evidence for curvature due to the centerpoint
replicates. The centerpoint values for S3 from blocks 1–4 were 4.29, 4.30, 3.99,
and 4.41, all greater than the intercept in (3.1). With only one centerpoint
run per block we have no pure error degrees of freedom. In this case, the best
check for curvature is to add a quadratic term to our model. If we refit the
model (3.1) to all 36 observations and include 1 quadratic term (e.g., A2), its
estimated coefficient is −0.48 and its t statistic is −0.48/0.097 = −5.08, which
is clearly significant. Note that this coefficient has a different standard error
than the factorial effects. We conclude that the surface bows upward slightly
and that the fitted model (3.1) will underestimate S3 in the center of the
region. However, the pure quadratic term only explains 1% of the variation in
S3. Thus, the linear effects of A and B dominate.

3.4.2 Example 3.2: Analysis of a randomized block experiment
with large block effects

The previous example is not necessarily typical, since block effects can be
very prominent. Davies (1954, pp. 372ff) presented a replicated 23 factorial
experiment in four blocks of size 4, where block effects cannot be ignored. The
experiment involved taking a batch of raw material and adding ammonium
chloride. The chemical plant had two units for processing the conversion to
produce the desired organic chemical. The output of these units was sampled
and measured in a lab, bypassing the subsequent refining steps since there the
identification of separate batches is impossible. The raw material is produced
in batches large enough for two runs in one unit or one run in each unit.
Because batch-to-batch variation is substantial, it was decided to block on
batches. However, rather than using blocks of size 2, they decided to combine
and blend two batches of raw material into a single homogeneous lot. Thus,
each lot becomes a block of size 4. The primary factor of interest was the
coarseness of the ammonium chloride. A coarse grind is used at present, but
a finer grind would be worth the extra effort if it produced more than a 2.5%
increase in yield. In addition to quality of ammonium chloride, the amount
was varied by comparing the current level with a 10% increase. Factor levels
are shown in Table 3.6.

Table 3.6. Factors and levels for chemical experiment

Levels
Factors −1 1
A Amount of NH4Cl Normal +10%
B Quality of NH4Cl Course Fine
C Processing unit 1 2
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The results of the experiment are reported in Table 3.7, with the response
being yield in pounds, followed by a graph of Yield versus Lot. Lot-to-lot
variation accounts for 59% of the total variation in yield (see Figure 3.5).

Table 3.7. Treatment combinations and Yield for chemical experiment

Lot A B C Yield
1 –1 –1 –1 155
1 1 –1 1 152
1 –1 1 1 150
1 1 1 –1 157
2 –1 1 –1 162
2 –1 –1 1 156
2 1 1 1 161
2 1 –1 –1 168
3 –1 –1 1 161
3 1 1 1 173
3 –1 1 –1 171
3 1 –1 –1 175
4 1 1 –1 171
4 1 –1 1 162
4 –1 1 1 153
4 –1 –1 –1 164
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Fig. 3.5. Yield versus Lot for replicated 23
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Since the three-factor interaction is confounded with lots, we fit the two-
factor interaction model (1.3) augmented with a Lot (block) main effect. The
resulting analysis of variance appears in Table 3.8.

Table 3.8. Analysis of variance for Example 3.2

Source df SS MS F -Ratio p-Value
Lot 3 546.1875 182.0625 24.62 .0009
A 1 138.0625 138.0625 18.67 .0050
B 1 1.5625 1.5625 0.21 .6620
C 1 189.0625 189.0625 25.56 .0023
AB 1 1.5625 1.5625 0.21 .6620
AC 1 5.0625 5.0625 0.68 .4397
BC 1 3.0625 3.0625 0.41 .5437
Error 6 44.3750 7.3958
Total 15 928.9375

As expected by those conducting the experiment, interactions are not im-
portant. Somewhat surprising is the fact that the quality of grind main effect
(B) is not statistically significant. The fine grind does not appear to improve
yield, but increasing the amount of ammonium chloride does. Further, unit 1
performs more efficiently than unit 2. The fitted first-order model for yield is

ŷ = 161.94 + Loti + 2.94A + 0.31B − 3.44C. (3.2)

Adding 10% ammonium chloride is estimated to increase yield by 2bA =
5.88 pounds per batch, and Unit 2 appears to yield 6.88 pounds/batch less
than Unit 1. The experimental results in Table 3.8, combined with the ex-
perimenters’ expectation of an additive model, affirms the reasonableness of
sacrificing information about the three-factor interaction due to confounding
with blocks. Additionally, the lot-to-lot variation in yield confirms the neces-
sity of blocking on lots. The error variance within blocks is estimated to be
7.4, the MSE from Table 3.8. If one fits model (3.2) with the lot effect declared
random (see Section 14.5 for details), the estimated lot-to-lot variance is 44.0.
Adding these variance components, we see that the error variance would have
been close to 50 if each run had come from a different blended material lot.
Thus, blocking greatly improved the precision of Davies’s experiment. Subse-
quent investigations should seek to learn why yield varies so much from batch
to batch.

3.4.3 Example 3.3: Analysis for a randomized block experiment
with partial confounding

Yates (1937) presented the results of a potato yield experiment involving four
factors. Because soil differences affect potato harvest, the experiment was



3.4 Analyzing Randomized Block Factorial Designs 93

performed at eight different portions of a field (blocks), with each site large
enough for only four treatment combinations. With three fertilizer factors,
each site contained only half of the 23. There are at least two options for such
an experiment. The first would be to confound ABC with blocks in each repli-
cate. Such a design provides the maximum information for all main effects and
two-factor interactions, and using the interblock analysis presented for Exam-
ple 3.4, one could even estimate the three-factor interaction ABC from the
eight block totals. However, an alternative design option was adopted. Yates
chose to change the confounded interaction from replicate to replicate (see
Figure 3.6). In replicate 1, ABC is confounded with blocks; for replicates 2–
4, ABC is orthogonal to blocks, since in these replicates a different two-factor
interaction was confounded with blocks. Thus, we may use three replicates to
estimate each interaction and all four replicates to estimate the main effects.

 Replicate I Replicate II Replicate III Replicate IV 

Treatment 

combination

Block 1 

ABC = -1 

Block 2 

ABC = 1 

Block 3

AB = 1 

Block 4

AB = -1

Block 5

AC = 1 

Block 6

AC = -1

Block 7 

BC = 1 

Block 8 

BC = -1 Mean

(1)  101   106     87   131  106.25

a   106     89   128  103  106.50

b   265   272  279    302 279.50

ab  291   306    334   272 300.75

c   312  324    323   324 320.75

ac  373    338  324    361 349.00

bc  398    407   423  445  418.25

abc   450  449   471   437  451.75

Mean 290.75 283.25  296.25  276.50  290.25  302.00  279.00  314.75 291.59

Fig. 3.6. Yates’s (1937) potato yield experiment

By fitting a model containing the nominal blocks (numbered 1–8, and
designated categorical) plus all the factorial effects, we obtain the analysis
of variance presented in Table 3.9 and the parameter estimates presented in
Table 3.10. The sum of squares in Table 3.9 do not sum to the total sum of
squares because blocks and interactions are not orthogonal to one another;
these ‘partial’ sum of squares (SS) represent the additional variation that is
explained by a term in the model if it were the last term to be included. The
estimates for interactions are similarly adjusted for differences between blocks
(and vice versa). For instance, the estimate for BC is based on data from the
first three replicates, where BC is orthogonal to blocks. From replicates I–III,
the estimates are −186/8 = −23.2, −189/8 = −23.6 and −151/8 = −18.9,
respectively, and the least squares estimate for βBC is (−186−189−151)/24 =
−21.9. Correspondingly, the standard error for each interaction coefficient
is calculated as RMSE/(24)1/2 = 3.65, rather than RMSE/(32)1/2 = 3.16.
These larger standard errors reflect the loss of information for each interaction
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due to the confounding. From Tables 3.9 and 3.10, we have no evidence of
block differences. In this case, it appears that we might have conducted the
experiment using four complete blocks of size 8 rather than eight incomplete
blocks. However, this is hindsight. The use of smaller blocks provides more
insurance against potential variation. If smaller (four plot) sites produces more
homogeneous conditions than is available for larger (eight plot) sites, then
using incomplete blocks is beneficial.

Table 3.9. ANOVA for Example 3.3

Source df SS MS F -Ratio p-Value
Blocks 7 2,638.5 376.9 1.18 .3636
A 1 3,465.3 3,465.3 10.86 .0043
B 1 161,170.0 161,170.0 505.21 .0000
C 1 278,817.8 278,817.8 873.99 .0000
Interactions 4 13,404.4 3,351.1 10.50 .0002
Error 17 5,423.3 319.0
Total 31 466,779.7

Table 3.10. Parameter estimates for Example 3.3

Term Estimate Std Error t-Ratio p-Value
Intercept 291.59 3.16 92.35 .0000
Block[1] −2.22 9.11 −0.24 .8106
Block[2] −6.97 9.11 −0.76 .4550
Block[3] 3.57 9.11 0.39 .6999
Block[4] −14.01 9.11 −1.54 .1427
Block[5] −10.01 9.11 −1.10 .2874
Block[6] 19.07 9.11 2.09 .0517
Block[7] 9.32 9.11 1.02 .3207
Block[8] 1.24 9.11 0.14 .8934
A 10.41 3.16 3.30 .0043
B 70.97 3.16 22.48 .0000
C 93.34 3.16 29.56 .0000
AB 1.08 3.65 0.30 .7700
AC 8.67 3.65 2.38 .0295
BC −21.92 3.65 −6.01 .0000
ABC −1.38 3.65 −0.38 .7107
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3.4.4 Example 3.4: Analysis for a randomized block experiment,
using both within-block and interblock information

Sheesley (1985) presented results for a confirmation experiment involving a
new type of welded filament for use in light bulbs. The new type was expected
to produce fewer missed lead failures during bulb assembly, because it typically
had smaller weld knots. At the time, the manufacturer used both standard
and high-speed assembly machines; each was involved in the comparison of
the new welded filament versus the standard welded filament. This 22 factorial
in Wire type (A) and Machine type (B) was arranged in a blocked design.
Each replicate was assigned to a pair of adjacent days such as the following:

• Day 1: Standard machine with old wire type; high-speed machine with
new wire type

• Day 2: Standard machine with new wire type; high-speed machine with
old wire type

This experiment was repeated for four replicates. Note that the main effect
contrasts are orthogonal to days, since each day we include both machine types
and both wire types. Thus, the Machine*Wire (AB) interaction is confounded
with blocks. For simplicity, we present here only the data for the first shift from
a single facility. The response is number of defects per hour for a nominal 8-
hour shift; see Table 3.11. Since these data are a Poisson-type count, we take y
= (defect rate)1/2 to stabilize the variance. With counts of 50 or more for each
shift, there is no need for the more complex Freeman–Tukey transformation
discussed in Section 2.8.2.

Table 3.11. Sheesley lightbulb defects data for one facility

Replicate Day Wire type Machine type Defects/Hour
1 1 New High-speed 6.7

1 Old Standard 17.6
2 Old High-speed 40.5
2 New Standard 12.4

2 3 New High-speed 18.6
3 Old Standard 19.2
4 Old High-speed 37.8
4 New Standard 7.8

3 5 New High-speed 12.7
5 Old Standard 21.4
6 Old High-speed 25.1
6 New Standard 25.6

4 7 New High-speed 13.1
7 Old Standard 22.7
8 Old High-speed 49.4
8 New Standard 11.2



96 3 Common Randomization Restrictions

If we fit a model with effects for Days, Wire, and Machine, the analysis is
straightforward. The resulting ANOVA for (defect rate)1/2 is provided in Table
3.12. This provides conclusive evidence for a statistically significant difference
due to Wire type, whereas the main effect for Machine is not statistically
significant.

Table 3.12. Initial ANOVA for Sheesley data

Source df SS MS F -Ratio p-Value
Day 7 39.0185 5.57407 0.8386 .5933
Wire type 1 93.8556 93.8556 14.1206 .0094
Machine type 1 17.7487 17.7487 2.6703 .1534
Error 6 39.8804 6.6467
Total (corrected) 15 190.5032 0.1367

Now what about the Wire*Machine interaction? This term was not in-
cluded in the above analysis because it is confounded with Days. To investi-
gate the importance of a Wire*Machine interaction, we must fit a full facto-
rial model in Replicate, Wire type, and Machine type. The resulting sums of
squares and mean squares are presented in Table 3.13, rearranged to facilitate
our analysis. The first three lines partition the between-day variation. Note
that those sum of squares sum to (4.90 + 25.77 + 8.35 =) 39.02, the sum of
squares for Day. In addition, the SS for the last two lines of Table 3.13 sum
to 39.88, the error sum of squares from the previous ANOVA. Thus, Table
3.12’s error mean square is the average of the Rep*Wire and Rep*Machine
mean squares. This reflects the magnitude of error within a day and was used
to test for Wire and Machine main effects in the initial ANOVA.

Table 3.13. Complete ANOVA for Sheesley data

Source df SS MS
Day-to-day differences:

Rep 3 4.8972 1.6324
Wire*Machine 1 25.7704 25.7704
Rep*Wire*Machine 3 8.3509 2.7836

Within-day differences:
Wire 1 93.8556 93.8556
Machine 1 17.7487 17.7487
Rep*Wire 3 17.7078 5.9026
Rep*Machine 3 22.1726 7.3908

The Wire*Machine estimate is subject to more error variation than are the
Wire and Machine main effects, since it is confounded with random day-to-
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day differences—variation that is captured in the Rep*Wire*Machine mean
square. The Rep*Wire*Machine variation may be understood in two ways.
First, it captures inconsistency of the Wire*Machine interaction estimate from
replicate to replicate. Second, it represents day-to-day differences in defect
rate that are not attributable to the replicate main effect or the Wire*Machine
interaction; it is the residual day-to-day variation and is used as the interblock
error term for the Wire*Machine interaction effect. Here, the F -test for a
Wire*Machine interaction is

F = 25.77/2.78 = 9.26,

which, with degrees of freedom of (1, 3), has a p-value of .056. Thus, the
evidence for a Wire*Machine interaction is inconclusive. Since the replicate
mean square (1.63) and day-to-day error mean square (2.78) are unexpectedly
smaller than the within-day error mean square of 6.65, we gladly find no
evidence for random day-to-day variation.

In the preceding example, the interaction effect was estimable only by
treating day-to-day differences as a source of (random) variation. The benefit
of using such block-to-block differences to estimate factorial effects confounded
with blocks is greatest when the block sizes are small, since, in that case, a
substantial percentage of the degrees of freedom are devoted to between-block
differences. For example, for blocks of size 2, half of the degrees of freedom are
between blocks. Yang and Draper (2003) illustrated computation of within-
block and interblock estimates for an example with partial confounding. Their
helpful numerical example is a replicated 23 factorial in 12 blocks of size 2 using
one of their recommended designs. In the next section, we consider designs that
confound main effects with blocks and, once again, obtain estimates for these
effects by treating block-to-block differences as a second source of variation.
Section 14.5 gives an introduction to mixed-model analysis, which provides a
unifying foundation for all analyses of experiments containing block-to-block
and within-block variation.

3.5 Split-Unit Designs

Split-unit designs are simply factorial designs in incomplete blocks where some
main effects are confounded with blocks. Such designs are often much simpler
to conduct, which justifies the corresponding sacrifice of precision for some
factorial effects. Split-unit designs are most common in agricultural appli-
cations, where they are customarily named split-plot designs. To clarify the
ideas, we present the following industrial example.

Bisgaard, Fuller, and Barrios (1996) described an experiment with plasma-
treated paper. Four factors involving the reactor settings were studied: Pres-
sure (A), Power (B), Gas flow rate (C), and Gas type (D). For the three
quantitative factors, the levels are simply described as “low” and “high”; the



98 3 Common Randomization Restrictions

levels for Gas type are oxygen and SiCl4, which we designate by −1 and +1,
respectively. The sequence for the 24 treatment combinations for the reactor
was determined by randomization. A fifth factor studied was Paper type (E).
Prior to each of the 16 reactor runs, 2 paper samples were placed in the re-
actor, 1 of each type. Following each run, the paper samples were removed
and measured for “wettability” using a special microscope to determine the
contact angle between a water drop and the paper surface. The coded treat-
ment combinations and the wettability measurements are reported in the next
subsection (Table 3.14), where they will be analyzed.

The experiment just described required essentially half the time to conduct
that a completely randomized 25 would have required. By collecting data on 2
paper specimens for each run, the reactor only had to be set up and operated
16 times. Since runs required up to 30 minutes simply to achieve a vacuum in
the reactor before creating the plasma, halving the number of runs resulted
in a substantial reduction in effort.

We now introduce some terminology that will help us describe split-unit
experiments. Note that each run for the reactor could be consider a block of
size 2. Here each block corresponds to a different combination for (A, B, C,
D). Within each block, the two observations correspond to the two levels for
E. Split-unit experiments involve two types of experimental units, commonly
called whole units and split units. The reactor runs are called whole units
rather than blocks. The factors A–D are named whole-unit factors, since
they are confounded with whole units. The levels of whole-unit factors do not
change for the runs within a whole unit. Factors such as E whose levels vary
within each whole unit are called split-unit factors. Here, each piece of paper
corresponds to a split unit.

Associated with each type of unit is a source of error. Here, split-unit
error is a composite of sources that vary within a whole unit. For the plasma-
treatment experiment, split-unit error is produced by differences within the
reactor where the paper samples are located during a run, as well as random
differences in the paper and measurement error. Other sources of error would
be associated with the whole-unit variance component, namely run-to-run
differences for the setup and operation of the reactor.

Let σw and σs denote standard deviations associated with the whole-unit
and split-unit errors, and let M and N denote the number of whole units and
the number of split units in the experiment, respectively. For our example, M
= 16 and N = 32. Assuming that the error for each observation is the sum of a
whole-unit error and a split-unit error, then differences between observations
within a whole unit are unaffected by the whole-unit error. Thus, for any
factorial effect that is based on within-whole-unit differences, the standard
error for its regression coefficient will be σs/N

1/2. However, factorial effects
that are confounded with whole units must be estimated from differences
among the M whole units. Such regression coefficients will have a standard
error of √

σw
2/M + σs

2/N. (3.3)
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The analysis must take into account that some effects have standard error
(3.3) and others have standard error σs/N

1/2.

3.5.1 Analyzing split-unit designs

Equally replicated 2k factorial experiments run as split-unit designs are
straightforward to analyze, provided all of the effect estimates are based either
on within-whole-unit differences or on whole-unit totals. The key to analyzing
these split-unit designs is to separate the estimates into two groups. Effects
based on differences within whole units are referred to as split-unit contrasts,
and these will typically have less error than effects based on differences be-
tween different whole units. The analysis changes when there is no replication,
as was the case for completely randomized designs. Example 3.5 is an unrepli-
cated design, and so Lenth’s method is utilized to construct two PSEs: one
for whole-unit effects and another for split-unit effects. At the conclusion of
this example, we describe how the analysis would have changed if we had
replication.

3.5.2 Example 3.5: Analysis of split-unit design with 16 whole
units of size 2

Table 3.14 contains the data for the plasma-treated paper experiment. The
actual run order for the 16 whole units is not reported in Bisgaard et al.
(1996), so we have chosen to sort the treatment combinations from high to
low based on the whole-unit totals.

If we fit a full factorial model for the four whole-unit factors (A, B, C, D)
to the 16 whole-unit means, we obtain estimates for the whole-unit effects.
This saturated model produces a PSE = 2.475. The estimates and Lenth t
statistics are displayed in Table 3.15 and plotted in Figure 3.7. The three
Lenth t statistics that exceed 2.156 (the cIER

.05 critical value from the table in
Appendix C) correspond to a full factorial model in Pressure (A) and Gas
type (D), and the next largest Lenth t is 1.38 for the four-factor interaction.
Thus, the choice of a reduced model for whole-unit effects is clear.
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Table 3.14. Contact angles for plasma-treated paper split-unit experiment

A B C D E = −1 E = +1 Mean
−1 1 −1 −1 55.8 62.9 59.35

1 −1 −1 1 56.8 56.2 56.50
−1 −1 −1 −1 48.6 57.0 52.80

1 1 −1 −1 53.5 51.3 52.40
−1 1 1 −1 47.2 54.6 50.90

1 1 1 1 49.5 48.2 48.85
1 1 1 −1 48.7 44.4 46.55
1 −1 1 −1 47.2 44.8 46.00
1 −1 1 1 47.5 43.2 45.35

−1 −1 1 −1 37.6 43.5 40.55
1 1 −1 1 41.8 37.8 39.80
1 −1 −1 −1 41.2 38.2 39.70

−1 1 −1 1 25.6 33.0 29.30
−1 −1 1 1 13.3 23.7 18.50
−1 1 1 1 11.3 23.9 17.60
−1 −1 −1 1 5.0 18.1 11.55

Table 3.15. Saturated whole-unit model for plasma split-unit experiment

Term Estimate PSE Lenth t
Intercept 40.98 2.475 16.56
A 5.91 2.475 2.39
B 2.11 2.475 0.85
C −1.69 2.475 −0.68
D −7.55 2.475 −3.05
AB −2.11 2.475 −0.85
AC 1.49 2.475 0.60
AD 8.28 2.475 3.35
BC −0.42 2.475 −0.17
BD −1.66 2.475 −0.67
CD 0.84 2.475 0.34
ABC 1.43 2.475 0.58
ABD −1.65 2.475 −0.67
ACD −1.16 2.475 −0.47
BCD 0.62 2.475 0.25
ABCD 3.43 2.475 1.38

The next task is to select a model for the split-unit effects [i.e., the effects
involving Paper type (E)]. If we fit a model that contains only the split-unit
factor E and the 15 interactions that involve this factor, then we may use
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Fig. 3.7. Normal effects plot for plasma experiment whole-unit estimates

Lenth’s PSE from this model to estimate the standard error σs/N
1/2. To make

the details very clear, we show some of the intermediate computations in Table
3.16. Figure 3.8 provides a normal plot for the split-unit effect estimates. The
largest three estimates are statistically significant, although bDE is so small
that it might be ignored.

Including three whole-unit effects and three split-unit effects, all statisti-
cally significant, the reduced model indicated by our analysis is

y = β0 + βAA + βDD + βEE + βADAD + βAEAE + βDEDE + εw + εs

(although one might include the nonsignificant B and C main effects rather
than allow these to contribute to whole-unit error). Because the model has
two error terms, the usual residual plot for the reduced model is not useful for
assessing the suitable fit. Instead, we construct two residual plots: one for the
whole-unit error and a second for the split-unit error. The whole-unit residual
plot is constructed by computing the mean for each whole unit and fitting
a reduced model with only the necessary whole-unit effects. This model will
have either 12 or 10 df for error, depending on whether we include only {A,
D, AD} or also include B and C. This residual plot appears in Figure 3.9.
To isolate the split-unit error, we fit a new model to the 32 observations that
represents a saturated model for the whole-unit factors and a reduced model
for the split-unit effects; that is, we fit a full factorial in {A, B, C, D}, plus
the E, AE, and DE terms. The residuals from this fitted model are plotted
in Figure 3.10. Both residual plots appear to show homogeneity of variability.
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Table 3.16. Sorted split-unit estimates for plasma experiment, with
computation of split-unit PSE

Term Estimate s0 PSE Lenth t
AE −2.9500 0.234 0.216 −13.68
E 1.5687 0.234 0.216 7.28
DE 0.5125 0.234 0.216 2.38
BCE 0.4500 0.234 0.216 2.09
BCDE 0.4437 0.234 0.216 2.06
ADE −0.4062 0.234 0.216 −1.88
ABCE −0.2188 0.234 0.216 −1.01
CDE 0.1625 0.234 0.216 0.75
BE −0.1500 0.234 0.216 −0.70
ABDE 0.1375 0.234 0.216 0.64
ACDE −0.1313 0.234 0.216 −0.61
ABCDE 0.1250 0.234 0.216 0.58
BDE −0.0937 0.234 0.216 −0.43
ACE −0.0875 0.234 0.216 −0.41
CE −0.0688 0.234 0.216 −0.32
ABE 0.0563 0.234 0.216 0.26
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Fig. 3.8. Normal effects plot for plasma experiment split-unit estimates
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Fig. 3.9. Residual plot for plasma experiment whole-unit errors
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The split-unit regression coefficients are estimated with greater precision
than are the whole-unit regression coefficients, unless σw = 0. How does the
precision of these coefficients compare with what would have resulted had we
conducted a completely randomized design? If the error variance σ2 associated
with a completely randomized design equals the sum of σ2

w and σ2
s , then

comparisons can be easily made. To make this discussion concrete, suppose
σ2

w = 15 and σ2
s = 2. Then for a split-unit design with M = 16 and N = 32,

the standard error for whole-unit and split-unit factorial effects equal 1 and
0.25, respectively. Under the assumption that σ2 = σ2

w +σ2
s = 15+2 = 17, the

standard error of 1 and 0.25 correspond to completely randomized designs of
sizes 17 and 68, respectively; that is, having runs with two types of paper adds
very little information for the whole-unit factors, but it adds a great deal of
information for the split-unit effects. Although the actual equivalent sample
sizes for a completely randomized design depend on the ratio of σw and σs,
the equivalent sample size for whole-unit effects will always be between M
and N , whereas the equivalent sample size for split-unit effects will always
exceed N . Recall again that this assumes the completely randomized design’s
error variance is the sum of σ2

w and σ2
s . If σ2 < σ2

w + σ2
s , then the benefits of

the split-unit design are reduced.
Suppose that after the data in Table 3.14 were collected, a second replicate

of the same experiment was performed, using a new random ordering for the
furnace runs and for placement of Paper type within runs. This results in a
replicated 25 with N = 32 whole units and M = 64 split units. There are
N − 1 = 31 df for whole-unit variation and M − N = 32 df for split-unit
variation. For the whole-unit effect tests, one may fit a full factorial model
in Replicate and A–D and compute Lenth’s PSE from these 31 whole-unit
contrasts, or one may pool the 15 interactions involving Replicate to form a
MSE for whole-unit contrasts. Similarly, for the 16 split-unit effects (E and
every interaction involving E), one may create a mean square for split-unit
contrasts by pooling together the 16 interactions involving E*Replicate, or one
may compute Lenth’s PSE from the 32 contrasts involving E. If M/N > 2,
then Lenth’s method is no longer applicable, and one constructs an ANOVA
with one mean square for whole-unit error and another for split-unit error. An
analysis using the mean for each whole unit readily provides the appropriate
whole-unit error mean square, and, upon fitting a reduced model, the whole-
unit residuals. Then, to analyze the split-unit effects, always include a term
called “whole units” with N levels, so that all whole-unit variation is excluded
from the split-unit error.

3.6 Multiway Blocking

Sections 3.3–3.5 address design and analysis where the runs within each block
(or whole unit) are completely randomized. Here, we enumerate more elabo-
rate restrictions to the treatment combinations for 2k factorial designs. The
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prevalence of these designs in practice is field-specific. For instance, dietary
studies for animals are frequently based on crossover studies in which indi-
vidual animals are assigned different treatment combinations across multiple
time periods. This class of experiments, where two or more blocking variables
have a crossed (i.e., factorial) structure, is described and illustrated in Section
3.6.1. Blocking can also be sequential (synonyms are nested and hierarchical).
This is the unit structure for split-split-unit designs that are somewhat com-
mon for industrial experiments for processes involving multiple steps. Such
design structures are discussed in Section 3.6.3. In these sections we focus
primarily on the designs themselves. Only one numerical example is analyzed
in each of the following sections. However, the same blocking structures ap-
pear in Chapter 10—the parallel material for fractional factorial designs. For
more elaboration about unit structures, see Brien and Bailey (2006) and the
subsequent discussion.

3.6.1 Crossover, Latin squares, and other designs with crossed
blocking factors

Crossover designs are the most common type with crossed blocking factors.
Consider the experiment displayed in Figure 3.11 involving three factors and
two 4×4 Latin squares. Note that each square contains four replicates of half
of the treatment combinations in the 23. The three-factor interaction is con-
founded with squares and so is not estimable. The use of crossover designs is
common in animal science, where different animals are assigned to the columns
and different time periods are assigned to the rows.

Square 1 (ABC = 1)

(1) bc ac ab 

ac (1) ab bc 

bc ab (1) ac 

ab ac bc (1) 

Square 2 (ABC = +1) 

abc a b c 

b abc c a 

a c abc b 

c b a abc 

Fig. 3.11. Latin square design for replicated three-factor experiment
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Yang, Beauchemin, and Rode (2001) conducted an experiment based on
Plan 8.1b from Cochran and Cox (1957, p. 328), which is similar to Figure
3.11. Yang et al. (2001) studied three dietary factors on the milk production
of cows: Grain (A), Forage (B), and Forage/Concentrate Ratio (C). Rather
than assigning one treatment combination to each cow (for which cow-to-cow
variation would make σ large), a four-period crossover study was performed,
with each cow receiving four treatment combinations. Yang et al. ran one
square with four cows for four 3-week periods. Although the diet was controlled
for 3-week periods, milk production data was recorded for only the last 10 days
of each period (hopefully to eliminate any lingering effects from the previous
diet condition). Later, they performed a second square with four cows, two of
which were the same as in the first square. The exact design, kindly furnished
by the authors, appears in Table 3.17, along with two response variables:
mean milk production and milk fat %, computed across each set of 10 days.
Note that each main effect and two-factor interaction involves differences that
cancel out any (additive) cow or time period effects. These data are analyzed
later in this section.

There is a potentially important advantage to the design in Figure 3.11
versus the Cochran and Cox (1957) design in Table 3.17. If the rows of Figure
3.11 denote consecutive periods, then every ordered pair of treatment combi-
nations appears once in each square. Such squares, originally due to Williams
(1949), are designed to be balanced with respect to simple carryover effects.
With four treatment combinations, there are 12 ordered pairs (such as “ac,
bc”), and each appears in one of the columns. Such balance is particularly
important for sensory testing, where often there are many subjects assigned
by repeated use of a few standard designs (Wakeling, Hasted, and Buck 2001).
A carryover balanced 8 × 8 square for a 23 is given in Figure 3.12.

Cochran and Cox (1957, p. 328) provides 8 × 8 plans for four to six two-
level factors. When each treatment combination appears once in each row
and column of a square, it is a Latin square design. If instead each treatment
combination appears in only one-half or one-fourth of the rows and columns,
it is labeled a quasi-Latin square design. Examples of quasi-Latin square de-
signs are shown in Figures 3.13 and 3.14. These designs are not balanced
for carryover effects. Figure 3.13 provides four replications of a 24 factorial
and Figure 3.14 is two replicates of a 25. For the four-factor design, each
pair of columns forms one replicate, and ABCD is confounded with columns
in every replicate. Each pair of rows also forms one replicate, but a different
three-factor interaction is confounded with rows for each replicate. Thus, each
three-factor interaction is partially confounded with rows, being orthogonal
to rows in three of the four replicates. If this design were used for a taste test
experiment, then 8 sequences will be utilized and each subject will taste 8
of the 16 treatment combinations. For advice regarding the randomization of
designs involving such complicated restrictions, see Grundy and Healy (1950).
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Table 3.17. Milk production data from Yang et al. (2001)

Cow Milk Butterfat
Square ID Period t.c. A B C (kg/day) (%)

1 450 1 ac Fine Long High 25.66 3.69
1 450 2 (1) Coarse Long Low 24.43 4.40
1 450 3 ab Fine Short Low 21.70 4.05
1 450 4 bc Coarse Short High 20.74 3.61
1 458 1 bc Coarse Short High 24.97 4.45
1 458 2 ab Fine Short Low 24.89 4.29
1 458 3 (1) Coarse Long Low 20.66 4.74
1 458 4 ac Fine Long High 20.25 4.71
1 510 1 ab Fine Short Low 23.67 3.76
1 510 2 bc Coarse Short High 17.34 4.64
1 510 3 ac Fine Long High 17.04 4.15
1 510 4 (1) Coarse Long Low 14.46 4.52
1 513 1 (1) Coarse Long Low 29.09 2.76
1 513 2 ac Fine Long High 25.91 3.14
1 513 3 bc Coarse Short High 22.49 2.93
1 513 4 ab Fine Short Low 21.73 3.08
2 458 5 a Fine Long Low 19.15 4.57
2 458 6 c Coarse Long High 16.84 5.04
2 458 7 b Coarse Short Low 15.84 4.68
2 458 8 abc Fine Short High 15.08 4.69
2 513 5 b Coarse Short Low 21.24 3.06
2 513 6 abc Fine Short High 19.88 2.89
2 513 7 a Fine Long Low 20.64 3.00
2 513 8 c Coarse Long High 17.26 3.31
2 525 5 c Coarse Long High 33.74 4.16
2 525 6 b Coarse Short Low 36.58 3.34
2 525 7 abc Fine Short High 35.02 3.48
2 525 8 a Fine Long Low 35.34 3.36
2 528 5 abc Fine Short High 29.99 4.10
2 528 6 a Fine Long Low 31.00 3.43
2 528 7 c Coarse Long High 27.46 3.81
2 528 8 b Coarse Short Low 26.38 3.58

For the five-factor design, the first four columns (rows) constitute one
replicate and the last four columns (or rows) constitute a second replicate.
For each replicate, a different set of 3 factorial effects is used to partition the
32 treatment combinations into 4 sets of 8.
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Period         

1 c a ab bc b (1) ac abc

2 (1) ac abc c a ab bc b 

3 abc c a ab bc b (1) ac 

4 ac abc c a ab bc b (1) 

5 ab bc b (1) ac abc c a 

6 bc b (1) ac abc c a ab 

7 a ab bc b (1) ac abc c 

8 b (1) ac abc c a ab bc 

Fig. 3.12. Carryover balanced Latin square design for replicated 23 experiment

ABCD                       ABCD          ABCD                       ABCD 

c abcd b ad a bd abc cd

abd (1) bcd bc acd ac d ab
ABC

d bc a abcd b cd abd ac

bcd ad acd bd abc ab c (1) ABD

a bd c ab d abcd acd bc

abc ac abd cd bcd (1) b ad ACD

b ab d ac c ad bcd abcd

acd cd abc (1) abd bc a bd BCD

Fig. 3.13. Quasi-Latin square design for replicated 24 experiment

ACE, BCD, ABDE ACD, BDE, ABCE 

(1) abe bc ace abd acd bcde de

bce ac e ab bcd d abde acde

cde abcd bde ad abce ae b c

bd ade cd abcde be ce abc a

ABC,

ADE,

BCDE

abc ce acde bcd (1) bde ad abe

acd bcde abce c ade ab e bd

abde d a be cde bc ace abcd

ae b abd de ac abcde cd bce

ABD,

BCE,

ACDE

Fig. 3.14. Quasi-Latin square design for replicated 25 experiment

3.6.2 Example 3.6: Analysis of experiment based on crossed
blocking factors

We now illustrate the analysis of experiments with crossed blocking factors
for the milk production data in Table 3.17. The ANOVA will partition the
variation into five parts:

• Difference between squares (1 df)
• Differences between animals within each square [2(4 − 1) = 6 df]
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• Differences between periods within each square [2(4 − 1) = 6 df]
• Main effects and two-factor interactions involving the three factors (6 df)
• Residual variation (31 − 1 − 6 − 6 − 6 = 12 df)

This basic ANOVA appears in Table 3.18. Note that the residual degrees of
freedom arise from assuming additivity of animal, period, and factor effects.
For simplicity, we ignore that some animals appeared in both squares. For
this response, the error variance is estimated to be 1.05 (kg/d)2, much smaller
than if we had not excluded from error animal-to-animal (or period-to-period)
variation. Given this small MSE, the benefits of finely processed grain and low
F/C ratio are evident. The opposite levels appear desirable for maximizing fat
% (or fat kg/d), especially for long forage. This analysis is left to the reader.

Table 3.18. ANOVA for milk production data from Yang et al. (2001)

Source df SS MS F -Ratio p-Value
Model 19

Square 1 67.31 67.31 64.02 .000
Animal[square] 6 950.28 158.38 150.63 .000
Period[square] 6 120.29 20.05 19.07 .000
Grain 1 9.49 9.49 9.03 .011
Forage 1 0.06 0.06 0.06 .815
F/C 1 9.17 9.17 8.72 .012
Grain*Forage 1 0.68 0.68 0.65 .436
Grain*F/C 1 0.07 0.07 0.06 .807
Forage*F/C 1 0.52 0.52 0.50 .494

Error 12 12.62 1.05
Total (corrected) 31 1170.49

3.6.3 Split-unit experiments with multiway blocking

For designs described in Section 3.6.1, each column represents either a block
containing a full factorial (as in Figure 3.12) or an incomplete block (as in
Figure 3.11, where each column contains half of a full factorial). Rather than
completely randomizing the run order within each column, the order is con-
strained to achieve balance with respect to the row (time period) factor. When
each column is an incomplete block, interactions are confounded with columns
to determine the subset of treatment combinations in a given column. This is
akin to Section 3.3, in which blocks were created using interaction contrasts
so that we sacrifice information for effects of little importance.

We now explore an extension of Section 3.5, where for the sake of simplicity
of experimentation, main effects are confounded with blocks. Consider factor-
ial experiments with two sets of factors, where the treatment combinations for
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one set of factors are assigned to different rows and treatment combinations
for the second set of factors are assigned to different columns. Two examples
are given, one agricultural and the second industrial. For an experiment in-
volving plots in a field, one set of factors might be different fertilizers and
the second set might be different planting and/or variety factors. The fertil-
izer combinations may be randomly assigned to the columns in a field; that
is, each entire column receives one combination of fertilizer levels. Similarly
each row in the field receives a particular planting/variety combination. Such
designs are commonly labeled “strip block” designs in agriculture. A simi-
lar structure can occur in industrial experiments that involve two different
stages in a process. For instance, suppose we are investigating the optimum
settings for washing and drying of clothes to avoid wrinkling, with eight wash-
ing machines and four dryers available. We begin by assigning each washer
to a different combination of levels for the washer factors. When the eight
loads are completed, the wet clothes from each load are distributed to the
four different dryers. Provided the articles of clothing are labeled according to
their assigned washer/dryer combination, one may perform 8× 4 = 32 differ-
ent washer/dryer treatment combinations running each washer and dryer just
once. Such a washer/dryer experiment is another example of a strip-block de-
sign. The alternative terminology, “multiway split unit” is sometimes used for
such industrial experiments, especially when there are more than two stages
(sets of factors). The analysis of such experiments is illustrated in Part II (see
Section 10.3.4).

How do strip-block and multiway split-unit designs differ from the split
unit designs discussed and analyzed in Section 3.5? Both are experiments with
a factorial treatment structure and generally a sequential assignment of treat-
ment combinations to the different types of experimental units. The difference
regards whether the unit structure is crossed or nested. If the washer loads
contain clothes that will be assigned to different dryers, and the dryer loads
contain clothes from multiple washer loads, then the washer units and dryer
units are crossed. This is the structure for strip-block designs just described.
If, instead, the wet clothes from each washer load are assigned to different
dryers, but each dryer load contains a small load all from the same washer
load, then the dryer loads are nested within washer loads. This is the struc-
ture of a typical split-unit design. Just as multiway split-unit designs can have
more than two sets of factors assigned to units that have a crossed structure,
designs with more than two sets of factors can be assigned to units that are
nested in more than two levels. Such designs are called split-split-unit designs,
and they are described in the next subsection.

3.6.4 Split-split-unit designs and others with nested blocking
factors, with Example 3.7

Consider the following meat loaf experiment conducted by Baardseth, Bjerke,
Aaby, and Lielnik (2005). The purpose of the experiment was to identify
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factors causing rancidity of meat loaf that has been stored. The produc-
tion of meat loaf is a multistep process, and this experiment involved factors
appearing in different steps. The four factors that preceded making, bak-
ing, and storage of cooked loaves were Meat (pork or turkey), Processing
(pieces or ground), Salting (before or after storage), and Packaging (air or
vacuum sealed). For simplicity, the experiment began with a single large por-
tion of pork and turkey. Each portion was split in half, creating one split
portion for each Meat/Processing combination. Similarly each of the four
Meat/Processing units was split in half, creating eight units for the Salting
phase. Finally, each of these 8 units was split in half, creating 16 storage units.
This illustrates what we mean by a nested unit structure: 2 Meat units split to
form a total of 4 processing units, 8 salting units and 16 storage units. Such a
design is called a split-split-split-unit design, since each final unit results from
three sequential splits.

There are both benefits and disadvantages to such a design. In addition
to the obvious benefit of convenience is the higher precision associated with
factors at the bottom of the hierarchy. For instance, the error associated with
the effects involving storage should be quite small. However, the downside
of convenience is the lack of replication at the top of the hierarchy of splits.
The fact that 16 storage units will provide 16 (or more) measurements of
rancidity does not alter the fact that this is an unreplicated design for Meat,
with everything based on a single unit of pork and a single unit of turkey.
Even if the entire experiment were replicated, using a second unit of each raw
material, we would not be able to effectively confirm any Meat factor effect.

We now consider an analysis of the rancidity data from Baardseth et al.
(2005). After 3 months of storage, a meat loaf was made from each of the 16
units following a prescribed recipe. Each loaf was baked, refrigerated, frozen
for 6 months, and, finally, thawed and tested for rancidity. Coding for the
4 factors is shown in Table 3.19 and the rancidity score for each of the 16
treatment combinations is shown in Table 3.20. We are neglecting some less
important details about the experiment to permit its straightforward analysis
here. For instance, the scores for the first and last treatment combination are
averages of scores from two loaves.

Table 3.19. Coding of factors for the meat loaf experiment

Levels
Factors −1 1
A Meat Pork Turkey
B Processing Pieces Ground
C Salting Later Now
D Packaging Air Vacuum
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Table 3.20. Rancidity scores for meat loaf experiment

A B C D Rancidity
−1 −1 −1 −1 2.46
−1 −1 −1 1 2.30
−1 −1 1 −1 10.85
−1 −1 1 1 2.45
−1 1 −1 −1 1.60
−1 1 −1 1 1.90
−1 1 1 −1 4.65
−1 1 1 1 2.50

1 −1 −1 −1 3.40
1 −1 −1 1 3.85
1 −1 1 −1 5.90
1 −1 1 1 3.40
1 1 −1 −1 2.90
1 1 −1 1 3.15
1 1 1 −1 8.30
1 1 1 1 2.05

The analysis of the meat loaf experiment is a simple extension of the
analysis presented earlier for split-unit experiments. For Example 3.5 there
were two different standard errors, a larger one for whole-unit effect estimates
(Table 3.15) and a smaller one for split-unit effect estimates (Table 3.16).
Here, there are four standard errors, one for each tier; see Table 3.21. Due
to the lack of replication, we rely on Lenth’s procedure for estimating the
standard errors. Only in the lowest tier can Lenth’s procedure be effective.
There, two of the eight estimates stand out, D (t = −2.03, p = .06) and CD (t
= −2.22, p = .05). Assuming independently distributed errors for the different
sources of variation, the true standard error is highest for the whole-unit level
and decreases as one moves down the tiers. Thus, although four estimates
at the split-split-unit level is insufficient to test for significance using Lenth’s
method, the fact that the estimates for A, B, and AB are all smaller than
the estimate for C supports the conclusion that A and B have no apparent
effect but that C does. The reduced model for expected rancidity score is

ŷ = 3.854 + 1.159C − 1.154D − 1.259CD.

We conclude that the “salting now, air packaging” combination is vastly in-
ferior, with expected score around 7.4, whereas the other three (C, D) com-
binations have expected scores of 2.6 to 2.8.
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Table 3.21. Rancidity score estimates and Lenth t statistics

Term Estimate PSE Lenth t
Intercept 3.854
A 0.265
(Split units)
B −0.473 0.695 −0.68
AB 0.454 0.695 0.65
(Split−split units)
C 1.159 0.608 1.90
AC −0.365 0.608 −0.60
BC −0.165 0.608 −0.27
ABC 0.446 0.608 0.73
(Split−split−split units)
D −1.154 0.567 −2.03
AD 0.148 0.567 0.26
BD 0.173 0.567 0.30
ABD −0.666 0.567 −1.17
CD −1.259 0.567 −2.22
ACD 0.077 0.567 0.14
BCD 0.140 0.567 0.25
ABCD −0.584 0.567 −1.03

If the estimates for A had been large, we would not have known whether
this was due to the systematic effect of Meat type or due to random variation
affecting the whole units. Determining which was in fact the case would require
additional data with replication. Simply adding more levels of splitting, which
produces many data points, does not help. However, it does help confirm that
whatever the effect is for Meat (or Processing), these effects do not depend
on the levels for Salting and Packaging.

Split-split-unit designs have experimental units in a nested structure, with
main effects confounded with blocks. It is also possible to have a nested struc-
ture for blocks when interactions, not main effects, are confounded with blocks.
For instance, suppose an unreplicated 25 experiment requires 2 days to com-
plete and that we utilize 4 batches of raw material per day. We partition the
32 runs into 8 blocks of size 4, confounding with batches the 7 factorial effects
listed in Appendix E: ABC, ADE, BCDE, BD, ACD, ABE, CE. Rather
than randomly assigning four of the eight blocks to the first day and the
remainder to the second day, we choose to confound the longest interaction
BCDE with day. In this manner, the other six interactions confounded with
batches are orthogonal to days. A normal plot of these six effect estimates
might be used to assess whether one of these interactions is in fact active.
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Table 3.22. Three sets of effects for Holm and Sidik split-split-unit design

Unit Effects
Whole F, G, FG, ABCD, ABCDF, ABCDG, ABCDFG

Split E, EF, EG, EFG, ABCDE, ABCDEF, ABCDEG,
ABCDEFG

Split-split A, B, C, D and all 108 remaining interactions

Holms and Sidik (1971) proposed a 27 split-split plot experiment involving
a nuclear reactor. Four fluid variables (A, B, C, D) can be easily changed
within a fuel cycle. The power (E) can be changed within a cycle but not as
often. Two mechanical variables (F, G) can only be changed between cycles.
For this scenario, an 8-cycle design is proposed, with 16 runs per cycle. Using
eight cycles provides replication of the whole-unit treatment combinations,
something that was not the case for the rancidity experiment. Holms and
Sidik confounded F, G, and ABCD with cycles. Power is a split-unit factor,
being reversed at the midpoint of each fuel cycle. The four fluid factors are
split-split-unit factors, since they are allowed to change run to run. The three
sets of factorial effects that differ in precision are listed in Table 3.22. Rather
than randomly assign whole-unit blocks to the eight cycles, the order for the
runs is determined systematically; see Holms and Sidik (1971, p. 569). This
was done due to the expected termination of some cycles before all 16 runs
are completed. By choosing a systematic run order, they hope to ensure that
effects of interest will be estimable even if early termination of some cycles
causes data to be missing.

This concludes the discussion of full factorial designs with randomization
restrictions. Randomization restrictions are discussed again in Chapter 10, in
the context of fractional factorial designs.
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More Full Factorial Design Examples

This chapter contains the analysis of three interesting experiments reported
in the literature. The sections are as follows:

Section 4.1. Example 4.1: Replicated 23 With Subsampling Within Runs

Section 4.2. Example 4.2: 29 Factorial for Peptide Research

Section 4.3. Example 4.3: 25 with Centerpoint Runs for Ceramic Strength

4.1 Example 4.1: Replicated 23 With Subsampling
Within Runs

Lamb, Boos, and Brownie (1996) analyzed a replicated 23 factorial to illustrate
methods for identifying factors affecting variability. The measured response is
tablet weight for a pharmaceutical product. The target weight was 0.5 grams,
and the objective was to achieve better consistency of tablet weights. The
tablets are formed by putting a powder into holes of a disk that turns and
compacting the powder twice before it is ejected. The three factors are Turning
speed (x1), Initial compression (x2), and Final compression (x3). The actual
low and high levels for each factor are not reported in the article by Lamb
et al.; we denote the levels as −1 and +1, respectively. The 23 factorial was
replicated six times. Although details are lacking, it appears that the 48 runs
were performed by blocking on replicate; that is, the 8 treatment combinations
of the 23 were each performed once, in random order, to complete the first
replicate. This process was repeated to obtain the second replicate, and so
forth, until all six sets of eight treatment combinations were obtained. We
analyze the data by including a Replicate main effect. Within each run, 25
tablets were sampled and weighed. Such sampling within a run, very different
from replication of treatment combinations, is quite common in industrial
examples in which the objective is to improve consistency about a target.

©  Springer Science + Business Media, LLC 2009DOI: 10.1007/b105081_ ,
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We begin the data analysis by plotting the 1200 data points in a box-
plot and histogram. The mean and standard deviation are 0.4974 and 0.0072
grams, respectively. Figure 4.1 shows 24 “outliers,” the majority of which are
on the low extreme.

0.46 0.47 0.48 0.49 0.50 0.51 0.52

Fig. 4.1. Histogram and box-plot for 1200 tablet weights

There are several questions to be answered with these data:

• Which factors, if any, affect the mean tablet weight?
• Which source of variation is the greatest?
• Which factors, if any, affect the greatest source of variation?
• Are the previous conclusions influenced by just a few outliers?

4.1.1 Which factors, if any, affect the mean?

This question is most easily answered by computing the mean for each sample
and analyzing these 48 means using a full factorial model in the 3 factors
of interest, augmented with a main effect for Replicates. Note that in this
analysis we have one data point (yi = a sample mean) for each run. Table 4.1
provides these means, along with sample standard deviations, which are used
later. Figure 4.2 summarizes this fitted model. The coefficients b1 (Speed),
b3 (Final compression), and the interaction b1·3 are statistically significant
and all near 0.0009; this implies that the high-speed, high-final-compression
combination produces larger weights on average. We are disappointed to see
that Replicate is also significant (Replicate mean square = 0.0000213, F =
3.27, p = .016), which indicates undesirable variability over time.
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Table 4.1. Means and standard deviations for within-run samples of size 25
Replicate x1 x2 x3 Mean StdDev ln(StdDev)

1 −1 −1 −1 0.49568 0.00352 −5.649
1 −1 −1 1 0.49956 0.00503 −5.293
1 1 −1 −1 0.50008 0.00516 −5.266
1 1 −1 1 0.50196 0.00503 −5.293
1 −1 1 −1 0.49664 0.00491 −5.317
1 −1 1 1 0.49992 0.00524 −5.251
1 1 1 −1 0.49760 0.00953 −4.654
1 1 1 1 0.49868 0.00618 −5.086
2 −1 −1 −1 0.49456 0.00471 −5.358
2 −1 −1 1 0.49300 0.00435 −5.438
2 1 −1 −1 0.49732 0.00784 −4.848
2 1 −1 1 0.49632 0.00767 −4.870
2 −1 1 −1 0.49708 0.00654 −5.030
2 −1 1 1 0.49400 0.00362 −5.622
2 1 1 −1 0.49824 0.00614 −5.093
2 1 1 1 0.49152 0.00656 −5.027
3 −1 −1 −1 0.49784 0.00636 −5.058
3 −1 −1 1 0.49960 0.00492 −5.314
3 1 −1 −1 0.49288 0.00900 −4.711
3 1 −1 1 0.50252 0.00773 −4.863
3 −1 1 −1 0.49628 0.00743 −4.902
3 −1 1 1 0.49804 0.00544 −5.213
3 1 1 −1 0.49576 0.00976 −4.630
3 1 1 1 0.50152 0.00635 −5.059
4 −1 −1 −1 0.49896 0.00509 −5.280
4 −1 −1 1 0.49512 0.00448 −5.407
4 1 −1 −1 0.49616 0.00703 −4.957
4 1 −1 1 0.49968 0.00639 −5.053
4 −1 1 −1 0.49256 0.00598 −5.119
4 −1 1 1 0.49456 0.00627 −5.072
4 1 1 −1 0.49080 0.01007 −4.598
4 1 1 1 0.50056 0.00623 −5.079
5 −1 −1 −1 0.49608 0.00457 −5.388
5 −1 −1 1 0.49752 0.00771 −4.865
5 1 −1 −1 0.49944 0.00848 −4.771
5 1 −1 1 0.50080 0.00632 −5.064
5 −1 1 −1 0.50032 0.00589 −5.135
5 −1 1 1 0.50072 0.00672 −5.002
5 1 1 −1 0.49744 0.00948 −4.658
5 1 1 1 0.50312 0.00621 −5.081
6 −1 −1 −1 0.49556 0.00827 −4.795
6 −1 −1 1 0.49164 0.00508 −5.282
6 1 −1 −1 0.49660 0.00613 −5.094
6 1 −1 1 0.50196 0.00552 −5.200
6 −1 1 −1 0.49520 0.00729 −4.922
6 −1 1 1 0.49572 0.00524 −5.251
6 1 1 −1 0.49408 0.01008 −4.597
6 1 1 1 0.50280 0.00569 −5.168
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Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio

Model 12 0.00023944 0.00001995 3.059

Error 35 0.00022827 0.00000652 Prob > F

C. Total 47 0.00046772 0.005

Expanded Estimates

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 0.49738 0.00037 1349.30 0.000 

Rep[1] 0.00139 0.00082 1.69 0.101 

Rep[2] -0.00212 0.00082 -2.57 0.015 

Rep[3] 0.00068 0.00082 0.82 0.415 

Rep[4] -0.00132 0.00082 -1.61 0.117 

Rep[5] 0.00206 0.00082 2.49 0.018 

Rep[6] -0.00068 0.00082 -0.82 0.415 

x1 0.00087 0.00037 2.36 0.024 

x2 -0.00016 0.00037 -0.43 0.667 

x3 0.00099 0.00037 2.69 0.011 

x1*x2 -0.00041 0.00037 -1.10 0.277 

x1*x3 0.00088 0.00037 2.40 0.022 

x2*x3 0.00022 0.00037 0.60 0.551 

x1*x2*x3 -0.00007 0.00037 -0.20 0.840 

Fig. 4.2. Analysis of mean weight per run for 48 runs

4.1.2 Which source of variation is the greatest?

Sampling 25 tablets within each run enables us to estimate well the short-
term variability in weights. Replicating each treatment combination numer-
ous times (presumably spread out over time) permits assessment of run-to-run
variation. If one conducts an analysis of variance (ANOVA) of the 1200 tablet
weights, using nominal effects for Replicate (5 df), Treatments (7 df), and
Replicate*Treatment (35 df), one can quickly identify which sources of vari-
ation are largest. Figure 4.3 shows the mean squares for each of these terms.
The factor Replicate represents a sampling of the tablet-making process at
different points in time. Such factors (and their interactions) are best treated
as random effects in a model, as discussed in Section 14.5. If the terms Repli-
cate and Replicate*Treatment are declared random, statistical software al-
lowing this feature will estimate their variances from the mean squares. For
these balanced data, method of moments estimates and restricted maximum
likelihood (REML) estimates are identical. Note that the residual variance es-
timate equals the mean square error, and the other two variance components
are estimated as follows:

σ̂2
Rep∗Treatment = [MSRep∗Treatment − MSE]/25 = 0.000005,
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σ̂2
Rep = [MSRep − MSRep∗Treatment]/[8(25)] = 0.000002.

Both of these variance component estimates are negligible relative to the
residual variance, MSE = 0.000044. Although there is variation over time,
as reflected in the variance components involving Replicate, nearly all of the
variation in table weight for these data is within-run variation. (For more
details about inference from models with multiple sources of variation, see
Section 14.5.)

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio

Model 47 0.01169293 0.000249 5.6251

Error 1152 0.05095032 0.000044 Prob > F

C. Total 1199 0.06264325  <.0001

Effect Tests 

Source DF Sum of Squares Mean Square

Rep 5 0.00266599 0.0005332  

Treatment 7 0.00332008 0.0004743  

Rep*Treatment 35 0.00570686 0.0001631  

Variance Component Estimates 

Random Effect Var Component % of Total

Rep .000002 3.64 

Rep*Treatment .000005 9.35 

Residual .000044 87.01

Total .000051 100.00 

Fig. 4.3. ANOVA and variance component estimates for tablet weight

4.1.3 Which factors, if any, affect the greatest source of variation?

The above analyses (for the 48 means and the 1200 tablet weights) fit mod-
els that assume common variation across all the treatment combinations.
Whether this is the case is a question of keen interest, since if some treatment
combination has smaller within-run variation, this is an operational advan-
tage. Is the within-run variation impacted by the factors Speed (x1), Initial
compression (x2), or Final compression (x3)? We answer this question by plot-
ting the 1200 weights and by modeling the 48 within-run standard deviations
in Table 4.1. Figure 4.4 shows a plot of the 1200 tablet weights arranged by
treatment combinations. The smallest 17 tablet weights appear in bold in the
plot. All come from the higher Speed. This is somewhat surprising, since the
tablet weight mean is larger at high Speed.
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Fig. 4.4. Variability graph for 1200 tablet weights

To see what other factors, if any, affect within-run variability, we model
the natural log of the within-run sample standard deviations, which appear
in the last column of Table 4.1. (The logarithm is a variance-stabilizing trans-
formation for sample variances and standard deviations; see Section 2.8.3.)
Figure 4.5 shows that both x1 (Speed) and x3 (Final compression) affect
the variability of weight, with higher speed and lower compression producing
more variability. Furthermore, b2 = 0.053 and b2·3 = −0.052 have p-values
approaching .05. When Final compression is high, these terms cancel one
another, so that the level of x2 makes no difference. However, when Final
compression is low (x3 = −1), the terms combine to equal 0.105x2, imply-
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ing that high Initial compression and low Final compression is a particularly
variable combination.

The F -test for Replicate is nearly significant as well (F = 2.35, p = .061).
The data suggest that averaging across the eight treatment combinations,
the first couple of replicates had smaller within-run variability than the later
replicates.

Analysis of Variance for ln(StdDev) 

Source DF Sum of Squares Mean Square F Ratio

Model 12 1.8918369 0.157653 4.7142

Error 35 1.1704756 0.033442 Prob > F

C. Total 47 3.0623125  0.0002

Expanded Estimates for ln(StdDev) 

Term Estimate Std Error t Ratio Prob>|t|

Intercept -5.077 0.026 -192.336 <.0001

Rep[1] -0.149 0.059 -2.530 0.016

Rep[2] -0.084 0.059 -1.424 0.163

Rep[3] 0.108 0.059 1.829 0.076

Rep[4] 0.006 0.059 0.104 0.918

Rep[5] 0.081 0.059 1.377 0.177

Rep[6] 0.038 0.059 0.645 0.523

x1 0.130 0.026 4.928 <.0001

x2 0.053 0.026 2.012 0.052

x3 -0.084 0.026 -3.175 0.003

x1*x2 -0.001 0.026 -0.023 0.982

x1*x3 -0.040 0.026 -1.508 0.141

x2*x3 -0.052 0.026 -1.966 0.057

x1*x2*x3 -0.014 0.026 -0.521 0.605

Fig. 4.5. Analysis of ln(StdDev) per run for 48 runs

Searching for dispersion effects (i.e., factor effects on the variability) is
important for many process improvement applications. This topic is taken up
in more detail in Sections 13.3 and 14.3. We are not investigating here whether
the run-to-run variance depends on any of the factors because this variance
is negligible compared to the within-run variation. Lamb, Boos, and Brownie
(1996) did check for inequality of run-to-run variability, assuming no replicate
effect, and found no significant differences.

4.1.4 Are the previous conclusions influenced by just a few
outliers?

The analysis of 48 means is little affected by the tablets with extremely low
weights. Likewise, eliminating the lowest tablet weights would not alter the
conclusion that the predominate source of variation is within runs. However,
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exclusion of these outlier observations might possibly alter the conclusion that
low Speed and high Final compression is necessary to minimize variability.

Tablets with extreme weights ought to be examined physically. Low
weights may arise due to low density or due to being undersized or broken.
Understanding better the cause for the low weights will supplement the in-
sight from a statistical model that indicates which factor levels are preferred.
The lowest 2% (24/1200) of the weights all occurred at high Speed and 22 of
the 24 occurred at low Final compression. Clearly, the cause is linked to this
combination of levels. If one were to eliminate the 17 tablet weights below 0.48
and repeat the analysis of ln(StdDev), the signs of the main effect estimates
are unchanged, but only b1 is statistically significant.

The preference for low Speed is fully supported by the data, whether we
exclude the low weights or not. Considering only the 600 tablets produced
at low Speed, the compression factors do not appear to affect the mean or
variance for weight. There is some variation from run to run, but the within-
run variability remains the dominant variance. The coefficient of variation for
weight is about 1.2% at low speed. If this is considered too large, further work
to reduce the within-run variability is needed.

4.2 Example 4.2: 29 Factorial for Peptide Research

Wang, Dipasquale, Bray, Maeji, and Geysen (1993) presented results involv-
ing the binding capacity of the neuropeptide substance P (SP) systematically
modified by replacing native l-amino acids with d-amino acids in nine posi-
tions of the amino acid sequence of SP. The authors measured the percentage
of inhibition of a reagent labeled SP for the 29 sequences. These data were
analyzed by Young and Hawkins (1995) after correcting two typographical er-
rors in Wang et al.’s (1993) Table 1. We denote the factors by xi, i = 1, . . . , 9.
Wang et al. (1993) remarked that x1–x5 are N-terminal residues, whereas
x6–x9, the last four positions, are C-terminal residues. This is an important
distinction in that these factor groups affect the response differently. We code
each l-amino acid as the high level +1 and each d-amino acid as the low
level −1. Higher inhibition percentages are preferred, and this is expected for
sequences with predominantly l-amino acids. The percent inhibition values
(P ) are given in Table 4.2, where each row corresponds to a different x1–x5

combination, and each column corresponds to a different x6–x9 combination.
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Table 4.2. Percent inhibition values for 512 amino acid sequences from
Wang et al. (1993)

x6:− + − − − + + − + − − + + + − +
x7:− − + − − + − + − + − + + − + +
x8:− − − + − − + + − − + + − + + +

x1x2x3x4x5 x9:− − − − + − − − + + + − + + + +
−−−−− 15 22 17 3 29 1 0 3 5 9 11 45 56 54 86 96
+ −−−− 10 8 17 3 11 14 0 20 27 7 27 23 37 41 77 0
− + −−− 12 33 14 15 19 20 11 2 13 20 26 22 30 42 68 94
+ + −−− 31 10 0 11 15 7 3 0 18 14 9 19 19 22 52 92
−− + −− 22 0 0 0 29 18 12 14 15 5 13 36 43 31 70 94
+ − + −− 28 3 0 11 2 3 13 24 17 23 19 27 21 16 39 95
− + + −− 13 12 10 2 3 4 3 11 5 22 17 0 15 17 80 92
+ + + −− 0 19 14 11 5 18 0 8 6 12 21 29 39 41 74 95
−−− + − 20 28 0 31 8 29 16 26 24 37 30 58 74 80 82 100
+ −− + − 10 0 5 4 2 19 26 14 20 32 24 50 42 60 69 100
− + − + − 23 10 1 4 0 4 0 8 8 25 6 51 55 42 57 64
+ + − + − 0 21 13 26 26 9 6 7 5 6 21 42 43 49 69 98
−− + + − 17 14 16 20 27 27 23 15 36 26 32 43 60 53 69 100
+ − + + − 10 6 11 11 9 13 6 22 17 14 25 8 9 18 41 99
− + + + − 19 2 1 13 5 14 0 15 1 0 0 59 73 73 75 100
+ + + + − 18 7 11 9 14 3 11 44 12 16 8 72 63 72 76 100
−−−− + 21 17 14 15 0 21 15 27 22 39 9 59 70 74 73 95
+ −−− + 17 17 0 21 0 5 14 26 12 0 4 32 32 69 0 100
− + −− + 17 4 5 3 18 10 10 13 20 14 16 52 47 62 54 96
+ + −− + 4 18 18 5 4 20 13 17 16 15 6 48 52 50 36 98
−− + − + 18 18 14 4 17 23 33 25 4 24 23 39 34 41 63 95
+ − + − + 12 5 11 10 13 18 22 18 23 17 19 0 18 39 36 99
− + + − + 0 0 3 2 16 0 0 0 0 0 23 32 0 0 29 97
+ + + − + 8 11 12 19 16 29 13 14 46 19 13 28 50 83 85 97
−−− + + 0 7 0 2 22 22 10 18 19 15 16 81 33 80 68 98
+ −− + + 7 12 14 17 17 0 0 4 3 19 24 43 64 79 79 100
− + − + + 13 6 6 15 17 2 0 17 17 22 20 15 66 76 100 98
+ + − + + 20 8 3 9 7 25 16 29 31 23 52 49 35 54 67 100
−− + + + 19 7 13 18 21 6 3 14 2 20 17 65 62 67 81 99
+ − + + + 8 12 10 21 18 0 0 0 0 0 0 39 60 91 91 98
− + + + + 0 0 0 51 62 7 1 0 0 0 0 87 92 95 83 100
+ + + + + 14 0 20 4 9 1 0 0 0 0 0 89 80 85 70 99
Column No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Whereas the rows of Table 4.2 are arranged in standard order, the columns
are sorted by the number of l-amino acids at the C-terminal end. Grouping
the columns in this manner reveals the similarity of the data for columns
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with like number of l-amino acids at the C-terminal end. Figure 4.6 shows a
histogram for P for each group of columns.

Apart from two outliers, note how little variation exists among the 32
responses from Column 16. This alerts us to a feature of the measurements.
The percentage inhibition values in Table 4.2 were determined by measuring
the amount of bound reagent labeled SP using a multigamma counter. We
surmise from the article that this Poisson-type count c was converted to the
inhibition percentages in Table 4.2 as

P = maximum{0, 100[1 − (c/c100%)]}, (4.1)

where c100% is the radioactive count using only the reagent labeled SP in
the assay; that is, P near 100 corresponds to small counts, and P near 0
corresponds to (more variable) large counts. As discussed in Section 2.8.2,
the square root transformation stabilizes the variance for Poisson responses.
Thus, we propose using the transformation

T =
√

1 − P/100 = minimum{1,
√

c/c100%}. (4.2)

If P were confined to the range [0, 50], this transformation would have little
effect. However, here P ranges from 0 to 100, and the transformation has
the effect of compressing values corresponding to P near zero; see Figure
4.7. When P = 0, the actual ratio c/c100% is not recorded but is censored
(i.e., truncated) at 1. This accounts for the prevalence of zeros in Table 4.2.
This censoring has a negligible impact on the response, especially after our
transformation. Furthermore, the investigators were disinterested in peptides
with P < 25%.

4.2.1 Choosing a reduced model for Wang’s 29 factorial data

Suppose we fit a saturated model with 511 terms for the response T . Lenth’s
PSE = 0.00412, and 54 of the estimates exceed 1.97(.00412), where cIER

.05 =
1.97 is the .05 IER critical value from the first table in Appendix C. If there
were no systematic effects, one would expect about half that number, since
(.05)511 = 25.55. With such a large number of potential Type I errors, we
should be more stringent in declaring effects to be statistically significant, lest
we complicate the model unnecessarily. One approach is to control the EER;
the other is to control the false discovery rate, based on the method described
in Section 14.2.2. Using Appendix C’s EER critical value of cEER

.20 = 3.572,
so that the probability of making one or more Type 1 errors experimentwise
is at most 20%, we find 20 significant effects (see Table 4.3). For controlling
the false discovery rate (FDR) for this example, see Section 14.2.2. The p-
values in Table 4.3, which are needed for the FDR procedure, are based on
40,000 simulations of 511 estimates. None of the 511×40, 000 = 20.44 million
estimates exceeded 6.23, the 12th largest Lenth t in Table 4.3. The last column
is the p-value based on the t511/3 distribution; the agreement is remarkable.
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Fig. 4.6. Histograms for P for subsets of the data in Table 4.2
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Fig. 4.7. Transformation and histograms for response in Wang et al. (1993) data

This indicates that for large m, Lenth’s proposal of using m/3 df is accurate
for extreme p-values.

One clearly needs a saturated model involving the four C-terminal fac-
tors, x6–x9, since 13 of 15 terms involving only these 4 factors are significant,
including the four-factor interaction. This model would account for the dif-
ferences between columns for Table 4.2. In addition, x4 has an effect that
varies from column to column, as reflected in the three terms involving x4

and the C-terminal factors. If one estimates the effect for x4 using each of the
16 columns of Table 4.2 individually, the first 11 columns produced negligible
estimates for b4 ranging from 0.010 to −0.021, whereas the last five columns
produced b4 values ranging from −0.070 to −0.097. There are three additional
terms listed in Table 4.3: x1 ∗x2, plus two interactions involving x4 ∗x5. These
suggest effects related to pairs of adjacent N-terminal amino acids.

To construct a hierarchical model involving the 20 effects in Table 4.3
would require 75 terms in all; this is considered too complicated to be useful.
Instead, if we use an EER α = .05, only the largest 15 estimates in Table 4.3
are significant, and these involve only x4 and x6–x9. A full factorial model for
T in these five significant factors has R2 = 82%. A plot of observed T versus
T̂ reveals three prominent outliers with Studentized residuals of 7.62, 5.13,
and −4.93 (see Figure 4.8). The last column of Table 4.2 contains P = 0 and
P = 64%; these outliers with larger-than-expected T appear in the upper-left
corner in Figure 4.8. The third outlier is the P = 100 value in column 15. This
appears as T = 0, T̂ = 0.49 in the figure. Without the variance-stabilizing
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transformation, this point is not recognized as an outlier. Omitting these
three values and refitting the full factorial model in five factors, the R2 value
increases to nearly 86%.

