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Preface to the First Edition

This volume is in continuation with volume T and II, and deals with three chapters
of higher surveying — ‘Field Astronomy’, ‘Survey Adjustments and Theory of Errors'
and ‘Photogrammetric Surveying”. It covers fully the syllabi of Degree and A M.LE. examinations
in higher surveying. The book has been written primarily as a college text o fill a need
for a simple but complete coverage of the principles of Field Astronomy and of Photogrammetry,
This hook is also meant o assist the experienced surveyor who has not found time fo
follow the rapid changes in the techniques so noticeable in the surveying field.

The subject is gradually introduced in stages. A large number of diagrams have been
given 0 illustrate the basic principles. Large number of solved and unsolved examples develop
the reader’s ability to apply the basic concepts to practical problems. The book also deals
with the most modern equipment used in photogrammetric surveying. Metric System of units
has been used throughout the text and wherever possible, the various formulae used in
text have been derived in mertric units,

I shall like to express my thanks to M/S Wild Heerbrugg Lid. and M/s Zeiss-Aerotopograph
who kindly furnished and granted permission to use diagrams on which some illustration
in this book are based.

In spite of every care taken to check the numerical work, some errors may remain,
and [ shall be obliged for any intimaion of these which readers may discover,

Jodhpur
lst January, 1967 B.C. PUNMIA

Preface to the Second Edition

In this edition, the subject-maiter has been revised thoroughly and a few minor alierations
and additions have been made, On the suggestions of many readers of the book, the chapter
on ‘Survey Adjusiments and Theory of Errors’ has been transferred to volume 2, since
this chapter is mostly taught along with Triangularion. Account has been taken throughout
of suggestions offered by the many users of the book, and grateful acknowledgement s
made to them. Further suggestions will be greatly appreciated.

Jodhpur
15th July, 1971 B.C. PUNMIA



(¥}
Preface to the Seventh Edition

In the Seventh Edition, the book has been completely rewritten and all the diagrams
have been redrawn. Many new articles and diagrams/illustrations have been added. A new
chapter on ‘Electromagnetic Distance Measurement (EDM)' has been added at the end of
the book. The knowledge of latest EDM equipmeni, such as Geodimeters, Tellurometers
and ‘Distomats® will be very muoch useful to the field engineers for the indirect, quick
and precise measurement of distance and difference in elevation between widely distant points.
Account has been taken throughout of the sugpestions offered by the many users of the
book and grateful ackmowledgement is made to them. Further suggestions will be greatly
appreciated.

Jodhpur
i5th July, 1987 B.C. PUNMIA

Preface to the Fifteenth Edition

In Fifteenth Edition, the subject matter has been thoroughly revised, updated and
rearranged. In each chapter, many new articles haven been added. All the diagrams have
been redrawn using computer graphics and the book has been computer type-set in a bigger
format, keeping in pace with the modern trend. Two new chapters have been added at
the end of the book : Chapter 4 on 'Remote Sensing’ and Chapter 5 on 'Geographical
Information System (GIS)'. Account has been taken throughout of the suggestions offered
by many users of the book and grateful ackmowledgements is made to them. The authors
are thankful to Shri Mool Singh Gahlot for the fine Laser type setting done by him.
The Authors are also thankful Shri R.K. Gupta, Managing Director Laxmi Publications,
for taking keen interest in publication of the book and bringing it out micely and quickly.

Jodhpur B.C. PUNMIA
Mahaveer Jayanti ASHOK K. JAIN
22-4-05 ARUN K. JAIN
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Field Astronomy

1.1. DEFINITIONS OF ASTRONOMICAL TERMS

1. The Celestinl Sphere. The millions of stars thai we see in the sky on a clear
cloudless night are all at varving distances from us, Simc» we are concerned with their
relative distances rather than their actual distance from the observer, it is exceedingly convenient
o picture the stars as distributed over the surface of an imaginary spherical sky having
its centre at the position of the observer. This imaginary sphere on which the stars appear
w lie or o be studded is known as the Celestial Sphere. The radins of the celeshial sphere
may be of any value - from a few thousand metres to a few thousand kilometres. Since
the stars are very distant from us, the centre of the earth may be taken as the centre
of the celestal sphere.

2. The Zenith and Nadir. The Zenith (Z) is the point on the upper porton of
the celestial sphere marked by plumb line above the observer. It is thus the poini on
the celestial sphere immediately above the observer's station. The Nadir (Z') 15 the point
on the lower portion of the celestial sphere marked by the plumb line below the observer.
It is thus the point on the celestial sphere vertically below the observer's siation.

3. The Celestial Horizon. (also called True or Rational horizon or geocentric horizon).
It is the great circle traced wpon the celestial sphere by that plane which is perpendicular
to the Zenith-Nadir line, and which passes through the centre of the earth. (Grear circle
15 a section of a sphere when the cutting plane passes through the centre of the sphere).

4. The Terrestrial Poles and Equator. The rerrestrial poles are the two points
in which the earth’s axis of rotation meets the earth’s sphere, The ferrestrial equator is
the great circle of the earth, the plane of which is at right angles to the axis of rotation.
The two poles are equidistant from it

5. The Celestial Poles and Equator. If the earth's axis of rowation is produced
indefinitely, it will meet the celestial sphere in two points called the north and south celestial
poles (P and P'). The celestial equator is the great circle of the celestial sphere in which
it is intersecied by the plane of terrestrial equator.

6. The Sensible Horizon. It 15 a aircle in which a plane passing through the point
of observation and tangential to the earth’'s surface (or perpendicular two the Zenith-Madir
line) intersects with celestial sphere. The line of sight of an accurately levelled telescope
lies in this plane.

(0



2 HIGHER 5URVEYING

7. The Visible Horizom. It is the circle of contact, with the earih, of the cone
of visual rays passing through the point of observation. The circle of contact is a small
circle of the earth and its radius depends on the alttude of the point of observation.

8. Vertical Circle. A vertical circle of the celestial sphere is great circle passing
through the Zenith and Nadir. They all cut the celestial horizon at right angles.

9. The Observer's Meridian. The meridian of any  particular point 15 that
circle which passes through the Zenith and Nadir of the point as well as through the
poles. It is thus a wertical circle.

10. The Prime Vertical. It is that pariicular vertical circle which is at right angles
to the meridian, and which, therefore passes through the east and west points of the horizon.

11. The Latitude (8). It is the angular distance of any place on the earth's
surface north or south of the egquator, and is measured on the meridian of the place. It
is marked + or- f(or N or 8) according as the place is porth or south of the equator.
The latiude may also be defined as the angle between the zenith and the celestial equator,

12. The Co-latitude (c). The Co-latmude of a place is the angular distance from
the zenith to the pole. Tt is the complement of the latitude and egual to (90° - 8).

13. The Longitude (¢). The longitude of a place is the angle between a fixed
reference meridian called the prime or first meridian and the merndian of the place.
The prime meridian universally adopted is that of Greenwich. The longimde of any place
varies between 0° to 180°, and is reckoned as ¢° east or west of Greenwich.

14. The Altitude {(u). The altitude of celestial or heavenly body (ie., the sun
or a star) is its angular distance above the horizon, measured on the vertical circle passing
through the body.

15. The Co-altitude or Zenith Distance (z). It is the angular distance of heavenly
body from the zenith. It is the complement of the altitude, ie., z=(90°- a)

16. The Azimuth (A). The azimuth of a beavenly body is the angle between
the observer's meridian and the wvertical circle passing through the body.

17. The Declination (5). The declination of a celestial body is angular distance
from the plane of the equator, measured along the star’s meridian geperally called the
declination circle, (i.e., great circle passing through the heavenly body and the celestial
pole). Declination varies from 0w 90°, and is marked + or - according as the body
is north or south of the eguator,

18. Co-declination or Polar Distance (p). It is the angular distance of the heavenly
body from the nearer pole. Tt is the complement of the declination, ie., p=90° -5,

19. Hour Circle. Hour circles are great circles passing through the north and south
celestial poles. The declination circle of a heavenly body is thus its hour circle.

20, The Hour Angle. The hour angle of a heavenly body is the angle between
the observer's meridian and the declination circle passing through the body. The hour angle
15 always measured wesiwards.

21. The Right Ascension (R.A.). It is the equatorial angular distance measured
eastward from the First Poimt of Aries to the hour circle through the heavenly body.
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21. Eguinoctial Points. The poimts of the intersection of the ecliptic with the equator
are calied the equinoctial points. The declination of the sun is zero at the equinoctial points.
The Vemal Eguinox or the First Poimt of Aries (¥) is the point in which the sun's
declination changes from south w north, and marks the commencement of spring. It 15
a fixed point on the celestial sphere. The Awwmnal Equinox or the First Point of Libra
(&) is the point in which the sun’s declination changes from north to south, and marks
the commencement of autumn. Both the equinoctial poimts are six months apart in tme.

23. The Ecliptic. Ecliptic is the great
circle of the heavens which the sun appears
to describe on the celeshal sphere with the
earth as a centre in the course of a year.
The plane of the ecliptic is inclined to the
plane of the equator at an angle (called the
obliguity) of about 23° 27', but is subjected
to a diminution of abowt 5" in a cenfury.

24. Solastices. Solastices are the points
at which the north and south declination of
the sun is a maximum. The pomt O (Fig.
1.3) at which the north declination of the
sun is maximum is called the summer solastice,
while the point © at which south declination
of the sun is maximum is known as the winder
:m' gis;‘fml.s Just the reverse in the FIG. 1.3. THE ECLIPTIC.

25. North, South, East and West Directions. The north and south points correspond
o the projection of the north and south poles on the horizon, The meridian line is the
line in which the observer's meridian plane meets horizon plane, and the north and south
points are the points on the extremities of it. The direction ZP (in plan on the plane
of horizon) is the direction of north, while the direction PZ is the direction of south.
The east-west line is the line in which the prime vertical meets the horizon, and east
and west points are the extremities of it. Since the meridian plane is perpendicular 1o
both the equatorial plane as well as horizontal plane, the imersections of the equator and
horizon determine the east and west points (see Fig. 1.1).

1.2, CO-ORDINATE SYSTEMS

The position of a heavenly body can be specified by two spherical co-ordinates, i.e.,
by two angular distances measured along arcs of two great circles which cut each other
at right angles. One of the great circle is known as the primary circle of the reference
and the other as the secomdary circle of reference. Thus in Fig. 1.4, the position of the
point M can be specified with reference to the plane OAB and the line OA, O being
the origin of the co-ordinates. If a plane is passed through OM and perpendicular 1o the
plane of OAB, it will cut the latter in the line (B, The two spherical co-ordinates of
the point M are, therefore, angles AOB and BOM at the centre O, or the arcs AR and
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BM. In practical astronomy, the position of
a celestial body can be specified by the following
systems of co-ordinates :

1. The horizon system

2. The independenr equatorial system

3. The dependent equatorial system
4. The celestial latitude and longitude system.

The horizon system is dependent on the
position of the observer. The independent equa-
torial system is independent of the position
of the observer and the positions apply to
observers anywhere on the earth. In the de-
pendent equatorial system, one of the great
circle of reference is independent of the position of the observer while the other great
circle perpendicular to the former is dependent on the position of the observer. There is
yet another system of co-ordinates, kmown as the celestial system, in which the position
of a body is specified by the celestial latitude and the celestial Ilongitude.

1. THE HORIZON SYSTEM (ALTITUDE AND AZIMUTH SYSTEM)

In the horizon system, the horizon is the plane of reference and the co-ordinates
of a heavenly body are (i) the azimuth and (i) the altitude. This systen is necessitated
by the fact that we can measure only horizontal and vertical angles with the engineer's
transit. The two great circles of reference are the horizon and the observer’s meridian,
the former being the primary circle and the latter the secondary circle.

In Fig. 1.5, M is the heavenly body in the Eastern part of the celestial sphere,
Z is the observer’s zenith and P is the celestial pole. Pass a vertical circle (i.e., a great
circle through Z) through M to intersect the horizon plane at M'. The first co-ordinate of
M 1s, then, the azimuth (A) which is the angle between the observer’s meridian and the
vertical circle through the body. The azimuth can either be measured as the angular distance
along the horizon, measured from the me- Observers
ridian to the foot of the vertical circle mevidian
through the point. It is also equal o the
angle at the zenith between the meridian
and the wvertical circle through M. The
other co-ordinate of M is the alfirude (a)
which 15 the angular distance measured
above (or below) the horizon, measured |/ 2 0 .----
on the vertical circle through the body. 1
Similarly, Fig. 1.6 shows the position (M) .-~ oyqd
of the body in the Western part of the '
celestial sphere. It should be noted that, ;
in the Northern hemisphere, the azimuth Horzon T
is always measured from the north either

i FIG. 1.5 BODY IN THE EASTERN PART OF THE
eastward, or westward, depending upon et

e 1]




il HIGHER 3URVEYING

whether the body i1s in the eastern part . Observers
of celestial sphere or in the western part -——ﬁqh‘i"‘f_'ff"
of the celestial sphere. In the southern -

hemisphere, the azimuth is measured from
the south to the east or the west

Alternatively, the position of a body
is, sometimes specified in terms of zemith
distance and azimuth. The zenith distance
of any body is its angular distance from
zenith, measured along the vertical circle.
It is the complement of the altitude, i.e.,

zenith distance (2)=90"° - a.

The horizon system of co-ordinates Horizon
mgqmw md Ilplli changes due FIG. 1.6. BODY CFELETSIH'IIEJLL“ ﬁ'HEHR: PART OF THE

2, THE INDEPENDENT EQUATORIAL SYSTEM (THE DECLINATION AND
RIGHT ASCENSION SYSTEM)

This system is used in the publication of star catalogues, almanacs, or ephemerides
in which the position of heavenly bodies are referred to spherical co-ordinates which are
independent of the observer's position. The two great circles of reference are (i) the equatorial
circle and (i) the declination circle, the former being the primary circle and the latter
the secondary circle of reference. For fixed stars, this system of co-ordinates is independent
of the place of observation, and nearly independent of the time.

The first co-ordinate of the body (M) is the right ascension, which is the angular
distance along the arc of the celestial equator measured from the first point of Aries (1)
as the point of reference towards East up to the declination circle passing through the
body. It is also the angle, measured easiward at the celestial pole, between the hour circle
through (T) and the declination circle through
M. The motion of the star is from East Cosarvary i

Hil Fl
to West, and hence the Right Ascension ardian ;u‘“‘ejﬁ_ —
F \
/ -

-
is measured in a direction opposite to the
measured in degrees, minutes and seconds /<

motion of the heavenly body. It may be
of arc or in hours, minutes and seconds 7 :
of ume. Thus in Fig. 1.7, TP is the hour AN i
circle through T, M'MP is the hour circle IR |i“]
(or the declimation circle) of M, and TM" sk
i5 the R.A. measured along the arc of the
equator, Hizon
The other co-ordinate in this system £ -_;__ o
is the declination (8). It is the distance
of the body from the eguator measured

a the § -t ircle. FIG. 1.7. THE DECLINATION-RIGHT ASCENSION
long arc of the declination circle. The SYSTEM.

Equatoral plana
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declination circle accompanies the body in its diurnal course. The declination is considered
positive when the body is north of the equator and negative when it is to south.

The polar distance (p) is the complement of the declination, i.e., p=(90°-8). In
Fig. 1.7. M'M is the positive declination of the body (M).

The wvalues of declination and right ascension of a fixed star in the heaven, although
nearly constant, are not absolutely so. A register of these co-ordinates, together with their
annual change (if any be found) will enable to idemtify a star omce observed. Such @
register is called a catalogue of stars and its correctness 15 of highest importance. The
variation of the declination and right ascension of the sun is very much greater than for
the stars.

3. THE DEPENDENT EQUATORIAL SYSTEM (THE DECLINATION AND HOUR

ANGLE SYSTEM)

In this system, one co-ordinate
is dependent of the observer's position
and the other co-ordinate is independent
of the observer’s position. The two great
circles of reference are (f) the horizon
and (i) the declination circle through
the celestial body, the former being the
primary circle and the latter the secondary
circle of reference.

In this system, the first co-ordinate
of M (Fig. 1.8) is the howr angle. Hour
angle is the angluar distance along the
arc of the horizon measured from the
observer's meridian to the declination
circle passing through the body. It is
also measured as the angle, subtended
at the pole, between the observer’s me- FiG, |.8. THE DECLINATION-HOUR ANGLE SYSTEM.

(a) (b)
FIG. 1.9. PLAN ON THE PLANE OF THE EQUATOR.



! HIGHER SURVEYING

ridian and the declination circle of the body. In the northern hemisphere, the hour angle
is always measured from the south and towards west upte the declination circle. lts value
varies from 0 ¢ to 360 °. If A varies from 0 ® to 180 °, the star is in the western hemisphere,
otherwise in the eastern hemisphere. Fig. 1.9 shows the plan on the plane of the equator,
illustrating how the hour angle is measured westward for two positions of the observer.
The other co-ordinate is the declination, as in the second system. Thus, in Fig. 1.8, SM'
is the hour angle, and MM is the declination of the celestial body (M), M' and M, being
the projections of M on the horizon and equator respectively.

4. THE CELESTIAL LATITUDE AND LONGITUDE SYSTEM

In this system of the co-ordinates, the primary plane of reference is the ecliptic.
The second plane of reference is a great circle passing through the First Point of Aries
and perpendicular to the plane of the
El:hpl]l;: The two co-ordinates of a ce- N-Pole of ecliptic
lestial body are (i) the celestial latitude -
and (if) the celestial longitude.

The celestial laritude of a body
is the arc of great circle perpendicular
to the ecliptic, intercepted between the
body anmd the ecliptic. It is positive
or negative depending upon whether
measured north or south of the ecliptic.
The celestial longitude of a body is
the arc of a ecliptic intercepted between
the great circle passing through the First
Point of Aries and the circle of the
celestial latitode passing through the
body. It is measured easrwards from
0° to 360°. Thus, in Fig. 1.10, Fauator

MM is the celestial latitude (north) and g1, 110, THE CELESTIAL LATITUDE AND LONGITUDE.
TM, is the celestial longitude for the
heavenly body (M).

Comparison of the Systems. As stated earlier, the azimuth and altitude of a star
are not constant but are continuously changing due to diwnal motion. On the other hand,
the right ascemsion and declination of a star are constant, because the reference point, the
First Poimi of Aries, partakes of the diurnal motion of the stars. However, there is no
mstrument which can measure right ascension and declination of the star directly. The azimuth
and the altimde of a star can be directly measured with the help of a theodolite. Knowing
the hour angle and the azimuth of a star, its right ascension and declination can be computed
from the solution of the astronomical triangle provided the instant of ome at which the
body was inm a certain position (ie., the hour angle) is also determined. Thus, both the
systems are necessary — the first one for the direct field observations and the second
one for the computations reguired in respect of the preparation of the star cataloguoes.




FIELD ASTRONOMY 9

1.3. THE TERRESTRIAL LATITUDE AND LONGITUDE

We have discussed the various systems of co-ordinates to establish the position of
a heavenly body on the celestial sphere. In order to mark the position of a point on
the earth’s surface, it is necessary to use a system of co-ordinates. The terrestrial latitudes
and longitudes are used for this purpose.

The terrestrial meridian is any great Standard
circle whose plane passes through the axis A meidian
of the earth (i.e., through the north and '

south poles). Terrestrial equator is the great S menaa B s T
circle whose plane is perpendicular to the ,ff _,_.E.A"

earth's axis. The latitude @ of a place is f :pdlﬁ"ﬂl‘h\

the angle subtended at the centre of the [ atiude )
earth north by the arc of meridian intercepted
between the place and the equator. The latitude
is north or positive when measured above
the equator, and is south or negative when
measured below the equator. The latitude |
of a point upon the equator is thus \

0 ¢, while at the Morth and South Poles, N\ /e /
it is 90 N and 90 ® § latiude respectively, ”‘1\ \
The co-latitude is the complement of the . Vi rd
Intitude, and is the distance between the point \\ S
and pole measured along the meridian. — ‘4 —

The longitude (§) of a place is the .
angle made by its meridian plane with some FIG. 1.11. THE TERRESTRIAL LATITUDE AND
fixed meridian plane arbitrarily chosen, and e

is measured by the arc of equator intercepted between these two meridians. The prime
meridian umversally adopted is that of Greenwich. The longitude of any place varies between
0=t 180 *, and is reckoned as ¢ ° east or west of Greenwich. All the points on meridian
have the same longitude.

The Parallel of Latitude

The parallel of latitude through a point is a small circle in which a plane through
that point, and at right angles to the earth's axis, intersects the earth’s surface. All the
points on the parallel of latitude have the same latitude. The meridians are great circles
of the same diameter while the parallel of a latitude are small circles, and are of different
diameters depending upon the latitude of the place through which the parallel of the latitude
is drawn. Due to this reason a degree of longitude has got different values at different
latitodes — higher the latitode smaller the value. At the equator, a degree of longitude
is equivalent to a distance of about 69 miles. However, a degree of latitude has the constant
value of 69 miles everywhere,

To find the distance between two points A and C on a parallel of latitude, consider
Fig. 1.11 in which 8 = latinde of A4 = latitude of C, ¢ = longitude of A, and ¢' = longitude

of C. The angular radius PA of the parallel of latitude =90 ° -8,
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AC 4

Now arc ———=—— where  is the centre of the parallel of latitude
4,0, 04,
o4 .
=54 Hnce 04, = 04 = radius of the earth

= sin 0'04, since SAQ'0 = 90°

AC=A\Cysin (90 * -8) =cos B . A,C,
or AC = cos latitude x difference of longitude.

The shortest distance measured along the surface of the earth between two places
is the length of the arc of the great circle joining them. The distance between two points
in nautical miles measured along the parallel of latinde is called the departure.

Thus, departure = difference in longitude in minufes x cos lafitude,

The Fones of the Earth

The earth has been divided into certain P
zones depending upon the parallel of latimde of
certain valoe above and below the equator. The
parallel of latitude 23° 273’ north of equator is
known as the tropic of cancer. The parallel of Tropic of cancer
latinde 23° 273 south of equator is known as
the tropic of capricorn. The belt or zone of Equator

earth between these two tropics is known as the
rorrid zone. The parallel of latitude 66 ° 31%‘ nirth

of eguator is called the arctic circle, and of Tropic of capricom
a similar value. South of eguator is called the
anarctic circle. The belt between the tropic of

cancer and the arctic circle is known as the north
temperaie zone while the belt berween the tropic
of capricorn and the amarctic circle is known a

as the south remperare zome. The belt between  FIG. 1.12. THE ZONES OF THE EARTH.
the arctic circle and the north pole is called the
north frigid zome and the belt between the amarctic circle and the south pole is called
the south frigid zome.
The Naotical Mile. A nautical mile is equal to the distance on arc of the great
circle corresponding to angle of 1 minute subtended by the arc at the centre of the earth.
Taking radius of earth = 6370 kilometres, we have
Circumference of the great circle. _ 2m » 6370
360 ° x 60 360 = 60
1.4, SPHERICAL TRIGONOMETRY AND SPHERICAL TRIANGLE

Since in the astronomical survey many of the quantities involved are the parts of
the celestial sphere, a simple knowledge of spherical trigonometry is essential.

One nautical mile = = 1,852 km.
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Spherical Triangle

A spherical triangle is that triangle which
is formed upon the surface of the the sphere
by intersection of three arcs of great circles and
the angles formed by the arcs at the vertices
of the triangle are called the spherical angles
of the triangle.