Table 4.3. Largest estimates from saturated model for T ; 20 exceed the
EER critical value from Appendix C for α = .20

Empirical t511/3

Source Estimate PSE Lenth t p-Value p-Value
Intercept 0.8181 0.0041
x9 −0.0974 0.0041 −23.65 .0000000 1.1e−55
x8 −0.0881 0.0041 −21.38 .0000000 4.3e−50
x7 −0.0779 0.0041 −18.91 .0000000 1.1e−43
x6 −0.0636 0.0041 −15.45 .0000000 3.2e−34
x8 ∗ x9 −0.0621 0.0041 −15.07 .0000000 3.7e−33
x7 ∗ x8 −0.0533 0.0041 −12.93 .0000000 4.3e−27
x7 ∗ x9 −0.0524 0.0041 −12.72 .0000000 1.7e−26
x6 ∗ x9 −0.0428 0.0041 −10.39 .0000000 6.7e−20
x6 ∗ x8 −0.0384 0.0041 −9.31 .0000000 6.2e−17
x6 ∗ x7 −0.0350 0.0041 −8.49 .0000000 9.9e−15
x4 −0.0257 0.0041 −6.23 .0000000 3.62e−9
x7 ∗ x8 ∗ x9 −0.0237 0.0041 −5.75 .0000000 3.98e−8
x6 ∗ x8 ∗ x9 −0.0189 0.0041 −4.60 .0000087 .0000083
x4 ∗ x6 ∗ x7 ∗ x8 ∗ x9 0.0181 0.0041 4.38 .0000222 .0000204
x4 ∗ x8 −0.0178 0.0041 −4.32 .0000284 .0000263
x4 ∗ x9 −0.0163 0.0041 −3.95 .0001182 .0001132
x1 ∗ x2 −0.0161 0.0041 −3.87 .0001574 .0001531
x4 ∗ x5 ∗ x6 ∗ x7 ∗ x8 ∗ x9 0.0157 0.0041 3.81 .0001961 .0001910
x6 ∗ x7 ∗ x8 ∗ x9 0.0153 0.0041 3.72 .0002747 .0002682
x1 ∗ x2 ∗ x4 ∗ x5 0.0148 0.0041 3.59 .0004429 .0004347
x2 ∗ x3 ∗ x6 ∗ x7 ∗ x8 ∗ x9 0.0145 0.0041 3.53 .0005467 .0005376
x3 ∗ x4 ∗ x6 ∗ x7 ∗ x8 ∗ x9 0.0143 0.0041 3.46 .0006965 .0006830
x5 ∗ x6 −0.0133 0.0041 −3.22 .0015715 .0015416
x1 ∗ x3 ∗ x4 0.0132 0.0041 3.20 .0016492 .0016193
x4 ∗ x6 −0.0126 0.0041 −3.07 .0025576 .0025198
x4 ∗ x7 −0.0126 0.0041 −3.05 .0026866 .0026454

The three outliers noted above might be reexamined to see whether the
recorded data is in fact correct. If we refit the full factorial model in 5 fac-
tors to the remaining 509 observations, there are an additional 10 Studentized
residuals with magnitude of 3 or more. A normal plot reveals a distribution
with much heavier tails than a normal (see Figure 4.9). The most likely ex-
planation is that factors x1–x3 and x5 have effects that our current model
ignores.



128 4 More Full Factorial Design Examples

0

0.2

0.4

0.5

0.7

0.9

s
q
rt
(1

-P
/1

0
0
) 
A
c
tu
a
l

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

sqrt(1-P/100) Predicted P<.0001

RSq=0.82 RMSE=0.1022

Fig. 4.8. Observed versus predicted T = 1− P/100 for full factorial model in x4,
x6, x7, x8, and x9

-4

-2

0

2

4

S
tu
d
en
ti

ze
d

R
es
id

 T

-3 -2 -1 0 1 2 3

Normal Score

Fig. 4.9. Studentized residuals for full factorial model in x4, x6, x7, x8, and x9 after
three extreme outliers are omitted



4.2 Example 4.2: 29 Factorial for Peptide Research 129

How do we explore the need for additional terms with the three outliers
removed? Given the lack of orthogonality and our interest in parsimonious
models, we choose stepwise regression, adding terms without any constraints
for the model to be hierarchical. If we specify α = .001 as the probability to
enter, 22 terms are added. The first four terms are main effects for x6–x9,
followed by all their two-factor interactions. Eight of the final 12 terms come
from the five-factor model fit earlier. The other four terms are x1 ∗ x2 and
x1∗x2∗x4∗x5, plus two six-factor interactions. Using α = .01 results in a model
with 37 terms; the last 15 are all interactions, including several with seven
or eight factors. No simple model appears to account for all the systematic
variation. Although a model involving just five of the nine factors explains
86% of the variation in T , we recognize that some additional systematic effects
remain.

4.2.2 Classification tree analysis

When a single simple model cannot account for all of the variation, it is
sometimes advisable to split the data into segments and fit simpler models
to each segment. Young and Hawkins (1995) analyzed the response P using
a classification tree. Their initial fitted tree had 16 terminal nodes (or leaves)
and utilized 6 factors (x4–x9). This fit identified five suspected outliers. Fitting
a tree with these outliers removed produced a tree with 17 leaves utilizing 8
of the 9 factors, and having R2 = 81%. We now fit a classification tree for
the response T , and find that the variance-stabilizing transformation assists
in determining a simpler model.

Beginning with the full 29 and using JMP 7.0’s Partition Modeling to fit
the response T , the “Actual versus Predicted” plot reveals the three extreme
outliers as soon as the model contains five or more leaves. Excluding these
three observations, we obtain a tree with 20 leaves and R2 = 87%, which
requires only 6 of the 9 factors. Figure 4.10 displays the tree, and Table
4.4 provides a summary of each leaf, sorted by the predicted T . The tree
is exceedingly simply to interpret, largely because the splits at each level
of the hierarchy involve the same factor: first x9, then x8, x7, x6, and x4,
and, finally, x5. Note that this structure was not imposed, nor is it typical of
classification tree models. Further, in Figure 4.10 we see that the branch to
the right, corresponding to higher values of T , is the d-amino acid in every
case except for leaves 5 and 6. According to this model, the one exception
where replacement of the native l-amino acid decreases T (i.e., increases P )
is when both x4 and x6 have the d-amino acid.



130 4 More Full Factorial Design Examples

All Row s

x9

L

x8

L

x7

L

x6

L

x4

L D

x5

L D

D

x4

L D

x5

D L

D

x6

L

x4

L

x5

L D

D

x5

L D

D

D

x7

L

x6

L

x4

L D

D

D

D

x8

L

x7

L

x6

L

x4

L D

D

D

D

Leaf   1   2  3    4   5  6       7  8    9 10  11   12 13 14 15    16 17 18 19 20

Fig. 4.10. Classification tree for T , excluding three outliers, with R2 = 87%



4.2 Example 4.2: 29 Factorial for Peptide Research 131

Table 4.4. Leaf summary for model in Figure 4.10, sorted by T̂

No. of C- Std.
Leaf Terminal Dev.

No. Leaf Label D’s Count T̂ P̂ for T

1 x9=l, x8=l, x7=l, x6=l, x4=l 0 15 0.058 99.7 0.065
2 x9=l, x8=l, x7=l, x6=l, x4=d, x5=l 0 8 0.154 97.6 0.075
3 x9=l, x8=l, x7=l, x6=l, x4=d, x5=d 0 7 0.243 94.1 0.031
7 x9=l, x8=l, x7=d, x6=l, x4=l, x5=l 1 8 0.445 80.2 0.145
4 x9=l, x8=l, x7=l, x6=d, x4=l 1 15 0.520 72.9 0.111
5 x9=l, x8=l, x7=l, x6=d, x4=d, x5=d 1 8 0.550 69.8 0.132
12 x9=l, x8=d, x7=l, x6=l, x4=l 1 16 0.637 59.4 0.161
8 x9=l, x8=l, x7=d, x6=l, x4=l, x5=d 1 8 0.649 57.8 0.149

16 x9=d, x8=l, x7=l, x6=l, x4=l 1 16 0.662 56.2 0.178
9 x9=l, x8=l, x7=d, x6=l, x4=d, x5=l 1 8 0.669 55.2 0.185
6 x9=l, x8=l, x7=l, x6=d, x4=d, x5=l 1 8 0.705 50.4 0.196

13 x9=l, x8=d, x7=l, x6=l, x4=d 1 16 0.797 36.4 0.114
10 x9=l, x8=l, x7=d, x6=l, x4=d, x5=d 1 8 0.815 33.6 0.085
17 x9=d, x8=l, x7=l, x6=l, x4=d 1 16 0.827 31.6 0.099
11 x9=l, x8=l, x7=d, x6=d 2 32 0.911 17.0 0.064
14 x9=l, x8=d, x7=l, x6=d 2 32 0.918 15.8 0.059
15 x9=l, x8=d, x7=d 2–3 64 0.924 14.6 0.068
18 x9=d, x8=l, x7=l, x6=d 2 32 0.924 14.5 0.058
20 x9=d, x8=d 2–4 128 0.942 11.4 0.045
19 x9=d, x8=l, x7=d 2–3 64 0.945 10.8 0.055

Further insight is gained by scoring the 20 leaves in terms of the number
of d-amino acid replacements in the C-terminal factors x6–x9. Note that two
or more replacements (the last six leaves in Table 4.4) have T̂ > 0.9 and very
little unexplained variability. These six leaves account for 352 of the 512 com-
binations. At the other extreme, the first three leaves have no replacements in
the C-terminal factors, and T̂ < 0.25, again with little unexplained variation.
The other 11 leaves correspond to leaves with a single d-amino acid replace-
ment among x6–x9. Although these leaves account for only one-fourth of the
data, they correspond to the most variation (both explained and unexplained);
predicted P for these leaves ranges from 32% to 80%.

More properly accounting for the error variation in the response has led to
a more parsimonious model (in terms of number of factors) than the classifi-
cation tree obtained by Young and Hawkins (1995). Our model for T explains
the majority of the variation in T , at the same time highlighting the need for
more insight regarding the factor effects when a single C-terminal l-amino
acid is replaced with d. For a final look at the Wang et al. data, in the next
subsection we examine models for the 128 treatment combinations with 1
C-terminal replacement.

Other models might be useful, including regression trees that fit an additive
regression model at each leaf (see Loh 2006). We also considered the method
of Filliben and Li (1997), who suggested an alternative empirical means for
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fitting different regression models for segments of the data, based on analysis
of the two-factor interactions. However, their approach did not provide much
insight for Wang’s data.

4.2.3 Further analysis of Wang et al. (1993) data with a single
C-terminal amino acid replacement

Figure 4.11 shows a plot of T versus the number of d-amino acid replace-
ments among the four factors x6–x9. Five outliers are highlighted. The clas-
sification tree predicts T well for cases with no replacements or with two or
more replacements, but leaves much variation unexplained when there is a
single replacement with a d-amino acid for x6–x9. Considering only the 127
observations with 1 replacement (excluding the outlier), the 11 leaves of the
classification tree explained only 42% of the variation. Here we investigate
other models for just this portion of the data (columns 12–15 of Table 4.2).
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Fig. 4.11. T versus the number of d-amino acid replacements for x6–x9

We construct a variable “C-terminal D” with the four levels {6, 7, 8, 9} to
indicate for columns 12–15 which factor has the d-amino acid. Fitting a full
factorial model in this factor and x1–x5 reveals that two-factor interactions
for factors in adjacent positions on the peptide are statistically significant,
whereas other two-factor interactions are not. Since the significant two-factor
interaction estimates are all negative, this implies that, apart from the ad-
ditive main effects, having adjacent amino acids match is beneficial; that is,
it decreases E(T ) and so increases P . Table 4.5 provides the ANOVA for a
reduced model with R2 = 60%, and Table 4.6 lists the estimated coefficients.
Note that, surprisingly, the estimate for x1 is positive, indicating that a d-
amino acid replacement here is actually beneficial. Furthermore, since the
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main effects for x2 and x3 are not significant, d-amino acids in the first three
positions can be beneficial, by virtue of b1·2 = −0.034 and b2·3 = −0.52. The
RMSE for this model is 0.12, which is an improvement over the within-leaf
standard deviations in Table 4.4 for this portion of the data.

Table 4.5. ANOVA for a reduced model for T , with data from Table 4.2,
columns 12–15

Source df SS MS F -Ratio p-Value
Model 13 2.429 0.1868 12.818 < .0001
Error 113 1.648 0.0146
Total 126 4.076

Table 4.6. Estimated coefficients for main effects model, plus two-factor
interactions of adjacent factors

Term Estimate Std Error t-Ratio p-Value
Intercept 0.671 0.011 62.56 .000
x1 0.026 0.011 2.41 .018
x2 −0.006 0.011 −0.57 .570
x3 −0.002 0.011 −0.15 .882
x4 −0.078 0.011 −7.26 .000
x5 −0.017 0.012 −1.37 .172
C−terminal D[6] −0.095 0.019 −5.06 .000
C−terminal D[7] −0.026 0.019 −1.41 .162
C−terminal D[8] 0.047 0.019 2.53 .013
C−terminal D[9] 0.074 0.019 4.00 .000
x1*x2 −0.034 0.011 −3.22 .002
x2*x3 −0.052 0.011 −4.89 .000
x3*x4 −0.036 0.011 −3.32 .001
x4*x5 −0.023 0.011 −2.10 .038
x5*x6 −0.036 0.012 −2.90 .004

4.2.4 Summary of our analysis

We have analyzed Wang’s 29 data in four separate steps. First, we plotted
the P data, observed differences in variability, and chose T rather than P
as the response, based on our understanding the nature of the measurement.
Second, we fit a full factorial model for T , using an EER of 0.05 to keep the
model from being too complex to interpret. We found that a full factorial
model in the factors x4 and x6–x9 explained 86% of the variation in T , once
three extreme outliers were removed. This initial analysis proved the primary
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importance of the C-terminal factors x6–x9. The prevalence of outliers for
our reduced model suggested that this five-factor model, although useful, still
omitted some systematic effects. Thus, we tried another modeling approach,
fitting a classification tree as Young and Hawkins (1995) had done. By using T
rather than P as the response, we obtained a simpler model than Young and
Hawkins and one that was easily interpreted, especially after sorting the leaves
by the predicted response. The classification tree revealed that the number of
d-amino acid replacements for x6–x9 prominently affects the response. The
tree predicted the response well, except for the data in columns 12–15 of Table
4.2, where there is a single position with a d-amino acid among the last four.
The final analysis focused on these four columns and found that although not
all main effects were important, consistency of adjacent positions did have a
beneficial effect on the response. In this final step, we focused on obtaining a
model that was interpretable, excluding some higher-order interactions that
were statistically significant.

In Chapter 8, we reanalyze fractions of the 29 data to illustrate the use
of various (less common) fractional factorial designs. By doing so, we will
learn that many of the conclusions obtained from the full 29 would have been
ascertained from a small subset of the 512 treatment combinations.

4.3 Example 4.3: 25 with Centerpoint Runs for Ceramic
Strength

Section 2.3 explained how centerpoint replicates provide an estimate for the
error variance and permit testing for nonlinearity in the factor effects. Bouler
et al. (1996)’s ceramic compressive strength data in Table 2.3 were used to
illustrate the computations. Here, we review the authors’ findings and perform
a thorough reanalysis.

The experiment involved five steps and five factors:

1. HA and β-TCP powders were blended according to a specified ratio (x1)
to form the biphasic calcium phosphate (BCP).

2. A prescribed mass (x2) of naphthalene particles of a given diameter (x3)
are mixed with the BCP powder from step 1.

3. Two milligrams of the mixture are isostatically compacted at a specified
pressure (x4).

4. The compacted cylinder is heated to 500oC to eliminate the naphthalene
and then sintered at a higher temperature (x5).

5. The sintered ceramic is then measured for compressive strength and
checked for purity.

See Table 2.2 for the factor levels.
Bouler et al. concluded that four of the five factors impact compressive

strength; only Isostatic compaction pressure (x4) was found to have no ef-
fect. In fact, in confirmation runs, they found that a wide range of pressures
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sufficiently compacted the mixture without fracturing the particles. Although
some important interactions were found, main effects dominate; compressive
strength increases with Sintering temperature and Diameter of macropores
but decreases with higher proportions of naphthalene and HA.

4.3.1 Analysis of Bouler’s data as a completely randomized design

We added the x4 main effect to the reduced model selected by Bouler et al.
to obtain the residual plot in our Figure 2.5b. Although this model has an
R2 = 84%, its lack-of-fit is highly significant (F = 25.75, p = .0003). If one
fits a saturated model instead, the t statistic for the five-factor interaction
b1·2·3·4·5 = 1.77 is t = 7.35 (p-value = .003), and all but 6 of the 31 factorial
effects are statistically significant at α = .05. Contrary to Bouler et al.’s
article, the test for curvature is also significant (p-value = .020). No simple
model satisfactorily fits these data. Nor does using a transformation of the
response remedy this problem, although taking (Strength)1/2 would improve
the residual plot for a reduced model (see Figure 2.5c).

Perhaps the lack-of-fit found in this initial analysis is indicative of the com-
plicated combination of effects. More likely, it indicates that the pure error
mean square, calculated from the centerpoint replicates, seriously underesti-
mates run-to-run experimental error. The seven centerpoint data values may
in fact correspond to observations produced from a single mixture of ingre-
dients and concurrently sintered in an oven. If so, then the pure error mean
square excludes pertinent sources of variation and is not valid for testing the
significance of model effects. Bouler et al. were silent regarding the prepara-
tion and testing sequence followed for the 39 cylinders. It is indicated that
each cycle of the sintering process, including cool down, took approximately
24 hours. Given that each test involved such a small quantity of material, it is
only reasonable that some sets of runs were sintered in the same cycle and/or
taken from the same mixture batch. For this reason, we will proceed as if this
were an unreplicated experiment. The seven “replicates” at the center will be
averaged and treated as a single observation.

Histograms for Strength and (Strength)1/2 are shown in Figure 4.12. For
(untransformed) Strength, 30 of the 33 observations fall below the midrange.
Taking the square root produces a more even distribution of response values,
and is our choice for this analysis.

Fitting a full factorial model to the 25 (Strength)1/2 values produces
Lenth’s PSE = 0.223; only four effects have Lenth t statistics exceeding 2.064,
the IER critical value for α = .05. Adding one main effect to make the model
hierarchical, the fitted model is

̂(Strength)1/2 = 2.47 − 0.45x1 − 1.41x2 + 0.68x3 + 0.80x5 − 0.54x1x5. (4.3)

This simple model explains 74% of the variation. Figure 4.13 provides a plot
of actual versus predicted values for (Strength)1/2.
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This model fits well, with the exception of not accounting for the obser-
vations with zero strength. Ten of the 32 factorial treatment combinations
produced no measurable compressive strength. In fact, the ceramic disinte-
grated at all eight runs with x2 = 1, x3 = −1. (Bouler et al. explained that
this combination produces unsuitably narrow bridges between the macrop-
ores.) This outcome is not accounted for by our current model. The next
subsection will consider models fitted to data omitting this combination.

4.3.2 Omitting one-fourth of the 25

A cube plot of the 25 strength values reveals why no simple model can ac-
count for these data (see Figure 4.14). Whenever a high quantity of small
naphthalene particles are included, the ceramic has no measurable strength,
regardless of the levels of the other factors. Whatever model applies elsewhere
in the experimental region does not apply when (x2 = 1, x3 = −1). We now
proceed by analyzing portions of the data that exclude the eight observations
for this quarter of the factorial, to obtain a suitable model for the restricted
region where the process does perform more favorably.

Considering only the data with x2 = −1 (i.e., the two left cubes in
Figure 4.14), we have an unreplicated 24. Fitting a full factorial model for
(Strength)1/2, one main effect and one interaction have statistically signifi-
cant Lenth t statistics. A hierarchical model is

̂(Strength)1/2 = 3.9 − 0.5x1 + 1.2x5 − 0.9x1x5. (4.4)

When Naphthalene % (x2) is low, high Sintering temperature (x5) is best,
especially at low HA (x1), and neither x3 or x4 appear to have any affect.

Now consider only the data with x3 = 1 (i.e., the two lower cubes in Figure
4.12). Fitting a full factorial model for (Strength)1/2, only the x2 main effect is
statistically significant, although the three terms in (4.4) are the next largest
estimates. Including these produces the fitted model

̂(Strength)1/2 = 3.1 − 0.8x1 − 1.0x2 + 1.0x5 − 0.7x1x5. (4.5)

Higher volume of Naphthalene (x2) definitely lowers Strength, even when the
particles (x3) are large. When naphthalene particles are large, high Sintering
temperature (x5) produces higher Strength, especially at low HA (x1), and,
again, x4 has no significant effect.

The fitted models (4.4) and (4.5) are quite consistent, which implies that
a simple model applies for three-quarters of the 25. We now exclude only the
eight observations at the (x2 = 1, x3 = −1) combination and fit a saturated
model. We cannot estimate the x2 ∗x3 interaction or any of the seven higher-
order interactions involving both of these factors. However, if we omit these
seven interactions, the remaining terms form a hierarchical model that can be
estimated. Fitting a model for (Strength)1/2 to just the remaining 24 factorial
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Fig. 4.14. Cube plot for Strength

combinations, the estimated coefficients all have the same standard error.
(This is true whenever one omits a quarter fraction and fits a saturated model;
see Section 8.3 for related designs.) Table 4.7 contains these estimates, sorted
from largest to smallest.

We use Lenth’s method to compute a standard error for the estimates
in Table 4.7, even though they are correlated (one-eighth of the correlations
are ±.5, and the rest are zero). For such cases, Lenth’s method is slightly
conservative (Edwards and Mee 2008). From Appendix C, the cIER

.05 critical
value for 23 contrasts is 2.097. Thus, main effects for Naphthalene % and
Sintering temperature are declared active. Although the next four terms are
not statistically significant based on Lenth’s PSE, they do form a simple
model involving interactions with the percentage of HA (x1). At the risk
of overfitting the model, we consider the following equation for predicting
Strength, obtained by fitting a reduced model with six effects:

(2.99 − 0.61x1 − 0.88x2 + 0.47x4 + 1.07x5 + 0.48x1x4 − 0.72x1x5)2. (4.6)



4.3 Example 4.3: 25 with Centerpoint Runs for Ceramic Strength 139

Table 4.7. Estimated coefficients for (Strength)1/2 for model fit to 24
factorial treatment combinations

Term Estimate PSE Lenth t
Intercept 2.839 0.466 6.09
x5 1.050 0.466 2.25
x2 −1.039 0.466 −2.23
x1 ∗ x4 0.698 0.466 1.50
x1 ∗ x5 −0.574 0.466 −1.23
x4 0.468 0.466 1.00
x1 −0.447 0.466 −0.96
x1 ∗ x4 ∗ x5 0.411 0.466 0.88
x1 ∗ x3 −0.373 0.466 −0.80
x1 ∗ x2 ∗ x5 0.353 0.466 0.76
x1 ∗ x3 ∗ x4 −0.332 0.466 −0.71
x1 ∗ x2 ∗ x4 0.324 0.466 0.69
x3 0.311 0.466 0.67
x1 ∗ x3 ∗ x4 ∗ x5 −0.168 0.466 −0.36
x2 ∗ x5 −0.161 0.466 −0.34
x1 ∗ x2 ∗ x4 ∗ x5 0.152 0.466 0.33
x3 ∗ x4 ∗ x5 0.127 0.466 0.27
x3 ∗ x4 0.127 0.466 0.27
x2 ∗ x4 0.108 0.466 0.23
x1 ∗ x2 0.102 0.466 0.22
x3 ∗ x5 −0.098 0.466 −0.21
x1 ∗ x3 ∗ x5 −0.085 0.466 −0.18
x4 ∗ x5 −0.033 0.466 −0.07
x2 ∗ x4 ∗ x5 −0.005 0.466 −0.01

Model (4.6) indicates that the smaller the HA% (x1), the greater the ben-
efit from high Sintering temperature (x5), which is consistent with both (4.4)
and (4.5). At low HA%, there is no benefit to higher Compaction pressure
(x4); however, when the HA% is high, the higher Compaction pressure seems
to increase Strength. The reduced model with four main effects and two in-
teractions explains 85% of the variation in (Strength)1/2, whereas the model
with only two main effects explains just 49% of the variation for these 24 ob-
servations. Comparing Table 4.7 with the reduced model (4.6), note that the
estimates changed when we omitted insignificant terms, due to correlations
among the estimates in the saturated model. The standard error for b0 and
b2 = −0.88 is 0.193, and the other coefficients in (4.6) have a standard error
of 0.182; these likely overstate the precision (and statistical significance) of
the coefficients, because they are based on the reduced model’s MSE.

Figure 4.15 shows the residual plot for the reduced model (4.6). We prefer
the fitted model (4.6) fitted to a portion of the data, rather than the model
(4.3) obtained using all the factorial data. Since the model (4.3) does not fit
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well when (x2 = 1, x3 = −1), where Strength = 0, it is preferable to ignore this
region when fitting a model. For the reduced data set, the residuals support
the assumption of common error variance.
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Fig. 4.15. Residual versus predicted plot for (Strength)1/2 based on (4.6)

4.3.3 Factor relationship diagram and final discussion of Bouler et
al. design

We concluded earlier that the seven centerpoint replicates were likely produced
together. If this is the case, then other sets of runs might also have been
blended or sintered as a group, producing correlations among the errors. If
such an experiment is much more convenient, then design planning needs to
take this into account. For instance, since the sintering step requires a full 24
hours, it may be expedient to sinter four to eight observations together at a
time. If 8 at a time, then the 32 factorial combinations would be partitioned
into 4 blocks of size 8, blocking on x5 and the five-factor interaction; the
centerpoint runs would then constitute a fifth block. Within each block, the
batches of BCP need to be mixed individually for each run, even the common
centerpoint runs. For such a design, the centerpoint runs would be used to
estimate the split-unit variance, whereas testing nonlinearity would involve a
whole-unit (i.e., interblock) contrast. We now consider a diagram that helps
document such subtle design differences.

Bergerud (1996) introduced factor relationship diagrams that effectively
display the treatment combinations for factorial designs whether they are run
with either blocking or the hierarchical unit structure of split-unit designs.
There is no need to display the unit structure for completely randomized de-
signs. However, for designs with randomization restrictions, Bergerud’s factor
relationship diagrams (FRDs) are particularly useful.
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Figure 4.16 provides a FRD of the treatment and unit structure for Bouler
et al.’s (1996) 39-run experiment, assuming this 25 factorial, with 7 center-
point replicates, was performed as a split-unit design with 1 whole-unit factor
(Temperature) and 5 whole units. The unit structure for split-unit designs is
hierarchical. Here, furnace runs are the largest unit grouping, with canisters
nested within runs. This unit structure is displayed by identifying the ran-
domized order of the five furnace runs and drawing a dashed line under this
to emphasize that canisters are grouped within runs. Sanders and Coleman
(2003) proposed using such lines to indicate “restrictions on variation.”

Sintering temperature is the only factor that varies from furnace run to
furnace run, so its levels are placed on top. Since two furnace runs are made
at low temperature and two are made at high temperature, another branch
is displayed for the interaction used to create this blocking. Note that the
diagram could have been drawn with either x1x2x3x4 or the five-factor inter-
action, since both are confounded with blocks. Factors x1–x4 distinguish the
different compositions. Because no additional restriction lines are drawn, it is
assumed that each of the 39 compositions is formed individually.

If Bouler et al.’s (1996) experiment were performed in the manner dis-
played in Figure 4.16, the pure error mean square could be used to test all of
the effects except for those confounded with blocks: x5, x1 ∗ x2 ∗ x3 ∗ x4, the
five-factor interaction, and the pure quadratic term. If testing for the signifi-
cance of x5’s main effect is essential, then one should perform the experiment
with more blocks (i.e., more furnace runs).

If the material for the seven centerpoint canisters were blended as a batch
and material for the other 32 canisters were blended individually prior to com-
paction and sintering, then another restriction line would be drawn just below
the level for x3, emphasizing that the composition step was performed just 33
times. The seven branches at the center would fall below this line, emphasizing
that these seven canisters were formed from a single blend. Whether the re-
sults would differ for these two manners of preparing the centerpoint canisters
depends on the extent of variation associated with raw material heterogeneity
or mixing. FRDs are particularly useful for clarifying and communicating such
changes to an experimental plan.



5

Fractional Factorial Designs: The Basics

This chapter presents the essential ideas of regular fractional factorial designs.
Its sections are as follows:

Section 5.1. Initial Fractional Factorial Example

Section 5.2. Introduction to Regular Fractional Factorial Designs

Section 5.3. Basic Analysis of Regular Fractional Factorial Designs

Following this introductory chapter on fractional factorials are six more chap-
ters with additional details and examples.

Regarding notation for factors, sometimes we identify factors using sub-
scripts (e.g., x1 for the first factor). In other cases, it is more convenient to
avoid the use of subscripts, in which case we will label coded factors using
bold uppercase letters or numerals (e.g., A or 1).

5.1 Initial Fractional Factorial Example

Fractional factorial designs permit investigation of the effects of many factors
in fewer runs than a full factorial design. To illustrate a typical fractional
factorial experiment, consider the following 16-run experiment for 5 factors.
Hu and Bai (2001) investigated how to control the phosphorus content of
nickel–phosphorus deposits electroplated from a modified nickel bath. Their
initial experiment involved five factors, each at two levels (refer to Table 5.1).

Rather than completing a full 25 factorial, they performed just 16 treat-
ment combinations, as shown in Table 5.2, which are half of the possible 32
combinations. Hu and Bai stated that the nickel bath was freshly prepared
for each experimental run. Although many other procedural details are given,
they fail to mention the run order used. (The row order shown is a standard
order for listing treatment combinations, not the run order that should be
followed for experimentation. Randomization of the order typically reduces

©  Springer Science + Business Media, LLC 2009DOI: 10.1007/b105081_ ,
,R.W. Mee, A Comprehensive Guide to Factorial Two-Level Experimentation
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the impact of any undesirable correlation or trend in the random errors.) A
single percent phosphorus (%P) measurement is reported for each run.

Table 5.1. Factors and levels for electroplating experiment

Levels
Factors −1 1
A Temperature (oC) 20 50
B Current density (A/m2) 500 2500
C pH 1 4
D NaH2PO2 concentration (M) 0.5 1
E Stirring rate (rev/min) 200 400

Table 5.2. Treatment combinations (t.c.) and percent phosphorus (%P) for
Hu and Bai’s electroplating experiment

t.c. A B C D E %P
1 −1 −1 −1 −1 1 0.51
2 1 −1 −1 −1 −1 1.54
3 −1 1 −1 −1 −1 2.38
4 1 1 −1 −1 1 12.20
5 −1 −1 1 −1 −1 5.93
6 1 −1 1 −1 1 5.83
7 −1 1 1 −1 1 2.90
8 1 1 1 −1 −1 4.73
9 −1 −1 −1 1 −1 0.49

10 1 −1 −1 1 1 1.02
11 −1 1 −1 1 1 10.59
12 1 1 −1 1 −1 12.00
13 −1 −1 1 1 1 6.50
14 1 −1 1 1 −1 4.87
15 −1 1 1 1 −1 1.86
16 1 1 1 1 1 4.49

Quick inspection of the data reveals the wide range for %P achieved in
this experiment. A histogram of the 16 %P values is a useful first step in the
analysis (see Figure 5.1). Note that three treatment combinations (4, 11, and
12) produced substantially higher %P than the rest.
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Fig. 5.1. Histogram for %P from electroplating experiment

We continue our analysis by fitting a saturated model containing all 5
main effects and 10 two-factor interactions. The 15 estimates are displayed in
a Pareto plot (Figure 5.2) and a half-normal plot (Figure 5.3). Lenth’s (1989)
pseudo-standard-error for these estimates is calculated to be

PSE = 1.5(0.590 + 0.571)/2 = 0.871.

Based on the assumption of effect sparsity implicit in Lenth’s method, only
one effect stands out as significant: the interaction of Current density and pH,
with Lenth t = −2.672/0.871 = −3.07. (The Lenth t statistic 1.529/0.871 =
1.76 for Current density has p-value = .09.)
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Fig. 5.2. Pareto plot for estimates of main effects and two-factor interactions
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The interaction graph in Figure 5.4 corresponds to the simple hierarchical
model with main effects for Current density and pH and their interaction. The
eight observations at low pH are denoted with circles, and the observations at
high pH are denoted with pluses. Clearly, %P can be increased by holding pH
low and increasing Current density. However, one observation at this combi-
nation fails to match the pattern—Run 3, where Temperature, Concentration,
and Stirring rate are all at their low level. Thus, although this simple model
with only two factors explains much of the variation in %P (R2 = 67.7%),
either we have one aberrant response value or there exists systematic variation
that this simple model fails to capture.

The researchers Hu and Bai (2001) followed this initial fractional factorial
experiment with a second experiment in which the levels of the last three
factors were held fixed (pH = 1, Concentration = 1 M, and Stirring rate =
400 rev/min) while searching along larger values for both Temperature and
Current density. This follow-up experiment may be justified as follows:

• If we assume the effect of pH on %P is negative when Current density is
high and that one would not use pH below 1, then pH = 1 is the optimal
level for maximizing %P.

• The initial experiment does suggest that using higher temperatures will
increase %P if Current density is high. The third and fourth largest esti-
mates are the main effect for Temperature and its interaction with Current
density. Although not individually significant, these estimates are synergis-
tic; that is, the conditional effect for Temperature at high Current density
is 0.970 + 0.991(1) = 1.961.
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Fig. 5.4. Interaction plot for Current density and pH

• There is little evidence that Concentration and Stirring rate affect %P,
except for the unexpectedly low response for Run 3. Setting both of these
factors at their high levels is reasonable as one investigates the impact of
raising both Temperature and Current density.

Their “steepest ascent” search in Temperature and Current density produced
%P values from 19% to 22%, with the highest outcome at 60oC and 4000
A/m2 (corresponding to A = 1.67 and B = 2.5). This follow-up experiment
will be discussed again in Section 9.3.

The Hu and Bai initial 16-run experiment illustrates four points pertaining
to the use of fractional factorial designs.

• More factors economically. Fractional factorial designs enable one to
increase the number of factors without increasing the number of runs. In
this case, the researchers opted for experimenting with five factors in half
the number of runs required by a full factorial. If one only uses full facto-
rials, a 16-run experiment would limit the choice of factors to 4 or fewer.
Since the success of an experiment depends on inclusion of important fac-
tors, being able to examine five factors rather than four without requiring
additional runs is quite useful.

• Assuming model simplicity. Fractional factorial designs permit esti-
mation of the relevant effects, provided the true situation can be usefully
described by a simple model. For the electroplating experiment, conduct-
ing only a half-fraction of the full factorial did not cause much confusion
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as the results were analyzed. Although not perfect, a simple model did
account for most of the variation, and several insights were achieved re-
garding how to increase the response.

• Projection into a few important factors. Two of the variables in-
vestigated in the electroplating experiment seemed less important. After
accounting for the effects of Temperature, Current density, and pH, little
variation in %P remained. This is often the case when experimenting with
many factors. In such cases, one does not need a full factorial design in all
of the factors.

• Informed follow-up. The design of follow-up experiments always takes
into account what was learned from an initial fractional factorial design.
For the electroplating investigation, collecting more data (e.g., completing
a full 25) in the initial experimental region would not be as informative as
augmenting the initial frugal experiment with runs in a new region where
the predicted response is higher.

Exploring more factors economically is a key feature of fractional factorial
designs. Although not suited for every situation, fractional factorial designs
have wide applicability, especially for initial experiments in situations where
follow-up experiments are feasible. We conclude this chapter with another
example to illustrate further the analysis of fractional factorial designs. First,
however, we present the key terminology and concepts needed to understand
regular fractional factorial designs more fully.

5.2 Introduction to Regular Fractional Factorial Designs

In Chapter 3, we saw how the treatment combinations of a 2k factorial could
be partitioned into 2b blocks by confounding b independent factorial effects,
and their generalized interactions, with blocks. Consider, for instance, the 25

factorial in 22 (= 4) blocks of size 25/22 = 8. Confounding with blocks the
ABD and ACE effects, and their generalized interaction ABD · ACE =
BCDE, the 32 treatment combinations of the full factorial are partitioned
into blocks as follows:
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A B C D E ABD ACE BCDE Block
−1 −1 −1 −1 −1 −1 −1 1 1

1 −1 −1 −1 −1 1 1 1 4
−1 1 −1 −1 −1 1 −1 −1 2

1 1 −1 −1 −1 −1 1 −1 3
−1 −1 1 −1 −1 −1 1 −1 3

1 −1 1 −1 −1 1 −1 −1 2
−1 1 1 −1 −1 1 1 1 4

1 1 1 −1 −1 −1 −1 1 1
−1 −1 −1 1 −1 1 −1 −1 2

1 −1 −1 1 −1 −1 1 −1 3
−1 1 −1 1 −1 −1 −1 1 1

1 1 −1 1 −1 1 1 1 4
−1 −1 1 1 −1 1 1 1 4

1 −1 1 1 −1 −1 −1 1 1
−1 1 1 1 −1 −1 1 −1 3

1 1 1 1 −1 1 −1 −1 2
−1 −1 −1 −1 1 −1 1 −1 3

1 −1 −1 −1 1 1 −1 −1 2
−1 1 −1 −1 1 1 1 1 4

1 1 −1 −1 1 −1 −1 1 1
−1 −1 1 −1 1 −1 −1 1 1

1 −1 1 −1 1 1 1 1 4
−1 1 1 −1 1 1 −1 −1 2

1 1 1 −1 1 −1 1 −1 3
−1 −1 −1 1 1 1 1 1 4

1 −1 −1 1 1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1 3

1 1 −1 1 1 1 −1 −1 2
−1 −1 1 1 1 1 −1 −1 2

1 −1 1 1 1 −1 1 −1 3
−1 1 1 1 1 −1 −1 1 1

1 1 1 1 1 1 1 1 4

The eight treatment combinations in the fourth block appear in Table 5.3.
This subset of treatment combinations is defined by ABD = ACE = BCDE
= +1; that is, only for this quarter of the full 25 factorial are these three
interaction columns identical to the intercept column. This construction of
incomplete blocks, which was introduced in Chapter 3, has a close connection
to regular fractional factorial designs. Now we introduce some terminology for
fractional factorial designs, first for this particular example and then in full
generality.
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Table 5.3. One of four blocks of treatment combinations from a 25

A B C D E
1 −1 −1 −1 −1

−1 1 1 −1 −1
1 1 −1 1 −1

−1 −1 1 1 −1
−1 1 −1 −1 1

1 −1 1 −1 1
−1 −1 −1 1 1

1 1 1 1 1

5.2.1 Defining relation, defining contrast subgroup, resolution, and
aliasing

The eight treatment combinations in Table 5.3 constitute one-fourth of a full
25 factorial design, which we denote by 25−2. The first term in the exponent
indicates the number of factors; here we have a design for five factors. The
second term in the exponent indicates what fraction of the full factorial; here
“−2” indicates a 2−2 = 1/4 fraction. This particular quarter fraction is defined
by

I = ABD = ACE = BCDE, (5.1)

where I denotes the identity column of +1’s. Expression (5.1) is known as the
defining relation for this subset of the factorial, and the elements (I, ABD,
ACE, BCDE) form its defining contrast subgroup. The other three subsets of
the full 25 factorial created on the previous page have the following defining
relations:

Block 1: I = −ABD = −ACE = BCDE,
Block 2: I = ABD = −ACE = −BCDE,
Block 3: I = −ABD = ACE = −BCDE.

Each block by itself represents another 25−2 fractional factorial from the same
family, with the elements of the defining relation differing only in sign.

The elements of the defining contrast subgroup and the defining relation
are called words. The number of factors in each interaction or word deter-
mines the length of the word. Ignoring the identity element, which has length
0, these defining relations each have two length-3 words and one word of
length 4. The shortest word in any defining relation determines a fractional
factorial design’s resolution, which is typically denoted by Roman numerals.
These 25−2 fractions have resolution III, since the defining relation contains
no words of length 1 or length 2, but does contain words of length 3. The
concept of resolution is useful, since it reflects the ability of the design to dis-
criminate between effects. The larger the resolution the better, although, in
general, larger resolution necessitates more treatment combinations. Detailed
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discussion of various fractional factorial designs over the next three chapters
is organized based on resolution.

The importance of resolution will become evident as we consider which
(combinations of) effects can be estimated from a particular fraction. A full
factorial model for a 25 contains 32 regression coefficients. With all 32 treat-
ment combinations, we can estimate all 32 coefficients [refer to the saturated
model (1.4)]. However, with only eight treatment combinations, we estimate
linear combinations of coefficients.

Consider the eight treatment combinations defined by

I = −ABD = −ACE = BCDE : (5.2)

A B C D E AB AC BC AD BD CD . . . BCDE ABCDE
−1 −1 −1 −1 −1 1 1 1 1 1 1 . . . 1 −1

1 1 1 −1 −1 1 1 1 −1 −1 −1 . . . 1 1
−1 1 −1 1 −1 −1 1 −1 −1 1 −1 . . . 1 −1

1 −1 1 1 −1 −1 1 −1 1 −1 1 . . . 1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 . . . 1 1

−1 −1 1 −1 1 1 −1 −1 1 1 −1 . . . 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 . . . 1 1

−1 1 1 1 1 −1 −1 1 −1 1 1 . . . 1 −1

With only eight observations, one can estimate an overall average and seven
regression coefficients. Thus, there must be linear dependencies among the
above columns. For instance, columns A and ABCDE are identical, and
columns BD and CE are the negative of these; that is, A = −BD = −CE =
ABCDE. We refer to A, −BD, −CE, and ABCDE as aliases since these are
different names for the same column of ±1’s. Such linear dependencies among
the columns can be recognized from the defining relation for the fraction.
Multiplying the defining relation (5.2) by factor A and simplifying,

A×(I=−ABD=−ACE = BCDE) ⇒ A = −A2BD = −A2CE = ABCDE
⇒ A = −BD = −CE = ABCDE

since any column of ±1’s times itself becomes the identify column I and any
column times I is unchanged. Note that if one were to multiply the defining
relation by any alias of A, one would get the same equation. For example, if
we multiply the defining relation by −BD, the result is

−BD × (I = −ABD = −ACE = BCDE)
⇒ −BD = A = ABCDE = −CE.

So −BD, −CE, and ABCDE are the only aliases of A.
The other six alias sets for this fraction, obtained by multiplying different

effects by the defining relation, are as follows:

• B = −AD = −ABCE = CDE
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• C = −ABCD = −AE = BDE
• D = −AB = −ABCE = BCE
• E = −ABDE = −AC = BCD
• BC = −ACD = −ABE = DE
• CD = −ABC = −ADE = BE

These seven sets of aliases, plus the defining relation contain the labels for
all 32 columns for the model matrix of the full factorial model. From this
subset of eight treatment combinations, one cannot estimate any coefficients
individually; rather one can estimate the following combinations:

• β0 − βABD − βACE + βBCDE

• βA − βBD − βCE + βABCDE

• βB − βAD − βABCE + βCDE

• βC − βABCD − βAE + βBDE

• βD − βAB − βABCE + βBCE

• βE − βABDE − βAC + βBCD

• βBC − βACD − βABE + βDE

• βCD − βABC − βADE + βBE

What use is it to be able to estimate these combinations of effects, when
in fact we are interested in estimating each main effect and perhaps some two-
factor interactions? The answer is that data from fractional factorial designs
are interpreted based on the following two assumptions:

• Sparsity of important effects. Only a few of the many possible effects
are prominent. Even if many effects are nonzero, we expect a few to stand
out as much larger than the rest.

• Simplicity of important effects. Main effects and/or two-factor inter-
actions are more likely to be important than higher-order interactions.
This is also known as the hierarchical ordering principle.

Most full factorial examples in Chapters 1–4 illustrate the reasonableness of
these assumptions.

If one assumes that all three-factor (or higher) interactions are negligible,
then from these eight observations one can estimate the following:

• β0

• βA − βBD − βCE

• βB − βAD

• βC − βAE

• βD − βAB

• βE − βAC

• βBC + βDE

• βCD + βBE

Perutka and Martell (2001) conducted an oxidation experiment with defin-
ing relation (5.2). The factor names and levels are given in Table 5.4, and the
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results for one response appear in Table 5.5. Higher values of turnover number
(TN) indicate greater efficiency for the catalyst. Perutka and Martell assumed
all interactions to be zero, fitted a model for the five main effects, and obtained
the following model for TN:

T̂N = 45.25 + 7A + 17.25B + 15C − 6.25D − 23.25E. (5.3)

With a root mean square error of 19.5 (based on 2 df), the standard error for
each coefficient is 19.5/81/2 = 6.9. Using α = .20, the authors reported that
three factors have statistically significant effects. If their assumption about in-
teractions is correct, this initial experiment suggests that by increasing B and
C and reducing E, one can dramatically increase this response. If interactions
are not all negligible, then the conclusions about which factors are important
and the direction of their effects may be in error.

Table 5.4. Factors and levels for Perutka and Martell’s (2001) experiment

Levels
Factors −1 1
A Pyridine (mL) 2 5
B Adamantane (mmol) 1.25 5
C Oxygen (mL/min) 4 20
D Hydrogen sulfide (mL/min) 1 4
E Catalyst: dinuclear iron complex (mmol) .005 .02

Table 5.5. Perutka and Martell’s (2001) 25−2 experiment for TN

A B C D E TN
−1 1 1 1 1 46
−1 1 −1 1 −1 52

1 1 1 −1 −1 127
−1 −1 1 −1 1 14

1 −1 1 1 −1 54
1 1 −1 −1 1 25
1 −1 −1 1 1 3

−1 −1 −1 −1 −1 41

5.2.2 Need for additional data

Resolution III designs such as the eight runs just analyzed often leave am-
biguity as to which effects are actually important. In addition to the risk of
attributing a significant effect to the wrong coefficient in a set of aliases, a
more insidious mistake will arise if two important coefficients that are aliased
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have opposite signs and the sum near zero is construed to indicate that both of
these aliased effects are negligible. There are two remedies to these potential
difficulties:

• Avoid use of resolution III fractional factorial designs; that is, only
use full factorial designs, or fractions with higher resolution.

• Follow resolution III designs with additional experimentation.
Which additional treatment combinations are to be explored may be cho-
sen after the initial experiment is completed and analyzed. Suitable follow-
up experiments are discussed in Chapter 9.

For Perutka and Martell’s (2001) experiment, what follow-up is recom-
mended? One option is to collect data at just a couple of treatment combina-
tions expected to produce the best outcomes. This is how Perutka and Martell
proceeded, using the initial experiment combined with an understanding of
the chemistry to select a follow-up run yielding TN = 215, much better than
any outcome in Table 5.5! Alternatively, if one were less certain about the
results and could afford a second eight-run experiment, one may add another
quarter fraction [e.g., block 4 with defining relation (5.1)]. Combining these
two quarter-fractions results in a half-fraction with defining relation

(I = −ABD = −ACE = BCDE)
+ (I = ABD = ACE = BCDE)

(I = BCDE).

The advantage of combining blocks 1 and 4 is that the resulting half-fraction
is resolution IV rather than resolution III. It is always possible to increase the
resolution from III to IV by adding a second fraction from the same family as
the first. The details are presented in Section 9.4.

5.2.3 Construction of fractional factorial designs

There are two methods for constructing regular fractional factorial designs:

• Blocked full factorial construction. This method was illustrated in
obtaining Table 5.3. Each of the four blocks of the full 25 corresponds to
a resolution III 25−2 fraction. This construction method clearly identifies
all alternative fractions from the same family, which is useful if one is
considering running a sequence of fractions.

• Fractional factorial generator construction. This is the most con-
venient construction method for a single fraction. We illustrate this con-
struction for the 25−2 fraction with defining relation I = −ABD = −ACE
= BCDE. These eight treatment combinations represent a full factorial
in any set of three factors besides {A,B,D} and {A,C,E}. For instance,
we have a full factorial in the first three factors. These three factors are
designated basic factors, and we begin the construction of the 25−2 by
constructing a 23 factorial in them:
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A B C
−1 −1 −1

1 −1 −1
−1 1 −1

1 1 −1
−1 −1 1

1 −1 1
−1 1 1

1 1 1

We now complete the design construction as follows. The additional factors
will always be aliased with interactions of the basic factors. Here, D =
−AB and E = −AC. Thus, we compute the columns for these aliases by
multiplying together the appropriate basic columns and relabeling them
as factors D and E.

A B C −AB = D −AC = E
−1 −1 −1 −1 −1

1 −1 −1 1 1
−1 1 −1 1 −1

1 1 −1 −1 1
−1 −1 1 −1 1

1 −1 1 1 −1
−1 1 1 1 1

1 1 1 −1 −1

These are the same eight treatment combinations that appear by (5.2),
although in a different order. Thus, this fraction is identified either by its
defining relation I = −ABD = −ACE = BCDE or, equivalently, by the
pair of generators D = −AB and E = −AC.

5.2.4 General results for 2k−f fractional factorial designs with
defining relations

A regular 2k−f fractional factorial design with no repeated treatment combi-
nations has the following properties:

• Has k factors;
• Is a full factorial in some set of k − f basic factors;
• Has a defining relation and defining contrast subgroup with 2f elements;
• Aliases the remaining factorial effects in 2k−f − 1 sets of size 2f ;
• Can be constructed either by

– Partitioning the 2k factorial into 2f blocks, confounding the factorial
effects in the defining contrast subgroup and choosing one block, or
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– Creating a full factorial in k− f basic factors, and then appending the
f additional factors using as generators their aliases. These aliases are
interactions in the basic factors.

We now enumerate all regular two-level fractional factorial designs of size
8 and use these to introduce notation for tabulating recommended designs of
larger size. Consider the following table of seven orthogonal columns:

A B AB C AC BC ABC
−1 −1 1 −1 1 1 −1

1 −1 −1 −1 −1 1 1
−1 1 −1 −1 1 −1 1

1 1 1 −1 −1 −1 −1
−1 −1 1 1 −1 −1 1

1 −1 −1 1 1 −1 −1
−1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1
Col. No. 1 2 3 4 5 6 7

Columns labeled A, B, and C are the basic columns, and the other four
columns are constructed from interactions of A, B, and C. Rather than listing
the three basic columns first, they are listed in an order that will readily extend
to larger cases. Additional basic columns will be needed for fractional factorial
designs with more runs and will be numbered as successive powers of 2 (i.e.,
8, 16, 32, etc.). Interactions of the basic columns are numbered corresponding
to the sum of the basic column numbers; for example,

• Column 3 is the interaction of columns 1 and 2
• Column 5 is the interaction of columns 1 and 4
• Column 7 is the interaction of columns 1, 2, and 4

Using this notation, every type of orthogonal eight-run fractional factorial
design may be constructed using columns 1, 2, 4, and one or more of columns
3, 5, 6, and 7. There are five distinct design types:

• Resolution IV 24−1: Basic columns + column 7
• Resolution III 24−1: Basic columns + column 3 (or column 5 or 6)
• Resolution III 25−2: Basic columns + any two other columns
• Resolution III 26−3: Basic columns + any three other columns
• Resolution III 27−4: Basic columns + all four other columns

Note that for the four-factor designs, it matters which column is chosen for
the fourth factor. Clearly, defining D = ABC produces a different design than
choosing D = AB; the designs have different resolution.

That it makes no difference which two columns one chooses for the 25−2 de-
signs is not obvious. Consider two possibilities. If one were to choose columns
3 and 5, the generators would be D = AB and E = AC, and the defining
relation is I = ABD = ACE = BCDE. Alternatively, if one were to choose
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columns 3 and 7, the generators are D = AB and E = ABC, and the defin-
ing relation is I = ABD = ABCE = CDE. By swapping the letters A and
D, one may see that these two designs are equivalent. Two regular fractional
factorial designs are said to be isomorphic (i.e., equivalent) if by swapping
letters (and if necessary, reversing the signs of letters) the defining relation
for the first design can be made to match the other defining relation exactly.

For 16 runs, fractional factorial designs of resolution III or higher exist for
k = 5, 6, ..., 15 factors. How many distinct design types exist? The possibilities
are listed in Chen, Sun, and Wu (1993, Table 2) and summarized in Table 5.6.
Note that for 12 or fewer factors, it matters which columns are selected as
generators. For eight or fewer factors, the resolution of the design is affected by
the choice of generators. For 9–12 factors, although all designs are resolution
III, the number of length-3 words in the defining relation depends on the choice
of generators. Tables that list designs often list just a single “best” design.
The most commonly used criterion for ranking fractional factorial designs, in
addition to resolution, is aberration. To understand this property, we must
define the word length pattern for a design.

Table 5.6. Number of nonisomorphic regular fractional factorial designs of
size 16

No. Factors Res. III Res. IV Res. V
5 1 1 1
6 3 1 0
7 4 1 0
8 5 1 0
9 5 0 0
10 4 0 0
11 3 0 0
12 2 0 0
13 1 0 0
14 1 0 0
15 1 0 0

5.2.5 Word length pattern and minimum aberration

Consider the four possible 26−2 fractions:

• Design 6-2.1 with I = ABCE = ABDF = CDEF
• Design 6-2.2 with I = ABE = ACDF = BCDEF
• Design 6-2.3 with I = ABE = CDF = ABCDEF
• Design 6-2.4 with I = ABE = ACF = BCEF

Design 6-2.1 is resolution IV, and the other three designs are resolution III.
The rank ordering of these designs from best to worst is in terms of the number
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of short words in the defining relation. The word length pattern (wlp) for a
regular fractional factorial design is the vector of frequencies of words of each
length. Define

wlp = (A3, A4,. . ., Ak),

where Aj denotes the number of words of length j in the defining relation
(j = 3, . . . , k). The word length patterns for these four designs are as follows:

• Design 6-2.1 with wlp = (0, 3, 0, 0)
• Design 6-2.2 with wlp = (1, 1, 1, 0)
• Design 6-2.3 with wlp = (2, 0, 0, 1)
• Design 6-2.4 with wlp = (2, 1, 0, 0)

The designs are sorted first based on the number of length-3 words. Using
A3 alone, Design 6-2.1 is better than Design 6-2.2, and both are preferred to
Designs 6-2.3 and 6-2.4. Since the last two designs are tied with respect to A3,
they are then compared on A4, where Design 6-2.3 is better than Design 6-2.4.
Designs with more short words are said to have more aberration (i.e., more
distortion as we seek to distinguish which effects are present). The design that
ranks first on this criterion is called the minimum aberration design.

Appendix F lists the column number labels (up to 127) for each interaction
of the basic factors. Appendix G uses these labels to identify generators for
each minimum aberration design of size 8, 16, 32, 64, and 128. These tables are
based on four references: Franklin (1984), Chen, Sun, and Wu (1993), Butler
(2003a), and Block and Mee (2005). The use and analysis of these and other
designs will appear in the next three chapters.

• Chapter 6: Fractional Factorial Designs for Estimating Main Ef-
fects: Resolution III fractional factorial designs are useful as initial ex-
periments seeking to investigate the effects of many factors and for which
follow-up experimentation is reasonably convenient. With these designs,
the presence of interactions the same magnitude as main effects may well
mislead the experimenter in terms of the relative importance of main ef-
fects.

• Chapter 7: Designs for Estimating Main Effects and Some Two-
Factor Interactions: Resolution IV fractional factorial designs avoid
aliasing between main effects and two-factor interactions. Thus, if all in-
teractions involving three or more factors are zero, then a resolution IV
design will permit unbiased estimation of all main effects. Additional de-
grees of freedom will be available for estimating two-factor interactions,
although some sets of two-factor interactions will be aliased together. If
the alias sets for two-factor interactions are large, then one cannot learn
much about individual two-factor interactions, but at least the main effect
estimates are not biased by these interactions.

• Chapter 8: Resolution V Fractional Factorial Designs: These per-
mit estimation of all main effects and two-factor interactions, assuming
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three-factor and higher-order interactions are negligible. If there are more
than five factors, regular 2k−f designs of resolution V are quite large. Chap-
ter 8 presents smaller alternative orthogonal and nonorthogonal designs as
well.

Chapters 9–11 complete the discussion of how to use these fractional fac-
torial designs.

• Chapter 9: Augmenting Fractional Factorial Designs. The option
to perform additional experimentation is often essential to the success-
ful application of fractional factorial designs. Chapter 9 discusses several
approaches to augmentation, including confirmation runs, foldover, semi-
folding, and optimal design methods.

• Chapter 10: Fractional Factorial Designs with Randomization
Restrictions. These designs are similar to those discussed in Chapter 3
for full factorial treatment structures. However, the presence of aliasing
adds complexity to the construction of randomized block and split-unit
designs. In Chapter 10 we address both design and analysis issues.

• Chapter 11: More Fractional Factorial Design Examples. These
examples are presented to reinforce and illustrate the concepts of the pre-
vious six chapters.

Some orthogonal fractional factorial designs do not have defining relations.
These include the 12-run Plackett–Burman design and other similar designs.
Analysis of data from these nonregular designs differs somewhat from that
presented below for regular fractional factorial designs. Examples of their
analysis will be given later in Sections 6.3 and 7.1.5.

5.3 Basic Analysis for Regular Fractional Factorial
Designs

This section illustrates a five-step analysis method for interpreting the results
of regular fractional factorial experiments without centerpoint runs. The five
steps are as follows:

1. Plot the response data.
2. Determine resolution, aliasing, and effects that can be estimated.
3. Fit a saturated model and use output to select a tentative reduced model.
4. Examine fit and diagnostics for the reduced model. Consider modifications

to the model until a satisfactory summary is obtained.
5. Report results for the final model.

These steps are illustrated now for an 8-factor, 32-run experiment re-
ported by Martin and Cuellar (2004) involving the coating of stainless-steel
microbeads with a polymeric layer. Stainless-steel spheres with diameters 53–
75 μm were coated in a suspension of styrene and divinylbenzene in water. The
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authors listed approximately two dozen factors that affect the characteristics
of the final polymeric particles, which they considered too many to investigate
in a single experiment. Based on their experience and existing literature, Mar-
tin and Cuellar chose eight factors to vary, and they set all the other variables
to selected fixed values. Their eight experimental factors are listed in Table
5.7 and the 32 treatment combinations of their experiment appear in Table
5.8.

Table 5.7. Factors and levels for Martin and Cuellar’s (2004) polymeric
coating experiment

Levels
Factors −1 1
A Double polymerization No Yes
B Temperature (oC) 80 90
C Stirring speed (rev/min) 550 650
D Aqueous phase/organic phase 5 10
E Percentage of cross-linker 8 16
F Ammonium hydroxide No Yes
G Prepolymerization No Yes
H Initiator-metal contact No Yes

Since this design is a 28−3 fraction, three generators were needed to con-
struct the additional columns. Martin and Cuellar used F = BCD, G =
CDE, and H = BDE, which produces an inferior design that is not mini-
mum aberration. To recreate their design, construct a full 25 factorial in A–E,
add the three interaction columns BCD, CDE, and BDE, and relabel these
F, G, and H, respectively. These 32 treatment combinations were performed
in the sequence indicated by the second column of Table 5.8.

Three responses were reported, each based on density calculations for the
batch of coated spheres:

• R/r denotes the average ratio of the radius of the coated spheres R to the
radius of the uncoated stainless-steel spheres r.

• Yield denotes the percentage (by weight) of the metal retained after ex-
cluding the agglomerated metal–polymeric particles

• P/S denotes the ratio of the polymer mass on the nonagglomerated parti-
cles to the total mass of steel for all particles before coating.

The experiment was intended to identify how to achieve as much coating as
possible while still maintaining high Yield. Low values for R/r correspond
to high Yield values, since balls with little or no coating are less likely to
clump; the correlation between them is −0.832. The third response is propor-
tional to [(R/r)3 − 1]*Yield. Maximizing this response is an attempt to find
a compromise that simultaneously achieves high R/r and reasonable Yield.
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Table 5.8. Martin and Cuellar’s polymeric coating experiment

Run
t.c. Order A B C D E F G H R/r Yield P/S

1 30 −1 −1 −1 −1 −1 −1 −1 −1 1.0015 94.89 0.0006
2 32 1 −1 −1 −1 −1 −1 −1 −1 1.0238 60.86 0.0060
3 13 −1 1 −1 −1 −1 1 −1 1 1.0010 98.31 0.0004
4 18 1 1 −1 −1 −1 1 −1 1 1.0051 94.76 0.0020
5 24 −1 −1 1 −1 −1 1 1 −1 1.0000 96.69 0.0000
6 7 1 −1 1 −1 −1 1 1 −1 1.0041 70.38 0.0012
7 15 −1 1 1 −1 −1 −1 1 1 1.0128 50.63 0.0027
8 12 1 1 1 −1 −1 −1 1 1 1.0137 37.42 0.0021
9 19 −1 −1 −1 1 −1 1 1 1 1.0016 97.65 0.0006

10 1 1 −1 −1 1 −1 1 1 1 1.0049 61.88 0.0012
11 9 −1 1 −1 1 −1 −1 1 −1 1.0120 50.62 0.0025
12 29 1 1 −1 1 −1 −1 1 −1 1.0175 5.12 0.0004
13 17 −1 −1 1 1 −1 −1 −1 1 1.0034 98.66 0.0014
14 16 1 −1 1 1 −1 −1 −1 1 1.0058 94.03 0.0022
15 2 −1 1 1 1 −1 1 −1 −1 1.0000 96.22 0.0000
16 14 1 1 1 1 −1 1 −1 −1 1.0039 93.63 0.0015
17 25 −1 −1 −1 −1 1 −1 1 1 1.0225 45.95 0.0043
18 21 1 −1 −1 −1 1 −1 1 1 1.0261 28.52 0.0031
19 31 −1 1 −1 −1 1 1 1 −1 1.0164 70.67 0.0048
20 28 1 1 −1 −1 1 1 1 −1 1.0117 38.35 0.0019
21 23 −1 −1 1 −1 1 1 −1 1 1.0030 97.37 0.0012
22 20 1 −1 1 −1 1 1 −1 1 1.0026 94.10 0.0010
23 27 −1 1 1 −1 1 −1 −1 −1 1.0040 90.03 0.0015
24 26 1 1 1 −1 1 −1 −1 −1 1.0210 47.04 0.0041
25 11 −1 −1 −1 1 1 1 −1 −1 1.0030 98.50 0.0012
26 5 1 −1 −1 1 1 1 −1 −1 1.0067 93.15 0.0026
27 6 −1 1 −1 1 1 −1 −1 1 1.0025 95.27 0.0010
28 22 1 1 −1 1 1 −1 −1 1 1.0163 67.10 0.0045
29 10 −1 −1 1 1 1 −1 1 −1 1.0178 57.67 0.0043
30 8 1 −1 1 1 1 −1 1 −1 1.0274 22.24 0.0025
31 3 −1 1 1 1 1 1 1 1 1.0032 93.67 0.0012
32 4 1 1 1 1 1 1 1 1 1.0035 73.08 0.0010

Now we describe how to analyze these data.

Step 1. Plot the response data
Histograms and scatterplots are useful for understanding what variation

is to be explained and whether any attractive outcomes were achieved. Figure
5.5 reveals that all three responses have skewed distributions. By highlighting
the 16 observations with Yield > 90%, one can see that high Yield outcomes
all added less than 1% to the radius (R/r < 1.01) and have a mass ratio of at
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most 0.003. The greatest coating achieved with Yield ≥ 90% is for observation
26 with R/r = 1.0067, Yield = 93.15, and P/S = 0.0026.
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Fig. 5.5. Histograms for R/r, Yield, and P/S. Responses with Yield > 90% are
highlighted

A thorough analysis would require building models for all three responses
and then identifying trade-offs necessary to achieve sufficient coating with the
maximum Yield. Here, we will focus on the steps to building a satisfactory
model for Yield.

If we fit a model for the skewed response Yield, the data values with Yield
< 80% will dominate because they represent most of the variation. Since we
are interested in higher values for Yield, it makes sense to fit a model for
a transformation that compresses values for low Yield and spreads out the
values for high Yield. One reasonable choice is

Sqrt(Loss) = (1 − Yield/100)1/2. (5.4)

Figure 5.6 shows how this transformation dampens the variation where Loss is
the greatest. Log(Loss) would be an alternative (and stronger) transformation.

Step 2. Determine resolution, aliasing and effects that can be estimated
This experiment is a one-eighth fraction, so the defining relation contains

eight terms. The three generators create the length-4 words BCDF, CDEG,
and BDEH. Multiply these together to obtain the entire defining relation:

(I = BCDF) × (I = CDEG) × (I = BDEH) ⇒

I = BCDF = CDEG = BEFG = BDEH = CEFH = BCGH = DFGH
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Fig. 5.6. Sqrt(Loss) vs. Yield for 32 data values

This is a resolution IV design with seven length-4 words, four more than
the minimum aberration 28−3 design (refer to Table G.3 of Appendix G).
Here, factor A does not appear in the defining relation. Therefore, this design
may be written as a product of a 21 design for factor A and a 27−3 fraction
for factors B – H.

Given the defining relation, we now identify which (combinations of) ef-
fects can be estimated. Fitting a model containing all 8 main effects and 28
two-factor interactions results in the following linear dependencies among the
columns of the model matrix:

BF = CD = EG
BD = CF = EH
BH = CG = DE
BG = CH = EF
BC = DF = GH
CE = DG = FH
BE = DH = FG

Thus, with this experiment, we can estimate the eight main effects, the
seven two-factor interactions involving factor A (since they are not aliased
with other effects in the model), plus seven sums of coefficients (such as
βBF + βCD + βEG), assuming three-factor and higher-order interactions are
negligible. The remaining nine degrees of freedom may be used to estimate the
error variance, as well as check the assumption of no higher-order interactions.
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Step 3. Fit a saturated model and use output to select a tentative reduced
model

For most fractional factorial designs, including this resolution IV 28−3, the
simplest way to fit a saturated model is to specify a full factorial model in the
basic factors. For experiments without replication, fitting a saturated model
will produce an estimate for the standard error of each coefficient (via Lenth’s
PSE), based only on an assumption of the sparsity of important effects. After
identifying the number of important effects, one can use the defining relation
and the corresponding aliasing to interpret which effect(s) in each significant
alias set is most plausibly present. We now illustrate these steps for the re-
sponse Sqrt(Loss). A Pareto plot of the 31 effect estimates is shown in Figure
5.7. Remember that each of these terms has seven aliases, which we will take
into account after determining which estimates are large enough to include.

Using Lenth’s t statistics, six effects are found to be statistically significant
at α = .05, three dominant effects and three modest ones. Pleasingly, five of the
six significant effects are main effects, including all three dominant estimates,
since CDE = G, BCD = F, and BDE = H. The simple model with only
A, F, and G explains 80.4% of the variation in Sqrt(Loss). Because of the
dominance of the main effects for A, F, and G, we consider the significant
estimate associated with the aliases

ABE = ADH = AFG

as evidence for the three-factor interaction AFG. This judgment is consistent
with Martin and Cuellar (2004, p. 2100), who construed FG to be active
rather than its aliases BE and DH). To ensure that our model is hierarchical,
inclusion of AFG in the model requires that we add AF, AG, and FG as
well.

Using the .05 level of significance, one would include only five of the eight
main effects. However, since all 8 main effects are among the 10 largest es-
timates, many analysts would include C, D, and E as well. At some risk of
overfitting the model, we adopt the hierarchical model containing eight main
effects and four interactions.

Some software automates Steps 2 and 3. For example, JMP’s Modeling
– Screening platform requires only a list of the factors and the responses.
For a regular 2k−f design, it will then add interactions to produce a satu-
rated model, compute the PSE, Lenth t statistics, and their corresponding
p-values, show aliasing, highlight terms with p-values < .10, and produce a
half-normal plot. Figure 5.8 shows the results for the Martin and Cuellar’s
data, with (5.4) as the response. Actually, JMP lists aliasing up to four-factor
interactions here, because it required a four-factor interaction to create a sat-
urated model. For the alias list in Figure 5.8, we omitted the main effects’
three-factor interaction aliases; we also omitted four-factor interaction aliases
of the two-factor interactions. Note that JMP arranges the 31 terms for the
saturated model intelligently. First, the eight main effect estimates are listed
from largest to smallest. Second, the 14 two-factor interaction estimates are
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Fig. 5.7. Pareto plot of estimates from saturated model for Sqrt(Loss)

listed, not from largest to smallest, but in an order determined by the mag-
nitudes of the main effects. Since G and F have the largest estimates, their
interaction is listed first and labeled as GF, with aliases BE and HD. Next
come three-factor interactions. Note that GFA is labeled and ordered as it is
because it involves the three factors with the largest main effects.
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Screening for Sqrt(Loss) 

Term Contrast
Lenth

t-Ratio
Individual

p-Value Aliases
G 0.164 8.51 <.0001  

F -0.129 -6.73 0.0002  

A 0.116 6.03 0.0003  

H -0.046 -2.37 0.0302  

B 0.041 2.11 0.0483  

E 0.036 1.87 0.0735  

D -0.033 -1.71 0.0951  

C -0.030 -1.56 0.1250  

G*F -0.039 -2.01 0.0576 B*E, H*D 

G*A 0.011 0.59 0.5718  

F*A -0.009 -0.46 0.6629  

G*H 0.005 0.27 0.8053 F*D, B*C 

F*H 0.009 0.49 0.6443 G*D, E*C 

A*H -0.016 -0.85 0.3787  

G*B 0.001 0.03 0.9796 F*E, H*C 

F*B -0.002 -0.10 0.9265 G*E, D*C 

A*B -0.004 -0.20 0.8583  

H*B -0.022 -1.14 0.2444 E*D, G*C 

A*E -0.001 -0.05 0.9648   

H*E -0.001 -0.04 0.9760 B*D, F*C 

A*D 0.004 0.20 0.8587  

A*C -0.014 -0.74 0.4462  

G*F*A 0.049 2.53 0.0239 A*B*E, A*H*D 

G*A*H 0.005 0.27 0.8025 F*A*D, A*B*C 

F*A*H 0.023 1.20 0.2257 G*A*D, A*E*C 

G*A*B -0.015 -0.77 0.4274 F*A*E, A*H*C 

F*A*B -0.020 -1.04 0.2839 G*A*E, A*D*C 

F*H*B -0.022 -1.17 0.2349 G*H*E, G*B*D, etc. 

A*H*B 0.005 0.28 0.7914 A*E*D, G*A*C 

A*H*E 0.003 0.16 0.8846 A*B*D, F*A*C 

F*A*H*B -0.004 -0.21 0.8449 G*A*H*E, G*A*B*D, etc. 