Thus, in Fig. 1.13. AB, BC and CA
are the three arcs of greai circles and intersect
each other at 4, B and C. It is usual 10 denote
the angles by A, B and C and the sides respectively
opposite to them, as a b and ¢ The sides
of spherical triangle are proportional io the angle
subtended by them ai the cemtre of the sphere
and are, therefore, expressed in angular measure. FIG. 1.13. SPHERICAL TRIANGLE.
Thus, by sin & we mean the sine of the angle
subtended at the centre by the arc AC. A spherical angle is an angle between Iwo great
circles, and is defined by the plane angle between the tangents to the circles at their
point of intersection. Thus, the spherical angle at 4 is measured by the plane angle
A,AA, between the tangents A4, and A4, to the great circles AR and AC.

Properties of a spherical triangle

The following are the properties of a spherical triangle :

1. Any angle is less than two right angles or =.

2, The sum of the three angles is less than six right angles or 3= and greater
than two rnight angles or =.

3. The sum of any two sides is greater than the third.

4, If the sum of any two sides is equal o two right angles or =, the sum of
the angles opposite them is equal 0 two right angles or .

5. The smaller angle is opposite the smaller side, and vice versa.
Formulae in Spherical Trigonometry

The six quantities involved in a spherical triangle are three angles 4, B and C and
the three sides a, b and ¢. Out of these, if three quantities are known, the other three
can very easily be computed by the use of the following formulae in sphencal trigonometry:

1 i formula - si.uﬂzsinb=sinc L.
e 4 smA snB &mC (.1
2. Cosine formula :ms.-l=m"._m.bmsc ALY
gin b sin ¢
or cos @ = cos b cos ¢ + sin b sin ¢ cos A ..[1.2 (a)]
Also, 08 A == cos B cos €+ sin B sin C cos a (1.3

3. For computation purposes :
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=\,3in{:—b}$in{.!*f-'] (1.4)

sin b sin ¢

B gin b sin ¢ +(1.5)

m%=.\[=m (s — b) sin (s - ) (1.6)

gin § sin (5 — @)

where 5= %{a +b+0)
4. Similarly,

A
2
A gin & sin (5§ — a)
2

—cos 5 cos (5 - A)
= sin B sin C +(1.7)
_Jeos (S-B)cos (S - O

gin B sin C
_v — cos § cos (5 - A)
~ Yeos (5-B)cos (5~ O

where S=H4+B+0)

E.

...(1.8)

L= A E -

tan ol 19

Lan%r.' _(1.10)
tan § (@ - b) = ——————tan 3 ¢ ALID
L4112

MEM-B}=[—MEC .a01.13)

THE SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLE

The relationships of right-angled spherical triangle are very conveniently obtained from
‘Mapier's rules of circular pars’.

In [Fig. 1.14 (a)], ABC is a spherical triangle right-angled at C. Napier defines
the circular parts as follows :

(i the side a w one side of the right-angle,

(if) the side b to the other side of the right-angle,

(iiiy the complement (90 ° -A) of the angle A,

(iv) the complement (90 ° -¢) of the side ¢,
and (v} the complement (90 ° - B) of the angle B.

These five parts are supposed to be arranged round a circle [Fig. 1.14 (B)] in order
in which they stand in the triangle. Thus, starting with the side o, we have, in order,
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FIG. 1.14. NAPIER'S RULES OF CIRCULAR PARTS.

b, 90° - A, 90° - ¢ and 90° - B, Then, if any part is considered as the ‘middle part’ the
two parts adjacent to it as ‘adjacemt parts’, and the remaining two as ‘opposite paris’,
we have the following rules by Napier :

sine of middle part = product of tangents of the adiacent pans LA}
and sine of middle part=product of cosines of opposite paris .. A
Thus, sin b = tan a tan (90° - A)
and sin b = cos (90° - B) cos (90° = ¢)

By choosing different parts in turn as the middle parts, we can obtain all the possible
relationships between the sides and angles.
THE SPHERICAL EXCESS

The spherical excess of a spherical triangle is the value by which the sum of three
angles of the wmiangle exceeds 180°.

Thus, spherical excess E={d+ B+ C - 1807 (114

Also, tan® 3 E =tany s tan 3 (s - @) tan 3 (s — &) @an 3 (5 - ¢) ...{1.15)

In geodetic work the spherical triangles on the earth’s surface are comparatively small
and the spherical excess seldom exceeds more than a few seconds of arc. The spherical
excess, in such case, can be expressed by the approximate formula

A
E—Rzm = seconds - [L15 (a)]
where R 15 the radius of the earth and A is the area of triangle expressed in the same
linear units as R.

In order to prove the above expression for the spherical excess, let us consider the
spherical triangle ABC [Fig. 1.14 (¢)] which is formed by three great circles. These three
great circles divide the whole sphere in eight divisions—the four in one hemisphere being
similar to the other four in the other hemisphere because of symmetry.

Let A=area ABC ; Aj= area ACD

A= area CDE ; Ay = area BCE
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S = area of whole sphere=4x R* ;
R = radinsof sphere

A, B, C=angles of the spherical triangle

Evidently, {"‘”"}:3;”5
A
+ Ay = s
At A= 35pe ™
and A+ M= ¢ % 5
360°
Adding the three, we get
Jill_A+£H-r.? 5 D
Mt+At+h+la= 360° =5 ...
Also, A+ A+ Ay+ Ay= area of hemisphere
=§ D)
ing (2) D, ™ o FIG. 1.14 {0) mugxuggg?m OF SPHERICAL
5§ A+B+C 5
i =07 4+ B+ C - 180°
LL’1.+1 3607 x § or 2A Eﬁﬂ'[ +8+ )
or 28= 32 xE, from Equation 1.14
A T20°A A
i i = (2 - m : E = 180° T
which gives E=(2x360°) < ey LS — degrees ...[ (b)]
A
or = ——  seconds -[1.15 (@)
R?sin 1"

Area of sperical triangle :
The area of spherical triangle may be obtained from the formula
" aR'(A+B+C-180°) =R'E

Area 4 180° = 180°
1.5. THE ASTRONOMICAL TRIANGLE (Fig. 1.15)

An astronomical triangle is obtained by joining the pole, zenith and any star M on
the sphere by arcs of great circles. From this triangle, the relation existing amongst the
spherical co-ordinates may be obtained.

Let o = altimde of the celestial body (M)
& = declination of the celestial body (M)
6 = latitude of the observer.

—

...(1.16)

Then ZP = co-latimde of the observer=90°-8=¢
PM = co-declination or the polar distance of M =90"-&6=p
and ZM = zenith distance = co-altitude of the body= (%° -a) =z
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The angle at Z=MZP= the
azimuth (4) of the body

The angle at P=ZPM = the

hour angle (H) of the body
The angle at M = ZMP=the

parallactic angle

If the three sides (i.e. MZ
ZP and PM) of the astronomical tri-
angle are known, the angles 4 and
H can be computed from the formulae
of spherical trigonometry.

Thus, from Eq. 1.2, we have

sin &

c0s A =—————_—tanac . tan
cos o . cos @
(117 (@)] FIG. 1.15. THE ASTRONOMICAL TRIANGLE.
Also,
A sin (5 - ZM) sin (5 — ZP)
MEF S s sin (s = PM) LLALLT)
_ 4] sin (s = 2) sin (s - ¢)
_‘\I' s s G LT )
A _ =+ sin (s - 2) sin (5 - ¢)
rh:li—\l prpp LT (e)]
£= sin 5 . sin {5 - p)
cos \I e 11T (d)]
where $=5(@M+ZP+ PM) =5 (z+ ¢ +p)
Similarly, mﬁ-ﬁ?ﬂﬂ-ﬁ‘mamna I8 ()]
H 4] sin (s - ZP) sin (s - PM)} _ 4 [ sin (5 - ¢) sin (s - p)
Also, ““?‘V‘ sin 5 . sin (5 — ZM) - ins.sme-p 019
. H _+fsin (s - ¢} sin {5 - p)
sin 7= \J Tmc, i p L8 ()]
H 4 sins. sin (s - 2)
mi-'\J g ¢, s p L1188 ()]

STAR AT ELONGATION
A star 15 said to be ar elongation when it is at its greatest distance east or west
of the meridian. In this position, the azimuth of the star is a maximum, and its diurnal
circle is tangent to the vertical through the star, The triangle is thus right-angled at M.
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The star is said o be at eastern elomgation, when it is at its greatest distance to the
east of the meridian, and at western elomgation, when it is at its greatest distance to the
west of the meridian. Fig. 1.16 (a) and (b) show the star M at its eastern elongation.

(a) Apparant path of a star as seen from
outside the celestial sphere
il -
P
B0-a
90°=§
M

(e}

FIG. 1.16. STAR AT ELONGATION.

If the declination (3) and the latitode of the place of observaiion is known, the
arimuth (4), hour angle (H) and the altitude (c) of the body can be calculated from the
Napier's mle [Fig. 1.16 {¢) and (d)]. The five parts taken in order are, the two sides
(90" — ), (90°-5) and the complements of the rest of the three parts, ie.,
(907 ~ H), [90° - (90" - 8)] =8 and (90° - 4).

Thus, sine of middle part = product of tangents of adjacent parts.

sin (90° ~ H) = tan (90° - §) tan 6 or muH:E;::tanB.mlﬁ ..(1.19)

Similarly, sin & = cos (90" - &) . cos (90° - o) or sinu-:iizglsinﬁ.mﬁﬁ o (1.20)

and sin (90° - &) =cos (90°* —A)cos 8@ or sind=m=m:ﬁ.m:ﬂ LAL21
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STAR AT PRIME VERTICAL
When the star is on the prime vertical of the observer, the astronomical triangle
is evidently right-angled at Z
z — Meridian P

8- 8
A= 50

p— Prima vertical

(a)
FIG. 1.17. STAR AT PRIME VERTICAL.

If the declination (6) and the latitute (8) of the place of observation are known,
the altiude (o) and the hour angle (M) can be calculated by Mapier's rule. The five parts
taken in order are : the two sides (90°-8) and (%° - o), and the complemenis of the
rest of the three parts, i.e., (90° - M), 90° - (90° —8§) =56 and (90° - H).

Now sine of middle part = product of cosine of opposite parts.

sin b=cos (90° - cos (W -a)=sinBsina 'sinu=%=sinﬁmﬂ ...(1.22)

And sin (90° = Hy=tan(90°* -8 and or cos H = = tan & cot B el 1.23)

tan B

STAR AT HORIZON

If a star (M) is at horizon, its altiude will be zero and the zenith distance will
be equal o 90°,

If the latimade © and the declination & are known, the azimuth A and the hour angle
H can be calculated by pufting a= zero in equations 1.17 a and 1.18 a.

Thus, cos A ="28 _ in5seco {1.24)
cos B
and cos H =-tand tan B ... 1.25)

STAR AT CULMINATION

A star 15 said to culminate or transit when it crosses the observer's meridian. Each
star crosses a meridian fwice in its one revolution around the pole —the two culminations



18 HIGHER SURVEYING

being designated as the upper culmi- z 4
nation and the lower culmination. A A,

star is © be at its upper culmination
when its altimde iz macimum, and ar
lower culmination when its altutude is
mrinimun.

Thus, in Fig. 1.18, the star M
culminates or transits the meridian at
A and B, A being the point of upper
culmination and B the poimt of lower

Similarly, the star M, culminates
or ransits the meridian at 4, and B,, 4,
being the point of upper culmination
and B, the point of lower culmination. Equator

The upper culmination (4) of
the star M occurs at the north side FIG. 1.18. STAR AT CULMINATION.
of the zenith, (i.e., towards the pole)
while the upper culmination (4,) of the star M, occurs at the south side of zenith.

Now, at the upper culmination (A) of the star M, its zenith distance

s IA=ZP-AP=(9" -8)-(90° - 8)= (6 - 8) (1)
Similarly, at the upper culmination (4,) of the star M,, the zenith distance
=ZA=PA, - PZ=(90°" -8)- (90" -8) = (8 - &) e 2)

From (1) and (2), it follows that:

{f) The vpper culmination of a star
occurs to the north side of the zemith
when the declination of the star is greater
than the latitude of the place of observation.

(if) The upper culmination of a star
occur (o the south side of the zenith when
the declination of the star is lesser than
the latitude of the place of observation.

CIRCUMPOLAR STARS

Circumpolar stars are those which
are always above the horizon, and which
do not, therefore, set. Such a star appears
to the observer to describe a circle above
the pole.

Thus, in Fig. 1.19, M, is a cir-
cumpolar star having its path A4, which
is always above the horizon. In order
that the circumpolar star does ot set,

FIG. 1.19. CIRCUMPOLAR STARS.
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distance above the pole (i.e., PA,) should be less than the distance of the pole from the
horizon.

Hence PA, < PH or (90" -8) <O since PH=8 or &> (90°-8)

Hence the declination of a circumpolar star is always greater than the co-latiude
of the place of observation.

Similarly, M, is a circumpolar star having its path BB, which is always below the
horizon and, therefore, never rises.
1.6. RELATIONSHIPS BETWEEN CO-ORDINATES

1. The Relation between Altitude
of the Pole and Latitude of the Observer.

In Fig. 1.20. H-H is the horizon
plane and E-E is the equatorial plane.
O is the centre of the earth. Z0 is per-
pendicular to HH while OP is perpendicular
o EE.

Now latitude of place=0=ZEOZ

And altitude of pole=a = ZHOP
LEOP =90° = £ EQZ + £ ZOP

=0+ LZOP )
LZHOZ =9N° = ZHOP + £LPOZ
=a+ S P07 ... A Equator
Equating the two, we get FIG. 1.20.

B+ LZOP=a+LPOZ or 6G=a
Hence the altitude of the pole is always equal to the latitude of the observer.

2. The Relation between Latitude of Observer and the Declination and Altitude
of a Point on the Meridian.

For star M,, EM, = & = declination.
SM, = a = meridian altitude of star.
M\Z = 7 = meridian zenith distance of star.
EZ = 6 = latinde of the observer.
Evidently, EZ=EM,+ MZ
or 0 =06+1z A1)
The above equation covers all cases.
If the star is below the equator, negative
sign should be given to & . If the star
is to the north of zenith, negative sign should
be given o z
“If the star is north of the zenith but g
above the pole, as at M,, we have
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or (90° - 8) = (90° — a) + p, where p = polar distance = M; P
or B=q=-p A2}
Similarly, if the star is north of the zenith but below the pole, as at M,, we have
IM; = ZP + PM,;
or (90° - ) = (90° — 8) + p, where p=polar distance = M, P
or B=a+p -.(3)

The above relations form the basis for the usual observation for latitude.
3. The Relation between Right Ascension and Hour Angle.

Fig. 1.22 shows the plan of the stellar
sphere on the plane of the equator. M is
the position of the star and ZSPM is iis
westerly hour angle. H, . T is the position
of the First Point of Aries and angle

.. Hour angle of Equinox = Hour angle
of star + R.A. af siar.

Example 1.1. Find the difference of
longitude between two places A and B from
their jfollowing longitudes :

(1) Longitude of A =40° W

Longitude of B =73 W

(2} Long. of A=2FE

Long. of B=I150°E
(3) Longitude of A =20°W

Longitude of B=350F W
Solution.

(#) Long. of A=4FE
Long. of B=I50FW

{1} The difference of longitude between 4 and B = 73" — 40°= 33

{2} The difference of longitade between A and B

150® - 20°= 130°

(3) The difference of longitude berween A and B = 20° - ( - 507) = T*
(4) The difference of longiude between 4 and B =40° - ( - 150°%) = 190°

Since it is greater than 180°, it represemis the obtuse angular difference. The acute
angular difference of longimde between A and B, therefore, is equal w 360° - 190° = 170",
Example 1.2, Calculate the distance in kilomeiers berween iwo points A and B along

the parallel of latitude, given that

-

() Lat. of A, 28°42'N; longitude of A, 31° 12'W
Lat. of B, 28°42'N; longitude of B, 47 24'W
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(2) Lar. of A, 12°36°S; longitude of A, 115 6'W
Lat. of B, 12°36°8; longitude of B, 150° 24°E.

Solution.

The distance in nautical miles between A and B along the parallel of latimde = difference
of longilude in minutes x cos latitude.

(1) Difference of longiude between A4 and B =47° 24" = 3]° 12" = 167 12'= 972 minutes

: Distance = 972 cos 28° 42" = §851.72 nautical miles

= 851.72 = 1.852 = 1577.34 km.
{2y IDnfference of longitude between 4 and B
= 360* - { 115% & - (- 15{]°24’]|- = 04° 30'= 5670 min.
Distance = 5670 cos 12° 36’ = 5533.45 nautical miles
= 5533.45 x« 1.852 = 10,247.2 k.

Example 1.3. Find the shortest distance between two places A and B, given thai
the longitudes of A and B are I50°'N and 12 6° N and their longitudes are
¢ I2°E and 54° 0'E respectively. Find also the direction of B on the grear circle roule.

Radius of earth = 6370 km.

Solution.

In Fig. 1.23, the positions of 4 and
B have been shown.

In the spherical triangle ABP,

b = AP = 90° - latitude of A = 90° - 15° 0" = 75°
a =8P =90~ lattude of B
=090° - 12° & = T7° 54
P= 2/ A P B = difference of longitude
= 54° 0 = 50" 12' = 3° 48",

The shortest distance between two points
is the distance along the great circle passing
through the two poinis.

Knowing the two sides one angle, the
third side AB ( = p) can be easily computed by
the cosine rule.

COS p ~ OS5 @ cos b
sin a sin b
or cos p=cos Psin @ sin b + cos a cos b
= ¢0s 3° 48" sin 77° 54" sin 75° + cos 77° 54’ cos 75° = 0.94236 + 0.05425= 0.9966]
peAB=4°4Hd) =4°.7

FIG. 1.23.

Thus cos P=

Now, arc = radius = central angle = 6370 ]:3;:1 “T = 522.54 km.

Hence distance AR = 522.54 km.
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Direction of A from B :
The direction of A from B is the angle B, and the direction of B from A is the
angle A.

Angles A and B can be found by the tangemt semi-sum and semi-difference formulae
(Egs. 1.12 and 1.13).

1
cos L (a - b)
Thus tan § (A + B) = — cot § P
Eﬂ-l--i-l:ﬂ"i'-fl]
1 ﬂn%[ﬂ"m 1
A tan 5 (4 - B) =———— cot3 F
sini{u+b}
a-b T1°54-75° 54
Here 7 = 3 -— =1°27
a+by 775 +75° 152° 54 P 3 4F
= = =T6° 27", == = 1° 54
2 2 2 2 2
. _ cos 1927 s s
mn1||;.1+ﬂ] o8 767 27 cot 1° 54
A+ B
From which, = 89° 35' i)
gy SR102T
and tan 3 (4 - B) = — " oot 1° 54
. A-B , )
From which, = 38° 6 ...Lif)

Direction of B from A =angle d =89°35 +38°6' = 127°41' = §52° 19' E
Direction of A from B = angle B = 89° 35 - 386" = 51° 20" = N 51° 29" W.
Example 1.4. At a point A in latitude 45° N, a straight line is ranged owr which
runs due east af A. This straight line is prolonged for 300 nautical miles 1o B. Find
the latitude of B, and if it be desired to travel due north from B so as to meet the
45® parallel again at C, find the ABC @t which we must set owt, and the distance BC.

FIG. 1.24,
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In Fig. 1.24, AB is straight line portion of a grear circle ; since its length is 300
nautical miles, it subtends 300 mimutes ( = 5°) at the centre of the earth. AP is the meridian
through A. Since AB is due east of the meridian, £PAB =90°. Similarly, BP is the mendian
through B, and meets the parallel to latitude through A (45° N) in C. PAB is, therefore,
an astronomical triangle in which

side PA = b =co-latimde of A =90°-45°=45" side AB=p=5°, L4A=9"

The side PB=a can be calculated by Napier's rule. Thus, sine of middle part
= product of cosines of opposiie pans.

sin (90° - @) =cos b cos p or  cosa = cos 457 cos 5°
log cos 45° = 1.8494850
log cos 5° = 1.9983442

log cos a = | .8478292
= PB =45 13108
BC = PB - PC = 45° 13108 - 45° = 13108
Hence distance BC = 13.108 nautical miles = 13.108 = 1,852 = 24.275 km.
The angle at B can be found by the application of the sine formula,

™ sin B _ sin 4 or sin B _ sin 907
smb sina sin 45*  sin 45° 13"-108
or sin B = sin 45°
sin 45® 13" - 108

log sin 45° = 1-8494850
log sin 45° 13" 108 = 1.8511345 (subtract)

log sin B = 1.998505 : B = 85° 0 34",

Example 1.5. Two ports have the same latitude | and their longitudes differ by 2d.
Prove thar the length of the shortest route berween them is 2R sin™' (sin d cos 1), where
R iz the mean radius of the earth.

Find the greatest distance, along a meridian, between the shortest route and the parallel
of latitude through the ports. (UL

Solution

In Fig. 1.25, A and B are the two poris. AFB is the arc of the great circle through
Aand B and F is the middle point. Due to symmetry, therefore, £AFP = BFP=9)°. ACE
is the arc of parallel of latimde. AP and BP are the two meridians through 4 and B,
FP is the meridian through the middle point of AB. Hence, wiangles APF and BFF are
astronomical triangles.

In triangle PFB,

PB =f=co-latitvde of B=(90"<0) ; PF=bk ; ZFPB=4d.
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(&) [{31]

FIG. 1.25

Distance FB =p can be calculated by Napier's rule for the circular parts shown in
Fig. 1.25 (b).
" sine middle part = Product of cosines of opposite parts

sin p = cos (90° — ) cos (90° - f) = sin 4 sin [ = sin d sin (90° - ) = sin d cos [

or FB=p=sin""' (sin d cos [)

Hence dB=2FB=Ep=15in"[sindms.ﬂ radians.

Distance AE along great circle = radius < angle at the cenire of earth=R=2p
=2 R sin ' (sin o cos {) {Proved).

The greatest distance between the great circle AFE and the parallel of latiude ACB
will evidently be along CF (since ZF = 907),

The distance PF=5p can be found by Napier's rule.
sin middle part= product of tangents of adjacent parts

or sin (90° — d) = tan b tan (90° - )

or cos d = tan b cot f=tan b cot (90° — I) = tan b tan [
o tnb=cosdcot! or b=PF=tan ' (cosdcoti)
Now CF=CP-FF
But E.P:[Srﬂf-n:%-f radians

CF={%—J'J—tm1"{msdml.l'] radians

nismumalungchnauiusxmg!:a:mcmu::n{{%-:]-m "(cosdcotl) | Ams.

Example 1.6. Find the zenith distance and altitude at the upper culmination of the
stars from the following data :

(@) Declination of star =42° I5'N Latitude of observer = 26° 40°N

(b) Declination of star = 23° 20°N Latitude of observer = 26° 40°N

(€} Declinarion of star = 65° 40°N Latitude of observer = 267 40°N



FIELD ASTRONOMY 15

Solution. (Fig. 1.18)

{a) Since the declination of the star is greater than the latiude of the observer (6 > 8),
the upper culmination of the star occurs to the north side of zenith, fe.. between £ and
P.