Lenth PSE=0.01922 

P-Values derived from a simulation of 10000 Lenth t ratios.
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Fig. 5.8. JMP’s Modeling–Screening analysis for Sqrt(Loss)



5.3 Basic Analysis for Regular Fractional Factorial Designs 169

Step 4. Examine fit and diagnostics for the reduced model; consider modifi-
cations until a satisfactory summary is obtained

A residual versus predicted plot (Figure 5.9) from this proposed reduced
model shows constant variability across the range of predicted responses. Next,
we plot residuals versus run order (Figure 5.10) to check on stability of the
error distribution over time. No evidence of trend or autocorrelation appears,
so this reduced model appears to be satisfactory.
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Fig. 5.9. Residuals versus predicted values for Sqrt(Loss)

Step 5. Report results for the final model
The ANOVA and parameter estimates for our fitted model appear in Fig-

ure 5.11. This model has R2 = 96%. Because the effects of the three prominent
factors are not additive but involve a three-factor interaction, their joint effect
is best visualized using a cube plot that displays the predicted response at
each of the eight combinations (see Figure 5.12). To assist with interpretabil-
ity of this plot, natural variable names and units are used rather than coded
labels.

As expected, Prepolymerization and Double polymerization both increase
loss due to agglomeration, and the addition of Ammonium hydroxide to the
suspension medium suppresses agglomeration (and Loss). The predicted val-
ues here represent the expected Sqrt(Loss), averaging over the levels of the
other five factors. Several of the other five factors are deemed active, but their
effects are small.
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Fig. 5.10. Residuals versus run order for Sqrt(Loss)

Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio 

Model 12 2.1772608 0.181438 38.0350 

Error 19 0.0906358 0.004770 Prob > F 

C. Total 31 2.2678965 <.0001 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|

Intercept  0.4537174 0.01221 37.16 <.0001

A  0.1159882 0.01221 9.50 <.0001

B  0.0405297 0.01221 3.32 0.0036

C  -0.030078 0.01221 -2.46 0.0235

D  -0.032934 0.01221 -2.70 0.0143

E  0.0359135 0.01221 2.94 0.0084

F  -0.129401 0.01221 -10.60 <.0001

G  0.1636349 0.01221 13.40 <.0001

H  -0.045551 0.01221 -3.73 0.0014

A*F  -0.008855 0.01221 -0.73 0.4771

A*G  0.0114207 0.01221 0.94 0.3613

F*G  -0.038692 0.01221 -3.17 0.0051

A*F*G  0.0486058 0.01221 3.98 0.0008

Fig. 5.11. Summary of reduced model for Sqrt(Loss)



5.3 Basic Analysis for Regular Fractional Factorial Designs 171

0.21876 0.54282

0.15227 0.24648

0.69779 0.8731

0.2821 0.61642

Double Polymerizationno yes

A
m

m
o

n
iu

m
 h

y
d

ro
x
id

e
y
e

s
n

o

Prepolymerization

no

yes

Fig. 5.12. Predicted Sqrt(Loss) based on three prominent factors

Martin and Cuellar (2001) took Yield directly as the response. They began
by fitting a model that assumed no three-factor interactions, rather than the
saturated model we considered, and chose the reduced model

Ŷield% = 72.33 − 10.97A + 13.20F − 16.04G + 4.45H + 5.81FG.

Their simple model for Yield has R2 = 85.3%, but it predicts yields in excess
of 100% for 4 of the 32 treatment combinations in the experiment. By using
a transformation in Figure 5.6 and fitting a saturated model, we arrived at
a reduced model that includes the three-factor interaction AFG and has no
predicted values outside of the feasible range.
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Fractional Factorial Designs for Estimating
Main Effects

This chapter focuses on efficient designs intended for estimating main effects,
including regular resolution III 2k−f fractional factorial designs, Plackett–
Burman and other designs based on Hadamard matrices, nonorthogonal satu-
rated main effect designs, and supersaturated designs. These designs are useful
for identifying important factors when it is reasonable to expect that their ef-
fects are essentially additive. Even when the assumption of additive effects is
suspect, these designs can produce useful initial experiments, provided they
are augmented with additional runs. Whenever possible, we will explore evi-
dence for two-factor interactions, even with these screening experiments. The
sections are as follows:

Section 6.1. Analysis of Regular Resolution III Fractional Factorial Designs

Section 6.2. Some Theory Regarding Regular Resolution III Designs

Section 6.3. Nonregular Orthogonal Designs of Strength 2

Section 6.4. Optimal Nonorthogonal Saturated Main Effect Designs

Section 6.5. Supersaturated Designs

Section 6.6. Conclusions

Unreplicated resolution III fractional factorial designs are especially pop-
ular in the following circumstances:

• Experimentation is costly or time-consuming.
• Interactions are not expected to be important.
• The error variance is small.
• There are many factors to investigate.
• Follow-up experimentation is feasible.

Each of these characteristics contribute to the practical usefulness of resolution
III designs.

©  Springer Science + Business Media, LLC 2009DOI: 10.1007/b105081_ ,
,R.W. Mee, A Comprehensive Guide to Factorial Two-Level Experimentation 173
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This chapter includes discussion and analysis of the following nine pub-
lished examples:

1. Example 6.1: Vindevogel and Sandra (1991) used an unreplicated 25−2

design to improve the resolution of electrokinetic chromatography without
lengthening the analysis time.

2. Example 6.2: Lai, Pan, and Tzeng (2003) sought to improve lovastatin
yield using a series of replicated designs that included a 27−4 and a 26−3.

3. Example 6.3: Irvine, Clark, and Recupero (1996) presented a 16-run lab-
oratory wood chip pulping experiment involving 13 factors and several
responses.

4. Example 6.4: Poorna and Kulkarni (1995) investigated 15 parameters for
a fermentation process to produce inulinase, which is used in high-fructose
syrups. Following preliminary work involving several single-factor experi-
ments, the 15 parameters were examined using a 16-run, 215−11 fractional
factorial design.

5. Example 6.5: Bullington et al. (1993) presented results from an 11-factor,
12-run experiment to identify the causes for early thermostat failures.

6. Example 6.6: Bermejo-Barrera et al. (2001) varied seven factors in an
investigation of optimizing atomic absorption spectrometry for the deter-
mination of trace elements in seafood. Their initial experiment was based
on a 12-run Plackett–Burman design.

7. Example 6.7: Wu et al. (2005) illustrated the use of experimental design
to optimize RoBioVision image analysis software for quantifying cDNA
microarray images. They explored 19 software parameters using a 20-run
Plackett–Burman design.

8. Example 6.8: Bell, Ledolter, and Swersey (2006) carefully documented a
direct mail sales experiment involving 100,000 test mailings, 5000 for each
of 20 different credit card offers, based on the 20-run Plackett–Burman
design.

9. Example 6.9: Lin (1995) presented a supersaturated design with 138 fac-
tors in 24 runs of an AIDS model.

Examples 6.1–6.4 are regular fractional factorial designs, the type intro-
duced in Chapter 5. Examples 6.5–6.8 are strength-2 orthogonal arrays dis-
cussed in Section 6.3, and Example 6.9, a supersaturated design, is discussed
in Section 6.5.

6.1 Analysis of Regular Resolution III Fractional
Factorial Designs

Example 6.1: An unreplicated 25−2

Vindevogel and Sandra (1991) provided a detailed description of their frac-
tional factorial experiment and the underlying theory to explain the effects of
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the factors being investigated. Their experiment studied five buffer composi-
tion factors, with the levels listed in Table 6.1. The experiment involved use
of electrokinetic chromatography to resolve four different testosterone esters,
two of which were difficult to distinguish. Regarding the choice of factor lev-
els, Vindevogel and Sandra stated, “No fixed rules exist for the selection of
low and high levels. Level selection was based on experience from preliminary
experiments. Some constraints can be used by testing the buffer composition
that is assumed to cause the highest current or an excessively long analysis
time. In this way, a planned setup with a higher surfactant concentration (50
vs. 60 mM) was eliminated” (p. 1532).

Table 6.1. Factors and levels for Vindevogel and Sandra’s (1991)
chromatography experiment

Levels
Factors −1 1
A pH of pure buffer 8 9
B Surfactant % (sodium heptyl sulfate) 0 10
C Acetonitrile (%) 40 50
D Surfactant concentration (mM) 40 50
E Buffer concentration (mM) 20 40

The authors opted for a small experiment that could be run in one day, in
order to keep the error variance small. They stated, “It is our experience that
even when run-to-run variability is acceptable, day-to-day reproducibility is
less reliable.... Collecting the data in as short a time as possible promotes
the internal coherence of these data and allows us to draw conclusions that
are not influenced by long term drift.” Thus, the authors opted for an eight-
run experiment. The experimental runs, in the order performed, and three
response variables are presented in Table 6.2. The first two responses (t0, t4)
present the elution time window in minutes. RS is a measure of resolution for
the most difficult separation; for the four runs with the poorest resolution,
RS is approximate, since providing any number was difficult. Vindevogel and
Sandra (1991) discussed additional responses (noise, current, and efficiency)
that are not included here.
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Table 6.2. Vindevogel and Sandra’s (1991) chromatography experiment

Buffer A B C D E t0 t4 RS

1 1 1 −1 1 −1 6.17 13.67 1.44
2 1 1 1 −1 −1 7.38 10.60 0.2
3 −1 1 1 1 1 7.42 11.78 0.5
4 −1 −1 1 1 −1 7.27 11.76 0.6
5 1 −1 −1 1 1 6.52 19.37 1.96
6 −1 1 −1 −1 1 5.55 9.79 0.73
7 1 −1 1 −1 1 7.75 12.51 0.6
8 −1 −1 −1 −1 −1 5.61 10.01 0.84

The authors assume no interaction effects exist and use the 2 df for two-
factor interactions as error. We illustrate their analysis below, and then com-
ment about the alternative approach of using Lenth’s PSE. In our analysis
of t4, we use the reciprocal, modeling migration rate for the fourth eluting
compound rather than migration time t4. Figure 6.1 shows how this alters the
variation to be explained. A model for 1/t4 is expected to be more success-
ful at explaining differences between the lower t4 values, since the reciprocal
accentuates this variation.

8 10 12 14 16 18 20

Migration time (min)

0.05 0.07 0.09 0.11

Migration rate (1/min)

Fig. 6.1. Histogram for migration time t4 and rate 1/t4
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Fitting a main effects model for each response supports the assumption of
no interactions, in that each first-order model explains more than 99% of the
variation. The fitted models and their root mean square errors are

t̂0 = 6.71 + 0.25A − 0.08B + 0.75C + 0.14D + 0.10E; σ̂ = .075,

100(1̂/t4) = 8.39 − 0.91A + 0.48B + 0.22C − 1.02D − 0.42E; σ̂ = .266,

R̂S = 0.86 + 0.19A − 0.14B − 0.38C + 0.27D + 0.09E; σ̂ = .043.

Using the critical value of 4.303 from the Student’s t distribution with 2 df,
all underlined coefficients are statistically significant at α = .05.

Note that the coefficients for the second and third models are opposite in
sign. This means that factor levels that improve the resolution also decrease
the migration rate and, hence, lengthen the time required to obtain the result.
If increasing the migration rate is critical, then some compromise is required.
Acetonitrile ≤ 40% (C ≤ −1) is preferred, since this has the largest influence
on resolution, but it is not statistically significant for 1/t4. Since pH (A)
and Buffer Concentration (E) are the two factors with the largest ratio of
coefficients for migration rate versus resolution, one or both of these might be
set near to the low level, in order to increase the migration rate, and hence
shorten the time required. Based on further testing that is not described in
detail, Vindevogel and Sandra (1991) proposed the treatment combination (A,
B, C, D, E) = (−0.7, −1, −2, 1, −1) as an optimal compromise and verified
that it produced superior results. At this proposed treatment combination,
the estimated migration rate is 0.0752 = 1/(13.3 min), with an estimated
resolution of 1.81. Note how this combination has a migration rate similar to
buffer 1 in Table 6.2, but with resolution closer to that for buffer 5.

With only N−1 = 7 df, Lenth’s approach cannot show so many main effects
to be statistically significant. In fact, only t0’s bC = 0.75 has a Lenth’s t that is
statistically significant at α = .05. Recall that Lenth’s method for estimating
the standard error of effects is based on an assumption that relatively few
effects are active. With only 7 df for a saturated model, Lenth’s procedure is
suitable if two or fewer effects are important, but it is inadequate when all
the main effects are active.

Even though this experiment was quite successful for estimating the factor
effects, having only 2 df for error is a weakness of this design and a potential
limitation. Adding replication at the design center or having prior knowledge
about the magnitude of σ is particularly beneficial for such cases.

One final comment is warranted for this example. To this point we have
ignored the aliasing for this design. The 25−2 design in Table 6.2 was obtained
using the generators D = –AC and E = –AB, so that the defining relation
is I = –ACD = –ABE = BCDE. Aliasing of main effects and two-factor
interactions is
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A = −BE = −CD
B = −AE
C = −AD
D = −AC
E = −AB
BC = DE
BD = CE

Thus, the success of the main effects models suggests that neither factor B or
E is involved in a two-factor interaction with factor C or D. It says nothing
about other two-factor interactions, since the other six two-factor interactions
are aliased with main effects and their presence would bias main effect esti-
mates but would not show up in error for the first-order model. If follow-up
runs at new treatment combinations did not agree with the results predicted
by the first-order models, one likely suspect would be the presence of an in-
teraction aliased with a main effect. For instance, the defining relation word
ACD implies that an interaction between two of these factors would bias the
main effect for the third.

Unreplicated fractional factorial experiments are suitable when the error
variation is small relative to the magnitude of effects. Further, the success of
resolution III fractions is contingent on the simplicity of the model. We now
consider another example in which replication was employed, but a simple
model was not adequate.

Example 6.2: A pair of less successful replicated experiments
Lai, Pan, and Tzeng (2003) reported a series of experiments conducted

to enhance lovastatin production. Their experimentation began with seven
ingredient factors - see Table 6.3. Eight treatment combinations were investi-
gated, each replicated three times to increase the precision of the results. The
authors stated that the order for the 24 runs was completely randomized, but
the particular order is not reported. Their 27−4 fraction and the lovastatin
production values are reported in Table 6.4.

Table 6.3. Factors and levels for Lai et al.’s first lovastatin experiment

Levels
Factors −1 1
A Lactose (g/L) 10 50
B Glucose (g/L) 10 50
C Peptone (g/L) 0 20
D Corn steep liquor (g/L) 0 20
E Soybean meal (g/L) 0 6
F Yeast extract (g/L) 0 40
G Ammonium sulfate (g/L) 0 10
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Table 6.4. Lai et al.’s first lovastatin production experiment

t.c. A B C D E F G Lovastatin (g/L)
1 −1 −1 −1 1 1 1 −1 0.4032, 0.4256, 0.4494
2 1 −1 −1 −1 −1 1 1 0.0924, 0.1140, 0.1002
3 −1 1 −1 −1 1 −1 1 0.2898, 0.2794, 0.2229
4 1 1 −1 1 −1 −1 −1 0.2264, 0.2498, 0.2033
5 −1 −1 1 1 −1 −1 1 0.1622, 0.1456, 0.1433
6 1 −1 1 −1 1 −1 −1 0.3341, 0.3532, 0.2949
7 −1 1 1 −1 −1 1 −1 0.2472, 0.2396, 0.2116
8 1 1 1 1 1 1 1 0.2745, 0.2656, 0.2929

Analysis of these data is straightforward. A plot of the 24 lovastatin assay
values by treatment combination demonstrates that the error variance is small
(see Figure 6.2). The main effects model (1.1) is a saturated model; it explains
96.3% of the variation in lovastatin yield, with MSE = 0.0005. The estimated
coefficients, with their t statistics and p-values, are given in Table 6.5. There
is no reason to fit a reduced model here. The replication provides more than
enough degrees of freedom for estimating σ2 with the pure error mean square.
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Fig. 6.2. Lovastatin production by treatment combination
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Table 6.5. Saturated model for first replicated lovastatin experiment

Term Estimate Std Error t-Ratio p-Value
Intercept 0.251 0.0046 54.79 .000
A −0.017 0.0046 −3.81 .002
B −0.001 0.0046 −0.14 .892
C −0.004 0.0046 −0.83 .416
D 0.019 0.0046 4.21 .001
E 0.073 0.0046 15.92 .000
F 0.009 0.0046 1.92 .072
G −0.052 0.0046 −11.43 .000

Four of the estimates are statistically significant at α = .05. The coeffi-
cients are estimated with good precision; 95% confidence intervals are con-
structed as bi ± 2.12(0.0046). The largest estimates are bE = 0.073 and bG

= −0.052, indicating that adding Soybean meal enhances production, while
adding Ammonium sulfate is detrimental. Adding Corn steep liquor (D), and
perhaps Yeast extract (F), is helpful also.

At this point, the authors might have attempted to use steepest ascent (see
Section 9.3) to explore outside the original experimental region for a location
with substantially improved lovastatin yield. Instead, they tried another frac-
tional factorial design. Lai et al. (2003) report that in their next experiment
they fixed the levels for factors B and G and added one new factor, Glycerol.
The levels chosen for this second experiment are shown in Table 6.6. Why
factor and level changes were made is not the focus here but rather the extent
to which the effect estimates change. Data for the second experiment, a repli-
cated 26−3 fraction, are given in Table 6.7. Again, complete randomization of
run order was followed. Factor labels with a “†” indicate that levels coded −1
and/or +1 have changed since the first experiment.

Table 6.6. Comparison of factor levels for two lovastatin experiments

First Experiment Second Experiment
Factors Levels Levels
A Lactose (10, 50) (20, 40)
B Glucose (10, 50) (20)
C Peptone (0, 20) (0, 20)
D Corn steep liquor (0, 20) (0, 20)
E Soybean meal (0, 6) (2, 10)
F Yeast extract (0, 40) (0, 20)
G Ammonium sulfate (0, 10) (0)
H Glycerol (0) (10, 30)
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Table 6.7. Lai et al.’s second replicated lovastatin experiment

t.c. A† H C D E† F† Lovastatin (g/L)
9 −1 −1 −1 1 1 1 0.0906, 0.0845, 0.0626
10 1 −1 −1 −1 −1 1 0.4160, 0.3781, 0.3521
11 −1 1 −1 −1 1 −1 0.1843, 0.2038, 0.1985
12 1 1 −1 1 −1 −1 0.5803, 0.6050, 0.5562
13 −1 −1 1 1 −1 −1 0.2017, 0.2734, 0.2560
14 1 −1 1 −1 1 −1 0.4405, 0.4290, 0.4205
15 −1 1 1 −1 −1 1 0.0995, 0.0612, 0.0879
16 1 1 1 1 1 1 0.0744, 0.0669, 0.0746

This 26−3 design has 1 df for estimating two-factor interactions. Table
6.7’s design generators are E† = A†C, F† = A†CD, and H = A†D. The
two-factor interaction contrast CD = A†F† = E†H is not aliased with any
main effects. Fitting a saturated model produces the estimates in Table 6.8.
Every estimate is highly significant, including the combination of two-factor
interactions. Lai et al. fitted just a first-order model and so missed evidence
for the interaction(s). If they had examined a lack-of-fit test, it would have
been Flof = 60.79, which is the square of the t statistic for the interaction they
omitted. By using the MSE for this model with lack-of-fit, they also failed to
recognize the statistical significance for D.

Table 6.8. Saturated model for second lovastatin experiment

Term Estimate Std Error t-Ratio p-Value
Intercept 0.258 0.0045 57.66 <.0001
A† 0.108 0.0045 24.09 <.0001
C -0.051 0.0045 -11.41 <.0001
D -0.014 0.0045 -3.21 0.0054
E† -0.064 0.0045 -14.30 <.0001
F† -0.104 0.0045 -23.27 <.0001
H -0.026 0.0045 -5.70 <.0001
CD = A†F† = E†H -0.035 0.0045 -7.80 <.0001

In the initial 27−4 experiment, every interaction is aliased with a main
effect. In the second experiment, only the aliases of CD are not aliased with
a main effect. If all these interactions were negligible, then the coefficients
for the five factors explored in both experiments should agree. If they do not
agree, this is evidence for interaction effects (or nonlinearity for E and F).
To assess this problem, we combine the data for the two experiments and fit
a first-order model. Because the levels for some factors were changed from
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the first experiment to the second, we switch to uncoded units for all eight
factors. Fitting a model with linear main effects, plus a nominal variable to
account for a possible block effect between the two experiments, the results are
alarming; Table 6.9 contains the analysis of variance for this model. Instead
of main effects explaining nearly all of the variation, most of the variation is
in lack-of-fit. A first-order model is of no use for describing how these factors
affect lovastatin production. This lack-of-fit could be explained by adding
some interaction terms, but the combined designs are poor for distinguishing
interaction effects.

Table 6.9. Analysis of variance for main effects model for combined data

Source df SS % MS
First-order model 9 0.2546 26.0 0.0283
Lack-of-fit 6 0.7087 72.4 0.1181
Pure error 32 0.0158 1.6 0.0005
Total (corrected) 47 0.9791 100.0 0.1892

This example illustrates the following principles:

• Performing replicate runs at factorial treatment combinations increases
precision of effect estimates and provides information about the error vari-
ance, but it does not increase the number of effects that can be estimated.

• The success of resolution III designs depends on main effects dominating
all other effects. For these lovastatin experiments, main effects were large
relative to random error, but interaction effects were too large to ignore.

• It is better to run an unreplicated fractional factorial design of resolution
IV than to replicate a resolution III design. Rather than three replicates
of a 27−4, the same number of runs could have been used to perform a
design for seven or eight factors that permits estimating all two-factor
interactions (see Sections 8.3.2 and 8.3.3).

• If the error variation is small, it may be better to choose narrow spacing of
levels for the factors when conducting a resolution III design. In general,
the smaller the experimental region, the simpler the model one may use.

• Following a resolution III experiment, it is advisable to check the adequacy
of your model by collecting new data at treatment combinations of interest
not included in the original experiment. Here, steepest ascent exploration
might have been tried after the first experiment. If the new data contradict
the model, then either the precision of the fitted model is poor or the model
is missing important effects.
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Example 6.3: A 213−9 experiment with several responses
Irvine, Clark, and Recupero (1996) carefully documented a 213−9 experi-

ment investigating the best method to remove lignin during the pulping stage
without negatively impacting strength and yield. The 13 factors are listed in
Table 6.10, together with the levels used. Irvine et al.’s article explains the
logic behind the choice of each factor and its levels.

The run order for the 16 treatment combinations of the 213−9 is given in
Table 6.11, together with data for three response variables. The Kappa number
is proportional to the percent of lignin in the pulp; Kappa = 10 corresponds
to about 1.5% lignin. Small Kappa values are preferred, but these tend to
coincide with larger Tear index and lower Yield, both of which are undesirable.
The design generators for this fraction are E = −AD, F = −ABCD, G =
ABC, H = BCD, J = −AC, K = −BD, L = ACD, M = −AB, and N
= −BC. The two interactions of the basic columns not used as generators
are ABD and CD. Although different generators are used, this design is
equivalent to the minimum aberration design presented in Appendix G.

To analyze these data, it is preferable to fit a saturated model and use
Lenth’s PSE to estimate the standard error for the regression coefficients.
The alternative is to fit a main effects model and use RMSE/161/2. However,
with only 2 df for error, the RMSE estimate is less precise than Lenth’s PSE
based on 15 contrasts. The results of fitting a saturated model for the three
responses in Table 6.10 are presented in Table 6.12. The authors used normal
effects plots to display the estimates. Since the coefficients are predominantly
negative, half-normal plots are more effective for displaying the outcome for
each model (see Figure 6.3).

Table 6.10. Factors and levels for Irvine et al.’s (1996) pulping experiment

Levels
Factors −1 1
A Wood chips presoaked No Yes
B Chips pre-steamed for 10 min @ 110oC No Yes
C Initial effective alkali level (%) 6 12
D Sulfide level in impregnation (%) 3 10
E Liquor Black White
F Liquor/wood ratio 3.5:1 6:1
G Impregnation temperature (oC) 110 150
H Impregnation pressure (kPa) 190 1140
J Impregnation time (min) 10 40
K Anthraquinone (%) 0.00 0.05
L Cook temperature (oC) 165 170
M Water quench No Yes
N Extended alkali wash for 1 hour No Yes
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Table 6.11. Irvine et al.’s (1996) 213−9 experiment in run order performed

A B C D E F G H J K L M N Kappa Tear Yield
1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1 12.1 9.24 40.53

−1 1 1 1 1 1 −1 1 1 −1 −1 1 −1 12.3 8.98 41.01
−1 −1 −1 1 1 1 −1 1 −1 1 1 −1 −1 13.5 9.07 41.64
−1 −1 1 1 1 −1 1 −1 1 1 −1 −1 1 9.6 9.63 40.05

1 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 12.0 9.05 41.53
−1 1 1 −1 −1 −1 −1 −1 1 1 1 1 −1 13.6 9.24 41.19
−1 −1 1 −1 −1 1 1 1 1 −1 1 −1 1 12.6 9.77 40.54

1 −1 1 1 −1 1 −1 −1 −1 1 1 1 1 10.9 10.07 40.66
1 −1 −1 −1 1 1 1 −1 1 −1 1 1 −1 11.9 9.45 40.16
1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1 11.6 9.64 40.51
1 1 −1 −1 1 −1 −1 1 1 1 1 −1 1 10.2 9.37 40.55
1 −1 1 −1 1 −1 −1 1 −1 −1 −1 1 1 11.6 9.86 41.01

−1 1 −1 −1 −1 1 1 1 −1 1 −1 1 1 10.6 9.39 41.10
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 14.8 9.53 41.63

1 1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 13.0 9.69 40.70
−1 1 −1 1 1 −1 1 −1 −1 −1 1 1 1 11.2 9.27 39.71

Table 6.12. Estimated coefficients for Kappa number, tear index, and yield,
with Lenth t statistics

Kappa Tear Yield
Term Est. t Est. t Est. t
Intercept 11.97 9.453 40.783
A −0.31 −1.26 0.093 1.12 −0.076 −0.58
B −0.14 −0.59 −0.101 −1.21 −0.120 −0.91
C −0.07 −0.28 0.157 1.88 −0.074 −0.56
D −0.14 −0.59 −0.078 −0.94 −0.054 −0.41
E −0.48 −1.97 −0.044 −0.53 −0.203 −1.54
F −0.03 −0.13 −0.002 −0.02 −0.014 −0.10
G −0.41 −1.67 0.033 0.40 −0.245 −1.87
H 0.01 0.03 −0.056 −0.67 0.227 1.73
J −0.18 −0.74 −0.112 −1.34 −0.087 −0.67
K −0.47 −1.92 −0.021 −0.25 0.121 0.92
L 0.14 0.59 0.038 0.46 −0.139 −1.06
M −0.21 −0.85 −0.039 −0.47 0.014 0.10
N −0.87 −3.56 0.122 1.46 −0.264 −2.01
AK = BE = CF = . . . −0.02 −0.08 0.007 0.08 −0.015 −0.11
AL = BH = CD = . . . −0.31 −1.26 0.061 0.73 −0.050 −0.38
Std Error

PSE 0.24 0.083 0.131
RMSE/161/2 0.22 0.043 0.037
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Fig. 6.3. Half-normal plot of effects for Y = Kappa number, tear index, and yield
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The differences between Lenth’s PSE and the standard error RMSE/161/2

reflect the inherent variation in estimates based on so little information. The
PSE based on 15 contrasts is more precise than the RMSE with 2 df, so we
base our conclusions on Lenth t statistics and critical values from Appendix
C. For tear, the largest of 15 t statistics is only 1.88, and the half-normal plot
matches what one would expect if all factors were inactive. For Kappa, the
Extended alkali wash (N = +1) certainly lowers the response. There is some
evidence that the high levels of E, K, and G also decrease Kappa. High N
and G also seem to have the disadvantage of lowering yield. The coefficient for
yield bH = 0.227 is also statistically significant at α = .10. (In Section 14.2,
we consider an alternative to Lenth’s method, which is slightly more powerful
when there are only one or two active effects.)

In summary, high H appears to increase yield without raising Kappa, and
high K appears to lower Kappa without lowering yield. Because these esti-
mates are only marginally significant, subsequent experimentation is needed
to confirm the presence of these effects. One option would be a foldover of this
design, which would increase the precision and remove the aliasing of main
effects with two-factor interactions (see Section 9.4). If performing 16 more
runs is impractical, at least confirmation runs with H = K = +1 should be
explored.

Example 6.4: A 215−11 experiment
Poorna and Kulkarni (1995) investigated four carbon sources and eight

nitrogen sources, together with three other parameters thought to affect in-
ulinase production. The 15 factors and their levels are given in Table 6.13. A
regular 215−11 fractional factorial design was used that included the treatment
combination with all 16 factors at the low level. The 11 generators were E =
−ABCD, F = BCD, G = ABC, H = −CD, J = −BD, K = ABD, L
= ACD, M = −AC, N = −AD, O = −AB, and P = −BC, producing
the fraction given in Table 6.14. The order shown presumes that the authors’
trial code indicates actual run order. The two responses are inulinase activity
(units/mL) at 60 hours (denoted yA) and dry weight biomass (mg/mL) after
96 hours of incubation (denoted yB). Note that the final treatment combina-
tion, being at the low level for all ingredients, produced nothing measurable
even after 96 hours. The scatterplot in Figure 6.4 shows how different this run
is.
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Table 6.13. Factors and levels for Poorna and Kulkarni’s experiment

Levels
Factors −1 1
Carbon source

A: Inulin (%) 0 2
B: Fructose (%) 0 2
C: Glucose (%) 0 2
D: Sucrose (%) 0 2

Organic nitrogen source
E: Corn steep liquor (%) 0 1
F: Peptone (%) 0 1
G: Urea (%) 0 1
H: Yeast extract (%) 0 1

Inorganic nitrogen source
J: Corn steep liquor (%) 0 1
K: Peptone (%) 0 1
L: Urea (%) 0 1
M: Yeast extract (%) 0 1

Other
N: Trace elements solution (mL) 0.5 1.5
O: Inoculum level (106 spores/mL) 0.25 25
P: pH 5 6

Table 6.14. Poorna and Kulkarni’s 215−11 experiment

A B C D E F G H J K L M N O P yA yB

1 1 1 1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 78 250
1 1 1 −1 1 −1 1 1 1 −1 −1 −1 1 −1 −1 36 205

−1 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 −1 32 175
1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 52 215

−1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 1 48 180
1 −1 1 1 1 −1 −1 −1 1 −1 1 −1 −1 1 1 75 250
1 1 −1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 1 28 215

−1 1 1 −1 −1 −1 −1 1 1 1 1 1 −1 1 −1 0 186
−1 −1 1 1 −1 −1 1 −1 1 1 −1 1 1 −1 1 30 262

1 −1 −1 −1 1 −1 1 −1 −1 1 1 1 1 1 −1 90 275
−1 1 −1 −1 1 1 1 −1 1 1 −1 −1 −1 1 1 0 165
−1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 −1 1 0 175
−1 −1 −1 1 1 1 −1 1 1 1 1 −1 1 −1 −1 35 200

1 −1 −1 1 −1 1 1 1 1 −1 −1 1 −1 1 −1 58 260
1 1 −1 1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 120 280

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 − 1 −1 0 0
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Fig. 6.4. Biomass weight yB versus Activity yA for inulinase experiment

The main effects model (1.1) is a saturated model here. With no replica-
tion, Lenth’s PSE is used to estimate the standard error for the regression
coefficients. The results of this model fit for yA are given in Table 6.15 and
Figure 6.5. Six of the 15 coefficients have Lenth t statistics > cIER

.05 = 2.156
and so are statistically significant at α = .05. The p-values reported are based
on simulation, as described in Appendix C. Of the six statistically significant
effects, four are positive and two are negative. The authors expected Inulin
to have a large positive effect, while the positive estimate for Sucrose was a
surprise. The other two positive estimates represent two nitrogen sources: one
organic and one inorganic. Hence, the four ingredients Inulin, Sucrose, Corn
steep liquor, and Ammonium sulfate show the most benefit.

In spite of the large positive estimate bD = 16.9, Poorna and Kulkarni
were reluctant to accept that adding sucrose increases yA. They stated that
“to some extent sucrose repressed the enzyme production” (p. 319). This com-
ment is based on previous literature and an inspection of individual treatment
combinations, in contradiction to the fitted model. Further investigation seems
warranted to examine the aliasing of two-factor interactions with these main
effects. For Sucrose, −D = AN = BJ = CH = EG = FP = KO = LM.
Since none of these interactions appears likely to account for the large pos-
itive estimate for D and the data show no evidence for an AD interaction,
this experiment tentatively supports the usefulness of Sucrose to inulinase
production, whether Inulin is present or not.
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Table 6.15. Saturated model for yA in inulinase experiment

Term Estimate PSE Lenth t p-Value
Intercept 42.625 2.4375 17.49 <.0001
A (Inulin) 24.500 2.4375 10.05 <.0001
B (Fructose) 0.125 2.4375 0.05 0.9598
C (Glucose) −4.750 2.4375 −1.95 0.0703
D (Sucrose) 16.875 2.4375 6.92 <.0001
E (CSL) 5.875 2.4375 2.41 0.0292
F (Peptone) −7.250 2.4375 −2.97 0.0095
G (Urea) −0.125 2.4375 −0.05 0.9598
H (Yeast extract) 1.000 2.4375 0.41 0.6874
J (NH4Cl) −9.875 2.4375 −4.05 0.0010
K ((NH4)2SO4) 8.000 2.4375 3.28 0.0050
L (NH4H2PO4) 1.625 2.4375 0.67 0.5151
M (NaNO3) 2.125 2.4375 0.87 0.3971
N (Trace elements) 1.250 2.4375 0.51 0.6155
O (Inoculum level) 1.750 2.4375 0.72 0.4838
P (pH) 1.500 2.4375 0.62 0.5475
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6.2 Some Theory Regarding Resolution III Designs

Regular resolution III 2k−f fractional factorial designs with k = N − 1 are
very simple to construct. Define S1 = 1 and

SN =
[
SN/2 SN/2

SN/2 −SN/2

]
(6.1)

for N = 2, 4, 8, ... (i.e., for N any power of 2). Each SN in this series is a
square matrix of –1’s and +1’s with orthogonal columns, which implies

S′
NSN = NIN .

Any matrix with these properties is called a Hadamard matrix; see Hedayat,
Sloane and Stufken (1999, Ch. 7) for additional details. Equation (6.1) is
the Sylvester-type Hadamard matrix construction, hence the designation SN .
Other Hadamard matrices are discussed in Section 6.3. It is easy to verify
that SN defined by (6.1) is a symmetric matrix with first column (and row)
being a constant vector of 1’s. Thus, SN represents the model matrix for an
orthogonal two-level design, where the first column of SN is the intercept
column and the remaining N − 1 columns form the design. For example,

S4 =
[
S2 S2

S2 −S2

]
=

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ ,

S8 =
[
S4 S4

S4 −S4

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are first-order model matrices for 23−1 and 27−4 designs, respectively. In ad-
dition, if we number the columns of SN 0, 1, 2, ..., N–1, then columns 1, 2,
4, 8, ..., N/2 form a full factorial and the remaining columns are interactions
of these. In fact, the numbering matches the column numbering in Appendix
F, which is used to present the minimum aberration designs in Appendix G.
For instance, column 3 is the product of columns 1 and 2, column 5 is the
product of columns 1 and 4, etc. Thus, one may construct the minimum aber-
ration fractional factorial designs with k = N − 1 using (6.1) or by using the
generators in Appendix G.

The saturated main effect designs defined by (6.1) are symmetrical in their
aliasing of effects. Consider the 27−4 design with generators D = AB, E =
AC, F = BC, and G = ABC. The defining relation for this design is
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I = ABD = ACE = BCDE = BCF = ACDF = ABEF = DEF = ABCG

= CDG = BEG = ADEG = AFG = BDFG = CEFG = ABCDEFG.

This 1/16th fraction aliases 15 interactions with each of the main effects; 3
of these are two-factor interactions, since each factor appears in 3 of the 7
length-3 words of the defining relation. In particular,

A = BD = CE = FG = · · · = BCDEFG
B = AD = CF = EG = · · · = ACDEFG
C = AE = BF = DG = · · · = ABDEFG
D = AB = CG = EF = · · · = ABCEFG
E = AC = BG = DF = · · · = ABCDFG
F = AG = BC = DE = · · · = ABCDEG
G = AF = BE = CD = · · · = ABCDEF

In general, a saturated main effect design in N runs aliases N/2−1 two-factor
interactions with each main effect.

Every eight-run fractional factorial design with orthogonal main effects is
equivalent (i.e., isomorphic) to a projection of this seven-factor design; that is,
for six factors in eight runs, we simply drop one of the seven factors. Because
of the symmetry of the aliasing in the seven-factor design, it does not matter
which factor we drop. Dropping factor G, the defining relation for the resulting
26−2 design is

I = ABD = ACE = BCDE = BCF = ACDF = ABEF = DEF

and the aliasing reduces to

A = BD = CE = · · ·
B = AD = CF = · · ·
C = AE = BF = · · ·
D = AB = EF = · · ·
E = AC = DF = · · ·
F = BC = DE = · · ·
AF = BE = CD = · · · = ABCDEF

For five factors, it does not matter which factor is dropped from the six-
factor design; the resulting defining relation will still contain two length-3
words and one length-4 word. Dropping F one obtains the 25−2 with defining
relation

I = ABD = ACE = BCDE,

and the aliasing reduces to

A = BD = CE = · · ·
B = AD = · · ·
C = AE = · · ·
D = AB = · · ·
E = AC = · · ·
BC = DE = · · ·
BE = CD = · · ·
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Since the aliasing for the 26−3 and 25−2 designs is not symmetric, it does
matter how the factors are assigned to the columns. If a particular two-factor
interaction is considered more likely, one should avoid aliasing it with any
main effects.

Consider now dropping a third column to obtain a 24−1 fraction. If one
drops A, the resulting design is resolution IV, and if one drops any other
column, the design remains resolution III. By dropping yet another column,
one obtains either the full 23 or a replicated 23−1.

These projections of the 27−4 design illustrate four general results regard-
ing regular fractional factorial designs:

• The regular resolution III 2k−f design with k = N − 1 is unique (in the
sense of isomorphism defined in Section 5.2.4). All regular N -run designs
of resolution III or higher are projections of this design.

• For k = N−2 and k = N−3, it does not matter which columns are deleted
from the saturated main effect design. Equivalent designs are obtained.

• For k ≤ N − 4, it matters which columns are dropped and which are
retained as factors, as different designs are possible.

• For k ≤ N/2, designs of resolution IV or higher are available.

6.2.1 Criterion for ranking regular 2k−f designs of resolution III

For k > N/2, the maximum resolution is resolution III. In cases where non-
isomorphic designs exist, we prefer the design with the fewest length-3 words.
For instance, with k = 9 and N = 16, there are five non-isomorphic regu-
lar resolution III designs. The five designs have defining relations with word
length patterns wlp = (A3, ..., A9) as follows:

Design Word Length Pattern
9-5.1 (4, 14, 8, 0, 4, 1, 0)
9-5.2 (6, 9, 9, 6, 0, 0, 1)
9-5.3 (6, 10, 8, 4, 2, 1, 0)
9-5.4 (7, 9, 6, 6, 3, 0, 0)
9-5.5 (8, 10, 4, 4, 4, 1, 0)

One way to construct the minimum aberration design is to use columns 7 and
11–14 as generators. Assigning the letters A–H and J as factor labels, our
generators are E = ABC, F = ABD, G = CD, H = ACD, and J = BCD.
(As detailed in Appendix F, for a 16-run design, the first four factors A–D
correspond to the basic column numbers {1, 2, 4, 8}, and column 7 (which
equals 1+2+4) corresponds to the interaction ABC, column 11 corresponds
to the interaction ABD, etc. The aliasing, up to two-factor interactions, for
this design is
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A = GH
B = GJ
C = DG
D = CG
E = FG
F = EG
G = AH = BJ = CD = EF
H = AG
J = BG

AB = CE = DF = HJ
AC = BE = DH = FJ
AD = BF = CH = EJ
AE = BC = DJ = FH
AF = BD = CJ = EH
AJ = BH = CF = DE

The four length-3 words in the defining relation are AGH, BGJ, CDG,
and EFG. Each length-3 word produces three aliases between main effects
and two-factor interactions. Thus, with A3 = 4, the design aliases 12 two-
factor interactions with main effects. The other resolution III designs will
alias 18 or more two-factor interactions with the 9 main effects, since these
designs have A3 ≥ 6. Because the number of two-factor interactions aliased
with main effects is proportional to A3, minimizing the number of length-3
words is the primary criterion for ranking resolution III designs. Appendix G
provides minimum aberration resolution III designs of size N = 8, 16, 32, 64,
and 128; N/2 < k < N . For N = 16 and 32, these designs appeared in Chen,
Sun, and Wu (1993). For larger N , they were obtained using the following
complementary design construction.

6.2.2 Constructing resolution III designs via complementary
design

The saturated resolution III 2k−f design uses all f interactions among the
basic factors as generators. As mentioned earlier, regular resolution III designs
with k ≥ N − 3 are isomorphic; that is, for k = N − 3, it does not matter
which two interactions are not used as generators, since the resulting designs
are equivalent and can be made identical by swapping of columns and rows
and, if necessary, reversing the levels of some columns. The same is true for
k = N − 2. When N − k is much smaller than f , it is easier to specify the
N−k−1 columns not used as generators than it is to specify the f generators.
Tang and Wu (1996) showed how to search for the best resolution III designs
by considering the set of omitted columns. We illustrate the connection for
the case N = 16 and k = 11, where there are three nonisomorphic designs.
From Chen, Sun, and Wu (1993), the three designs can be constructed by
omitting the following sets of N − 1 − k = 4 columns (see Appendix F for
identification of interactions by column numbers):
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• Design 11-7.1 (A3 = 12, A4 = 26) by omitting columns {7, 11, 12, 15}.
These four omitted columns form a replicated 24−1 of resolution III, since
7 = 11·12.

• Design 11-7.2 (A3 = 13, A4 = 25) by omitting columns {11, 13, 14, 15}.
These four omitted columns form a full 24.

• Design 11-7.3 (A3 = 13, A4 = 26) by omitting columns {12, 13, 14, 15}.
These four omitted columns form a replicated 24−1 of resolution IV, since
15 = 12·13·14.

The design formed by the omitted columns is labeled the complementary
design. Let Aj denote the number of length-j words for the complementary
design with N − k − 1 factors, just as Aj denotes the number of length-
j words for the 2k−f design. Chen and Hedayat (1996) and Tang and Wu
(1996) showed that for a given N and k,

A3 = C3(N, k) − A3,

A4 = C4(N, k) + A3 + A4,

where C3(N, k) and C4(N, k) are constants that depend only on N and k. In
particular, C3(16, 11) = 13 and C4(16, 11) = 25, as can be verified for each of
the 211−7 designs and their complement above. Tang and Wu further showed
that the minimum aberration 2k−f design may be found by sequentially max-
imizing A3, minimizing A4, maximizing A5, etc. Thus, for the minimum aber-
ration 211−7 design, one omits 4 columns which form a (replicated) resolution
III 16-run fraction. In general, the minimum aberration design is obtained by
deleting N − k − 1 columns which together have the maximum aliasing of
two-factor interactions with main effects.

In some instances, there exist several resolution III designs with the same
A3 as the minimum aberration design. Such designs are said to have weak
minimum aberration (Chen and Hedayat 1996). These designs alias the same
number of two-factor interactions with main effects as the minimum aberra-
tion design.

6.3 Nonregular Orthogonal Designs of Strength 2

All fractional factorial designs presented in Chapter 5 and in Sections 6.1
and 6.2 can be constructed using design generators that define f additional
columns in terms of interactions of the k − f basic columns. This method
produces regular (1/2)f fractions of a 2k factorial. For these fractions, each
factorial effect column is indistinguishable from its aliases but orthogonal to
all other main effect and interaction columns.

Now we consider orthogonal main effect designs that do not have defining
relations. These nonregular designs are constructed without design generators
and have different aliasing and projection properties. Initially, two such de-
signs are shown to highlight the differences between nonregular and regular
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fractional factorial designs. Properties such as aliasing, resolution, word length
pattern, and aberration are generalized to provide a means of characterizing
nonregular orthogonal designs. Then, in the following subsections, we present
the recommended nonregular designs of sizes 12, 16, 20, 24, and larger and
reanalyze four published examples.

Tables 6.16 and 6.17 show nonregular fractional factorial designs. Each
design is a strength-2 orthogonal array, which means every pair of columns

Table 6.16. OA(12, 211, 2) design

1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 −1 1 1 1 −1 −1 −1 1

1 −1 −1 1 −1 1 1 1 −1 −1 −1
−1 1 −1 −1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 −1 1 −1 1 1 1 −1
−1 −1 −1 1 −1 −1 1 −1 1 1 1

1 −1 −1 −1 1 −1 −1 1 −1 1 1
1 1 −1 −1 −1 1 −1 −1 1 −1 1
1 1 1 −1 −1 −1 1 −1 −1 1 −1

−1 1 1 1 −1 −1 −1 1 −1 −1 1
1 −1 1 1 1 −1 −1 −1 1 −1 −1

Table 6.17. OA(16, 215, 2) design (Hall Type V)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

−1 1 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 −1 −1 1 1 1 −1 1 −1 1 −1 1 −1

−1 −1 1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

−1 1 −1 1 −1 1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

−1 −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

−1 1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 −1 1
1 −1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 1

−1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1
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forms an equally replicated 22 factorial. In general, a strength-t orthogonal
array projects into an equally replicated full factorial in every subset of t
factors. We denote an N -run, strength-t orthogonal array with k two-level
factors by OA(N , 2k, t). An OA(N , 2k, t) requires N to be divisible by 2t.
While regular unreplicated 2k−f designs are restricted to N a power of 2,
strength two nonregular designs are more flexible in size.

6.3.1 Properties of strength-2 orthogonal arrays

We now discuss five properties of orthogonal arrays: (i) bias from omitted
interactions, (ii) projection properties, (iii) estimability, (iv) efficiency of es-
timation, and (v) existence and construction.

(i) Bias due to omission of active interactions

Although aliasing for regular designs is apparent from the defining relation,
here one must use the alias matrix (see Appendix I). The alias matrix reveals
the bias to least squares estimators from a model that omits active terms. For
strength-2 orthogonal arrays, it is relevant to consider the impact of omitted
two-factor interactions on estimates for a first-order model. The potential bias
to each main effect estimate from omitted two-factor interactions is charac-
terized by rows of this alias matrix. In particular,

E(br) = βr +
k−1∑
i=1

k∑
j=i+1

ρr,i·jβi·j ,

where ρr,i·j is the correlation between xr and xixj . For the design in Table
6.16, |ρr,i·j | = 1/3 for all r �= i, j, something that does not arise for regular
designs. For the design in Table 6.17, these correlations are 0, 1/2, and 1.
When the correlation is not 0 or ±1, we say that the effects are partially
aliased. Obviously, the stronger the correlation, the greater the potential bias
to the main effect.

(ii) Projections

Regular 2k−f fractional factorials with resolution R project into an equally
replicated full factorial in any set of R − 1 factors. Hence, OA(N , 2k, t)
designs include the regular 2k−f fractions of resolution t+1. Whereas OA(N ,
2k, 2) and regular resolution III designs appear similar when projecting into
just two columns, projections into three or more columns will highlight their
differences. Every nonregular strength-2 design in this section projects into an
unequally replicated 23 in some sets of three columns. By contrast, a regular
resolution III 2k−f design projects either into an equally replicated 23−1 or an
equally replicated 23, depending on whether the three factors appear together
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in a length-3 word of the defining relation or not. From Table 6.16, one may
verify that every set of three columns projects into a full 23, with each row
appearing once or twice. This is ideal for 12 runs, since the frequencies are as
nearly equal as possible. From Table 6.17, three projections occur:

• Four replicates of a 23−1; e.g., columns 1, 2, 3.
• Two replicates of a 23; e.g., columns 1, 2, 4.
• One replicate of a 23, plus two replicates of a 23−1; e.g., columns 1, 2, 8.

Hence, the 1·2 interaction column is completely aliased with the factor 3 main
effect and partially aliased with the factor 8 main effect.

(iii) Estimability

Exploring all possible projections of a design reveals what models may be fit
in subsets of the factors. Since the design in Table 6.16 projects into a full
23 in every subset of three factors, one can estimate the full factorial model
(1.4) in every subset of three factors. One can also estimate the two-factor
interaction model (1.3) in every subset of four factors for this design. Table
6.16 is our first example of a general result due to Cheng (1995): that every
OA(N , 2k, 2) with k ≥ 4 and N not a multiple of 8 supports estimation of
the two-factor interaction model for every set of four factors. Bulutoglu and
Cheng (2003) extended this result to apply to some OA(N , 2k, 2) with N a
multiple of 8, but this does not include the design in Table 6.17.

Qu (2006) proposed the maxest criterion for ranking designs based on
sequentially maximizing components of an estimability vector

EV = (e11, e12, e22, e13, e23, e33, e14, ...),

where e1s (ers) is the proportion of main effects (r-factor interactions) that
are estimable in a hierarchical model containing all s-factor interactions. For
regular 2k−f designs, resolution III guarantees e11 = 1, and, additionally,
resolution IV guarantees e12 = 1 and resolution V guarantees e22 = e13 = 1.

For all OA(N , 2k, 2) satisfying the conditions of Cheng’s (1995) and Bu-
lutoglu and Cheng’s (2003) theorems, e11 = e12 = e22 = 1 for all four-factor
projections. Note, however, that estimability criteria do not take into account
the model matrix’s lack of orthogonality; precision of estimates must be ad-
dressed with an additional criterion.

(iv) Efficiency

For a regular design, the orthogonality of columns from different alias sets
implies that any model that can be fit will be estimated with full precision;
that is, if the model matrix X for any regular design is not singular, then
X′X will be a diagonal matrix. By contrast, although nonregular designs
permit estimation of more models, these estimable models do not necessarily



198 6 Fractional Factorial Designs for Estimating Main Effects

have diagonal X′X. Thus, for nonregular designs, one is interested in both
the proportion of models with interactions that are estimable for a particular
OA(N , 2k, 2) as well as the precision of estimated coefficients. Efficiency may
be measured by variance inflation factors or by A- and D-efficiency (all of
which are described at the beginning of Section 6.4).

(v) Existence and construction of OA(N , 2k, 2)

The designs in Tables 6.16 and 6.17 are called Hadamard designs, because if
one adds a column of +1’s, the resulting square matrices H12 and H16 are
Hadamard matrices satisfying the property H′

NHN = NIN . A common con-
jecture is that Hadamard matrices HN exist for every N that is a multiple
of 4. Plackett and Burman (1946) listed a Hadamard design for every order
up to 100, except for N = 92 (a case that was not solved until 1962). The
website http://www.research.att.com/∼njas/hadamard/ contains Hadamard
matrices H4u for every case up to H256. For an even larger collection, see
http://www.math.ntua.gr/people/ckoukouv/. Hedayat, Sloane, and Stufken
(1999, Ch. 7) provide an excellent summary of how these matrices are con-
structed; see also Seberry, Wysocki, and Wysocki (2005). Many people refer
to these as Plackett and Burman designs. However, this book prefers the term
Hadamard design, since we include designs such as Table 6.17 not considered
by Plackett and Burman.

OA(N , 2k, 2) with k < N − 1 may be constructed in two ways. First, one
may search to find the best k-factor projection of known Hadamard designs.
Second, one may use algorithms to search for all orthogonal arrays of a given
strength and size, sequentially adding additional columns. For k > N/2, the
best orthogonal designs appear to be projections of Hadamard designs. How-
ever, this is not the case for smaller k. For example, Xu and Deng’s (2005,
p. 130) design 20.7.1 is an OA(20, 27, 2) not obtainable as a 7-factor projec-
tion from any 20-run Hadamard design. Those who work to construct these
orthogonal arrays must use either rigorous checks for isomorphism (see Clark
and Dean 2001) or some heuristic for distinguishing designs that is quicker
but not guaranteed to correctly distinguish all designs (Katsaounis and Dean
2008).

6.3.2 Criteria for ranking nonregular orthogonal designs

Just as word length pattern is used to rank regular fractional factorial designs
with the same resolution, we need criteria to distinguish OA(N , 2k, t) of the
same strength. Deng and Tang (1999) introduced the concepts of generalized
word length pattern and generalized resolution. Following their notation, let
s = {dj1 , . . . , djr

} denote a subset of r of the k factors for a two-level design
D and define

Jr(s) = Jr(dj1 , . . . , djr ) = |
N∑

i=1

dij1 · · · dijr |, (6.2)
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where dj denotes the jth column of D, with elements dij for i = 1, . . . , N .
For regular fractional factorial designs, Jr(s) takes on the values 0 and N ,

and Ar equals the number of subsets of size r for which Jr(s) = N. Deng and
Tang (1999) showed that for any OA(N, 2k, t) of strength t ≥ 2, Jr(s) is a
multiple of 4. Tang and Deng (1999) defined the normalized J-characteristics
by dividing by N . Hence, while Jr(s) is restricted to the values 0, 4, 8,..., N ,
the normalized J-characteristics values are 0, 4/N , 8/N ,..., 1.

Deng and Tang (1999) defined the confounding frequency vector

cfv = [F3, . . . , Fk] = [(f31, . . . , f3u)3, . . . , (fk1, . . . , fku)k], (6.3)

where u = N/4 and frj is the frequency of r column subsets that give Jr(s) =
4(u + 1− j). For instance, the confounding frequency vector for the design in
Table 6.16 is

cfv = [(0, 0, 165)3, (0, 0, 330)4, (0, 66, 0)5, . . . , (1, 0, 0)11]. (6.4)

This cfv reveals that all
(
11
3

)
= 165 subsets of 3 columns and all

(
11
4

)
=

330 subsets of 4 columns have normalized J-characteristics of 4/12 = 0.3̄. Of
the

(
11
5

)
= 462 subsets of 5 columns, 66 have normalized J-characteristic of

8/12 = 0.6̄, while the remaining 396 have J-characteristic of 0, and so do not
appear in the cfv. Finally, the product of all 11 columns sums to N , and so
has normalized J-characteristic of 1.

The elements of the cfv are sorted from high to low J-characteristics within
each subset size. Hence, for regular fractional factorial designs, fr1 = Ar, since
it is the number of size-r subsets with Jr(s) = N. In general, at least half of
the elements of each Fr are zero. To emphasize how the cfv is an extension of
the word length pattern and to abbreviate cfv and its subvectors Fr, we omit
zero frequencies and rewrite (6.4) as

[A3(1/3) = 165, A4(1/3) = 330, A5(2/3) = 66, . . . , A11(1) = 1]. (6.5)

Thus, in general, Ar(ρ) will denote the number of subsets of size r for which
Jr(s) = ρN and Ar(ρ1, ρ2, . . .) will denote a vector of such frequencies.

For regular designs, the resolution of the design is the length of the shortest
word in the defining relation; that is, the resolution equals the smallest r for
which Ar(1) > 0. Deng and Tang (1999) defined generalized resolution for
orthogonal arrays in terms of the first non-zero element of the cfv. Suppose
Ar(ρ) is the first nonzero element of the cfv. Then the generalized resolution
is

R = r + (1 − ρ). (6.6)

For the Table 6.16 design, R = 3 + (1 − 1/3) = 3.6̄.
One useful criterion for ranking orthogonal arrays is minimum generalized

aberration (minimum G-aberration), which ranks designs based on the con-
founding frequency vector, just as minimum aberration ranks designs based
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on the word length pattern. For instance, consider the design in Table 6.17.
The confounding frequency vector for this OA(16, 215, 2) is

cfv = [(7, 0, 112, 0)3, (21, 0, 336, 0)4, (0, 0, 672, 0)5, . . . , (1, 0, 0, 0)15], (6.7)

or in terms of our abbreviated vector of nonzero elements,

[A3(1, 0.5) = (7, 112), A4(1, 0.5) = (21, 336), A5(0.5) = 672, . . . , A15(1) = 1].

Although the regular 215−11, with A3(1) = 35, and the Table 6.17 design both
have generalized resolution of 3, the nonregular design has less G-aberration,
since the first nonzero element of the confounding frequency vector is A3(1) =
7 < 35.

A second criterion proposed in Tang and Deng (1999) is minimum G2-
aberration, which converts each vector (fr1, . . . , fru)r from (6.3) into the scalar

Br = fr1 + (1 − 4/N)2fr2 + · · · + (4/N)2fru. (6.8)

Tang and Deng proposed the vector (B3, B4, . . . , Bk) as a “generalization
of word length pattern,” since it is directly comparable to the word length
pattern (A3, A4, . . ., Ak) for regular fractions. Thus, we refer to the vector
of Br values as the generalized word length pattern (gwlp). See Ma and Fang
(2001) for an alternative development of the same vector. The design in Table
6.17 with cfv (6.7) has generalized word length pattern (B3, B4, . . . , B15) equal
to

(7 + (0.5)2112, 21 + (0.5)2336, (0.5)2672, 1) = (35, 105, 168, . . . , 1),

which is identical to the word length pattern for the regular 215−11. That this
is necessarily the case is proven by the following argument.

Since SNS′
N = HNH′

N = NIN, both regular and nonregular Hadamard
designs with k = N − 1 have identical row coincidence matrices DD′, with
diagonal elements N − 1 and off-diagonal elements of −1. Since gwlp can be
computed from DD′, identical DD′ implies identical gwlp. Thus, when N
is a power of 2, the gwlp of any OA(N , 2N−1, 2) design necessarily equals
the wlp of the regular saturated fractional factorial design of the same size.
Thus, saturated nonregular OAs can be preferred to the regular saturated
2k−f in terms of generalized aberration and sometimes with respect to gen-
eralized resolution—both of which are based on the confounding frequency
vector (6.3). However, G2-aberration will not distinguish the designs. Still,
Tang and Deng (1999) justified using G2-aberration to rank designs, arguing
that gwlp corresponds to the expected bias from omitted higher-order terms.
Using Butler’s (2003b) formula relating the rth moment of T = DD′ to Br,
we have that when k = N − 1, every orthogonal design has B3 = k(k − 1)/6,
B4 = (k − 3)B3/4, B5 = (k − 7)B4/5, and B6 = (k − 5)B5/6.

In the next five subsections we focus on nonregular, strength-2 designs of
sizes 12, 16, 20, 24, and larger. In each subsection we discuss the projection
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properties of the designs as well as the potential bias to main effect estimates
from omitted two-factor interactions. Since the designs of size 24 and smaller
are the most commonly used, we give them particular attention and highlight
their differences. We illustrate the successful use and analysis of such designs
via Examples 6.5–6.8.

6.3.3 The 12-run design with generalized resolution 3.6̄

All OA(12, 211, 2) are isomorphic to the design given earlier in Table 6.16,
with cfv (6.5). Note that the largest correlation between a main effect column
and a two- or three-factor interaction (and between two two-factor interaction
columns) is 1/3.

The first three columns of Table 6.16 project to

1 2 3 Frequency
−1 −1 −1 2
−1 −1 1 1
−1 1 −1 1
−1 1 1 2

1 −1 1 2
1 −1 −1 1
1 1 1 1
1 1 −1 2

The frequency is 1 when 123 = +1, and 2 when 123 = –1. Lin and Draper
(1992) enumerated all possible projections of the 12-run design into three,
four, or five columns. They showed that:

• Every three columns project to a 23 plus a resolution III 23−1.
• For every set of 4 columns, the 12-run design has 11 distinct treatment

combinations.

Since N is not a multiple of 8, Cheng (1995) guaranteed that one can estimate
the two-factor interaction model in any subset of four factors. This projection
property is quite useful, assuming that no more than four factors are active
and that one can identify the relevant subset.

For 7 ≤ k ≤ 10 factors, it does not matter which of the columns of the
12-run design are used. For a comparison of the choices when k = 5 or 6, see
Miller and Sitter (2004).

We now analyze two examples: one saturated with factors and the second
with k = 7. In each case, we consider the possibility of active two-factor
interactions, in addition to main effects.

Example 6.5: Eleven factors in 12 runs
Bullington, Lovin, Miller, and Woodall (1993) reported an 11-factor exper-

iment in 12 runs conducted to identify causes for early failures in thermostats
manufactured by the Eaton Corporation. A team narrowed down a list of over
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50 potential factors to the 11 factors in Table 6.18 and chose extreme levels
for each factor to magnify their effects. This choice seemed reasonable because
historical evidence indicated that effects were monotonic.

Table 6.18. Factors and levels for Bullington et al. thermostat experiment

Levels
Factors −1 1
A Diaphragm plating rinse Clean Dirty
B Current density (min @ amps) 5 @ 60 10 @ 15
C Sulfuric acid cleaning (seconds) 3 30
D Diaphragm electroclean (min) 2 12
E Beryllium copper grain size (in) 0.008 0.018
F Stress orientation (to seam weld) Perpendicular Parallel
G Diaphragm condition after brazing Wet Air-dried
H Heat treatment (hours @ 600oF) 0.75 4
J Brazing machine water and flux None Extra
K Power element electroclean time Short Long
L Power element plating rinse Clean Dirty

Ten thermostats were manufactured corresponding to each of the 12 treat-
ment combinations in Table 6.19. These 120 thermostats were then tested for
7342K cycles, or until failure, whichever came first. Twenty-two of the 120
thermostats did not fail, and so their responses are right censored. Bullington
et al. (1993) took as their response the average log(cycles to failure)—or, for
treatment combinations with censored values, the maximum likelihood esti-
mate for the mean. To simplify the analysis here, we use only the first two
failures from each set of 10 thermostats, since 2 treatment combinations only
had 2 failures. These early failure data are provided in Table 6.19, where y(1)

and y(2) denote the number of cycles (in thousands) corresponding to the first
and second failures, respectively.

Due to severe skewness in y(1) and y(2), some transformation is needed.
We elect to analyze the log of y(1) and y(2). This transformation is consistent
with Bullington et al.’s assumption of a lognormal distribution for the failure
distribution. Figure 6.6 reveals the high correlation (.97) between the trans-
formed first and second failure times, so we expect similar results for the two
models.

Fitting a saturated model for ln[y(1)] and ln[y(2)], we find that only factor
E shows any systematic effect. Table 6.20 shows the estimated coefficients
and Lenth t values for each model, and Figure 6.7 shows a half-normal plot
of effects for ln[y(2)]. Factor E is statistically significant in each case, and the
next largest Lenth t statistic is −1.44. Figure 6.8 plots ln[y(2)] versus E, with

the simple regression model ̂ln[y(2)] = 5.45 − 0.86E.
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Table 6.19. Number of cycles (in thousands) until failure of first two
thermostats for each treatment combination in Bullington et al’s design

A B C D E F G H J K L y(1) y(2)

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 957 2846
−1 −1 −1 −1 −1 1 1 1 1 1 1 206 284
−1 −1 1 1 1 −1 −1 −1 1 1 1 63 113
−1 1 −1 1 1 −1 1 1 −1 −1 1 76 104
−1 1 1 −1 1 1 −1 1 −1 1 −1 92 126
−1 1 1 1 −1 1 1 −1 1 −1 −1 490 971

1 −1 1 1 −1 −1 1 1 −1 1 −1 232 326
1 −1 1 −1 1 1 1 −1 −1 −1 1 56 71
1 −1 −1 1 1 1 −1 1 1 −1 −1 142 142
1 1 1 −1 −1 −1 −1 1 1 −1 1 259 266
1 1 −1 1 −1 1 −1 −1 −1 1 1 381 420
1 1 −1 −1 1 −1 1 −1 1 1 −1 56 62
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Table 6.20. Saturated models for ln[y(1)] and ln[y(2)] in thermostat
experiment

ln[y(1)] ln[y(2)]
Term Estimate Lenth t Estimate Lenth t
Intercept 5.111 32.92 5.454 21.09
A −0.119 −0.77 −0.328 −1.27
B −0.016 −0.10 −0.102 −0.40
C −0.130 −0.84 −0.108 −0.42
D 0.058 0.37 0.052 0.20
E −0.778 −5.01 −0.861 −3.33
F 0.050 0.32 −0.017 −0.06
G −0.219 −1.41 −0.229 −0.89
H −0.088 −0.57 −0.211 −0.82
J −0.077 −0.50 −0.134 −0.52
K −0.210 −1.35 −0.259 −1.00
L −0.223 −1.44 −0.303 −1.17

From Table 6.20, the preference for E = −1 (i.e., small grain size) is
obvious. Although a main effects model for the 12 runs did not show any other
significant factor, we consider whether there is any useful information in the E
= −1 data regarding the effects of the remaining factors? Consider analyzing
just the six observations with E = −1. If this were a regular resolution III
fractional factorial design with E appearing in any length-3 words, then some
main effect columns would have correlations of −1 or 1 after splitting the data
in half. Instead, for Table 6.19, after eliminating the rows with E = +1, we find
that every column has a correlation of 1/3 or −1/3 with the others. Of the 10
factors besides E, factor H stands out. Although its effect is not statistically
significant for the response ln[y(2)], the fact that the largest three values all
occur at E = H = −1 is worthy of further investigation. Looking at the failure
data for all 120 thermostats, the 3 treatment combinations (1, 6, 11) with E =
H = −1 only had 8 of the 30 thermostats fail before the test was terminated at
7342K cycles (while all 90 thermostats at other treatment combinations had
already failed by 732K cycles). Follow-up tests at this treatment combination
are recommended.
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Example 6.6: Seven factors in 12 runs
Bermejo-Barrera et al. (2001) conducted an experiment to optimize the

acid leaching step for determining trace amounts of elements in seafood prod-
ucts via atomic absorption spectrometry. The factors included three different
reagents and four other parameters shown in Table 6.21. Twelve combina-
tions of levels for the seven factors were investigated, as shown in Table 6.22.
Although recovery was measured for 13 elements, we show results only for
arsenic, calcium, cadmium, cobalt, mercury, manganese, and zinc.

Table 6.21. Factors and levels for Bermejo-Barrera et al. (2001) experiment

Levels
Factors −1 1
A Nitric acid concentration (M) 0 2.4
B Hydrochloric acid concentration (M) 0 2.4
C Hydrogen peroxide concentration (M) 0 1.2
D Acid solvent volume (mL) 3 7
E Ultrasonic water-bath temperature (oC) 15 60
F Ultrasound exposure time (min) 10 120
G Mussel particle size (μm) 30 300

Table 6.22. Bermejo-Barrera et al. (2001) experiment

A B C D E F G As Ca Cd Co Hg Mn Zn
1 −1 1 −1 −1 −1 1 77.0 82.6 95.2 93.8 8.8 100.4 85.7
1 1 −1 1 −1 −1 −1 87.3 86.6 75.6 75.4 66.5 86.9 92.6

−1 1 1 −1 1 −1 −1 92.9 107.1 82.5 84.1 77.2 105.0 78.9
1 −1 1 1 −1 1 −1 56.4 62.7 50.0 68.3 3.2 59.8 51.1
1 1 −1 1 1 −1 1 100.0 89.9 83.3 92.5 92.5 107.2 96.6
1 1 1 −1 1 1 −1 68.5 70.9 63.1 64.1 59.4 87.8 81.0

−1 1 1 1 −1 1 1 100.0 105.7 73.3 79.8 94.1 88.0 80.1
−1 −1 1 1 1 −1 1 81.2 73.1 56.7 42.5 4.4 67.5 74.1
−1 −1 −1 1 1 1 −1 62.2 39.6 30.0 26.9 8.8 34.6 31.4

1 −1 −1 −1 1 1 1 75.2 83.3 60.0 68.6 11.0 106.6 84.9
−1 1 −1 −1 −1 1 1 92.4 96.2 75.9 81.2 95.6 104.2 83.0
−1 −1 −1 −1 −1 −1 −1 55.2 31.0 15.0 36.2 13.2 46.6 27.1

For this design, a main effects model leaves 4 df for error. Table 6.23
provides a summary of this model for Co, Hg, Mn, and Zn. With 4 df, an
individual t statistic must exceed 2.776 to be statistically significant at α =
.05. By this requirement, Co has no significant effects, Ca has one, Mn has
two, and Zn has three. (Note: If one had 9–10 factors, and so only 1–2 df,
rather than use Std Error = RMSE/(12)1/2, one should fit a model with 11
orthogonal columns and use Lenth’s PSE for testing effects.)
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Table 6.23. Main effects models for Co, Ca, Mn, and Zn

Co Ca Mn Zn
Term Est. t Est. t Est. t Est. t
Intercept 67.78 15.41 77.39 14.57 82.88 21.70 72.21 21.32
A 9.33 2.12 1.94 0.37 8.57 2.24 9.78 2.89
B 11.73 2.67 15.34 2.89 13.63 3.57 13.16 3.89
C 4.32 0.98 6.29 1.18 1.87 0.49 2.94 0.87
D −3.55 −0.81 −1.12 −0.21 −8.88 −2.33 −1.22 −0.36
E −4.67 −1.06 −0.07 −0.01 1.90 0.50 2.28 0.67
F −2.97 −0.67 −0.99 −0.19 −2.72 −0.71 −3.62 −1.07
G 8.62 1.96 11.08 2.09 12.77 3.34 11.86 3.50
R2 (%) 82.34 78.15 89.83 90.51
RMSE 15.24 18.40 13.23 11.73
Std Error 4.40 5.31 3.82 3.87

For all seven elements listed in Table 6.22, no main effect besides A, B,
and G has a t statistic exceeding 2.776 in magnitude. Thus, it appears that the
two acid concentrations and particle size are the influential factors. With this
in mind, a second analysis that is useful here is to fit a two-factor interaction
model in these three factors, to investigate the possibility of interaction effects.
The results are given in Table 6.24. Nominally, we have 5 df for error, although
it must be remembered that these regression models were fit conditional on
the results of a preliminary analysis. Given the likely downward bias in the
MSE, the t statistics should be viewed as approximate.