Hence zenith distance at upper culmination =Z4 =ZP - AP
= (907 - 8) = (90° - §) = (& — @) =427 |5 - 26° 40" = 157 3§
Altitude of the star at upper culmination = 90° - 15° 35" = 74° 28",
(b} Since the declination of the star is lesser than the latirude of the observer, the
upper culmination of the star occurs ai the south side of the zenith.
Zenith distance of the star at upper culmination = 24, = AP - ZP
=(90° - 8) - (9 -0) =0 -5 =26"40 - 23° 20" = 3* 0
Altude of the star at the upper culmination = 90° - 3* 20F = 86° 40'.
(c) Fig. 1.19, 6 = 65° 40’ N ; 90°- 0 = 90°- 26° 40" = 63° 20
since the declinanon of the star is greater than the co-latitude, the star is circumpolar,

and will never set. The upper culmination will occur at the north side of zemith, ie.,
between £ and P

Zenith distance at the upper culmination = Z4, = ZP - A,P
=(90% - 8) - (90° -5) =5 -0 =85 40" - 26" 40 = 397,
Altitude of the star at the upper culmination = 90° - 39° = 5§1°,

Example 1.7. Find the zemith distance and altitude ai the lower culmination for a
star having declination = 85° 20" if the lmitude of the piace of observation = 46° 507,
Solution.
6 = 85° 20" ; 90" - 0 = 90° - 46° 50" - 43° 10’
Since the declination of the star is greater than the co-latitude of the place, it is
circumpolar and will not set.

In Fig. 1.19, let A, be the lower culmination of a circumpolar star M,. Its zenith
distance at the lower culmination = Z4,= ZP + PA,
= (90° - 8) + (90° - §) = 180° — & - 6 = 180" - B5™ 20" - 46° 50 = 47* 50
The altitude of the star = 90° - 47° 50" = 42° 10,
Example 1.8. A star having a declination of 56° J0'N has its upper transit in the
zenith of the place. Find the altitude of the star at its lower fransit.
Solution. (Fig. 1.18)

Let M be the star having 4 and B as its upper and lower transits. Since the upper
culmination is at the zenith, Z and A coincide.

Hence zenith distance of star = zero
and Polar distance of the star = AP=ZP = co-latinde of place
: 90 -6=90"-8 or 6=>d=56°10
At the lowest mansit of the star at B, s zenith distance = ZB = ZP + PB
=907 - @)+ (90" - 8)= 180" =8 - 5 = 180° - 265 = 180° = 112° 200 = 67° 40
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Altimmde of the star at lower transit = 90° - 67° 40° = 22* 20",
Example 1.9. The altitudes of a star av wpper and lower transits of a star are
700 20" and 20° 40°, both the itransits being on the north side of zenith of the place. Find
the declination of the star and the latitude of the place of observation.
Solution. (Fig. 1.18)
Let M be the star having A and B as its upper and lower culminations.
At the upper culmination, zenith distance =Z4 =ZP - AF
=(0*-8)- (W -8)=5-96
Altinde of star = 90° - zenith distance = 90°- (& - 8).
But this is egual o 70° 20° (given)
70° 20" = 90° - (6 - @)
or 6 —8=00° 70" 20" = 19" 40 (1)
At the lower culmination of the star, the zenith distance of the star
=28 = ZP + PR = (90°- 8) + (90°~ &) = 180" - (D + &)
Altitude of the star = 90° - zenith distance = 8+ § - 90°
But this is egual w 20° 40 (given)
8456-90"=20°( or #@4+4=110"40 (2}
Solving equation (1) and (2), we get 6 =65°100 and 6 = 45° 30
Note. Since the altitudes of the star ai both the culminations are positive, the star
is circumpolar.
Example 1.10. Determine the azimuth and altiude of a star from the following data:

(i)  Declination of star = 20° 30'N
(i) Hour angle of star = 42° §*
(iif) Latitude of the observer = 5(° N.

Solution. (Fig. 1.26)

The hour angle of the star
= 42° §' and since it is measured towards
west, the star is in the western part of
the hemisphere as shown in Fig. 1.26.

In the astronomical A PZM, we have

PZ = co-latitude = 9 - 50° = 40°

PM = co-declination of star
= 0® - 20° 30" = 69° 30'
EZPM = H=42"§".

It is required to find angle A and FIG. 1.26

Using the cosine rule {Eqg. 1.2 a)
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cos ZM = cos PZ cos PM + sin PZ sin PM cos H
= cos 40° cos 69° 30" + sin 40° sin 69° 30" cos 42° &
= (.26828 + 0.44673 = 0.71501
ZM = 44° 21’
Altitude of the star = o =90° - ZM = 00" — 44° 2]'= 45" 39’
Again, using the cosine rule (Eg. 1.2), we have
cos PM — cos PZ . cos ZM

A=
cos sin PZ . sin 2
& P & 0 [} —
=mﬁg -30 ms..dﬂ . cos 447 21 =D.35§}21 0.54780 - _0.43972.
sin 40° | sin 44° 21" (.44934

Since cos A 15 negative the angle A lies between 90° and 18O,
cos (180° - A) = ~cos A =0.43972
180" - A=63"55 or A=180"-63"55=116"5"W.
Example 1.11. Determine the azimuth and altitude of a star from the following data :

{(fy  Declination of siar =8 30°8
(ify Hour angle of star = 322°
(ifi}y Latitude of the observer = 50° N.

Solution. (Fig. 1.27)

Since the hour angle of the star is
more than 1B0®, it is in the eastern
hemi-sphere and s azimuth will be eastern
as shown in Fig. 1.27 where ZPM is the
astronomical triangle. The star M is below
the equator since s declinstion is negative.
Now, ZP = co-latitude = 90° - 50° = 40°

PM = 90° - ( - 8° 30") = 98° 30';
H, = 360" - H=360% - 322" = 38°
Knowing the two sides and the included

angle, the third side can be calculated by
the cosine rule (Eq. 1.2 a).

Thuscos M = cos PZ . cos PM + sin PZ Equator
= 3in PM cos H, FIG. 1.27

= cos 407 . cos 98° 30° + sin 40° sin 98°-30'. cos 38°
=~ 0.11323 + 0.50094 = 0.38771
ZM = &67° 11"
Altitude of the star=90° - 67 11' = 22° 4%
(The star is thus above the horizon)
Again, from the cosine rule [Egq. 1.2)
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cos PM - cos PZ . cos PM  cos 98° 30" - cos 40° cos 67° 11
T sinPZ.smzM sin 40° sin 67° 11'

- 0.14781 = (1.29687
= 0.59350 = — [.75051 .
Since cos A is negative, the value of A is between 50° and |80°

cos (180° — A) = — cos A = 0,75051
(180° = 4) = 41" 22" or A= [38° 38
Azimuth of star = 138° 38" E.

Example 1.12. Dﬂenuine‘m& hour angle and declination of a star from the following

cos A

(Y Alttude of the star = 22° 36°
(i) Azimuth of the siar = 42° W
(itf) Latitude of the place of observation = 40° N,

Solution. (Fig. 1.26)

Since the azimuth of the star is 42% W, the star is in the western hemi-sphere.
In the astronomical A PZM, we have
PZ = colatitude = 90° - 40° = 50° ; ZM = co-altitude = 90° - 227 36" = 67 24", angle A =42°

Knowing the two sides and the included angle, the third side can be calculated from
the cosine formula (Eg. 1.2 a).

Thus, cos PM = cos PZ . cos ZM + sin PZ . sin ZM . cos A
= cos 50°, cos 67° 24’ 4 sin 50°. sin 67° 24'. cos 42°
=0.24702 + 0.52556 = 0.77238
PM = 39° 1§
Declination of the star =& =90 - PM = 90° - 39° 25' = 50° 35" N.
Similarly, knowing all the three sides. the hour angle H can be calculated from

Eq. 1.1
_maE.H-msFi.".cnsPM_msﬁ?‘ld'—uusﬁﬂ‘.:mi?“li‘

cos H sin PZ . sin PM sin 50° . sin 39° 25'
0.38430 - 0.49659
b 0.48640 =~ 0.23086
cos (180° - Hy = 0.23086 180° - H = 76° 3%
o H=103° 21",
Example 1.13. Derermine the hour angle and declination of a sar from the following
data :
(1Y Alrirude of the siar = 21* 30"
(2} Azimuth of the swar = l40F E
i3) Latitude of the observer = 48 N.
Solution

Refer Fig. 1.27. Sie the azimuth of the star is 1407 E, it is in eastern hemi-sphere.
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In the astronomical triangle ZPM, we have
IM=00F ~—g=90°"-21"30'=68°30'; ZP=90° -B=90° - 48°=42° ; A = 140°
Knowing the rwo sides and the included angle, the third side can be calculated by
the cosine rule (Eq. 1.2 a).
Thus cos PM = cos ZM cos ZP + sin ZM sin ZP cos A
= ¢cos 68° 30" cos 42° + sin 68° 30 sin 42° cos 140°
= 0.27236 - 0.47691 = — 0.20455
. cos (180° — PM) = 0. 20455 or 180° - PM = 78° 12’
' PH = 101" 48"
Declination of the star = 90° - 101° 48" = - 11° 48'= - 11° 48' §
Again, knowing all the three sides, the angle H, can be calculated from the cosine
formula, (Eg. 1.2). Thus
cos MZ — cos ZP . cos MP  cos 68" 30" — cos 42° cos 1017 48

cos H, = sin ZP sin MP - sin 42° gin 101° 48’
0.36650 + 0.15198 .
_ s =0.79161 . H =37°40

But M, is the angle measured in the eastward direction.
Hour angle of the star = 360° - H, = 360° - 37° 40" = 322° 20v.

Example 1.14. Calculate the sun's azimuth and howr angle al  sunser at a place
in latitude 42° 30" N, when its declination is (a) 22°12° N and (b} 22° 12'5.

Solution

Let us consider the aswonomical triangle ZPM, where M is the position of the sun.

Since the sun is on the horizon at ifs sefting, it altitude is zero, and hence ZM = 90°,

Also, ZP =907 - 427 30" = 47" 3

(a) PM =007 - 22° |2 = 7" 48

Fram the wiangle ZPM, we get by cosine rule

cos PM = cos ZP. cos ZM + sin ZP. sin ZM. cos A

But cos ZM = cos 90° = 0 and  sin ZM = sin 90° = |
cos PM  cos 67° 48
sin ZF  sin 47° 30r
Hence azimuth of the sun at setting = 59° 10° West,
Again, from the cosine rule, we get

cos ZM = cos ZP . cos PM + sin ZP . sin PM . cos H

cos A= Hence A = 59° 10

But cos ZM = cos 90° = 0
Hence cos H == cot ZP . cot PM = - cot 47° 30’ col 67° 48’

or cos {180° - H)y = -+ cot 47° 30V cot 67* 48
' 180° -H=68°03" or H=180°-68°03=111°57
Hence sun's hour angle at sumset = 111° 57" = 70 27™ 48°,



30 HIGHER SURVEYING

(b} As before, the azimuth is given by

cosd="0PM e PM =90° - (-22°12 = 122° 12
sin ZP
and ZP=47°37 and ZM=90° as before
8112012 cos 67° 48
sin 47° 30 s 47 307
. cos 67 48°
or cos (180 —.--lf:|=+m

From which, 180" - A4 = 59° |(¥ or A= 120° 50
Azimuth of the sun af sunset = 120° 500 West.
Stmilarly, cos H=-cot ZP . cot PM = - cot 477 30" cot 1127 12" = cot 47" 30 cot 677 48'
. H = 68° 3’
Hence sun's hour angle ar sunset = 68° 3’ =4"32™12°%
Example 1.15. Calculaie the sum's howr angle and azimuth ai sunrise for a place
in latitude 42° 30° § when the declination s 22°12° N.
Solotion
Consider the astronomical iriangle Z'P'M, where M is the position of the sun at
the horizon and P° 15 the south pole.
Z'P' =90 -8 =90°-42° 30" = 47° 30’
Z'M =190 gzince the sun is at hornzon
MP'=00°+22°12'= 112° 12'.
By the cosine rule, cos £ 'M=cos ZP . cos PM+sin ZF sin P'M ,cos H

But cos £ "M =cos 30° =10

Hence cos H==cot Z'P"cot P'M =< cot 47° 30" cot 1127 12
= cot 47° 30" cot 67° 48'

Hence H =683

Since the sun is at its setting, #s hour angle is eastern.

Hence westerly hour angle of sun = 1B0° - 68° 3" = 111° 57" = 7" 27™ 48°
cos P'M  cos 112° 12 cos 67° 48’
sinZ'P'  sind7°30°  sin 47° 30

Again, as before, cos A =

. .. cos 67° 48
cos (180° - 4) = = g7 30
180° — 4 = 59° 10 Oor A= 1BD® - 597 10

Hence the azimuth of the sun = 120° 50° East.
1.7. THE EARTH AND THE SUN

1. The Earth. The Earth is considered approximately spherical in shape. But actually,
it is very approximately an oblate spheroid. Oblate spheroid is the figure formed by revolving
an ellipse about its minor axis. The earth is flatened at poles —its diameter along the
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polar axis being lesser than its diameter at the equator. The equatorial radius a of the
earth, according to Hayford's spheroid 15 6378388 km and the polar radius b of the earth
is 6356.912 km. The ellipricity is expressed by the rmtio %. which reduces io f‘!li_f
For the Survey of India, Everest's first constants were used as follows
a= 20922932 It and b =20,853,642 fi. the ellipticity being SIIII{H'

The earth revolves about its minor or shorter axis (i.e. polar axis), on an average,
once in twemty-four hours, from West w East., If the earth 15 considered stationary, the
whole celesnal sphere along with s celestial bodies hike the stars, sun, moon etc. appear
to revolve round the earth from East to West. The axis of rotation of earth is known
as the polar axis, and the pomts at which it intersects the surface of earth are termed
the MNorth and South Geographical or Terrestrial Poles. In addition to the motion of rotation
about its own polar axis, the earth has 2 motion of motadon relative o the sun, in a
plane inclined at an angle of 23° 27" to the plane of the equator. The time of a complete
revolution round the sun 15 one wvear. The apparent path of the sun in the heavens is
the result of both the diornal and annual real motions of the earth.

The earth has been divided into certain zomes depending upon the paraliels of latuude
of certain value above and below the eguator. The zome between the parallels of latitude

23° 27y N and 237 I'?:" S is known as the rorrid zone (see Fig. 1.12). This is the hottest
portion of the earth’s surface. The belt included between 23° 277 N and 66 325" N of equator
is called the north remperate zone. Similarly, the belt included between 23° 27)° S and 66° 32" S
is called sourh temperate zone. The belt between 66° 323’ N and the north pele is called
the north frigid zone and the belt between 66° 321'S and the south pole is called south
frigid zone.

2. The sun. The sun is at a distance of 93,005,000 miles from the earth., The

1
250,000
about 109 umes the diameter of the earth, and subtends and angle of 31" 59 " at the cemre
of the earth. The mass of the sun is about 332,000 times that of the earth. The temperature
at the centre of the sun is computed to be about 20 million degrees.

The sun has two apparemt motions, one with respect o the earth from east 1w
west, and the other with respect to the fixed stars in the celestial sphere. The former
apparent path of the sun is in the plane which passes through the centre of the celestial
sphere and intersects it in a great circle called the eclipric. The apparent motion of the
sun is along this great circle, The angle between the plane of equator and the ecliptic
is called the Obliguity of Eclipric, its value being 23° 27", The obliquity of ecliptic changes
with a mean annual diminution of (.47,

The points of the intersection of the ecliptic with the equator are called the equinoctial
points, the declination of the sun being zero at these points. The Vemal Egquinox or the
First point of Aries (Y) is the point in which the sun's declination changes from south
to north. The Awtumnal Egquinox or the First poimt of Libra (£) is the point in which

distance 15 only about

of that of the nearest star. The diameter of the sun is
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the sun's declination changes from north to south. The points at which sun’s declinations
are a maximum are called solstices. The point at which the north declination of sun is
maximum is called the swmmer solstice, while the point at which the south declination
of the sun is maximum is known as the winfer solsiice.

The Earth's Orbital Motion Round the Sun — The Seasons

The earth moves eastward around the sun once in a year in a path that is wvery
nearly a huge circle with a radius of about 93 millions of miles. More accurately, the
path is described as an ellipse, one focus of the ellipse being occupied by the sun. The

Vermal aguinox =1
[Mar, 21) i

o equinox
BT (Sept.23)

(a) Plan of the sarth’s orbit

Wmlpr
P Summear 'ﬂl_m P
E solstice Eﬂ“ﬂ?‘f -
-E &arer Q
P ) pe

(b) Section of line of solstices

E Q . I - Q.
Autumnal Varmal
BLEno BOUinoK

(c) Section of ine of eguinoxes

FIG. 1.28. EFFECT OF EAETH'S ANNUAL MOTION.
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earth is thus at varying distances from the sun. The orbit lies (very nearly) in one plane.
The apparent path of the sun is in the same plane. The plane passes through the centre
of the celestial sphere and intersects it in a greai circle called the eclipric. The plane
of the ecliptic is inclined at about 23°27' 1o that of the equator. Hence, the avis of
the earth is inclined to the plane of the ecliptic ai an angle of 66° 33°, and remains
practically parallel to itself throughowr the year. The inclinanon of the axis of the earth
round its orbit causes variations of seasons, Fig. 1.28 shows the diagrammatic plan and
sections of earth’s orbit.

As previously mentioned, the earth’s orbit 1s an ellipse with the sun at one of s
foci. The earth is thus at varying distances from the sun. The earth is at a point nearest
the sun (called the perihelion of the earth’s orbit) on about January 4 and at a point
farthest from the sun (called the aphelion of the earth's orbit) on about July 5. The earth's
rate of angular movement around the sun is greatest at perihelion and least at aphelion.

In position I, the earth is in that part of the orbit where the northern end of the
axis is pointed towards the sun. The sun appears to be farthest north on abowt June 12,
and at this time the days are longest and nights are shortest. The summer begins in the
northern hemisphere. This position of the earth is known as the summer solstice. In position
2 (Sept. 23), the sun i5 in the plane of the equator. The nights are equal everywhere.
The instant at which this occurs is called the Awummal Equimox. The axis of the earth
is perpendicular to the line joining the earth and the sun. In position 3, the earth s
in that part of the orbit where the northern end of axis is pointed away from the sun
The sun appears o be farthest south (Dec. 22) and at this time winier begins in the
northern hemisphere. The days are shortest and nights are longest. The position of the
earth 15 known as the wimter solstice. In position 4 (March 21}, the sun is again in the
plane of the equator. The day and night are equal everywhere. The instant at which this
occurs is called the Vermal Equinox. The line of the equinoxes is the imtersection of the
planes of the eclipic and the equator, and is ar right angles 1o the line of solstices.

Fig. 1.29 (b) shows the sun’s apparent positions at different seasons. Let us study
this in conjunction with Fig. 1.29 (a). Thus, on Fig. 1.29 (a), we shall trace the annual
motion of the sun, while on Fig. 1.29 (b), we shall trace the apparemt diurnal paths of
the sun at different seasons. As is clear from Fig. 1.29 (a), the sun’s declination changes
daily as it progresses along the ecliptic. Due tw the change in the declination, its apparem
path of each day is different from that of the day before. The apparent path thus ceases
ta be circular and all the daily paths taken together will give rise 1o one comtinous spiral
curve. However, for explanation purposes, we shall assume that throughout each day, the
sun’s declination is constant - retaining the same value it has at sunrise. On this assumption
the sun's daily paths will consist of a series of parallels instead of a spiral as illustrated
i Fig. 1.29 (&)

On 21st March, the sun is at T [Fig. 1.29 (a)] and its declination is zero. The
sun's daily path on this day will be along the equator rising at E and setting at W of
the horizon. Its hour angle at £ will be EPZ =90° when it rises. At W, it will again
have an hour angle of 90° when it sets. Thus, day and night will be of equal duration.
On that day, the meridian alumde 5B of the sun is equal to the co-latitude. As the sun
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advances along the ecliptic, its dec-
linanion increases. At the solstitial
point M, it aitains its maximum dec-
lination (23° 27°) on about June 22.
The parallel A,4A, represents sun's path
on that day. The sun rises at A, when
its hour angle is equal w A,FZ which
15 greater than 90°. The sun sets
at A, when its hour angle i1s greater
than 90°, The day is thus longest
on 22nd June. The meridian altitude
54 also amains its maximum value,
On Sept. 23, the declination of the
sun is again zero, the sun's daily path
15 along the equator and the day and
night are of equal length. As the motion
of the sun continues along the ecliptic,
its declination increases to the south
of the equator. On December 22, iis
gsouthern declination is maximum,
C,CC; represents sun's path on that
day. The sun rises at C, when it has
the hour angle C,PZ which is evidently
less than 90° and sets at C, when
its hour angle is less than 90°. The
day is thus shorter than the night.

It is colder in winter due to
two main reasons

(1) the days are shorter in winter.

HIGHER SURVEYTNG

1.29. SUN'S APPARENT POSITIONS AT
DIFFERENT SEASONS.

{2) the rays of sunlight strike the surface of the ground more obliquely, thus weakening

the heating power of the sun's rays.

Though the earth is nearer to the sun in winler it has very small effect in making
the winter hotter. The amount of heat received from the sun depends upon the time it
remains above the horizon, and also on the altitude 1t attains during the day.

MEASUREMENT OF TIME

Due to the intimate relationship with hour angle, right ascension and longitude, the
knowledge of measurement of time is most essential. The measurement of time is based
upon the apparent motion of heavenly bodies caused by earth’'s rotation on its axis. Time
15 the imerval which lapses, berween any two instants. In the subsequent pages, we shall

use the following abbreviations.

G.M.T. ... Greenwhich Mean Time
G.AT. ... Greenwich Apparent Time

... Greenwich Mean Midnight
. Local Apparemt Noon
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G.8.T. ... Greenwich Sidereal Time L.M.M. ... Local Mean Midnight
L.M.T. ... Local Mean Time L.5d.T. ... Local Standard Time
L.AT. ... Local Apparent Time MN.A. ... Manncal Almanac
L.5.T. ... Local Sidereal Time S5.A. ... Star Almanac
G.M.N. ... Greenwich Mean Noon

1.8. UNITS OF TIME

There are the following systems used for measuring time

1. Sidereal Time 2. Solar Apparent Time

3.  Mean Solar Time 4.  Standard Time
1. Sidereal Time

Since the earth rotates on ifs axis from west to east, all heavenly bodies (i.e. the
sun and the fixed stars) appear to revolve from east o west (e, in clock-wise direction)
around the earth. Such motion of the heavenly bodies is known as apparemi motion. We
may consider the earth to mrn on it axis with absolute regular speed. Due 1o this, the
stars appear to complete one revolution round the celestial pole as centre n constanl interval
of time, and they cross the observer's meridian twice each day. For astronomical purposes
the sidereal day is ome of the principal units of time. The sidereal day is the interval
of time between Iwo successive upper Iransits of the first poini of Aries (7). It begins
at the instant when the first point of Aries records 0" 0™ 0°. At amy other instant, the
sidereal time will be the hour angle of T reckoned westward from 0" o 24" The sidereai
day 15 divided into 24 hours, each hour subdivided into 60 minutes and each minute into
60 seconds. However, the position of the Vernal Equinox 15 not fixed. It has slow {and
vaniable) westward motion caused by the precessional movement of the axis, the actual
mnterval between two transits of the equinox differs about 0.01 second of time from the
truc time of one rotation.