Table 6.24. Two-factor interaction models involving three factors for Co,
Ca, Mn and Zn

Co Ca Mn Zn
Term Est. t Est. t Est. t Est. t
Intercept 67.78 22.92 77.39 29.68 82.88 40.88 72.21 48.34
A 9.14 2.91 −0.27 −0.10 6.08 2.83 7.00 4.42
B 12.91 4.12 15.33 5.54 15.53 7.22 13.01 8.21
G 5.38 1.71 7.88 2.85 10.19 4.74 11.44 7.22
AB −9.72 −3.10 −9.58 −3.46 −7.72 −3.59 −1.26 −0.80
AG 3.54 1.13 −0.03 −0.01 5.69 2.65 −0.44 −0.28
BG −0.59 −0.19 −6.63 −2.40 −7.46 −3.47 −8.32 −5.25
R2 (%) 90.02 93.42 96.42 97.69
RMSE 10.25 9.03 7.02 5.17
Std Error 3.14 2.77 2.15 1.58
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For the 12-run design, each two-factor interaction column has a correlation
of +1/3 or −1/3 with factors not appearing in the interaction. Because ABG
sums to −4, the correlations between A and BG, B and AG, and G and AB
are −1/3. This has the following consequences:

• In Table 6.24, main effect estimates are each correlated with one in-
teraction; this makes their standard error RMSE/(10.6̄)1/2 rather than
RMSE/(12)1/2. This is a small (12.5%) increase in the variance, since
1/10.6̄ = 1.125/N .

• Estimates for main effects change when interactions are added. Compare
estimates in the main effects model (Table 6.23) with estimates in Table
6.24. If the true model contains no interactions besides AB, then for the
main effects model each effect besides A and B is biased by an amount
±βAB/3. Since ABG sums to −4, E(bG) = βG − (1/3)βAB . Note this
relationship in the estimates themselves; the main effects model estimate
bG equals 5.38 −(−9.72/3). Since βAB appears to be negative and βG

positive, the bias from omitting the AB term in Table 6.23 makes G’s
effect appear more prominent.

The 12-run design is very well suited for fitting the two-factor interaction
model in three factors. The two-factor interaction model for four factors can
also be estimated but with much poorer precision. The additional correlations
makes the standard error for each coefficient increase to RMSE/(7.38)1/2. This
is a substantial (62.5%) increase in the variance, since 1/7.38 = 1.625/N .

6.3.4 Nonregular 16-run designs with generalized resolution 3.0

There exist four nonisomorphic OA(16, 215, 2) in addition to the regular 215−11

resolution III fraction. The best characterizations of these designs are due to
Sun and Wu (1993) and Evangelaras, Georgiou, and Koukouvinos (2003).
Table 6.17 is the choice recommended by Sun and Wu. The first seven factors
of Table 6.17 (label them A–G) form a replicated 27−4 with generators C =
AB, E = AD, F = BD, and G = ABD, and the last eight factors (label
them H and J–P) form a 28−4 with generators L = HJK, N = HJM, O
= HKM, and P = JKM. This structure is identical to that for the regular
215−11 obtained via the Sylvester construction described in Section 6.2. The
difference between the regular 215−11 fraction (S16) and Table 6.17’s design
is that the 16 treatment combinations for the last 8 factors are reordered so
that there is no complete aliasing of effects involving both groups except very
high-order interactions such as ABC = HJKL. In particular, the Sylvester
Hadamard matrix S16 is of the form
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[
S8 S8

S8 −S8

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whereas the Table 6.17 design is taken from the Hall Type V Hadamard matrix

HV
16 =

[
S8 H8

S8 −H8

]
,

where H8 is the following reordering of the rows of S8:

H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This reordering keeps the main effects for A–G orthogonal to main effects
for H–P while avoiding any complete aliasing between main effects of one set
and two-factor interactions of the other.

The confounding frequency vector for this design is given in (6.7). Sun and
Wu (1993) summarized the aliasing of two-factor interactions as follows:

• The 21 two-factor interactions for factors A–G are fully aliased together
with each other (in sets of 3) and the main effects. This accounts for
A3(1) = 7 and one-third of A4(1).

• The 28 two-factor interactions for factors H–P are fully aliased with each
other is sets of 4, but are not fully aliased with any main effects. This
accounts for the rest of A4(1).
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• The 56 two-factor interactions involving 1 factor from A–G and 1 from H–
P only have partial aliasing with other lower-order effects. This accounts
for A3(1/2) = 112 and A4(1/2) = 336.

By contrast, the regular 215−11 fully aliases each two-factor interaction with
one main effect and six other two-factor interactions. One has much greater
flexibility in fitting models with some two-factor interactions by using the
design in Table 6.17.

The transpose of HV
16 is Hall’s Type IV Hadamard matrix. Since S8 is

symmetric,

HIV
16 =

[
S8 S8

H′
8 −H′

8

]
.

The corresponding design appears in Table 6.25. Table 6.25’s design has the
same confounding frequency vector (6.7). Its seven fully aliased length-3 words
are {AHJ, BHK, CHL, DHM, EHN, FHO, GHP}, and the 21 fully
aliased length-4 words are obtained as the generalized interaction of pairs of
these length-3 words. The 15 main effects have 21 two-factor interactions as
full aliases. The remaining 84 two-factor interactions are fully aliased with
one another in pairs.

Table 6.25. Hall Type IV OA(16, 215, 2)

A B C D E F G H J K L M N O P
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

−1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

−1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 1 −1 −1 −1 −1 −1 −1 1 −1 1 1 1

−1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1
−1 −1 −1 1 1 −1 1 −1 1 1 1 −1 −1 1 −1
−1 1 −1 −1 −1 1 1 −1 1 −1 1 1 1 −1 −1
−1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 1 1

1 −1 −1 −1 1 1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 1 −1 −1 −1 1 −1 −1 1 −1 1 1 1 −1

Evangelaras, Georgiou, and Koukouvinos (2003) showed that the designs
in Tables 6.17 and 6.25 have similar projection properties when projecting
into five or fewer factors. Both designs permit estimation of the following:

• a full factorial model in all but 7 of the 455 projections into 3 factors;
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• the two-factor interaction model (1.3) in over 92% of the possible 1365
subsets of 4 factors.

What 16-run design is recommended for fewer than 15 factors? Deng and
Tang (2002) identified the projections of the five OA(16, 215, 2) designs with
the minimum generalized aberration. For 14 factors, eliminate factor H from
the design in Table 6.25; this is the only OA(16, 214, 2) that permits estimation
of the full factorial model in any subset of 3 factors. For 13 factors, eliminate
H and P from Table 6.25. For 12 factors, eliminate factors C, E, and F
from the Table 6.17 design; for 11 factors, also drop P. For 9 or 10 factors,
the minimum generalized aberration projections come from Hall’s Type III
Hadamard matrix; see Deng and Tang (2002) for details.

Although these nonregular 16-run designs have been recommended since
Sun and Wu (1993), the author is not aware of any published examples.

6.3.5 20-Run designs with generalized resolution 3.4

There are three nonisomorphic OA(20, 219, 2); see, for example, Hedayat,
Sloane, and Stufken (1999, pp. 155 and 158) or Deng and Tang (2002). The
simplest of these designs to construct is the design proposed by Plackett and
Burman (1946), which is obtained by cycling

(1,−1, 1, 1,−1,−1,−1,−1, 1,−11,−1, 1, 1, 1, 1,−1,−1, 1)

and then appending the treatment combination with all −1’s. Table 6.26 dis-
plays this design in full. Evangelaras, Georgiou, and Koukouvinos (2003) found
that the three OA(20, 219, 2) have the same projection properties into three
or four factors but differed on five-factor projections. For over 94% of the
three-factor projections, the frequencies are as even as possible: a replicated
23 plus an additional 23−1 fraction. However, for the remaining subsets of size
3, the frequencies are very uneven: 1 for four treatment combinations and 4 for
the others, producing a large correlation (±.6) between some main effects and
two-factor interactions. The impact of such uneven frequencies will become
apparent in the following example. Because the design in Table 6.26 was gen-
erated by cycling of rows, the 57 projections with such disparate frequencies
can be obtained by cycling 3 sets as follows (note that 1 follows 19):

(1, 2, 13), (2, 3, 14), (3, 4, 15), (4, 5, 16), (5, 6, 17), (6, 7, 18), (7,
8, 19), (1, 8, 9), (2, 9, 10), (3, 10, 11), (4, 11, 12), (5, 12, 13), (6, 13,
14), (7, 14, 15), (8, 15, 16), (9, 16, 17), (10, 17, 18), (11, 18, 19), (1,
12, 19);

(1, 3, 17), (2, 4, 18), (3, 5, 19), (1, 4, 6), (2, 5, 7), (3, 6, 8), (4, 7, 9),
(5, 8, 10), (6, 9, 11), (7, 10, 12), (8, 11, 13), (9, 12, 14), (10, 13, 15),
(11, 14, 16), (12, 15, 17),(13, 16, 18), (14, 17, 19), (1, 15, 18), (2, 16,
19);

(1, 5, 11), (2, 6, 12), (3, 7, 13), (4, 8, 14), (5, 9, 15), (6, 10, 16), (7,
11, 17), (8, 12, 18), (9, 13, 19), (1, 10, 14), (2, 11, 15), (3, 12, 16), (4,
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13, 17), (5, 14, 18), (6, 15, 19), (1, 7, 16), (2, 8, 17), (3, 9, 18), (4, 10,
19).

Example 6.7: 20-run design with 19 factors
Wu et al. (2005) reported an experiment involving image analysis for

processing cDNA microarrays using RoBioVision software. Five slide images
from one rat (treated with acetaminophen) were produced. Each slide is two-
sided, with 1248 spots on each side. RoBoVision considers the pixels for each
spot and computes numerous measures of spot intensity and quality. Median
intensity is just 1 of 27 summary measures. The correlation for median in-
tensity for one side versus the other side for each slide provides a measure of
reproducibility. The authors used the 20-run Hadamard design in Table 6.26
to investigate the effects of 19 image analysis parameters. Table 6.27 provides
the factor names and levels (using x1–x19 rather than letters as factor labels,
to more readily identify the three-factor projections with uneven frequencies.)
At each of the 20 treatment combinations, 5 correlations for median inten-
sity were computed, 1 for each slide. Thus, the raw data consisted of 100
correlations. Since Wu et al.’s article did not include this detailed data, Ta-
ble 6.26 simply shows the average of the five correlations at each treatment
combination.

Table 6.26. Wu et al’s (2005) 20-run experiment

Mean
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 r

1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 .9101
1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 .9076

−1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 .7518
−1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 .6228

1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 .9080
1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 .9012
1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 .8900
1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1 .9079

−1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 1 .8828
1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 −1 .9096
−1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 .7774

1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 .8981
−1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 −1 .8884
−1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 −1 .3196
−1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1 .8829
−1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 .3681

1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 .8934
1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 .8966

−1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1 1 1 .3910
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 .3837
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Table 6.27. Factors and levels for Wu et al. (2005) image processing
experiment

Levels
Factors −1 1
x1 Spot minimum diameter filter (pixels) 5 12
x2 Spot minimum diameter sort (pixels) 13 20
x3 Spot maximum diameter filter (pixels) 40 60
x4 Spot maximum diameter sort (pixels) 25 35
x5 Spot minimum volume (pixels3) 103 106

x6 Spot minimum mean (pixels) 25 65
x7 Spot minimum solidity filter (units) 0.40 0.58
x8 Spot minimum solidity sort (units) 0.65 0.90
x9 Spot minimum roundness filter (units) 0.40 0.58
x10 Spot minimum roundness sort (units) 0.65 0.90
x11 Spot maximum aspect ratio filter (units) 1.8 3.0
x12 Spot maximum aspect ratio sort (units) 1.1 1.6
x13 Spot maximum off-center (pixels) 10 20
x14 Dust minimum diameter filter (pixels) 2 5
x15 Dust minimum diameter sort (pixels) 6 18
x16 Dust threshold (units) 150 500
x17 Dust minimum mean (pixels) 66 85
x18 Dust minimum solidity (pixels) 20 40
x19 Dust minimum roundness (pixels) 25 45

Figure 6.9 shows a Pareto plot of the 19 estimated regression coefficients.
Wu et al. (2005) computed a mean square error of 0.030933, and used this to
compute a standard error of 0.01759 for each coefficient, based on N = 100.
Their Figure 3a is equivalent to Figure 6.9 here, except they plot t statistics.
With six t statistics larger than 2, Wu et al. proceeded to investigate these
factors further in a resolution VI 26−1 fractional factorial design. Without
knowledge of their RMSE, we would need to use Lenth’s PSE, which is 0.02478.
Even though larger than the standard error based on replication, the largest
four estimates still have Lenth t-ratios exceeding the critical value for 19
estimates, cIER

.05 = 2.120 (from Appendix C), and Lenth t for x11 is only slightly
smaller at 2.113.

Before proceeding further in our analysis, consider the plot of the average
correlation versus x1 in Figure 6.10. Two facts are obvious from this plot. First,
x1=+1 increases repeatability, producing mean correlations between .89 and
.91 for all 10 treatment combinations. These are the 10 highest values. Only
3 of the 10 treatment combinations with x1 = −1 produce a similarly high
correlation. Second, if any other effect is active, it must have an interaction
with x1, since that factor’s effect at x1=+1 will be weaker than its effect at
x1 = −1. From the Pareto plot, it appears that x4 might have an effect. If
one splits the data by x1, the resulting models for x4 are
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Fig. 6.9. Pareto plot of estimates from saturated model for mean correlation

• At x1=–1: ρ̂ = 0.627 + 0.184x4 with RMSE = 0.148; t = 3.93;
• At x1=+1: ρ̂ = 0.90225 + 0.00639x4 with RMSE = 0.003; t = 6.41.

These two models are plotted in Figure 6.11.
Because the x1x4 interaction column is correlated with every other main

effect besides x1 and x4, if β1·4 �= 0, its absence when fitting the main effects
model in Figure 6.9 means that every other estimate is biased. We consider the
bias first for b6 and then for b2, since these are the next largest estimates in the
Pareto plot. The projection into columns (1, 4, 6) is 1 of the 57 problem subsets
noted before discussion of this example. The four treatment combinations with
x1x4x6 = +1 each appear only once, whereas the four treatment combinations
with x1x4x6 = –1 each appear four times. Thus, the x1x4x6 column sums to
4− 16 = −12, producing a correlation of −.6 (= −12/20) between the x6 and
x1x4 columns. Assuming no interactions besides the x1x4 interaction exist,

E(b6) = β6 − 0.6β1·4,

if we fit a model without the x1x4 term. If one includes the x1x4 interaction in
the model for our example, the estimate for β6 is greatly diminished and is no
longer statistically significant, whereas b1·4 remains statistically significant.

Consider now the bias in b2 in our original analysis based on a main effects
model. The correlation between x2 and x1x4 is not as great. The four treat-
ment combinations with x1x2x4 = +1 each appear twice, whereas the four
treatment combinations with x1x2x4 = –1 each appear three times. Thus, the
x1x2x4 column sums to 8 - 12 = -4, producing a correlation of -4/N = -.2
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Fig. 6.10. Mean correlations versus x1 for Wu et al. (2005)
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between the x2 and x1x4 columns. Assuming no interactions besides the x1x4

interaction exist,
E(b2) = β2 − 0.2β1·4,

if we fit a model without the x1x4 term. If one includes the x1x4 interaction
in the model, the estimate for β2 is diminished, but the impact is less than
for b6, since the correlation is only one-third as large.

One cannot fit a model with the x1x4 interaction and all 19 main effects,
since this would produce a singular model matrix. However, one can list all of
these effects and use the forward selection method for selecting a regression
model. After including x1, x4, and x1x4, no main effects appear to be useful;
the smallest p-value for adding another factor is .107 for x2.

Wu et al. (2005) continued to collect data, varying factors 1, 2, 4, 6, 10,
and 11. Adding data where x1x4x6 = +1 decreased the correlation between x6

and x1x4. The additional data confirmed what we suspected from the initial
20-run design: that x1x4 is an active effect while x6 is not. In fact, after more
than doubling the number of treatment combinations, no other main effects
appeared important, although some minor two-factor interactions did.

For the 12-run design, all nonzero correlations between main effect and
two-factor interaction columns were of the same magnitude (1/3). However,
for any OA(20, 219, 2), each two-factor interaction has a correlation of ±.6 with
one main effect and ±.2 with 16 other factors. These larger coefficients mean
than the potential for bias to main effects from omitted two-factor interactions
should be routinely considered in any thorough analysis of 20-run designs.

We have performed this analysis using the correlation as a response rather
than the recommended transformation z = .5[ln(1+r)− ln(1−r)] (see Section
2.8.4); the results are essentially the same either way. If we had available the
100 individual correlations, the variance-stabilizing transformation might have
made some difference in the analysis.

Example 6.8: Another 20-run design with 19 factors
Bell, Ledolter, and Swersey (2006) reviewed the literature for marketing

experiments based on fractional factorial designs and then carefully described
a mass mailing experiment based on the 20-run Plackett–Burman design in
Table 6.26. The 19 factors and their levels are listed in Table 6.28. For each
treatment combination, 5000 credit card offers were sent. The number of pos-
itive responses for rows 1–20 from Table 6.26 were 52, 47, 43, 86, 99, 37,
49, 40, 39, 108, 30, 57, 68, 61, 60, 104, 134, 42, 38, and 104, respectively.
Thus, the response rates ranged from a low of 30/5000 = 0.6% to a high of
2.68%. The mean response rate was 1.3%. If the factors had no effect, the
observed proportions should exhibit a standard deviation of approximately
[(0.013)(0.987)/5000]1/2 = 0.0016; since the data show much more variability
than this, at least one of the factors must impact response rate.
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Table 6.28. Factors and levels for Bell et al. (2006) credit card offer
experiment

Levels
Factors −1 (Control) 1 (New Idea)
x1 Envelope teaser General Product-specific
x2 Interest rate Low High
x3 Second buckslip No Yes
x4 Information on buckslip Product info Free gift
x5 Reply envelope Control New style
x6 Free gift value High Low
x7 Product selection Many Few
x8 Signature Manager Senior executive
x9 Postscript on letter Standard New
x10 List of benefits Standard layout Creative layout
x11 Letter headline Headline 1 Headline 2
x12 Copy message Targeted Generic
x13 Personalize letter copy No Yes
x14 Sticker Yes No
x15 Price graphic Small Large
x16 Additional graphic on envelope Yes No
x17 Postage Pre-printed Stamp
x18 “Official” ink stamp on envelope Yes No
x19 Return address Blind Add company name

We now must choose a variance-stabilizing transformation, since if the true
response rates varied from 0.008 to 0.025, the largest variance for p̂ would be
three times the smallest variance. Since the Freeman–Tukey transformation
(2.12) stabilizes the variance so effectively, we begin by fitting a model to this
response. For instance, the first response of 52/5000 becomes

fFT(p̂) = arcsin[
√

52/5001] + arcsin[
√

(53)/5001] = 0.2053.

Fitting a saturated main effects model to the transformed response fFT(p̂),
we obtain the sorted estimates shown in Table 6.29. For binomial data, the
Freeman–Tukey transformation has a standard deviation of approximately
[1/(n + 0.5)]1/2 = 0.01414. Thus, the standard error for the least squares
estimates is 0.01414/N1/2 = 0.00316. We use this known standard error to
construct test statistics in Table 6.29, rather than using Lenth’s PSE. Five
main effects have test statistics that exceed the .05 critical value for a standard
normal distribution. The largest effect was anticipated; a higher interest rate
should decrease the response rate. Furthermore, the absence of a sticker (x14 =
1) lowers the response rate. The next two largest estimates were surprising in
that b12 = 0.0122 implies that the generic message was more effective than a
targeted message, and b3 = −0.0118 implies that including the second buckslip
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made responses less likely. Perhaps one or both of these are the result of bias
from two-factor interactions.

There are additional clues that there might be at least one active inter-
action. First, there are no p-values in Table 6.29 greater than .75, which is
equivalent to saying that there is no clump of estimates near zero. This could
be the consequence of a large interaction, since its presence would bias 16
of the main effect estimates by ±0.2βi·j . Second, this bias would tend to in-
flate the PSE. The PSE calculated from the 19 estimates in Table 6.29 is
0.00513, making it larger than the correct standard error of 0.00316 based on
the Binomial distribution.

Table 6.29. Sorted estimates from main effects model for fFT(p̂)

Term Estimate z p-Value
x2 −0.0375 −11.88 .0000
x14 −0.0228 −7.21 .0000
x12 0.0122 3.87 .0001
x3 −0.0118 −3.73 .0002
x11 −0.0093 −2.96 .0031
x5 −0.0044 −1.39 .1644
x16 0.0042 1.31 .1886
x9 −0.0036 −1.14 .2549
x6 0.0035 1.11 .2673
x15 −0.0034 −1.08 .2784
x13 0.0034 1.08 .2796
x8 −0.0028 −0.88 .3815
x4 −0.0027 −0.86 .3921
x10 0.0025 0.79 .4270
x17 0.0023 0.74 .4610
x1 0.0021 0.68 .4965
x19 0.0015 0.47 .6389
x18 0.0014 0.45 .6535
x7 −0.0010 −0.33 .7411

The 20-run Plackett–Burman design will permit estimation of the two-
factor interaction model in any projection of four factors, and in some but
not all projections of five factors. For the five factors 2, 3, 11, 12, and 14,
the two-factor interaction model is not estimable. However, if one specifies
this model with 15 terms and uses forward selection regression to identify
important effects, the third term to enter is the x2 ∗ x14 interaction, and the
model with x2, x14 and this interaction explains 87% of the variation in fFT(p̂).
The x2 ∗ x14 interaction column is most correlated with x3. If the x2 ∗ x14

interaction is included, the x3 main effect estimate is greatly reduced and is
no longer statistically significant. Since the x2 ∗ x14 interaction is reasonable
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to explain, Bell et al. (2006) concluded that the second buckslip’s significant
estimate in Table 6.29 (b3 = −0.0118) was due to bias from omitting this
interaction. We consider adding additional main effects and interactions to
the three-term model. Only x12 is found to be statistically significant. The
reduced model is displayed in Figure 6.12. The largest predicted response is
0.30566; this corresponds to a predicted proportion of

0.5{1− [1− (sin 0.30566 +(sin 0.30566 −1/sin 0.30566 )/5000)2]1/2} = 0.0231,

using the transformation by Miller (1978) discussed prior to Figure 2.12. Ac-
tually, here the Freeman–Tukey variance-stabilizing transformation provided
assurance that the constant variance assumption was not violated. However,
Bell et al. (2006) reached the same conclusions simply using the proportion
as the response.

Projections of the 19-factor, 20-run orthogonal design
What about using a 20-run design with fewer than 19 factors? Although

the 20-run design suggested by Plackett and Burman (1946) and shown in Ta-
ble 6.26 is the most convenient and commonly used 20-run design, it is not the
best choice for several cases where k < 19. Deng and Tang (2002) searched for
the minimum G-aberration projection from all three nonisomorphic OA(20,
219, 2). To reduce the computational burden, the cfv (6.3) was only calculated
up to five-factor interactions; their MA-5 classifier ranked designs based on
(F3, F4, F5). Xu and Deng (2005) improved that search in two ways. They
considered all 20-run strength-2 orthogonal arrays in fewer than 19 factors,
not just projections of the three OA(20, 219, 2). In addition, Xu and Deng
(2005) used the moment aberration projection (MAP) criterion, which is more
effective than the cfv at discriminating between designs. For N = 20, the best
MAP design was always best in terms of minimum G-aberration; the con-
verse is not true. Furthermore, Xu and Deng illustrated, for 20-run designs
with seven factors, that the subtle differences MAP detects and minimum
G-aberration misses can affect the design’s estimation capacity.

Although not evident from the tables in either of the above-cited articles,
the best projections for 9–18 factors in terms of minimum G-aberration can
all be obtained from the single OA(20, 219, 2) in Table 6.30, which is equiva-
lent to the design H20-P in Deng and Tang (2002) and Xu and Deng (2005)
or Hedayat, Sloane, and Stufken’s (1999, Table 7.23). Table 6.31 shows the
poor three-factor projections for the design in Table 6.30, and Table 6.32 lists
the minimum G-aberration projections for 9–18 factors, together with the
number of poor projections into three columns. Equivalent designs in terms
of minimum G-aberration are available as projections from the Table 6.26
(Plackett–Burman) design for 14–18 factors, but not for 13 or fewer.
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Summary of Fit for Reduced Model 

RSquare 0.908178
Root Mean Square Error 0.017233
Mean of Response 0.223963
Observations 20

                                         Analysis of Variance 
Source DF Sum of Sq. Mean Square F Ratio 
Model 4 0.0440609 0.011015 37.09 
Error 15 0.0044548 0.000297 Prob > F 
C. Total 19 0.0485157 <.0001 

Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  0.22396 0.00385 58.12 <.0001 
x2  -0.03754 0.00385 9.74 <.0001 
x12  0.00996 0.00393 -2.53 0.0230 
x14  -0.02277 0.00385 5.91 <.0001 
x2*x14  0.01142 0.00393 2.90 0.0109 
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Fig. 6.12. Reduced model for Bell et al.’s (2006) mail experiment data
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Table 6.30. 20-Run design based on Williamson’s Hadamard matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 −1
1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 1
1 −1 −1 1 1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1
1 −1 −1 −1 −1 1 −1 1 1 1 1 −1 −1 1 −1 1 1 −1 −1
1 −1 −1 −1 −1 −1 1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1

−1 1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 1 1
−1 1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
−1 1 −1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 1
−1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 1 −1 −1
−1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 1 −1 1 −1
−1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 −1 1
−1 −1 1 −1 1 −1 1 −1 1 1 1 −1 1 −1 −1 1 −1 −1 1
−1 −1 −1 1 1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 −1

Zhao, et al. (2005) used k = 13 adjacent columns of the cyclic 20-run
Hadamard design. That design has A3(0.6, 0.2) = (17, 269), which is higher
G-aberration (and G2-aberration) than the subset of columns for k = 13 sug-
gested in Table 6.32. By using the columns recommended in Table 6.32, one
minimizes the number of large correlations between main effects and two-
factor interaction columns. Kalil, Maugeri, and Rodrigues (2000) used 10 ad-
jacent columns of the cyclic 20-run Hadamard design, which has A3(0.6, 0.2)
= (7, 113). Note that by the more careful choice of the 10 columns as recom-
mended in Table 6.32, they could utilize an OA(20, 210, 2) with generalized
resolution 3.8 rather than 3.4. With k = N/2, they also could have used a
nonorthogonal resolution IV design (see Section 7.4).
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Table 6.31. Three-factor projections from the OA(20, 219, 2) in Table 6.30
corresponding to A3(0.6) = 57

(1, 2, 3) (1, 4, 5) (1, 6, 7)
(1, 8, 9) (1, 10, 19) (1, 11, 18)
(1, 12, 17) (1, 13, 16) (1, 14, 15)
(2, 4, 10) (2, 5, 19) (2, 6, 17)
(2, 7, 18) (2, 8 15) (2, 9, 16)
(2, 11, 12) (2, 13, 14) (3, 4, 19)
(3, 5, 10) (3, 6, 11) (3, 7, 12)
(3, 8, 13) (3, 9, 14) (3, 15, 16)
(3, 17, 18) (4, 6, 14) (4, 7, 13)
(4, 8, 12) (4, 9, 11) (4, 15, 17)
(4, 16, 18) (5, 6, 16) (5, 7, 15)
(5, 8, 18) (5, 9, 17) (5, 11, 13)
(5, 12, 14) (6, 8, 10) (6, 9, 19)
(6, 12 15) (6, 13, 18) (7, 8, 19)
(7, 9, 10) (7, 11, 16) (7, 14, 17)
(8, 11, 17) (8, 14, 16) (9, 12, 18)
(9, 13, 15) (10, 11, 15) (10, 12, 16)
(10, 13, 17) (10, 14, 18) (11, 14, 19)
(12, 13, 19) (15, 18, 19) (16, 17, 19)

Table 6.32. Minimum G-aberration projections from the OA(20, 219, 2) in
Table 6.30

k Columns from Table 6.30 A3(0.6, 0.2) A4(0.6, 0.2)
9 4–7, 10–12, 17, 19 0, 84 18, 108

10 4–7, 10–12, 17–19 0, 120 30, 180
11 4–7, 9–12, 17–19 5, 160 30, 300
12 1–6, 9–10, 12–13, 15, 18 8, 212 39, 456
13 1–7, 9–10, 12–13, 15, 18 14, 272 47, 668
14 1–4, 6–7, 10, 12–16, 18–19 20, 344 60, 941
15 1–7, 10, 12–16, 18–19 26, 429 81, 1284
16 1–7, 9–10, 12–16, 18–19 32, 528 108, 1712
17 Any 17 columns 40, 640 140, 2240
18 Any 18 columns 48, 768 180, 2880
19 All 19 columns 57, 912 228, 3648
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6.3.6 24-Run designs with generalized resolution 3.6̄

Plackett and Burman (1946) proposed the OA(24, 223, 2) obtained by cycling
the row “+++++−−−−+−+−−++−−++−+−” and then appending the
treatment combination with all 23 factors at the low level. The design is shown
in Table 6.33. Of the 60 OA(24, 223, 2) examined by Evangelaras, Georgiou,
and Koukouvinos (2004), this design has the best three-factor projections,
providing three replicates of a 23 for four-sevenths of the three-factor subsets
and two replicates of a 23 plus two replicates of a 23−1 for three-sevenths of
the subsets. Each two-factor interaction column has a correlation of ±1/3 with
9 main effects and is orthogonal to the other 14. It projects into a partially
replicated 24 for three-sevenths of the four-factor projections and into 14 of
the 16 treatment combinations for the remaining four-factor projections. As
proven by Bulutoglu and Cheng (2003), this design (and any other orthogonal
array obtained by the first Paley construction) supports estimation of the two-
factor interaction model in every subset of four factors.

Table 6.33. 24-Run design based on Paley’s Hadamard matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1
−1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1

1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1
−1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1

1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1

−1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1

1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1
1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1

−1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1
−1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1
−1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1 1

1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1 −1
−1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 −1
−1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1
−1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1 1

1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1 1
1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1 1
1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 1
1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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Strength-3 orthogonal arrays with 24 runs exist for up to 12 factors (see
Section 7.3), so we only consider designs for k ≥ 13 here. Ingram and Tang
(2005) examined projections of 60 (of the 130 possible) Hadamard designs.
The designs mentioned below are the best known at this time. For 22 (or 21)
factors, the best design is a projection of Paley’s design in Table 6.33; simply
drop the last column (or two). For k = 19 and 20, Ingram and Tang found
that the best design was a projection of a different Hadamard design. Table
6.34 is the best design (currently known) for 20 factors in 24 runs with respect
to G-aberration and G2-aberration. For 19 factors, drop the last column. For
smaller k, refer to Ingram and Tang (2005).

Dürig and Fassihi (1993) utilized 13 adjacent columns from the 24-run
design in Table 6.33 for their 13-factor experiment; this choice produces
A3(1/3) = 122, 32 more than A3(1/3) for the best OA(24, 213, 2) reported
by Ingram and Tang (2005), obtained as a projection of another Hadamard
matrix.

Table 6.34. Best 20-factor design, a projection of Sloane’s Had.24.59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 −1
1 1 1 −1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1
1 1 −1 −1 −1 −1 −1 1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1
1 −1 1 −1 −1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 1 1 1 −1

−1 1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 1 1 1 −1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1

−1 1 −1 1 1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1
1 1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 −1
1 −1 −1 −1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1 1 1

−1 −1 1 −1 −1 1 1 1 1 1 −1 1 1 −1 −1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 1 −1 1 1 −1 1 1 −1

−1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 1 1 −1 1
1 −1 −1 −1 1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 −1 1
−1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 −1
−1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1
−1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 −1 1 −1 1 −1 1 −1 1

1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 −1 1
−1 1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 −1 −1 −1 1 1 1
−1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1 1 −1
−1 1 −1 −1 1 1 −1 −1 1 1 1 1 1 −1 −1 −1 1 −1 −1 1
−1 −1 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 1 −1 −1 1 −1
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6.3.7 Nonregular strength-2 designs of size 28 or more

As mentioned earlier, Plackett and Burman (1946) proposed OA(N , 2N−1,
2) designs up to N = 100, and even larger designs are available from the
website http://www.research.att.com/∼njas/hadamard/. See also Hedayat,
Sloane, and Stufken (1999, Ch. 7). The 28-run design proposed by Plackett and
Burman is one of literally hundreds of OA(28, 227, 2). Plackett and Burman’s
design is constructed as

D =

⎡
⎢⎢⎣

X Y Z
Z X Y
Y Z X
−1 · · ·− 1

⎤
⎥⎥⎦ ,

where

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 1 1 −1 −1 −1
1 1 −1 1 1 1 −1 −1 −1

−1 1 1 1 1 1 −1 −1 −1
−1 −1 −1 1 −1 1 1 1 1
−1 −1 −1 1 1 −1 1 1 1
−1 −1 −1 −1 1 1 1 1 1

1 1 1 −1 −1 −1 1 −1 1
1 1 1 −1 −1 −1 1 1 −1
1 1 1 −1 −1 −1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 −1 −1 1 −1 −1 1
−1 −1 1 1 −1 −1 1 −1 −1

1 −1 −1 −1 1 −1 −1 1 −1
−1 −1 1 −1 1 −1 −1 −1 1

1 −1 −1 −1 −1 1 1 −1 −1
−1 1 −1 1 −1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 1 −1

1 −1 −1 1 −1 −1 −1 −1 1
−1 1 −1 −1 1 −1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 1 −1 1 1 −1 1
−1 1 1 1 1 −1 1 1 −1

1 −1 1 −1 1 1 −1 1 1
1 −1 1 1 1 −1 1 −1 1
1 1 −1 −1 1 1 1 1 −1

−1 1 1 1 −1 1 −1 1 1
1 −1 1 1 −1 1 1 1 −1
1 1 −1 1 1 −1 −1 1 1

−1 1 1 −1 1 1 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Its correlations between main effects and two-factor interactions are ±1/7 and
−3/7, with frequencies 2574 and 351, respectively. Commercial statistical soft-
ware sometimes furnishes other OA(28, 227, 2) with correlations between main
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effects and interactions as high as 5/7. Belcher-Novosad and Ingram (2003)
have searched for the best projections, although their excursion algorithm
does not guarantee optimality.

There exists an OA(32, 231, 2) obtained by the first Paley method. Cheng
(1998) showed that it permits estimation of the two-factor interaction model
in every set of six factors. That design is obtained by cycling the row [+ −
− + −− + −−−− + + + − + − + −−− + + + + − + + − + +] and then
appending a row of −1’s. The nonzero elements of the cfv are [A3(1/4) = 2480,
A4(1/4) = 17360, A5(1/2, 1/4) = (3720, 68448), . . ., A31(1) = 1], with gwlp
(155, 1085, 5208, ..., 1). Whereas the regular 231−26 has A3(1) = 155 (i.e., 155
subsets of 3 factors for which we have 8 replicates of a 23−1), the worst three-
factor projections for this Paley nonregular OA(32, 231, 2) have frequencies of
3 and 5 for the 8 treatment combinations of the 23. For projections into three
or four columns, this nonregular design is much preferred. In fact, of the 14
nonregular OA(32, 231, 2) studied by Evangelaras, Kolaiti, and Koukouvinos
(2006), this cyclic design by Paley had by far the best projectivity into four
factors.

For the OA(36, 235, 2), Plackett and Burman (1946) proposed the design
obtained by cycling the row [−+−+ + +−−−+ + + + +−+ + +−−+−
−−−+−+−+ +−−+−] and then appending a row of −1’s. The relevant
portion of its cfv is

A3(1/3, 1/9) = (1190, 5355),

A4(0.6̄, 0.4̄, 0.3̄, 0.2̄, 0.1̄) = (11, 1260, 1088, 20565, 4896).

Hence, the correlations between main effects and two-factor interaction columns
are small, but 11 poor projections into 4 factors means that there exist 33 pairs
of highly correlated two-factor interaction columns.

For larger designs, refer to Hedayat, Sloane, and Stufken (1999), Plackett
and Burman (1946), or the websites mentioned earlier.

6.4 Optimal Nonorthogonal Saturated Main Effect
Designs

There are two basic reasons for considering nonorthogonal designs to estimate
main effects

1. Economy of run size is important, and one would prefer a nonorthogonal
saturated design of size N = k + 1 rather than increasing N to the next
multiple of 4. Budgetary constraints are so severe that one can only afford
enough runs to estimate each main effect, and nothing more.

2. The number of factors to be investigated is large, but only a very few
are expected to dominate the rest. The purpose of the experiment is to
identify these few factors as economically as possible. This is the situation
for considering a supersaturated design, where k ≥ N . Since the number
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of factors exceeds the degrees of freedom, these designs cannot have all
main effect columns pairwise orthogonal.

This section will address saturated main effect designs when N is not a mul-
tiple of 4. Supersaturated designs are discussed in the following section.

Given the availability of OA(N , 2N−1, 2) for N a multiple of 4, we need
only consider nonorthogonal saturated main effect designs where N = k + 1
is not a multiple of 4. Here, optimal design criteria will be invoked to select
designs. This is the first of several occasions where optimal design concepts will
prove useful for creating designs. Therefore, before listing specific saturated
main effect designs, we provide a brief introduction to optimal design. For a
book-length treatment, see Atkinson and Donev (1992) or Atkinson, Donev,
and Tobias (2007).

For some two-level N -run design D, let X denote its model matrix for a
particular model. For the main effects model (1.1), X has r = 1 + k columns,
whereas for models with interactions, the number of columns r will be larger.
For a full factorial design with coding ±1, X′X = NIr,

det[(X′X)−1] = 1/|X′X| = N−r,

and trace[(X′X)−1] = r/N . If the design is not orthogonal so that X′X is not
a diagonal matrix, then

det[(X′X)−1] > N−r

and
trace[(X′X)−1] > r/N.

Recall that the variance–covariance matrix for the least squares estimator
is σ2[X′X]−1. Thus, the variance efficiency of a design may be judged by
computing

D-eff= {N−r/|[X′X]−1|}1/r = |X′X|1/r/N (6.9)

or
A-eff = (r/N)/trace[(X′X)−1]. (6.10)

A two-level design of size N that maximizes (6.9) is labeled a D-optimal
design for this particular model, and the design that maximizes (6.10) is the
A-optimal design. Other functions of (X′X)−1 are used to establish optimal
design criteria. For example, E-optimality is based on the maximum eigenvalue
of (X′X)−1. We now turn to the problem at hand: that of choosing the best
possible main effects design D when N = k + 1 is not a multiple of 4.

Useful surveys of nonorthogonal saturated designs are provided by Crosier
(2000) and Evangelaras, Koukouvinos, and Stylianou (2005). These surveys
evaluate the efficiency of alternative designs in terms of A-, D-, and E-
efficiency and in terms of variance inflation factors. Of these, E-efficiency
is the least relevant, given that the purpose of these designs is to estimate
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individual factor effects. Variance inflation factors (VIFs) are easiest to inter-
pret since, for the ith factor of a two-level designs, Var(bi) = VIFiσ

2/N . For
the construction of these designs, the cases N(mod 4) = 1, 2, and 3 are of-
ten discussed separately. However, for practitioners, it makes sense to simply
present the recommended designs in a single sequence. For k = 4, 5, and 6,
the saturated designs are 37.5%, 25%, and 12.5%, respectively, smaller than
the orthogonal eight-run design. For k = 8–10, the savings are 25%–8.3̄%,
while for k = 16–18, the savings are only 15%–5%, relative to the next largest
orthogonal design. Here, we consider only cases with k ≤ 18. For larger k, the
reader is referred to the journal articles cited above.

Table 6.35. Summary for D-optimal saturated main effect designs

N D-effA-e ffVIF σ2/Var(bi)
3 0.840 0.667 2@1.5 2
4 1 1 3@1.0 4
5 0.941 0.900 4@1.1 4.5
6 0.905 0.833 5@1.2 5
7 0.878 0.783 5@1.296, 1@1.16 5.4, 6
8 1 1 7@1.0 8
9 0.932 0.871 1@1.469, 7@1.056 6.125, 8.522

10 0.941 0.900 9@1.1 9
11 0.915 0.858 4@1.21, 6@1.1275 9.09, 9.756
12 1 1 11@1.0 12
13 0.977 0.962 12@1.04 12.5
14 0.957 0.929 13@1.08 13
15 0.941 0.900 11@1.114, 3@1.1 13.461, 13.63
16 1 1 15@1.0 16
17 0.966 0.943 16@1.04 16.327
18 0.967 0.944 17@1.06 17
19 0.953 0.913 6@1.105, 12@1.086 17.199, 17.496

Table 6.35 provides a summary of recommended designs; we list the D-
optimal design (according to current literature) with the highest A-efficiency.
The most convenient means for constructing these designs for many users
will be an optimal design search method. For example, for N ≤ 14, JMP’s
“Custom Design” D-optimal search is able to quickly find a D-optimal design,
whereas for N = 15, 17, and 19, one must increase the number of starts
to find the D-optimal design. By comparing D-eff and A-eff for the design
produced by such an algorithm with the summary in Table 6.35, one may
verify that the optimal design has actually been obtained. These calculations
are illustrated below for the 6-run and 9-run saturated designs. The designs in
Table 6.35 with even N are not equal-occurrence designs. The listed designs
are given because they provide better precision for the factor effects. As a
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typical example, consider the D-optimal design for N = 6 and k = 5:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 −1 −1
−1 1 1 1 1

1 −1 −1 1 −1
−1 −1 −1 −1 1

1 1 1 −1 1
−1 1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Although columns 1 and 4 sum to −2 rather than to zero, variances for esti-
mates of the first-order model coefficients are equal, since

(X′X)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.20 0.05 0.00 0.00 0.05 0.00
0.05 0.20 0.00 0.00 −0.05 0.00
0.00 0.00 0.20 −0.05 0.00 −0.05
0.00 0.00 −0.05 0.20 0.00 −0.05
0.05 −0.05 0.00 0.00 0.20 0.00
0.00 0.00 −0.05 −0.05 0.00 0.20

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where X = [1 D]. Each variance is 0.2σ2, so VIF = 0.2N=1.2. In addition,
A-efficiency and D-efficiency for this saturated two-level designs are calculated
using (6.9) and (6.10):

A-eff = (6/6)/trace[(X′X)−1] = 1/1.2 = 0.83̄,

D-eff= |X′X|1/6/6 = 256001/6/6 = 0.905.

The alias matrix for this design, reflecting the potential bias from omitting
active two-factor interactions, is

Effect x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5

Intercept −0.2 −0.2 0.2 −0.2 0.6 −0.2 0.6 −0.2 0.6 −0.2
x1 0.2 0.2 −0.2 0.2 0.4 −0.8 0.4 −0.8 0.4 −0.8
x2 −0.6 0.4 −0.4 0.4 −0.2 −0.6 −0.2 0.4 0.8 0.4
x3 0.4 −0.6 −0.4 0.4 −0.2 0.4 0.8 −0.6 −0.2 0.4
x4 −0.8 −0.8 −0.2 −0.8 0.4 0.2 0.4 0.2 0.4 0.2
x5 0.4 0.4 −0.4 −0.6 0.8 0.4 −0.2 0.4 −0.2 −0.6

These coefficients range in magnitude from 0.2 to 0.8, so every two-factor
interaction is partially aliased with each first-order model coefficient.

If one restricts attention to equal-occurrence designs, the best design is
the cyclic design

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 1
1 −1 −1 1 1
1 1 −1 −1 1
1 1 1 −1 −1

−1 1 1 1 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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with

(X′X)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.3333 −0.1667 0.0833 0.0833 −0.1667
0.0000 −0.1667 0.3333 −0.1667 0.0833 0.0833
0.0000 0.0833 −0.1667 0.3333 −0.1667 0.0833
0.0000 0.0833 0.0833 −0.1667 0.3333 −0.1667
0.0000 −0.1667 0.0833 0.0833 −0.1667 0.3333

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Clearly, the equal-occurrence design yields less information regarding the five
main effects. In addition, its alias matrix is worse, in that the largest coeffi-
cients are 4/3.

Results are similar for other cases with even N . Thus, for saturated main
effect designs, the D-optimal designs are recommended, even though they lack
equal occurrence. If the experimenter has more interest in one level over the
other a priori for some factor, it seems reasonable to assign that factor to an
unbalanced column and the level of interest to the level that occurs for more
than half the runs.

For cases where the diagonals of (X′X)−1 are not equal, the largest di-
agonal is usually shifted to the intercept so that the variances for the main
effect estimates are as small as possible. We now illustrate this calculation for
the N = 9 design. The following design found by JMP has D-eff = 0.932 and
A-eff = 0.871:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 −1 1 −1 1 1
1 −1 −1 −1 1 1 −1 −1

−1 −1 1 1 1 −1 −1 1
−1 −1 1 −1 −1 1 1 −1
−1 1 −1 1 −1 1 −1 1

1 −1 −1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1 1

−1 1 1 1 1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appending an intercept column and computing diag(X′X)−1, one finds that
the largest diagonals (0.1633) are associated with factors 2 and 8, and the
other seven diagonals equal 0.1173. Multiplying the ith entry in the other
columns of D by di,8 produces the design matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 −1 1 −1 1 1
−1 1 1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 1

1 1 −1 1 1 −1 −1 −1
−1 1 −1 1 −1 1 −1 1
−1 1 1 −1 1 1 −1 −1

1 1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1 1
1 −1 −1 −1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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which is the D-optimal design with only one large VIF, as reported in Table
6.35.

The D-optimal designs with N = 5 and 9 are the most likely to be useful.
Designs of sizes 3, 7, 11, 15, . . . should rarely be used, since adding a single
run will increase the efficiency markedly, and provide 1 df for error.

6.5 Supersaturated Designs

The first published papers discussing supersaturated designs appeared in
Technometrics in 1959. Satterthwaite (1959) proposed the use of a small num-
ber of randomly selected treatment combinations from the 2k. Such designs
are named random balance designs and were espoused as a simple, general
solution. In the same issue, five prominent statisticians Youden, Kempthorne,
Tukey, Box, and Hunter (1959) expressed their reservations about using ran-
dom balance designs. George Box (Youden et al. 1959, p. 180) argued that
systematically determined supersaturated designs would outperform random
balance designs of the same size and stated that systematic supersaturated
designs were “not yet available only because they have not been looked for.”
John Tukey sought to highlight the potential good from discussion of random
balance designs. He, too, predicted that in place of random balance designs,
“constant near balance patterns (designs) are going to appear, and are going
to be used.”

In response to these suggestions, Booth and Cox (1962) proposed seven
supersaturated designs found by computer search, with sizes N = 12, 18, and
24 and k as large as 2N . Booth and Cox (p. 489) expressed reservations about
the use of these new designs:

We have no experience of practical problems where such designs are
likely to be useful; the conditions that the interactions should be unim-
portant and that there should be a few dominant main effects seem
very severe.

Given such cautions, it is not surprising that the designs resulted in lit-
tle use in practice. The alternative design methodology of multistage group-
screening experiments (Watson 1961) proved to be more popular than super-
saturated designs. However, group screening methods typically assume that
one knows the direction of each effect. (Group screening experiments are dis-
cussed again in the context of a Chapter 11 case study.)

Although not necessarily a reflection of their nonuse, papers regarding the
construction and analysis of supersaturated designs were absent for 30 years.
Ending this period of inactivity, four construction methods were published
between 1993 and 1996:

• Using half of a Plackett–Burman design (Lin 1993).
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• Using a Plackett–Burman design, augmented with partially-aliased two-
factor interactions as generators for additional factors (Wu 1993). Example
6.9 analyzed later is of this type.

• Construction based on balanced incomplete block designs (Nguyen 1996).
• Computer search for designs (Lin 1995, Nguyen 1996).

Numerous subsequent papers further developed the theory, showed the connec-
tions between various construction methods and emphasized the difficulties of
analyzing such experiments. However, few published examples have appeared.
We discuss this work in the subsequent subsections.

6.5.1 Optimality criteria for supersaturated designs

Let D denote the N ×k matrix for a supersaturated design with the usual ±1
coding, and let S = D′D and X = [1 D]. Since N < k + 1 for supersaturated
designs, |X′X| = 0, so standard optimality criteria are not useful. Booth
and Cox (1962) proposed two criteria based on the off-diagonal elements sij

(1 ≤ i < j ≤ k) of the matrix S:

1. Minimize Maxi<j |sij |.
2. Minimize Ei<j(s2

ij), which for designs with equal occurrence of −1 and
+1 is equivalent to minimizing the variance of the sij ’s.

For brevity, we simply write Max |s| and Min E(s2) to denote these criteria.
As an example, consider the supersaturated design with N = 6 and k = 10
proposed by Lin (1993) and obtained by taking the six rows of Table 6.15
for which the 11th column is +1; see Table 6.36. Since the design is only
strength 1, having correlated equal-occurrence columns, it is referred to as a
near-orthogonal array (NOA) rather than an OA. In Example 6.5, when we
considered evidence for factor effects conditional on E = −1, we were actually
analyzing data for six runs equivalent to Table 6.36.

Table 6.36. NOA(12, 210, 1) Design

1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1

–1 –1 1 –1 1 1 1 –1 –1 –1 1
–1 –1 –1 1 –1 –1 1 –1 1 1 1
1 –1 –1 –1 1 –1 –1 1 –1 1 1
1 1 –1 –1 –1 1 –1 –1 1 –1 1

–1 1 1 1 –1 –1 –1 1 –1 –1 1

Taking the first 10 columns as D,
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S = D′D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −2 2 2 −2 −2 2 −2 −2 −2
−2 6 −2 −2 2 −2 2 −2 −2 2

2 −2 6 −2 −2 −2 −2 −2 2 2
2 −2 −2 6 2 2 −2 −2 −2 −2

−2 2 −2 2 6 −2 −2 −2 2 −2
−2 −2 −2 2 −2 6 −2 2 −2 2

2 2 −2 −2 −2 −2 6 2 −2 −2
−2 −2 −2 −2 −2 2 2 6 2 −2
−2 −2 2 −2 2 −2 −2 2 6 −2
−2 2 2 −2 −2 2 −2 −2 −2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since all of the off-diagonal elements sij = ±2, E(s2) = 4. This design is both
Max |s| and E(s2) optimal. Table 6.36 is a special case, where k = 2(N − 1);
that is, this design has twice the number of effects as a saturated main effect
design. Nguyen (1996) was the first to show that when k = q(N − 1),

E(s2) ≥ N2(k − N + 1)/[(N − 1)(k − 1)] = N2(q − 1)/(k − 1). (6.11)

For columns with equal occurrence of −1 and 1, dividing s2
ij by N2 produces

the correlation between columns i and j. Thus, (q−1)/(k−1) is a lower bound
for the average squared correlation. For small N , the Max |s| and Min E(s2)
optimality criteria coincide. However, this is less common for larger N .

Supersaturated designs generally can only be used to identify a small num-
ber of effects, relative to the run size N . The six-run design in Table 6.36 per-
mits estimation of any three main effects. However, many sets of four columns
are linearly dependent (e.g., columns 1–3 and 5). For this reason, design mea-
sures based on projection into a small number of dimensions d are useful. Wu
(1993) considered expected D-efficiency and A-efficiency, averaging across all
subsets of d factors, with d ≤ 5. Deng, Lin, and Wang (1999) ignored effi-
ciency, focusing only on the percentage of d-factor main effects models that
are estimable.

6.5.2 Supersaturated designs with k ≈ 2(N − 1)

Lin (1993) proposed using half of a Hadamard design (1
2HD) and produced

eight supersaturated designs with k = 2(N−1); see Table 6.37. Nguyen (1996)
generalized the results of Lin (1993) to produce designs with k = 2(N − 1)
for every even N from 6 to 30. All of these designs are E(s2) optimal. Liu
and Zhang (2000) found designs that decreased the maximum correlation (at
N = 20) or decreased the frequency of the maximum correlation (at N =
24). Table 6.37 presents the generators for the Nguyen designs (or Liu and
Zhang’s improvements for N = 20 and 24), and this method of construction
is illustrated below. The designs for N = 16, 22, 26, and 30 are especially
attractive, given the small maximum correlations. All of the designs in Table
6.37 achieve the theoretical lower bound for the maximum correlation, except
for N = 24 and 28.
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Table 6.37. Maximum correlation for Lin’s (1993) and Nguyen’s (1996)
E(s2) optimal supersaturated designs with k = 2(N − 1)

Lin’s Nguyen’s
N k Max ρ E(ρ2) Design Generating Vectors
6 10 0.333 0.111 1

2HD (+−−−+)

(−+−+−)

8 14 0.500 0.077 (−++−−−+)

(−++−+−−)

10 16 0.600 0.059 1
2HD (++−+−−−+−)

(−+++−−+−−)

12 22 0.333 0.048 1
2HD (−+++−−+−−−+)

(+−−−−++−+−+)

14 26 0.429 0.040 1
2HD (−+++−++−−+−−−)

(++−+−−+−+−−−+)

16 30 0.250 0.034 (+−++++−−+−−−−+−)

(−+−−++−+−−−+++−)

18 34 0.333 0.030 1
2HD (−−−+−++−+−+−+++−−)

(++−−++−−−+−−+−−++)

20 38 0.200 0.027 (+++−+−+−−−−+−−+−++−)

(+++−++−−+−−−+++−−−−)

22 42 0.273 0.024 1
2HD (++++−+−−+−−−−++−−−+−+)

(−++−−++−−+−+++−−−−+−+)

24 46 0.333 0.022 1
2HD (++++−++−−+−−+−−−+++−−−−)

(++++−+−+−−−+−+−−+−−−++−)

26 50 0.230 0.020 (−++−++−−+−++++−−++−+−−−−−)

(−+−−−++++−+−++−−−++−+−+−−)

28 54 0.285 0.019 (−−+++−+−−+−−+−++−+−+−+−−−++)

(+−−−++−−−−−−−++−+++−+−−++++)

30 58 0.200 0.018 1
2HD (++−−−+−−−−+−++++++−−++−+−−−−+)

(+−−−+−−+−++−−−++−+++−+−+−−++−)

Note: The N = 20 and 24 designs are from Liu and Zhang (2000).

Lin’s (1993) construction of taking half a Hadamard design as we did in
Table 6.36 is the simplest construction. When this method is not available,
Nguyen’s cyclic construction is as follows. Each generating vector, by repeated
cycling, produces an (N − 1) × (N − 1) matrix. Appending a row of +1’s to
each, we obtain two N × (N − 1) matrices that, when combined, form the
supersaturated design with k = 2(N − 1). For N = 16, (+−++++−−+−
−−− + −) produces columns 1–15,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 1 −1
−1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 1

1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1
1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1
1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1

−1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 −1
−1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1

1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1
−1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1
−1 −1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1
−1 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 1 −1
−1 −1 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1 1

1 −1 −1 −1 −1 1 −1 −1 1 1 1 1 −1 1 −1
−1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 1 −1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and (− + −− + + − + −−− + + + −) produces columns 16–30,
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1 −1 1
1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1 −1

−1 1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1
−1 −1 1 −1 −1 1 1 1 −1 −1 −1 1 −1 1 1

1 −1 −1 1 −1 −1 1 1 1 −1 −1 −1 1 −1 1
1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 −1 1 −1

−1 1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 −1 1
1 −1 1 1 −1 −1 1 −1 −1 1 1 1 −1 −1 −1

−1 1 −1 1 1 −1 −1 1 −1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 1 1 −1
−1 −1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 1 1

1 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 1
1 1 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 −1 1
1 1 1 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 −1

−1 1 1 1 −1 −1 −1 1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This design has a maximum correlation between main effect columns of .25,
an average squared correlation of 1/29, and B2 = 15. A similar design may
be obtained by taking half of the Paley OA(32, 231, 2) Hadamard design
mentioned near the end of Section 6.3.

Designs with k = 2(N − 1) and N = 24 and 28 may exist with maximum
correlations of 1/6 and 1/7, respectively, but they are not known at this time.
Lin (1995, Table 5) provided a design with N = 24 and k = 33 with a maximum
correlation of 1/6.

Cheng (1997) showed that one may drop (or add) one or two columns to
these designs with k = 2(N−1) and still satisfy the E(s2) optimality criterion.
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When dropping two columns, they must be orthogonal. When adding one or
two columns, care must be taken to avoid increasing the maximum correlation.

6.5.3 Supersaturated designs with k > 2N

As mentioned earlier, E(s2) optimal designs may generally be obtained by
adding one or two columns to designs in the previous section. What about
larger numbers of factors? Here is a brief synopsis of the literature.

Wu (1993) proposed a supersaturated design with N = 12 and k = 66
by adding to the OA(12, 211, 2) the 55 two-factor interaction columns. This
design achieves the lower bound (6.11) and so is E(s2) optimal. This design
also contains the maximum number of columns for an equal-occurrence design
with N = 12 and |sij/N | ≤ 1/3 (see Cheng and Tang 2001).

Cheng (1997) unified the previous design construction literature by Lin
(1993), Nguyen (1996), and Tang and Wu (1997), providing a general theory
for E(s2) optimal supersaturated designs. Cheng (1997, Sect. 4) also contains
a complete characterization of the case N = 8 and k ≤ 35 using a construction
based on balanced incomplete block designs. However, supersaturated designs
with such small run sizes are of questionable utility. Liu and Zhang (2000),
using a cyclic block construction method, presented additional designs for
even N = 10, 12, . . ., 24 and k as large as 6(N − 1), although some have very
large maximum correlations. Table 6.38 summarizes their larger designs. Only
three of the designs achieve the lower bound for the maximum correlation in
Cheng and Tang (2001); see Table 6.39. For N a multiple of 4, Liu and Zhang
also presented E(s2) optimal designs for k = 3(N − 1) and 5(N − 1) with the
same maximum correlations as reported in Table 6.38.

Table 6.38. Liu and Zhang’s (2000) E(s2) optimal supersaturated designs
with k = 4(N − 1) and 6(N − 1)

Max ρ
N k Max ρ Optimal? E(ρ2)
16 60 0.50 0.051

90 0.50 Yes 0.056

18 68 0.3̄3 Yes 0.045
102 0.5̄5 0.050

20 76 0.40 0.040
114 0.40 Yes 0.044

22 84 0.4̄5 0.036

24 92 0.50 0.033
138 0.50 0.036
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Table 6.39. Upper bound on number of factors k for equal-occurrence
designs constrained by maximum |sij |/N ≤ ρ; k underlined means bound

has been achieved

Max ρ
N 1/11 1/9 1/7 1/6 1/5 1/4 1/3.6̄ 1/3 1/2.3̄ 1/2
6 10
8 35

10 12
12 66
14 16 182
16 75
18 20 212
20 76
22 24 399
24 61

Liu and Dean (2004) obtained an N = 20, k = 38 supersaturated design
with the same maximum correlation as that found by Liu and Zhang (2000) by
cycling a length-38 row vector by two each time and then appending a final
row. This is equivalent to creating a k × k matrix by usual cycling, taking
every other row, and then appending a final row of +1’s to form a design with
k/2 + 1 rows. If one takes every third row, one obtains a design with k/3 + 1
rows. In this way, Liu and Dean produced an 18-run, 51-factor design with
a maximum correlation of 1/3. By taking every fourth row, they produced a
14-run, 52-factor design with maximum correlation 3/7, which is better than
the comparable design found by Liu and Zhang. Circulant designs are easy
to construct. When they also provide a small maximum correlation, they are
recommended.

What if the desired k is not near a multiple of N − 1 for which designs
have been constructed. In such cases, one should generally resort to algo-
rithms. Nguyen (1996) proposed a useful algorithm for finding NOAs, includ-
ing supersaturated designs. Using a modification of Nguyen’s (1996) NOA
algorithm, Ryan and Bulutoglu (2007) were able to find 12-run designs that
were both Max |s| and E(s2) optimal for k = 12–43, 45–55, and 64–66. [For k
= 44 and 56–63, the theoretical lower bound for E(s2) was not achieved, but
the best resulting designs were likely still acceptable.] Additional algorithms
have been proposed by Li and Wu (1997) and Xu (2002).

JMP uses an alternative algorithm for constructing supersaturated de-
signs. By specifying each main effect as “estimate if possible,” a small quantity
is added to the diagonal of D′D, making the use of a D-optimal search possi-
ble. This has a Bayesian motivation, where the quantity added represents the
prior information that each coefficient is close to zero (Jones, Lin, and Nacht-
sheim 2008). The resulting designs are typically not equal-occurrence designs
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even when N is even; however, as we learned in Section 6.4, equal-occurrence
is not necessarily helpful, and these designs appear to perform well when the
run size is 20 or more.

6.5.4 Marginally oversaturated designs

Deng, Lin, and Wang (1996, 1999) defined the resolution rank of a design to be
r if every r-factor main effects model is estimable, but some projections with
r + 1 factors have linearly dependent columns. Most supersaturated designs
considered earlier in this section have resolution rank of N/2. In practice, the
number of effects that can be identified successfully by supersaturated design
is even less; N/4 is a useful rule of thumb. If more than this number of effects
are expected, then one should consider increasing the number of runs. Designs
with k only slightly larger than N − 1 were labeled marginally oversaturated
designs by Deng, Lin, and Wang (1996). Even these designs can suffer from
linear dependencies in some low-dimension projections. For instance, Deng,
Lin, and Wang (1996) found that by adding one or two columns to the 12-run
Hadamard design reduced the resolution rank from 11 to 9 or 7, respectively.

Literature on marginally oversaturated designs is limited. Here are a few
useful references for systematic designs. (Design construction algorithms men-
tioned earlier should also perform well for most cases.)

• For N = 10, Lin (1995) found a 12-factor design with |sij | = 2 for all
pairs of factors. Adding any more factors in an equal-occurrence design
will increase Max |sij | to 6.

• For N = 12, add any interaction column to the OA(12, 211, 2) for k = 12
and any two orthogonal interactions (e.g., 1*2 and 1*3) for k = 13. For k
= 14–16, Butler et al. (2001, p. 625) presented E(s2) optimal designs.

• When N = 16, begin with the OA(16, 215, 2) in Table 6.17 and add
two-factor interactions that are partially aliased with main effects and
orthogonal to one another.

When a subset of the factors are deemed more likely than the rest, choose N
to be a multiple of 4, and assign the more likely factors to a set of orthogonal
columns (see Yamada and Lin 1997).

6.5.5 Analysis of supersaturated designs

Several researchers have proposed methods for analyzing supersaturated de-
signs and/or critiqued methods proposed by others. Summarizing the litera-
ture, in time order:

• Westfall, Young, and Lin (1998) recognized the excessive Type I error
rates for the ordinary forward selection procedure and recommended ad-
justments to control the risk of declaring inactive effects to be active.
They concluded, “Identification of significant variables in supersaturated
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designs is very tricky, and many Type I and Type II errors are expected
using forward variable selection.”

• Abraham, Chipman, and Vijayan (1999) warned that “The correlation
structure inherent in supersaturated designs can obscure real effects or
promote nonreal effects. Whatever analysis is used, this problem can occur,
although all-subsets regression is preferable to stepwise regression.”

• Kelly and Voelkel (2000) found that Lenth-type t-tests (constructed from
simple regression estimates for each factor) and stepwise regression both
performed poorly, even when there are few real effects. They recommended:
“Examine all possible subsets of effects of size 1, 2, ..., m, where m is
...at least as large as the maximum number of active effects suspected...
Summarize each subset with a criterion (e.g., a cross-validated R2 value).
Select subsets for which the criterion is optimized or near optimal.”

• Beattie, Fong, and Lin (2002) recommended a two-stage Bayesian proce-
dure, especially for applications where all-subsets regression is infeasible
due to the huge number of possible models with m or fewer effects.

• Holcomb, Montgomery, and Carlyle (2003) reported an extensive evalua-
tion of 5 analysis methods in terms of both Type I and Type II errors for
15 different supersaturated designs. For stepwise regression, they began
with forward selection; once three or more variables are included, back-
ward elimination is used to check for continued significance. This stepwise
procedure performed best of the five methods for many cases, in terms
of maximizing the proportion of selected factors that are in fact active.
Also performing well in some cases was a simplified version of all-subsets
regression; their “many models method” begins by sorting all two-factor
models based on R2 and identifying the factors that show up frequently
in the set of better two-factor models.

The above listing is far from exhaustive. See also Li and Lin (2002), Lu
and Wu (2004), and Koukouvinos and Stylianou (2005). The choice of analysis
method and the relevance of these warnings and criticism depend on the
objective of the experiment. For instance, one’s objective may be to identify
with minimal cost the largest effect, or largest few effects, out of many factors
(e.g., see Chen and Lin 1998). The following modest goal seems more realistic.
If through a supersaturated design one can identify a subset of the factors for
which the proportion of active factors (and the average effect size) is much
larger than was the case for the original list of factors, then the design has
served as a useful screen.

6.5.6 Examples of supersaturated designs

Five examples are mentioned briefly:

• Lin (1995): An AIDS computer model with 138 variables was explored in
N = 24 runs, leading to the conclusion that 8 factors were active. These
data are reanalyzed in Section 6.5.7.
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• Bandurek (1999): A 20-factor robustness study for a vending machine was
conducted in just N = 8 runs; which factors were considered more likely
differed for the various responses. Interpretation of the results relied heav-
ily on engineering knowledge. The machine was found to be quite insen-
sitive to variation in these factors, except perhaps for the gas pressure’s
effect on drink volume.

• Bandurek (1999): A cake mix project with 28 factors and N = 8 cakes
provided no clear conclusions about the factors.

• Cela and colleagues have published several papers espousing the use of
supersaturated designs for applications where water or soil samples are
combined into composite samples and then tested (Martinez, Cela et al.
2002; Martinez, Landin et al. 2002; Quintana et al. 2003; Carpinteiro et
al. 2004; Pensado et al. 2004). In each case, the composite samples are
created based on a 12-run supersaturated design. In the published exam-
ples, the concentrations are known for each individual sample, and so the
parameters of each model are known.

• Li (2008) reported an application involving 120 computer runs of a finan-
cial model involving nearly 500 factors.

Other authors have analyzed half-Hadamard designs by taking half of an
orthogonal design to test their analysis method. Such examples are not men-
tioned here, except for Vander Heyden et al. (2000), who advocated the use of
supersaturated designs for robustness testing in chemistry applications. They
found that the variance of the response based on a Hadamard design can
generally be well approximated by conducting just half of the runs.

Two-stage group screening experiments provide an alternative means of
exploring a large number of factors economically, provided one can assume
the sign of any active effects is known when creating the design. The liter-
ature of good group screening applications is somewhat limited. In Chapter
11, we analyze a case study based on Rooda and van der Schilden’s (1982)
group screening example involving 29 factors. For two other case studies, see
Vine, Lewis, Dean, and Brunson (2008) and Rahni, Ramdani, Candau, and
Dalicieux (1997).

6.5.7 Example 6.9: Analysis of a supersaturated design

Lin (1995) described a 24-run supersaturated design used to investigate 138
different variables in the AIDS simulation model, iwgAIDS. The response
variable is the AIDS incidence rate per 100,000 persons. The supersaturated
design was constructed using a 24-run Hadamard design for x1–x23 (see Table
6.40), and two-factor interactions as generators for the remaining 115 factors
numbered as follows:
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x24–x45: x22+j = x1 ∗ xj , j = 2, . . . , 23
x46–x66: x43+j = x2 ∗ xj , j = 3, . . . , 23
x67–x86: x63+j = x3 ∗ xj , j = 4, . . . , 23
x87–x105: x82+j = x4 ∗ xj , j = 5, . . . , 23
x106–x123: x100+j = x5 ∗ xj , j = 6, . . . , 23
x124–x138: x117+j = x6 ∗ xj , j = 7, . . . , 21

Table 6.40. First 23 factors and response for Lin’s supersaturated design

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 y
+ + + + + – + – + + – – + + – – + – + – – – – 22.61
+ + + + – + – + + – – + + – – + – + – – – – + 14.26
+ + + – + – + + – – + + – – + – + – – – – + + 58.42
+ + – + – + + – – + + – – + – + – – – – + + + 24.59
+ – + – + + – – + + – – + – + – – – – + + + + 10.28
– + – + + – – + + – – + – + – – – – + + + + + 188.46
+ – + + – – + + – – + – + – – – – + + + + + – 22.68
– + + – – + + – – + – + – – – – + + + + + – + 22.90
+ + – – + + – – + – + – – – – + + + + + – + – 52.04
+ – – + + – – + – + – – – – + + + + + – + – + 381.61
– – + + – – + – + – – – – + + + + + – + – + + 16.22
– + + – – + – + – – – – + + + + + – + – + + – 108.59
+ + – – + – + – – – – + + + + + – + – + + – – 98.05
+ – – + – + – – – – + + + + + – + – + + – – + 53.13
– – + – + – – – – + + + + + – + – + + – – + + 83.41
– + – + – – – – + + + + + – + – + + – – + + – 13.59
+ – + – – – – + + + + + – + – + + – – + + – – 242.96
– + – – – – + + + + + – + – + + – – + + – – + 663.93
+ – – – – + + + + + – + – + + – – + + – – + – 57.95
– – – – + + + + + – + – + + – – + + – – + – + 177.49
– – – + + + + + – + – + + – – + + – – + – + – 40.22
– – + + + + + – + – + + – – + + – – + – + – – 52.23
– + + + + + – + – + + – – + + – – + – + – – – 53.50
– – – – – – – – – – – – – – – – – – – – – – – 2463.24

Lin (1995) reported using forward selection to identify active factors. One
can replicate his results for the first seven steps. However, the eighth factor to
enter using stepwise regression is x71 = x3 ∗x8 rather than x76 = x3 ∗x13; see
Table 6.41. Although this gives the appearance of a useful model, it is actually
a mirage. If one were to exclude these 8 columns and repeat forward selec-
tion for the remaining 130 factors, comparable R2 values would be obtained.
In fact, for seven and eight factors, a higher R2 is actually obtained when
the factors in Table 6.41 are excluded! Using a follow-up 28−4 fraction for
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the seven factors in Table 6.41 plus x76, only three factors were statistically
significant, with Lenth t statistics of 47.5, 22.5, and 2.83, for x129, x13 and
x118, respectively, but b13 changed sign, from negative in the forward selection
model to positive in the resolution IV fraction, and b118 is 1/100th as large in
the follow-up data as in the stepwise model. Clearly, something more than a
naive application of stepwise regression is required here.

Table 6.41. Lin’s forward selection of factors for y = incidence rate

Step Factor p-Value R2

1 x118 .1171 0.108
2 x25 .0587 0.251
3 x129 .0265 0.418
4 x13 .0254 0.555
5 x91 .0109 0.693
6 x93 .0055 0.807
7 x86 .0055 0.883
8 x71 .0175 0.920

The first modification to Lin’s analysis is to use a transformation of inci-
dence rate as the response; see Figure 6.13. Using either the log or reciprocal
transformation would avoid having any outliers that dominate the fit of the
model. When one response value is far removed from the rest, no simple model
will account for that variation. Second, one should use all-subsets regression
to find the best k-factor models, for k = 1, 2, ..., m, where m = N/3. If
models with R2 > .95 are obtained for models with k < N/3, there is usually
no benefit in searching for models with larger R2.

The best models should be evaluated in terms of a global model test. Ed-
wards (2008) advocates calculating global model p-values using a permutation
test. A permutation test for the models with k factors is performed as follows.
Suppose one has a model of interest fit to y with an R2 = .93, obtained using
all-subsets regression. Then shuffle the y values and compute R2 for the best
k-factor model using all-subsets regression. Do this shuffling and refitting 1000
times and determine what proportion of the 1000 R2 values exceed .93. This
proportion is the global test p-value for the model in question. Only when one
or more of the models obtained by all-subset regression has an unusually high
R2, compared to models obtained by the same method to the permuted y’s,
do we have any assurance that our model actually accounts for systematic
variation.

Finally, for any model with a small global p-value, one must perform tests
for each individual term in the model. As proposed by Westfall, Young, and
Lin (1998), a simple means of doing this is to use Bonferroni adjusted p-values,
which multiplies each ordinary p-value times the number of eligible factors not
in the model plus 1 for the factor in question. For instance, given 138 candidate
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factors, p-values for terms in a k-factor model would be multiplied by 139−k.
This Bonferroni adjustment is justified for testing individual terms in models
selected by forward selection. For models selected by all-subsets regression, it
is somewhat ad hoc and is likely to provide too little adjustment (see Edwards
and Mee 2009).

Here, Lin (1995) used forward selection rather than all-subsets regression
to select the model. Thus, for the permutation test, we shuffle the y values
and refit a model using forward selection. Each of the models selected in Table
6.41 are unexceptional, in that larger R2 values are routinely obtained when
fitted to randomly shuffled y values. This is true, whether we are fitting a
model to y = incidence rate or ln(y). This lack of statistical significance is
further confirmed using Bonferroni adjusted p-values. For instance, even the
smallest p-value in Table 6.41 (0.0055 for x86), when multiplied by the number
of eligible columns at that step equals 132(0.0055) = 0.73, an insignificant
outcome.

From the iwgAIDS model data reported by Lin (1995), it appears that
interaction effects cannot be ignored. Thus, it is not surprising that a design
intended to find only a few dominant main effects is ineffective when many
main effects and interactions are important. Lewis and Dean (2001) have
proposed a group screening procedure when interactions are deemed possible.
Such a design might be useful for this AIDS computer model.

0 500 1000 1500 2000 2500

Y = incidence rate per 100,000

Fig. 6.13. Histogram of 24 y values for Lin’s AIDS data



244 6 Fractional Factorial Designs for Estimating Main Effects

6.6 Conclusions

Resolution III designs are quite commonly used. Their success depends on a
sparsity and simplicity of active effects, so that simple models suffice. The
presence of one or two interactions can sometimes be detected, except for the
case of regular fractional factorial designs with nearly as many factors as there
are degrees of freedom. Because of the risk inherent in resolution III regular
fractions or strength-2 nonregular designs, confirmation runs should always
be performed. How best to do this is the topic of Section 9.2.

This chapter has emphasized minimum aberration 2k−f fractions and
Hadamard designs with minimum G-aberration. In general, these are the de-
signs most useful. Two exceptions come to mind. First, occasionally blocking
and other randomization restrictions lead to preferences for other fractions;
see Chapter 10. Second, sometimes one has very detailed prior knowledge
about the importance of specific terms and the objective is parameter esti-
mation for a particular model, rather than factor screening. In such cases,
designs constructed using a D-optimal algorithm are appropriate; the work of
Hedayat and Pesotan (1992, 1997) is also relevant. Finally, sometimes a num-
ber of two-factor interactions are considered more likely than others, and it is
desired to make the main effects orthogonal to these likely two-factor interac-
tions. Using a regular resolution III fraction that aliases these likely two-factor
interactions with one another but not with any main effect, one can create a
design that provides efficient estimation of the main effects. In this case, one
may create a resolution III design that is not minimum aberration but which
is attractive for the specific problem at hand.
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Designs for Estimating Main Effects and Some
Two-Factor Interactions

This chapter presents regular resolution IV 2k−f fractional factorial designs,
strength-3 orthogonal arrays, and folded-over nonorthogonal designs. Pro-
vided three-factor and higher-order interactions are negligible, all of these
designs provide unbiased estimates for main effects. These designs also devote
at least N/2 − 1 degrees of freedom to estimating combinations of two-factor
interactions; some designs will even have two-factor interactions clear of alias-
ing with other two-factor interactions. The sections of this chapter are as
follows:

Section 7.1. Five Examples Analyzed

Section 7.2. Regular Resolution IV Designs

Section 7.3. Strength-3 Orthogonal Arrays

Section 7.4. Nonorthogonal Resolution IV Designs

Section 7.5. Recommendations Regarding Design Choice

To appreciate the difference between the designs discussed here and those
in Chapters 6 and 8, consider the structure of the information matrix X′X.
Let X1 denote the N × (k + 1) model matrix for a main effects model, and
let X2 denote the N × k(k − 1)/2 matrix of two-factor interaction contrasts.
Then X = [X1,X2] is the model matrix for the two-factor interaction model
(1.3). Using this partitioning we write the information matrix

X′X =
[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]
. (7.1)

For Chapter 6 designs, there is aliasing between main effects and two-factor
interactions. In the current chapter, such aliasing is avoided by requiring the
main effect columns to be orthogonal to two-factor interaction contrasts (i.e.,
X′

1X2 = 0). Ignoring three-factor and higher-order interactions, for designs
in this chapter the only aliasing is among two-factor interactions. In order
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to provide this clear estimation for main effects, for a given k, Chapter 7
designs require more runs than those in Chapter 6. (The designs in Chapter
8 will be larger still.) If one expects only a few two-factor interactions, then a
Chapter 7 design will be suitable. For example, suppose one has seven factors.
If one thought interactions were all negligible, one might use either the 27−4

design or seven columns from the 12-run Plackett–Burman design, as we saw
for Examples 6.2 and 6.6, respectively. Suppose instead that many two-factor
interactions are expected to be important. To estimate main effects and all 21
two-factor interactions requires either 64 runs for an orthogonal design or 48
runs for a nonorthogonal three-eighths fraction, both of which are described in
Chapter 8. Such run sizes are too large for many applications. We now consider
a compromise between the frugal resolution III (and strength-2) Chapter 6
designs and the large designs of the next chapter. Chapter 7 will discuss
regular resolution IV designs for 7 factors of sizes 16 and 32 runs, as well as
a strength-3 24-run design. Although these designs do not permit estimation
of the full two-factor interaction model, they do provide

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]
=
[

NI 0
0 X′

2X2

]
(7.2)

with rank(X′
2X2) between 7 and 18.

7.1 Five Examples Analyzed

We now present five examples to illustrate the analysis for various designs to
be discussed in this chapter.

• Example 7.1: Su and Lua (2006) used a 24−1 design to create eight batches
of membranes and then tested the permeability of four gases with each
batch. This is a popular resolution IV design, although we need additional
information regarding the error variance, or some replication, to be able
to determine statistical significance adequately.

• Example 7.2: Bafna and Beall (1997) conducted an experiment involving 6
factors in 16 runs, following an initial screening experiment that suggested
the importance of these 6 factors.

• Example 7.3: Barnett, Czitrom, John, and León (1997) also conducted a
26−2, but with the inclusion of centerpoint replicates.

• Example 7.4: Choueiki, Mount-Campbell, and Ahalt (1997) utilized a res-
olution IV 210−4 design. From this 64-run design, one may estimate most
of the 45 two-factor interactions.

• Example 7.5: Yi, Lilja, and Hawkins (2005) conducted an even larger study
of a computer architecture simulator, varying k = 41 factors in N = 88
runs. This design is a foldover of a 44-run orthogonal array. Analysis of such
designs differs from that for regular fractions, since two-factor interactions
are partially aliased.
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Examples 7.1–7.3 are even regular resolution IV designs; this type is discussed
in Section 7.2.2. Example 7.4 is an even/odd regular resolution IV design, and
this type is discussed in Section 7.2.3. Section 7.3 presents orthogonal arrays
such as the one employed in Example 7.5.

7.1.1 Example 7.1: The smallest resolution IV design: an
unreplicated 24−1

Su and Lua (2006) described a carbon membrane experiment involving four
factors, with the levels shown in Table 7.1. Eight batches of membranes were
fabricated from Kapton R©, according to the treatment combinations for a 24−1

design. The eight batches of membranes were fabricated and the permeability
measured in the order of the eight rows of Table 7.2 (per communication
with the authors). For each treatment combination, three membranes were
sampled, and the permeability of each membrane was measured for four gases:
He, CO2, O2, and N2. Thus, each permeation rate in Table 7.2 is a mean of
three measurements, and the means in each row are obtained using the same
three membranes.

Table 7.1. Factors and levels for Su and Lua experiment

Levels
Factors −1 1
A Atmosphere Nitrogen Vacuum
B Temperature (K) 923 1073
C Heating rate (K/hr.) 30 240
D Thermal soak time (hr.) 2 5

Table 7.2. Permeability rates for four gases in 24−1 experiment

Permeability Rate
Run A B C D He CO2 O2 H2

1 1 1 −1 −1 58.84 50.01 42.88 26.57
2 1 −1 1 −1 708.99 715.03 188.04 67.59
3 1 −1 −1 1 88.77 45.03 37.97 30.16
4 1 1 1 1 51.82 43.67 26.24 15.55
5 −1 1 1 −1 71.11 93.61 33.25 18.57
6 −1 1 −1 1 89.31 133.88 26.58 26.08
7 −1 −1 −1 −1 563.90 1056.83 304.22 111.69
8 −1 −1 1 1 571.48 684.17 157.69 21.89

Figure 7.1 plots the permeation rates on a logarithmic scale for each of
the four gases. A log scale is used because the values differ by more than one
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order of magnitude. The same two or three treatment combinations produced
high permeability rates for all four gases. The gases are arranged in increasing
molecular diameters. Except for helium, the permeability decreases as diam-
eter increases.
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Fig. 7.1. Parallel plot of permeability rates for eight treatment combinations

We fit a saturated model and compute p-values for Lenth t statistics as
described in Appendix C. For the O2 permeability rate, the estimates are
given in Table 7.3. Here, Lenth’s PSE = 40.6, based on the median effect
estimate bAB = 30.6, and the largest estimate is only 1.52 times the PSE. For
eight-run designs, Lenth’s method has little power for detecting effects. Except
when one or two terms explain most of the variation, having no significant
effects is typical. Here, no simple model suffices. Without a prior estimate for
the error variance σ2, one must interpret the estimates without being able to
assess their precision. A negative estimate for B (Temperature) is reasonable.
At 1073 K, the membrane visibly shrinks, which is expected to lower the
permeability. Similarly, a negative coefficient for D is reasonable.

In conclusion, even though the resolution is better than for designs in the
previous chapter, such a small experiment is of limited use unless one has a
separate estimate of the error variance. When the choice of a model is not clear
from an initial 24−1 design, it may be worthwhile running a second experiment
containing the other half-fraction. Then the combined experiments form a full
24 factorial in two blocks, as was discussed in Chapter 3.
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Table 7.3. Saturated model for O2 permeability rate

Term Estimate PSE Lenth t p-Value
Intercept 102.1
A −28.3 46.0 −0.62 .610
B −69.9 46.0 −1.52 .130
C −0.8 46.0 −0.02 .985
D −40.0 46.0 −0.87 .327
AB = CD 30.6 46.0 0.67 .500
AC = BD 34.2 46.0 0.74 .406
AD = BC −1.7 46.0 −0.04 .972

7.1.2 Example 7.2. A 26−2 with repeated determinations

Sixteen-run resolution IV designs for six to eight factors are very useful. Here
we analyze such an experiment involving six factors. Bafna and Beall (1997)
conducted a screening experiment involving many factors to assess the rugged-
ness of the measurement procedure for the melt index (MI). Approximately
half of the factors in this preliminary experiment appeared to cause little or
no measurement error variation and were dropped from further consideration.
The experiment presented here is a subsequent 26−2 fraction involving the six
factors that appeared to cause some variation in MI. Using a resolution IV
design guarantees that two-factor interactions will not bias the estimates for
main effects. Although this design provides 7 df for two-factor interactions,
the chief interest is in main effects. Table 7.4 shows the names and levels for
each factor, and Table 7.5 provides the run order for the 16 treatment com-
binations of this resolution IV fraction and the MI measurements for each.
The three measurements do not represent replication of runs. Rather they are
repeated measurements that we average together to obtain a mean MI that is
more precise than if a single measurement had been obtained for each run.

Table 7.4. Factors and levels for Bafna and Beall experiment

Levels
Factors −1 1
A Die orifice diameter (mm) 2.0930 2.1448
B Sample mass (g) 4 8
C Temperature (oC) 188.1 191.9
D Die cleanliness Dirty Clean
E Piston diameter (mm) 9.462 9.500
F Barrel cleanliness Dirty Clean
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Bafna and Beall fitted a model for mean MI containing main effects and
two-factor interactions, leaving 2 df for error. The MSE was 0.09785, pro-
ducing a standard error for the coefficients of [0.09785/16]1/2 = 0.078. The
estimates are provided in Table 7.6, where we show the aliasing among the 15
two-factor interactions. The largest five estimates are all main effects. These,
plus the BD = CF interaction contrast, are statistically significant. Contrary
to the initial screening experiment, the main effect for E is not important;
that is, the measurement process is not affected by small differences in the
Piston diameter. Perhaps this main effect was aliased with BD or CF in the
initial experiment, and this biased the previous estimate for βE . From this
resolution IV design, we can confidently say that the other five factors do
impact MI in an essentially additive manner. Reduction of measurement error
will be facilitated especially by control of the Die orifice diameter (A) and
Temperature (C).

Table 7.5. Treatment combinations for 26−2 and MI measurements, with
randomized run order

Run A B C D E F MI1 MI2 MI3 Mean
1 −1 −1 1 1 1 −1 36.6 36.8 37.6 37.00
2 1 1 −1 −1 −1 1 38.9 39.5 39.6 39.33
3 −1 −1 −1 −1 −1 −1 31.9 32.3 31.9 32.03
4 1 1 1 1 1 1 42.5 41.9 41.6 42.00
5 1 1 −1 1 −1 −1 38.6 38.1 38.8 38.50
6 1 1 1 −1 1 −1 40.0 39.8 40.5 40.10
7 −1 −1 1 −1 1 1 34.8 35.5 34.8 35.03
8 −1 1 −1 1 1 −1 35.8 34.7 34.6 35.03
9 1 −1 −1 −1 1 −1 36.6 37.4 37.0 37.00

10 −1 −1 −1 1 −1 1 35.2 34.6 35.5 35.10
11 −1 1 1 1 −1 1 37.8 37.9 37.2 37.63
12 1 −1 1 −1 −1 1 40.7 40.9 39.0 40.20
13 1 −1 1 1 −1 −1 41.1 40.9 41.2 41.07
14 −1 1 −1 −1 1 1 36.0 36.0 35.1 35.70
15 −1 1 1 −1 −1 −1 36.6 35.4 35.3 35.77
16 1 −1 −1 1 1 1 38.9 39.4 39.5 39.27

The interaction coefficient of −0.37 is an estimate for βBD + βCF . By
fitting a model first with BD and then with CF, one can view and interpret
each possible interaction. Here, the conclusion is either that there is little or
no Sample mass effect when the die is clean, or no Barrel cleanliness effect
at high temperature. The authors do not discuss this interaction but instead
devote their discuss to the each main effect estimate. They expected main
effects to dominate, and chose a resolution IV design rather than resolution
III to ensure the validity of the main effect estimates.
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Table 7.6. Two-factor interaction model for mean MI

Term Estimate Std Error t-Ratio p-Value
Intercept 37.55 0.078 480.14 <.0001
A 2.14 0.078 27.31 .0013
B 0.46 0.078 5.89 .0277
C 1.05 0.078 13.45 .0055
D 0.65 0.078 8.34 .0141
E 0.09 0.078 1.20 .3534
F 0.49 0.078 6.21 .0250
AB = CE −0.16 0.078 −2.05 .1767
AC = BE 0.11 0.078 1.36 .3072
AD = EF −0.13 0.078 −1.63 .2456
AE = BC = DF −0.19 0.078 −2.37 .1412
AF = DE 0.03 0.078 0.40 .7281
BD = CF −0.37 0.078 −4.72 .0422
BF = CD 0.17 0.078 2.21 .1576

In Section 14.2, we analyze the data in Table 7.5 by fitting a saturated
model and computing Lenth’s PSE = 0.2156. Lenth’s method would generally
be preferred unless the assumption of effect sparsity is considered unreason-
able; that is, if it is possible that a third or more of the effects are active,
then Lenth’s PSE can be severely biased upward and the power to detect
active effects diminished. Another alternative is to modify Lenth’s method to
make it more robust (see Section 14.2). Here, it seems likely that the true
standard error (σ/4) is between 0.078 and 0.216. The reduced model, either
with or without the non-significant main effect for E, yields a standard error
of 0.12–0.13.

The repeated determinations of MI enable us to precisely estimate the
measurement error variance, which is one component of σ2. The measurement
error variance, based on pooling the 16 sample variances of 2 df each, is 0.2548.
From this, the measurement error variance for means of three values would
be 0.2548/3 = 0.085. The error variance (σ2) for our response must contain
this measurement error variance component plus any run-to-run variance. The
MSE from the reduced model with six main effects and one interaction is 0.261.
If this is an accurate estimate for σ2, then the measurement error variance
accounts for about a third of our experimental error. If the researchers had
not made repeated determinations of MI, the error variation would have been
larger by approximately 0.17 (= 0.2548 − 0.085).

7.1.3 Example 7.3: Another 26−2 with centerpoint replication

Uniformity is critical to profitability for manufacturing semiconductors. Com-
monly in that industry, experiments are run to identify factor settings that
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minimize variability. Barnett, Czitrom, John, and León (1997) described such
an experiment involving the etching of individual wafers. The objective of the
experiment was to characterize the etching process for two etch target thick-
nesses, 50Å and 200Å. Table 7.7 lists this and five other factors; the actual
low and high levels for the other factors were withheld for proprietary reasons.
Target etch thickness is altered by varying the amount of anhydrous hydroflu-
oric acid flow. To achieve the required target etch amount, test runs were
performed to determine the proper level of acid. It would have been simpler
to use acid flow as a factor rather than target etch thickness.

Table 7.7. Factors and levels for Barnett et al. experiment

Levels
Factors −1 1
A Target etch amount (Å) 50 200
B Etch N2 flow Low High
C Etch water vapor flow Low High
D Pre-etch N2 flow Low High
E Pre-etch water vapor flow Low High
F Wafer rotation speed (rpm) Low High

Table 7.8 lists the 18 treatment combinations for this experiment. The
generators for the design are E = ABD and F = ABC. For each run, a single
wafer was measured at nine fixed locations, etched, and then remeasured.
The difference in thickness was determined for each location. From these nine
differences, the mean, standard deviation, and coefficient of variation (CV)
were calculated. The actual run order was not provided, so Table 7.8 is sorted
by the standard deviation.

Barnett et al. (1997) took as their response the logarithm of the coefficient
of variation. However, since CV was rounded to one decimal place, we use SD
instead. Since SD (on a log scale) is uncorrelated with mean thickness (see
Figure 7.2), there is no advantage to using the CV as the response.

Figure 7.3 shows the ANOVA from fitting a two-factor interaction model
for ln(SD), which has R2 = .99. The lack-of-fit test indicates no evidence for
pure quadratic curvature (1 df) or three-factor interactions (2 df). Table 7.9
lists the estimates for this model, sorted by their p-value. Five factorial effects
stand out, although four of these are strings of aliased interactions.
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Table 7.8. Treatment combinations for Example 7.3, sorted by the
within-wafer standard deviation

A B C D E F SD CV
1 1 1 −1 −1 1 1.60 0.8

−1 −1 1 −1 −1 1 1.71 3.1
−1 1 1 1 −1 −1 2.61 4.9
−1 1 1 −1 1 −1 3.10 5.8

1 1 1 1 1 1 3.10 1.5
−1 −1 1 1 1 1 3.43 7.7
−1 −1 −1 1 1 −1 4.05 9.2

0 0 0 0 0 0 4.83 3.9
1 1 −1 1 1 −1 6.18 2.9
0 0 0 0 0 0 6.37 5.2

−1 −1 −1 −1 −1 −1 6.49 11.0
1 −1 −1 1 −1 1 7.00 3.6
1 1 −1 −1 −1 −1 7.20 3.2
1 −1 −1 −1 1 1 7.25 3.6

−1 1 −1 1 −1 1 16.58 41.0
1 −1 1 −1 1 −1 19.11 8.7
1 −1 1 1 −1 −1 19.20 10.1

−1 1 −1 −1 1 1 38.50 71.0

1

10

6

4

2

20

30

50

S
D

50 100 150 200 250

Mean Etch Thickness (= 100SD/CV)

Fig. 7.2. Plot of the within-wafer SD versus mean etch thickness
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Analysis of Variance 

Source d.f. Sum of Squares Mean Square F Ratio
Model 13 12.57170 0.96705 32.969
Error 4 0.11733 0.02933 Prob > F
C. Total 17 12.68903 0.0020

Lack Of Fit 

Source d.f. Sum of Squares Mean Square F Ratio
Lack Of Fit 3 0.07903 0.02634 0.688
Pure Error 1 0.03830 0.03830 Prob > F
Total Error 4 0.11733 0.6856

Fig. 7.3. ANOVA corresponding to the two-factor interaction model for ln(SD)

Table 7.9. Two-factor interaction model for ln(SD), sorted by p-value

Term Estimate Std Error t-Ratio p-Value
Intercept 1.791 0.040 44.37 .000
AB = CF = DE −0.497 0.043 −11.600 .000
AF = BC −0.440 0.043 −10.277 .001
C −0.380 0.043 −8.881 .001
AC = BF 0.353 0.043 8.251 .001
CD = EF 0.168 0.043 3.930 .017
E 0.111 0.043 2.595 .060
A 0.103 0.043 2.396 .075
F −0.082 0.043 −1.904 .130
CE = DF 0.079 0.043 1.856 .137
AD = BE 0.079 0.043 1.851 .138
B −0.058 0.043 −1.348 .249
AE = BD −0.044 0.043 −1.022 .365
D −0.019 0.043 −0.455 .673

In Section 9.5, we present a follow-up experiment that Barnett et al. (1997)
conducted to clarify which of the aliased interactions are active. Here, we at-
tempt to interpret the results from this experiment alone by making a sim-
plifying assumption. It appears from Table 7.9 that factors B and D, the two
N2 flow variables, may have little effect. If these two factors are ignored, all
of the aliasing disappears. Fitting a two-factor interaction model in the re-
maining 4 factors, we obtain a model with 10 terms that explains 97.8% of
the variation in ln(SD). From this fitted model we obtain predicted ln(SD)
values and display these in a cube plot (Figure 7.4). The noteworthy feature
is that for both Target etch levels, the minimum ln(SD) is achieved at C = 1,
E = −1, F = 1. Thus, our tentative conclusion is that rotating wafers with
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a high rpm and setting the water vapor flow low in the pre-etch period but
high during etching, the best uniformity is achieved. Even though this combi-
nation coincides with our best two observed runs, some confirmation of these
tentative conclusion is needed. We will revisit this conclusion in Chapter 9
when discussing follow-up experimentation. (In fact, follow-up runs revealed
that one cannot simply ignore factors B and D.)
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Fig. 7.4. Cube plot for predicted ln(SD) for two-factor interaction model in four
factors

7.1.4 Example 7.4: A larger resolution IV design with more active
interactions

Choueiki, Mount-Campbell, and Ahalt (1997) used a resolution IV 210−4 de-
sign to investigate the architecture and training of a neural network to predict
short-term load requirements for an Ohio electric utility. The 10 factors in-
vestigated are listed in Table 7.10. The last two factors are characteristics of
the load being forecast rather than factors of the neural network; that is, each
combination of factors {J, K} corresponds to a different electric utility’s data.
A lack of interactions between the neural network factors and these time series
factors would indicate that the same network design is preferred, regardless
of the situation to which it is applied.

The response is the root mean squared error (RMSE) for hourly predic-
tions, expressed as a percentage of the average usage for a full year (1993).
Usually we apply the log transformation to standard deviations and variances.
However, here the ratio max/min is less than 2, so a transformation would
have little effect except to complicate the analysis. The response data for
the design appear in Table 7.11. This is a 1/16th fraction of a 210, based on
the generators G = BCDF, H = ABDE, J = ACDF, and K = ABCE.
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These generators produce a minimum aberration fraction, with length-4 words
ABGJ and CDHK. This particular fraction was chosen because the few two-
factor interactions it aliases were believed to be negligible.

Table 7.10. Factors and levels for Choueiki et al. experiment

Levels
Factors −1 1
A Hidden layers 1 2
B Transfer function in output layer Linear Sigmoid
C Transfer function in hidden layer Sigmoid Sinusoid
D Backpropagation learning algorithm Standard Cumulative
E Gaussian noise added No Yes
F Stopping rule RMSE CD
G Network Feedforward Recurrent
H Years of training data 2 4
J Time of peak Winter Summer
K Industrial load % Low High

Figure 7.5 plots the 64 RMSE values, revealing how much larger one value
is than the rest. We will fit models both with and without this value, to see if
it alters the levels of the factors deemed optimal for minimizing the RMSE.

For this 210−4 design, there are 10 df for main effects, 39 df for two-factor
interactions, and the remainder (63−49 = 14 df) for three-factor interactions
not aliased with lower-order terms. The sum of squares and mean squares
are shown in Table 7.12. Without the maximum observation, the total sum
of squares is reduced by 20%, and the mean squares are 0.2478, 0.0719, and
0.0402, respectively. This initial ANOVA supports the researchers’ expectation
that three-factor or higher-order interactions would be unimportant.

2.0 2.5 3.0 3.5 4.0

RMSE (%)

Fig. 7.5. Histogram of RMSE data from Choueiki et al. (1997)
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Table 7.11. Treatment combinations for 210−4 with % root mean square
error for hourly predictions

A = −1 A = 1
B C D E F G H J K RMSE B C D E F G H J K RMSE

−1 −1 −1 −1 −1 1 1 1 1 2.1834 −1 −1 −1 −1 −1 1 −1 −1 −1 2.2931
1 −1 −1 −1 −1 −1 −1 1 −1 2.9520 1 −1 −1 −1 −1 −1 1 −1 1 2.9151

−1 1 −1 −1 −1 −1 1 −1 −1 2.4686 −1 1 −1 −1 −1 −1 −1 1 1 2.6055
1 1 −1 −1 −1 1 −1 −1 1 2.3955 1 1 −1 −1 −1 1 1 1 −1 2.0088

−1 −1 1 −1 −1 −1 −1 −1 1 2.9930 −1 −1 1 −1 −1 −1 1 1 −1 2.5495
1 −1 1 −1 −1 1 1 −1 −1 3.0491 1 −1 1 −1 −1 1 −1 1 1 3.0309

−1 1 1 −1 −1 1 −1 1 −1 2.6417 −1 1 1 −1 −1 1 1 −1 1 2.4679
1 1 1 −1 −1 −1 1 1 1 2.6906 1 1 1 −1 −1 −1 −1 −1 −1 3.0283

−1 −1 −1 1 −1 1 −1 1 −1 2.9295 −1 −1 −1 1 −1 1 1 −1 1 2.4878
1 −1 −1 1 −1 −1 1 1 1 3.8682 1 −1 −1 1 −1 −1 −1 −1 −1 3.1891

−1 1 −1 1 −1 −1 −1 −1 1 2.7197 −1 1 −1 1 −1 −1 1 1 −1 2.6658
1 1 −1 1 −1 1 1 −1 −1 2.2678 1 1 −1 1 −1 1 −1 1 1 3.2493

−1 −1 1 1 −1 −1 1 −1 −1 2.9744 −1 −1 1 1 −1 −1 −1 1 1 3.0965
1 −1 1 1 −1 1 −1 −1 1 2.6687 1 −1 1 1 −1 1 1 1 −1 2.6411

−1 1 1 1 −1 1 1 1 1 2.3445 −1 1 1 1 −1 1 −1 −1 −1 2.8845
1 1 1 1 −1 −1 −1 1 −1 2.6009 1 1 1 1 −1 −1 1 −1 1 2.4098

−1 −1 −1 −1 1 −1 1 −1 1 2.6580 −1 −1 −1 −1 1 −1 −1 1 −1 2.8995
1 −1 −1 −1 1 1 −1 −1 −1 2.5533 1 −1 −1 −1 1 1 1 1 1 2.3149
−1 1 −1 −1 1 1 1 1 −1 2.5566 −1 1 −1 −1 1 1 −1 −1 1 2.6574

1 1 −1 −1 1 −1 −1 1 1 2.6208 1 1 −1 −1 1 −1 1 −1 −1 2.4210
−1 −1 1 −1 1 1 −1 1 1 3.2336 −1 −1 1 −1 1 1 1 −1 −1 2.8831

1 −1 1 −1 1 −1 1 1 −1 2.5910 1 −1 1 −1 1 −1 −1 −1 1 2.4787
−1 1 1 −1 1 −1 −1 −1 −1 3.1318 −1 1 1 −1 1 −1 1 1 1 2.7916

1 1 1 −1 1 1 1 −1 1 2.2120 1 1 1 −1 1 1 −1 1 −1 2.3436
−1 −1 −1 1 1 −1 −1 −1 −1 2.8580 −1 −1 −1 1 1 −1 1 1 1 2.7270

1 −1 −1 1 1 1 1 −1 1 2.1099 1 −1 −1 1 1 1 −1 1 −1 2.3727
−1 1 −1 1 1 1 −1 1 1 2.8065 −1 1 −1 1 1 1 1 −1 −1 2.6814

1 1 −1 1 1 −1 1 1 −1 2.2139 1 1 −1 1 1 −1 −1 −1 1 2.3256
−1 −1 1 1 1 1 1 1 −1 2.5365 −1 −1 1 1 1 1 −1 −1 1 2.6597

1 −1 1 1 1 −1 −1 1 1 2.8636 1 −1 1 1 1 −1 1 −1 −1 2.7835
−1 1 1 1 1 −1 1 −1 1 2.9233 −1 1 1 1 1 −1 −1 1 −1 3.0618

1 1 1 1 1 1 −1 −1 −1 2.2124 1 1 1 1 1 1 1 1 1 2.1073

Table 7.12. ANOVA for Example 7.4

Source df SS MS
Main effects 10 2.5574 0.2557
Two-factor interactions 39 4.0485 0.1038
Remainder 14 0.6568 0.0469
Total (corrected) 63 7.2626
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One could begin by fitting either the two-factor interaction model or a
saturated model. For the two-factor interaction model, estimates with t sta-
tistics of 2 or more are shown in Table 7.13. Here, the standard error for each
estimates is 0.027 = (0.0469/64)1/2, where the MSE comes from Table 7.12.
Choueiki et al. (1997) began by fitting a simpler model, one that omitted
two-factor interactions between network and time series factors; that is, they
assumed the network effects would not depend on either factor J or K. The
MSE for these two models are virtually identical; only the degrees of freedom
for error are different. Alternatively one may fit a saturated model, obtaining
Lenth’s PSE = 0.029, which is also in agreement with the standard errors
obtained by omitting 14 (or 24) interactions. When the saturated model is
fit, 1 of the 14 three-factor interactions appears among the set of significant
estimates; the estimate for BJK = DEF = AGK is 0.070, making it the sev-
enth largest factorial effect. We will interpret this effect below, as we discuss
the other estimates.

We discuss the estimates before examining a residual plot, because our
understanding of the estimates will affect the reduced model we select. The
estimates in Table 7.13 indicate that several factors prominently affect the
RMSE of prediction. The large negative effects for G, H, and C indicate
that the high level is preferred in each case—that is, a recurrent network, 4
years of training data, and a sinusoid function in the hidden layer. The largest
effect is the BF interaction; given that bBF is negative, we prefer B = F, and
given that the coefficients for BC, B, and F are all negative, the optimal
combination is B = F = 1 (i.e., a sigmoid transfer function for the output
layer) and the CD stopping rule. [This stopping rule minimizes the RMSE
on an independent data set; see Choueiki et al. (1997) for details.] Regarding
factors D and E, any combination besides (D, E) = (1, −1) appears to be
acceptable.

Table 7.13. Largest estimates from two-factor interaction model for
Example 7.4

Term Estimate Std Error t-Ratio p-Value
Intercept 2.670 0.027 98.606 .000
BF −0.144 0.027 −5.310 .000
G −0.114 0.027 −4.208 .001
H −0.091 0.027 −3.378 .005
C −0.091 0.027 −3.364 .005
JK 0.087 0.027 3.213 .006
BC −0.074 0.027 −2.724 .016
DE −0.067 0.027 −2.491 .026
B −0.061 0.027 −2.240 .042
EF −0.060 0.027 −2.209 .044
F −0.058 0.027 −2.124 .052
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The four combinations of Peak season (J) and Industrial load (K) corre-
spond to hourly load time series for different public utilities. It was surprising
to the authors that the JK interaction would be significant, even though nei-
ther main effect is. By re-examining the data, it was discovered that the two
utilities for which JK = −1 reported “native load data” and the time series
for the two utilities with JK = 1 also included “interruptible customer load.”
Thus, we define the (unintended) factor L = JK. When L = 1, the RMSE is
larger, because it is a more difficult task to forecast the occasionally clipped
interruptible load. By including L, the design becomes a resolution III 211−5

fraction, with one length-3 word (JKL) and four length-4 words (ABGJ,
CDHK, CEGL, AFHL).

If we fit the two-factor interaction model in all 11 factors, 7 of the 11 main
effects plus 8 two-factor interactions are statistically significant at α = .05.
In addition to L = JK, no estimate with aliased two-factor interactions is
significant. Thus, the aliasing of effects does not appear to cause ambiguity,
even for this unintended resolution III fraction.

Including the main effects for E and J to make the model hierarchical, we
obtain the reduced model in Table 7.14 and examine its Studentized residuals
(see Figure 7.6). For this model, the combination of high levels for factors B–
G minimizes the RMSE, with a predicted value of 2.0%, averaging across the
levels of J and L. The only significant interactions between network and time
series factors are BL (= JKL) and HJ. These are interpreted as follows. The
preference for B = 1 (sigmoid transfer function in output layer) is greater
when forecasting native load data. The preference for H = 1 (4 years of
training data) is strongest for summer peak load data. The authors reasoned
that, generally, 2 years of training data should be enough. However, both 1989
and 1993 were unusually hot years. In the researchers’ views, this similarity
exaggerated the benefits of using 4 years of training data, especially for the
summer peak load series.



260 7 Designs for Estimating Main Effects and Some Two-Factor Interactions

Table 7.14. Reduced model for Example 7.4

Term Estimate Std Error t-Ratio p-Value
Intercept 2.670 0.021 127.230 0.000
B -0.061 0.021 -2.891 0.006
C -0.091 0.021 -4.340 0.000
D 0.045 0.021 2.166 0.036
E 0.025 0.021 1.207 0.234
F -0.058 0.021 -2.741 0.009
G -0.114 0.021 -5.430 0.000
H -0.091 0.021 -4.359 0.000
J 0.021 0.021 0.996 0.324
L 0.087 0.021 4.145 0.000
BC -0.074 0.021 -3.515 0.001
BD -0.048 0.021 -2.265 0.028
BF -0.144 0.021 -6.852 0.000
BL 0.070 0.021 3.317 0.002
CF 0.046 0.021 2.172 0.035
DE -0.067 0.021 -3.214 0.002
EF -0.060 0.021 -2.851 0.007
HJ -0.050 0.021 -2.369 0.022

The residual plot for this reduced model is acceptable, except for two
extreme residuals, one positive and one negative, with Studentized values 3.81
and −3.28. With these two values omitted, the reduced model’s R2 increases
from 82% to 88%, the preferred combination of factors B–H is unchanged,
and the predicted optimal RMSE is still 2.0%. The same model for RMSE
is selected if we refit the model using stepwise regression (including all main
effects and two-factor interactions as eligible terms), with the exception that
the CF interaction is no longer statistically significant.

The only observation at the recommended treatment combination B = · · ·
= H = 1 is for the interruptible load series, J = K = L = 1; its observed
RMSE was 2.11, which is the second best observation out of 64. The best
observed RMSE of 2.01 was for predicting one of the native load series (L
= −1), where our model estimates that the optimum treatment combination
would achieve RMSE = 1.80%. This prediction could be verified by using the
optimal network settings to predict load for the {J = 1, K = −1} series. One
should also validate this performance by applying the recommended settings
for the neural network to other time series. By varying H and predicting load
for various years, one might also resolve the question about how many years
of training data are beneficial.
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Fig. 7.6. Box-plot and histogram for Studentized residuals from reduced model for
RMSE

This 64-run example differs from Examples 7.1–7.3 in several respects.
First, the larger number of observations facilitates estimation of standard
errors for the effects (although the error here is not experimental error, but
lack-of-fit of neural network models to four sampled time series). Second, the
larger design makes it possible to estimate all of the two-factor interactions
of interest. The design provided this benefit, since by the careful choice of
generators, only interactions thought to be negligible were aliased. Finally,
given the large design, one could even lose a couple of observations without
seriously impacting model selection and estimation.

7.1.5 Example 7.5: Analysis of strength-3 orthogonal arrays
obtained by foldover

Yi et al. (2005) investigated improving computer architecture by varying 41
parameters in a simulator model for a superscalar processor’s performance. A
folded-over Plackett–Burman design with 2× 44 = 88 runs was used to select
the treatment combinations. The particular design used is listed in Tables
7.15 and 7.16. Each table contains an OA(44, 243, 2); combined, they form a
strength-3 design. Here, only the first 41 columns are assigned factors.
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Table 7.15. Half of the folded-over Plackett–Burman design used by Yi et al.
(2005), with cycles per instruction (CPI) for first benchmark computing task

No. Treatment combination CPI

1 ++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++− 1.948
2 −++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++ 0.703
3 +−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−+ 0.837
4 ++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+− 1.586
5 −++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+ 1.295
6 +−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++− 1.083
7 −+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++ 1.933
8 +−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−−+ 1.054
9 ++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−−− 1.068
10 −++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+−− 1.458
11 −−++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+− 1.206
12 −−−++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−−+ 0.887
13 +−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−−− 0.664
14 −+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++−−−− 1.026
15 −−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++−−− 0.944
16 −−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++−− 1.335
17 −−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++− 1.453
18 −−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+++ 1.034
19 +−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−++ 1.135
20 ++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+−+ 1.176
21 +++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+− 1.872
22 −+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−−+ 1.972
23 +−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−−− 1.604
24 −+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++−− 1.027
25 −−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++− 1.407
26 −−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++++ 1.431
27 +−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−++++ 1.524
28 ++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+++ 1.513
29 +++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−++ 1.295
30 ++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++−+ 1.624
31 +++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++− 1.150
32 −+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+++ 0.551
33 +−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−++ 1.223
34 ++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−−+ 1.012
35 +++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+−− 1.649
36 −+++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+− 1.086
37 −−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+−+ 1.984
38 +−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+− 1.085
39 −+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++−−+ 0.746
40 +−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++−− 0.666
41 −+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++− 0.761
42 −−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−++ 1.363
43 +−−+−+−−+++−+++++−−−+−+++−−−−−+−−−++−+−++−+ 1.142
44 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 3.157
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Table 7.16. Other half of the folded-over Plackett–Burman design used by Yi et
al. (2005), with CPI

No. Treatment combination CPI

45 −−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+ 1.261
46 +−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−− 1.506
47 −+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+− 1.494
48 −−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+ 1.034
49 +−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+− 0.891
50 −+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+ 1.250
51 +−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++−− 1.019
52 −+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++− 1.783
53 −−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+++ 1.548
54 +−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−++ 0.786
55 ++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++−+ 1.135
56 +++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++− 1.371
57 −+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++++ 1.325
58 +−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−++++ 2.211
59 ++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+++ 1.588
60 +++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−++ 1.244
61 ++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−−+ 1.280
62 +++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−−− 1.256
63 −+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+−− 1.260
64 −−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+− 2.134
65 −−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++−+ 1.210
66 +−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++− 0.570
67 −+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+++ 0.633
68 +−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−++ 1.464
69 ++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−−+ 1.452
70 +++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−−− 1.349
71 −+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−−− 0.543
72 −−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−−− 0.815
73 −−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+−− 0.961
74 −−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+− 1.172
75 −−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−−+ 1.708
76 +−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−−− 1.989
77 −+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++−− 1.643
78 −−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++− 1.729
79 −−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−++ 1.632
80 +−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+−+ 1.219
81 ++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+− 0.515
82 −++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++−+ 0.933
83 +−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++− 1.640
84 −+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−++ 1.706
85 +−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−−+ 1.278
86 ++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+−− 1.666
87 −++−+−++−−−+−−−−−+++−+−−−+++++−+++−−+−+−−+− 1.190
88 +++++++++++++++++++++++++++++++++++++++++++ 0.291
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Strength-3 orthogonal arrays, like regular resolution IV designs, have main
effects orthogonal to all two-factor interaction contrasts. However, rather than
having two-factor interactions completely aliased with (or orthogonal to) one
another, the two-factor interactions may be partially aliased, as was the case
for the strength-2 orthogonal arrays discussed in Section 6.3. Miller and Sitter
(2001) recommended the following sensible two-step approach to the analysis
of strength-3 orthogonal arrays. Step 1 is to identify the significant main
effects. Step 2 is to identify significant interactions, based on a weak heredity
assumption; that is, two-factor interactions involving one or two active factors
are considered possible, while interactions involving two inactive factors are
assumed to be negligible. We now illustrate such an analysis for the data in
Tables 7.15 and 7.16.

For each of the 41 factors, the levels were chosen to be just outside the
range found in commercial processors. For the sake of brevity, we list only the
factors and their levels that were subsequently found to be active (see Table
7.17). Yi et al. (2005) tested each of these 88 computer configurations against
48 benchmark computing tasks. Here, we analyze the cycles per instruction
(CPI) data for just the first of these benchmarks. One may analyze CPI as the
response, or its reciprocal, instructions per cycle. A plot of the data shows two
extreme values: one high CPI when every factor is at its low level and one high
speed when every factor is at its high level. Since the factor levels are assigned
such that the high level should be preferred, we would expect predominantly
negative main effect coefficients for the response CPI and positive estimates
for its reciprocal.

Table 7.17. Active factors for CPI simulation with first benchmark

Column Factor Low Level High Level
6 Branch predictor Two-level Perfect
7 Branch misprediction penalty 10 cycles 2 cycles
12 Re-order buffer entries 8 64
13 Integer ALUs 1 4
14 Integer ALU latency 2 cycles 1 cycle
24 Load-store queue entries 0.25ROB ROB
29 L1 D-cache latency 4 cycles 1 cycle
33 L2 cache latency 20 cycles 5 cycles

With saturated designs of the form (7.7) (discussed at the beginning of
Section 7.3) there are N/2 df for main effects and N/2 − 1 df for two-factor
interactions. If the number of factors k < N/2, then N/2 − k df correspond
to combinations of three-factor and higher order interactions, which are com-
monly assumed to be negligible and so treated as error. Using this partitioning
for the CPI data, the initial ANOVA is
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Source df SS MS %SS
Main effects 41 14.2570 0.3477 81.85
Two-factor interactions 43 3.0955 0.0720 17.77
Error 3 0.0660 0.0220 0.38
Total (corrected) 87 17.4185 100.00

Since these data come from a processor simulator, there is no random er-
ror. Thus, rather than using p-values for Lenth t statistics, we may simply
use parsimony as a criterion; that is, what simple model accounts for most
of the variation? First, we select main effects to include in the model. Using
forward selection regression, the first 15 effects to enter are shown in Table
7.18. Each of these estimates is negative, which corresponds with our expec-
tation for CPI main effects. The column 43 contrast would be the 16th largest
main effect, if it were included; b43 is nonzero, not because of random error
(since there is none), but due to three-factor and/or higher-order interactions
among the factors. Such higher-order interactions bias all of the main effects
to some extent. No more main effects need be considered. In fact, for a very
parsimonious model, one might select just 7 factors, since they account for
nearly 73% of the variation; the remaining 24 main effects account for only
an additional 9%. Thus, for our first stage of model selection we select factors
6, 12, 13, 14, 24, 29, and 33; see Table 7.17 for a description of each.

Table 7.18. Stepwise regression for main effects in Example 7.5

Step Factor Estimate SS R2

1 x12 −0.230 4.649 26.69
2 x6 −0.182 2.900 43.34
3 x13 −0.180 2.857 59.74
4 x29 −0.092 0.748 64.04
5 x24 −0.085 0.634 67.68
6 x14 −0.074 0.477 70.42
7 x33 −0.068 0.405 72.74
8 x7 −0.053 0.250 74.18
9 x40 −0.050 0.216 75.42

10 x27 −0.049 0.213 76.64
11 x30 −0.047 0.193 77.74
12 x26 −0.038 0.124 78.46
13 x34 −0.032 0.088 78.96
14 x2 −0.030 0.079 79.42
15 x31 −0.028 0.067 79.80

To consider interactions, we fit a model with the 7 largest main effects and
consider as eligible the 28 two-factor interactions involving 2 of these factors
and the remaining 3× 34 = 102 interactions involving one of the largest 3



266 7 Designs for Estimating Main Effects and Some Two-Factor Interactions

factors and any of the nonsignificant ones. From this large number of possible
interactions, two stand out as large using stepwise regression: x6 ∗x7 and x12 ∗
x24. The estimated coefficients are in Table 7.19. Note that the estimates for
main effects are unchanged by the addition of two-factor interactions, because
this is an orthogonal array of strength 3. These two interaction columns are
weakly correlated, so their standard errors are slightly larger than for main
effects.

Table 7.19. Reduced model for Example 7.5

Term Estimate Std Error t-Ratio
Intercept 1.288 0.0208 61.89
x6 −0.182 0.0208 −8.72
x7 −0.053 0.0208 −2.56
x12 −0.230 0.0208 −11.04
x13 −0.180 0.0208 −8.66
x14 −0.074 0.0208 −3.54
x24 −0.085 0.0208 −4.08
x29 −0.092 0.0208 −4.43
x33 −0.068 0.0208 −3.26
x6 ∗ x7 0.090 0.0209 4.32
x12 ∗ x24 0.090 0.0209 4.31

This model explains 83% of the variation in CPI. The unexplained varia-
tion is due almost exclusively to omitted main effects and two-factor interac-
tions. The ANOVA is:

Source df SS MS
Model 10 14.4835 1.448

(8 main effects 1.615)
(2 two-factor interactions 0.782)

Error 77 2.9349 0.038
(33 omitted main effects 0.040)
(41 omitted 2-factor interactions 0.037)
(3 omitted 3-factor interactions 0.022)

Total (corrected) 87 17.4185

In this particular application, due to the likely monotonicity of effects, we
do not expect an interaction to be larger than either of the corresponding
main effects. For the x12 ∗ x24 interaction we have

ĈPI = · · ·− 0.23x12 − 0.085x24 + 0.090x12 ∗ x24 + · · · .

The consequence of a positive interaction is that for x12 = 1, the effect for
factor x24 disappears; that is, for this benchmark, if the reorder buffer is large,
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a load/store queue only one-fourth its size is adequate. The x6 ∗x7 interaction
was expected; if the branch predictor never makes a mistake (x6 = 1), then
it does not matter how severe the penalty for mistakes (x7) is. Other smaller
interactions are suggested using stepwise regression. However, the reduced
model in Table 7.19 appears to contain all of the most prominent effects. It
is possible to estimate more interactions. However, the partial aliasing begins
to cause confusion about which effects to include if many more interactions
are considered.

Here we have analyzed CPI data from only the first of 48 benchmark
computing tasks. Yi et al. (2005) ranked the factors by amount of variation
explained for each task. From these they computed an average rank to provide
an overall assessment of the importance of each factor on processor efficiency.
They also performed a cluster analysis of the rankings to find a small set of
the benchmark tasks that are distinct from one another. For those interested
in the details of experimenting with computer architecture, see also Joshi et
al. (2006).

7.2 Regular Resolution IV Designs

7.2.1 Criteria for ranking regular resolution IV designs

As with resolution III designs, minimum aberration is one popular means for
comparing resolution IV designs. However, the case of 29−4 designs illustrates
how the word length pattern fails to capture important differences among res-
olution IV designs. There are five distinct regular resolution IV 29−4 designs,
with A4 = 6, 7, 9, 10, and 14, respectively (see Chen, Sun and Wu 1993, p.
138). The minimum aberration design listed in Appendix G uses columns 7
(F=ABC), 11 (G=ABD), 19 (H=ABE) and 29 (J=ACDE) as generators,
which produces six length-4 words in the defining relation

I = ABCF = ABDG = ABEH = CDFG = CEFH = DEGH = · · ·
(7.3)

and the following aliasing among 28 of the 36 two-factor interactions:

AB = CF = DG = EH
AC = BF AD = BG
AE = BH AF = BC
AG = BD AH = BE
CD = FG CE = FH
CG = DF CH = EF
DE = GH DH = EG

Since factor J does not appear in the length-4 words in (7.3), its two-factor
interactions are aliased only with higher-order interactions.

Consider now the second-best design in terms of aberration, design 9-4.2
with A4 = 7. By using column 14 (BCD) rather than column 19 as the
generator for H, the aliasing becomes
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AB = CF = DG AC = BF = GH
AD = BG = FH AF = BC = DH
AG = BD = CH AH = CG = DF

BH = CD = FG

Neither J nor E appears in the 7 length-4 words, so the 15 two-factor interac-
tions involving one or both of these factors are clear. The minimum aberration
design is inferior to this second design in three ways:

• The minimum aberration design has 8 clear two-factor interactions, whereas
design 9-4.2 has 15 clear two-factor interactions.

• The minimum aberration design has rank(X′
2X2) = 21, whereas design

9-4.2 has rank(X′
2X2) = 22, which provides one more degree of freedom

for two-factor interactions.
• The minimum aberration design aliases a set of four two-factor interactions

together. Design 9-4.2 never aliases more than three two-factor interactions
together.

For resolution IV designs, we need criteria that highlight the differences
in aliasing among two-factor interactions. Block and Mee (2003) introduced
the alias length pattern (alp) as the frequencies of the lengths of alias sets for
two-factor interactions:

alp = (a1, a2, . . . , aL), (7.4)

where L denotes the size of the largest alias set and aj denotes the number of
alias sets of size j (j = 1, 2, ..., L). For the minimum aberration 29−4 design,
alp = (8, 12, 0, 1), whereas for design 9-4.2, alp = (15, 0, 7). The following
criteria for ranking resolution IV designs are functions of alp:

• Maximize a1, the number of clear two-factor interactions.
• Maximize M = a1 + a2 + · · · + aL = rank(X2), the largest number of

two-factor interactions that can be estimated for any model.
• Minimize L, the length of the longest chain of aliased two-factor interac-

tions.
• Maximize Cheng, Steinberg, and Sun’s (1999) estimation capacity se-

quence (E1, E2, . . . , EM ), where Ej is the proportion of models containing
the k main effects and j two-factor interactions that can be estimated
from the design. These proportions may be determined from the alp; for
instance,

E2 = 1 − 4
M∑
i=1

i(i − 1)ai/[k(k − 1)(k2 − k − 2)].

• Minimize the number of length-4 words, A4 =
∑L

j=2 j(j − 1)aj/6.

All five criteria are useful for characterizing regular resolution IV designs.
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As the case of 9 factors in 32 runs illustrates, a single design may not
rank first on all five criteria. Which design is preferred for a given application
depends on the circumstances. If the ability to estimate all two-factor inter-
actions for 2 factors is considered critical, design 9-4.2 is ideal. If, instead,
one can rule out a couple of two-factor interactions (involving 4 factors) a
priori, such as AB and CF, then the minimum aberration design becomes
very attractive, since the only remaining aliasing involves 13 pairs of two-
factor interactions. Even if no two-factor interactions can be assumed away,
the minimum aberration design can estimate more models with a small num-
ber of two-factor interactions. Because different resolution IV designs will have
different aliasing structure, careful choice of a design, combined with thought-
ful assignment of factors to design columns, can result in substantially more
informative experiments.

7.2.2 Even resolution IV 2k−f fractional factorial designs

Resolution IV designs with k = N/2 are optimal in at least two respects.
First, N/2 is the maximum number of factors permitting a matrix of the form
(7.2). Second, such designs have rank[X1,X2] = N ; that is, all of the degrees of
freedom are useful for estimating main effects and two-factor interactions. De-
signs with rank[X1,X2] = N are second-order saturated (SOS)—terminology
that mirrors the label “saturated main effect design” used in Chapter 6 when
rank[X1] = N .

Designs for which k = N/2 are constructed by foldover. The regular reso-
lution IV designs 24−1, 28−4, 216−11, 232−26, etc. each have the form

D =
[

SN/2

−SN/2

]
, (7.5)

where SN/2 is the Sylvester-type Hadamard matrix defined in (6.1). (Non-
regular designs of strength 3, with k = N/2, are obtained in similar fashion
folding over other Hadamard matrices; see Section 7.3.)

The defining relations for fractions constructed by (7.5) have only even-
length words. Thus, an alternative construction of an N -run resolution IV
with k = N/2 factors is to construct a full factorial in k − f basic factors and
then to use every interaction with an odd number of factors as a generator.
We illustrate this second construction for the k = 8, N = 16 fraction. We
need four basic factors to create the initial 24 factorial. To these we append
all of the interactions involving an odd number of factors:
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A B C D ABC ABD ACD BCD
−1 −1 −1 −1 −1 −1 −1 −1

1 −1 −1 −1 1 1 1 −1
−1 1 −1 −1 1 1 −1 1

1 1 −1 −1 −1 −1 1 1
−1 −1 1 −1 1 −1 1 1

1 −1 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1 1 −1

1 1 1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 1 1 1

1 −1 −1 1 1 −1 −1 1
−1 1 −1 1 1 −1 1 −1

1 1 −1 1 −1 1 −1 −1
−1 −1 1 1 1 1 −1 −1

1 −1 1 1 −1 −1 1 −1
−1 1 1 1 −1 −1 −1 1

1 1 1 1 1 1 1 1

If we assign the factors E, F, G, and H, respectively, to these interactions,
the defining relation for this fraction is

I = ABCE = ABDF = ACDG = BCDH
= CDEF = BDEG = ADEH = BCFG = ACFH = ABGH
= AEFG = BEFH = CEGH = DFGH = ABCDEFGH.

This example illustrates how if only odd-length generators are used, then the
defining relation contains only even-length words. This design’s word length
pattern is (14, 0, 0, 0, 1).

For even fractional factorial designs such as the 28−4 the following hold:

• Main effects will be aliased only with interactions of odd length; for ex-
ample, A = BCE = BDF = CDG = ABCDH = ACDEF = · · · =
BCDEFGH

• Even-length interactions will be aliased together; for example, AB = CE
= DF = BCDG = ACDH = ABCDEF = · · · = GH = CDEFGH

• There will be N/2 df for odd-length aliases, and N/2− 1 df for two-factor
interactions (and other interactions involving an even number of factors).

General results for even resolution IV designs

All regular even 2k−f designs are a projection of the regular resolution IV
design with k = N/2. This is apparent, since every regular even design uses a
subset of the odd-length interactions as generators, and no even-length inter-
actions. In addition, the following hold:
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• For k/N > 5/16, all regular resolution IV 2k−f designs are even. Thus, all
resolution IV designs for 8 and 16 runs are even. For N = 32, all resolution
IV designs with 11–16 factors are even.

• For k/N > 5/16, no resolution IV design has clear two-factor interactions
(Chen and Hedayat 1998).

• Every regular even design with k/N ≥ 5/16 has k df for main effects,
N/2 − 1 df for two-factor interactions, and N/2 − k df for three-factor
interactions not aliased with main effects.

An even resolution IV design is appropriate if the primary attention is for
estimating main effects, and the risk of two-factor interactions being present
precludes the use of a resolution III design. If two-factor interactions are
identified, as they were for Example 7.3, the aliasing will make it difficult
to ascertain which particular interactions are active, and so more data will be
required to clarify which interactions are important.

Enumeration of even resolution IV designs

Chen, Sun, and Wu (1993) enumerated all regular nonisomorphic designs of
resolution IV for N = 32 and 64. Block and Mee (2005) documented a search
for the best even designs at N = 128, which was subsequently confirmed by
Xu (2009). The minimum aberration designs for N = 32, 64, and 128 and
k/N > 5/16 are summarized in Appendix G. The generators are arranged so
that the designs for different k but identical N are embedded in one another
in a convenient manner. When k/N > 5/16, all resolution IV designs have
a1 = 0 and M = N/2−1; hence, the minimum aberration criterion is adequate
for ranking even designs.

For larger N , Butler’s (2003a) complementary design theory for even res-
olution IV fractions is very useful. To obtain the minimum aberration design
with k factors (5N/16 < k < N/2), delete d = N/2 − k columns from the
resolution IV design with N/2 factors, such that the d deleted columns form a
minimum aberration even design. For instance, for N = 256 one may use any
k columns from the resolution IV 2128−120 design for k = 125–127. For the
minimum aberration designs with k = 120–124, one must delete d = 128 − k
columns from the 2128−120 design such that the deleted columns form a full
2d. For k=119, delete nine columns forming a resolution VIII design; for k
= 116–118 (81–115), one must delete a minimum aberration fraction with
resolution VI (IV).

7.2.3 Even/odd resolution IV 2k−f fractional factorial designs

For k/N ≤ 5/16, regular 2k−f fractional factorial designs of resolution IV
exist where half of the words in the defining relation are of even length and
half are of odd length. Consider two N = 32 examples:
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1. Minimum aberration 210−5, with word length pattern (10, 16, 0, 0, 5) and
alp = (0, 20, 0, 0, 1); this is a SOS design, having M = 21 df for two-factor
interactions. All other 210−5 resolution IV designs are even designs having
15 or more length-4 words and only M = 15 df for two-factor interactions.

2. Resolution IV 29−4 fraction with the most clear two-factor interactions.
Recall design 9-4.2 discussed in Section 7.2.1. This fraction has word
length pattern (7, 7, 0, 0, 0, 1) and alp (15, 0, 7). It is also SOS, since
M = 22 = N − k − 1.

The SOS designs maximize the number of degrees of freedom for two-factor
interactions. Furthermore, all even/odd resolution IV designs are the projec-
tion of one or more even/odd SOS design. The two designs just mentioned are
the only even/odd resolution IV SOS designs for N = 32. At N = 64, there
are eight even/odd SOS designs; they occur at k = 20, 18, 17 (five different
designs), and 13.

The SOS designs may be used to construct larger SOS by doubling as
follows. Let D denote a resolution IV SOS design with N runs and k factors.
Then [

D D
D −D

]
(7.6)

is a resolution IV SOS design with 2N runs and 2k factors. The 220−14 and
218−12 SOS designs may be obtained by doubling the 210−5 and 29−4 SOS
designs, respectively. The 8 even/odd SOS designs at N = 64 may be doubled
to produce 128-run SOS designs for 40, 36, 34, and 26 factors. There exist 79
other even/odd SOS designs for N = 128, for k ranging from 21 to 33 (Block
2003). Chen and Cheng (2006) showed that for k > 1 + N/4, all regular
resolution IV SOS designs are obtained by doubling.

General results for even/odd resolution IV designs

• All minimum aberration resolution IV designs with k ≤ 5N/16 are
even/odd.

• The SOS designs with k = 5N/16 are obtained by repeated doubling
[as shown in (7.6)] the resolution V 25−1 fraction. These designs are all
minimum aberration, as are many of their projections. For N = 64, all
minimum aberration designs for k = 14–19 are projections of the SOS
220−14 fraction; for N = 128, all minimum aberration designs for k = 30–
39 are projections of the SOS 240−33 fraction. Xu and Cheng (2008) used
a complementary design approach to identify the best columns to omit
to obtain these minimum aberration projections and made conjectures
regarding the number of these that are minimum aberration designs. One
implication of their result is that the other SOS designs with k ≥ 1 + N/4
have more length-4 words than the best projections of the k = 5N/16
design series.
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• If k ≤ N/4+1, there exists a regular even/odd resolution IV fraction with
clear two-factor interactions. However, this does not imply that the mini-
mum aberration design for k ≤ N/4 + 1 has clear two factor interactions.

Constructing good even/odd resolution IV designs for N ≥ 256

Complete enumeration of even/odd resolution IV designs for N = 256 has
been achieved only up to k = 17 factors (Xu 2009, Table 10), but all minimum
aberration and weak minimum aberration 256-run designs have been identified
for up to 28 factors (Xu 2009, Table 12). In addition, for 29–80 factors, Xu
(2009, Table 13) lists good resolution IV 256-run designs. Unlike the case for
(5/16)N < k < (1/2)N , where all resolution IV designs are projections of a
single SOS design with k = N/2, there are many even/odd SOS designs, and
so the search for best designs is more difficult. For instance, at N = 256, an
incomplete search by Block (2003) turned up more than 34,000 even/odd SOS
designs.

Xu’s best 256-run designs for 59-79 factors are all projections of the SOS
design at k = 80, which is a k = 5N/16 series design (see Butler 2005, Sect.
3). Of these, the designs for k = 69–80 are guaranteed to have minimum
aberration (Xu and Cheng 2008). Just as the 220−14 design has a10 = 3 and
the 240−33 design has a20 = 7, the 280−72 design has a40 = 15; that is, every
factor appears in 15 alias chains. By sequentially deleting factors that shorten
these 15 chains the most, one generally minimizes the number of length-4
words. Xu and Cheng (2008) explained precisely how to obtain the minimum
aberration projections.

For good even/odd resolution IV designs of size 512 and k = 24, ..., 160,
see Xu (2009, Tables 14 and 15). We now turn attention to criteria other than
minimum aberration.

7.2.4 Resolution IV designs that maximize the number of clear
two-factor interactions

Chen and Hedayat (1998) showed that resolution IV designs with k > 1+N/4
have no clear two-factor interactions. (Chen and Hedayat also showed that
some resolution III designs with k as large as N/2 may have clear two-factor
interactions; such designs might be of interest if one was assured that certain
two-factor interactions were zero and that no two-factor interaction but these
would be aliased with main effects.) Chen, Sun, and Wu (1993) listed the num-
ber of clear two-factor interactions for each design in their tables, and Block
(2003) provided the complete alp for many 128-run resolution IV designs. Sev-
eral other papers have appeared that provide a means of constructing designs
with a large number of clear two-factor interactions (see Tang, Ma, Ingram,
and Wang 2002, Yang and Liu 2006) or that explore the relation between the
minimum aberration and maximum clear criteria (Wu and Wu 2002).
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Table 7.20 shows the number of clear two-factor interactions for the mini-
mum aberration design, followed by the maximum number of clear two-factor
interactions among all resolution IV designs, for N = 32, 64, and 128. For
designs where the number of factors is only slightly more than is possible
for a resolution V design, the minimum aberration designs also maximize the
number of clear two-factor interactions; this is the case for two 32-run designs,
four 64-run designs, and three 128-run designs. However, as k increases, the
number of clear two-factor interactions for minimum aberration designs di-
minishes rapidly. This is because minimum aberration designs tend to have
more uniform size alias sets (Cheng, Steinberg, and Sun 1999). No minimum
aberration design of size 64 (128) has any clear two-factor interactions for k >
14 (23). As k approaches 1 + N/4, the maximum number of clear two-factor
interactions equals 2k− 3, which corresponds to all interactions involving two
factors. Design 9-4.2 discussed earlier is one such example.

Table 7.20. Number of clear two-factor interactions (2fi’s) for minimum
aberration design versus design with maximum number clear

No.
k 2fi’s N = 32 N = 64 N = 128
6 15 All
7 21 15:15
8 28 13:13 All
9 36 8:15 30:30
10 45 None 33:33
11 55 34:34 All
12 66 36:36 60:60
13 78 20:36 66:66
14 91 8:25 73:73
15 105 0:27 63:77
16 120 0:29 60:69
17 136 0:31 46:75
18 153 None 33:81
19 171 36:78
20 190 24:84
21 210 26:84
22 231 25:48
23 253 12:45
24 276 0:45
...

...
...

33 528 0:63
34 561 None
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In practice, one may have a particular set of interactions that are deemed
most likely. There are two approaches to constructing resolution IV designs
that accommodate a specific subset of two-factor interactions.

• The more stringent requirement is to have the main effects and specific
subset of two-factor interactions be clear of aliasing with other two-factor
interactions. This ensures that the specified effects may be estimated with-
out bias, provided there are no three-factor or higher-order interactions.
Ke, Tang, and Wu (2005) provide 32- and 64-run designs with clear two-
factor interactions for several standard subsets of interactions. Wu, Mee,
and Tang (2008) enumerated all admissible graphs corresponding to res-
olution IV designs with clear two-factor interactions for N = 32, 64, and
128. An example is provided below.

• A less stringent condition is to require only that the specific subset of
two-factor interactions be “eligible” (i.e., estimable, ignoring all other two-
factor interactions). Wu and Chen (1991, 1992) provided graphs to aid the
assignment of factors to columns, most of which are for 16-run designs.

Consider now an 11-factor example from Wu and Chen (1992). The first six
factors A–F belong to the epoxy dispensing step for a circuit pack assembly
process, and the remaining five factors M–Q pertain to the subsequent com-
ponent placement step. Two-factor interactions among the six epoxy factors
are of interest and must be estimable. Wu and Chen’s Figure 1 shows a graph
from Taguchi (1987, p. 1134) corresponding to a 32-run design, for which the
11 main effects and 15 epoxy factor interactions of interest are estimable.
However, this design has resolution III. A much better solution is provided
by the minimum aberration (resolution IV) 211−5 design by assigning factors
A–F to columns that form a six-letter word in the defining relation. Appen-
dix G lists columns 7, 11, 13, 21, 25, and 31 as generators for the minimum
aberration 211−6 design. If we assign A–E to the basic columns 1, 2, 4, 8, 16,
use column 31 to define F, and the remaining generators for factors M–Q,
then ABCDEF forms a word in the defining relation and the aliasing among
two-factor interactions is

AB = CM = DN
AC = BM = DO = EP
AD = BN = CO = EQ
AE = CP = DQ
AF = MQ = NP
BC = AM = FQ = NO
BD = AN = FP = MO
BE = FO = MP = NQ
BF = CQ = DP = EO
CD = AO = MN = PQ



276 7 Designs for Estimating Main Effects and Some Two-Factor Interactions

CE = AP = FN = OQ
CF = BQ = EN
DE = AQ = FM = OP
DF = BP = EM
EF = BO = CN = DM

The first interaction in each alias set in the interaction of interest. Although
this 32-run design permits estimation of the main effects and 15 two-factor
interactions of interest, each interaction is aliased with 2 to 3 other two-factor
interactions.

What about estimation with the 15 interactions of interest being clear?
Ke, Tang, and Wu (2005) is useful for finding such designs. Ke et al. listed
four classes of resolution IV designs with clear two-factor interactions. In their
notation, the groups G1 and G2 denote a partitioning of the k factors. The
four classes are as follows:

1. G1×G1 (i.e., all two-factor interactions involving two factors from G1 are
clear)

2. G1 × G1 and G2 × G2

3. G1 × G1 and G1 × G2

4. G1 × G2

Our example is of class 1, where G1 consists of the six factors A–F. The closest
to a solution in Ke et al. (2005) are (i) a 29−3 design with six factors in G1; (ii)
a 210−4 design with five factors in G1; (iii) a 211−5 design with four factors in
G1. There are 64-run designs with as many as 34 clear two-factor interactions,
but the sets of clear two-factor interactions never contain all

(
6
2

)
interactions

for six factors. The closest that can be achieved for the problem of interest is
to use Chen, Sun, and Wu’s (CSW’s) (1993) design 12-5.3. Assigning factors
M–Q to columns (1, 2, 4, 8, 49) and factors A–F to columns (16, 32, 7, 11,
29, 46), the aliasing of two factor interactions is

AB = MQ
CD = OP
EF = NQ
MB = AQ
MA = BQ
MC = NO
MD = NP
MO = NC
MP = ND
OD = PC
NF = EQ
NE = FQ

MN = OC = PD

Twelve of the 15 interactions of interest are clear; the other three (AB, CD,
and EF) are each aliased with just one two-factor interaction.
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Class 3 and class 4 designs are most suitable for robust parameter design
applications where G1 represents the control factors and G2 represents noise
factors. The objective of robust parameter design experiments is to identify
control factor levels that make a process or product robust (i.e., insensitive)
to variation in the noise factors. Section 10.3.2 contains analysis for a 32-run
robust parameter design example with three noise factors and seven control
factors. For a readable introduction to robust parameter design, see Abraham
and MacKay (1993).

7.3 Strength-3 Orthogonal Arrays

7.3.1 Strength-3 orthogonal arrays that are even designs

Let k be a multiple of 4 and let Hk be any Hadamard matrix of order k.
Then the N = 2k run design obtained by foldover

D =
[

Hk

−Hk

]
(7.7)

has strength 3; that is, the design projects into an equally replicated 23 fac-
torial in every subset of three columns. The most commonly used strength-3
array that is not also a regular resolution IV design is the OA(24, 212, 3).
Miller and Sitter (2001) recommended using this design, not only to estimate
main effects clear of aliasing from two-factor interactions but also to attempt
to identify a small number of important two-factor interactions.

Miller and Sitter (2001) presented a nine-factor, 24-run example where the
effects of two factors and their interaction are so strong that the correct model
would be detectable from a 12-run, strength-2 orthogonal array (as we did in
Example 6.6). In Section 7.1.4 we analyzed data from a folded-over Hadamard
design with 41 factors and 88 runs, where identifying 2 or 3 interactions is
straightforward but identifying more becomes challenging.