Local Sidereal Time (L.S.T.) The local sidereal time is the time interval which
has elapsed since the transit of the first point of Aries over the meridian of the place.

E E

F1G. 1.30
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It is, therefore, a measure of the angle through which the earth has rotated since the
equinox was on the meridian. The local sidereal time is, thus. egual to the right ascension
of the observer's meridian.

Since the sidereal time is the hour angle of the firsr point of Arnes, the hour angle
af a siar iz the sidereal rime that haz elapsed since its rransit, In Fig 1.30. M, is the
position of a star having SPM, (= M) as its hour angle measured westward and TPM, is
s right ascension (R.A.) measured eastward. SPY is the hour angle of ¥ and hence the
local sidereal time.

Hence, we have SPM + M\PY =5P T
ot star’s hour angle + star’s right ascension = local sidereal time <1}

If this sum is greater than 24 hours, deduct 24 hours, while if it is negative add,
24 hours,

In Fig. 1.30 (b), the star M, is in the other position. ¥ PM, is its Right Ascension
{eastward) and ZPM, is s hour amgle (westward). Evidenily,

ZPM; (exterior) + YPM; - 24" =SPY =L .5.T.
or star’s hour angle + star’s right ascemsion -24"= L .§ . T .

This supports the preposition proved with reference to Fig. 1.30 {(a). The relationship
is true for all positions of the star.

When the star is on the meridian, its hour angle is zero. Hence equation 1 reduces
1o

Star’s right ascesion = local sidereal time at ifs transil.

A sidereal clock, therefore, records the right ascension of stars as they make their
Wpper  fransis.

The hour angle and the right ascension are generally measured in rime in preference
to angular units. Since one complete rotation of celestial sphere through 360° occupies 24
hours, we have

24 hours = 360° . | hour = [15°

The difference berween the local swdereal umes of two places is evidentdy equal two
the difference im their longitudes.
2. Solar Apparent Time

Since a man regulates his Gme with the recurrence of light and darkness due o
rising and setting of the sun, the sidereal division of time is not suited w0 the needs of
every day life, for the purposes of which the sun is the most convenient time measurer.
A solar day is the interval of time that elapes between two successive fower transits of
the sun’s centres over the meridian of the place. The lower transit 15 chosen in order
that the date may change at mid-night. The solar time at any instant is the howr angle

of the sun's centre reckoned westward from 0° to 24 This is called the apparent sofar
fime, and is the time indicated by a sun-dial. Unfortunately, the apparemt solar day is
not of constant length throughout the year but changes. Hence our modern clocks and
chronometers cannot be used 1o give us the apparent solar time. The non-uniform length
of the day is due to two reasons
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{1} The orbit of the earth round the sun is not circolar but elliptical with sun af
one of its foci. The distance of the earth from the sun is thus variable. In accordance
with the law of gravitation, the apparent angular motion of the sun 8 not uniform - it
moves faster when is nearer to the earth and slower when away. Due to this, the sun
reaches the meridian sometimes earlier and sometimes later with the result that the davs
are of different lengths at different seasons.

(2) The apparent diurnal path of the sun lies in the ecliptic. Due w0 this, even
though the eastward progress- of the sun in the ecliptic were uniform, the time elapsing
between the departure of a meridian from the sun and its return thereto would vary because
of the obliquity of the ecliptic.

The sun changes its right ascension from 0° to 24" in ome year, advancing eastward
among the stars at the rate of abow 1° a day. Due to this, the earth will have w wrn
pearly 361° about s axis to complete one solar day, which will consequently be about
4 minutes longer than a sidereal day. Both the obliquity of the ecliptic and the sun’s
unequal motion cause a variable rate of increase of the sun’s right ascension. If the rate
of change of the sun's right ascension were uniform, the solar day would be of constant
length throughout the year.

3. Mean Solar Time

Since our modern clocks and chronometers cannot record the variable apparent solar
time, a fictitious sun called the mean sun is imagined to move at a umform rate along
the eguator. The motion of the mean sun is the average of that of the true sun in s
right ascension. It is supposed to start from the vernal equinox at the same time as the
true sun and to return the vernal equinox with the true sun. The mean solar day may
be defined as the interval between successive transit of the mean sun. The mean solar
day is the average of all the apparent solar days of the year. The mean sun has the
constant rate of increase of right ascension which is the average rate of increase of the
true sun's right ascension.

The local mean noon (L.M.N.) is the instant when the mean sun is on the merndian.
The mean time at any other instant is given by the hour angle of the mean sun reckoned
westward from O w 24 hours. For civil purposes, however, it is found more convenient
to begin the day at midmight and complete it ai the next midnight, dividing it into two
periods of 12 hours each. Thus, the zero hour of the mean day is at the local mean
midnight (L.M.M.). The local mean time (L.M.T.) is that reckoned from the local mean
midnight. The difference between the local mean time between two places is evidently equal
w the difference in the longitudes.

From Fig. 1.30 (a) if M, is the position of the sun, we have

Local sidereal time = R.A. of the sun+ hour angle of the sun (1)
Similarly, Local sidereal time = R.A. of the mean sun+ hour angle of the mean sun ...(2)

The hour angle of the sun is zero at its upper transit. Hence
Local sidereal time of apparent noon = R.A. of the sun . (3)
Local sidercal time of mesn poon = R.A. of the mean sun oo ()
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Again, since the hour angle of the sun (true or mean) is zero at its upper transit
while the solar time (apparemt or mean) is zero as its lower transit, we have

The apparent solar time =the hour angle of the sun + 12" A S)

The mean solar time = the hour angle of mean sun+ 12° ...(6)

Thus, if the hour angle of the mean sun is 15° { 1 hour) the mean time is 1241 =13
hours, which is the same thing as 1 o'clock mean time in the afternoon; if the hour
angle of the mean sun is 195° (13 hours), the time is 12+ 13 =25 hours. which
is the same as | o'clock mean time after the midnight (i.e., mnext, day).

The Equation of Time

The difference between the mean and the apparent solar time at any instant is known
as the equarion of rime. Since the mean sun is entirely a fictiious body, there is no
means to directly observe its progress. Formerly, the apparent time was determined by
solar observations amd was reduced to mean time by equation of tme. Now-a-days, however,
mean time is obtained more easily by first determining the sidereal time by steller observations
and then converting it w© mean time through the medium of wireless signals. Dwe ro this
reasor it is more convenient to regard the eguation of time ai the correction that must
be applied to mean time to obtain apparent time. The nautical almanac tabulates the value
of the equation of ume for every day in the vyear, in this sense (l.e. apparent — mean).
Thus, we have

Equation of time = Apparent solar time — Mean solar time.

The equation of time is pesifive when the apparemt solar time is more than the mean
solar time ; to get the apparent solar time, the equation of time should then be added
to mean solar time, For example, at 0" G.M.T. on 15 October 1949, the equation of the
time is+ 13™ 12*. This means that the apparent time at 0" mean time is 0" 13™ 12, In
other words, the true sun is 13 12° ghead of the mean sun. Similarly, the equation of
time is negative when the apparent tme is less than the mean time. For example, at
0" G.M.T. on 18 Jan., 1949, the equation of time is - 10™ 47°. This means that the apparent
time at 0" mean time will be 23"49™ 13* on January 17. In other words, the true sun
is behind the mean sun at that time.

The value of the equation of time wvaries in magnitude throughout the year and its
value 15 given in the Nautical Almanac at the instant of apparent midmight for the places
on the meridian of Greenwich for each day of the year. For any other tme it must be
found by adding or subtracting the amount by which the equation has increased or diminished
since midnight.

It is obvious that the equation of time is the value expressed in time, of the difference
at any instant between the respective hour angles or right ascensions of the true an? mean
Suns.

The amount of equation of the time and its variations are dve o two reasons

(1) obliguity of the ecliptic, and (2} ellipticity of the orbit. We shall discuss both the
effects separately and then combine them to get the equation of time.
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(1) Obliquity of the ecliptic

Neglecting the eiliptic motion, let the true sun describe the ecliptic orbit TM &N with
uniform angular velociry., Let the mean sun describe the equatorial orbit YM 2N with the
same uniform angular velocity. Let both the suns start from T at the same instant in
the direction of the arrow. The earth axis PP also ums in the same direction once
in a day, When the true sun is at A, the mean sun will be at C such that TA=T1TC. If
a declination circle is drawn through A, it will meet the equator in B. The difference
between the declination circles of A and C will then be the equation of time. The points

FIG. 1.31. EFFECT OF OBLIQUITY OF THE ECLIPTIC.
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B and C will coincide only at eguinoxes and solstices. Between the eguinox to solstice,
C will be in advance of B, and any given mendian will (as the earth rotates in the
direcion of the arrow) overtake first the true sun A and then the mean sun. Thar is,
apparent noon will precede mean noon and hence the eguation of time will be additive.
Similarly, between the solstice to equinox, C will be behind A and the equation of time
is subtractive. In Fig. 1.33, the curve A-4 denotes the equation of time due to the obliquity
of ecliptic. Ir may be noted that the equation of time due to this reason vanishes four
rlimes in a year — af equinoxes and solstices. Fig. 1.31 (b) shows the plan, on equatorial
plane, of the positions of the true and mean sun at different parts of the year.

Thus, to conclude, the equarion of time due to obliguity of the ecliptic is due fo
the fact that the uniform motion ‘along the eclipiic does not represemi uniform motion in
.Ehf right ascension.

. Ellipticity or the Eccentricity of the Orbit
Let us now neglect the Dblll:l_ull}" of ecliptic so that the orbit of the sun is in me

equator, and its apparemt path is
elliptical as shown mm Fig. 1.32. Oct. 1

At the Perihelion (December 31), I

the true sun (4) and the mean R < 3 e
sun {(C} start at the same instam. .
The mean sun () rotates with uni- 3
form rate while the true sun (A4) /
moves with the greater angular ve- Pa ' _E-'!‘;__I;'_F'P______E-“f___
locity since it is mearer the earth %31 AiC ]
at Perihelion. Due to this, the true k!
sun precedes the mean sun. Now, %,
since the earth rotates from west :ﬁlﬁ,
0 east (i.e., in the same direction E.T. v
as that of the motion of the sun e
along its orbit indicated by the
arrow), any meridian at a place FIG.1.32. EFFECT OF ELLIPTICITY OF THE ORBIT.

on it will overtake the mean sun

before the true sun. The mean noon will thus occur before the apparent noon, the mean
time will exceed the apparent time and hence the eguarion of iime will be neganive. After
90° from the Perihelion, the tue sun, though ahead of the mean sun, will have decrease
. in its angular velocity so that the distance between the sun and the mean sun goes on
decreasing. At the Aphelion (July 1), both the suns meet and the eguation of time becomes
zero. Between December 31 to July 1, equation of time thus remains negative. After July
1, the true sun has lesser angular velocity than the uniform velocity of the mean sun,
and the mean sun precedes the true sun. The apparent noon will thus occur earlier than
the mean noon at a particular meridian, the apparent time exceeds the mean time, and
the equation of time becomes positive, After about 90° (October 1) from the Aphelion,
the gap berween the mean sun and true  sun gradually reduces due to gradual increase
n the angular velocity of the true sum, tll both the suns reach peribelion at the same

L
-

e mmm =g
b
a
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instant. The equation of time is thus positive from July 1 to December 31. In Fig. 1.33,
the curve B-B denotes the equation of time due to ellipticity of the orbit.
The Final Curve for Equation of Time

In Fig. 1.33, the curve C-C shows the final equation of time obtained by combining
the curves A-4 and B-B. It will be seen that the equation of time vanishes four times
a year, on or about April 16, June 14, September 2, and December 25. From December 25
tll April 16, it is negative having a maximum value of about 14™ 20° on February 12.
From April 16 to June 14 it is positive, having its maximum value of about 3™ 44® on
May 15. From June 14 to September 2, it is again negative with a maximum value of
6™ 24° on July 27. Berween September 2 and December 25, it is again positive, attaining
its greatest positive value for the year 1951, about 16™ 23° on November 4.

Min. | Jan. | Feb.| Mar. | Apr. | May | June | July | Aug. | Sep.| Oct | Nov.| Dec.| Min,
10 20§10 20]10 20|10 20§10 20|10 20|10 20{10 20(10 20{10 20|10 20|10 20
G
18 E.T. due to ohliquity of ecliptic - 15
\ | I
& ' 5 | | f h ;
- i A
" 110 E X g i =k *h 10| "
- - — B - 1
5 E - 4 ,J"k""'l_ £ = Vimsn 1Y
B ;g 2 H === = ‘i 5
_. r L] 'r Fi ’! L
: s
i il -_F
0 7 ﬂ:g Y_‘ 0
“ 2t Fain | 2 E .
Ay e g / "E
¢ | s ERL A E-— 5|2
| i Fi B T - L - |
AT * 1 g"—
M | -
10 fA—ET.duo o AT i
:-...': : TTW“EI-WH‘M-MH‘-

FIG. 1.33. THE EQUATION OF TIME : THE CORRECTION TO BE ADDED TO THE MEAN TIME
TO OBTAIN APPARENT TIME.

4. Standard Time

We have seen that the local mean time at a particular place is reckoned from the
lower transit of the mean sun. Thus, at differemt meridians there will be different local
mean mes. In order to avoid confusion arising from the use of different local mean time
it 15 necessary to adopt the mean times on a particular meridian as the standard time
for the whole of the country. Such a stamdard meridian lies an exact number of hours
from Greenwich. The mean time associated with the standard meridian is known as the
standard time. The difference between standard time and local mean time at any place
is that due to the difference of longitude between the given place and the standard meridian
used. For places east of the standard meridian, local mean time is later (or greater) than
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standard time, and for places to the west, the local time is earlier (or lesser). The following
are the standard meridians of the some of the couniries

Couniry Longitude of standard meridian
Degrees Times
Hrs. Mis.

Great Britain, Belgium, Spain 1 0 =00
Germany, Switzerland I5°E 1-00
India g2 % ° g 5-30
4. Western Australia 120 E 8 =00

5. New Zealand 180° E 12 - 00
6. Central Zones of U.S.A. o W 6 =00
7. British Columbia 120 W g =00

The civil time for the meridian of Greenwich reckoned from midnight, is known
as the Universal Time (U.T.)

The Astronomical and Civil Time

The astronomers count the mean solar day as beginming at midnight and divide ot
continuously from 0" to 24", However, for ordinary purposes, it is preferable to divide
the day into halves and w count from two zero points : (1) From midnight o noon
15 called AM. (amte meridiem), and (2) from noon to midnight is called P.M. (posr
meridiem).

Example 1.16. Find the egquation of iime ai 12" GM.T. on July 1, 1951 from the
Jollowing dota obtained from N.A.

(@) ET. a Greenwich mean midmight on July 1, 1951 =- 3" 2841,

(b) Change between the value for 0% July 1, and that for 0" July 2=- 1187,

Solution

The change in the equation of time for 24 hours = - 11.82°

A 12=_s501°

Change in equation of time for 12"=

ET. at 12" GMT.=-3"2841"-591"=-3"3432°,
Example 1.17. Find the G.A.T. on February 16, 1951, when the G.M.T. is

100 30™ AM. Given ET. at GM.N. on Feb. 16, 1951 =- 14" IF increasing at the rate
of 1 second per howur,

Solution. E.T. at G.M.N. = - 14™ 10*. Since the E.T, is increasing after G.M.N.,
its value will be less than 14™ 10° before noon.

Now, 10°30® A.M. occurs 1" 30™ before the noon.

Change in E.T. in 1°30™ = 1 sec x 1.5 = 1.5 seconds.
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Equation of time at 10" 30™ AM.=-[14™ 10° - 1.5"] = - 14" 8.5
Now G.A.T.=GM.T. + ET. = 10" 30™ - 14™ 8.5" = 10" 15™ 51.5".
1.9. INTERCONVERSION OF TIME

1.9.1. RELATION BETWEEN DEGREES AND HOURS OF TIME
The degrees may be converted into hours and vice versa by the following relation:

360" = 24 howrs.
15=1h
=4m Lh=15
15 =1m Il m=15
1" =435 1 s=15"
15 =18

Example 1.18. Express the following angles in hours, minutes and seconds &
{@) 5012748, (b) 8" 18°6", (c) 258° 36" 30".

Solution.
(a) Sﬂ“—i'—gh =3 20™ 0f ®) 3==15h=n"3:'“n' mzss'_% =17 12 0°
li‘-—sm ot o™ ag® 18 = i:m of 1™ 12° W—%m ob 27 24°
-45 - . = : =—32 = '
43"—_-’34 =0" 0™3.2 6" _E_s o" 0™ 0.4 - 0" 0™ 2
Total = 3" 20™ 51.2° Total= 0" 33 12.4° Total = 17" 14™ 26°

Example 1.19. Express the following hours ete. into degrees, minutes and geconds:
(@ 4313, &) 18 1"35.

Solution.
(a) 4= 4 = 15°=60° 0" 0" (1)} 18" = 18 = 15°=270° ¢¢ O"
347= 34 « 15'=8° 30" 15° 11™=11 % 15 =2°45 0"
13%= 13 « 15"=0° 3" 15" I8 =38 « 15"=0" 9 30"
Total= 68* 33* 15" Total = 272° 54" 30"

1.9.2. CONVERSION OF LOCAL TIME TO STANDARD TIME AND VICE YERSA

The difference between the standard time and the local mean time at a place is
equal tw the difference of longitudes between the place and the standard meridian.

If the meridian of the place is situated east of the standard meridian, the sun, while
moving apparently from east to west, will transit the meridian of the place earlier than
the standard meridian. Hence the local time will be greater than the standard time. Similarly,
if the mendian of the place is to the wesi of the standard meridian, the sun will transit
the standard meridian earlier than the meridian of the place and hence the local time will
be lesser than the standard time. Thus, we have
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(1)
e 2)

...(3)
Use {+) sign if the mendian of place is 1o the east of the standard meridian,
and {-) sign if it to the west of the standard meridian.
If the local time is to be found from the given Greenwich time, we have

LMT. = G.M.T. + Longitude of the place (%)

Example 1.20. The standard time meridian in India is 82° 30" E. If the standard
time at any instant is 20 hours 24 minutes 6 seconds, find the local mean time for wo
places having longitudes (a) 20°P E, (B) 20° W.

Solution

(@) The longitude of the place =20°E

Longimde of the standard meridian = 82°30'E

- Difference in the longitudes = 82° 30" — 20° = 62° 30", the place being to the wes

of the standard meridian.

L.M.T.= Standard M.T. + Difference in the longitudes [

L.A.T.=Standard A.T.% Difference in the longitudes |

=|m=|m =|m

L.5.T.= Standard 5.T. & Dafference in the longimdes [

Now 62° of lungimdﬂn%hzdhﬂ"ﬂ‘

0 of longitude =%m=ﬂh1"‘ﬂ’

Total = 4" 10™ ¢*
Now L.M.T. = Standard time — Difference in longimde (W)
= 20" 24™ 6° - 4" 10™ 0°= 16" 14™ 6* past midnight = 4" 14™ 6* P.M.
(b) Longitude of the place =200 W

Longimude of the standard meridian = B2° 30" E.
Difference in the longimde = 20° + 82° 30° = 102° 30¢, the meridian of the place
being to the west to the standard meridian.
102

Now 102¢ of lungimdan:ﬁ"-mﬂﬂ'

% of longitude = 39 m = 0" 2" 0

Total = 6" 50™ ¢°
Standard time = 20" 24™ &'
Subtract the difference in longitude = 6" 50™ 0

Local time = 13" 34™ 6° past mid-night = 1" 34™ &' P. M.
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Example 1.21. Find the G.M.T. corresponding to the following LM.T.
(@ 9"40™12° AM. @ a place in longimde 42° 36°W.
by 4"32™ 10 AM. ar a place in longitide 56° 32°E.

Solution.
(@) Longitude of the place is 42°36' W
Now 42='=%h=2“43'“u’
36 = 39 m - oP 2™ 24
H
Total = 2" 50™ 24°

MNow since the place is to the west of Greenwich, the Greenwich time will be more.
G.M.T.= L.M.T. + Longimde (W)

LM.T. =9"40™ 12° (A.M.)
Add the longitude = 2" 50™ 24°

G.M.T. = 12" 30™ 36
or G.M.T.=0"30™ 368° (P.M.)

(b) Longinude of the place =56°32'E

Now 55==%h=3“44'“n~*

P 32 b gm gs
32 TEI'I'I—U.I 8

Total = 3" 46™ §°

Since the place is to the east of Greenwich, the Greenwich time will be lesser than
the local time.
G.M.T. =LM.T. - Longitude (E)
LM.T.=4"32" 10° (A.M.)
Subtract lﬂngimde=3“ 46" g

GMT. =0"46% 2 (AM.)

Example 1.22. Given the Greenwich civil time (G.C.T.) as & 40" 12 P.M. on July
2, 1965, find the L.M.T. ar the places having the longitudes (a) 72° 30" E, (b)
72 30°W, and (c) 110° 32°30r E.
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Solution
(a) Longitude of the place =72° 30 E
Now 720 = i_zh-ﬂaa“n‘

. 30 m
30 = Hm = =20

Total = 4" 50™ o

Since the place is to the east of Greenwich, the local mean time will be more
than the standard time.

Now G.M.T.= 18" 40™ 12* Past mid-night
Add longitmde = 4" 50™ 0F

L.M.T. = 23" 30™ 12°
=11"30 12°. P.M. on July 2.
(b) Longitude of the place =72°30' W=4"50" of time

Since the place is to the west of the Greenwich, the local mean time will be lesser
than the standard time.

Now G.M.T.=6"40™12° P.M.=18"40" 12° Past mid-night
Subtract longitde = 4" 50 0°

L.M.T. =13"40™ 12°%= 1" 40™ 12 P.M. on July 2.
I{E} Longitude of the place = 110° 32' 30" E

., 110
Now 110° = o=

r-3 = m gl
R=Tzm " 2™ 8

_30 __ s
30"'-15! o o™ 2

—h=T7" 207 ¢

Total =T"22™ 10°

Since the longitude is to the east to Greenwich, the local mean time will be more
than the G.M.T.

G.M.T. = 18" 40™ 12* Past mid-night
Add longitude =7"22™ 10°

L.M.T. = 26" 2™ 22*
=2*02"22* on July 3
LMT.=202"22* AM. on July 3.
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Example 1.23. Find the local apparemt time of an observation at a place in longitude
600 18 E , corresponding to local mean time 10" 20™ 3¢, the equation of time at G.M.N.
being 5™ 4.35" additive to the mean time, and decreasing at the rate of 0.32° per hour.

Solution.

The equation of time is given at G.M.N. In order to calculate the ET. at the

givenn LM.T., we will have w first calculate the corresponding G.M.T. and convert it
to G.A.T. Knowing G.A.T., L AT. can be calculated,

Longitude of place =60°18'E =4" ™12 E

LM.T. of observation = 10" 20™ 30°

Subtract longitude in time =4" 1™ 12*
G.M.T. of observation = 6" 19™ 18°

Mean time interval before G.M.N.= 12" - (6" 197 18% = 5" 40™ 42* = 5.68 hours

Since the E.T. decreases at the rate of 0.32° per hour after G.M.N_, it will have
increased wvalue for any time instant before G.M.N.