In Section 6.3, our primary concern in constructing OA(N , 2k, 2) was the
magnitude of the correlations between main effects and two-factor interac-
tions. For instance, the 20-run design with generalized resolution 3.4 was trou-
bling, due to the presence of three-factor interaction columns that summed to
±12. After foldover, it is the magnitude of correlations among pairs of two-
factor interaction columns that determines the generalized resolution. Table
7.21 lists the generalized resolution and the initial portion of the confounding
frequency vector for the most commonly used OA(N , 2N/2, 3). B4 is the gen-
eralized number of length-4 words; for instance, B4 = (1/3)2495 = 55 for the
OA(24, 212, 3).
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Table 7.21. Generalized resolution for common OA(N , 2N/2, 3)

Gen.
N k Res. Hk First portion of cfv B4

24 12 4.67 H12 A4(0.33) = 495 55
32 16 4.00 Hall IV A4(1, 0.5) = (28, 448) 140
40 20 4.40 Any H20 A4(0.6, 0.2) = (285, 4560) 285
48 24 4.67 Paley A4(0.33) = 4554 506
56 28 4.29 Williamson A4(0.71, 0.43, 0.14) = (7, 2436, 18032) 819
64 32 4.75 Paley A4(0.25) = 19840 1240
72 36 4.67 Cyclic PB A4(0.33, 0.11) = (10710, 48195) 1785
80 40 4.00 Doubled H20 A4(1, 0.6, 0.2) = (190, 2280, 36480) 2470
88 44 4.73 Paley A4(0.27, 0.09) = (33110, 102641) 3311
96 48 4.67 Paley A4(0.33, 0.17) = (12972, 103776) 4324

The choice of Hk can dramatically affect the generalized resolution. For
instance, the maximum correlation for Example 7.5 (Tables 7.15 and 7.16) is
24/88 = 3/11. However, folding over Williamson’s H44, instead of Paley’s H44,
produces a maximum correlation of 9/11! Note that the maximum correlation
is 1 in two cases for Table 7.21; for N=32, A4(1) > 0 is inevitable, since every
H16 has A4(1) > 0. The other case arises for N = 80; this is a foldover of
a doubled design, which here produces complete aliasing among 3k(k − 2)/8
pairs of two-factor interactions. The smallest correlations arise from folding
over Paley’s H32 and H44 matrices. No literature has yet appeared regarding
the best projections from foldovers of Hadamard designs.

Cheng (1998) and Bulutoglu and Cheng (2003) guaranteed that the two-
factor interaction model is estimable in every subset of five factors for any
strength-3 orthogonal array where the run size is not a multiple of 16 or for
arrays obtained as a foldover of Paley Hadamard designs. Only for the cases
N = 32 and 80 in Table 7.21, where A4(1) > 0, does this not apply.

7.3.2 Strength-3 orthogonal arrays that are not even designs

Any design consisting of mirror-image pairs of runs necessarily has at most
N/2 − 1 df for estimating two-factor interactions [i.e., construction by (7.7)
implies rank(X2) ≤ N/2−1]. To consider designs with N/2 or more df for two-
factor interaction in a strength-3 array, one must use a different construction.
Cheng, Mee, and Yee (2008) presented two means for constructing strength-3
orthogonal arrays for which rank(X2) > N/2. One construction is to fold over
an OA(N/2, 2N/4, 3) a second time, adding one more column and reversing
just a subset of the columns for the foldover. This produces strength-3 or-
thogonal arrays with k = 1 + N/4. These OA(N , 2k, 3) have clear two-factor
interactions and are often SOS. For instance, one may construct an OA(48,
213, 3) with rank(X2) = 34, 12 clear two-factor interactions, and A4(1/3) =
234. Tang (2006) discussed the case of reversing just one column. Reversing
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just one column in the foldover of the OA(N/2, 2N/4, 3) maximizes the number
of clear two-factor interactions, but it also has more aberration. For instance,
Tang’s Example 1 has 23 clear two-factor interactions but with A4(1/3) =
330. Both of these OA(48, 213, 3) are SOS, with rank(X2) = 34; they differ
in that one minimizes the G-aberration and the other maximizes the number
of clear interactions. Tang (2006) also proved that, as with regular resolution
IV designs, k = N/4 + 1 is the maximum number of factors for a strength-3
orthogonal array to have any clear two-factor interactions.

A second construction of OA(N, 2k, 3) without mirror-image pairs of
runs is to take the Kronecker product of a Hadamard matrix Hm and
the resolution V 25−1. This produces an OA(16m, 25m, 3), which is SOS;
that is, rank(X2) = 11m − 1. For m = 4 and 8, this construction pro-
duces the regular resolution IV designs with k = 5N/16 for N = 64 and
128, respectively. For m = 12, it produces an OA(192, 260, 3). This frac-
tion has 131 df for two-factor interactions, much more than N/2; also, the
correlations among two-factor interaction columns are mostly small, with
A4(0.25, 0.125, 0.06, 0.03) = (1056, 3216, 53955, 913464). Analogous to the reg-
ular 5N/16 series designs, this design is believed to have many projections with
minimum G2 aberration.

Finally, Xu (2005) constructed several minimum G2-aberration, strength-
3 orthogonal arrays for 7–9 factors in 32 runs and for 9–14 factors in 64
runs that are not foldover designs. Xu’s 64-run designs for 13 and 14 factors
have much lower aberration than is possible from any regular 213−7 or 214−8

fraction, or as projections of any OA(64, 217, 3) constructed in Cheng, Mee
and Yee (2008). Xu’s OA(64, 214, 3) is obtained from the OA(128, 215, 4)
design constructed in Section 8.2.1 by choosing any 1 of the 15 columns of
the 128-run array and discarding the runs for which this column is −1. The
resulting 64-run design has resolution 4.5 and permits estimation of all two-
factor interactions in many projections involving up to 10 factors. Taking half
of the OA(64, 214, 3), Xu (2005) obtained an OA(32, 213, 2) that, although it
only has resolution 3.5, does permit estimation of the two-factor interaction
model in any set of five factors.

7.4 Nonorthogonal Resolution IV Designs

One can obtain main effect estimates without bias from two-factor interac-
tions by making all main effect contrasts orthogonal to two-factor interaction
contrasts. This is guaranteed by any foldover design, even if the main effect
contrasts are not orthogonal. Let X1 be the first-order model matrix for any
saturated main effect, two-level design (see Section 6.4). Then

D =
[

X1

−X1

]
(7.8)
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is a design for k = N/2 factors permitting estimation of the first-order coef-
ficients without bias from two-factor interactions, whether they are included
or excluded from the model. Webb (1968) showed that N = 2k is the min-
imum run size for a design with this property, and Margolin (1969) proved
that any equal occurrence design D with N = 2k and D′X2 = 0 is necessarily
a “mirror image pair design” given by (7.8). Margolin (1969) presented the
efficiencies of 16 such nonorthogonal designs, based on saturated main effect
designs available at the time.

Miller and Sitter (2005) promoted the use of these designs “when the pri-
mary goal is identification of important main effects with a secondary goal
of entertaining a small number of potentially important (two-factor) interac-
tions.” Non-orthogonal foldover designs are available for any even N , whereas
orthogonal resolution IV designs are only available for N a multiple of 8. Table
6.35 lists the D-efficiency and A-efficiency for optimal saturated main effects
designs for N ≤ 19. These same efficiencies apply to the main effect estimates
for the foldover design (7.8). Note that the resolution IV designs obtained
by foldover become equal-occurrence designs, even when the saturated main
effect design used is not.

We consider examples for k = 5 and 6. A D-optimal design for four factors
in five runs is easily found (e.g., using JMP’s Custom Design option). One such
design (from the many isomorphic ones), with the intercept column appended,
is

X1 =

⎡
⎢⎢⎢⎢⎣

1 −1 −1 −1 1
1 −1 1 1 1
1 1 −1 1 1
1 1 1 −1 −1
1 −1 −1 1 −1

⎤
⎥⎥⎥⎥⎦ . (7.9)

This design has A-efficiency = 0.9, since the variance for each coefficient is
σ2/4.5. Each two-factor interaction column has a correlation of ±2/3 with
two main effects and ±1/3 with the other two effects.

If we fold over the first-order model matrix (7.9) by appending the five
runs

−X1 =

⎡
⎢⎢⎢⎢⎣

−1 1 1 1 −1
−1 1 −1 −1 −1
−1 −1 1 −1 −1
−1 −1 −1 1 1
−1 1 1 −1 1

⎤
⎥⎥⎥⎥⎦ , (7.10)

we create a N = 10-run, five-factor D with the following properties:

• The variances for the five main effect coefficients now equal σ2/9. The
D-efficiency and A-efficiency for the first-order model listed in Table 6.35
become the corresponding efficiency for the k main effects estimated using
the foldover design.
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• The correlations between the columns of D are ±2/10. However, the cor-
relations between the estimated coefficients obtained from (D′D)−1 are
only ±1/8, causing little loss of efficiency.

• The 10 two-factor interaction columns are orthogonal to the 5 main effects,
and so cannot bias the estimates for main effects.

• There are 4 df for estimating a small number of the 10 two-factor in-
teractions. However, one-third of the correlations among the interaction
columns are ±2/3. Although there is no complete aliasing among these
interactions, the many large correlations imply that if more than one in-
teraction is present, it will become difficult to correctly identify them.

As a second example of a nonorthogonal resolution IV design, we consider
the 12-run, six-factor design

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 −1 −1
1 −1 1 1 1 1
1 1 −1 −1 1 −1
1 −1 −1 −1 −1 1
1 1 1 1 −1 1
1 −1 1 −1 −1 −1

−1 1 1 −1 1 1
−1 1 −1 −1 −1 −1
−1 −1 1 1 −1 1
−1 1 1 1 1 −1
−1 −1 −1 −1 1 −1
−1 1 −1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.11)

The first six rows are the D-optimal design following Table 6.35 with an
intercept column appended; the last six rows are a foldover of the first six.
This design has up to 5 df for two-factor interactions. Correlations among the
two-factor interaction column range from 0 to 0.707.

Miller and Sitter (2002) compared the performance of these nonorthogonal
resolution IV designs with orthogonal resolution III designs. For instance, for
N = 12, an alternative to the nonorthogonal resolution IV design is to choose
six columns from the 12-run Plackett–Burman design or to use a “model
robust design” from Li and Nachtsheim (2000). Miller and Sitter’s Table 4
shows the matrix [

D′D D′X2

X′
2D X′

2X2

]

for a design isomorphic to (7.11), and their Table 6 shows the same matrix for
an OA(12, 26, 2). The clear benefit of the resolution IV design is the ability
to estimate main effects without confusion from two-factor interactions.

Miller and Sitter (2005) proposed using all-subsets regression in two
phases, with the first phase to determine the active main effects. Once main
effects are identified, the practitioner is asked to identify interactions consid-
ered possible, and all-subset regression is used to augment the main effects
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model. They illustrated this analysis with a numerical example based on tak-
ing 12 runs from a complete 25 factorial. The full factorial leads to a reasonable
hierarchical model with three main effects and two 2-factor interactions. For
the 12 treatment combinations Miller and Sitter used for their resolution IV
design, the two active interactions are fortuitously orthogonal. Thus, their
example is a best-case scenario. Since some pairs of interaction columns have
correlations of 2/3 or more, identifying a second interaction correctly with
this design can be problematic.

7.5 Summary Regarding Choice of a Design

As we have proceeded through the sections of this chapter, the run size has
become increasingly flexible. Although all designs in this chapter have N ≥ 2k,
regular resolution IV 2k−f designs have N a power of 2, strength-3 orthogonal
arrays have run sizes that are multiples of 8 and nonorthogonal resolution IV
designs exist for N a multiple of 2. (If the main effects are orthogonal but
the run size is not a multiple of 8, then X′

1X2 �= 0 and estimates for main
effects will depend on which interaction terms are included in the model.) This
flexibility in run size is important when there are a large number of factors.
For instance, with k = 10, regular resolution IV designs are of size 32 or 64,
and strength-3 arrays exist for N = 24, 32, 40, ... and a nonorthogonal design
exists for N as small as 20. Since all of the designs in this chapter permit
unbiased estimation of main effects, assuming three-factor and higher-order
interactions are negligible, the choice of a design depends largely on how much
information is desired regarding two-factor interactions.

If expert opinion regarding the presence of particular two-factor interac-
tions is available, this can be utilized in the design choice. Recall the exam-
ple at the end of Section 7.2.4. Additional literature that takes advantage
of information about likely effects includes a customization of the minimum
aberration criterion to fit the set of likely effects (Ke and Tang 2003) or the
construction of an orthogonal design specific to the set of likely effects (Liao,
Iyer, and Vecchia 1996).
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Resolution V Fractional Factorial Designs

In many applications, one would like to estimate all main effects and two-
factor interactions. This chapter presents designs for estimating such models,
including regular resolution V 2k−f fractional factorial designs, strength-4
orthogonal arrays, and nonorthogonal designs. The sections are as follows:

Section 8.1. Regular Resolution V 2k−f Fractional Factorial Designs

Section 8.2. Strength-4 Orthogonal Arrays

Section 8.3. Three-Quarter Fractions of Regular Resolution V Designs

Section 8.4. Smaller Nonorthogonal Resolution V Designs

Section 8.5. Recommendations Regarding Design Choice

Section 8.6. Analysis of Resolution V Experiments

In the strictest sense, resolution V refers only to regular 2k−f fractional fac-
torial designs with the shortest word in the defining relation having length
5. Here, however, we follow Webb (1968, p. 291) by using resolution V in a
broader sense as referring to any design—orthogonal or not—that permits
estimation of all main effects and two-factor interactions. When regular reso-
lution V fractional factorial designs require too many treatment combinations,
one should consider the smaller alternative designs from Sections 8.2–8.4. Sec-
tion 8.5 offers recommendations. The final section illustrates how to analyze
experiments based on these designs.

8.1 Regular Resolution V 2k−f Fractional Factorial
Designs

Table 8.1 lists the run size N of the smallest resolution V regular fractions and
the number of regression coefficients r = 1+0.5k(k+1) to be estimated for the
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two-factor interaction model (1.3), for k = 5 – 24 factors. For larger k, Draper
and Lin (1990) summarized what was known until recently regarding the
relationship between minimum N for a given k (or maximum k for a given N)
for resolution V 2k−f designs. Xu (2009) has improved two cases, identifying
233−23 and 247−36 designs of resolution V. Although there is no exact formula,
note that for regular resolution V designs, the maximum number of factors k
is approximately N1/2.

Table 8.1. Size of smallest regular resolution V designs for k = 5–24 factors

No. Factors Run Size No. Parameters Remaining df
k N r N − r
5 16 16 0
6 32 22 10
7 64 29 35
8 64 37 27
9 128 46 82

10 128 56 72
11 128 67 61
12 256 79 177
13 256 92 164
14 256 106 150
15 256 121 135
16 256 137 119
17 256 154 102
18 512 172 340
19 512 191 321
20 512 211 301
21 512 232 280
22 512 254 258
23 512 277 235
24 1024 301 723

Generators for minimum aberration resolution V designs for up to 23 fac-
tors are given in Table 8.2. The designs of size 256 and larger are taken from
Franklin (1984) and Xu (2009). Note that most regular fractions are substan-
tially larger than one needs to estimate the two-factor-interaction model. For
k ≥ 7, no more than 60% of the degrees of freedom correspond to main ef-
fects and two-factor interactions. The remaining degrees of freedom, N − r,
are useful for blocking, for checking the adequacy of the model that assumes
no interactions involving three or more factors, and for estimating the error
variance. However, in many cases, economizing on the run size is appropriate.
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Sections 8.2–8.4 presents smaller alternative designs than the regular 2k−f

fractional factorials.

Table 8.2. Generators for smallest minimum aberration designs of
resolution V (or more) for 5–23 factors

No. No.
Factors Runs Design Generator Columns A5 A6

5 16 5-1.1 15 1
6 32 6-1.1 31 0 1
7 64 7-1.1 63 0 0
8 64 8-2.1 45, 51 2 1
9 128 9-2.1 31, 121 0 3

10 128 10-3.1 15, 51, 121 3 3
11 128 11-4.1 15, 51, 85, 120 6 6
12 256 12-4.1 31, 107, 205, 241 0 12
13 256 13-5.1 103, 121, 157, 179, 207 3 12
14 256 14-6.1 31, 39, 107, 169, 243, 254 9 18
15 256 15-7.1 78, 109, 135, 171, 181, 211, 246 15 30
16 256 16-8.1 23, 46, 92, 113, 139, 184, 197, 226 24 44
17 256 17-9.1 23, 46, 92, 113, 139, 184, 197, 226, 255 34 68
18 512 18-9.1 47, 93, 185, 227, 279, 369, 395, 453, 511 0 102
19 512 19-10.1 105, 127, 143, 181, 211, 285, 307, 327, 12 84

427, 473
20 512 20-11.1 Design 19-10.1, plus 485 16 120
21 512 21-12.1 Design 20-11.1, plus 510 21 168
22 512 22-13.1 105, 127, 155, 188, 206, 275, 298, 301, 63 189

350, 358, 369, 391, 507
23 512 23-14.1 23, 90, 99, 127, 155, 188, 206, 301, 340, 84 252

358, 391, 430, 435, 450

8.2 Strength-4 Orthogonal Arrays

Table 8.1 indicates that for 128-run regular resolution V fractional factori-
als, the maximum number of factors is 11. However, there exists a 128-run
nonregular orthogonal design for estimating all main effects and two-factor in-
teractions for as many as 15 factors. Furthermore, this nonregular design can
be run in blocks of size 16, with each block a regular resolution III fraction.
Such designs are the topic of this section.

8.2.1 Fifteen-factor orthogonal design in 128 runs

We now present a strength-4 orthogonal array of size N = 128 for 15 factors.
Recall that strength 4 means that this array projects into an equally replicated
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24 factorial in every subset of four factors. The coding theory derivation of
this and other strength-4 and strength-5 orthogonal arrays is documented by
Hedayat, Sloane, and Stufken (1999). The most helpful construction for this
15-factor, 128-run orthogonal design is as the combination of eight 215−11

fractions from the same family. Begin by constructing the first of eight 215−11

blocks using the generators

E=AB F = AC G = BC H = ABC J = AD K = BD
L = ABD M = CD N = ACD O = BCD P = ABCD.

These 16 runs constitute the saturated regular resolution III fraction (design
15-11.1) discussed earlier in Chapters 5 and 6.

For 7 additional sets of 16 runs, reverse the signs for 6 of the generators,
as shown in the following array:

Block E F G H J K L M N O P
1 + + + + + + + + + + +
2 + – + – + – – + – – +
3 – + – + + – + – – – +
4 – + + – – – – – + + +
5 + + – – – – + + – + –
6 – – + + + + – – + – –
7 + – – + – + – – – + +
8 – – – – – + + + + – +

For example, the second block is formed using

E = AB F = −AC G = BC H = −ABC J = AD K = −BD
L = −ABD M = CD N = −ACD O = −BCD P = ABCD.

This 128-run design in 8 blocks of size 16 is remarkable, permitting esti-
mation of all 15 main effects and 105 two-factor interactions, plus block main
effects, orthogonally. Although composed of eight regular fractions, this design
is not a regular 215−8 fraction. Note that the sign of the last generator, P =
ABCD, is reversed in only two of the eight blocks; thus, ABCDP sums to
N/2 = 64, not to zero or N , as is required for all regular fractions. Whereas
a regular resolution V design completely aliases two-factor interactions with
some three-factor interactions, this strength-4 orthogonal array does not, since
no five-factor interaction is “+1” for all 128 treatment combinations. Its gen-
eralized resolution is 5.5.

8.2.2 Nineteen-factor orthogonal design in 256 runs

As we saw in Table 8.1, regular resolution V fractions of size N = 256 permit
no more than 17 factors. Here, we construct an orthogonal design for 19 factors
utilizing the OA(128, 215, 4) array from Section 8.2.1.

Begin by dividing a 24 factorial in four additional factors, Q, R, S, and
T, into eight blocks, blocking on two-factor interactions:
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Block Q R S T
1 –1 –1 –1 –1

1 1 1 1
2 1 –1 –1 –1

–1 1 1 1
3 –1 1 –1 –1

1 –1 1 1
4 1 1 –1 –1

–1 –1 1 1
5 –1 –1 1 –1

1 1 –1 1
6 1 –1 1 –1

–1 1 –1 1
7 –1 1 1 –1

1 –1 –1 1
8 1 1 1 –1

–1 –1 –1 1

Note that each block consists of a mirror-image pair of runs. To create an
orthogonal array with 256 runs and 19 factors, take the product of the first
block of the OA(128, 215, 4) from Section 8.2.1 and the first block of size 2
from this 24; that is, take the block 1, 215−11 fraction for factors A – P; to
each of these 16 treatment combinations append Q = R = S = T = –1 and
Q = R = S = T = +1. This produces 16× 2 = 32 runs for 19 factors. Create
32 more runs by combining block 2 from the OA(128, 215, 4) with block 2
from the 24. Do the same construction for blocks 3–8 and combine the 8 sets
of 32 runs into a 256-run, 19-factor design of strength 4. The resulting 8×32
= 256 runs of this orthogonal array should be run in random order, not in
blocks, since these blocks are only resolution II. The design has generalized
resolution of 5.

8.2.3 Other strength-4 orthogonal designs

Two more strength-4 orthogonal arrays described by Hedayat, Sloane, and
Stufken (1999) are as follows:

• OA(2048, 263, 4). Having up to 63 factors is a huge improvement over reg-
ular designs, where resolution V with 2048 runs is currently possible only
for k ≤ 47 factors (Xu 2009, Table 17). Analogous to the 128-run design
above, this orthogonal array is composed of 32 orthogonal blocks of size
64. For details regarding generators, see Mee (2004, p. 411).

• OA(4096, 269, 4). Although this orthogonal array allows for four more fac-
tors (69) than is currently possible with a regular 2k−f design of resolution
V, it still utilizes fewer than 60% of its degrees of freedom for main effects
and two-factor interactions. For construction details, see Mee (2004, p.
411).
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Given these nonregular orthogonal designs, Table 8.3 in an updated version
of Table 8.1 that includes both regular and nonregular orthogonal designs.
Note the reduction in run size for k = 12, 13, 14, 15, 18, and 19.

Table 8.3. Size of smallest regular resolution V or strength four orthogonal
designs for k = 5–20 factors

No. Design Run No. Remaining
Factors from Size Parameters df

k Section N r N − r
5 8.1 16 16 0
6 8.1 32 22 10
7 8.1 64 29 35
8 8.1 64 37 27
9 8.1 128 46 82

10 8.1 128 56 72
11 8.1 128 67 61
12 8.2 128 79 49
13 8.2 128 92 36
14 8.2 128 106 22
15 8.2 128 121 7
16 8.1 256 137 119
17 8.1 256 154 102
18 8.2 256 172 84
19 8.2 256 191 65
20 8.1 512 211 301

8.3 Three-Quarter Fraction of Regular Resolution V
Designs

Three-quarter fraction designs for up to 11 factors were proposed by Addelman
(1961) and John (1961, 1962, 1969). These designs are 25% smaller than the
smallest orthogonal resolution V designs. Each is constructed by dividing an
orthogonal resolution V (or higher) design into four blocks and then discarding
one block. The fundamental ideas are now detailed for the simple four-factor
case, followed by a list of generators for designs with k = 7, . . ., 11 factors.

8.3.1 Four factors with run size N = 3(24−2) = 12

Partition the 24 factorial into four sets of runs, blocking on ABC and ABD.
One block is



8.3 Three-Quarter Fraction of Regular Resolution V Designs 289

A B C D
−1 −1 1 1

1 −1 −1 −1
−1 1 −1 −1

1 1 1 1

The other three blocks are obtained by reversing the signs in one or both of
the last two columns. This four-run fraction has defining relation

I = ABC = ABD = CD

and complete alias chains

A = BC = BD = ACD
B = AC = AD = BCD
C = AB = ABCD = D.

Ignoring three-factor and higher-order interactions, the defining relation and
alias chains reduce to

I = CD
A = BC = BD
B = AC = AD
C = AB = D.

These 11 terms correspond to the 11 columns of a model matrix that includes
up to two-factor interactions. If one omits from the 24 the four runs at the
top of this page, the resulting 12-run design is

A B C D
−1 −1 −1 −1
−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 1
−1 1 1 −1
−1 1 1 1

1 −1 −1 1
1 −1 1 −1
1 −1 1 1
1 1 −1 −1
1 1 −1 1
1 1 1 −1

From this three-fourths of a 24, one can estimate all main effects and two-
factor interactions, provided the five higher-order interactions do not exist.
Arranging the columns of the 12 × 11 model matrix X as

{I,CD,A,BC,BD,B,AC,AD,C,AB,D},
the matrix (X′X)−1 is block diagonal:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
8

3
8 0 0 0 0 0 0 0 0 0

3
8

9
8 0 0 0 0 0 0 0 0 0

0 0 3
2

3
4

3
4 0 0 0 0 0 0

0 0 3
4

3
2

3
4 0 0 0 0 0 0

0 0 3
4

3
4

3
2 0 0 0 0 0 0

0 0 0 0 0 3
2

3
4

3
4 0 0 0

0 0 0 0 0 3
4

3
2

3
4 0 0 0

0 0 0 0 0 3
4

3
4

3
2 0 0 0

0 0 0 0 0 0 0 0 3
2

3
4

3
4

0 0 0 0 0 0 0 0 3
4

3
2

3
4

0 0 0 0 0 0 0 0 3
4

3
4

3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

/12.

Thus, the first two estimators, b0 and bCD, have variance σ2(1.125)/12, and
the other nine estimators have variance σ2(1.5)/12. Note how effects that are
aliased in a single (1/4)24 are now correlated in the (3/4)24. This correlation
is (3/8)/(9/8) = 1/3 for b0 and bCD, the effects aliased in a (reduced) chain
of length 2, and (3/4)/(3/2) = 1/2 for effects aliased in (reduced) chains of
length 3. These correlations increase the variance from σ2/N (if the columns
were orthogonal) to either 1.125σ2/N or 1.5σ2/N , respectively. Thus, the VIFs
are 1.125 and 1.5.

Note that the (3/4)24 design above provides higher precision for bCD than
for the other 10 factorial effects. The alternative 3/4 fraction obtained by
excluding the runs with I = A = BCD = ABCD results in the main effect
bA being estimated with better precision than the other factorial effects.

One cannot construct a (3/4)24 design using a defining relation that aliases
four effects of interest. For instance, the four observations with I = A = BC
= ABC aliases B = AB = C = AC. Excluding this fourth of the 24 creates
a singular X′X matrix, making it impossible to estimate all four of these
coefficients from this 3/4 fraction.

Finally, the 12-run designs above cannot be run as a randomized block
design in three blocks of size 4. Doing so would confound an effect of interest
with blocks, because each 24−2 is only resolution I or II. So the 12 treatment
combinations should be conducted as a completely randomized design. Our use
of the term “block” here is just a tool for defining the treatment combinations
in the design.

We now present three-quarter fraction designs of run size N = 48 for 7
and 8 factors and designs of run size N = 96 for 9–11 factors. If resolution
V or higher designs are partitioned into four blocks, and one block of runs is
omitted, the remaining runs constitute a nonorthogonal design, with correla-
tions among effects that are aliased in a single block. Provided no alias set
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consists of more than three effects to be estimated, the model of interest is
estimable from just three blocks, although with less precision than if the N
runs formed an orthogonal design.

8.3.2 Seven factors with run size N = 3(27−3) = 48

Two 48-run designs are presented, each based on combining three resolution
III 27−3 fractions together.

1. Three-quarters of the resolution VI 27−1 design. Generate the resolution
VI fraction using G = ABCDF. Partition this into four sets of runs
using ABE and ACF; each set of runs corresponds to Chen, Sun, and
Wu’s (CSW’s) (1993) design 7-3.3. This 48-run design gives the highest
precision to the four two-factor interactions CD, CG, DF, and FG, since
these effects are clear of aliasing in the 27−3 fraction.

2. Three-quarters of the resolution V 27−1 design. Generate the resolution
V fraction using G = ABCD. Partition this into four sets of runs using
ABE and ACF; each set of runs corresponds to CSW’s design 7-3.2.
This design gives the highest precision to the main effects D and G and
the two-factor interactions AD and AG. This is the design proposed by
Addelman (1961, p. 494)

Any of these 48-run designs may be run in three blocks. Designs 7-3.2 and
7-3.3, the two 16-run fractions from which these three-quarter fractions are
built, both have A3 + A4 = 5. Since words of length 3 and 4 each produce
three alias pairs, these designs have the same variance efficiency. If there is a
possibility that one might complete the full 27−1 by running the fourth block,
the resolution VI design using blocks corresponding to design 7-3.3 would be
preferred.

8.3.3 Eight factors with run size N = 3(28−4) = 48

This design was presented first by Addelman (1961) and John (1962). See also
Mee (2004). Construct the design as follows:

• Generate the resolution V 28−2 design with G = ABCD and H = ACEF.
• Divide the resolution V design into four sets of runs using the contrasts

ABE and CDF. Omit one set.
• These 48 runs can be performed as a randomized block design in 3 blocks

of size 16, since no main effects or two-factor interactions are aliased with
ABE, CDF, or ABCDEF.

The omitted set of 16 runs is a resolution III fraction corresponding to
CSW’s design 8-4.3. No other fraction of any resolution will produce a 3/4
fraction with fewer correlations among the estimators of the two-factor inter-
action model.
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The two designs for k = 7 are projections of this eight-factor design. Drop
factor A, C, G, or H and get 3/4 of the resolution VI fraction. Drop factor
B, D, E, or F and get 3/4 of the resolution V fraction.

8.3.4 Nine factors with run size N = 3(29−4) = 96

The optimum 3/4 of a 29−2 design is presented in Mee (2004). This N = 96
run design may be constructed as follows:

• Generate the resolution VI 29−2 design with H = BDEFG and J =
ACEFG.

• Divide the resolution VI design into four sets of runs using the contrasts
ABF and CDG. Omit one set.

• The remaining 96 runs can be performed as a randomized block design in
three blocks of size 32, since no main effects or two-factor interactions are
aliased with ABF, CDG, or ABCDFG.

Each set of 32 treatment combinations in this design corresponds to CSW’s
design 9-4.8, with wlp = (2, 3, 6, 4, 0, 0, 0). The 5 shortest words are ABF,
CDG, ACEH, BDEJ, and FGHJ; these produce the 15 pairs of aliases in
a single block of 32 runs, and the correlation for each of 15 pairs of effects
in the 96-run design. Addelman (1961) proposed a (3/4)29−2 design based on
three blocks of CSW’s design 9-4.5, with wlp = (1, 5, 6, 2, 1, 0, 0). While our
individual blocks have higher aberration, they produce a more efficient 3/4
fraction design, with fewer correlations. (This design will be discussed again
in Section 10.4 in the context of sequential assembly of fractions.)

8.3.5 Ten factors with run size N = 3(210−5) = 96

John (1969) proposed a 3/4 fraction design for 10 factors equivalent to the
following:

• Generate the minimum aberration resolution V 210−3 design with H =
BDEFG, J = ACEFG, and K = CDEF.

• Divide the resolution V design into 4 sets of 32 runs using the contrasts
ABF and CDG. Omit one set.

• The remaining 96 runs can be performed as a randomized block design in
3 blocks of size 32, since no main effect or two-factor interaction is aliased
with ABF, CDG, or ABCDFG.

Each block of 32 runs is a resolution III fraction corresponding to CSW’s
design 10-5.7 with wlp = (2, 7, . . .); all other 210−5 designs have A3 +A4 ≥ 10.
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8.3.6 Eleven factors with run size N = 3(211−6) = 96

Two 96-run designs are described, each based on taking a 3/4 fraction of the
resolution V 211−4 fraction. John (1969) proposed elimination of a resolution
II block of size 32; the second design presented here is constructed using
resolution III blocks.

1. John’s (1969) 3/4 of the resolution V 211−4 design. Define the resolution V
fraction using H = ABCF, J = ADEG, K = BEFG, and L = CDEF.
Partition this into 4 sets of 32 runs using BD and ACG. Eliminating
1 set of runs produces a 96-run design with just 44 correlations among
the effects in a model containing main effects and two-factor interactions
(k = 11 from the length-2 word and 33 from the 11 words of length 3
and 4). Because the sets of runs are resolution II, this design cannot be
performed as a randomized block design without confounding a two-factor
interaction with blocks.

2. Three-quarters of the resolution V 211−4 design in three blocks. Define
the resolution V fraction using the same generators for H, J, K, and
L as above. Partition this 128-run design into 4 sets of 32 runs using
ACDF and BCEG; each set of runs is a resolution III 211−6 fraction
with wlp = (5, 10, . . .). Chen et al. (1993) did not list any 211−6 design
with five or more length-3 words; however, all of the designs they listed
have A3 + A4 > 15, and so are inferior for the purpose of constructing
a 3/4 fraction. Although this design has 45 correlations among estimates
for main effects and two-factor interactions, 1 more than for the design
proposed by John (1969), it can be run in 3 blocks without confounding
any two-factor interactions with blocks.

We do not consider three-quarter fraction designs for k = 12–15 or 18 and
19 factors, since the orthogonal designs from Section 8.2 are half the size of
the smallest regular resolution V fraction. Identifying a three-quarter fraction
of size N = 3(64) = 192 for k = 16 or 17 factors is an open research problem.

8.4 Smaller Nonorthogonal Resolution V Designs

Smaller nonorthogonal designs than those proposed in Section 8.3 have been
constructed by several methods:

1. Partition a design of resolution (≥)V into eight (or more) blocks. Then run
the minimum number of blocks that permits estimating all main effects
and two-factor interactions.

2. Combine two fractions not from the same family of fractions
3. Rechtschaffner (1967) proposed a series of two-level designs for estimating

all main effects and two-factor interactions with the minimal number of
runs; that is, N = 1 + k + .5k(k − 1), so that there are no degrees of
freedom for error.



294 8 Resolution V Fractional Factorial Designs

4. D-Optimal and A-optimal designs of various sizes have been constructed
via search with numerical algorithms.

Resolution V designs constructed by each of these methods will now be men-
tioned, including only those designs considered the most useful.

8.4.1 Additional irregular fractions

Section 8.3 discussed taking three-fourths of resolution V fractions. Other
irregular fractions have been proposed to construct resolution V designs. For
example, Addelman (1969) proposed two different means of augmenting the
resolution IV 27−2 fraction. In both his design 7.1A and 7.4A, the first 32
runs constitute the regular 27−2 design with defining relation I = ABCDE
= ABCFG = DEFG. If one were to add 32 runs defined by I = ABCDE
= −ABCFG = −DEFG, one would have an orthogonal resolution V 27−1

design. If, instead, one adds only 8 of the 32 runs from the second fraction
(e.g., the subset with A = B and F = AD), one still may estimate the two-
factor-interaction model. The subset of eight runs can be designated as a
second block, but this (5/8)27−1 fraction cannot be performed in five blocks
of eight since, then, the AB interaction would be confounded with blocks.

More sequential designs of this type for k = 3, . . ., 11 factors appear in
Addelman (1969). These will be considered more fully in Section 10.4.

8.4.2 Combining two lower-resolution regular fractions

The following 64-run design constructed from two resolution I fractions of size
32 permits estimation of all 10 main effects and 45 two-factor interactions with
good precision:

• F = ACD, G = ADE, H = ABCE, J = CDE, K = +1
• F = ABCD, G = BCE, H = BDE, J = –CDE, K = –1

Before adding factor K, each half of the design is a resolution IV 29−4 fraction
with A4 = 7. When we combine the two fractions, some elements of the
defining relations cancel, namely K and CDEJ, since both are +1 for the
first 32 runs and −1 for the last 32.

After these two words cancel, we are left with a fraction that is strength 3
(meaning we have an equally replicated 23 in every subset of three columns).
The design sums to ±32 in 12 sets of four-factor interactions. This design
supports estimation of the 10 main effects orthogonally, plus all 45 two-factor
interactions. Thus, this is a nonorthogonal resolution V design that is half the
size of the smallest orthogonal design of resolution V or VI.

By eliminating factor G, only four subsets of four factors do not sum to
zero. Thus, the recommended design for nine factors is

• F = ACD, H = ABCE, J = CDE, K = +1
• F = ABCD, H = BDE, J = –CDE, K = –1
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This nine-factor design’s D-efficiency = 92.3% relative to an orthogonal design
(see Mee 2004, p. 404).

8.4.3 Saturated resolution V designs

Rechtschaffner (1967) proposed several series of saturated resolution V designs
that are simple to construct. His best series of designs consists of the following
treatment combinations:

• The treatment combination with all factors low.
• k(k − 1)/2 treatment combinations with two factors high and all other

factors low.
• k treatment combinations with one factor low and all other factors high.

For instance, for k = 6, Rechtschaffner’s design is given in Table 8.4. These
designs are easily constructed from a full 2k by defining a variable that is the
sum x1 + · · · + xk and only retaining the treatment combinations for which
the sum is −k, 4 − k, and k − 2. For k = 6, these sums are −6, −2, and 4.

Table 8.4. Rechtschaffner’s 22-run resolution V design for k = 6 factors

A B C D E F Sum
-1 -1 -1 -1 -1 -1 -6
-1 -1 -1 -1 1 1 -2
-1 -1 -1 1 -1 1 -2
-1 -1 -1 1 1 -1 -2
-1 -1 1 -1 -1 1 -2
-1 -1 1 -1 1 -1 -2
-1 -1 1 1 -1 -1 -2
-1 1 -1 -1 -1 1 -2
-1 1 -1 -1 1 -1 -2
-1 1 -1 1 -1 -1 -2
-1 1 1 -1 -1 -1 -2
1 -1 -1 -1 -1 1 -2
1 -1 -1 -1 1 -1 -2
1 -1 -1 1 -1 -1 -2
1 -1 1 -1 -1 -1 -2
1 1 -1 -1 -1 -1 -2

-1 1 1 1 1 1 4
1 -1 1 1 1 1 4
1 1 -1 1 1 1 4
1 1 1 -1 1 1 4
1 1 1 1 -1 1 4
1 1 1 1 1 -1 4
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Qu (2007) derived a closed-form expression for the least squares estimators
and their covariance matrix for Rechtschaffner’s designs. Table 8.5 shows the
variances for the intercept and other regression coefficients and the equivalent
sample size if the design were orthogonal, for k = 4, . . . , 10, 12, 15, and 20.

Table 8.5. Variances of estimators for Rechtschaffner’s resolution V designs

k N Var(b0)/σ2 Var(bi)/σ2 σ2/Var(bi)
4 11 0.0972 0.1389 7.20
5 16 0.0625 0.0625 16.00
6 22 0.0550 0.0522 19.15
7 29 0.0764 0.0503 19.86
8 37 0.1276 0.0504 19.84
9 46 0.2090 0.0510 19.61

10 56 0.3210 0.0517 19.34
12 79 0.6374 0.0531 18.84
15 121 1.3444 0.0547 18.28
20 211 3.1451 0.0565 17.70

For k = 4, 5, and 6, Rechtschaffner’s designs are D-optimal. For k = 5,
Rechtschaffner’s design is the regular resolution V 25−1 fraction. Although
Rechtschaffner’s designs are simple to construct for any number of factors k,
the variance of the estimators is very poor for eight or more factors, consid-
ering the run size. Note how the variances in Table 8.5 do not decrease after
k = 7, even as the size of the design increases.

Tobias (1996) proposed a series of saturated designs that corresponds to
Rechtschaffner’s designs for k = 4, 5, 6, but is better for k ≥ 7. For k = 7, see
Table 8.6. Note that the difference between the Rechtschaffner design and the
Tobias design for k = 7 is that instead of containing all

(
k
2

)
= 21 treatment

combinations with sum 4 − k, Table 8.6 contains 11 points with sum 4 − k—
excluding 10 runs where both A and B are −1 and replacing these with 10
points where both A and B are −1 and the sum is 6− k. The design in Table
8.6 is both D-optimal and A-optimal. For k ≥ 8, Tobias’s designs are not
optimal, but they are much more efficient than Rechtschaffner’s designs.

8.4.4 D-Optimal and A-optimal resolution V designs

Optimal designs may be constructed for any N ≥ r (i.e., for any number of
runs at least as large as the number of parameters to be estimated). One sim-
ply specifies the design size N , the number of factors k, and the model—here
one that includes an intercept, all main effects, and two-factor interactions.
Let X denote the N × r model matrix. The following criteria are popular for
assuring that the covariance matrix σ2(X′X)−1 is as small as possible:
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• D-Optimal designs minimize the determinant of (X′X)−1.
• A-Optimal designs minimize the trace of (X′X)−1.

Table 8.6. Tobias’s 29-run resolution V design for k = 7 factors

A B C D E F G Sum
−1 −1 −1 −1 −1 −1 −1 −7
−1 1 −1 −1 −1 −1 1 −3
−1 1 −1 −1 −1 1 −1 −3
−1 1 −1 −1 1 −1 −1 −3
−1 1 −1 1 −1 −1 −1 −3
−1 1 1 −1 −1 −1 −1 −3

1 −1 −1 −1 −1 −1 1 −3
1 −1 −1 −1 −1 1 −1 −3
1 −1 −1 −1 1 −1 −1 −3
1 −1 −1 1 −1 −1 −1 −3
1 −1 1 −1 −1 −1 −1 −3
1 1 −1 −1 −1 −1 −1 −3

−1 −1 −1 −1 1 1 1 −1
−1 −1 −1 1 −1 1 1 −1
−1 −1 −1 1 1 −1 1 −1
−1 −1 −1 1 1 1 −1 −1
−1 −1 1 −1 −1 1 1 −1
−1 −1 1 −1 1 −1 1 −1
−1 −1 1 −1 1 1 −1 −1
−1 −1 1 1 −1 −1 1 −1
−1 −1 1 1 −1 1 −1 −1
−1 −1 1 1 1 −1 −1 −1
−1 1 1 1 1 1 1 5

1 −1 1 1 1 1 1 5
1 1 −1 1 1 1 1 5
1 1 1 −1 1 1 1 5
1 1 1 1 −1 1 1 5
1 1 1 1 1 −1 1 5
1 1 1 1 1 1 −1 5

For an orthogonal resolution V design, X′X = NIr, where Ir is an r×r identity
matrix, and so |(X′X)−1| = 1/|X′X| = N−r and trace(X′X)−1 = r/N . For
most design sizes N , orthogonal designs do not exist, and the determinant
and trace of (X′X)−1 are larger as a result.

Many commercial statistical software packages are capable of constructing
D-optimal designs or A-optimal designs. Some require an initial candidate set
(here generally a full 2k). All require that a model be specified as well as a
design size N at least as large as the number of parameters to be estimated.
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Sometimes an optimal design has recognizable structure. For instance, the 10-
factor, 64-run design in Section 8.4.2 and Tobias’s 7-factor design in Table 8.6
were first obtained with a D-optimal design search, and then characterized as
having a certain structure.

Nguyen and Dey (1989) produced an efficient, stand-alone computer al-
gorithm for constructing D-optimal resolution V designs and published the
maximum |X′X| achieved for k = 4, 5, 6, for various run sizes. Nguyen and
Miller (1997) produced tables of minimum trace(X′X)−1 for k = 7–10 and
many run sizes. The Nguyen and Miller tables show the rapid gain in efficiency
that results from increasing the sample size. For instance, the A-optimal sat-
urated design for k = 7 (the design in Table 8.6) has trace(X′X)−1 = 1.334,
and A-efficiency of 75% relative to an orthogonal design, since

(r/N)/trace(X′X)−1 = (29/29)/1.3304 = 0.75.

If one increases the design size from 29 to 34 (an increase of 17%), trace(X′X)−1

is reduced by nearly 25% to 1.0077, and the A-efficiency increases to 84.6%. In
addition to this marked decrease in the variance, the five extra runs provide
5 df for estimating the error variance (or checking for lack of fit). Unless one
is certain that a saturated design will provide sufficient precision, using a few
extra runs seems prudent. Optimal design algorithms provide the most conve-
nient means for constructing resolution V designs of size N slightly larger than
r. If one is certain of the model to be estimated, these designs are reasonable
choices.

8.5 Recommendations Regarding Design Choice

The following designs are highly efficient for estimating a model with all main
effects and two-factor interactions, both in terms of economy of run size and
in terms of being orthogonal or having high variance efficiency.

• k = 5: The 25−1 fractional factorial design with E = ABCD.
• k = 6: The 26−1 fractional factorial design with F = ABCDE, which

can be run in two blocks. If this design is too expensive, Rechtschaffner’s
saturated design (in Table 8.4) or a slightly larger optimal design is rec-
ommended.

• k = 7: One of the 48-run (3/4)27−1 designs from Section 8.3.2, which can
be run in three blocks. If this design is too expensive, consider the 40-run
(5/8)27−1 design from Addelman (1969) mentioned in Section 8.4.1.

• k = 8: The 48-run (3/4)28−2 design in Section 8.3.3.
• k = 9: The 64-run design for nine factors in Section 8.4.2.
• k = 10: The (3/4)210−3 design in Section 8.3.5.
• k = 11: The (3/4)211−4 design in Section 8.3.6.
• k = 12–15: The 128-run orthogonal array presented in Section 8.2.1.
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• k = 16–17: Partition the n = 256 run resolution V fraction from Table 8.2
into blocks of size 32 (or smaller) and run a subset of the blocks until one
gains adequate precision. (This is analogous to smaller sequences discussed
in Section 10.4.)

• k = 18–19: The 256-run orthogonal array presented in Section 8.2.2.

These recommendations provide a starting point for your design choice.
The final choice will depend on (i) the reasonableness of the assumption that
higher-order interactions can be ignored, (ii) the magnitude of the error vari-
ance, (iii) the ease of conducting follow-up runs, and (iv) any budgetary con-
straints. That is, uncertainty about higher-order interactions, more error vari-
ance, and difficulty in conducting follow-up runs tend to justify running larger
experiments.

If running the design in blocks is necessary, this may be the deciding factor.
For example, only one of the (3/4)211−4 designs in Section 8.3.6 can be run
with each 211−6 as a block without confounding effects of interest with blocks.
More will be said in Chapter 10 about running fractional factorial designs as
randomized block experiments.

8.6 Analysis of Resolution V Experiments

In general, one should analyze larger resolution V experiments by fitting at
least three models. First, fit the two-factor interaction model (1.3). Then
consider a model with additional terms to investigate the assumption that
no higher-order interactions are needed. Finally, fit a parsimonious reduced
model, eliminating interaction terms that appear unimportant.

A wide variety of designs have been discussed in this chapter, and some
aspects of the analysis are design dependent. Therefore, it will be instructive
to provide analysis details here for several cases. We begin by analyzing an
orthogonal 128-run subset from Wang et al.’s (1993) 29 data. Our analysis
in Section 4.2 of the full factorial revealed many higher-order interactions.
Thus, these data will provide a challenging application for identifying effects.
We then analyze a (3/4)29−2 fraction and, finally, a 64-run irregular fraction
to show how the decrease in design size lowers the precision and limits one’s
ability to explore lack-of-fit. Our final analysis is for a saturated resolution V
design; the data are from Le Thanh, Voilley, and Luu (1993) and involve a
seven-factor experiment concerning the volatility of three food additives.

8.6.1 Example 8.1: Analysis of a regular fraction of resolution V
(or more)

When Wang et al.’s (1993) 29 data were presented and analyzed in Section 4.2,
we used x1–x9 to identify the nine factors. Here we will use uppercase letters
to identify the factors, as is more common for fractional factorial designs. We
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use the letters A–E to denote the N-terminal residues x1–x5 and J–M to
denote the C-terminal residues x6–x9. Now, suppose only the quarter fraction
with L = BDEJK and M = ACEJK is available. For this resolution VI
fraction, we fit three models:

• A model with all main effects and two-factor interactions.
• A saturated model, to investigate the possible importance of higher-order

terms.
• A reduced model including only terms that are statistically significant or

that are required to make the model hierarchical. A few higher-order terms
with p-values below .05 may be ignored to avoid making the model overly
complex.

As in Section 4.2, we model the transformed response T rather than P .
Even though T ’s distribution is very negatively skewed, it uses the variance-
stabilizing transformation for Poisson counts; the transformation also has the
effect of emphasizing the variation for large P , which are the values of primary
interest. A model with all main effects and two-factor interactions utilizes only
45 of the 127 df. A summary of this fitted model for T appears in Tables 8.7
and 8.8. The four C-terminal main effects (J, K, L, M) and their six two-factor
interactions all stand out as both statistically significant and much larger than
any lower-order effect involving the other five factors. The only other estimates
with p-values < .05 are the main effect for D and D’s interaction with L and
M. Any subsequent models should certainly include these 13 terms, as they
form a hierarchical model.

The initial model with all 45 lower-order terms explains 5.694/6.560 =
87% of the variation in T . The t-tests in Table 8.8 assume that the fitted
model (or something simpler) is correct. What if some important higher-order
interactions have been omitted from our initial model? What would be the
consequence of this incorrect model specification?

• Missing higher-order interactions that are aliased with terms in the model
will bias estimates for the lower order effects.

• Missing higher-order interactions that are not aliased with terms in the
model will inflate the mean square error, making the t statistics smaller
and the corresponding p-values larger than they should be.

Table 8.7. Two-factor-interaction model ANOVA for T with resolution VI
29−2 fraction

Source df SS MS F -Ratio
Model 45 5.694 0.1265 11.98
Error 82 0.866 0.0106
Total (corrected) 127 6.560
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Table 8.8. Initial model for T with resolution VI 29−2 fraction; main effect
and two-factor interaction estimates sorted

Term Estimate Std Error t-Ratio p-Value

Intercept 0.8236 0.0091 90.65 <.0001
M −0.0958 0.0091 −10.54 <.0001
L −0.0847 0.0091 −9.32 <.0001
K −0.0759 0.0091 −8.36 <.0001
KM −0.0588 0.0091 −6.47 <.0001
J −0.0560 0.0091 −6.16 <.0001
KL −0.0550 0.0091 −6.06 <.0001
LM −0.0524 0.0091 −5.77 <.0001
JM −0.0500 0.0091 −5.51 <.0001
JK −0.0460 0.0091 −5.07 <.0001
JL −0.0421 0.0091 −4.64 <.0001
D −0.0297 0.0091 −3.27 0.0016
DL −0.0213 0.0091 −2.34 0.0217
DM −0.0183 0.0091 −2.01 0.0477
BM 0.0169 0.0091 1.86 0.0663
AE −0.0131 0.0091 −1.44 0.1544
AB −0.0129 0.0091 −1.42 0.1591
EJ −0.0119 0.0091 −1.31 0.1936
AM −0.0105 0.0091 −1.16 0.2499
B 0.0103 0.0091 1.14 0.2587
EM 0.0096 0.0091 1.06 0.2926
A 0.0094 0.0091 1.04 0.3029
BL 0.0092 0.0091 1.01 0.3148
BJ −0.0088 0.0091 −0.96 0.3379
DJ −0.0087 0.0091 −0.96 0.3391
BC −0.0083 0.0091 −0.91 0.3631
CD −0.0081 0.0091 −0.89 0.3751
EL −0.0076 0.0091 −0.83 0.4063
CK −0.0075 0.0091 −0.83 0.4086
AK 0.0069 0.0091 0.76 0.4518
DK −0.0065 0.0091 −0.71 0.4772
AJ −0.0064 0.0091 −0.70 0.4857
CM 0.0058 0.0091 0.64 0.5228
BD −0.0056 0.0091 −0.62 0.5369
AL 0.0050 0.0091 0.55 0.5817
CL 0.0043 0.0091 0.48 0.6354
DE −0.0041 0.0091 −0.45 0.6544
EK −0.0041 0.0091 −0.45 0.6565
AD 0.0040 0.0091 0.44 0.6586
AC 0.0029 0.0091 0.31 0.7544
CE −0.0023 0.0091 −0.25 0.8021
C 0.0019 0.0091 0.21 0.8314
CJ −0.0017 0.0091 −0.19 0.8504
BE −0.0013 0.0091 −0.15 0.8839
BK −0.0007 0.0091 −0.08 0.9390
E −0.0004 0.0091 −0.05 0.9623
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To explore the possibility of model misspecification, we need to add other
terms. So we fit a full factorial model, and from its 127 effect estimates,
we compute Lenth’s PSE = 0.00875 as the standard error for the bi’s. The
corresponding estimate for σ2 is N(PSE2) = 0.0098, which is similar to the
MSE from the two-factor interaction model. Based on Lenth t statistics, the
same main effects and two-factor interactions are statistically significant at
α = .05. The largest estimate for a higher-order interaction is for KLM, with
Lenth t = -3.20 (p-value = .002). The next largest higher-order estimates
are for ABJK = ADEL = BCEM = CDJKLM and JLM = ABCDJ =
ACEKL = BDEKM, both with Lenth |t| = 2.33 (p-value = .02). There are
five other terms with p-values between .025 and .05 (BLM, ADM, ADJK,
DJKM, JKL and their aliases), but the likelihood of many Type I errors
here makes us inclined to ignore most of these terms.

We now choose a reduced model. In addition to the five main effects and
eight two-factor interactions with p-values < .05 in Table 8.8, we add KLM,
JLM, and JKL. These 16 terms form a hierarchical model. We choose to
ignore five terms with Lenth t p-values between .02 and .04 from the saturated
model, so as not to excessively complicate the model. If there were 100–110
inactive effects in the saturated model, we would expect 5 or 6 to have p-
values < .05. The largest Lenth t for a term we omit (ABJK) is t = 2.33; to
include ABJK would require that an additional 11 terms be added to keep
the model hierarchical. A summary of the chosen reduced model appears in
Table 8.9. This parsimonious model explains 86% of the variation in T .

After fitting a reduced model, one should always examine the residuals.
One benefit of having so many degrees of freedom for error is that loss of a few
observations (due to being missing or as suspicious outliers) will not seriously
impact our ability to estimate the model. The residual-versus-predicted plot
for our reduced model (see Figure 8.1) shows the effect of truncation in the
measurements for large T . Although there are no obvious outliers in this
quarter fraction of the 29, there is larger variation in the vicinity of T̂ = 0.7,
which our model does not explain. This means our model does not predict
well when E(P ) ≈ 50%.

Before leaving this example, we compare our results to those in Table 4.3,
in which we listed a reduced model based on the full 29. Note first that the
standard error here is double what it was in Table 4.3. This is due to having
standard errors equal to σ/1281/2 rather than σ/5121/2; the estimate for σ
is roughly the same as before. With this quarter fraction, we have selected a
reduced model that contains 15 of the largest 16 estimates in Table 4.3. The
only term among these we are missing is DJKLM (= BEM in our fraction,
with estimate bBEM = 0.015). For estimates that are statistically significant
for this resolution VI fraction, aliasing has not caused any confusion. Analysis
of this orthogonal fraction is straightforward. We now illustrate fitting models
for two nonorthogonal fractions of the 29.
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Table 8.9. Parsimonious model for T with resolution VI 29−2 fraction

(a) Analysis of Variance

Source df SS MS F -Ratio
Model 16 5.635 0.3522 42.3
Error 111 0.925 0.0083
Total (corrected) 127 6.560

(b) Parameter estimates

Term Estimate Std Error t-Ratio p-Value
Intercept 0.824 0.008 102.06 .0000
D −0.030 0.008 −3.68 .0004
J −0.056 0.008 −6.93 .0000
K −0.076 0.008 −9.41 .0000
L −0.085 0.008 −10.49 .0000
M −0.096 0.008 −11.87 .0000
DL −0.021 0.008 −2.63 .0096
DM −0.018 0.008 −2.26 .0256
JK −0.046 0.008 −5.70 .0000
JL −0.042 0.008 −5.22 .0000
JM −0.050 0.008 −6.20 .0000
KL −0.055 0.008 −6.82 .0000
KM −0.059 0.008 −7.28 .0000
LM −0.052 0.008 −6.50 .0000
JKL −0.017 0.008 −2.15 .0334
JLM −0.020 0.008 −2.53 .0129
KLM −0.028 0.008 −3.47 .0007

8.6.2 Example 8.2: Analysis of a resolution V three-quarter
fraction

In Section 8.3.4, a 96-run (3/16th) irregular fraction for nine factors was pro-
posed. Excluding the 32 runs for which ABJ = CDK = −1 from the resolu-
tion VI 29−2 fraction just analyzed, one obtains the 3/16 fraction examined
here. We begin by fitting a model with all main effects and two-factor in-
teractions, just as in the previous subsection. The ANOVA and the sorted
parameter estimates are displayed in Table 8.10. Excluding 1/4th of the reso-
lution VI fraction has the following impact on our initial analysis:

• The estimates are no longer uncorrelated with common variance σ2/N .
Thirty of the estimates are correlated in pairs (with correlations ±1/3).
These estimates have variance (9/8)σ2/N .
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Fig. 8.1. Residual plot for reduced model in Table 8.9

• With 32 fewer observations, we have fewer degrees of freedom for error.
However, 50 df is plenty for estimating σ2, assuming this initial model is
close to being adequate.

• If we add higher-order terms, this will change our estimates for the lower-
order effects, potentially decreasing their bias, while increasing their vari-
ance. The latter will be evident in the standard errors.

Our initial analysis of this 3/4 fraction of the resolution VI design is quite
successful. We find 14 terms with p-values less than .05, 13 of which are the
same as in Table 8.8. Only DM is no longer significant (with p-value = .054)
while two extra effects, AB and CD, have p-value near .01 (see Table 8.10).
Adding these interactions would require inclusion of three more main effects
to fit a hierarchical reduced model.

With 50 df still available, it is prudent to explore additional terms. For
this 3/16th fraction, specifying a saturated model is not straightforward. For
the 29−2 fraction (Example 8.1) just analyzed, the aliasing was simple; there
were 127 alias sets of size 4, such as

EJM = ACK = BDKLM = ABCDEJL
EKL = BDJ = ACJLM = ABCDEKM
CDEL = ABEM = BCJK = ADJKLM
CDEJKM = AD = BCLM = ABEJKL
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Table 8.10. Initial model for T using resolution V (3/4)29−2 fraction

(a) Analysis of Variance

Source df SS MS F -Ratio
Model 45 3.6030 0.0801 7.55
Error 50 0.5302 0.0106
Total (corrected) 95 4.1332

(b) Parameter estimates

Term Estimate Std Error t-Ratio p-Value

Intercept 0.818 0.0105 77.86 <.0001
M −0.088 0.0105 −8.36 <.0001
L −0.082 0.0105 −7.76 <.0001
K −0.056 0.0111 −4.98 <.0001
LM −0.055 0.0111 −4.90 <.0001
KL −0.055 0.0111 −4.90 <.0001
KM −0.054 0.0111 −4.83 <.0001
JM −0.050 0.0111 −4.45 <.0001
JK −0.048 0.0111 −4.33 .0001
J −0.040 0.0111 −3.55 .0009
JL −0.037 0.0111 −3.34 .0016
D −0.034 0.0111 −3.01 .0041
DL −0.028 0.0105 −2.64 .0111
AB −0.029 0.0111 −2.63 .0114
CD −0.029 0.0111 −2.56 .0136
DM −0.022 0.0111 −1.97 .0540
AE −0.019 0.0111 −1.71 .0929
A 0.017 0.0111 1.53 .1334
BJ −0.016 0.0111 −1.47 .1489
EJ −0.014 0.0105 −1.36 .1791
BC −0.014 0.0105 −1.32 .1925
DJ −0.013 0.0105 −1.25 .2153
AK 0.012 0.0105 1.19 .2415
BM 0.013 0.0111 1.16 .2529
AM −0.011 0.0105 −1.08 .2867
BL 0.010 0.0105 0.95 .3454
AL 0.009 0.0111 0.82 .4177
DE −0.008 0.0111 −0.73 .4710
BD −0.008 0.0111 −0.70 .4857
EM 0.007 0.0111 0.67 .5083
EL −0.007 0.0111 −0.65 .5209
CJ −0.006 0.0105 −0.61 .5455
DK −0.006 0.0111 −0.56 .5748
B 0.006 0.0111 0.56 .5809
12 smallest estimates omitted, including C and E
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To fit a saturated model for the 29−2, we simply retain one effect from
each alias set. However, for our (3/4)29−2, we can only estimate 3 of the
16 terms above. That only three can be estimated is a consequence of our
omitting from the 29−2 fraction a 29−4 fraction that aliases these four sets
together. Assuming lower-order terms are more likely, we would include, for
example, EJM, EKL, and AD in the saturated model. These 3 coefficients
can be estimated, provided the model omits the remaining 13 terms listed
above. Such a careful choice could be made for the other 31 groups of 4 alias
sets. This would add (up to) 50 terms to the two-factor interaction model
summarized in Table 8.10. For the saturated model, the X′X matrix is block
diagonal with 32 blocks of size 3, and each estimate will have a standard error
of σ/641/2 rather than σ/961/2 or σ/85.3̄1/2 as in Table 8.10. This decrease
in precision is the price one pays to investigate the possibility of higher-order
terms using a nonorthogonal design.

Alternatively, some software will select a saturated model automatically.
JMP’s Modeling Screening platform readily computes a saturated model for
this design and shows some of the aliases; see Figure 8.2. However, rather than
provide the actual regression estimates, JMP orthogonalizes the model matrix
and provides estimates that correspond to uncorrelated linear combinations of
the effects specified in the model. To see the impact of this transformation, we
fit a saturated model in the terms specified by JMP; the largest estimates are
given in Table 8.11. In Figure 8.2, an asterisk following a contrast estimate in-
dicates that this contrast column is correlated with a term previously entered
into the model and so has been adjusted to make it orthogonal. To under-
stand a specific case, consider the estimates bJK = −0.048 and bLM = −0.055
from Table 8.10. These two estimates are correlated for this 3/16th fraction
with a correlation of 1/3. JMP’s Modeling Screening shown in Figure 8.2 han-
dles the correlation as follows. M and L are the largest two main effects in
a main-effects-only model, so their interaction is entered first; the estimate
bLM = −0.0386 is the least squares estimate for a model with no other inter-
actions. Further down the list in Figure 8.2, the interaction for JK appears.
Since its contrast is correlated with LM, JK is replaced by (3JK+LM)/81/2,
which is uncorrelated with LM and has sum of squares equal to N = 96. The
estimate for βLM in Figure 8.2 is biased because it is computed omitting the
JK interaction, which is not negligible. The difference in the estimate for βJK

is less objectionable, being just a matter of rescaling. These details have been
provided to clarify the difference between using correlated estimates and ones
that have been reparameterized to be uncorrelated. This book recommends
using correlated estimates.

For the saturated model, every estimate has the standard error σ/641/2.
This is estimated by the PSE = 0.01371, calculated in the usual manner; the
corresponding estimate for σ2 is 64(0.01371)2 = .0120. Note however, that the
95 estimates of the saturated model are correlated. Edwards and Mee (2008)
investigated the effect of correlated estimates on the null distribution of Lenth
t statistics. For the saturated model here, nearly 98% of the correlations among
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the estimates are zero; the remaining correlations are ±.5, and their effect is
negligible. Thus, it is satisfactory to compare the Lenth t statistics in Table
8.11 with critical values from Appendix C.

Fitting a saturated model here allows one to check for potential lack-of-fit
of the lower-order model, just as we did when we had a resolution VI fraction.
The largest Lenth t of the 50 higher-order terms is 2.18 (see Table 8.11). Such
an outcome is entirely consistent with all these effects being inactive. In fact,
only 1 of the 50 three-factor or higher-order interactions for the saturated
model has a Lenth t > 1.7. The lower-order model is deemed acceptable.

Table 8.11. Largest estimates from saturated model for T using resolution
V (3/4)29−2 fraction

Term Estimate PSE Lenth t
Intercept 0.80974 0.01371 59.06
L −0.09387 0.01371 −6.85
M −0.08574 0.01371 −6.25
LM −0.05701 0.01371 −4.16
K −0.05549 0.01371 −4.05
J −0.05119 0.01371 −3.73
JK −0.05061 0.01371 −3.69
KM −0.04594 0.01371 −3.35
KL −0.04546 0.01371 −3.32
JM −0.04047 0.01371 −2.95
DL −0.03921 0.01371 −2.86
EKM 0.02984 0.01371 2.18
JL −0.02927 0.01371 −2.14
CD −0.02852 0.01371 −2.08
BC −0.02785 0.01371 −2.03
MLK −0.02325 0.01371 −1.70
MKJ −0.02282 0.01371 −1.66
MBE 0.02269 0.01371 1.65
D −0.02223 0.01371 −1.62
AE −0.02174 0.01371 −1.59

We now fit two reduced models. The simpler includes only the largest 12
terms in Table 8.10; these terms form a hierarchical model with R2 = 77%.
Alternatively, one might also include AB and CD plus the main effects A,
B, and C; note that these two interactions are statistically significant both
for the saturated model and the two-factor interaction model analyses. This
model has an R2 = 81%, but its residual plot is worse (see Figure 8.3); 10
of 96 predicted values exceed 1, the maximum possible value for T , and the
largest negative residual is not reduced. The simpler model actually seems
preferred.
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Term Contrast   Lenth t p-Value Aliases

M -0.0878  -7.21 <.0001  
L -0.0816  -6.70 <.0001  
K -0.0650  -5.34 <.0001  
J -0.0493  -4.05 0.0006  
D -0.0348  -2.86 0.0080  
A 0.0116  0.95 0.3426  
B 0.0055  0.45 0.6633  
E -0.0029  -0.24 0.8211  
C -0.0004  -0.03 0.9787  
M*L -0.0386  -3.17 0.0036 D*A*B*C 
M*K -0.0415  -3.40 0.0018 J*A*E*C 
L*K -0.0381  -3.12 0.0042 J*D*B*E 
M*J -0.0468 * -3.84 0.0008  
L*J -0.0351 * -2.88 0.0072  
K*J -0.0455 * -3.74 0.0009  
M*D -0.0203  -1.67 0.1012 L*A*B*C 
L*D -0.0277  -2.28 0.0251 K*J*B*E, M*A*B*C 
K*D -0.0059 * -0.49 0.6334  
J*D -0.0132  -1.08 0.2810 L*K*B*E 
M*A -0.0113  -0.93 0.3506 L*D*B*C, K*J*E*C 
L*A 0.0085  0.70 0.4817 M*D*B*C 
K*A 0.0125  1.02 0.3073 M*J*E*C 
J*A -0.0021 * -0.17 0.8728  
D*A 0.0040  0.33 0.7504 M*L*B*C 
M*B 0.0156  1.28 0.2022 L*D*A*C 
L*B 0.0100  0.82 0.4096 K*J*D*E, M*D*A*C 
K*B -0.0036  -0.30 0.7753 L*J*D*E 
J*B -0.0154 * -1.27 0.2080  
D*B -0.0103  -0.85 0.3971 L*K*J*E, M*L*A*C 
A*B -0.0276 * -2.27 0.0256  
M*E 0.0070 * 0.57 0.5760  
L*E -0.0083  -0.68 0.4931 K*J*D*B 
K*E -0.0021  -0.17 0.8730 L*J*D*B, M*J*A*C 
J*E -0.0143  -1.18 0.2420 L*K*D*B, M*K*A*C 
D*E -0.0076 * -0.63 0.5406  
A*E -0.0185  -1.52 0.1332 M*K*J*C 
B*E -0.0048 * -0.39 0.7046  
M*C 0.0037  0.30 0.7706 L*D*A*B, K*J*A*E 
L*C -0.0016 * -0.13 0.9002  
K*C -0.0034 * -0.28 0.7867  
J*C -0.0064  -0.53 0.6085 M*K*A*E 
D*C -0.0269 * -2.21 0.0296  
A*C 0.0030 * 0.25 0.8122  
B*C -0.0139  -1.14 0.2554 M*L*D*A 
E*C 0.0017 * 0.14 0.8949  
M*L*K -0.0190 * -1.56 0.1250  
K*J*A 0.0075 * 0.61 0.5503  
M*D*A -0.0247 * -2.03 0.0447  
L*D*B -0.0084  -0.69 0.4873 K*J*E, M*A*C 
M*K*E 0.0244 * 2.00 0.0480  
…… (41 Insignificant Three-factor Interaction Terms Omitted) …….. 
M*K*D*A -0.0012 * -0.09 0.9264  
L*K*D*A -0.0014 * -0.12 0.9118  
M*K*A*B 0.0114 * 0.94 0.3460  
L*K*A*B -0.0111 * -0.91 0.3589  

Fig. 8.2. JMP’s Modeling Screening saturated model for 3/16th fraction of 29
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Fig. 8.3. Residual plot for 17-term model fit to 96-run irregular fraction

8.6.3 Example 8.3: Analysis of a smaller irregular fraction

The 64-run irregular resolution V design analyzed here consists of the following
two regular fractions of Wang’s 29:

• 29−4 with J = ACD, L = ABCE, M = CDE, K = +1.
• 29−4 with J = ABCD, L = BDE, M = -CDE, K = −1.

This is identical to the nine-factor design proposed in Section 8.4.2; the only
difference is that J, L, and M are used to denote the additional factors, instead
of F, H, and J, respectively. As with the 128-run and 96-run fractions of the
29, we begin our analysis of this resolution V design by fitting a model with
all main effects and two-factor interactions. The resulting ANOVA and the 16
most significant parameter estimates are displayed in Table 8.12.

The following differences are noted. First, with fewer observations, there
are fewer degrees of freedom for error and slightly larger standard errors. All
main effects and some interactions are estimated orthogonally, but interactions
with standard errors larger than 0.0127 [= RMSE/(64)1/2] are correlated with
other interactions. The largest standard errors (0.0179) are for two terms with
VIFs = 2. Due to the larger standard errors, fewer estimates turn out to be
statistically significant. From this model, the statistically significant estimates
(using α = .05) include the complete two-factor interaction model for factors
J–M, plus BC.
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Table 8.12. Two-factor interaction model fit for T using resolution V
irregular 64-run fraction

(a) Analysis of Variance

Source df SS MS F -Ratio
Model 45 42500.2 944.449 4.9711
Error 18 3419.8 189.990
Total (corrected) 63 45920.0

(b) Largest 15 parameter estimates, sorted

Term Estimate Std Error t-Ratio p-Value
M −0.1055 0.0127 −8.33 .0000
L −0.0868 0.0127 −6.86 .0000
LM −0.0895 0.0146 −6.12 .0000
KM −0.0762 0.0127 −6.02 .0000
K −0.0682 0.0127 −5.39 .0000
JK −0.0511 0.0127 −4.03 .0008
J −0.0455 0.0127 −3.59 .0021
BC −0.0439 0.0146 −3.01 .0076
JM −0.0437 0.0146 −2.99 .0078
JL −0.0287 0.0127 −2.26 .0362
KL −0.0273 0.0127 −2.15 .0451
DL −0.0288 0.0146 −1.97 .0642
DM −0.0220 0.0127 −1.74 .0989
D −0.0220 0.0127 −1.74 .0991
E −0.0199 0.0127 −1.57 .1333
· · ·

One logical next step is to determine the higher-order interactions aliased
with BC. Since the design is the combination of two regular fractions, we find
the aliases of BC for the two halves of the design: the two alias sets are

BC = AEL = JLM = BCK = AEKL = JKLM = · · · ,
BC = -LM = ADJ = −BCK = KLM = −ADJK = · · · .

The partial aliasing with LM will not bias the estimate for βBC , since the LM
interaction is in the model. Furthermore, there is no aliasing with BCK due
to the reverse of sign. It is the partial aliasing with three-factor interactions
JLM and KLM that is the most relevant, since all lower-order terms involving
these are active. Given the three-factor interaction model for J–M, adding BC
interaction explains no additional variation.

This nonregular fraction has good projection properties. For example, if
one ignores A–C (the factors with main effects not appearing in Table 8.12),
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the design forms a 26 in the remaining factors. Using Lenth’s method for this
orthogonal projection, we obtain PSE = 0.0143; the largest estimates appear
in Table 8.13. Note that the largest 13 estimates form a hierarchical model,
which we would adopt as our final model.

Table 8.13. Largest estimates for full factorial model in an orthogonal
projection of resolution V irregular 64-run fraction

Term Estimate PSE Lenth t
M −0.1055 0.0143 −7.35
L −0.0868 0.0143 −6.05
KM −0.0762 0.0143 −5.31
K −0.0682 0.0143 −4.75
LM −0.0675 0.0143 −4.71
JM −0.0526 0.0143 −3.66
JK −0.0511 0.0143 −3.56
J −0.0455 0.0143 −3.17
KLM −0.0346 0.0143 −2.41
JLM −0.0311 0.0143 −2.17
JKM −0.0297 0.0143 −2.07
JL −0.0287 0.0143 −2.00
KL −0.0273 0.0143 −1.90
DL −0.0241 0.0143 −1.68
DM −0.0220 0.0143 −1.54
D −0.0220 0.0143 −1.54
E −0.0199 0.0143 −1.39
JKL −0.0198 0.0143 −1.38

8.6.4 Example 8.4: Analysis of data from Rechtschaffner’s
saturated design for seven factors

Le Thanh, Voilley, and Luu (1993) investigated how seven factors influence
the volatility of three different aromatic food additives. The response in each
case was the measured vapor–liquid equilibrium coefficient. The factors and
their levels are reported in Table 8.14 and the treatment combinations are
listed in Table 8.15.
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Table 8.14. Factors and levels for volatility experiment

Levels
Factors −1 1
A Glucose (g/kg) 20 100
B (NH4)2SO4 (g/kg) 2 100
C KH2PO4 (g/kg) 1 100
D Acid (g/kg) 2 50
E Melange (g/kg) 1 10
F Temperature (oC) 25 60
G pH 4 7

Table 8.15. Volatility experiment using Rechtschaffner’s 29-run resolution
V design for k = 7 factors

A B C D E F G KV L log10(KV L)
−1 −1 −1 −1 −1 −1 −1 0.09 −1.046
−1 −1 −1 −1 −1 1 1 0.90 −0.046
−1 −1 −1 −1 1 −1 1 0.11 −0.959
−1 −1 −1 −1 1 1 −1 0.38 −0.420
−1 −1 −1 1 −1 −1 1 0.06 −1.222
−1 −1 −1 1 −1 1 −1 0.55 −0.260
−1 −1 −1 1 1 −1 −1 0.07 −1.155
−1 −1 1 −1 −1 −1 1 0.26 −0.585
−1 −1 1 −1 −1 1 −1 1.25 0.097
−1 −1 1 −1 1 −1 −1 0.16 −0.796
−1 −1 1 1 −1 −1 −1 0.09 −1.046
−1 1 −1 −1 −1 −1 1 0.23 −0.638
−1 1 −1 −1 −1 1 −1 2.10 0.322
−1 1 −1 −1 1 −1 −1 0.25 −0.602
−1 1 −1 1 −1 −1 −1 0.11 −0.959
−1 1 1 −1 −1 −1 −1 0.35 −0.456

1 −1 −1 −1 −1 −1 1 0.10 −1.000
1 −1 −1 −1 −1 1 −1 0.84 −0.076
1 −1 −1 −1 1 −1 −1 0.10 −1.000
1 −1 −1 1 −1 −1 −1 0.06 −1.222
1 −1 1 −1 −1 −1 −1 0.15 −0.824
1 1 −1 −1 −1 −1 −1 0.30 −0.523

−1 1 1 1 1 1 1 2.10 0.322
1 −1 1 1 1 1 1 1.06 0.025
1 1 −1 1 1 1 1 0.90 −0.046
1 1 1 −1 1 1 1 2.43 0.386
1 1 1 1 −1 1 1 1.86 0.270
1 1 1 1 1 −1 1 0.31 −0.509
1 1 1 1 1 1 −1 0.86 −0.066
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The substance 2.5 dimethylpyrazine has a low vapor–liquid equilibrium
coefficient of about KV L = 0.1 at 25oC in water. Over the 29 treatment
combinations in the experiment, measured coefficients ranged from 0.06 to
2.43 (see Table 8.15). Since the responses are severely skewed, we follow the
authors and fit models for log10(KV L).

We begin our analysis by fitting a saturated model for log10(KV L). For
Rechtschaffner designs such as this, the regression coefficients are correlated
but estimated with equal precision. To facilitate the use of Lenth’s method for
estimating the standard error of the estimates, Table 8.16 lists the estimated
coefficients from largest to smallest in magnitude.

Table 8.16. Sorted estimates from a saturated model for log10(KV L)

Term Estimate PSE t-Ratio
F 0.4095 0.018 22.75
B 0.1548 0.018 8.60
C 0.1210 0.018 6.72
D −0.1007 0.018 −5.59
G 0.0722 0.018 4.01
EF −0.0721 0.018 −4.00
CG 0.0503 0.018 2.79
BD −0.0345 0.018 −1.92
DE 0.0309 0.018 1.72
BC −0.0227 0.018 −1.26
AC −0.0215 0.018 −1.19
E −0.0207 0.018 −1.15
EG 0.0198 0.018 1.10
DF 0.0190 0.018 1.05
BG −0.0146 0.018 −0.81
A −0.0127 0.018 −0.70
FG 0.0123 0.018 0.69
AG −0.0118 0.018 −0.65
AF −0.0072 0.018 −0.40
AD −0.0071 0.018 −0.40
CE 0.0068 0.018 0.38
CF −0.0057 0.018 −0.32
DG 0.0049 0.018 0.27
CD −0.0048 0.018 −0.26
BE 0.0037 0.018 0.20
AE −0.0026 0.018 −0.14
AB 0.0022 0.018 0.12
BF −0.0010 0.018 −0.05
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Edwards and Mee (2008) examined this same example and verified that
the small correlations among all the estimates have little effect on the null
distribution of Lenth t statistics. Since these estimates have equal precision,
the calculation of the PSE is straightforward using Table 8.16. Excluding
the largest six estimates since they exceed 2.5[1.5(0.0168)] = 0.063, Lenth’s
PSE = 1.5(0.012) = 0.018, where 0.012 is the median size of the smallest 22
estimates. Table 8.15 uses this estimated standard error to construct t-ratios.
Five of the seven main effects and two interactions have large t-ratios. We
fit a reduced model with two interactions, including the main effect for E, so
that the model is hierarchical.

Table 8.17 contains the results of fitting a reduced model with all seven
main effects and the two significant interactions. The purpose of including
the insignificant factor A is to make explicit that this factor (Glucose) has
no apparent effect on volatility. Note that this reduced model explains 98.2%
of the variability in log10(KV L). For this reduced model, the estimates have
changed slightly and their standard errors are slightly smaller and no longer
equal. This is because with fewer terms, the correlations among the estimators
are reduced.

Table 8.17. Reduced model fit to log10(KV L)

(a) Analysis of Variance

Source df SS MS F -Ratio
Model 9 7.2879 0.8098 118.267
Error 19 0.1301 0.0068
Total (corrected) 28 7.4179

(b) Parameter estimates

Term Estimate Std Error t-Ratio p-Value
Intercept -0.3776 0.0171 -22.14 <.0001
A −0.0032 0.0165 −0.19 .8488
B 0.1706 0.0165 10.33 <.0001
C 0.1297 0.0167 7.77 <.0001
D −0.1100 0.0165 −6.66 <.0001
E −0.0400 0.0167 −2.40 .0270
F 0.4040 0.0167 24.21 <.0001
G 0.0614 0.0167 3.68 .0016
EF −0.0517 0.0170 −3.04 .0067
CG 0.0481 0.0170 2.83 .0107
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We conclude our analysis with a reminder that when analyzing nonorthog-
onal designs, it is best to conduct tests using the (correlated) least squares
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estimates for the models of interest, rather than uncorrelated linear combi-
nations of the specified effects. Figures 8.4 and 8.5 illustrate the difference.
Figure 8.4 is a half-normal plot of the correlated estimates from Table 8.16.
Provided the two-factor interaction model is correct, these estimates are un-
biased. However, software may also offer plots of uncorrelated linear combi-
nations of these estimates; see Figure 8.5. Since the (X′X)−1 matrix has no
zero elements, the uncorrelated estimates here will be biased by every effect
entered later in the model. Thus, with A listed first, its estimate plotted in
Figure 8.5 is biased by every other active effect. Whereas the two-factor inter-
action model showed no apparent effect from A, Figure 8.5 assigns to A the
fourth largest estimate. Thus, due to the potential for misinterpreting output
for estimates transformed to be uncorrelated, avoid their use.
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Augmenting Fractional Factorial Designs

Fractional factorial designs should often be followed by additional experimen-
tation, either with another designed experiment or with confirmation runs.
This chapter surveys the options and then discusses several particularly com-
mon situations. The sections are as follows:

Section 9.1. Follow-up Experimentation Choices

Section 9.2. Confirmation Runs

Section 9.3. Steepest Ascent Search

Section 9.4. Foldover After a Resolution III Fraction

Section 9.5. Foldover and Semifolding After a Resolution IV Fraction

Section 9.6. Optimal Design Augmentation

Section 9.7. Dropping and Adding Factors

9.1 Follow-up Experimentation Choices

Follow-up experimentation is particularly important for fractional factorial
designs, since estimation of a model from a fractional factorial design neces-
sarily involves the assumption that certain factorial effects can be ignored.
Follow-up experimentation may be as simple as performing confirmation runs
at a single treatment combination or it may involve a new experiment larger
than the initial design. Although it is impossible to describe all of the possi-
bilities, here are some questions that follow-up experimentation may answer.

1. Does the fitted model accurately represent the response at one or more
specific locations of interest within or near the initial design region?

This is perhaps the most common question following an initial
experiment. Section 9.2 addresses the use and interpretation of
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confirmation runs to check a fitted model or to assess the validity
of outliers from the initial fraction.

2. Does the fitted model provide a useful guide for exploration into a new
region of experimentation yielding better results?

Question 2 assumes that a response is not optimized in the ini-
tial region of experimentation and uses a fitted model to direct
exploration outside that initial region; Section 9.3 discusses such
situations.

3. How can we improve our estimates for main effects and a few interactions
following an initial screening experiment?

Question 3 concerns improving estimates both in terms of preci-
sion and in terms of reducing aliasing (i.e., reducing the potential
for bias). Section 9.4 will illustrate how adding a second 2k−f

design to the initial fraction can increase the resolution of a de-
sign, increase the number of estimable effects, and decrease the
standard errors by 30%.

4. How can we estimate interactions that are aliased together in an initial
experiment?

Question 4 arises following an initial experiment from Chapter
7, where two-factor interactions are aliased. Depending on the
situation, one may add another experiment half the size of the
original design, or even smaller (see Section 9.5).

5. What augmentation is best if we want to estimate three or more effects
that are all aliased together?

Question 5 presents a situation where foldover designs are inad-
equate. D-Optimal design augmentation provides a practical and
efficient general purpose solution. This is discussed in Section 9.6.

6. How can we repair a fractional factorial experiment that has missing ob-
servations?

D-Optimal augmentation may also be used to repair fractional fac-
torial designs missing observations. So Section 9.6 is also pertinent
here.

7. How can one add another experiment, dropping some factors from con-
sideration while possibly adding others?

Question 7 is also common for situations with many potential fac-
tors of interest. Following one experiment where only a subset
of the factors proves influential, subsequent experimentation may
simply fix the levels of the apparently inactive factors at a single
value; alternatively, we may actually widen the levels for such fac-
tors if we believe the initial range was too narrow. Just as some
factors that were varied may be fixed in subsequent experimen-
tation, variables that were held constant in an initial experiment
can be varied as factors in the follow-up design. Section 9.7 offers
advice on how to proceed.



9.2 Confirmation Runs 319

8. When centerpoint runs provide a better response than at the observed
factorial treatment combinations, how can one augment the design to fit
a model accounting for such curvature?

9. When both main effects and interactions are prominent, how can one
expand the experimental region in a direction of interest?

Questions 8 and 9 require that we move beyond the simplicity of
two-level experiments. Chapter 12 provides an introduction to this
topic.

9.2 Confirmation Runs

We suppose that a fractional factorial design has been conducted and a suit-
able model obtained to explain the observed data. This fitted model can be
used to predict the response and a standard error calculated to determine a
confidence interval for the true mean response. For instance, consider Exam-
ple 6.1, where we fit an additive model for Resolution and Migration rate.
Our fractional factorial represents just one-fourth of the treatment combina-
tions in the full 25. By saving the fitted models as formulas, we may obtain
the predicted values for Resolution and Migration rate for any treatment
combination. Figure 9.1 plots the pairs of predicted response values at all
32 treatment combinations of the full factorial. In the plot, asterisks denote
treatment combinations in our fractional factorial, and square points denote
treatment combinations where we have no data yet. Since larger values are
preferred for both responses, the treatment combinations along the lower band
of points are all inferior. These correspond to high acetonitrile (C = 1). Along
the upper band, we prefer to compromise between high resolution/low rate
and low resolution/high rate. One point of interest with predicted resolution
= 1.37 and migration rate = 0.08/min is identified by an arrow in the plot;
its treatment combination is (A, B, C, D, E) = (−1,−1,−1, +1,−1).

If we conducted a follow-up run at this treatment combination, how far
might the observed result differ from its predicted responses? To answer this
question, we begin by computing the standard error for the estimated mean
value as well as a standard error for the prediction error between a single ob-
served value and this prediction. For orthogonal designs where each regression
coefficient has variance σ2/N , the variance of ŷ at any treatment combination
in the 2k factorial is

Var(ŷ) = Var(b0) + rσ2/N, (9.1)

where r is the number of regression coefficients in addition to the intercept. In
(9.1), for a design without blocking, Var(b0) = σ2/(N + n0), where n0 is the
number of centerpoint runs. Thus, for our additive models with five factors,
N = 25−2 and n0 = 0, Var(ŷ) = 6σ2/8. The mean square error for Resolution
is 0.001812, so the standard error for the predicted mean is

[6(0.001812)/8]1/2 = 0.0369
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Fig. 9.1. Predicted Resolution and Migration rate for 32 treatment combinations
of the 25 for Example 6.1

and a 95% confidence interval for the true mean resolution at the treatment
combination (−1,−1,−1, +1,−1) is

ŷ ± t0.025,dfsŷ → 1.37 ± 4.303(0.0369). (9.2)

Because (9.2) is a confidence interval for the mean response, the outcome
of an individual confirmation run is subject to more error than for which (9.2)
is intended. For an individual observation, we construct a prediction interval
that is based on the Var(y − ŷ) rather than Var(ŷ). This larger variance is

Var(y − ŷ) = σ2 + Var(b0) + rσ2/n. (9.3)

For resolution at the treatment combination (−1,−1,−1,+1,−1), a 95% pre-
diction interval is

ŷ ± t0.025,dfsy−ŷ → 1.37 ± 4.303(0.0563), (9.4)

since [(1+6/8)0.001812]1/2 = 0.0563. Thus, according to our model, we expect
an observed resolution of 1.37 ± 0.24 at this treatment combination.

The confidence interval for the mean, (9.2), and the prediction interval
for y, (9.4), ignore the possibility of any block effect—that is, of any changes
between the initial experiment and the follow-up runs that would cause a shift
in the response. If a block effect is likely, then confirmation runs at two or more
treatment combinations will be needed. Select treatment combinations for
which the comparison is of interest, such as the former operating conditions,
and a new recommended treatment combination.
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In addition to using confirmation runs at treatment combinations of inter-
est to verify the adequacy of a model, confirmation runs may be used to verify
outliers. If some observations in the initial experiment are not well explained
by the chosen model, then collecting additional data at these treatment com-
binations will confirm whether they are reproducible or not.

Finally, confirmation runs following “experiments” from computer models
are simpler to interpret, since there is obviously no need for a block effect. For
deterministic computer models, there is no random error, so any discrepancy
between the model’s prediction and the confirmation observation(s) represents
lack-of-fit.

9.3 Steepest Ascent Search

When factors are continuous, one is not constrained to only consider treat-
ment combinations with coded levels of ±1. We continue with Example 6.1,
searching for new treatment combinations with attractive compromises for
Migration rate and Resolution using the method of steepest ascent. In par-
ticular, we illustrate three variants of steepest ascent: optimizing a single
response, simultaneously improving two responses, and optimizing a single
response subject to a constraint. In each case, we use the regression coeffi-
cients to define a search direction where factors with large coefficients are
changed more rapidly than are factors with smaller coefficients. Finally, we
describe the complications that arise when extrapolating based on a model
with interaction effects.

9.3.1 Steepest ascent for a single response

The observed Migration times ranged from less than 10 min to nearly 20
min (see Figure 6.1). It is desirable to have small Migration time so that
the analysis time is brief. A fitted first-order model for Migration rate, the
reciprocal of Migration time, is shown in Table 9.1, together with t statistics
and p-values based on the t-distribution with 2 df. Using only the statistically
significant estimates, we see that increased Migration rate is associated with
increasing B and lowering A, D, and E.

Table 9.1. Main effects model for Migration rate

Term Estimate Std Error t-Ratio p-Value
Intercept 0.0839 0.00094 89.31 .0001
A −0.0091 0.00094 −9.70 .0105
B 0.0048 0.00094 5.06 .0369
C 0.0022 0.00094 2.31 .1469
D −0.0102 0.00094 −10.86 .0084
E −0.0042 0.00094 −4.50 .0459
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Steepest ascent, as proposed by Box and Wilson (1951), is the method of
choosing a direction for extrapolation that maximizes the predicted response
for a given “step size.” Using coded units, the distance from the center of the
design to the point (A, B, C, D, E) is

Distance = (A2 + B2 + C2 + D2 + E2)1/2.

For any orthogonal two-level design, predicted values at treatment combi-
nations the same distance from the center all have the same standard error
for the main-effects-only model (1.2), and the standard error is an increas-
ing function of the distance. Thus, maximizing the predicted response among
all steps of a given size is equivalent to maximizing the predicted response
among all points with the same standard error. The direction that maximizes
the predicted response is the vector of main effect estimates. Minimizing the
predicted response is accomplished by going in the opposite direction.

Here we propose to move in the direction (−0.0091, 0.0048, 0, −0.0102,
−0.0042), leaving C unchanged because its coefficient is not statistically sig-
nificant for Migration rate, but it is clearly significant and negative for the
Resolution response; that is, with bC = 0.0022, we are not sure that increasing
C will increase Migration rate, but it certainly will decrease Resolution. Di-
viding the recommended direction by the magnitude of the largest coefficient,
we obtain the following rescaled vector with a suitable step size:

Δ =

⎛
⎜⎜⎜⎜⎝

−0.0091
0.0048

0
−0.0102
−0.0042

⎞
⎟⎟⎟⎟⎠ /0.0102 =

⎛
⎜⎜⎜⎜⎝

−0.89
0.47
0.00

−1.00
−0.41

⎞
⎟⎟⎟⎟⎠ .

δ-Multiples of the vector Δ produce coded treatment combinations along
a ray emanating from the design center. These coded treatment combinations
must be converted to natural units. For the natural units here (see Table 6.1),
the treatment combination δΔ is

⎛
⎜⎜⎜⎜⎝

8.5
5
45
45
30

⎞
⎟⎟⎟⎟⎠+ δ

⎛
⎜⎜⎜⎜⎝

−.89(0.5)
.47(5)
.00(5)

−1.00(5)
−.41(10)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

8.5 − .445δ
5 + 2.35δ
45
45 − 5δ
30 − 4.1δ

⎞
⎟⎟⎟⎟⎠ .

For δ = 1 and 2, the steepest ascent points in natural units are (8.05, 7.33, 45,
40, 25.86) and (7.61, 9.66, 45, 35, 21.71), respectively. The predicted response
is b0 + δΔ′b, which equals

0.0839 + δ[0.89(0.0091) + 0.47(0.0048) + 0 + 1(0.0102) + 0.41(0.0042)]
= 0.0839 + 0.0223δ.
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For δ = 1 (2), the predicted response is 0.106 (0.128), both higher than the
best Migration rate in the 25−2.

These calculations should be done in advance of collecting data, using a
spreadsheet; that is, for a series of treatment combinations along the path
of steepest ascent, one should compute the coded and natural units, as well
as the predicted response at each location. Calculating the natural units is
necessary to ensure that each treatment combination is feasible. Calculating
the predicted value is useful for determining if the fitted model is still valid,
by comparison with observed values as one collects data along the path. If
the standard deviation is small compared to the improvement seen as one
explores out the path of steepest ascent, then a single point at each location
will be sufficient to determine whether the response is still improving, as the
model predicts. That is the case here, with RMSE = 0.00266, one-eighth of
the expected improvement for each step of 1Δ. Once extrapolation begins
to produce minimal gains, it may be necessary to replicate steepest ascent
runs to determine where extrapolation ceases to be productive. Alternatively,
one may collect some data beyond the perceived optimum and then use the
steepest ascent data to fit a polynomial model as a function of distance; a
suitably chosen smooth function is better than individual observations at dis-
crete points for determining the optimum along a path. Finally, to aid in
interpreting agreement of the new data with the previous model, it is useful
to compute prediction intervals. Statistical software generally furnishes both
confidence intervals for the mean and prediction intervals for a single observa-
tion, as discussed in Section 9.2. For our example, the standard error for the
mean response at the point 1Δ is 0.0017, whereas the standard error relevant
for an individual response is (0.00172 + MSE)1/2 = 0.0031. The larger stan-
dard error reflects the average error between an individual observation and the
predicted response, assuming the additive model is valid. For a 90% prediction
interval, we take t2,.05 = 2.92 from Appendix A, since the MSE is based on
just 2 df. The prediction interval is 0.106 ± 2.92(0.0031), or 0.106 ± 0.009;
thus, an observed Migration rate within 0.009 of the predicted rate (at δ = 1)
would be consistent with our model.

The direction of steepest ascent (descent) is very sensitive to the original
design’s scaling. If an active factor’s effect is essentially linear over a wide
range, then the wider the choice of levels for that factor in the two-level
factorial design, the larger the regression coefficient will be for the coded model
and the larger will be the multiplier when converting back to natural units.
Having one bi of much larger magnitude than the rest means that the search
direction is not too different than just a one factor search. An experiment
such as this with many statistically significant bi’s of similar magnitude is
indicative of an experiment with appropriately chosen factors and levels.
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9.3.2 Steepest ascent for two responses

Suppose we have two responses that we wish to improve simultaneously. For
instance, suppose both are larger-the-better responses, so that we are inter-
ested in steepest ascent. We need only consider non-negative linear combina-
tions of the two paths of steepest ascent (as illustrated below), since these
provide the optimal compromise directions (Mee and Xiao 2008b). Consider
now attempts to improve both Resolution and Migration rate above what is
achieved at the design center. For our first response, Resolution, we compute

Δ1 =

⎛
⎜⎜⎜⎜⎝

0.19
−0.14
−0.38

0.27
0.09

⎞
⎟⎟⎟⎟⎠ /0.38 =

⎛
⎜⎜⎜⎜⎝

0.50
−0.37
−1.00

0.69
0.23

⎞
⎟⎟⎟⎟⎠ ,

using coefficients from the fitted model for Resolution. Earlier, we calculated
Δ for Migration rate, zeroing out the nonsignificant coefficient for C. Here
we retain bC = 0.0022 in the calculation of Δ2, to avoid biasing the required
trade-off;

Δ2 =

⎛
⎜⎜⎜⎜⎝

−0.0091
0.0048
0.0022

−0.0102
−0.0042

⎞
⎟⎟⎟⎟⎠ /0.0102 =

⎛
⎜⎜⎜⎜⎝

−0.89
0.47
0.21

−1.00
−0.41

⎞
⎟⎟⎟⎟⎠ .

Any direction Δ = δ1Δ1 + δ2Δ2, with δi > 0 (i = 1, 2), is a positive linear
combination of the two paths of steepest ascent. Since Δ′

1Δ2 < 0, following
either path of steepest ascent will reduce the other predicted response. Thus,
we consider compromises. If one chooses δ1 = δ2 = 1, the compromise direction
is

Δ = Δ1 + Δ2 =

⎛
⎜⎜⎜⎜⎝

0.50
−0.37
−1.00

0.69
0.23

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−0.89
0.47
0.21

−1.00
−0.41

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−0.39
0.10

−0.79
−0.31
−0.18

⎞
⎟⎟⎟⎟⎠

.
At the design center, the predicted (Resolution, Migration rate) is (0.859,

0.084). For each additional step Δ from the center, predicted (Resolution,
Migration rate) increase by (0.116, 0.006). The predicted responses at Δ and
2Δ are (0.975, 0.090) and (1.091, 0.096), respectively. The later point requires
extrapolation only in C; its distance from the center

[(−0.78)2 + (0.20)2 + (−1.58)2 + (−0.62)2 + (−0.36)2]1/2 = 3.661/2

is smaller than 51/2, the distance of the factorial treatment combinations from
the center. Data could be collected at the treatment combination 2Δ. If results
are promising, collect data at additional points further in this direction.
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One is not restricted to weighting Δ1 and Δ2 equally. If a trade-offof
more improvement in Resolution is desired—with the consequence of less
improvement in Rate than is indicated by the above direction—then re-
calculate the compromise direction Δ = δ1Δ1 + δ2Δ2 using coefficients
with δ1 > δ2. For instance, for δ1 = 1.2 and δ2 = 1, the direction is
(−0.29, 0.026,−0.99,−0.172,−0.134) and the predicted increase for each ad-
ditional step from the center is (0.264, 0.003). A step of distance 51/2 in this
direction is (−0.62, 0.055,−2.10,−0.36,−0.28), where predicted Resolution =
1.417 and predicted Migration rate = 0.090, which is superior to any outcome
at a factorial point. In Figure 9.2 we augment Figure 9.1 by adding predicted
values for non-negative linear combinations of Δ1 and Δ2, scaled to a common
step size of 51/2. These points are “Pareto optimal”; that is, there does not
exist any treatment combinations with coded distance from the center ≤ 51/2

which yields both a higher predicted Resolution and higher predicted Migra-
tion rate than any point in this set. The two arrows in Figure 9.3 correspond
to the Pareto optimal points for δ1/δ2 = 1 and δ1/δ2 = 1.2 discussed above.
Which weighting is preferred depends on the relative importance of improving
the response variables.
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Fig. 9.2. Figure 9.1 augmented with predicted Resolution and predicted Migration
rate for non-negative linear combinations of paths of steepest ascent at coded dis-
tance 51/2 from the design center; arrows point to outcome for two different δ1/δ2

ratios discussed in text.
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The correlation between predicted Resolution and predicted Migration rate
at the design points is −0.7824. This correlation equals the cosine of the angle
between the two steepest ascent vectors. If the correlation is positive, the angle
between them is less than 90o and every positive linear combination increases
both predicted responses. When the inner product is negative, as it is for our
example, the set of directions that improve both responses is more restricted.
For our example, the angle is arccos(−0.7824) = 141.5o. If the correlation
were nearer to −1, the directions would be more nearly opposite and there
would be little or no opportunity to improve both responses. Such a situation
is mentioned below. When an experiment yields a strong negative correlation
between two larger-the-better responses, it may be necessary to experiment
again with additional factors, since these provide the possibility of finding
another factor which, like C, influences one response more than the other.

9.3.3 Steepest ascent for a single response, with additional
constraints

The previous subsection explained how to choose a direction for a follow-up
experiment devoted to improving two responses simultaneously. When the two
steepest ascent vectors are diametrically opposed, the objective may become
instead to optimize one response subject to a minimally sufficient value for the
second. This situation also arises when one has responses for which a target
value is specified, such as maximizing yield, subject to achieving the specified
target viscosity.

Petersson, Lundell, and Markides (1992) experimented with three factors
influencing the retention times and the resolution for separating two com-
ponents of a chiral compound. Similar to Vindevogel and Sandra (1991),
trade-offs are required to achieve adequate resolution without making the
time excessive. Petersson et al. conducted a series of experiments seeking to
minimize time, subject to achieving adequate resolution. Their sequence of ex-
periments is discussed and reanalyzed as a case study in Section 11.2. Here we
just briefly summarize their approach. Their first experiment allowed them to
identify a treatment combination where the minimally acceptable resolution
of 0.274 was achieved. The second experiment was centered at this treatment
combination. Using models estimated from the second experiment, they de-
termined a starting point on the minimally acceptable contour for Resolution
and then a steepest ascent direction from this point that was constrained to
that contour. Collecting data along this path did achieve some decrease in
time, but with a slight drop in Resolution. They persisted with additional
experimentation until a suitable treatment combination was found.

Mee and Xiao (2008b) showed how to restrict the path of steepest ascent
to a contour for a second response. That result will be illustrated in Chapter
11 using the case study. For more details about multiresponse optimization
from a first-order model, including the use of Derringer and Suich’s (1980)
desirability function, see Mee and Xiao (2008b).
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9.3.4 Steepest ascent for a model with curvature

In the previous example, main effects models were used to determine the ex-
ploration direction. Once a direction was determined, exploration consisted of
different step sizes in the same direction. Under these simple models, standard
errors for the predicted response depend only on distance from the center, not
on direction, and the expected improvement is proportional to the step size.
Here we consider how the presence of interactions affects the search to increase
or decrease a response.

Recall the example from Section 5.1, the 25−1 experiment by Hu and Bai
(2001). Adding a main effect for C to the reduced model adopted by Hu and
Bai to make the model hierarchical, phosphorus content is estimated by

%̂P = 4.86 + 0.97A + 1.53B − 0.23C + 0.99AB − 2.67BC. (9.5)

Clearly, higher phosphorus content can be achieved by increasing B, provided
C = −1. Furthermore, this model indicates that when B > 0, increasing A
increases %P. This observation is consistent with the fact that the best two
responses from the 25−1 experiment both had A = B = 1 and C = −1.
Thus, extrapolating in this general direction is recommended. However, what
direction corresponds to the path of steepest ascent? We choose to follow a
path with the steepest gradient.

The gradient for the model (9.5) at a treatment combination (A, B, C) is

∇%̂P = [∂(%̂P )/∂A, ∂(%̂P )/∂B, ∂(%̂P )/∂C]
= (0.97 + 0.99B, 1.53 + 0.99A − 2.67C,−0.23 − 2.67B).

At the center (0, 0, 0), the gradient is (0.97, 1.53,−0.23). Suppose we take a
step in this direction of size 1:

Step1 = (0.97, 1.53,−0.23)/[0.972 +1.532 +(−0.23)2]1/2 = (0.53, 0.84,−0.13).

From this point, the gradient is

(0.97 + 0.99(0.84), 1.53 + 0.99(0.53) − 2.67(−0.13),−0.23 − 2.67(0.84)),

which equals (1.80, 2.4, −2.47). Note that the surface is steeper at Step1 than
it was at the center, since each partial derivative in the gradient has increased
in magnitude. Rescaling the gradient we obtain

Step2 = (1.8, 2.4,−2.47)/[(1.8)2 + (2.4)2 + (−2.47)2]1/2 = (0.46, 0.62,−0.64).

Taking Step2 after Step1 results in the treatment combination

Step1 + Step2 = (0.53 + 0.46, 0.84 + 0.62,−0.13 − 0.64) = (0.99, 1.46,−0.77).

By continuing in this manner, we define a sequence of steps of equal size, at
each point stepping in the direction of the greatest improvement. Note that



328 9 Augmenting Fractional Factorial Designs

the direction changes at each step. For instance, for Step1, we changed C the
least, whereas for Step2, we changed C the most.

A similar path may be obtained by using the Lagrangian method to max-
imize (or minimize) the predicted response, subject to the constraint of a
constant distance from the center. The resulting set of points define a smooth
curve. See Box and Draper (2007, Ch. 7). Points along this path optimize
the response for any given step size from the center. Note, however, that for
models with interactions, predicted responses at points a constant distance
from the center do not have the same standard error.

Hu and Bai (2001) did something simpler than follow the gradient. In-
stead, they chose to fix C at its low level (i.e., pH = 1) and then to extrap-
olate beyond the initial range for A (Temperature) and B (Current density).
Assuming values of pH below 1 were not permissible, this simplification is
reasonable. In addition to fixing pH at its low level, factors D and E were
set at the high level, and factors A and B were increased from (0, 0) to (2.3̄,
3.5) in seven steps of size (0.3̄, 0.5) in a steepest ascent search. It is important
to realize that many directions will lead to improvement. There is no single
correct direction for extrapolation. The important idea is simply to utilize the
fitted model to identify treatment combinations with better outcomes than is
possible in the previous region of experimentation.

9.4 Foldover After a Resolution III Fraction

Because regular resolution III fractional factorial designs completely alias
some main effects with two-factor interactions, a common follow-up to a reso-
lution III fraction is to add another fraction, so that together the two fractions
form a resolution IV design; that is, by conducting another 2k−f fraction us-
ing the same factors and the same levels, the combined experiments now form
a 2/2f = 1/2f−1 fraction of the 2k. In the context of design augmentation,
foldover is a term often used to describe adding another fraction that differs
from the original by the reversal of levels for one or more factors.

To illustrate the main ideas of this section, consider the 27−4 fraction with
generators D = AB, E = AC, F = BC, and G = ABC. Its treatment
combinations are
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Initial 27−4 fraction

t.c. A B C D E F G
1 −1 −1 −1 1 1 1 −1
2 1 −1 −1 −1 −1 1 1
3 −1 1 −1 −1 1 −1 1
4 1 1 −1 1 −1 −1 −1
5 −1 −1 1 1 −1 −1 1
6 1 −1 1 −1 1 −1 −1
7 −1 1 1 −1 −1 1 −1
8 1 1 1 1 1 1 1

This fraction has seven length-3 words in its defining relation, ABD,
ACE, AFG, BCF, BEG, CDG, and DEF. Seven length-4 words and the
length-7 word ABCDEFG complete the defining relation. The length-3 words
alias three two-factor interactions with each main effect, making this a risky
design for estimating main effects.

The eight treatment combinations above are 1 of 16 fractions from this
same family. The other 15 fractions have the same four generators except
with some signs reversed. For resolution III fractions, one of the remaining
fractions is the mirror image of the first, which may be obtained by reversing
every column of the design. Thus, the eight treatment combinations of the
mirror image fraction are

Mirror image 27−4 fraction

t.c. A B C D E F G
9 1 1 1 −1 −1 −1 1

10 −1 1 1 1 1 −1 −1
11 1 −1 1 1 −1 1 −1
12 −1 −1 1 −1 1 1 1
13 1 1 −1 −1 1 1 −1
14 −1 1 −1 1 −1 1 1
15 1 −1 −1 1 1 −1 1
16 −1 −1 −1 −1 −1 −1 −1

The generators for the mirror image fraction are D = −AB, E = −AC, F
= −BC, and G = ABC. Hence, this mirror-image fraction can be obtained
by reversing just the columns for D, E, and F. In general, the mirror-image
fraction is obtained by reversing all k columns or, equivalently, by reversing
just the columns with even-length interactions as generators.

Augmenting an initial resolution III design with its mirror-image fraction
has the following benefits:

• All main effect estimates become clear of aliasing with two-factor interac-
tions.
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• Combinations of two-factor interactions formerly aliased with main effects
are now estimable, assuming no higher-order interactions of even length.

• The precision of all estimates is improved. Assuming the error variance σ2

is unchanged, the standard error for coefficients will decrease by a factor
of 1/21/2 (i.e., about 30%, through the addition of the second fraction).

The strategy of reversing all columns can also be applied to orthogonal arrays
of strength 2 (Li, Lin, and Ye 2003) and to nonorthogonal designs (Webb
1968), with similar benefits.

One implicit assumption when a foldover design is performed is that the
effects are stable from the first fraction to the second. If not, the instability
of the main effect would be incorrectly attributed to the interactions aliased
with that main effect in the initial fraction. For instance, if our estimates from
the two fractions are

bA + bBD + bCE + bFG = 100,

bA − bBD − bCE − bFG = 40,

then the estimate for βA is (100 + 40)/2 = 70 and the estimate for βBD +
βCE +βFG is (100 − 40)/2 = 30. Thus, any instability in the effect of factor A
over time between the first and second experiment is likely to be interpreted
as an active two-factor interaction.

For most resolution III designs, the mirror-image fraction is the only one
that will reverse the signs of all length-3 words and so increase the resolution.
However, for the 29−5 minimum aberration design and many other designs
with k slightly larger than N/2, there exist better follow-up alternatives than
the mirror-image fraction. Li and Mee (2002) presented several examples and
offered a simple procedure for determining whether other fractions will in-
crease the resolution. We illustrate the ideas for the 29−5 case. From Appendix
G, the minimum aberration design for 9 factors in 16 runs may be obtained
using columns 7 and 11–14 as generators. With letters {A, B, C, D} denoting
the basic columns {1, 2, 4, 8}, the generators are

E = ABC since 7 = 1·2·4,
F = ABD since 11 = 1·2·8,
G = CD since 12 = 4·8,
H = ACD since 13 = 1·4·8,
J = BCD since 14 = 2·4·8.

This design has four length-3 words in the defining relation:

I = CDG = AGH = BGJ = EFG = · · ·

and produces the following aliasing among main effects and two-factor inter-
actions:
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A = GH
B = GJ
C = DG
D = CG
E = FG
F = EG
G =AH = BJ = CD = EF
H = AG
J = BG
AB = CE = DF = HJ
AC = BE =DH = FJ
AD = BF= CH = EJ
AE = BC = DJ = FH
AF = BD = CJ = EH
AJ = BH = CF = DE

The mirror-image fraction may be obtained by simply reversing G, because
CD is the only even-length interaction used as a generator. Since G appears
in each of the length-3 words, adding a fraction with only G reversed does
increase the resolution. However, one may also eliminate the four length-3
words by reversing E, F, and G; this has the advantage of increasing the
resolution and eliminating 8 of the 14 length-4 words, so that the aliasing
among two factor interactions is reduced to

AH = BJ = CD = EF
AB = HJ CE = DF
AC = DH BE = FJ
AD = CH BF = EJ
BC = DJ AE = FH
BD = CJ AF = EH
AJ = BH CF = DE

Li and Mee (2002) listed additional resolution III designs for which fractions
other than the mirror-image fraction will increase the resolution. However,
this possibility exists only when k < (5/8)N .

If an initial resolution III fractional factorial design does not make clear
which factors are important, adding a foldover fraction is often recommended.
Recall Example 6.3, a 213−9 experiment, where none of the 13 main effects
were statistically significant for Yield, but four estimates (E, G, H, N) were
somewhat larger than the rest (see Figure 6.3). Aliasing among main effects
and two-factor interactions is extensive; each main effect is aliased with five
or six two-factor interactions. One of the 22 three-letter words in the defining
relation involves three of the four likely factors (I = −EGH). If there are
only four important main effects or interactions here, it might be GH that
is active rather than E, or EH that is active rather than G, etc. Revers-
ing all 13 main effect columns produces the mirror-image fraction. Adding
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these additional 16 runs would eliminate all 22 length-3 words from the defin-
ing relation, clearing main effects from aliasing with two-factor interactions
and improving the precision of estimates by doubling the number of factorial
treatment combinations. If the four large estimates for Yield do correspond to
active effects, we expect their estimates to be similar in the new fraction and
the resulting t statistics based on the combined 213−8 to increase by about
40%, since 21/2 = 1.414.

As a final example of follow-up for main effect designs, recall Example 6.6,
the 12-run thermostat experiment by Bullington et al (1993). Due largely to
the choice of levels, 1 of the 11 factors stood out as active, overwhelming every
other effect in size. In this situation, two possible follow-up fractions should be
considered. One is the mirror-image fraction already discussed. Adding this
fraction to the original OA(12, 211, 2) would double the run size and increase
the orthogonal array’s strength to 3. Miller and Sitter (2001) discussed this
specific case and proposed methods for identifying interaction effects. Li, Lin,
and Ye (2003) made the point that for strength-2 orthogonal arrays with N
= 12 and 20, the only foldover that will increase the strength is obtained by
reversing all the columns.

However, the Bullington et al. data presented a situation where an alter-
native follow-up fraction seems advisable. Suppose one runs another OA(12,
211, 2) obtained by simply reversing the sign of the active factor E. This would
produce a 24-run design still of strength 2, but where at both E = 1 and E
= −1 one has an OA(12, 210, 2) in the remaining factors. This design would
permit the estimation of the 10 two-factor interactions AE, BE,. . ., EL. Since
E’s effect is so dominant, it is quite reasonable that the effect of other active
factors would depend on the level of E.

For regular fractions, reversing just one column has the effect of eliminating
from the defining relation every word containing this particular factor. Such a
strategy is more common for follow-up to resolution IV designs, which is the
topic for Section 9.5. The analysis of a mirror-image foldover experiment for
a 20-run orthogonal array involving 15 factors is presented as a case study in
Chapter 11.

9.5 Foldover and Semifolding After a Resolution IV
Fraction

Unless three-factor interactions are a major concern, regular resolution IV
fractional factorial designs typically produce at most only a few statistically
significant estimates corresponding to strings of aliased effects considered of
interest. For instance, in Example 7.2, the only ambiguity concerned a single
pair of two-factor interactions, whereas for the more perplexing Example 7.3,
four estimates pertaining to aliased interactions were significant. In neither
situation would adding another 26−2 fraction be justified. Unless more preci-
sion is needed, rarely does one consider adding a second fraction the same size
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as the first for resolution IV designs. Instead, adding a second fraction half
the size of the first generally suffices in most cases, which we now illustrate
by the continuation of Example 7.3.

9.5.1 Semifolding example

Recall the experiment from Barnett, Czitrom, John, and León (1997) ana-
lyzed in Section 7.1.3. From their 26−2 fraction, four of the seven estimates
corresponding to (combinations of) two-factor interactions were statistically
significant, whereas main effects showed little importance. In Chapter 7, we
proceeded by assuming that two of the six factors could be ignored, because
a two-factor interaction model in the remaining factors explained 98% of the
variation. In actuality, the experimenters conducted the eight-run follow-up
design that appears in Table 9.2. Since this design is half of a foldover fraction,
it is referred to as a semifolding follow-up design.

Table 9.2. Semifolding follow-up design for etching uniformity by Barnett
et al. (1997), sorted by predicted values obtained from the Figure 7.4 model

A B C D E F ̂ln(SD) SD ln(SD)
−1 1 1 1 −1 1 0.41 6.63 1.89

1 −1 1 1 −1 1 0.53 9.81 2.28
1 −1 1 −1 1 1 1.16 6.19 1.82

−1 1 1 −1 1 1 1.22 6.60 1.89
1 1 −1 −1 −1 1 1.74 8.59 2.15
1 1 −1 1 1 1 2.05 9.23 2.22

−1 −1 −1 −1 −1 1 3.03 12.96 2.56
−1 −1 −1 1 1 1 3.52 13.67 2.62

The eight treatment combinations in Table 9.2 represent half of a foldover
fraction of the original 26−2 (Table 7.8). The original design’s defining relation
is

I = ABDE = ABCF = CDEF. (9.6)

If we reverse column F (or C), the defining relation for the new fraction is

I = ABDE = −ABCF = −CDEF. (9.7)

The treatment combinations in Table 9.2 are those that satisfy (9.7) and also
have F = 1. Predicted ln(SD) values for these treatment combinations are
included in Table 9.2. These were taken from (the rear face of each cube in)
Figure 7.4. The actual results of the follow-up fraction are quite disappointing.
The first six actual ln(SD) values in Table 9.2 are larger than what our earlier
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model predicted they would be, and none are close to what we expected for
the optimum. Second, the correlation between observed and predicted ln(SD)
is only .8, far below the correlation between observed and predicted values
from the initial experiment. Figure 9.3 displays the near-perfect agreement
between the observed and predicted ln(SD) values from the initial 18-run ex-
periment as well as the much weaker correlation between predicted values and
the follow-up experiment values. The follow-up experiment shows surprisingly
small differences among the eight new standard deviations.
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Fig. 9.3. Observed ln(SD) versus predicted ln(SD); initial experiment (•), follow-up
experiment (×)

Even though the results of the follow-up experiment did not match our
expectation, we proceed to fit a model to the combined data. Fitting a two-
factor interaction model (plus a block main effect) to the 26 runs, the only
aliasing is the result of the word ABDE, which appears in both (9.6) and
(9.7). By comparing the estimates before and after the additional eight runs,
one sees that the main effect estimates are unchanged. For the five alias chains
that were split in two, the initial estimate is split into two estimates based on
the information in the semifolding experiment (see Table 9.3).

To present clearly how the estimates in Table 9.3 combine the information
from the initial fractional factorial and the follow-up semifold fraction, we list
in Table 9.4 the estimates obtained by fitting the two-factor interaction model
to only the semifold data. Combining bA = 0.103 and bAF+BC = −0.440 from
the original fraction with bA+AF−BC = −0.060 from the semifolding fraction,
we have three equations in three unknowns. The solution for the interaction
estimates is
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Table 9.3. Estimates for two-factor interaction model for Example 7.4,
before and after the semifolding follow-up design

Before Semifolding After Semifolding

Term Estimate Term Estimate Std Error
Intercept 1.791 Intercept 2.026 0.0349

Block −0.235 0.0349
A 0.103 A 0.103 0.0354
B −0.058 B −0.058 0.0354
C −0.380 C −0.380 0.0354
D −0.019 D −0.019 0.0354
E 0.111 E 0.111 0.0354
F −0.082 F −0.082 0.0354
AB=CF=DE −0.497 AB=DE −0.334 0.0354

CF −0.162 0.0354
AC=BF 0.353 AC 0.218 0.0354

BF 0.135 0.0354
AD=BE 0.079 AD=BE 0.073 0.0289
AE=BD −0.044 AE=BD −0.047 0.0289
AF=BC −0.440 AF −0.301 0.0354

BC −0.139 0.0354
CD=EF 0.168 CD 0.161 0.0354

EF 0.007 0.0354
CE=DF 0.079 CE −0.007 0.0354

DF 0.086 0.0354

Table 9.4. Estimates for two-factor interaction model using only the
semifolding data from Table 9.2

Term Estimate
Intercept = F 2.179
A = AF = −BC −0.060
B = −AC = BF −0.141
C = −AB = CF = −DE −0.208
D = −CE = DF 0.074
E = −CD = EF −0.042
AD = BE 0.059
AE = BD −0.055

bAF = (−0.440 − 0.060 − 0.103)/2 = −0.301,

bBC = (−0.440 + 0.060 + 0.103)/2 = −0.139.
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Only the aliased interactions AD = BE and AE = BD are estimable in both
the original and follow-up fraction. Thus, the estimates for these effects in
Table 9.3 combine the estimates from the separate fractions, weighting by the
relative sample sizes for the factorial designs:

bAD+BE = (2/3)0.079 + (1/3)0.059 = 0.073,

bAE+BD = (2/3)(−0.044) + (1/3)(−0.055) = −0.047.

It is reassuring that these estimates from the initial and follow-up fractions
were so consistent, as that gives some support for our assumptions that higher-
order terms can be ignored and that there are no Block*Factor interactions.
These are the only two estimates for which the additional runs improved the
precision. All the other main effect and interaction estimates have standard
errors equal to RMSE/161/2.

The simplifying conjecture made in Section 7.1.3 that B and D have no
effect is contradicted by the follow-up design. That conjecture supposed the
statistically significant interaction estimates found in the first fraction were
each due to a single interaction. Instead, after the follow-up design, it appears
that AF and BC are both active, AC and BF are both active, CF and
either AB or DE are active, as well as CD. Thus, all the factors appear
in statistically significant interactions. At this point, we consider the initial
choice of fraction very fortunate, since in each case, aliased interactions had
like sign, making them easier to detect, rather than having them be opposite
sign, making the combination negligible. If the sign of interaction effects can
be guessed in advance of the design, one can choose a fraction purposely to
avoid cancellation of estimates. Ambiguity remains, however, about the largest
interaction estimate, for which AB and DE are still aliased.

If additional runs could be performed, it would be desirable to collect data
at treatment combinations for which ABDE = −1. Since the best outcomes
are consistently for C = +1, we recommend that its level be fixed. Low ro-
tation speed never seems to be preferred, so we decide to fix F = 1 as well.
An eight-run 24−1 experiment in factors A, B, D, and E is one reasonable
option. We compare this with another possibility in Section 9.6.

Semifold follow-up designs are based on two choices. The first choice is
which columns to reverse. The second choice is which half of the new fraction
to run. One key advantage of follow-up experiments is that these choices
can be made in light of the results of the initial experiment. The next two
subsections provide insight regarding these two choices.

9.5.2 Which columns to reverse?

For the resolution IV 26−2 and 27−3 designs, each of the remaining fractions
can be obtained by reversing a single factor. However, for the 28−4, being a
1/16th fraction, only eight of the other fractions are obtained by reversing a
single factor; the remaining seven fractions are found by reversing a pair of
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factors. Montgomery and Runger (1996) noted that for the 28−4 design, it is
often preferable to reverse two columns rather than one, since reversing any
single factor eliminates half of the 14 length-4 words, whereas reversing any
pair of factors eliminates 8 length-4 words. Li and Lin (2003) designated as
“optimal foldover plans” choices that minimize the aberration of the combined
design. For the 32-run resolution IV designs in Table G.3, the optimal foldover
plans are given in Table 9.5. Reversing one factor is always suitable for designs
with alias chains of length 2 or 3. However, for designs with alias chains of
length 4 or more, one must reverse more columns to minimize the number of
length-4 words, A4, in the combined design. The ideal foldover in terms of
minimizing both A4 and the length of the longest alias chain is to break each
alias chain in half. For the 215−10 and 216−11 designs, this ideal is achieved,
but it requires reversing five and six factors, respectively, to achieve this. In
these cases, the optimal foldover eliminates more than twice as many four-
letter words as is gained by reversing a single factor. For more details, see
Li and Lin (2003), who showed the foldover that minimizes A4 for dozens of
designs of possible interest with k ≤ 11.

Table 9.5. Optimal foldover plans for 32-run, resolution IV designs with
minimum aberration

Initial Initial Min. A4 No. of Factors
Design A4 After Foldover to Reverse
27−2 1 0 1
28−3 3 1 1
29−4 6 2 2
210−5 10 4 2
211−6 25 10 3
212−7 38 16 3
213−8 55 23 4
214−9 77 33 4
215−10 105 45 5
216−11 140 60 6

Mee and Xiao (2008a) presented more details regarding foldovers to 32-
run even resolution IV designs. The results in Table 9.5 for 11–16 factors are
published there, along with details about which specific columns achieve this
best foldover. Ai, Xu, and Wu (2008) report minimum aberration foldovers of
initial blocked designs of size N = 16 (k ≤ 12), 32 (k ≤ 21), and 64 (k ≤ 19);
that is, both the initial fraction and the foldover fraction are divided into 2,
4, or 8 blocks each.

Mee and Xiao (2008a) discussed the following example in detail. Jones,
Marrs, Young, and Townend (1995) utilized a 32-run (215−10) fractional fac-
torial with generators F = BCE, G = ACE, H = ABC, I = BDE, J
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= ADE, K = ABD, L = ABCDE, M = ACD, N = BCD, and O =
CDE to investigate the forming process for ceramic composite furnace lin-
ings. Using Lenth’s PSE, the initial fraction showed conclusively only three
main effects. Six of the next seven largest estimates were two-factor interac-
tions. Two follow-up designs seem worthy of consideration. First, since the
three large main effects explain 67% of the variation, one might use steepest
ascent to extrapolate in these factors, seeking further improvement in mass.
Alternatively, if extrapolation is not feasible, one might consider a full foldover
fraction, in order to split the 15 sets of aliased interactions into 30 smaller
sets, as well as to improve the precision of the estimates. By adding another 32
runs, one would have 15 df for main effects, 30 df for two-factor interactions,
1 df for blocks, and the rest for error (assuming no higher-order interactions).
For the 215−10, any foldover reversing one (two) column eliminates 28 (44)
length-4 words. However, by reversing five columns, as recommended in Ta-
ble 9.5, one may eliminate 60 length-4 words, and split every alias chain of
length 7 into chains of length 3 and 4. Since we have several prominent main
effects, such a foldover fraction is much preferred to one that makes the 14
interactions for 1 factor clear.

9.5.3 Choosing which half of the foldover

When the initial fraction provides adequate precision, running just half of a
foldover fraction, as in Table 9.2, is a useful strategy for augmenting resolution
IV designs. For Table 9.2, the foldover fraction was split using factor F, with
the choice to omit the treatment combinations with F = −1 and to run only
those with F = 1. Mee and Peralta (2000) refer to this subset of the foldover
fraction as “ss = F+.” For even resolution IV designs, one may “subset” on
any one of the factors, and the resulting semifold fraction provides the same
estimable two-factor interactions as if the full foldover were performed (see
Mee and Xiao 2008a). Recall from Section 7.2.2 that all resolution IV designs
with k > (5/16)N are even. These are the designs for which semifolding is
most appropriate. Generally, the subset of choice corresponds to the preferred
level of a prominent factor.

9.6 Optimal Design Augmentation

Adding a foldover fraction to an initial fractional factorial design cannot sep-
arate a chain of aliased effects into more than two pieces. Therefore, adding a
foldover fraction or even a semifold fraction seems ill-suited for the following
situation that appeared originally in Box, Hunter, and Hunter (1978, p. 402),
with four aliased interactions that require estimates. The strategy presented
here is based on the D-optimal design criterion, which chooses augmenting
treatment combinations that maximize the determinant of the information
matrix X′X, where X is the model matrix for a user-specified model. For a
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detailed account of optimal design, see Atkinson and Donev (1992) or Atkin-
son, Donev and Tobias (2007).

Eight factors for an injection molding process were varied according to a
28−4 design to determine their effect on some shrinkage measurement. Fol-
lowing Meyer, Steinberg, and Box (1996), we denote the factors as A–H, cor-
responding to Mold temperature, Moisture content, Holding pressure, Cavity
thickness, Booster pressure, Cycle time, Gate size, and Screw speed, respec-
tively. The design and shrinkage measurements appear in Table 9.6.

Table 9.6. Injection molding experiment from Box, Hunter and Hunter
(1978)

A B C D E F G H y
−1 −1 −1 1 1 1 −1 1 14.0

1 −1 −1 −1 −1 1 1 1 16.8
−1 1 −1 −1 1 −1 1 1 15.0

1 1 −1 1 −1 −1 −1 1 15.4
−1 −1 1 1 −1 −1 1 1 27.6

1 −1 1 −1 1 −1 −1 1 24.0
−1 1 1 −1 −1 1 −1 1 27.4

1 1 1 1 1 1 1 1 22.6
−1 −1 −1 −1 −1 −1 −1 −1 22.3

1 −1 −1 1 1 −1 1 −1 17.1
−1 1 −1 1 −1 1 1 −1 21.5

1 1 −1 −1 1 1 −1 −1 17.5
−1 −1 1 −1 1 1 1 −1 15.9

1 −1 1 1 −1 1 −1 −1 21.9
−1 1 1 1 1 −1 −1 −1 16.7

1 1 1 −1 −1 −1 1 −1 20.3

Fitting a saturated model and sorting the estimates, we have overwhelm-
ing evidence for two main effects and a linear combination of four interactions
(see Table 9.7). We conclude that “+1” Holding pressure and “−1” Booster
pressure produce high shrinkage. (Since experience suggests that raising hold-
ing pressure should decrease shrinkage and the levels for the factors were not
reported, perhaps the lower holding pressure was actually assigned to C = 1.)
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Table 9.7. Injection molding experiment estimates with Lenth t statistics

Term Estimate Lenth t
C 2.75 7.33
AE=BF=CH=DG 2.30 6.13
E −1.90 −5.07
H 0.60 1.60
AC=BG=DF=EH 0.45 1.20
A −0.35 −0.93
AB=CG=DH=EF −0.30 −0.80
AH=BD=CE=FG −0.30 −0.80
G 0.30 0.80
AD=BH=CF=EG −0.20 −0.53
AF=BE=CD=GH −0.15 −0.40
D −0.15 −0.40
AG=BC=DE=FH −0.10 −0.27
B −0.05 −0.13
F −0.05 −0.13

The highly significant estimate for AE and its aliases prompts the need for
follow-up runs. Effect heredity assumptions would suggest that the large esti-
mate is likely due to CH or AE rather than BF or DG. However, rather than
assume the later two interactions are inactive, a four-run follow-up experiment
was conducted for which the CH, BF, and DG contrasts are orthogonal to
one another and with AE = +1. The four new treatment combinations and
response values are shown in Table 9.8.

Table 9.8. Follow-up injection molding experiment from Box, Hunter and
Hunter (1978, p. 414)

A B C D E F G H y
−1 1 1 1 −1 −1 −1 1 29.4
−1 1 −1 −1 −1 1 1 1 19.7

1 1 −1 −1 1 −1 −1 1 13.6
1 1 1 1 1 1 1 1 24.7

This follow-up design provides three additional df for interactions, plus a
block effect. Fitting a model containing AE and its three aliases, the estimate
for CH stands out as the only active interaction among the four. The fitted
model is given in Table 9.9, where the standard errors are based on the MSE
= 1.2133 with 6 df (from omitting all other two-factor interactions).
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Table 9.9. Reduced model after follow-up runs

Term Estimate Std Error t-Ratio p-Value
Intercept 19.75 0.28 71.72 0.000
Block 1.50 1.40 1.07 0.326
A −0.35 0.28 −1.27 0.251
B −0.05 0.28 −0.18 0.862
C 2.75 0.28 9.99 0.000
D −0.15 0.28 −0.54 0.606
E −1.90 0.28 −6.90 0.000
F −0.05 0.28 −0.18 0.862
G 0.30 0.28 1.09 0.318
H 0.60 0.28 2.18 0.072
AE 0.05 1.20 0.04 0.968
BF 0.10 0.67 0.15 0.887
DG −0.45 0.67 −0.67 0.529
CH 2.60 0.67 3.85 0.008

Although this follow-up design was apparently successful at isolating one
interaction, it provides very poor precision for AE, with standard error
σ̂/(0.84)1/2 = 1.20. A better follow-up design could have been obtained by
requesting the additional four runs that would maximize the determinant of
X′X for the model in Table 9.9. The results are not unique, but one such D-
optimal augmentation is in Table 9.10. The four predicted values for each new
treatment combination differ by ±2.3 based on which interaction is included
in the model. If these treatment combinations would have been performed
as the four-run follow-up, the variances for the four interactions would have
ranged from σ2/(3.636) to σ2/(5.3̄), roughly half what they were based on
Box, Hunter, and Hunter’s follow-up runs.

Table 9.10. D-Optimal follow-up injection molding experiment

ŷ from Model with:
A B C D E F G H bAE bBF bDG bCH

1 1 −1 −1 1 1 1 1 18.0 18.0 13.4 13.4
−1 −1 −1 −1 −1 1 −1 1 22.0 17.4 22.0 17.4

1 1 −1 1 −1 1 1 1 16.9 21.5 21.5 16.9
1 1 −1 −1 −1 −1 1 −1 16.1 16.1 16.1 20.7

Mitchell (1974) provided an early example of D-optimal augmentation
of fractional factorial designs. His Example 4 involves augmentation of the
resolution IV 27−3 with 14 extra runs (the minimum number) in order to
estimate all two-factor interactions. Optimal design algorithms do require that
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we specify a particular model of interest. Although this is generally reasonable
for design augmentation, alternative approaches have been proposed that do
not completely specify the model of interest. Instead, they utilize a Bayesian
perspective and various effect heredity assumptions. The Bayesian approach
advocated by Meyer, Steinberg, and Box (1996) selected follow-up designs
intended to identify which factors are active, as distinct from identifying which
terms are active. The discussion by Chipman and Hamada (1996) highlights
this distinction; see also Jones and DuMouchel (1996).

The role of effect heredity assumptions must not be overlooked for these
Bayesian approaches. For the injection molding example just considered, the
negligible estimates for B, D, F, and G essentially exclude BF and DG
from further consideration, if the Bayesian prior assumes that the only likely
interactions are those involving at least one active main effect. By contrast,
the D-optimal follow-up design in Table 9.10 entertained the possibility of any
of these four interactions.

Section 2.10 addressed the problem of analyzing data when a few treatment
combinations are missing from an intended full factorial design. Missing obser-
vations from a fractional factorial are somewhat more problematic. D-Optimal
augmentation provides a means of simultaneously repairing such experiments
and resolving aliasing among potential effects. Although not specific to two-
level designs, Hebble and Mitchell (1972) discussed D-optimal augmentation
to both repair and extend a design.

9.7 Adding and Dropping Factors

Foldover designs involve follow-up experiments using the same factors and
levels as an initial experiment. Semifolding as described in Section 9.5 involved
a follow-up experiment in which one factor is dropped, in that its level is
fixed. Gilmour and Mead (1996) discussed fixing one or more factors at a
preferred level in subsequent stages of experimentation. The same ideas apply
in reverse—that is, when a variable that was fixed in the initial experiment
is chosen as a factor to be varied in a subsequent experiment. When this is
done, the fixed level in the initial experiment should be one of the two levels
for the new factor in the follow-up experiment. Alternatively, for continuous
factors, the new levels may be centered around the original fixed level.

The idea behind Gilmour and Mead’s (1996) work is that the experiments
are conducted separately in time (i.e., in blocks) but are to be analyzed in
combination. Dropping seemingly irrelevant factors and including new fac-
tors is surely a common practice. For instance, Lai, Pan, and Tzeng (2003),
discussed previously as Example 6.2, dropped Ammonium sulfate and added
Glycerol in their second experiment (see Table 6.6). However, they did not
think to analyze the combined data. As we learned from Table 6.9, analyzing
the combined data can be quite enlightening.
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Fractional Factorial Designs with
Randomization Restrictions

Run order restrictions were discussed for full factorial designs in Chapter 3.
Here we consider how to conduct fractional factorials as randomized block or
split-unit experiments. The sections are as follows:

Section 10.1. Randomized Block Designs for Fractional Factorials

Section 10.2. Split-Unit Designs for Fractional Factorials

Section 10.3. Analysis of Four Fractional Factorial Experiments with Ran-
domization Restrictions

Section 10.4. Sequences of Fractional Factorial Designs

10.1 Randomized Block Designs for Fractional Factorials

Regular fractional factorial design of resolution III or higher may be conducted
as a randomized block design rather than as a completely randomized design.
To conduct the experiment in two blocks, one simply chooses one factorial
effect contrast that is not aliased with any lower-order effects and uses it to
split the design into two blocks. For instance, consider a 26−2 example with
generators E = ABC and F = BCD. The defining relation and 15 contrasts
are

I = ABCE = BCDF = ADEF A = BCE = ABCDF = DEF
B = ACE = CDF = ABDEF C = ABE = BDF = ACDEF
D = ABCDE = BCF = AEF E = ABC = BCDEF = ADF
F = ABCDF = BCD = ADE AB = CE = ACDF = BDEF
AC = BE = ABDF = CDEF AD = BCDE = ABCF = EF
AE = BC = ABCDEF = DF AF = BCEF = ABCD = DE
BD = ACDE = CF = ABEF BF = ACEF = CD = ABDE
ABD = CDE = ACF = BEF ACD = BDE = ABF = CDE
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344 10 Fractional Factorial Designs with Randomization Restrictions

Either ABD or ACD should be utilized to partition the 16 treatment combi-
nations into 2 eight-run miniexperiments (i.e., blocks). In Section 3.3.2 we saw
that a full factorial is partitioned into two blocks using the highest-order inter-
action. Analogous to that simpler result, for fractional factorials one chooses
a contrast with no lower-order effects in its alias set. Since all four-, five-,
and six-factor interactions are aliased with main effects or two-factor interac-
tions for this 26−2, the best choice for creating the blocks is a set of aliased
three-factor interactions.

Bisgaard (1994) provided a simple introduction to the task of choosing
blocking for fractional designs with 8 or 16 runs. Bisgaard then described one
six-factor, 16-run experiment that was part of a long series of experiments
involving printed circuit boards. The particular experiment involved a hot air
solder leveler (HASL). Because the HASL process was prone to disturbances
from external conditions, the 16-run experiment was divided into four blocks
of size four, in hopes of being able to maintain consistency of external condi-
tions across the four runs within each block. The fractional factorial chosen
was identical to the one above. The four blocks were constructed by confound-
ing ABD and ACD with blocks. This is the best choice, since it sacrifices
information for only one alias set involving two-factor interactions—the set
AE = BC = ABCDEF = DF—since BC is the generalized interaction
of ABD and ACD. Whereas a full factorial in four blocks confounds three
factorial effects with blocks, a fractional factorial in four blocks confounds
three alias sets of effects with blocks. Since this 26−2 design is a one-fourth
fraction, there are a total of 3(4) = 12 factorial effects confounded with block
differences.

The best choice of design generators may be different for fractional facto-
rials in blocks than for completely randomized fractional factorials. Consider,
for instance, a 16-run five-factor experiment in four blocks. Figure 10.1 con-
siders two possible designs. Design 1 is the resolution V 25−1 design blocking
on the three two-factor interactions CE, DE, and CE(DE) = CD. Design 2
is the resolution IV 25−1 design (with E = ABC), blocking on ACD, BCD,
and ACD(BCD) = AB. Design 1 confounds three two-factor interactions
with blocks, whereas Design 2 only confounds two two-factor interactions with
blocks. However, Design 1 provides 12 df for main effects and two-factor inter-
actions, one more than Design 2. Surprisingly, by several criteria proposed in
the literature, Design 2 is preferred to Design 1. We now summarize and com-
pare the criteria for ranking fractional factorial designs in blocks, advocating
a criterion that does favor Design 1.

Suppose a regular 2k−f fraction is to be conducted in 2b blocks of size
2k−f−b. Then the defining relation for this (1/2)f fraction will contain 2f − 1
factorial effects, and (2b−1)2f factorial effects will be confounded with blocks.
The word length pattern (wlp) of the defining relation is used to summarize
the aberration of the fractional factorial; see Section 5.2.5. Similarly, it is
useful to create a word length pattern for the factorial effects confounded
with blocks:
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Fig. 10.1. Comparison of two five-factor designs in four blocks of size 4

wlpb = (A2.1, A3.1, ..., Ak.1), (10.1)

where Aj.1 denotes the number of j-factor interactions confounded with
blocks. For Design 1, wlpb = (3, 3, 0, 0), whereas for Design 2, wlpb = (2, 4,
0, 0).

The dilemma in ranking these two designs is that Design 1 has higher
resolution than Design 2, but it has a worse blocking word length pattern.
Neither design dominates the other. For this reason, both are listed by Sun,
Wu, and Chen (SWC) (1997) as admissible designs. SWC tabulated fractional
factorial designs for up to nine factors for run sizes 128 and less, where ad-
missible designs are identified by the labeling k − f.i/Bb.1, where i denotes
the ranking in terms of aberration for the 2k−f fraction, and Bb.1 indicates
that this design has the best wlpb among all blocking schemes for putting this
fraction in 2b blocks. For instance, Designs 1 and 2 are labeled 5-1.1/B2.1
and 5-1.2/B2.1, respectively, by SWC. Any design listed with the suffix Bb.2
is inadmissible in that a better wlpb is possible for this fraction.

Several authors have proposed means of combining the fractional factorial
wlp and wlpb into a single criterion to use in defining minimum aberration
blocked fractional factorial designs. The following four sequences have been
featured the most prominently, with the most recently proposed criteria listed
first:

• W1 = [A3, A4, A2.1, A5, A6, A3.1, A7, A8, A4.1, ...];
• W2 = [A3, A2.1, A4, A5, A3.1, A6, A7, A4.1, ...];
• WCC = [A3 + A2.1/3, A4, A5 + A3.1/10, A6, A7 + A4.1/35, ...];
• WSCF = [A3, A2.1, A4, A3.1, A5, A4.1, A6, A5.1, ...].
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The W1 and W2 sequences were proposed by Cheng and Wu (2002); note that
W1 weights the word length pattern for the fractional factorial design the most
heavily. Actually, W2 was mentioned previously by Chen and Cheng (1999),
but they favored WCC over W2 based on an estimation capacity argument.
Sitter, Chen, and Feder (1997) proposed the fourth sequence. However, Chen
and Cheng persuasively criticized WSCF for placing A4.1 before A6; Chen and
Cheng showed an example where WSCF prefers a design that aliases pairs of
three-factor interactions over a design for which all effects up to three-factor
interactions are estimable. Thus, WSCF contradicts the hierarchical principle
that values lower-order effects over higher-order effects, so we consider it no
further.