Increase for 5.68 hours @ 0.32° per hour = (5.68 x 0.32)" = 1 82°

E.T. at G.M.N. = 5™ 4,35°

Add increase =™ 1.82°

L E.T. at observation =5"617°

Now G.A.T. = GM.T. +E.T.
G.M.T. of observation = 6" 19™ |18°
Add E.T. =0"5"6.17°
G.M.T. of observation = 6" 24™ 24.17°
Add longitude in time = 4" 1™ 12¢
L.A.T. of observation = 10" 25™ 36.17°

Enmph 1.24. Find the LM.T. of observation at a place from the following dara:
LAT. of observation = [5" 12® 40
ET. at GM.N. = 5" 10.65° additive to appareni time and increasing at 0.22* per hour.
Longitude of the place=20°30"W.
Solution.
Longitude of the place = 20°30' W=1"22"0'W
L.A.T. of observation = 15" 12™ 40°
Add longitude in time = 1" 227 ¢

G.A.T. of observation = 16" 34™ 40°
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E.-T. at G.M.N.=5"10.65

Time interval after G.M.N. = 4" 34™ 40" = 4.578"

(The above time interval is approximate, since it has been calculated by subtracting
G.M.N. from the G.A.T. while actally the G.M.N. should be subtracted from G.M.T.
which 15 not known at present).

Increase for 4.578" @ 0.22° per hour = (4.578 x 0.22)" = 1.01°
E.T. at observation= 5™ 10.65* + 1.01* = 5™ 1].66"
Now G.A.T. of observation= 16" 34™ 40*
Add ET.=0"5"11.66°

G.M.T. of observation = 16" 39™ 51.66°
Deduct longitede in time = 1" 227 0*

L.M.T. of observation= 15" 17™ 51.66"

1.9.3. CONVERSION OF MEAN TIME INTERVAL TO SIDEREAL TIME INTERVAL AND

VICE VERSA

The tropical year: A year is the period of earth’s revolution about the sun, from
some determinate position back again to the same position. The reference point chosen for
the use of man is the first point of Aries (Y). The year so chosen is the fropical year
or the solar vear. A Sidereal year is the time taken by the earth in making one complete
revolution round the sun with reference to a fixed star,

The first point of Aries has a retrograde motion westwards through an arc of
50.22" per year. The retrograde motion of the first point of Aries is due to the attraction
of the moon and the sun which causes the direction of the axis of the earth alter its
position very gradually in such a way that earth arrives at the position of the vernal equinox
a lile earlier each year. This phenomenon is known as the Precession of Equinoxes. Due
to the precession of Equinoxes, therefore, the earth does not revolve by 360° round the
sun from the positions of vernal equinox to vernal equinox, but revolves through
(360" — 50",22)

The sun advances among the stars in the same direction — west 0 east — as the
carth revolves avout the axis, Any given meridian, therefore, crosses the first poimt of
Aries exactly once ofiener than it does the sun, in the course of a tropical year. According
to Bassel, there are 365.2422 mean solar days in a tropical year, and in the same period
there are 366.2422 sidereal days.

Thus, we have the relaton

365.2422 mean solar day = 366.2422 sidereal days

1
365.2422

Thus, the mean solar day is 3™ 56.56" longer than the sidereal day.

or 1 mean solar day=1+ sidereal days = 24" 3™ 56,56" sidereal time ...(I)
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Hence 1 hour mean solar time = 1" + 9.8565° sidereal time

1 minute mean solar time = 1"+ 0.1642° sidereal time

1 second mean solar time = 1"+ 0.0027° sidereal time

Thus, to convert the mean solar time to the sidereal time, we will have fo add
a correction of 9.8565" per houwr of mean time. This correction 15 called the acceleration.

To get the concept how a mean solar
day is of a longer time interval than the sidereal To equinox
time, let us smdy Fig. 1.34.

Let C be the centre of the earth and 9 jo
O be the position of the observer at noon T ;
of its meridian at the date of the equinox. i H
Let C, be the position of the earth's cenire . !
the next day. After the earth makes one complete i -*
rotation (with reference to T), the observer "
will be at ©, and the sidereal time will be ; l
the same as it was the day before when he i Voo
was af 0. However, the solar day is the time i [
interval between two successive transits of the i _
centre of the sun over the meridian. /n order 0 ol D

1
that the sun transilts the observer’s meridian, ﬂ ﬂ
the earth will have to revolve additionally by \E

the arc 0,0, The time taken for this additional
rotation is 3 minutes 56.66 seconds. FIG. 1.34
Thus, we have
366.2422 sidereal days= 365.2422 solar days.
To convert sidereal time into mean time, we have
365.2422 1

1 sidereal day=mﬁ mean solar dajr=l—m mean solar day
or | sidereal day=23" 56" 4.09° mean solar time
: 1" sidereal <time = 1" — 9.8296* mean solar time
sidereal time = 1™ - 0.1638" mean solar time
1* sidereal time = 1% - 0.0027* mean solar time
Thus, to conversr 1 hour sidereal time lo the mean solar time, a correction of 9.8296

seconds per hour will have to be subtracted from the sidereal time. This correction is
called the retardation,

Example 1.25. Converr 4 howrs 20 minwtes 30 seconds of mean solar time info
equivalent interval of sidereal rime.
Solution.

To convert the mean solar time to the sidereal tme, we will have to first calculate
the acceleration at the rate of 9.8565° per hour of mean time.

Iﬂl
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Thus 4 hours = 9.8565 = 39,426 seconds
20 min. x 0.1642 = 3284 seconds
30 sec. = 0.0027 = 0.081 seconds

Total = 42.7%91 seconds
Mean time interval = 4* 20™ 30°
Add acceleration = 42.791°%

s Sidereal time interval =4*21™ 12.791°,
Example 1.26. Converr 8 hours 40 minutes 50 seconds sidereal time imterval into
corresponding mean ftime interval.
Solution.
To convert the sidereal time to mean solar time, we will have to first calculate
the retardation at the rate of 9.8296" per sidereal hour.
Thus, 8 hours = 9.8296 = 78.637 seconds
40 min. x 0.1638 = 6.552 seconds
50 sec. x 0.0027 = 0.135 seconds

Total =85.324 seconds = 1™ 25.324°
Sidereal time interval = 8" 40™ 50°
Subtract retardation= 1™ 25.324°

Mean time interval = 8" 39™ 24.676",

1.9.4. GIVEN GREENWICH SIDEREAL TIME AT GREENWICH MEAN MIDNIGHT, TO
FIND THE LOCAL SIDEREAL TIME AT LOCAL MEAN MIDNIGHT AT ANY
OTHER PLACE ON THE SAME DATE

(ie. Given G.AT at GMM., to find LST at LMM)

From the discussions of the previous article, it is clear that if we have two clocks,
one set to keep sidereal time and other to keep mean time, the sidereal clock will complete
its day in a shorter period than the other. Since 24 hours of solar time are equal
24" 3™ 56.56° of sidereal time, the sidereal clock will be continually gaining over the mean
clock at the rate of 9.8565 seconds for every mean solar hour. The G.5.T. &t GM.M.
is then the difference between the sidereal clock and the mean clock af that instant. The
L.S.T. at LMM. will then be the difference between these two clocks at the meridian
under consideration at the instant.

If the place is to the west of Greenwich, it will have its L.M.M. cerain hours
after the G.M.M. depending upon the longitude of the meridian. Naturally, by the time
there is L.M.M., the sidereal clock will have gained over the mean clock at the rate
9.8565" for every hour of longitude. Hemce the L.S.T. et LMM. will be greater than
the G.5.T. at GMM. by an amount calculated ai 9.8565° per hour of western longitode.
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Similarly, if the place is o the east of Greenwich meridian, the L.M.M. will occur few
hours earlier than the G.M.M., depending upon the longitude of the place. The L.S.T.
at LMM. will then be lesser than G.5.T. at G.M.M. at the rate of 9.8565 seconds
per hour of longiude. Thus, we have the relation:

LST af LMM=GST at GMM + 9.6565" per hour of longitude {%’]

Use (+) sign if the longitude is to the west and (-) sign if it is w the east.
Similarly,

LST at LMN. =G.ST at G.MN.+9.8565 per hour of longitude [%}

Example 1.27. If the G.5.T. of G.M.N. on a certain day is 16" 30™ 12°, what will
be the LS.T. of LMM. at a place in longitude :

(a) 160°30°30" W of Greenwich (b) 160°30°30" E of Greenwich.

Solution

(@) As the longitude is to the west, the event of which the time is required occurs
later than G.M.M. by an amount corresponding to the longimde.

h m &
Now 1mﬂ=%h=1u 0 0
30
iﬂ'-ﬁm =IJ 2 ﬂ
230
W=2s =0 0 2

Difference of longimde in terms of time. =10 42 2

Thus, L.M.M. occurs 10" 42™ 2* mean time later than G.M.M. In the imterval between
LMM. and GMM., the T will gain on the mean sun ar 9.8565 seconds per hour.
. Gain in sidereal time :
10® x 9.8565 = 98.565 seconds
42™ « 0.1642 = 6.896 seconds
2' % 0.0027 = 0,005 second

Total gain = 105.466° = 1™ 45.466°
L.S.T. at LM.N. =G.5.T. of G.M.N. + Gain
= 16" 30™ 12° + 1™ 45.466"= 16" 31™ 57.466°.

(b) Since the longitude is to the east, the L.M.N. occurs 10"42™2* mean time
earlier than the G.M.M.

Hence L.S.T. at L M.M. = G.5.T. of G.M.M. - 9.8565' per hour of eastern longitude
= 16" 30™ 12° ~ 1™ 45.466° = 16" 28™ 26.534",
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1.9.5. GIVEN THE LOCAL MEAN TIME AT ANY INSTANT, TO DETERMINE THE
LOCAL SIDEREAL TIME

At a given meridian, let us have two clocks, one showing the mean time and the
other the sidereal time. At the local mean mid-night, the mean time in the mean clock
will be zero. At that time (i.e. L.M.M.) the L.5.T. can easily be computed if the G.S.T.
at GM.M. is known. If the place is to the west of the Greenwich, the sidereal clock
will have a gain over the mean time at L.M.M. at the rate of 9.8565 seconds per hour,
as discussed in § 1.9.4 above. At any other instant at the given meridian, the mean clock
will show the time that has elapsed since the lower tansit of the sun over the meridian.
This mean time interval can be easily converted into sidereal time interval as discussed
in § 1.9.3 above. Thus, the L.S.T. at LM.T. will be equal to L.ST. at LM.M. plus
the sidereal time interval. Hence the rules for finding the LST. at LM.T. are:

(@) From the given G.5.T. at GM.M., calculate L.5.T. at L.M.M.

(b) Convert the given L.M.T. (or mean time interval) into sidereal time interval
since L.M.M.

(cy LST. at LMT.=LST. at LMM.+51 from LMM.

Example 1.28. Find the L.S.T. ar place in longitude 85°20 E ar 6"30™ P.M.,
G.S.T. at GM.N. being 6" 32™ 12",

Solution.
Longitude = 85° 2 E
h m 5
o 83 o _
85 —15]1—5 40 0
20
iﬂ—ljm 0 1 20
Longitude in hours = 5 41 20 E

Since the place is to the east of Greenwich, let us calculate the loss of sidereal
time for 5"41™20° of longitude.
5" x 9.8565% = 49,283 seconds
41™ % 0.1642° = 6.732 seconds
20* % 0.0027* = 0.054 second

Total = 56.069 seconds
LST. at LMN.=G.5T. at G.M.N. - retardation

= 6" 32™ 12* - 56.069° = 6" 31™ 15.931° 1y
Now, LM,T. =6"30™ P.M.
- M.T. interval from L.M.N. = 6" 30™

Let us comvert it into sidereal time interval by adding the acceleration to the mean
time interval.



Thus, 6" x 9.8565°  =59.139 seconds
30™ x 0.1642° = 4.926 seconds

Total acceleration = 64.065% = 1™ 4.065°
Sidereal Time Interval = Mean tme imterval + acceleration since L.M.N.

= 6" 30™ + 1™ 4.065" = 6" 31™ 4,065
Now L.S.T. at LMN. =¢"31715.93]°
Add S.I. since LM.N. =a" 31" 4.065°

. LST a LMT. = 13" 02™ 19,996 = 1" 02™ 19.996° P.M.
1.9.6. GIVEN THE LOCAL SIDEREAL TIME, TO DETERMINE THE LOCAL MEAN
TIME

If the G.S.T. at GM.M. is given, the L.S.T. at LLM.M. can be calculated as
discussed earlier. The L.S.T. at L.M.M. can then be subtracted from L.S.T. to get the
number of sidereal hours, minotes and seconds past midnight. This sidereal time interval
can then converied into the mean time interval by subtracting the retardation at the rate
of 9.8296" per hour of S.I. thus obtaining the L.M.T. The rules are, therefore :

{@) Find the L.S.T. at LLM.M. from the known G.5.T. at G.M.M.

(b) Subtract L.5.T. at L.MM. from the LST. at get the S.L

(c) Convert the 5.1. info mean time interval, thus getting L.M.T.

Example 1.29. The local sidereal time at a place (Longitude 112 © 20° 15" W) is 18" 28™ 12°,
Calculate the corresponding LM.T. given that G.5.T. at GM.M. is 8" 10™ 28" on that day.

Solution
Let us first convert the longitude into time units :
h m H
112
[12° = —h =7
15 h 28 0
20
m‘ﬁ m =10 1 20
w13
15 T 8=0 0 1

Longitude = 7 29 21

Since the place has west longitude,
LS5T. at LMM-=G.S.T. at G.M.M. + acceleration.

Let us calculate the acceleration at the rate of 9.8565° per hour.
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7" % 9.8565" = 68.996 seconds
297« 0,1642° = 4,762 seconds
21% x 0.0027" = 0.057 second

Total = 73.815" = 1™ 13.815°

h i 8

G.5.T. at G.M.M. =8 10 28

Add acceleration = 1 13.815

LST. at LMM. =8 11 41.815 A1)
h m 5

Mow local sidereal time = 18 28 12

Subtract LST atLMM. = B 11 41,815
. 8.1, simce LML M. = 10} 16 30.185

Let s mow convert this sidereal interval into mean time interval by subtracting
the retardation at the rate of 9.8296° per hour.
Thus, 10" x 9.8296 = 98.296 seconds
16™ x 0.1638 = 2.621 seconds
30.185° x 0.0027 = 0.081 second

Total retardation = 100.998" = 1™ 40.998°
Mean time imterval = 5.1. - retardation
= llllﬁ1 16™ 30.185 - 1™ 40.998'= Iﬂh 14™ 49.187* since L.M.M.

LM.T. = 10" 14™ 49_187".

1.9.7. ALTERNATIVE METHOD OF FINDING L.5.T. FROM THE GIVEN VALUE OF

L.M.T.

In the method discussed in § 1.9.5 to convert LM.T. to L.S.T., double computation
of time interval was involved. In this alternative method only one transformation of the
tme interval is necessary. The steps for the compwation are as follows :

{a) Convert the given L.M.T. to the corresponding G.M.T., allowing for the difference
of longitude. This gives the interval in mean solar time that has elapsed since G.M.M.

(b) Convert this mean time interval to sideral interval that has elapsed since G.M.M.,
by adding the acceleration at the rate of 9.8565 seconds per hour of mean time interval.

(c) Add the S5.1. wo the G.5.T. at GM.M. to get the G.5.T. at the instant under

(@) Convert this G.S.T. to the corresponding L.S.T., allowing for the difference of

longitude.
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Thus, in the above method, though the theory is a little more complex, there is
un]yun:tranafcmmﬂanﬁfllinminmﬂmmutheamalmmpumin-nisalitll:shmw-
We shall work out example 1.28 by this method.

Example 1.30. Solve example 1.28 by the alternarive method.

Solution.
Longitude =85° 200 E=5"41"20"E, as found earlier
LM.T., = 6"30™ P.M.
h m 3
LM.T. =18 30 0
Subiract longitude = 35 41 20
G.M.T. =12 48 40

M.T. interval since G.M.N.=12"48™ 40" - 12" = 48™ 40°,
Convert this mean time interval to sidereal time interval by adding the acceleration.
48™ x 0,1642° = 7.882 seconds
40% % 0,0027° = 0.108 seconds

Total acceleration = 7.990 seconds
Sidereal time interval = mean time interval + acceleration

= 48™ 40" + 7.990° = 48" 47.99" since G.M.N.

h m 8
G.5.T. at G.M.N, =6 32 12

Add 5.1. =1 48 47.99

~ (3.5.T. at the given instant = 7 20 5999
Add longinde =5 41 2000
LST. at L.M.T. = |3 02 19.99
=1® 02" 19,99 P.M.
1.9.8. ALTERNATIVE METHOD OF FINDING L.M.T. FROM THE GIVEN VALUE OF

L.5.T.

In the method discussed in § 1.9.6 w convert L.5.T. 1w LM.T., double compuranon
of tme interval was involved. In this method, only one transformation of the imerval is
necessary. The sieps for the computation are as follows

(g) From the known L.S.T., compute the corresponding G.S.T. by allowing for the
difference of longitude.

(by From this G.S.T. calculated above, subtract the G.S.T. of GM.M. to get the
sidereal interval that has elapsed since G.M.M.
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{c) Convert this sidereal interval into mean time interval by subtracting the retardation
at the rate of 9.8296" per hour of sidereal interval.

(@) The mean time interval obtained in (c) is thus the G.M.T. at the nstant under
comsideration. Compute the L.M.T. by allowing for the difference of longitude. |

We shall work out example 1.29 by the alternative method. |

Example 1.31. Solve example 1.29 by the alternative method. ‘

Solution
Longitude = 112° 200 15" W=T"2921' W
h m 8
L.5.T. =18 28 12 |
Add longitude = 7 29 21 |
G.5.T. at the instant =25 57 33
G.S.T. at G.MM. = 8 10 28
5.1, since G.M.M. =17 47 05
Let us now comvert this 5.I. in mean time interval by subtracting the retardation.

17" % 98296 = 167.103 seconds
47" = 0.1638 = 7.699 seconds
5« 0.0027 = 0.014 seconds

Total retardation = 174.816 seconds = 2™ 54.816°
Mean time interval = S8.I. - retardation
= |78 47™ 05" — 2™ 54 816"
o G.M.T. = 17" 44™ 10.184°
Subtract longitude =7 29™2)*
L.M.T. = 10" 4™ 49.184°

1.9.9. TO DETERMINE THE L.M.T. OF TRANSIT OF A KNOWN STAR ACROSS THE
MERIDIAN, GIVEN G.5.T. OF G.MLN.

We have already scen that when a star ransits or culminates across the meridian,
the R.A. of the star, expressed in time, is the sidereal time. In the Naotcal Almanac,
the astropomical co-ordinates of ali the stars in terms of Right Ascension and declination
are given. Thus, knowing the R.A., the L.5.T. at the time of transit of the star is
known. The problem 18 now o convert the L.S.T. into the L.M.T. by the method described
m § 1.96 or in §1.9.8. The following are the steps :
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(@) Find the R.A. of the star from the N.A. This is then the L.S.T. at the time
of the transit of the star.

(#) From the known value of G.S.T. of GM.M. or (G.M.N.}, calculate the L.5.T.
of LM.M. ( or L.M.N.).

(c) Subtract this L.S.T. of LMM. from the LS. T. of the tramsit of the star to
get the S.1. that has elapsed since L.M.M.

(d) Convert this S.I. to mean tme interval which, then, gives the LLM.T. at the
transit of the star.

Example 1.32. Whar will be the LM.T.'s of upper and following lower transii
at a place in longitude 162° 30 15" W of a star whose R.A. is 22" 11™ 30°, if the G.S.T.

of previous G.M.N. is 10" 30™ 15°,

Solution.
i} m 5
Longitude : 161‘=%h=1{] 48 0
30
W=—=m= 0 2 i}
T
15
15=—s= 0
I_,rs 0 1
10 50 1

Since the place is to the west, we will have 1o add the acceleration to get the
LS. T, a LM.N.

10" x 9.8565° = 98.565 seconds
50™ x 0.1642° = 8210 seconds
1= 0.0027° = 0,003 second

Total acceleration = 106.778 seconds = 1™ 46.778"

G.5.T. of GM.N. =10" ™ 1.5
Add acceleration = 1 46,778
LST. of LMN., =10 32 01.778

h m 5

Now R.A. of star= LST. =22 11 30
Subtract L.S.T. of LM.N. =10 32 1.778
S.1. since LM.N.=1] 39 28,222

Let us now convert this 5.1, into mean time interval by subtracting retardation.
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11" % 9.8296° = 108.126 seconds
9™ % 0.1638° =  6.388 seconds
28.222° « 0.0027 =  0.076 second

Total retardation 114.590 seconds = 1™ 54.59"
Mean time interval = 5.1 - retardation = 11" 39™ 28.222* - 1™ 54 59*
= 11" 37™ 33.632° since L.M.N.
LM.T. of upper tramsit =11"37™ 33.632° P.M.

The lower transit of the star will take place a 12 sidereal hours laier. To know

the corresponding mean time, let us first convert the |2 sidereal hours into mean rime
howrs,

Retardation for 12 hours = 12 x 9.8296% = 1™ 57.955°
Mean time interval = 12°-1™ 57.955°=11" 58™ 2.045"

Thus the lower fransit occurs af a mean fime imterval of 11" 58" 2.045" afier the
upper transil.
LM.T. of upper wamsit =11"37™ 33.632"
Add the mean time interval = 11" 58 2.045°

LM.T. of lower tramsit = 23 35 35,677 Since L.M.N,
= 11" 35™ 35.677 A.M. (following day).
Example 1.33. Calculate the LM.T. and G.M.T. of transit of p Draconis (R.A.
17" 28™ 40°) at a place in longiude 60° 30°E given G.5.T. of GM.T. = 7" 30" 48.6°.

Solution.
h m 3
Longitade m~=%n=4 0 0
30
W=32h=0 2 0

4h i o
Since the place has east longitude, let us calculate the retardation at the rate of
9.8565" per hour.
4" x 9.8565" = 39.426 seconds
2" % 0.1642° = 0,328 second

Total retardation = 39.754 seconds
LST. . at LM.N.=G.5.T. at G.M.N.- Retardation

= Th30™ 48.6° ~ 19.754" = 7" 30™ 8 B46°
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h m 5
L5T.=R.A. of star =17 28 40

Subtract L.5.T. of L.M.N. 7 30 8. 846

S.1. since LMN. = 9 38 31.154
Let us comvert it to the mean time interval by subtracting the retardation.
9" x 9.8296 = 88.466 seconds
S8™ % 0.1638 = 9.500 seconds
31.154 = 0.0027 = 0.084 second

Total retardation = 08,050 seconds = 1™ 38.05°
Mean time interval since L.M.N.= S. I. - retardation = 9" 58™ 31.154% - 1™ 38.05°
or L.M.T. transit=9" 56 53.104°
Subtract the longitude = 4" 2" 0*
. G.M.T. of transit =5 54™ 53.104°

1.9.10. GIVEN THE G.M.T. OF TRANSIT OF THE FIRST POINT OF ARIES, TO DETER-
MINE THE L.M.T. OF TRANSIT AT A PLACE IN ANY OTHER LONGITUDE

We have already seen that the sidereal clock gains over the mean time clock at
the rate of 9.8565 secomds per mean solar hour or at the rate of 9.8296 seconds for
cach sidereal hour. When the first point of Aries transits over the Greenwich, the sidereal

clock shows 0" while the mean clock gives the mean time of the transit of the first point
of Aries. It is the difference between the readings of the two clocks at the time of
the transit. Now consider a place in west longitude where the transit of T will take place
after certain sidereal interval of tme (obtained by dividing the longitude by 15). Since
the sidereal clock contimually gains over the mean time clock, the difference between mean
ume clock and the sidereal clock will continuously go on decreasing. When the framsi
af T occurs at the given meridian, the mean time clock will not be as for ahead of
the sidereal clock as i1 was ar Greenwich, and the Greenwich reading of the mean time
clock will be diminished by subtracting 9.8296 seconds for each hour of longitede. Hence,
if the meridian is to the west of Greenwich, the mean time must be corrected by the
subtraction of 9.8296 seconds per howr of longitude, and if the place is to the east, U
must be added. The mle thus becomes:

L.M.T. of transit of Y =G.M.T. of transit of Til—f,[:g.m x “"E"“”H" degroes |
ft must be noted that the difference berween the readings of sidereal and mean time
clocks ar any place is the same all over the World ar the some instart. At the time
of tansit of ¥, the L.ST is zero and hence L.M.T. is the difference between the two
clocks at the time of transit
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Example 1.34. The G.M.T. of twransit of the first poimt of Ares (Y) on March

2 is 13" 21" 5#. Find the LM.T. of transit of the first point of Aries on the same day
at a place (a) Longitude 40° 30°E (b)y40° 30°W.

Solution
Longitude = 40° 30" E

h m 5

40
=—hm2 40 0

40 15

30

Sﬂ'nﬁm—ﬂ 1 U
=2 42 0

Gain of sidereal clock at the rate of 9.8296" per hour of longimde :
2" x 9.8296° = 19.659 seconds
42 % 0.1638" = 6.880 seconds

Total =26.539 seconds
h m 5
(@) G.M.T. of transit of T=13 21 el
Add the correction
for eastern longitude = {0 0 26.539

L.M.T. of transit of ¥ =13" 22" 20.539"
h m 8
() GM.T. of tramsit of T = 13 21 54
Subtract the correction for
the western longitude = 0 0 26.539

LM.T. of tansit of Y =13 21 27.461

1.9.11. GIVEN THE L.5.T. AT ANY PLACE, TO DETERMINE THE CORRESPOND-
ING L.M.T. IF THE G.M.T. OF TRANSIT OF THE FIRST POINT OF ARIES ON
THE SAME DAY IS ALSO GIVEN

We know that L.S.T. at any instant is the time interval that has elapsed since the
transit of T on the meridian. This L.S.T. can be converted into equivalent mumber of
mean hours by subtracting the retardation at the rate of 9.8296° per sidereal hour. Also,
from the known G.M.T. of transit of T , the LM.T. of transit of ¥ can be calculated.
This LM.T. is pothing bui the time shown by the mean clock when the sidereal clock

shows 0", Therefore, the L.M.T. at the instant under consideration can be obtained by
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adding the hours (corresponding to the given L.S.T.) to the LM.T. at the time
of transit of Y. The steps therefore are :

(1) From the kmown G.M.T. of transit T, calculate the L.M.T. of wansit of T by
method discussed in §1.9.10.

(2) Convert the given L.5.T. to mean hours.

(3) Add (1) and (2) to get the LM.T. corresponding to the given L.S.T.

Example 1.35. The local sidereal time at a place (lomgitude 50° 30°E) on [I7th
May, 1948 is 11" 30™ 12*. Find the corresponding LM.T. given that the G.M.T. of transit
of Y on the I7th May, 1948 is 7"12™ 28",

Solution
Longitude = 50° 30" E
h m 5
s00=%h-3 20 0
15
30
' —m = 0 2 0
30 151:|'|

Total = 3 22 0

The correction at the rate 9.8296 per hour of longimde is
3" x 9.8296 = 29.489 seconds
22™ x 0.1638 = 3.604 seconds

Total correction = 33.093  seconds

G.M.T. at transit of Y = 7" 12™ 28
Add the correction=0 0 33.093
L.M.T. at transit at ¥ = 7 13 1.093 et 1)

L.M.T.= 11" 30™ 12°, and may be converted to mean hours by subtracting the retardation.
11" x 9.8296 = 108.126 seconds
30™ « 0.1638 = 4.914 seconds
12° % 0.0027 = 0,032 seconds

Total retardation = 113.072 seconds= 1™ §3.072°
Mean hours = Sidereal hours — Retardation = 11" 30™ 12° - 1™ 53.072%= 11" 28™ 18.928° .. .(2)
Adding (1) and (2), we get
L.M.T.=7"13™ 1.003% + 11" 28™ 18.928% = 18" 41™ 20.021".
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1.9.12. GIVEN THE SIDEREAL TIME AT G.M.M., TO COMPUTE THE G.M.T. AT THE
NEXT TRANSIT. OF THE FIRST POINT OF ARIES

The given sidereal time at 0" G M.T. shows the number of sidereal hours thar have
elapsed since the transit of Y. The next tramsit of T will evidently take place 24 sidereal
hours later than the previous transit. Let the G.5.T. at G.M.M. be s sidereal hours. Then
the next transit will take place at (24 —5) sidereal hours after the G.M.M. These (24 - 5)
sidercal hours can be converted into the mean time hours which will give the G.M.T.
at next transit of T.

Example 1.36. On July 12, the G.5.T. ar 0" G.M.T. is 8" 25™ 25", Find the G.M.T,
of the next transit of 1.
Solution

G.S.T. at G.M.M. = 8" 25™ 25°
.. Time of previous transit = 8" 25™ 25° sidereal inierval before G.M.M.
Time of next transit= (24"-8" 25" 25%) sidereal interval after G.M.M.
= 15" 34™ 35" sidereal interval of time.

To convert it imto the mean time interval, subiract the retardation

15" x 9.8206 = 147.444 seconds

34™ » 01638 = 5.569 seconds

35° % 0,0027 = 0.095 second

Total retardation = 153.108 seconds = 2™ 33.108°
Mean time interval = 15" 34™ 35% - 2™ 33 108" = 15" 32™ 1.892° since G.M.M.
G.M.T. of next transit = 15" 32 1,892°,

1.9.13, GIVEN THE G.M.T. OF G.A.N. ON A CERTAIN DATE, TO FIND THE L.M.T
OF L.A.N. ON THE SAME DATE

The local apparent noon will occur before or after the G.AN. depending upon whether
the longitude of the place 15 10 the east or to the west of the Greenwich meridian. The
apparent fime at the apparemt noon is gero and hence G.M.T. of GAN. is the eguation
of time at Greemwich aif noon. Since the local apparent noon occurs either before or after
the G.AN., the eguation of time will change and interpolation will have to be done. For
example, if the place is t©o the east of Greenwich, the L.AN. will occur earlier and we
must know the difference between the given G.M.T. of G.A.N. and the G.M.T. of G.A.N.
on the day before, in order to do the interpolation. Similarly, if the place is o the
west of Greenwich, the LLAN. will occur later and we must know the difference between
the given GM.T. of G.AN. and the G.M.T. of G.A.N. on the day ajfter, in order w
do the imterpolation. Once the correct equation of fime is known, L.M.T. at L.A.N. can
be computed as illusirated in example 1.37.

Example 1.37. Given the following data from the N.A. for 195]:
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Sun at Transit at Greenwich

M. T,
Date & i 5

Jure 30 12 a2 22 44

+ Jl.9d
July 1 I2 ] 34 18

+ 1A
July 2 12 a3 46.09

+ I1.45
Jaly 3 12 03 57.54

+ [I.16

Find the LM.T. of LAN. on July 2 at a place fa) in longitude 130°E (b)
in longitude 49° W.
30
15
Since the place is to the east of Greenwich, the L.M.T. is 8" 40™ ahead of the
G.M.T. From the table, the difference between G.M.T. of G.ALN. on July 1, and July
2, is 11.71" (for 24 hours).

Solution. (@) Longitude 130° E==—h=8"40"E

Difference for 5“40"=(a"4u“}5i1—1';'ﬂ=4.13 seconds

By the inspection of the table, it is clear that the values of G.M.T. are decreasing
as we go back from July 2. Hence this difference of 4.23 seconds should be subtracted
from the GM.T. of G.AN, on July 2 w get LM.T. of LAN. on the same date.

Thus, G.M.T. of GAN. on July 2 =12" 03" 46.09°

Subtract difference due o east longitude = 4.23°
LMT. of LAN, on July 2 =12" 03™ 41.86°
(b) Longitude 49°W=%h=3“ 16"

Since the place is to the west of Greenwich, the LM.T. is 3" 16™ behind G.M.T.
From the table, the difference between G.M.T. of G.A.N. on July 2 and July 3
is + 11.45"° (for 24 hours).

Difference for 3" 16™ = (3" lﬁ'][%]=l.ﬁﬁ seconds.

Since the values of G.M.T. are increasing as the dates increase, the difference
of 1.56 seconds should be added to the G.M.T. of G.AN. on July 2 w get LM.T.
of L.AN., on the same date.

Thus, G.M.T. of G.AN. on July 2 =12°03™ 46.09°
Add difference due t© west longitude = 1.56"

LMT. of LAN, on July 2 12" 03™ 47.65"
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1.9.14. TO FIND THE LOCAL SIDEREAL TIME OF ELONGATION OF A STAR

We have already seen in § 1.8 (Fig. 1.30) that

Star’s hour angle + star’s right ascension = Local Sidereal Time.

Thus, to get the L.S.T. of elongation of the star, add the westerly hour angle {or
subtract the easterly hour angle) to the R.A. of the star at its elongation. If the result is more
than 24" , 24" are deducted, while if the result is negative, 24 hours are added to it.

Example 1.38. Find the LS. T. at which B Ursae Minor is will elongate on the
evening at a place in laritude 50° 30" N given that the R.A. of the star is
14" 50™ 52° and its declination is + 74° 22°,

Solution

The right ascension and the declinaton of the star are given. us first calculate
its hour angle at elongation. When the star is at elongation, we have, from Eq. 1.19,
tan®  tan 50° 30¢
@an§ tan 74° 22
log tan S50° 30" = 1.0838955
log tan 74° 22’ = 1.5531022

cos H =

log cos H=1.5307933
. H=70°9 18"
or H=4"40"™37.2°
Add R.A. =14 50 52.0

L.S.T.=19"31™292°

Example 1.39. If the G.5.T. of GM.N. is 14" 30™ 28.25°, whar will be the H.A.

of a star of RA. 23" 20™ 20" at a place in longitude 120° 30° W ar 2.05 AM. GM.T,
the same day 7

Solution
We know that, LST.=R.A. of star+ Hour angle of the star.

From the above relation, the hour angle of the star can very easily be found out
by subtracting R.A. of the star from the L.S.T. of the event. The only problem, therefore,
i5 0 calculate the L.5.T. corresponding to the given L.M.T., given the G.5.T. of G.M.N.

Let us first calculate the L.S.T. of L.M.N.
Longitude = 120° 30 W=8"2" W,
Since the place is to the west, we have to add the acceleration at the rate of 9.8565
per hour of longitude to the G.5.T. of GM.N. 1o get the LST. of LMN.

Now 8" x 9,8565 = 78.85 seconds
2™ x 0.1642 = 0.33 second

Total acceleration = 79.18 seconds
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G.5.T. of G.M.N, = 14" 30™ 28.25°

Add acceleration = 79.18"
LST. of LM.N. = 14®  31™ 47.43° D
Now G.M.T. =2" s

Subtract longitude = 8" ™ o

L.M.T. of the event = 18" 3™ 0° (previous day).
L.M.N. (day of given G.S.T. of GM.N.}=12" ¢" ¢
Subtract L.M.T. of event (previous day) =18" 3™ ¢°

Mean time interval between the event = 17" 57 0° and the L.M.N.
Let us convert this mean time interval o the sidereal time interval by adding acceleration
at the rate of 9.8565"' per mean hour.
Thus 17" x 9.8565 = 167.56 seconds
57" = 0.1642 = 936 seconds

Total acceleration = 177.92 seconds = 2™ §7.92°
- §.1. between the event and L. M. N.= 17" 57™ 0* + 2™ 57.92% 17" 59™ 57.92* (before L.M.N.)
Now L.ST. of LMN. = 14"31% 47.43°

Subtract S.1. = 17" 59™ 57 92°
L.S.T. of event =20" 31™ 49.51° A2
Now HA.=L. 5 T.-R. A,

= (20" 31™ 49.51% - (23° 20™ 20") + 24" =21" 11™ 29 5)°

(Note. 24" have been added to make the hour angle positive).

Example 1.40. Find the RA. of the mean sun at 530 AM. on July 28, 1964
in a place in longitude 75° 28" W, and also the R.A. of the meridian of the place, given
that G.S.T. at GMM on the given date is 20" 15™ 32.58°.

Solution.

We know that, L.S.T.=R.A. of the star + hour angle of the star.

Here, the mean sun is fictitious star.

Hence L.5.T.=R.A.M.S. + hour angle of the mean sun.

But hour angle of mean sun = L.M.T.+ 12 hours

(since L.M.T. is measured from the lower transit).
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Hence, we have LS. T. = RAMS +LMT.+ 12"

in order to calculate the R.A. of the mean sun, we must know L.S.T. ar the time

of event LS T. can be very casily found from the given L.M.T. and the given value
of G.5.T. of GMM.

Now longitude = 75° 28' W = 5" ™ 52°
Since the place is having west longitnde, we will have to add an acceleration at

the rate of 9.8565" per hour of longimude o the G.5.T. of GM.M. to the get the L.5.T.
of L.M.N.

5" % 9. B565 = 49.28 seconds
1™« 0.1642 = 0.16 second
52° x 0,0027 = 0.14 second

Total acceleration =49 58 seconds

G.5.T. of GM.M. =20" 15™ 32.48°

Add Acceleration = 490 58°
L.S.T. of LMM. =20" 16™ 22.16°

Now L.M.T. of event =5" 30™ A.M.=5" 30" mean time afier mid-night,

To convert this time interval to sidereal interval, add the acceleration at the rate
of 9.8565" per hour of mean time.

Thus, 5" x 9.8565° = 49,28 seconds
0™ = 0.1642 = 4.93 seconds

Total acceleration = 54.21"

S.I. since L.M.M. = 5" 30™ + 54.21° = 5" 30™ 54.21°
LST. =LST. of LMM+SI
= 20" 16™ 22.16" + 5" 30™ 54.21° = 25" 47" 16.37"
Now, by definition, the R.A. of the meridian is equal ™ the L.5.T.
Hence R A. of meridian = 25" 47 16.37°
Again RAMS. = L.S. T.-L M. T. - 12
= (25" 47" 16.37% - (5" 0™ - (12" = 8" 17™ 16.37".

1.10. INTERPOLATION OF VALUES

The declination of a heavenly body is a constantly varying quantity and can be obtained
from the nautical almanac which gives the values at Greenwich mean and apparemt mid-night.

The nautical almanac gives the values of declination both for mean sun and apparent sun
at GM.M. and G.AM. for every day and also the rate of hourly variation at Greenwich
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mid-night. To find the declination at any given instant of Greenwich civil time, it is necessary
to interpolate between the tabulated values. The required value may thus be obtained by :
(a) Simple linear interpolation between the successive abulated values on the assumption
that the rate of change is uniform and equal to its value at the middle of the imterval.
(b) By interpolating strictly, taking higher order differences into account, by Bessel's
method. The Bessel's interpolation formmla is as follows :

=1
ﬁ=.ﬁ+u.ﬂ.'|;:+n{n4 ](ﬂ-u"+ﬁ|'} ...(1.26)
where fu=the valee of the function which is w be found, and which lies between

fo and fi:
n = Fractional value of the imterval between two tabular wvalues.
A' = First difference between the successive values of the function.
A" = Second difference
'Thm' I_I “!EP:&:-”.: 'ﬁ'rlri_‘f"-!.rl=ﬂ"n
-rl_.lr!l]=ﬂ|.-"2 ﬁr _ Iﬁr =ﬁl'r
_E _f] = ﬁ']l__] 35T (] 1
where £, f. S £y etc. are the successive values of the function to be interpolated.
The method of imerpolation has been fully illustrated in the following example.
Example 1.41. Find sun's declinmtion ar [0 A.M. on February 5, 1947 in longtiude

45° E.
Solution
Let us first converi the local time to Greenwich mean time.
Longitude = 45° E = 3"
GMT.=10=3=7 hours =0.2917 day
o n=0.2917
The following values of sun's declination are obtained from the N.A.
Date Sun’s Declination at 0" G.M.T. Variation per day
Feb. 4 - 16" 32" 11".2
+ 1067".2
Feb. 5 = 16% 14" 2470
+ 108379
Feb. 6 - 15* 56" 207.1
+ 1100".3
Feb., 7 - 15% 37" 59" 8

From the above table, f;=value at 0" G.M.T. on Feb. § = — 16° 14'24".0
f-1=value on Feb. 4 = - 16° 32'11".2
fi = value on Feb. 6 = - 15° 56'207.1
fi = value on Feb, 7 = - 15° 37'50" 8
A ja=fa-f=+1067"2
Avamfy=fo=+ 10839
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A= A1 - A 2= 1083.9 - 1067.2 = + 16".7
Ay=fi—-fi=+1100"3
A= Alyey = Al = 110073 - 108379 = + 16".4
Putting the values in the Bessel's formula, we get

n{n - 1)

_ﬂ,-ﬁ.*{-ﬂﬂ'u;"“' rl

(A" + A") = - 16° 14" 24".0 + 0.2917 ( + 1083".9)

0.2917 {0.2917 - 1)
h 4
=~ 16° 14" 24".0 + 316".15 = 1".71 = - 16" % 9".56.
Note. (1} The four dates from which the imerpolation is done should be so selecied
that the instant lies between the two middle dates.
(2) The value of the declination by the approximate method (linear interpolation) will
be equal to - 16° 14° 24°.0 + 0.2917 (1083".9) = - 16 9" 7".85.

1.11. INSTRUMENTAL AND ASTRONOMICAL CORRECTIONS TO THE OBSERVED

ALTITUDE AND AZIMUTH
{A) INSTRUMENTAL CORRECTIONS

The angle measuring instruments used i astronomical observations are theodolite and
sextant. For precise work, a theodolite having a least count of 1" {or less) is used. The
theodolite should be in prefect adjustments. However, following are scme of the instrumental
corrections that are generally applied to the observed altinde and azimuth.
(@) Corrections for Alitodes

{1) Correction for Index Error. If the vertical circle verniers do not read zero
when the line of sight is horizontal, the vertical angles measured will be incorrect. The
error 15 known as the index error. The index error can be eliminated by taking both
face observations. However, it may sometimes not be practicable to take both face observations
when the altiude of a star or the sun is to be observed. In such a case, the correction
for the index error is necessary.

The index error may be determined as follows :

{i} Set the theodolite on firm ground and level it accurately with reference to aldmde
bubble

(i) Bisect a well-defind object such as a church spire (or a chimney top) with the
ielescope normal (face left). Observe the vertical angle o,.
(ftiy Change the face and bisect the same object again with telescope reversed (face
right). Observe the vertical angle a,.
Let the index error be e.
. Correct vertical angle will be
a= (o + € and o= (0 - #)
(ot + &)+ {o;— &) o+
*= 2 =72
Thus, the correct vertical angle is the mean of the two observed angles.

x (167.7 + 167.4)
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Hence e ={a— o)
For example, let o, =4 15'8" and a;=4° 15 16"
. Mean vertical angle =@ =4%15 127

Hence, the index error correction for face left observation =+ 4"

Hence, the index error correction for face right observation = — 4"

The index error correction is said to be +ve or —ve according as this amount
is to be added ro or subiracted from the observed altitude.

{2) Correction for Bubble Ervor. If the altiude bubble does not remain central
while the observations are made, the correction for bubble error is essential. The correction
for bubble error 15 given by

C=Eﬂ—EE

= v seconds LAL2T

where C = correction for bubble error in seconds, to be applied to the mean altitude
observed.

L0 =the sum of readings of the object glass end of the bubble.

EE=the sum of readings of the eye-piece end of the bubble,

n=the number of bubble ends read { =2 when single face observation
is taken, and 4 when both face observations are made).

v=angular value of one division of the bubble in seconds.

If EZ0 is greater than IE, the correction is positive, otherwise negative.

{#) Correction for Azimuths

Since most astronomical observations require the line of sight to be elevated through
a large vertical angle, it is important that the horizontal axis shall be truly horizontal.
To fulfill this, it is most important that (1) the instrument is accurately levelled so that
the vertical axis is wuly vertical and (2) the trunnion axis is exactly perpendicular to the
vertical axis. If the vertical axis is not truly vertical (i.e. if the bubble does not preserve
a central position through a series of observations), the trunmion axis will be inclined even
though the instrument is in perfect adjustment. The error due to the inclination of the
trunnion axis cannot be eliminated. However, its inclination can be determined by means
of a striding level with a sensitive bubble tbe,

Correction for Trunmion Axis Dislevelment. The bubble readings on the striding
level will show whether the trunnion axis is truly horizontal or not. If not, each horizontal
direction should be corrected for trunnion axis dislevelment. It can be shown that the correction
o be applied to the azimuth of a low point with respect o a high point, caused by
an inclination of the trunmion axis of the transit is given by

¢=btan o seconds
where ¢ = correction to the azimuth
b = inclination of the horizontal axis of the transit with respect w0 the
horizontal, in seconds
a = vertical angle to the high point.
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The wvalue of & can be determined as under :

Let {, and r, be the left hand and right hand readings of the bubble ends in one
position, and I, and r, be the left hand and right hand readings of the bubble ends in
the second position.

Deviation of the centre of the bubble from the centre of the siriding level in the

Deviation of the centre of the bubble from the centre of the snding level in the
second pnsitinn=‘!’;r‘-

. The mean deviaton of the centre of the bubble from the cemtre of the snding
f,—i“]+-f:‘-f:}_{.I‘-,'P’I;}—-I:F]-P-rﬂ:-ﬂf-zr
2 2 4 4

mn:%[
I-Ir

Inclination of trunnion axis in seconds = b= ol LG(1.28)

where d = angular value of one division of the striding level
Il=the sum of the readings of the left hand end of the bubble in the direct
and reversed positions of the striding level on the trunnion axis.
Lr=the sum of the readings of the right hand end of the bubble in the direct
and reversed positions of the striding level on the trunmion axis.

The lefi-hand end of the axis will be higher if £/ is greater than Zr, and lower
if ZI is less than Er.

If the observed angle is the angle of elevation, the correction will be positive when
the left-hand end of the axis is higher and negative when the lefi-hand end is higher.

If the observed angle is the angle of depression, the correction will be positive when
the right-hand end of the axis is higher and npegative when the lefi-hand end is higher.

The horizontal circle reading for each direction should be corrected separately and
then the horizontal angle should be obtained by subtraction.