For five factors in four blocks of size 4, Design 1 in Figure 10.1 is preferred
by W1, whereas Design 2 is preferred by W2 and WCC . This is typical of
these criteria, in that W1 has a stronger aversion to aliasing caused by words
of length 2j in the defining relation, whereas W2 and WCC have a stronger
aversion to confounding j-factor interactions with blocks. This is the essential
difference in Designs 1 and 2. Cheng and Wu (2002) argued that W2 is justified
for situations where follow-up experiments are expected, since they will likely
undo the worst aliasing among factorial effects. However, if no follow-up design
is anticipated, or block effects are not more likely than two-factor interactions
among the factors, then the W1 sequence is preferred. Indeed, I would prefer
Design 1 in most situations, with its higher resolution, even though by blocking
one forfeits information about three two-factor interactions.

To illustrate again the difference among these criteria, consider the case
of nine factors in four blocks of size 8. The minimum aberration design 9-4.1
listed in Table G.3 is optimal under criterion W1 if one blocks on columns 3
(AB) and 29 (ACDE). As reported by Xu and Lau (2006, p. 4102), the opti-
mal design under the W2 criterion is obtained by blocking a higher aberration
design. Figure 10.2 contrasts these two designs. W1 favors the design on the
left because it has smaller A4 (6 vs. 8), whereas W2 favors the design on the
right because it only confounds two two-factor interactions with blocks. How-
ever, this better confounding with blocks comes at a serious price, requiring an
even resolution IV design with only 15 df for two-factor interactions, whereas
the minimum aberration design provides 21 df for two-factor interactions and
even has eight clear two-factor interactions.

The W1 sequence begins with A3 and A4. Therefore, the W1 criterion cor-
responds closer to the (unblocked) minimum aberration designs of Appendix
G than do the W2 and WCC criteria. For N = 16, 32, 64, and 128 the minimum
aberration designs are W1 optimal except for the following cases:

• N = 16, in 8 blocks of size 2, for k = 5: use a resolution IV fraction.
• N = 32, in 16 blocks of size 2, for k = 7, 8, 9, 10: an even resolution IV

design is used, not the minimum aberration designs, since otherwise the
blocks would confound a main effect.
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Fig. 10.2. Comparison of two nine-factor designs in four blocks of size 8

• N = 32, in 8 blocks of size 4, for k = 21, where a weak minimum aberration
design is slightly better for blocking.

• N = 64, in 32 blocks of size 2, for k = 8, ..., 20: an even resolution IV
design is used, not the minimum aberration designs, since otherwise the
blocks would confound a main effect.

• N = 64 in 16 or 32 blocks, for k = 7: the resolution VI design is used.
• N = 64 in 8 blocks of size 8, for k = 15: a weak minimum aberration

design is used.
• N = 128 in 64 blocks of size 2, for k = 10, ..., 40: an even resolution IV

design is used, not the minimum aberration designs, since otherwise the
blocks would confound a main effect.
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• N = 128, for k = 12, 13, 17, 18, 21, 23, 35 and various block sizes: a weak
minimum aberration design is used.

• N = 128 in blocks of size 4 or 8, for k = 8: the resolution VII design is
used.

• N = 128 in blocks of size 4, for k = 25, 28, 29: the design with second
lowest A4 is used.

In the remaining cases, the minimum aberration design listed in Table G
provides the fractional factorial that is optimal for blocking according to the
W1 criterion. In Appendix H, we list the optimal blocking according to the
W1 criterion. These results were first obtained by Cheng and Wu (2002) for N
= 16, by Xu and Lau (2006) for designs of size 32 and 64, and by Xu (2008)
for N = 128 up to k = 40. For situations where one of the other criteria is
preferred, see the tables in Sun, Wu, and Chen (1997) or Xu and Lau (2006).

To illustrate the use of Appendix H, consider the situation of experiment-
ing with seven factors, where blocks of size 4 are dictated by the circumstances
(i.e., batches of a critical raw material, or the time required to perform the
runs within a day impose this constraint). Then the possibilities, depending
on the number of blocks to be performed are as follows:

• Four blocks of size 4: Design 7-3.1, blocking on columns 3 and 5.
• Eight blocks of size 4: Design 7-2.1, blocking on columns 5, 11, and 19.
• Sixteen blocks of size 4: Design 7-1.2 (G = ABCDE) blocking on columns

3, 12, 21, and 33 (AB, CD, ACE, AF). Five of the 21 two-factor inter-
actions are confounded with blocks.

• Thirty-two blocks of size 4: 27 with blocking as specified in Appendix E.
Once again, 5 of the 21 two-factor interactions are confounded with blocks.

For 16 runs, the minimum aberration design from Table G.2 uses columns 7,
11, and 13 as generators; blocking on columns 3 and 5, three of the seven sets
of aliased two-factor interactions are confounded with blocks

AB = CE = DF ← Block
AC = BE = DG ← Block
AD = BF = CG
AE = BC = FG ← Block
AF = BD = EG
AG = CD = EF
BG = CF = DE

This design would be primarily for estimating main effects; the aliasing among
two-factor interactions and confounding of nearly half of these with blocks
severely limits ability to identify interaction effects.

If eight blocks of size 4 are possible, then the 21 two-factor interactions
are spread among 18 orthogonal contrasts, 4 of which are confounded with
blocks:
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AD AE AB = CF
AG BD AC = BF ← Block
BE BG AF = BC
CD CE DE ← Block
CG DF DG ← Block
EF FG EG ← Block

This design is much better than the 16-run design for estimating two-factor
interactions. From its 31 df, the 24 df not confounded with blocks permit
estimation of the 7 main effects and 14 two-factor interactions. One may
analyze data from this experiment by constructing two normal probability
plots—one for the 24 contrasts not confounded with blocks and one for the
7 contrasts confounded with blocks, assuming block effects may be viewed as
random. The second of these normal probability plots analyzes the interblock
information, to determine whether one or more of the interactions confounded
with blocks might be active.

Performing a 27−1 or a full 27 in blocks of size 4 would eliminate the alias-
ing among two-factor interactions, but each would still confound five two-
factor interactions with blocks. Neither of these options seems worthwhile. If
increased precision is required or three-factor interactions are believed impor-
tant, one should use partial confounding (i.e., using different blocking schemes
for two or more 27−2 fractions). Butler (2006) provided some theory for such
design construction and considered similar examples for up to six factors.

The blocked designs in Appendix H avoid confounding any main effects
with blocks. Thus, the blocks of size 2 are always mirror-image pairs (i.e.,
with treatment combinations x and −x). Only even fractional factorial de-
signs can be performed in such blocks, since even/odd fractional factorials do
not contain mirror-image treatment combinations. For these blocked designs,
two-factor interactions are estimable only from interblock information. Such
information should not be ignored. The N/2 odd-effect estimates for a satu-
rated model should be plotted in one normal plot, and the N/2−1 even-effect
estimates should be plotted in a second normal plot.

In general, for a regular 2k−f factorial in 2b blocks, there are 2k−f − 2b

contrasts orthogonal to blocks and 2b − 1 contrasts confounded with blocks.
Unless block effects are expected to be negligible, it is recommended that
Lenth’s PSE be calculated using only the 2k−f − 2b estimates not confounded
with blocks. Loeppky and Sitter (2002) presented critical values for Lenth t
statistics calculated using a PSE based on 2k−f − 2b contrasts (for designs
of size 64 and smaller). When there are eight or more blocks, computing a
separate PSE from the 2b estimates confounded with blocks is recommended,
in hopes of identifying large interaction effects that were confounded with
blocks. This analysis assumes random block effects. Section 10.3.1 illustrates
such an analysis.
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10.2 Split-Unit Designs for Fractional Factorials

In Section 3.5, we considered full factorial designs conducted as split-unit
designs, where the treatment combinations for the whole-unit factors were
randomly assigned to groups of experimental units referred to as whole units,
and then within each whole unit, the treatment combinations for the remain-
ing factors were randomly assigned to the smaller, split units. Here we consider
the same type of nested randomization, but for fractional factorial designs. For
the blocked fractional factorial designs considered in Section 10.1 and listed
in Appendix H, we only considered blocking schemes where the main effect
contrast for each factor is orthogonal to blocks; that is, each individual block
is a fractional factorial with resolution II or more. For split-unit designs, each
whole unit is a block of split-unit runs with resolution I, since whole-unit fac-
tors are held fixed within each whole unit. Thus, different designs are required
to provide fractional factorial designs with split-unit randomization.

Addelman (1964) was the first to provide tables of split-unit fractional
factorial designs for the convenience of practitioners. However, Addelman’s list
is quite limited, presenting only 40 designs. Specifying a split-unit fractional
factorial design entails specifying the following:

• kw, the number of whole-unit factors
• ks, the number of split-unit factors
• Nw, the number of whole units
• Ns, the number of split-unit runs per whole unit.

The requirements are for a particular fractional factorial design with k =
kw + ks factors, N = Nw ×Ns runs, and two additional properties. First, the
number of distinct treatment combinations for the whole-unit factors must
not exceed Nw. Second, no split-unit factor may be aliased with a contrast
that is constant within whole units.

For an initial example, consider the situation where 7 whole-unit factors
are explored using 16 whole-unit treatment combinations and an additional 8
factors are varied in each group of Ns = 4 runs per whole unit. The required
design involves 15 factors in 64 runs. However, not just any 215−9 design can
be employed. For instance, the minimum aberration 215−9 from Appendix
G, with A4 = 30, is not suitable, since every seven-factor projection results
in more than 16 treatment combinations. Thus, although this fraction might
accommodate a split-unit design with 32 whole units of size 2, it cannot pro-
duce a design with 16 whole units of size 4. Kulahci, Ramirez, and Tobias
(2006) report the minimum aberration split-unit design for this situation to
be the fourth best 215−9 design in terms of aberration, with wlp = (0, 33,
54, ...). It can be constructed using columns 7, 11, and 13, plus the first four
basic columns as whole-unit factors, and columns 19, 21, 35, 37, 57, and 58,
plus the last two basic columns as split-unit factors. Three other designs have
lower aberration, but none have a seven-factor projection with just 16 distinct
treatment combinations. Thus, the design obtained by Kulahci et al. (2006)
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is the minimum aberration split-unit design for this situation. This design
has six clear two-factor interactions. Four of the clear interactions involve two
split-unit factors and so are denoted S ∗ S interactions. The other two clear
interactions are W ∗ S interactions; that is, they are the interaction of one
whole-unit factor and one split-unit factor. This is the first of three alternative
split-unit designs listed in Table 10.1. We now consider two more alternatives.

Table 10.1. Alternative fractional factorial split-unit designs with a 27−3

whole-unit design and a 215−9 combined design

Criterion A4 M alp
Minimum aberration 33 43 6, 19, 15, 0, 2, 1
Maximum degrees of freedom 34 45 12, 18, 5, 9, 0, 1
Maximum clear two-factor interactions 55 42 27, 0, 0, 0, 12, 3

As we saw in Chapter 7, there are various criteria besides minimum aber-
ration for ranking resolution IV designs. One other criteria is to maximize M ,
the degrees of freedom for two-factor interactions. The maximum M 215−9 de-
sign may be constructed using columns 7, 11, 13, 19, 21, 25, 35, 60, and 63 as
generators. This design has A4 = 34, one more than the minimum aberration
split-unit design, but it has M = 45 df for two-factor interactions and twice as
many clear two-factor interactions (a1 = 12). We illustrate the construction of
this design, utilizing the notation of Addelman (1964) and others who use the
letters A, B, ... for whole-unit factors and P, Q, ... for split-unit factors. Since
we must have 16 distinct whole-unit factor treatment combinations, factors
A–D are taken as the first four basic factors; using E = ABC, F = ABD,
and G = ACD, we obtain the required 27−3 whole-unit design. Factors P and
Q are assigned to the remaining basic columns, and the other six generators,
which all involve both whole-unit and split-unit factors are used to define R–
W as follows: R = ABE, S = ACE, T = ADE, U = ABF, V = CDEF,
and W = ABCDEF. This design provides estimation of the 15 main effects,
12 clear two-factor interactions, 23 sets of aliased two-factor interactions, and
3 df for higher-order interactions (BCD plus two split-unit contrasts). The
following combinations of two-factor interactions are estimable:

Seven whole-unit contrasts
AB = CE = DF = PR = QU = VW
AE = BC = FG = RS
AF = BD = EG = RT
AC = BE = DG = PS
AD = BF = CG = PT
AG = CD = EF = ST
BG = CF = DE
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38 Split-unit contrasts
AR = BP = ES = FT DW = FV
AP = BR = CS = DT DV = FW
AS = CP = ER = GT PQ = RU
AT = DP = FR = GS PW = RV
BS = CR = PE PV = RW
BT = DR = PF QW = UV
CT = DS = PG QV = UW
ET = FS = GR GQ
AU = BQ GU
AQ = BU GV
AW = BV GW
AV = BW SQ
CU = QE SU
DU = QF SV
PU = QR SW
CQ = EU TQ
CW = EV TU
CV = EW TV
DQ = FU TW

This is the second design summarized in Table 10.1.
Kulahci et al. (2006) also present the split-unit fractional factorial design

for this situation that maximizes the number of clear two-factor interactions.
This, the last design summarized in Table 10.1, has 27 clear two-factor inter-
actions, but A4 = 55 and M = 42, both of which are inferior to the other
options. All three designs summarized in Table 10.1 use the same 27−3 design
for the whole-unit factors with seven length-4 words among A–G. They dif-
fer in the remaining six generators. For the maximum df design with aliasing
shown above, eight S ∗S interactions appear in the whole-unit contrasts, since
they are aliased with W ∗W interactions. The minimum aberration and maxi-
mum clear designs alias 7 and 15 S ∗S interactions with whole-unit contrasts,
respectively.

Which criterion is best in general? First, maximum clear designs are not
relevant unless the particular set of clear two-factor interactions can accommo-
date the interactions of greatest interest. Product array designs discussed later
in this section sometimes provide the maximum number of clear two-factor-
interactions for a particularly relevant set of interactions; Section 10.3.2 ana-
lyzes such a design. The maximum clear 215−9 design provides clear estimates
for all two-factor interactions involving two split-unit factors. All other two-
factor interactions are aliased in sets of size 5 or 6. Thus, for many situations,
this is a very poor design, and the maximum M and minimum A4 designs
are much preferred. This author prefers designs that maximize the number of
estimable two-factor interactions, especially when A4 is close to the minimum
achievable for a split-unit design. Kulahci et al. (2006) advocated custom split-
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unit designs that incorporate the specific constraints and estimation priorities
of the application. Such design construction typically requires the assistance
of a knowledgeable statistician, who knows how to utilize lists of alternative
fractional factorial designs and/or design construction software. Kulahci et
al. (2006) utilized SAS R© Proc Factex to find alternate designs. One may also
construct these designs by writing a computer program that specifies a par-
ticular whole-unit factor design and the overall design size Nw ×Ns, identifies
the eligible columns to use as generators for the split-unit factors, and then
repeatedly chooses generators at random; each randomly generated design is
evaluated and the best few are kept for further consideration.

Bingham and Sitter (2001) discuss at length many issues regarding the
choice of a split-unit design. For each combination of parameters (kw, Nw,
ks, Ns) considered, one must consider what fractional factorial designs are
possible. Existing lists of split-unit designs do cover many cases, especially for
Nw × Ns = 16 and 32. Bingham and Sitter (1999) list minimum aberration
fractional factorial split-unit designs of size 16. See also Mukerjee and Wu
(2006, Table 8.1). Huang, Chen, and Voelkel (1998) provided a table of designs
of sizes 16, 32, 64, and 128, but not all their designs are minimum aberration.
For example, Huang et al. (1998) listed a 215−9 design with A4 = 49 and
M = 30, which is clearly inferior to the minimum aberration split-unit design
noted in Table 10.1. Bingham, Schoen, and Sitter (2004, Corrigendum 2005)
listed minimum aberration split-unit designs with a small number of whole-
unit factors (specifically, kw ≤ 3, Nw = 8 or 16, and Ns = 2 or 4); their original
Table 2 has several errors, so the entire corrected table was published in a
2005 corrigendum. McLeod and Brewster (2004) provided many similar 32-run
designs. Bingham and Sitter (2001) listed 16- and 32-run designs that seek as
a secondary criterion to minimize the number of S ∗S interactions confounded
with blocks. Yang, Zhang, and Liu (2007) provide theoretical results and list
a few designs for large kw and small Ns (2 or 4).

Robust parameter design is one arena where split-unit designs often natu-
rally arise (Box and Jones 1992, Bisgaard 2000). In these cases, a simple and
sometimes efficient design is to select one fractional factorial design for the
factors that can be conveniently controlled, and a second fractional factorial
design for the “noise factors”—inputs to which one would like to make the
process insensitive. If every treatment combination of the control factors is
assigned the same combinations for the noise factors, then the design is a
product array and every Control*Noise interaction is clear of aliasing with
main effects and other two-factor interactions, provided the main-effects-only
model is estimable. The example of Section 10.3.2 has this form.

For certain situations, split-unit designs can also be constructed from or-
thogonal arrays that are not regular 2k−f designs. For Ns = 2, Tyssedal and
Kulahci (2005) proposed designs of the form

[
Dw Ds

Dw −Ds

]
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where [Dw, Ds] denotes the partitioning of any k-factor orthogonal array into
kw columns for the whole-unit factors and the remaining ks = k−kw columns
for the split-unit factors. See also Kulahci and Bisgaard (2005), who considered
product array designs involving regular and nonregular designs of the form
2kw−f × OA(Ns, 2ks , 2) and OA(Nw, 2kw , 2) × 2ks−f . They also considered
designs that are half (or quarter) of a product array, such as designs where
half the whole-unit factor treatment combinations are assigned the split-unit
design Ds and the other half are assigned the foldover design −Ds. Analysis
of these designs involves the complication of partial aliasing for the whole-unit
and/or split-unit contrasts.

JMP’s Custom Design platform permits flexibility in the choice of kw, ks,
Nw, Ns, and the particular model of interest. When Nw and Ns are powers of
2, optimal design algorithms will choose a regular fractional factorial design for
some models; see Goos (2002). JMP’s Custom design algorithm accommodates
searches for split-split-unit designs as well.

Regular fractional factorial designs may be used to construct both split-
split-unit designs and multiway split-unit designs, as was done in Section 3.6
for full factorial treatment structures. The split-split-split-unit Example 3.7
was actually a fractional factorial design; it was presented in Chapter 3 as
a full 24 rather than as a 26−2 by ignoring two insignificant factors. Schoen
(1999) described the construction of a split-split-unit design to investigate
cheese making. The fractional factorial design and its analysis are detailed
in Section 10.3.3. Miller (1997) discussed how to construct and analyze two-
way split-unit designs (also known as strip-plot or strip-block designs) for
fractional factorials. Miller’s 210−5 numerical example is reanalyzed Section
10.3.4. For construction and analysis of three-way split-unit (i.e., strip-strip-
block) designs and multiway split-unit designs, see Paniagua-Quiñones and
Box (2008, 2009), Bates and Mee (1998), and Bingham et al. (2008).

10.3 Analysis of Fractional Factorials with
Randomization Restrictions

10.3.1 Example 10.1: Foundry experiment

Young, Abraham, and Whitney (1991) presented a wonderful example of using
experimental design for process improvement in the course of actual produc-
tion. A multifactor experiment was conducted over a period of several months
to improve the quality of crankshafts. The experiment’s primary objectives
were to decrease hardness variation in the crankshafts while preventing de-
fects due to gas holes and incomplete nodularity. To assess variability, it was
determined that several molds would be examined for each run of the exper-
iment and that multiple hardness measurements would be taken on each of
the six crankshafts within each mold. Two additional objectives were to see
(i) whether throughput might be increased by raising the line speed without
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causing any problems and (ii) whether new hardness specifications might be
achieved without the use of tin and chrome in the alloy.

Each hour of production the iron casting process required 55 tons of iron
and 300 tons of sand (used to pack around the molds). Six factors related to
iron chemistry were varied (carbon, silicon, manganese, copper, chrome, and
tin). In addition, pour temperature and line speed were varied, along with
compactibility of the sand and the percentage of clay mixed with the sand.
The authors noted that “Once it is established that there are many potential
causes of the quality problem(s) under study and that, on the basis of available
data, there is not a clear prioritization of which are the most important, a
designed experiment is the most efficient way to proceed.” The article does
not mention the exact levels used, other than that the current line speed and
a 20% increase in speed were selected. Other choices of levels were made with
the intent of seeing an effect without causing any runs with excessive scrap.

Given the huge volume of sand required, it was decided that the clay
percentage factor must be held fixed each day. Given this constraint, four
treatment combinations could be explored in an 8-hour shift. Recall that once
each new set of factor settings is achieved, the process must operate long
enough to adequately sample short-term mold-to-mold variation. In order to
estimate the main effects and several two-factor interactions, it was decided
that a 32-run experiment was needed. Thus, 8 different days were required.
Since some potentially important sources of variation vary little within a week,
it was decided to spread out the 8 blocks over a two-month period.

Consider now two different means of handling clay percentage. If clay
percentage is to remain a factor in the experiment, then it must be confounded
with days and we must construct a split-unit design with kw = 1, Nw = 8, ks =
9, and Ns = 4. The minimum aberration design with A4 = 10 and M = 21 is
suitable, provided we confound clay percentage and six two-factor interaction
contrasts with blocks. Alternatively, we might conduct a 29−4 design in eight
blocks of size 4 as prescribed in Appendix H. If clay percentage varies from
block to block (perhaps as a result of natural process variation, then its effect
is confounded with other changes over time. The description by Young et
al. (1991) is somewhat ambiguous regarding which of these strategies was
adopted.

Young et al. (1991) do not provide the data for any of the responses con-
sidered. However, one can reconstruct data to match the contrast totals they
do provide. Using their factor labels B–J for the optimal W1 blocked 29−4

design from Appendix H, a design that matches the description by Young et
al. may be constructed as follows:

• Assign the factors Silicon (C), Carbon (B), Manganese (D), Tin (G), and
Copper (H) to the five basic columns 1, 2, 4, 8, and 16 respectively.

• Use column 15 for Line speed, F = CBDG.
• Use column 19 for Compactibility, E = CBH.
• Use column 21 for Chrome, I = CDH.
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• Use column 25 for Temperature, J = CGH.
• Construct eight blocks by blocking on columns 3, 5, and 24 (i.e., CB, CD,

and GH).
• If Clay percentage is a factor that is purposely varied, use column 30 to

assign its levels (A = BDGH).

This design, with response values reconstructed to correspond to the contrast
totals in Young et al. (1991), is provided in Table 10.2. The design is arranged
in blocks. We now illustrate the analysis of randomized block and split-unit
experiments using this reconstructed data.

Table 10.2. Reconstructed design and data for Young et al.’s (1991)
foundry example

Block C B D G H F E I J (A) y

1 1 1 −1 1 −1 −1 −1 1 −1 1 392
−1 −1 1 1 −1 1 −1 1 1 1 652
−1 −1 1 −1 1 −1 1 −1 1 1 410

1 1 −1 −1 1 1 1 −1 −1 1 196

2 1 −1 1 1 1 −1 −1 1 1 −1 367
−1 1 −1 1 1 1 −1 1 −1 −1 497
−1 1 −1 −1 −1 −1 1 −1 −1 −1 425

1 −1 1 −1 −1 1 1 −1 1 −1 605

3 −1 1 1 1 1 −1 −1 −1 −1 1 497
1 −1 −1 1 1 1 −1 −1 1 1 305
1 −1 −1 −1 −1 −1 1 1 1 1 389

−1 1 1 −1 −1 1 1 1 −1 1 683

4 −1 −1 −1 1 −1 −1 −1 −1 1 −1 616
1 1 1 1 −1 1 −1 −1 −1 −1 514
1 1 1 −1 1 −1 1 1 −1 −1 356

−1 −1 −1 −1 1 1 1 1 1 −1 344

5 −1 −1 1 −1 −1 −1 −1 1 −1 −1 824
1 1 −1 −1 −1 1 −1 1 1 −1 532
1 1 −1 1 1 −1 1 −1 1 −1 444

−1 −1 1 1 1 1 1 −1 −1 −1 734

6 −1 1 −1 −1 1 −1 −1 1 1 1 369
1 −1 1 −1 1 1 −1 1 −1 1 531
1 −1 1 1 −1 −1 1 −1 −1 1 677

−1 1 −1 1 −1 1 1 −1 1 1 601

7 1 −1 −1 −1 1 −1 −1 −1 −1 −1 419
−1 1 1 −1 1 1 −1 −1 1 −1 555
−1 1 1 1 −1 −1 1 1 1 −1 717

1 −1 −1 1 −1 1 1 1 −1 −1 267

8 1 1 1 −1 −1 −1 −1 −1 1 1 556
−1 −1 −1 −1 −1 1 −1 −1 −1 1 646
−1 −1 −1 1 1 −1 1 1 −1 1 470

1 1 1 1 1 1 1 1 1 1 410
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Since this experiment was conducted in 8 blocks, there are 7 between-block
contrasts and 24 within-block contrasts. If Clay percentage is not purposely
changed, but simply allowed to vary from block to block, then we have a 29−4

design in the factors B–J, and estimates for a saturated model are as given in
Table 10.3. For convenience of interpretation, the estimates are sorted from
largest to smallest. Lenth’s PSE is calculated separately for the 7 between-
block contrasts and the 24 within-block contrasts. All between-block contrasts
are insignificant, and three active main effects are clearly evident among the
within-block estimates.

Table 10.3. Lenth t statistics for Young et al.’s (1991) foundry example

Effects Estimate PSE Lenth t

Between Blocks
GE = BJ 47.0 24 1.96
GI = DJ −26.0 24 −1.08
GH = CJ 24.0 24 1.00
BD = EI −16.0 24 −0.67
BDGH = · · ·− 13.5 24 −0.56
BC = EH 6.0 24 0.25
CD = HI −1.0 24 −0.04

Within Blocks
H −68.5 18 −3.81
D 68 18 3.78
C −65 18 −3.61
CG = HJ −23 18 −1.28
DE = BI 23 18 1.28
CF −19.5 18 −1.08
FG −17 18 −0.94
E −17 18 −0.94
DH = CI −17 18 −0.94
B −16 18 −0.89
BG = EJ 15 18 0.83
DF 13 18 0.72
I −12.5 18 −0.69
BE = CH = DI = GJ 12 18 0.67
HF 10.5 18 0.58
BF 10 18 0.56
G 10 18 0.56
J −8 18 −0.44
EF −7.5 18 −0.42
DG = IJ −7 18 −0.39
F 4.5 18 0.25
FJ 4 18 0.22
FI −2.5 18 −0.14
CE = BH 0 18 0.00
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Table 10.3 illustrates the analysis as a randomized block design. The analy-
sis is essentially the same if Clay percentage is included as a factor confounded
with blocks. If Clay percentage is included as a 10th factor, it must be aliased
with the BDGH interaction; any other choice creates a resolution III design.
The minimum aberration 210−5 design obtained by using the generator A
= BDGH adds AF to the long alias set in Table 10.3 and aliases each of
the other two-factor interactions involving A with a two-factor interaction
involving F; the resulting alias length pattern (alp) has a1 = 20 and a5 = 1.
The interpretation of the estimates is unchanged, since the three statistically
significant estimates only involve main effects.

The minimum aberration 210−5 design is also a maximum M design, since
it is second-order saturated. This same design can accommodate one, two,
three, or four whole-unit factors in eight blocks of four runs. The only differ-
ence in these designs is which effects are confounded with blocks; the aliasing
is unchanged. Bingham, Schoen, and Sitter (2005) listed the split-unit designs
for kw = 1 and 2, and Huang, Chen, and Voelkel (1998) listed the designs for
kw = 3 and 4. In each case, the analysis is performed by computing Lenth’s
PSE separately for the 7 whole-unit contrasts and the 24 split-unit contrasts.
This 210−5 design can also accommodate 5 or 6 whole-unit factors if the num-
ber of whole units is increased to 16 (see Huang et al. 1998). It cannot ac-
commodate 7 (or 8) whole-unit factors even in 16 whole units, because no
27−3 design has aliasing that is embedded in the aliasing for the minimum
aberration 210−5; this becomes obvious by considering the alp for the 7-factor
and 10-factor designs.

10.3.2 Example 10.2: Injection molding robust parameter design
experiment

Engel (1992) briefly described a 10-factor, 32-run injection molding exper-
iment where percent shrinkage was measured. The objective of the experi-
ment was to determine which levels for seven controllable factors would make
percent shrinkage insensitive to fluctuations in the three other factors that
naturally vary during production. The seven controllable factors and three
naturally varying factors are shown in Table 10.4. The 32 treatment combina-
tions and the percent shrinkage for each are shown in Table 10.5 in a format
that emphasizes the structure of the design: a 27−4 design for the control
factors crossed with a 23−1 design for the noise factors. Although this design
is resolution III, and so not maximum resolution for a 210−5 fraction, it has
the maximum number of clear two-factor interactions. (The product of two
saturated main effect designs always produces a combined design with the
maximum number of clear interactions.)



10.3 Analysis of Fractional Factorials with Randomization Restrictions 359

Table 10.4. Factors for Engel’s (1992) injection molding experiment

Controllable Factors Noise Factors
A: Cycle time M: Percent regrind
B: Mold temperature N: Moisture content
C: Cavity thickness O: Ambient temperature
D: Holding pressure
E: Injection speed
F: Holding time
G: Gate size

Table 10.5. Engel’s (1992) injection molding experiment treatment
combinations, with observed percent shrinkage

(M, N, O) treatment combination
A B C D E F G −,−,− −,+,+ +,−,+ +,+,−
−1 −1 −1 −1 −1 −1 −1 2.2 2.1 2.3 2.3
−1 −1 −1 1 1 1 1 0.3 2.5 2.7 0.3
−1 1 1 −1 −1 1 1 0.5 3.1 0.4 2.8
−1 1 1 1 1 −1 −1 2.0 1.9 1.8 2.0

1 −1 1 −1 1 −1 1 3.0 3.1 3.0 3.0
1 −1 1 1 −1 1 −1 2.1 4.2 1.0 3.1
1 1 −1 −1 1 1 −1 4.0 1.9 4.6 2.2
1 1 −1 1 −1 −1 1 2.0 1.9 1.9 1.8

Engel’s work does not describe any unit structure for the design; we do
not know whether this was performed as a completely randomized design or
as a split-unit design. Since ambient temperature could not be randomly as-
signed, we will assume that each noise factor combination (i.e., each column)
represents a whole unit; that is, each time a desired combination of levels for
M, N, and O was achieved, the eight treatment combinations for the control-
lable factors were performed—we will assume—in random order. Thus, this is
a 27−4 design performed four separate times, each time under a different set
of conditions for Ambient temperature and the plastic’s Regrind percentage
and Moisture content. Such a unit structure is much more convenient than
performing this as a completely randomized design. All that is sacrificed is
our ability to test the significance of the whole-unit main effects M, N, and
O. The other 28 effects of interest, namely the 7 control factor main effects
and the 21 Control*Noise interactions, are all estimable as split-unit (i.e.,
within-block) contrasts.

We compute Lenth’s PSE using only the 28 split-unit estimates. These are
arranged in order in Table 10.6. The .05 critical value for Lenth’s t computed
from 28 estimates is cIER

.05 = 2.067, so the estimates for CN, A, and EN are
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statistically significant. We conclude that shrinkage percentage is greater at
the high level for Cycle time. More important for the purpose of the exper-
iment, the effect of Moisture content on shrinkage depends on the levels for
Cavity thickness and Injection speed. No other effects seem to matter. Since
no effects involving M or O are evident, the process seems to be robust to
Percent regrind and Ambient temperature. Depending on the levels of Cavity
thickness and Injection speed, Moisture content may or may not have an ef-
fect. In particular, when C and E are both low (rows 1 and 8 in Table 10.5)
or both high (rows 4 and 5), the bCN and bCE terms effectively cancel and so
the Moisture content can vary without affecting shrinkage percentage.

The analysis just performed is known as response modeling in the robust
parameter design literature. For product array designs such as in Table 10.5,
one may also perform an analysis by computing a performance measure statis-
tic for each control factor combination. For “nominal is best” responses such
as shrinkage percent, log(standard deviation) is commonly used as one per-
formance measure. However, as Steinberg and Bursztyn (1994) pointed out,
such an analysis can be misleading. Since rows 1, 4, 5, and 8 in Table 10.5
all have low Holding time, one might conclude that Holding time is critical to
achieving consistent shrinkage. However, the response modeling analysis does
not support this conclusion, as no effect involving F appears important. This
apparent contradiction can arise whenever the control factor design has low
resolution; Rosenbaum (1994, 1996) illuminated this point most effectively.
For the injection molding example, F = −CE. Although modeling Shrinkage
percentage indicates that C = E is beneficial, this is mistakenly interpreted by
response modeling as desiring F = −1. Sometimes fitting a model for an ap-
propriate performance measure is the simplest analysis for robust parameter
design applications, but this example makes the point that such an analysis
alone is not sufficient if the control array has low resolution.

One other detail needs to be examined for these data. There are hints of
a problem with these data that becomes evident in two ways. First, a half-
normal plot of the estimates in Table 10.6 show an unexpected concentration
of |estimates| near 0.15; see Figure 10.3. When a half-normal plot shows a
concentration distant from zero, an outlier is suspected. Second, when we
fit a hierarchical model including the three statistically significant terms A,
CN, and EN, plus main effects C, E, and N, an extreme outlier is detected
corresponding to the treatment combination A = B = C = −1, D = E = F
= G = 1, M = N = O = −1. Figure 10.4 shows a histogram of the residuals,
with the minimum residual of 0.3− 2.64 = −2.34, far removed from the other
residuals. If this observation is omitted, the factorial effect contrasts are no
longer orthogonal. However, using forward selection (or using Lenth’s method
for a saturated model with 30 correlated main effects and interactions), we
find some evidence for DM and BM. Thus, it appears that Holding pressure
and/or Mold temperature can mitigate any Regrind percent effect. The outlier
had previously concealed this insight.
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Table 10.6. Analysis for Engel’s (1992) injection molding experiment

Term Estimate PSE Lenth t
Whole-unit contrasts

O 0.150
N 0.138
M −0.050

Split−unit contrasts
CN 0.450 0.197 2.29
A 0.425 0.197 2.16
EN −0.419 0.197 −2.13
D −0.281 0.197 −1.43
G −0.231 0.197 −1.17
FO 0.169 0.197 0.86
AN −0.163 0.197 −0.83
GN 0.156 0.197 0.79
GO 0.156 0.197 0.79
CO −0.150 0.197 −0.76
E 0.144 0.197 0.73
EO 0.144 0.197 0.73
FN 0.144 0.197 0.73
BO −0.138 0.197 −0.70
AO −0.125 0.197 −0.63
CM −0.125 0.197 −0.63
DO 0.119 0.197 0.60
BN −0.113 0.197 −0.57
DN 0.106 0.197 0.54
EM 0.106 0.197 0.54
DM −0.094 0.197 −0.48
B −0.075 0.197 −0.38
C 0.062 0.197 0.32
BM 0.062 0.197 0.32
AM −0.050 0.197 −0.25
FM −0.044 0.197 −0.22
F −0.019 0.197 −0.10
GM 0.019 0.197 0.10

10.3.3 Example 10.3: Split-split-unit cheese making experiment

Cheese making involves progressively smaller units of material. When the raw
milk arrives from farms, it is stored in huge tanks. At some future time, the
milk is transported to smaller tanks where curds are produced. The curds
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Fig. 10.3. Half normal plot of estimates for shrinkage saturated model
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Fig. 10.4. Histogram of residuals from shrinkage reduced model

from each smaller tank are subsequently used to manufacture many individ-
ual cheeses. Schoen (1997, 1999) described an experiment involving two milk
factors (A, B), five curd factors (C, D, E, F, G), and two cheese factors (K,
L), all with two levels, plus one additional cheese factor M with four levels.
As described by Wu (1989) and others, two-level designs are easily modified
to accommodate four level factors. The factor M, with levels (0, 1, 2, 3),
is constructed from two-level factors H and J as M = 1.5 + J + 0.5H. The
contrasts J, H, and HJ represent three orthogonal contrasts that together ac-
count for the M main effect. Here, M’s levels actually correspond to equally
spaced levels for a quantitative factor. In such cases, J is highly correlated
with M’s linear contrast, and HJ is M’s quadratic contrast. For more details
about constructing designs with one or two four-level factors, see Section 13.4.
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Schoen’s design is best understood as being built in stages. The milk ex-
periment involved eight milk storage tanks and two factors. Thus, the milk
stratum is a completely randomized 22 design. For the curds stratum, each
milk unit is viewed as a block containing four curd units. The five curd factors
and two milk factors together then form a 27−2 design in eight blocks of size
4. The generators for the design were F = ABCD and G = ABDE, with
blocking on the whole-unit factors A and B and the contrast CE = FG. This
design is shown in Table 10.7.

Table 10.7. Milk and curd treatment combinations for Schoen’s (1997)
cheese making experiment

Milk Curd
Unit A B Unit C D E F G

1 −1 −1 1 −1 −1 −1 1 1
1 −1 −1 2 1 1 1 1 1
1 −1 −1 3 −1 1 −1 −1 −1
1 −1 −1 4 1 −1 1 −1 −1
2 1 1 5 1 1 1 1 1
2 1 1 6 −1 −1 −1 1 1
2 1 1 7 −1 1 −1 −1 −1
2 1 1 8 1 −1 1 −1 −1
3 −1 −1 9 −1 −1 1 1 −1
3 −1 −1 10 1 1 −1 1 −1
3 −1 −1 11 1 −1 −1 −1 1
3 −1 −1 12 −1 1 1 −1 1
4 −1 1 13 1 1 1 −1 −1
4 −1 1 14 −1 −1 −1 −1 −1
4 −1 1 15 1 −1 1 1 1
4 −1 1 16 −1 1 −1 1 1
5 1 −1 17 1 1 −1 −1 1
5 1 −1 18 −1 −1 1 −1 1
5 1 −1 19 −1 1 1 1 −1
5 1 −1 20 1 −1 −1 1 −1
6 1 1 11 1 1 −1 1 −1
6 1 1 22 1 −1 −1 −1 1
6 1 1 23 −1 −1 1 1 −1
6 1 1 24 −1 1 1 −1 1
7 −1 1 25 1 −1 −1 1 −1
7 −1 1 26 1 1 −1 −1 1
7 −1 1 27 −1 −1 1 −1 1
7 −1 1 28 −1 1 1 1 −1
8 1 −1 29 −1 1 −1 1 1
8 1 −1 30 1 −1 1 1 1
8 1 −1 31 −1 −1 −1 −1 −1
8 1 −1 32 1 1 1 −1 −1
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Table 10.8. Coded responses and levels for M in Schoen (1997)

Curd M(H,J)
Unit 0(−1, −1) 1(1, −1) 2(−1, 1) 3(1, 1)

1 100.8 96.6 94.5 96.6
2 100.8 100.8 98.7 92.4
3 98.7 86.1 81.9 92.4
4 111.3 98.7 102.9 100.8
5 147.0 140.7 140.7 140.7
6 138.6 140.7 147.0 140.7
7 151.2 138.6 140.7 136.5
8 149.1 151.2 140.7 142.8
9 96.6 98.7 92.4 96.6
10 107.1 109.2 107.1 107.1
11 107.1 102.9 90.3 86.1
12 98.7 92.4 100.8 92.4
13 100.8 102.9 92.4 96.6
14 90.3 94.5 88.2 79.8
15 100.8 96.6 98.7 90.3
16 96.6 96.6 94.5 88.2
17 144.9 142.8 138.6 138.6
18 138.6 134.4 138.6 130.2
19 144.9 132.3 134.4 134.4
20 147.0 134.4 134.4 138.6
21 138.6 134.4 138.6 126.0
22 138.6 134.4 142.8 126.0
23 147.0 144.9 121.8 147.0
24 138.6 134.4 140.7 147.0
25 96.6 96.6 96.6 88.2
26 88.2 96.6 84.0 84.0
27 88.2 79.8 81.9 86.1
28 105.0 90.3 92.4 90.3
29 142.8 142.8 128.1 138.6
30 147.0 140.7 140.7 136.5
31 138.6 138.6 128.1 134.4
32 149.1 147.0 138.6 132.3

From each curd unit, cheeses were made according to each of 4 treatment
combinations, for a total of 128 different combinations of the factors. The
two-level pseudo-factors H and J may be taken as basic factors. Thus, from
these, the level of M is determined using the formula M = 1.5 + J + 0.5H.
In addition, the other two cheese factors K and L were determined as K =
BCGHJ and L = ACGH. Table 10.8 shows the coded response for each
cheese and the levels for M. For compactness, levels for K and L are not
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shown but can be determined using the generators. In terms of the 11 two-
level factors A–H and J–L, the defining relation for this design is

I = ABCDF = ABDEG = CEFG

= BCGHJK = ADFGHJK = ACDEHJK = BEFHJK

= ACGHL = BDFGHL = BCDEHL = AEFHL

= ABJKL = CDFJKL = DEGJKL = ABCEFGJKL.

Since HJ does not appear in any length-4 or length-5 words, all two-factor
interactions involving M are estimable; the aliasing among two-factor inter-
actions is from CEFG.

The analysis of a regular fraction split-split-unit experiment can be done
by fitting a saturated model, sorting the contrasts by stratum, computing the
PSE for each stratum, and then determining which estimates are statistically
significant. Alternatively, one may perform three separate analyses, one for
each stratum. Here we follow the first approach; see Table 10.9. A full factorial
model in the seven basic factors A–E, H and J is easily constructed. The seven
contrasts that do not change within milk units are listed first; these are A, B,
and CE, and their generalized interactions. The PSE for these seven estimates
is 1.5504. Only the A main effect is statistically significant.

Next, we list 24 more terms corresponding to contrasts that do not change
within curd units, but do change between milk units. These are all terms
involving the basic factors A–E (or their aliases) that did not appear in the list
of milk unit contrasts. This is a very efficient design for estimating two-factor
interactions because, of the 24 split-unit contrasts, only (CDE) is not aliased
with a main effect or two-factor interaction. Even HJK should be viewed as
a two-factor interaction, since HJ corresponds to part of the M main effect.
The PSE from these 24 estimates is 0.911, and all Lenth t statistics are less
than 2. Thus, none of the 24 split-unit estimates is statistically significant at
the .05 level.

There are 127− 31 = 96 additional contrasts in the saturated model. The
PSE for this stratum is 0.394, much smaller than the PSE for the whole-
unit and split-unit strata. The .05 critical value is 1.98, so 10 estimates are
statistically significant. However, with 96 Lenth t statistics, we would expect
about five statistically significant estimates if all the true regression coeffi-
cients were zero. Using simulation as discussed in Appendix C, we determined
that P (Maximum Lenth |t| > 2.67) = .52; that is, over half the time when
none of the 96 effects are active, the largest estimate will exceed 2.67×PSE.
The three largest estimates correspond to two contrasts involving the four-
level factor M, plus the FK interaction. The next eight estimates, with Lenth
t statistics ranging from 2.67 to 1.83 all correspond to higher-order interac-
tions. Thus, controlling the experimentwise error rate for the cheese stratum
and desiring a parsimonious model, we adopt an overall model that includes
A, FK, and the main effects for F and K in order to have a hierarchical
model, plus a linear effect for M.



366 10 Fractional Factorial Designs with Randomization Restrictions

Table 10.9. Analysis for Schoen’s (1997) split-split-unit cheese experiment

Term Estimate PSE Lenth t

Milk stratum
A 22.083 1.550 14.24
AB 1.903 1.550 1.23
BCE = · · · 1.280 1.550 0.83
CE 1.050 1.550 0.68
B −1.017 1.550 −0.66
ACE = · · · 0.558 1.550 0.36
CDG = · · ·− 0.197 1.550 −0.13

Curd stratum
C −1.739 0.911 −1.91
FA −1.181 0.911 −1.30
CB −1.050 0.911 −1.15
CA −0.984 0.911 −1.08
F −0.952 0.911 −1.05
CG = EF −0.919 0.911 −1.01
E −0.886 0.911 −0.97
CF = EG −0.787 0.911 −0.86
ACG = HL = · · ·− 0.755 0.911 −0.83
CDE = · · · 0.722 0.911 0.79
GA 0.722 0.911 0.79
G 0.623 0.911 0.68
EB 0.591 0.911 0.65
BCG = HJK = · · ·− 0.558 0.911 −0.61
FD −0.427 0.911 −0.47
CD −0.427 0.911 −0.47
D −0.394 0.911 −0.43
GB −0.328 0.911 −0.36
GD 0.230 0.911 0.25
DA −0.230 0.911 −0.25
EA 0.197 0.911 0.22
C −0.098 0.911 −0.11
FA 0.066 0.911 0.07
CB 0.033 0.911 0.04

Cheese stratum
J −2.428 0.394 −6.17
FK 1.378 0.394 3.50
H −1.181 0.394 −3.00
BEH = · · · 1.050 0.394 2.67
BFL = · · · 1.017 0.394 2.58
CDH = · · · 0.952 0.394 2.42
CHJ = · · ·− 0.886 0.394 −2.25
BGJ = · · · 0.788 0.394 2.00
CFJ = · · · 0.787 0.394 2.00
BHK = · · ·− 0.787 0.394 −2.00
AGJ = · · · 0.722 0.394 1.83
(85 smaller estimates not displayed)
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Basing the analysis on half-normal plots, Schoen (1997) selected a model
with only A, C, and M. The half-normal plots for the split-unit and split-
split-unit contrasts, constructed using ZQ as defined in (2.4), are shown in
Figures 10.5 and 10.6, respectively. One would need more knowledge about
the response y and the factors C, F, and K to know whether the estimates
bC = 1.739 and bFK = 1.378 make sense in the context of this application.
Whatever the factor A represents, its effect on the response is enormous. It
is unusual to have a factor with such a large main effect yet not appear in
significant interactions.
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Fig. 10.5. Half-normal plot for 24 split-unit contrasts

10.3.4 Example 10.4: Two-way split-unit washer/dryer experiment

Miller (1997) presented a fractional factorial experiment involving six wash-
ing machine factors (A–F) and four dryer factors (P–S). The experiment’s
purpose was to minimize wrinkling of clothes after washing and drying. The
six washing machine factors were explored using a 26−3 design, running each
of four machines twice. When the four machines finished their first run, the
wet clothes were distributed to four different dryers, putting some garments
from every washer in each dryer. Thus, the first run of all machines produced
16 treatment combinations (26−4 ×24−2); another 16 treatment combinations
were obtained using the second run of the machines. The full design is one-half
of a 26−3 × 24−1. The generators used were
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Fig. 10.6. Half-normal plot for 96 split-split-unit contrasts

• C = AB, E = ABD, F = BD to define the washer treatment combina-
tions;

• S = PQR to define the dryer treatment combinations;
• AD = −PQ to define which washer and dryer treatment combinations

were assigned together.

Table 10.10 lists the 32 treatment combinations defined by these generators
and shows the wrinkle response measurement for garments corresponding to
each combination.

The layout of Table 10.10 emphasizes that this was an eight-run experi-
ment for Washer factors conducted in two blocks of size 4. The first four rows
were each assigned to a different washing machine; later, when Block 2 was
performed, the last four row were subsequently randomly assigned to the four
machines. Including an effect for blocks and the main effects A–F utilizes all
of the degrees of freedom. Note that this analysis assumes that there are no
systematic differences among the four washing machines. Otherwise, the row-
to-row errors would be correlated across blocks. Similarly, the four columns
of data in Block 1 and the four columns in Block 2 correspond to an eight-run
experiment for Dryer factors. Here a resolution IV design is used, so there is
no aliasing of two-factor interactions with the Dryer factor main effects.
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Table 10.10. Treatment combinations and wrinkle measurements for
Miller’s (1997) laundry experiment

A B C D E F (P, Q, R, S)
Block 1 (−,−,−,−) (+,+,−,−) (−,−,+,+) (+,+,+,+)

−1 −1 1 1 1 −1 3.19 2.75 3.02 2.63
1 −1 −1 −1 1 1 4.01 3.33 3.79 2.82

−1 1 −1 1 −1 1 3.77 3.36 3.47 3.08
1 1 1 −1 −1 −1 3.83 3.48 4.25 3.94

Block 2 (−,+,−,+) (+,−,−,+) (−,+,+,−) (+,−,+,−)
−1 −1 1 −1 −1 1 2.28 1.88 2.91 2.37

1 −1 −1 1 −1 −1 2.95 3.25 3.11 2.85
−1 1 −1 −1 1 −1 2.40 1.89 3.51 2.38

1 1 1 1 1 1 4.05 3.68 3.24 3.31

The proper analysis of a two-way, split-unit design such as this entails
identifying which factorial effects are estimated with the same precision. The
preceding discussion should make the analysis intuitive. There are four cate-
gories of contrasts, each impacted differently by the sources of variation:

1. One contrast between washers and between dryers: AD = −PQ and its
aliases.

2. Six contrasts between washers and within dryers: A–F and their aliases.
3. Six contrasts within washers and between dryers: P–S, PR, and PS, and

their aliases.
4. Eighteen contrasts within washers and within dryers: all remaining con-

trasts, including 12 pairs of aliased Washer*Dryer interactions.

These 31 estimates are displayed by category in Table 10.11, with Lenth t
statistics provided for the last 3. At least one effect is evident in each group,
A, B, P, and AS = −DR. The α = .05 critical value for six contrasts is
2.211 [Loeppky and Sitter (2002); alternatively, use the code in Appendix C].
If small values of the response correspond to fewer wrinkles, then we prefer
A = B = −1, P = +1 and, to take advantage of the interaction term, either
S = 1 or D = R.

Because the PSE is similar for the Dryer and Unit strata, there does not
appear to be excess variation associated with dryer runs. In contrast, there
does appear to be washer run variation, making that stratum’s PSE larger
than the PSE that captures just the variability associated with individual
garment units within washers and dryers.
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Table 10.11. Lenth t statistics for Miller’s (1997) laundry experiment

Stratum Effects Estimate PSE Lenth t
Block

AD=BE=CF=−PQ=−RS −0.271
Washer

A = BC = EF 0.344 0.090 3.82
B = AC = DF 0.203 0.090 2.26
C = AB = DE 0.026 0.090 0.29
D = BF = CE 0.083 0.090 0.92
E = AF = CD −0.024 0.090 −0.27
F = AE = BD 0.060 0.090 0.67

Dryer
P −0.212 0.0497 −4.26
Q −0.034 0.0497 −0.69
R 0.018 0.0497 0.36
S −0.063 0.0497 −1.27
PR = QS −0.033 0.0497 −0.67
QR = PS 0.022 0.0497 0.44

Unit
AP = −DQ 0.051 0.0525 0.98
AQ = −DP −0.094 0.0525 −1.79
AR = −DS −0.098 0.0525 −1.86
AS = −DR 0.161 0.0525 3.07
BP = −EQ −0.001 0.0525 −0.01
BQ = −EP 0.064 0.0525 1.23
BR = −ES 0.027 0.0525 0.51
BC = −ER 0.056 0.0525 1.06
CP = −FQ 0.041 0.0525 0.79
CQ = −FP 0.019 0.0525 0.36
CR = −FS 0.015 0.0525 0.29
CS = −FR 0.104 0.0525 1.98
APR = · · · 0.010 0.0525 0.19
AQR = · · ·− 0.030 0.0525 −0.57
BPR = · · · 0.026 0.0525 0.49
BQR = · · ·− 0.007 0.0525 −0.13
CPR = · · · 0.058 0.0525 1.10
CQR = · · ·− 0.035 0.0525 −0.67

Strip-block designs, such as the one employed by Miller (1997), provide for
very efficient experimentation. For more regarding the construction of strip-
block designs, see Butler (2004) and Vivacqua and Bisgaard (2009). For an
example of a strip-strip-block design and how to construct such three-way
split-unit designs in general, see Paniagua-Quiñones and Box (2008, 2009).
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10.4 Sequences of Fractional Factorial Designs

We summarize literature pertaining to running sequences of fractional facto-
rial designs. In Section 10.1 we discussed running a fractional factorial design
in blocks, where the entire design was selected from the start and random-
ization was used to determine the order in which the blocks were performed,
as well as the order of runs within blocks. Here, we consider sequences of two
or more blocks, where a deliberate ordering of the blocks is followed. Chap-
ter 9 discussed sequences of just two blocks. In Section 9.4, we introduced
the concept of augmenting a resolution III fractional factorial design with an
additional resolution III fraction in order to increase the resolution of the
combined design to IV. This is the most common (and simplest) scenario in-
volving a sequence of fractional factorial designs. In Section 9.5, we considered
adding a block of runs to a resolution IV design. There, which set of foldover
runs is best to perform is judged utilizing results of the initial experiment.
What additional literature exists regarding running sequences of blocks?

Li and Jacroux (2007) contemplated how an experiment should be chosen
when both the initial fraction as well as a possible follow-up foldover design
are to be conducted in blocks. This differs from Sections 9.4 and 9.5 in that
in Chapter 9 we assumed that the initial designs themselves were completely
randomized.

Addelman (1969) investigated various sequences of fractional factorial de-
signs for 4–10 factors and shows how many main effects and two-factor in-
teractions are estimable after each block of runs. For instance, for 7 factors,
Addelman considers 13 different sequences for 8 blocks of size 8. One se-
quence has eight resolution III blocks that together form the resolution VII
half fraction. Other sequences use eight resolution II blocks to construct the
half-fraction with resolution VI or V. Resolution I blocks are also considered.
However, Addelman’s tables assume estimation of a model without any block
effects. If the designs are run in blocks and the analysis accounts for the
possibility of additive block effects, the number of estimable effects and the
precision of estimable effects Addelman reported do not apply if his blocks
have resolution less than III. Jacroux (2006) gave recommended sequences for
experiments run in four to eight blocks for up to k = 9 factors. Practitioners
should refer to Jacroux’s article first, since it uses familiar notation, it focuses
on the more useful sequences of blocks, and it does not ignore the possibility
of block effects. However, Jacroux (2006) only tabulated sequences up to 32
runs (except for the case of 6 factors). We now discuss one example for k = 9
factors in blocks of size 16 from Addelman (1969).

Addelman’s sequence 9.12B involves partitioning the resolution VI 29−2

fraction in eight blocks and then sequencing these blocks in order to estimate
all the two-factor interactions after just four blocks. Addelman defined the
resolution VI fraction using F = ABCDE and J = ABCGH and then blocks
on ABDH, AEG, and ABC. Each block is a 29−5 fraction with A3 = 6 and
A4 = 9. The first block has the following aliasing:
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A = −BC = −EG
B = −AC = −FJ
C = −AB = −DH
D = −CH = −EF
E = −AG = −DF
F = −BJ = −DE
G = −AE = −HJ
H = −CD = −GJ
J = −BF = −GH
AD = BH = GF
AF = CJ = DG
AH = BD = EJ
AJ = CF = EH
BE = CG = DJ
BG = CE = HF

This is a special fraction in that, ignoring three-factor and higher-order in-
teractions, all the chains have length 3. By contrast, the minimum aberration
design 9-5.1 has one alias set involving five terms (see Section 6.2).

Addelman (1969) recommended the sequence of blocks shown in Table
10.12. After the second block, one has a 29−5 in 2 blocks, and the 15 alias sets
are reduced to:

A = −EG
B = −FJ
AB = DH
CH = EF
E = −AG
F = −BJ
G = −AE
CD = GJ
J = −BF
AD = BH
CJ = DG
AH = BD
CF = EH
CG = DJ
CE = HF

After the third block, we have a three-quarter fraction design that elim-
inates the aliasing with main effects but retains the aliasing of nine pairs
of two-factor interactions due to the length-4 words ABDH, CEFH, and
CDGJ. The fourth block changes the sign of these four contrasts, and so the
first four blocks combine to make an irregular resolution V 29−3 fraction. Its
variance inflation factors are 1, 1.5, and 2.

Adding additional blocks improves the precision of these coefficients, so
that after six blocks, we have a 3/4 fraction equivalent to the design proposed
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in Section 8.3.4, with VIFs of 1 and 1.125. The Section 8.3.4 design was
constructed from three resolution III 29−4 with A3 = 2 and A4 = 3. Here,
blocks 1 and 6 form such a fraction, and 2 and 5 (3 and 4) form an equivalent
fraction from the same family. The advantage of Addelman’s sequence is that
we have a resolution III design in just 16 runs and an irregular resolution V
design after 64 runs.

Table 10.12. One of Addelman’s sequences of 29−5 fractions; eight blocks
together compose the 29−2 fraction with I = ABCDEF = ABCGHJ =

DEFGHJ

df for
Block ABDH AEG ABC 2fi’s

1 + – – 6
2 + – + 21
3 + + – 27
4 – + + 36
5 – – – 36
6 – – + 36
7 – + – 36
8 + + + 36

Sometimes blocks are defined by confounding several sources of variation
rather than a single source. For instance, Holms and Sidik (1971) discussed an
example involving a nuclear reactor, where blocks are identified by different
fuel cycles and time within a fuel cycle. Equipment and instrument changes be-
tween cycles account for some differences, whereas within-cycle blocks account
for radiation changes as the fuel is consumed. In such cases, Cheng, Wu, and
Wu (2003) recommended that the shortest factorial effects confounded with
blocks not be assigned to main effects of the confounding factors. To illustrate
their idea, suppose we plan to investigate seven factors in two fuel cycles, and
each fuel cycle will be divided into four blocks of size 4. As we saw in Section
10.1, design 7-2.1 is recommended with blocking on columns 5, 11, and 19.
The full set of seven blocking contrasts and the corresponding factorial effects
are given in Figure 10.7. Since no two-factor interactions are confounded with
columns 11, 19, or 31, we use these to define the blocks displayed in Figure
10.8, so that the average fuel cycle difference and any linear effect within a
fuel cycle will primarily bias the estimates for three-factor interactions but
not any two-factor interactions. For more about protection from trends in the
errors, see Section 13.5.

Figure 10.8 assumes that all 16 runs planned for each fuel cycle can be
completed. Holms and Sidik (1971) commented that nuclear reactor experi-
ments such as this often terminate a fuel cycle early. If this is the case, the
treatment combinations from the canceled blocks should be performed using a
third fuel cycle. One benefit of blocking is that such repairs to the experimen-
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Column   5: AC = BF = …
Column 11:  ABD = CDF = …
Column 14:  BCD = ADF = EG = …
Column 19:  ABE = CEF = …
Column 22:  BCE = AEF = DG = …
Column 24:  DE = BCG = AFG = …
Column 29:  ACDE = ABG = CFG = …

Block generator 

Block generator 

Block generator 

Fig. 10.7. All contrasts of optimal 27−2 confounded with blocks of size 8

 Runs 1-4: 
ABD = -1 
ABE = -1 

Runs 5-8:
ABD = -1 
ABE =  1 

Runs 9-12: 
ABD = 1 
ABE = -1 

Runs 13-16: 
ABD = 1 
ABE =  1 

Fuel Cycle 1:   
ACDE = -1 Block 1 Block 2 Block 3 Block 4 

Fuel Cycle 2: 
ACDE = 1 Block 5 Block 6 Block 7 Block 8 

Fig. 10.8. Preferred blocking assignment for 27−2 example

tal design cause no complications for the analysis. In addition, by choosing
a blocked fractional factorial with carefully ordered sequences of blocks [e.g.,
as given by Jacroux (2006) and Holms (1998)], early termination of a design
may still permit estimation of most effects of interest.
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Abbreviations and Symbols

First-Use
Symbol Definition Section
α Probability of a Type I error for an hypothesis test 2.2
α Prior probability in Box–Meyer’s Bayesian procedure 2.5.2
α Parameter determining the spacing for axial points 12.2
β Probability of a Type II error = 1 − Power 13.1
β Vector of true regression coefficients 1.3
βi Individual true regression coefficient 1.2
ε Random error for assumed model 1.2
ε Vector of random errors for assumed model 1.3
λ Exponent in Box–Cox transformation 2.7

Noncentrality parameter in the calculation of power 13.1

ρ Correlation 6.3.1
Σ Summation 1.2
σ2 True error variance, Var(ε) 1.3

Aj Number of words of length j in defining relation of a
regular fractional factorial 5.2.5

Aj(...) Component of the confounding frequency vector
for a nonregular design 6.3

aj Number of alias sets of two-factor interactions of size j 7.2.1
alp Alias length pattern, (a1, a2,. . . , aL) 7.2.1
ANOVA Analysis of variance 1.3
A-opt Optimal design criterion based on trace(X′X)−1 6.4
APC All possible comparisons 14.2.1



540 Abbreviations and Symbols

First-Use
Symbol Definition Section
B Matrix of estimated second-order coefficients 12.1
b Vector of least squares estimates 1.3
b Vector of estimated first-order coefficients 12.1
b Used to define the number of blocks, 2b 3.3
b0 Intercept for a fitted model 1.3
bj Estimated coefficient for factor j 1.3
Bj Component of the generalized word length pattern 6.3
bi·i Estimated coefficient for x2

i 12.1
bi·j Estimated coefficient for xi ∗ xj interaction 1.3

c Sample count, either Binomial or Poisson 2.8
cfv Confounding frequency vector 6.3

D N × k design matrix 6.3
det Determinant 6.4
df Degrees of freedom 2.2
D-opt Optimal design criterion based on det(X′X)−1 6.4

E(·) Expected value 1.2
e For designs with blocking, the maximum order

for which all effects are estimable 3.3
ei Residual, yi − ŷi 2.6
EER Experimentwise (Type I) error rate 2.4.2

f Defines the fraction; i.e., 2k−f is a (1/2)f fraction 5.2.4
Fν1,ν2 F random variable with df (ν1, ν2) 1.3
FDR False discovery rate 14.2.2
FRD Factor relationship diagram 4.3.3
FT Freeman–Tukey transformations for Binomial or Poisson 2.8

gwlp Generalized word length pattern, (B3, B4,. . . , Bk) 6.3

HN Hadamard matrix 6.3.1
hii Diagonal element of X(X′X)−1X′ 2.6.4

I Identity column of +1’s 5.2.1
Iν Identity matrix 1.3
IER Individual test (Type I) error rate 2.4.2

Jr(s) J-characteristic, sum of r-factor interaction column 6.3

K Variance ratio in Box–Meyer’s Bayesian procedure 2.5.2
k Number of factors 1.2
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First-Use
Symbol Definition Section
lof Lack-of-fit 2.2

M Degrees of freedom for two-factor interactions 7.2.1
MS Mean square = SS/df 2.2
MSE Mean square error 2.2

N Number of factorial runs in design 2.2
n Number of replications at each observed t.c. 2.2
n0 Number of centerpoint replicates 2.3.1

p True proportion for Binomial count data 2.8.1
p̂ Sample proportion for Binomial count data 2.8.1
Pi Proportion used for quantiles in normal effects plot 2.5
pe “Pure error,” estimate for σ based entirely on replication 1.3
PSE Lenth’s pseudo-standard-error 2.4.1

Qi Proportion used for quantiles in half-normal effects plot 2.5

R2 Coefficient of determination 2.4
r Number of parameters in a reduced model 2.2
r Sample correlation coefficient 2.8.4
red Abbreviation for “Reduced” 2.2

SN Sylvester-type Hadamard matrix 6.2
s2 Sample variance, computed from within-run sampling 2.8.3
s0 Preliminary estimate in Lenth’s procedure 2.5
sat Abbreviation for “Saturated” 1.3
SOS Second-order saturated 7.2.2
SS Sum of squares 1.3

T Row coincidence matrix 6.3.2
t.c. Treatment combination 1.1

Var Variance 1.3
VIF Variance inflation factor 6.4

wlp Word length pattern, (A3, A4,. . . , Ak) 5.2.1

X A model matrix 1.3
xj jth coded factor 1.3

Upper case boldface letters also denote coded factors



542 Abbreviations and Symbols

First-Use
Symbol Definition Section
Y Vector of values of yi 1.3
Ŷ Vector of predicted values 2.2
yi ith value of the response variable 1.3
ŷ Predicted response for a fitted model 1.3

ZPi
Standard normal quantile used in normal plot of effects 2.5.1

ZQi Standard normal quantile used in half-normal plot 2.5.1



Index

A-optimality, 227
Adaptive standard error (ASE), 440
Additivity of blocks and treatments, 79
Alias, 153
Alias length pattern, 268, 272, 358
Alias matrix, 196, 229, 511
All possible comparisons (APC), 446
Alternative hypothesis, 18
Analysis of variance, 16, 29, 34, 37, 92,

94, 96, 119, 133, 182, 300, 309, 381
Analysis strategy for full factorials,

27–29
Arcsin transformation, 58
Assumptions for fractional factorials,

154
Autocorrelation, 50
Avoiding cancellation of aliased

estimates, 336, 386
Axial point for:

asymmetric composite design,
406–407

central composite design, 399–403

Basic factors, 156–160
Bayesian analysis, 47
Bayesian design augmentation, 342
Binomial distribution, 57, 418
Block size, 85
Block*Factor interactions, 79
Blocking, 25, 77–79, 373, 426, 430–431,

457–460, 468
Blocking for 2k, 79–97, 104–109
Blocking for fractional factorial,

343–349, 355–358, 389–394

Box–Behnken design, 407–409
Box–Cox transformation, 55

Centerpoint runs, 31–35, 48, 86, 88,
135, 140, 252, 384, 394, 399, 401,
402, 407, 420, 438

Central composite design, 399
Check for curvature, 34
Coefficient of determination, 34
Confidence interval for mean response,

320
Confirmation run, 319
Confounding frequency vector (cfv),

199, 200, 226, 277
Confounding interactions with blocks,

80
Contrast, 41
Crossover design, 105

D-optimal design augmentation,
338–342

D-optimality, 86, 227–232, 244, 280,
296–298, 318, 354, 393, 401, 403,
406

Debarred combinations, 435
Defining contrast subgroup, 152
Defining relation, 152, 157, 177, 191,

267, 270, 271, 289, 294, 329, 330,
332, 333, 343, 365, 435

Degrees of freedom (df), 16
Directional response data, 66
Doubling, 272
Durbin–Watson test, 50
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Effect heredity assumption, 342
Effect simplicity, 154
Effect sparsity, 36, 154, 166
Eigenanalysis, 409
Estimability of blocking, 80, 483
Estimation capacity, 268
Even design, 269–271, 277
Even/odd design, 271
Experimentwise error rate (EER), 44,

124, 443–448, 467, 479

False discovery rate, 447
Family of fractional factorial designs,

152
Fixed effects, 457
Foldover, 186, 261, 269, 277–281,

318, 328–332, 337, 354, 371–373,
375–381, 435

Freeman–Tukey transformation
for Binomial, 58, 217
for Poisson, 62

Functional response data, 66

Generalized interaction, 80
Generalized least squares, 454–456
Generalized word length pattern (gwlp),

200

Hadamard design, 198–226
Hadamard matrix, 190, 198, 208–210,

269, 277, 279
Half-normal plot of effects, 45, 54, 72,

89, 148, 168, 185, 204, 315, 362,
367

Hat matrix, 51
Hierarchical model, 12, 18, 41

Individual error rate (IER), 42, 444
Interaction, 11
Interaction plot, 19–21
Interblock information, 86, 95–97, 349
Isomorphic fractions, 159, 193

Lack-of-fit, 30
Latin square, 105
Least squares, 13
Lenth, 39

Lenth t statistics, 42–44
PSE, 39, 42

Levels, 4, 25, 420–422
Lifetime data, 66, 202
Log transformation, 64, 66

Mean squares, 15
Minimum aberration, 160, 193, 267–269,

271–274, 282, 284, 337, 346, 350,
353, 425, 427, 483, 487–495

Minimum G2-aberration, 200
Minimum G-aberration, 199
Missing data, 70–74, 342
Mixed model, 457
Model matrix, 14, 29, 197, 227, 245,

289, 296, 338, 481, 511
Model simplicity, 149
Model-dependent estimator for σ, 35,

36

Nested unit structure, 110
Noise factor, 353
Noncentral composite design, 403
Nonlinearity, 34
Nonregular design, 194
Normal plot of effects, 45, 54, 102, 189,

349
Normality assumption, 50
Null hypothesis, 17

Observed significance level, 17
Order of estimability, 84, 483
Orthogonal array, 195
Outliers, 51, 360

Pareto optimal, 325
Parsimony, 12, 265
Partial aliasing, 196, 197, 210, 229, 264,

267, 354
Partial confounding, 86
Partial replication, 31, 67
Performance measure modeling, 360
Permutation test, 242
Plackett–Burman design, see Hadamard

design
Planning strategy, 23–26
Poisson distribution, 61, 418
Power of a test, 415
Predicted value, 29, 48
Prediction interval for y, 320
Principal block, 83
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Product array design, 353, 358
Profile data, 66
Profiler graph, 22
Projection, 150, 192, 196
Pure error, 15
Pure quadratic curvature, 34

Quasi-Latin square, 107

Random effects, 349, 457
Randomization, 50
Rechtschaffner design, 295–296, 311–316
Reduced model, 29, 30
REML, 118, 458
Replication, 4, 29, 31–35, 50, 67–69, 76,

114, 115, 178, 438, 466
Pseudo, 466

Replication vs. repeated measurements,
249, 466

Residuals, 48–52
Resolution, 152

III, 155, 158, 160, 173, 182, 193
IV, 160, 270, 271, 282
V, 160, 283, 285

Response modeling, 360
Response surface methodology (RSM),

397
Robust parameter design, 277, 353, 423
Root mean square error (RMSE), 36
Row coincidence matrix, 200, 513

Sample size determination, 415–420
Second-order polynomial model, 399
Second-order saturated, 269, 272
Semifolding, 332–338, 342

Sparsity, see Effect sparsity
Split-unit designs, 97–104, 109–114,

140, 350–355, 358, 359, 361–369,
434, 459

Square-root transformation, 61
Standard error, 18
Steepest ascent, 321–328, 338, 398
Strength, 196
Strength-2 OA, 195–226
Strength-3 OA, 261–267, 277–279
Strength-4 OA, 285–288
Strip-block design, 110, 354, 370
Studentized residual, 51
Supersaturated design, 226, 231–243

Three-quarter fraction, 288–293,
303–307, 372

Trend-robust run order, 429
True replication, 35, 466
Two-factor interaction model, 10
Two-factor interactions

clear, 268
df for, 268

Unbalanced data, 67
Unit structure, 110

Variance inflation factor (VIF), 228,
229, 394

Weak heredity, 264, 342
Weak minimum aberration, 194, 273,

347
Word length pattern (wlp), 159, 192,

267, 270, 272, 344, 487
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