(B) ASTRONOMICAL CORRECTIONS

The observed or apparent altitudes of the celestial bodies like the sun or stars should
be subjected to the following corrections:

1. Correction for parallax 2. Correction for refraction

3. Correction for dip of the horizon 4. Correction for semi-diameter.

1. Correction for Parallax. Parallax is the apparent change in the direction of a
body when viewed from differemt points. The parallax in altiude, or diwrnal parallax, is
due 1w the difference in direction of a heavenly body as seen from the centre of the
earth and from the place of observation on the surface of the earth. The stars are very
far and the parallax is insignificant since the direction of rays as seen from the earth’s
surface and as seen from the centre of the earth are practically parallel. However, in the

case of sun or moon, the parallax is significant and proper correction should be applied
for the same.
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Fig. 1.35 ilustrates the sun’s parallax.
0= Cenire of the earth ; A =Place of observation
S = Position of the sun during observation; § = Position of the sun at borizon.
OC = True horizon S
AB = Sensible horizon
a' = & SAB= Observed altitude
o= Z80C = True altitude, corrected
for parallax;
Pa= £ASH = Parallax correction
pr= AS'0 = Sun's horizontal parallax.
When the sun is on the horizon, its apprarent
or observed altitude is zero, and the angle
(py) subtended at the centre of the sun is known

as sun's horizontal parailax,
: s R
Evidently, SN pr= 5o
Thus, the sun’s horizontal parallax varies
imversely with its distance from the centre of the
earth. It varies from 8.95" early in January to
§.66" carly in July, and is given in the Nautical
Almanac for every tenth day of the year. The mean value of the sun’s horizontal parallax

FIG. 1.35 SUN'S PARALLAX.

is B.8".
Now true altimude =80C=5B5"=SAB+ ASB=a" + p,
Hence parallax correction ={o-a')=pa
From triangle A0S, sin ASO = sin ms.%
. . 04 oA
g = 0P +a')y—= -
or Sin Py = SiA | }ﬂ.i' CO8 0S
But ﬂ=E=5i.|:|.;':ll_-.
as O§8'
sin pg = sin py cOE o . [1.29 (a)]
Since p, and p, are very small, we have
Pa= pycos a ..[1.29 (a)]

or correction for parallax = horizonial parallax « cos apparent altitude = + 8.8 cos a” ...(1.29)
The correction for parallax is always additive. The correction is maximum when the
sun is at horizon.
2 Correction for Refraction. The earth is surrounded by the layers of atmospheric
air. The layers get thinner and thinner as us distance from the surface increases. When
a ray of light emanating from a celestial body passes through the atmosphere of the earth,

the ray is bent downward, as shown im Fig. 1.36 amd the body appears t© be nearer
o the zenith than it acmally is.
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The angle of deviation of the ray from its
direction on entering the earth’s atmosphere W0 IS
direction at the surface of the earth is called the
refraction angle of correction. The refraction correction
is always subtractive o the observed altitude. The
magnitude of refraction depends upon the following:

(fy  the density of air

(i) the temperature

(fif) the baromelric pressure
and (iv) the altirude.

It is constant for all bodies and does not
depend uwpon the distance of the body from the
observer.

At a pressure of 29.6 inches of mercury and
a temperamure of 50° F, the correction for refraction
can be calculated from the following formula :

Correction for refraction (in seconds)

=58"col ¢ = 58" tan ¢ 12300 FIG. 1.36. REFRACTION.

where a =the apparent altitude of the heavenly body
z=the apparent zenith distance of the heavenly body.

The correction for refraction is always subtractive.

The values of mean refraction for different altitudes are given in Chamber's Mathematical
Tables corresponding t0 barometer pressure, temperature of external air and temperature
of thermometer attached tw barometer.

The refraction correction for low altitudes is uncertain and hence observation for precise
determination should never be faken on a celestial body which is nearer the horizon. The
refraction, however, does not affect the azimuth.

3. Correction for Dip of the Horizon. The angle of the dip is the angle between
the true and visible horizon. When the observations are taken with the help of a sextant
al the sea, the alttode of the star or sun is measured from the wvisible horizon of the
sea. Owing to the curvature of the earth, the visible horizon is below the true horizon.

Hence, the angle of dip (i.e. the angle between the two horizons) must be subtracted from
the ohserved altitude of the body.

In Fig. 1.37,

A = positon of the observer

AB =k = Height of the observer above sea level

5 = position of the sun or star

AD = visible horizon

AC = true horizon
£85AD = o = observed altimde of the sun or star
Z8AC = o = true altitude of the sun or star
LCAD = B = angle of dip
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- : -1
R = radius of the earth Sun or

Now, BO=R AO0=(R+h) Z star
: ..-ID:"J{R+F|}2—R’ i
SCAD = LAQD =f

AD _*'J{RH:}’-R‘ p ’.&[I.R+f|}

tan |3= oD
-..(exact) ...[1 3l (a)] : ' Visibla
or tanf= '\f ...(approximately)...[1.31 (b)) : narizon
If §# 15 small, we many have
tan f=p (radians) = % LA1.31)

Q
FiGz. 1.37. DIP OF THE HORLZON,

The correction for dip is always subtractive,

4. Correction for Semi-diameter.
The semi-diameter of the sun or star
is half the angle subtended at the centre
of the earth, by the diameter of the
sun or the star. Since the distance
of the sun from the earth is not constant
throughout the year, the semi-diameter
varies from 15 46" in July to
16' 18" in January. Is wvalue at its
mean distance from the earth is
16" 1".18. The Nautical Almanac gives
the values of sun’s semi-diameter for FIG. 1.37. {a) CORRECTION FOR SEMI-DIAMETER.
every day in the year.

As the sun is large, ifs centre cannoi be
sighted precisely, and it is customary to bring O
the cross-hairs tangent to the sun's image. When
the horizontal cross-hair is brought tangent to (a) Lowar limb (b} Upper imb

the lower edge of the sun, the sight is said

to be taken at sun’s lower limb [Fig. 1.38 {(a)].
Similarly, when the horizontal cross-hair is hrought
tangent to the upper edge of the sun, the sight
is said to be taken at sun's upper limb [Fig.

1.38 (b)]. Figs. 1.38 (c) and 1.38 (4) illustraie e g fmo e Lef b
the observations taken to sun's right limb and
left limb respectively.
In Fig. 1.37 (a), OA is the ray corresponding
to the lower limb of the sun. The ohserved altitude ——
@, is evidently lesser than the correct altitude (®) ®

«. Similarly, OB is the ray corresponding to FIG. 1.38. OBSERVATION TO SUM,
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the upper limb of the sun. The observed altitude o, is evidently more then the correct
alitude «. If % is the semi-diameter, we have

=y + % = 3 —%

When a horizontal angle is measured to the sun's right or left limb, a correction
equal to the sun’s semi-diameter times the secant of the altitude is applied.

Thus, correction for semi-diameter in azimuth =semi-diameier = secani o.

Example 1.42. Determine the value of horizontal angle between two points A and
B, the observations for which were made with a theodolite in which one division of the
striding level corresponds o 20",

Object  Azirmah Veriical angle Striding level Readings
15t Position After reversal
[ r { r
A 32 41300 +10° 21" 12" 1 7.5 105 8
B 110® 287 42" -2°18'3r 1.5 7.0 e 7.5

Except for the adiustmeni of transverse axis not being perpendicular to the vertical
avis, alf other adjusiments were correcl.

Solution,
Let us first find the value of b,
(@) Observations of A =11+105=215 : Zr=75+8=155
l-Zr 21.5-155 )
b= n d= 3 w M) o= + 3

Thus, the left end of the axis is higher.

The correctton ¢=btana =30 tan 10° 21° 12" = 5* 48 seconds. Since the vertical
angle is the angle of elevation and the left-hand e¢nd of the bubble twbe is higher, the
correction is  positive.

Corrected azimuth = 32° 41" 30" + 5°.48 = 32° 41" 35".48.

() Observaiion to B : El=115+10=215 ; Zr=70+75=14.5

£I-%r . 21.5-14.5 i
b= d= T 20 =+ 35

Thus, the lefi end of the axiz is higher,
The correction ¢ =»btanoa =35 tan 2° 18" 30" = 1.41  seconds.

Since the vertical angle is the angle of depression and the left-hand end of the bubble
tube is higher, the correction is pegative.
Corrected azimuth = 110° 28" 42"-1".41 = 110° 28" 40".59
Hence horizontal angle between 4 and B = 110° 28 40759 - 32° 41" 35”48 = 77 47" 5".11.
Example 1.43. To determine the index error of a theodolite, a church spire was
sighted and the face left and face right observations were 18 © 36° 48" and 18° 35 56" respectively.
A face right observation on the sun's lower limb was then made and the altitude was
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Jound to be 28° 36°20". The semi-diameter of the sun @ the time of observation was
15°59".35. Find the true altirude of the sun.

Solution
The observed altiede of the sun is o be corrected for
()  index error (£} semi-diameter {fily refraction {iv} parallax.

() Corrections for index error
Mean of the vertical angle readings =% {18° 36" 48" + 13° 35 307) = 18° 36" 227
Index error for the face right reading = 18" 36" 22" - 18° 35" 56" = + 16”.
The observed altitude of the sun = 28° 36" 20"
Add index correction = 26"

Altitude of sun corrected for index error = 28° 36" 46",
(ify Correction for semi-diameter
Since the lower limb of the sun was observed, the correction is positive.
Altitude of sun corrected for index error = 28° 36° 46"
Add semi-diameter = 15" 59".35

Altitude of sun corrected for index ececor and semi-diameter = 28° 52' 45,35
(iify Correction for refraction
The correction for refraction is always subtractive and is equal to ~ 57" cot 28° 28’ 46"
=— |'44" 48.
(iv) Correction for parallax
The correction for parallax is positive and is equal to 8.8 cos 28° 36" 46" = + 7°.80
Altitwde of sun corrected for index error

and semi-diameter = 28° §52' 45".15
Subtract refraction correction = 1 44" 48
= 28" 51" O".B7

Add parallex correction - 7".80
Correct altiiude of the sun = §2° 51" B".67

1.12. OBSERVATIONS FOR TIME

The observations for determining the local time consists mainly in finding the error
of watch or chropometer which 15 read at the instant the observations are made. If the
chronometer keeps the sidereal time, it is required to determine the hour angle of the
Vernal Equinox (or a star) at the time of observation. Similarly, if the chronometer keeps
the solar time, it is required to determine the hour angle of the centre of the sun at
the instant the observations are taken. Determinations are made from mendian or ex-mendian
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observations. The difference between the chronometer time and the time determined from
the observation gives chronometer correction and should be added algebraically to the reading
of the watch to give the true time at the instamt. The correction is positive when the
chronometer is slow and negative when it 5 fast.

The following are some of the methods usually employed for the determinanon of
time

(1) By meridian observation of a star or the sun. (By transit of a star or sun)

{2) By ex-meridian altitude of a star or the sun

(3) By equal altimdes of star or the sumn.
1 (@ TIME BY MERIDIAN TRANSIT OF A STAR

The application of this method requires a knowl-
edge of the local longitude and a previous determination E
of the direction of the meridian. This forms the ;
most direct method of obtaining local time and .
is used for primary field determinations. The basis i
of the method is the fact that when a star transits i
the meridian, its hour angle is zero and local sidereal i
time is equal to the right ascension of the star. F

In Fig. 1.39, ZP is the observer’s meridian {5
and M is the position (in general) of a star.

£ 8PT = Local sidereal time

Z3PM = Hour angle (H) of the star

{measured westward)
ZTPM =R.A. of the star.

Evidently, JZSPY = 25PM + ZTPM

or L.S.T.= Hours angle + R.A.

M, is the position of the star when it crosses the meridian, and its howr angle
(H) is zero. Thus,

L

FIG. 1.39

L.S.T. = RA.

The right ascensions of various stars are given in the Ephemeris for the date.

The star is observed with a theodolite, the line of sight being directed along the
known direction of the meridian. The chronometer is read at the instant the star transits
across the vertical wire. The chronometer error is then determined by comparing the true
sidereal time (equal to the right ascension) of the star with the sidereal time kept by the
watch or chronometer. If the chronometer is keeping Greenwich sidereal time, it is necessary
to apply only the local longitude o the right ascension of the star to obtain the ue
Greenwich sidereal tme. If the chronometer keeps the local mean time, the local sidereal
time¢ determined above is converted into local mean time by method discussed earlier and
the error of the chronometer is determined. Generally, the chronometer error 15 found in
this way on two different days and average daily rate of error during the period s found
by dividing the change in the error by the number of days elapsed.



FIELD ASTROMOMY KL

1. () TIME BY MERIDIAN TRANSIT OF THE SUN

When the sun is observed on the meridian of the place at upper transit, us hour
angle is zero and the LLAT. is 12 hours. The transit of the sun is observed with a
theodolite and the times at which the east and west limbs of the sun pass the wvertical
hair are noted by means of the chronometer. The mean of the two readings gives the
mean fume at the local apparent noon. If only ome limb is observed, allowance must be
made for the time that the semi-diameter takes t0 cross the meridian. From the Nautical
Almanac, we can find the G.M.T. of G.AN. for the given date, from which the LM.T.
of L.A.N. may be found. This L. M.T. of L.A.N. can then be compared with the chronometer
time at the instant of the observation to give the error of the chronometer.
Error in the Observations of the Meridian Transit of Star or Sun

The method of meridian transit of a star or the sun, though simple, is not very
much used because it is impracticable to secure that the instrumental line of sight lies
exactly in the plane of the meridian. The observed times are subject to the following three
principal corrections :

(i) The Azimuth Correction

If the instrumemt is in accurate adustment, but the direction of the merndian 15 in
error, the line of sight set out along the meridian will pass through the zenith of the
observer and not through the celestial pole. The correction is given by

Azimuth correction = e sin 2 sec &
where e=error of azimuth in seconds of time
z = zenith distance
& = declination of the star.

¢ is considered positive if the line of sight it wo far cast when the telescope is
pointed south, and i negative if the line of sight 15 too far west. It can be shown that
if the latimde of the place is 30° and the polar distance of a star is 40°, an error of
I minute of arc in the direction of the meridian will make the time of transit wrong
by mvo seconds. The method, therefore, requires the meridian o be ser out very accurately.

The error is very great If the polar distance of the star s small, and is least for
those that transit near the zenith.

(@) The Level Correciion

If the horizontal axis is not perfectly horizomtal, the line of sight may depart considerably
at high altitudes. Due o this, the transit will be observed either o soon or o late
according to the direction of lt of the transverse axis. The correction is given by

Level correction = b eos 2 see §

where b = inclination of the horizomal axis in seconds of arc (deiermined by the
readings of the siriding level) and is positive when the left (or west)
end of the axis is higher
z= zenith distance
& = declination of the star,
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(iif) The Collimation Correction
The collimation correction is necessary when the line of sight is not perpendicular
to the bhorizontal axis. The correction s given by :
Collimation correction = ¢ sec §
where c=emor of collimation in seconds of tme taken positive when the line of
sight is to east of the meridian, and negative when it is to the west)
& = declination of the star.
2. (@) TIME BY EX-MERIDIAN OBSERVATION OF A STAR
The determination of time by ex-meridian observanon of a star or sun s the most
convenient and suitable method for surveyor. The method, in s sumplest form consisis
in observing the altitude of the star when ot i3 out of the mendian and at the =same ume
observing the chronometer of the star and its altitude ; the hour angle can be computed
by the solution of the asromomical miangle. The local sidereal time can then be known
by adding the westerly hour angle to the R.A. of the star. The local sidereal time can
be converted into local mean time and the error of chronometer (observing mean solar
time) can be found.
In the astromomical triangle ZPM (Fig. 1.15), we know the following three sides:
ZP = co-latitude = (90° - ) = ¢ {say)
MP = p = polar distance = (90° - &)
ZM =z = zenith distance = (90° - a)
LMPE = H=hour angle which can be computed from any one of the
following formulae :

H_'Js:in{s—r}.sdn{s—p} . H A sin(s-¢) . sinis - p)

I Yy i B sinc . sinp )
H ging . gnir-2) gin o — sin @ gin &
— ___3 ' H-_"

i sinc . sin p (3} ; cos T — Y

where I=%Ei+c+p}

It should ke noted that if H is near to 0°or 90°, the tangemt formula is ihe best
one (o adopt since @ gives more precise resull.

In the field observation, the altimde has to be observed and refraction correction
must be apphied. Due to uncertamties in the refraction for low altitudes, the siar observed
should have an altimde of at Jeast 15°.

When the star is in or near the prime vertical, its altitude changes more rapidly
and the star should be observed at this time since it gives more accurate resulis. The
influence of error in observed altitude as well as in the value of the altitude, is a minimum
when the star is acnually on the prime vertical. To minimise the errors of observation,
several altimdes of the star are observed in quick succession and the chomometer time
of such observation is recorded. Half of the observations are taken with face left and
half with the face right. If the observations are completed within a few minues (say 10™)
it will suffice for most ordinary work if the mean of the chronometer times is taken as
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the time for the mean altide. The motion of the star in altitvde is nov however, exactly
proportional to time. More accurate results are obtained when two stars are observed, one
east and the other west of the meridian, thus eliminanng the insoumental errors.
When the star is observed on its prime vertical, the hour angle is given by
_ tandeclination tan &
" tanlatitude tan B
Knowing the hour angle (in degrees), the L.S.T. is calculated from the formula :

H
LST. =R A. .'E‘E

Plus sign is used when the star is o the west of the mendian and minus when
it is to the cast. Knowing the G.5.T. of GM.M. (for GM.N.), the L5.T. can converted
o L.M.T. and the error of the chronometer keeping the mean solar time can be computed.

. () TIME BY EX-MERIDIAN OBSERVATION OF THE SUN

The procedure of observation of the sup is the same as in the previous case. The
altitude of the lower limb iz observed with the telescope normal, and then the altitude
to the upper limb is observed with the telescope mverted. The watch time at the instant
of each observation is noted. The balancing is affected by measuring a succession of
altiudes both in the morning and afternoon, the most suitable fimings being berween 8
and 9 A.M. and between 3 and 4 P.M. In cach set, a minimum number of four observations
are taken — both face observations of upper limb and both face observations lower limb.
If the sun is not very near the meridian and if the observations extend over only a few

minutes of time (say 10™ ), the mean of the observed altiudes may be assumed to correspond
to the mean of the observed times, thus neglecting the curvare of the path of the sun.
The mean of the altitudes must be corrected for index error, refraction, and parallex, and
for the semi-diameter if only one limb is observed. The hour angle of the sun can be
calculated from the formula
wn . .J smlfs- -:]‘sin (5 - p)
2 sin & . sin (5 - 7)

The above formula is more convenient for logarithmic computations. Then, if the
sun is to the west of mendian,

L.AT. of nhaervaﬁnu:% since local apparent noon.

When the sun is to the east of meridian,
H

L.A.T. of observation =[14" -E] since local apparent noon

= ( 12% - %] since local apparent midnight.

The L.AT. can then be converted into L.M.T. by methods discussed earlier.

In the above computations, a correct knowledge of sun’s declimation (5) is required.
For the computation of sun's declination for the mean instants of observation, a knowledge
of local time is necessary. Since the local time is being determined, the computation of
H should be performed by successive approximation. However, if the watch is not more
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than 2™ or 3 in the error, the resulting error in computing the declination will npot exceed
2" or 3*, and recalculations are not necessary if observations are made with small instrument.
If greater discrepancy is found between the correct and the chronometer time, the former
is used for a better interpolation of & and the computation of H is repeated with the
uew valpe. Also, a knowledge of the latiude of the place is essential for the computation
of H. The precision in the knowledge of the latitude of the place depends upon the precision
in the observation of altitude and also upon the ume at which observation is made. When
the sun is near the prime vertical, the effect of an error in latitude is small.

The error of the waich on local mean tfime is then equal to the difference berween
the time of observation by watch and the time of observation as determined by calculations.
The observation is ofien combined with the observation of the sun for azimuth, the waich
readings and altitude readings being common to both.

Booking of Field Observations

The field observations are usually entered in the field book in the following form:
(Table 1.1).

TABLE 1.1
Vertical Angle
| Fce A B Mean | Meanvertical | T Mean of time
Angle

" ' - ! " - ' " e - h m 5 h | i 5

o ~ophiuchi | L {38 |30 |20 {30 |40 |38 |30 | 30 72 in

W IRmi3m |2 3026|1037 |2 7|27 30

R |36[3 [40]3 203|330 AN

L |35 | 50 [ 10| 50 )00 | 35 | 50 5 [ 37| 4 21 T | 38 | 05 T |29 |-ﬂ-ﬁ.5

3. (@) TIME BY EQUAL ALTITUDE OF A STAR

In this method, a star is observed at the same altinde on opposite sides of the
meridian. The mean of the two chronometer times at which a star attains equal altitudes
east and west of the mendian is evidently the chromometer time of transit, since the two
ohservations are clearly made at equal
intervals of time before and afier the Star's
meridian transit. The method is, therefore,
very simple and accurate and is used
when the direction of the meridian is
not accurately known. The altitude of the
star need not be determined and, therefore,
no correction is required for refraction.
The observations must be made when the
star is near the prime wvertical so that
s altitude changes rapidly. When the
star crosses the meridian, its hour angle

is equal to zero and its right ascension FIG. 1.40. TIME BY EQUAL ALTITUDE.
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18 therefore the local sidereal time. The local sidereal time so obiaimed may be converted
to local mean time which can then be compared with the mean time of the chronometer
during the observations, and the error of the chronometer can be known.
To make the observations, the following steps are necessary -
(1) Set up the instrument on firm ground and level it accurately.
(2) Compute the approximate altitude of the star and set it on the vertical circle.
(3) Follow the motion of the star in azimuth with the vertical cross-hair by
means of horizontal tangenmt screw,
(4) Note the chronometer time (7)) when the star crosses the horizontal hair.
(5} Turn the instrument in azimuth and again follow the star when the star
approaches the same altinde to the other side of the meridian.
{(6) Note the chronometer tme (73 when the star crosses the horizontal hair.

Mean ume of wansit of the star:%{Tl+T;}

It is very important to note that during the above observations the face of the theodolite
is not changed. However, the aliitude bubble must be accurately centred by means of clip
screws prior to each observation. For accurate resulis, a seres of observabons are made
on the same star.

In Fig. 1.40, the domted circle shows the daily path of the star round the pole.
M, is the position of the star of the east of the meridian ZP and M, is iis position
o the west of the meridian when it attains the same altimde as at M,.

The method has the following advantages :

{1y Since the actual altinde of the star is not required the instrumental errors—
such as index error, collimation error, errors due to graduations efc. are nod
involved.

{2y No knowledge is required of latiede, declination, or even azimuth.

The method has, however, the following disadvantages :

(1} A long interval of tme elapses between the two observations - sometimes
several hours.

(2}  The precision of the result depends upon the refraction having the same value
for both observations. Due to long interval of time, the refraction may change
appreciably, thus affecting the result.

However, the time between the two observations can be reduced if the declinaiion
of the selected star is nearly equal to the latitude. To eliminate the uncertainties of refraction
near the horizon, the star should have an aliitude of something more than 45°.

The Error due to Slight Inequality in the Altitudes of Two Corresponding Observations:
In Fig. 1.40, :
ZM, = zenith distance of first observation = z
ZP = co-latitude = ¢
PM, = polar distance = p
ZPM . = hour angle=ﬁ
M\ZP = A = azimuth of the star.
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Now, we have €08 2 = ¢08 ¢ COS p + sin ¢ sin p cos H A1)
When the siar is at M,, let
ZMy = zenith distance of seconds observation = (2 + v)
where ¥ is the small error due to inequality of the altitudes.
ZPM; = hour angle of M;=(H+x)
where x 15 the small erfor in the hour angie.
Hence we have cos (2 + y) = cos ¢ cos p + sin ¢ sin p cos (H + x) a2
Subtracting (2) from (1) and treating v and y as small gquantities, we get
ysin z=xsin ¢ . sin p . sin H.

sinz _ sin p
Bt gin H sin A
Hence ysnz _ ___ ¥ (3) .13

sincsinpsin H sin c sin A
In order that x should be least for a given value of y, we must have
sindA=1 or 4 =90° The error will evidently be greater for smaller value of A. Hence

we conclude that the error in the hour angle due fo some error in altitide [s muinimum
when the star is near the prime vertical.

3. (b) TIME BY EQUAL ALTITUDES OF TWO STARS

The two disadvantages of the method of equal altinudes mentioned above (i.e. the
long interval of time and the uncertainties in the valve of refraction) can be reduced by
making the equal aliiude observations on fwo stars, one east and the other west of the
meridian. In such observations, two stars having the same declination are selected. When
they attain the same altitodes, ome to the west and other to the east of the mendian,
the mean of their right ascension will give the local sidereral time of transit. The local
sidereal time can be converted into L.M.T. and can be compared with the mean of the
chronometer readings for the determination of the chronometer error. If the two stars have
some different declinations, a correction must be applied to the mean of their right ascensions,
However, the difference in the declination of the two stars should not be more than 2°
to 5%, The observations of a pair of stars generally takes few minutes. Several pairs should
be used for good determination. The stars selected to form a pair should have a difference

in right ascension of at least 6"
3 (¢ TIME BY EQUAL ALTITUDS OF THE SUN

If the equal altitude observations are made on the sun, the same edge of the sun's
image (i.e., the upper limb or lower limb) should be brought to the horizontal hair and
the image bisected by the vertical hair of the diaphragm. A series of altindes is taken
about 9 AM. and the same series is repeated in reverse order about 3 P.M. The mean
of the tmes of the forenoon and afternoon equal aliitudes does not exactly represent the
instant of transit (L.A.N.) dee to the rapid change of sun's declination. The theory becomes
complicated due io the fact that allowance must be made for the alteration of declination
in the interval between the observations. In order to apply the correction for the change
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in the declination, the approximate value of the latitude and Greenwich mean ume must
be known.

Let v be the alteration in the sun's declination in hAalf the tme interval berween
the two observations.

In Fig. 1.40, M, = First position of the sun having polar distance { p + ¥) say, when
the sun is approaching the pole.
M; = Second position of the sun having the polar distance (p —y), say.
If p were constant, we have, as earlier. cos 2z =cos pcos ¢+ sin p sin ccos H...(1)
But the polar distance is (p+y) and the hour angle is (H + x). We have, thus
cos Z=cos { p+ y)cos ¢+ sin { p + ¥) sin ¢ cos (H + x) el 2)
Subtracting (1) from (2), and treating x and y to be small quantities, we have
x =yi{ cot pcot h - ccot cosec H) A L1033

For a given value of y, therefore, the value of x can be computed from the given
equanon.

The first observation will thus be made when the sun's hour angle is (H + x) before
the apparent noon. Similarly, the second observation will be made when the sun’s hour
angle 15 (M — x) after the apparem noon. The mean of these rwo observed times will therefore
be when the sun is of an howr angle x before apparent noon.

For example, let H=3 hours ; apd x=1 min. (calculated from Egn. 3)
Then, the hour angle of sun at first observation = (H + x)
=3 hour | min. before apparent noon.
Time of observation= 12" — 3" 1™ = 8" 59™ apparent time.
Similarly, the hour angle of sun at second observation =H - x
= 2" 59™ after apparent noon.
Time of observation = 12"+ 2" 59™ = 14" 59™ apparent time.
Mean time of observation =y (8" 59™ + 14" 59™) = 11" 59™
= 1" before the apparemt noon

=x before the apparent noon.
Hence we get the following rule :

True ume of transit (i.e., apparent noon)
= Mean of observed timlfg(‘i‘v’}wn X is in angular measure).
Mimus sign is used when the sun is approaching the elevated pole (i.e., the case
discussed above ) and plus sign when the sun is leaving the pole.

Example 1.44. The time of transit of a star (RA. 7" 36™ 21.24%) recorded with
a chronometer keeping siandard time of 5" 30™E was 5" 56™ 8.86° P.M. The longitude

of the place of observation is 4" 30™ E. Determine the error of the chronometer if G.5.T.
at G.MM. on the day is 14" 18™ 12°.
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Solution

Let us first convert the GST. of GM.M. imo LST. of L.M M.
Longitde = 4" 30™ E

Loss in the sidereal time at the rate of 98365 per hour of longimde is

4" » 9.8565 = 39.43 seconds
I0™ x 01642 = 4,93 seconds

Total retardation = 4436 seconds
LST. of LMM.=GS5T. of G.M.M. - Retardation
= 14" 38™ 12° - 44.36" = 14" 37" 27.64°
Now L.S.T. of observation=R.A. of the star = 7" 36™ 21.24°
: S.I.=L.S.T. of observation - L.S.T. of L.M.M,
= (7" 36™ 21.24" - 14" 377 27.64%) + 24" = 16" 58™ 53.6%.

Let us now convert the 5.1. into mean time interval by subtracting the retardation
at the rate of 9.8296 seconds per hour of sidereal time.

16" x 9.8296 = 157.27 seconds
58™ « 0.1638 = 9.49 seconds
53.6° x 0.0027 = 0.14 second

Total retardation = 166,90 seconds= 2" 46.90°
Mean time interval since L.M.M.=5.I. - Retardation
= 16" 58™53.6° - 2™ 46.90° = 16" 56™ 6.7°
Standard time shown by chronometer
= 5" 56™ 8.86° P.M.= 17" 56™ 8.86" since L.M.M.
Local time of chronometer
= 17" 56™ 8.86" - Difference of longitude
= 17" 56™ 8.86° — 1" = 16" 56™ 8 86"
{Since the place of observation is at longitude 1" to the west of standard meridian).
Chronometer error = 2.16 seconds (Fast).

Example 1.45. The following notes refer to an observation for time made on a siar
on Feb. 18 I965 :

Latitude of the place =36°30°30" N
Mean observed altitude of the star = 30" ]2" F
R.A. of siar =57 18" j2.45°

Declination of rthe star =J6"12']18".4
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This star is to the east of the meridian.
Mean sidereal time observed by sidereal chromometer = 1" 2™ 5.25°

Find the error of the chromomeier.
Solution. The hour angle of the star is determined from the following formula :

H ‘qgin s-¢chsin{s-p) 1
—= : whe =={z+c+
an 2 sin . sin (5 — ) ¢ g=zlterh

z=90° - o= 90° - 30° 12 10" = 59° 47" 50"
p=90°-5=90°- 16° 12" 18".4 =73°47"41".6
€=90° - 0 = 90° - 36° 30' 30" = 53° 29 30"

25 = 187° 05 01".6
5= 93° 32 308
(s—c)=40"30".8 ; (F—p)=19"44"49"2 ; (s-2)=33" 44" 4.8
log sin {5 — ¢) = 1.8085208
log sin (5 — p) = 1.5287565
log cosec 5 = 0.0008302
log cosec (5 - 2) = 0.2353212

2
. %=32“ 31776 or H = 64° 6" 3572 = 4" 16" 26.3°
Since the star is to the east of the meridian, the westerly hour angle
=24" ~ 4" 16™ 26.3" = 19" 43" 33.7*
R.A. of the star= 5" 18™ 12.45*
Add hour angle = 19" 43™ 33.70°

log tan’ %= 15934287 . logtan 2 - 1.7967144

L.S.T. of observation= 25" 01™ 46.15° = 1" 01™ 46.15°
Sidereal time by chronometer = 1" 2™ 5.25°

Error of chronometer = 19.1% (fast).

Example 1.46. The mean observed altitude of the sun, corrected for refraction, parallax
and level was 36° 14'16°.8 ar a place in latitude 368 40°30" N and longitude

56 24° 12" E. The mean waich time of observation was 15" 49™ 12,67 the warch being
known to be abowr 37 fast on LM.T. Find the watch error given the following -
Declination of the sun at the instant of observation =+ I17° 26"42°.1.
GM.T. of GAN. =11"56™22.8".
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Solution
The hour angle of the sun i1s given by the formula

H vsirn[i—c}sin{:‘—p] 1
— = - +
un: 5. sin (s~ 2) where 5 1{: ¢+ p)

Here 2w 90° - =90° - 367 14" 168 =531"45"43".12
p=9” -5=90°~-17"26"42".1 =T72°33"17".9
¢ =907 = § = 90° - 367 40 30" = 53° 19 30".0

25 =179 38 3171 ; 5 =89°49 [5".6
(F-€)=3629'45"6 ; (s-p)=17°1557"7 : (s-2)=36°03" 32" 4
log sin (5 - ¢) = 1.7743468
log sin (5 — p) = 1.4724776
log cosec 5 = 0.0000919
log cosec (5 - 2) = 0.2301672

log tan® 2 = 1.4770835 : log tan %J.?asm?

2
‘;—in 28" 42'34".1  or H = §7° 25 08".2 = 3" 4™ 40.6°

L.A.T. = 15" 49™ 40.6"
Let uws comvert this to L.M.T.
Longitude = 56° 24’ 12" = 3" 45™ 36.8"
L.A.T. = 15" 49™ 40.6"
Subtracr longitude = 3" 45™ 36.8°

G.AT. =1204™02.8°
Now G.M.T. of G.A.N.=11" 56" 22.8°

or G.M.T. of 12" apparent time= 11" 56™ 22.8*
Now Greenwich apparent time = Greenwich mean time + E.T.

2" = 11" 56™ 22.8° + E. T.
ET.=12"11" 56" 22.8° = 3" 37.2*
Subtractive from the apparent time.
GM.T.= GA.T. —E.T. = 12" 4™ 03.8* - 3™ 37.2° = 12" 0™ 26.6°
L.M.T.= G.M.T + longitude = 12° 0™ 26.6° + 3" 45™ 36.8° = 15" 46™ 03.4°
Error of chronometer = 15" 49™ 12.6* — 15" 46™ 03.4* = 3™ 8.8° (Fast)
Example 1.47. Ar a ceniain place in longitude 1358° 45° East, the star is observed
East of the meridian at 6" 45™ 21° P.M. with a watch keeping local mean time. It was
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again observed at the same altitude to the west of meridian at 8" 48™ 43° P.M. Find
the error of the watch given tha

G.5T. at GMN. on that day=9"26"12" ; RA of the star=17"12™ 48*
Solution
L.S.T. of transit of star across the meridian= R.A. of the star = 17" 127 48
Let us convert gidereal time into mean time.
Longitude = 138° 45' E = §" 15™ E. Since the place has east longitude,
L.ST. at LMN.=GS.T. at G.M.N. - retardation
' 9" x 9.8565° = 88.71 seconds
15™ % 0.1642° = 2.46 seconds

Total retardation = 91.17" = 1™ 31.17°

G.S.T. at G.M.N.=9"26™ 12
Subtract retardation = 1™ 31.17°

LST. at LMN.=29"24™40.83"
Now local sidereal time = 17" 12™ 48°
Subtract L.S.T. at LM.N.= 9°24™ 40.83°

- S.1. since L.M.N.=7"48"07.17°
Let us convert this S.I. into mean time interval by subtracting the retardation at
the rate of 9.8296° per sidereal hour.
7" % 9,8296 = 68.81 seconds
48™ x 0.1638 = 7.86 seconds
7.17* % 0.0027 = 0.02 second

Total retardation = 76.69 seconds = 1™ 16.69*

S.I. = 7 48™ 07.17°
Subtract retardation= 1™ 16.69*

M.I. since L.M.N.=7"46™ 50.48"
Local mean time of transit of star 7" 46™ 50.48° P.M. k1)
Now L.M.T. of watch for east observation = 6" 45™ 21° P.M.
LM.T. of watch for west observation = 8" 487 43° P.M.

= 15" 347 pg*
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L.M.T. of wansit of the star as shown by the chronometer = 7" 47™02° P.M. ...(2)
Chronometer error = 11.52 seconds (Fast)

1.13. TIME OF RISING OR SETTING OF A HEAVENLY BODY

In Fig. 1.41, SEN is.the horizon
and M is the position of a star when
it is rising. It is required to find the time
of rising and sewting of the star.

The spherical triangle PMN is right-
angled at N, since the plane of the ob-
server’s meridian is perpendicular w the
horizon.
~ cos MPN = cos MP . tan PN
Now £ZPM = H = hour angle of the star

at its rising
MP= 5 =declination of the star
PN = 8 = altitude of the pole
— latitude of the ohserver FIG. 1.41. RISING AND SETTING OF STAR
L"MFN = ]mn - H
Hence cos H= - fan & tan &

Knowing the declination of the star and the latitnde of the place, its hour angle
can be known. Then,

L.5.T. of rising of star = R.A. of the star + Hour angle.

Thus, the local sidereal time of the rising of the star can be known, and this can
be converted into L.M.T., if desired.

The hour angle of setting will obviously be the same as that of rising. In the above
treatment, we have neglected the effect of refraction, which amounting as it does 1w about
36' on the honzon, will cause stars to be just visible when they are really 36" below
the horizon.

Length of Day and Night :
The hour angle H of the sunrise or sun-set is given by
cos H=-tand tan & where & is the declination of the sun.
If the change in the declination & of the sun is ignored

Length of the day = twice hour angle in time units = =3

15

Similarly, length of the uiglu=1[]ml—5‘ﬁ]

The equation cos H =—-tan 8 tan 8 can be used to determine the length of the day
at different places and at different times.

{1y At a place at equator, 6=0
' cos H=10 or H=0° and H = 90°
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Lesgth of day (or nigm}=l_1‘;"=11“
Hence for all values of 6, the days are always equal fo the nights ai equator.
(2) At the time of equinox, the sun is at equator and hence & =10
: cos H=0 or H=0° and H=%*°
2H

Length of day (or rdght}=-1-5—= 125
Hence for all values of & (i.e., ar all the places on rthe earth) the day is equal
o the night.
3y If §=90" -0 ; cos H=-10or H=180°
2 = 18P .
. Length of da}r—_-T= 24" (i.e. the sun does not set).
4y If G==(90°=8) ; cos H=1and H=10

Length of the day = (0"

Hence the sun does not rise at all.
The Duration of Twilight

Twilight is the subdued light which separates night from day. When the sun sets
below the horizon, the darkness does not come instamtaneously because the sun's rays stll
iluminate the atmospheére above us. The particles of vapour etc. in the atmosphere reflect
the light and scamter it in all directions. As the sun sinks down, the intensity of the diffused
light diminishes. Observations have shown that the diffused light is received so long as
the sun does not sink 108° below the horizon. To find the duration of twilight at particular
place, we must, therefore, find the tme the sun takes to alter s zenith distance from
90° to 108° in the evening, or from 108° o 90° in the morning.

With our previous notatons, we have

cos 108° =sin & sin 0 + cos S cos Bcos H ' A1)
where H'=hour angle of the end of twilight
If H is the hour angle of the sunset we have cos H = - tan § tan 8 v 2)

From the above two equations, H and H' can be calculated for given values of
& and 6.

Hence duration of twilight = H ' - H.
1.14. THE SUN DIALS

The sun dial enables the time to be fixed accurately enough for ordinary purposes
of life, though the precision obtained is muoch less than that obtained by the methods already
discussed. The sun dial gives apparent solar time from which mean time may be obtained.
It is useful particularly in places where there are no means available for checking watch
or clock times,

A sun dial essemtially consists of

(fy a straight edpe, called the sile or gnomon of the dial and

(i) the graduated circle on which the shadow of the gnomon falls.
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When the sun shines, the shadow of the gnomon falls on the graduated circle, and
intersects it at some point. The reading against the intersection line gives the local apparent
time.

A sun dial may be classified under the following heads :

{iy The Horizontal Dial : im which the graduated circle is horizontal.

(ify The Prime Vertical Dial: in which the graduated circle is kept in prime wvertical.
and (iif) The Obligue dial : in which the plane of the graduvated circle is kept nclined
o the horizontal.

In each case, the stile 15 always kept parallel to the earth’s axis, and, therefore,
always pointe north.

We shall discuss here the principle of graduating a horizontal sun-dial.

In Fig. 1.42, BXAY is the plane of the dial, in the horizontal plane. CP is the
direction of the rod, stile or gnomon
which, if produced indefinitely, will T
interseet the celestial sphere in the ce- -
lestial pole P. BPA is the plane of
the meridian. M is the position of
the sun at any nstant and CY is the
shadow of the gnomon on the horizontal
plane imtersecting the lamer at Y.

Since CP is the direchon of the
meridian also, its shadow will fall on
the line CA at apparent noon. At one
hour after the moon, the shadow will
fall on CI, at two hours after the
noon, it will fall on CIl, and so on.
ﬁzih::ﬂi ﬂ;;a?::rgﬂ“ﬁ FIG. 141, THE HORIZONTAL SUN-DMAL.

to the times of 1", 2" etc. afier the apparent noon. At any instant, for the position M
of the sun, the shadow of the gnomon CP will fall on the lime CY which s the line
of intersection of the plane of the dial with the plane containing CP and M. XPY represents
such a plane passing through CP and M.

If the small vanation in the declination of the sun is neglected, the diurnal path
of the sun (M) will describe a circle uniformly on the celestial sphere about P as the
centre. The projections of the equal angular divisions of the diurnal circle of the sun's
path will give unequal angular divisions on the dial. The angle MPS is the hour angle
of the sun at the instant

The triangle YPA e right angled at A.

AP = aliiude of the pole= latitude of the place =86.
LAPY = hour angle of the sun=#H

AY = x = required angular division along the dial corresponding to the hour
angle H.

=
= o T T
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Hence, from the nght angled triangle PY4, we get

sin = cot H an x or tan x = sin 6 tan H
or x=1tan ' (sin O tan H)

The above equation gives the values of x corresponding to the different values of
H.

To graduate the dial hourly intervals, put H = 15° 30°, 45°, ew., and compute the
corresponding values of x for a place of known latitude ©.

For example, let 8=40° ; Then x =tan ' (sin 40° tan H)

When H=15=1" : x, =tan ' (sin 40° tan 15°) = 9° 46"
When H=30"=2" ; x=mwn ' (sin 40° tan 30") = 20° 22
When H=45"=3" : x; =tan" ' (sin 40° tan 45°) = 45° and so on.

The points 1, II, III corresponding to the angles x;, x; . xy etc., from CA can then
be marked on the dial

It should be noted that the sun-dial gives only the local apparemt time. To covert
it imto local mean time, approximate valpe of equation of time must be known.

1.15. THE CALENDAR

The calendars of historical times were lunar in origin, the year consisting of twelve
lunar months. Since the return of the seasons depends upon the tropical year, these calendars
resulted in a continual change in the dates at which the seasons occurred. The calendar
was, therefore, frequently changed in an arbitrary manner, to keep the seasons in their
places. In the year 45 B.C., Julius Caesar introduced the Julian Calendar based on a year
of 365; days. The Julian Calendar has January 1 as the commencement of the year. The
calendar has ordinary year of 365 days, and was regulated by imtroducing one extra day
on every fourth year which is known as the leap year. However, the year actually contains
365.2422 days (or 365% 05" 48™ 46" while the Julian Calendar assumed the year to contain

365.25 days (or 3657 06" 0™). Thus the Julian Calendar made the year too long by 11™ 147,

and this created one day excess in 128 years. After many centuries, this difference accumulated
w the tune of 10 days and it was observed that the Vernal Equinox in 1582, occurred
on 1l1th March instead of 21 March. Pope Gregory XIII, in 1582, therefore, adjusted
the whole calendar in such a way that the Vernal Equinox occurred more or less on 21 st
March, by dropping 10 days. In the future, the dates are to be computed by omitting
leap year in those century years not divisible by 400 (f.e. vears as 1700, 1800 and 1900).
This will result in omission of 3 days in every 400 years, thus making the mean calendar
year of 365.2425 days (or 365 05" 49™ 12°). It has also been suggested 1o omit leap vear
in the year 4000, and all even multiples thereof, so as w make the mean calendar year
of 3652422 days (or 365" 05" 48™ 46%,

1.16. DETERMINATION OF AZIMUTH

An azimuth is the horizomal angle a celestial body makes with pole. The determination
of azrimuth, or the direction of the meridian at survey station consists in obtaining the
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azimuth or wtrue bearing of any line from the station, so that the arimuths of all the survey
lines meeting there may be derived. The determination of the direction of the tue meridian
or of the azimuth of a line is most important to the survevor. There are several methods
of determining the direction of the true meridian, but preference is given to such methods
as will allow a set of observations to be taken so that (i) instrumental errors may be
eliminated, by taking face left and face right observations and (i) interval or time between
the observations may nol be too great.

Reference mark

In order to determine the azimuth of a star or other celestial body, it is frequently
necessary to have a reference mark (R.M.) or referring object (R.0.). When steller observations
are taken, the reference mark should be made to imtate the light of a star as nearly
as possible. The reference mark may be a triangulation station or it may consist of a
lantern or an electric light placed in a box or behind a screen, through which a small
circular hole is cut to admit the light o the observer. The diameter of the hole should
not be more than | cm. The mark should preferable be so far from the instrument that
the focus of the telescope will not have to be altered when changing from the star o
the mark. A distance of about a mile is quite satisfactory.

The following are some of the principal methods of determining the azimuth or the
direction of the true meridian :

1. By observations on star at equal albtudes.

By observations on a circumpolar star at elongation.
By hour angle of star or the sun. -
By observation of Polaris.

5. By ex-meridian observations on sun or siar.

1 (@) OBSERVATIONS ON THE STARS AT EQUAL ALTITUDES

The simplest method of determining the direction of the celestial pole is probably
that observing at star at equal altitudes. In this method, the knowledge of the latimde
or local time is not necessary, and no calculations are involved. However, the duration
of the work 15 a great inconvenience, exlending from four to six hours at might. Also
the effects of ammospheric refraction may vary considerably during the nterval, affecting
the wvertical angles to an unknown extent.

The method 18 based on the fact that if the angle subtended between the reference
mark and a star is measured in two positions of egual altitude, the angle between the
mark and the meridian is given by half the algebraic sum of the two observed angles.

The dotted circle in Fig. 1.40 represents the circular path of a star round the pole,
and it is required to determine the direction of the cemtre P of this circle. M, and M, are
the two positions of the star at equal altitude, and all that the observer has to do w
get his true meridian 15 o bisect the angle between M, and M,

Thus, in Fig. 1.43, R is the reference mark (R.M.) and O 15 the position of the
nstrument station through which the direction of the tue meridian is to be established.
M, and M, are two posibons of a star at equal altiudes. The field observations are taken
in the following steps :

Call ol o
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(1) Set the imstrument at O and level 1t accurately.

(2) Sight the R.M. with the reading 0° ' 0" on the horizontal circle.

(3) Open the upper clamp and R, M P M, M R p
turn the telescope clockwise 1o bisect
accurately the star at position M.
Clamp both horizontal as well as ver-
tical circle.

{4) Read the horizontal angle
8, as well as the altiudes o of the
Star.

(5) When the star reaches the o
other side of the meridian, follow (a) (b}
it through the telescope, by unclamping FIG. 1.43, AZIMUTH BY EQUAL ALTITUDES.

the upper clamp, and bisect it when
it attains the same altinde. In this observation, the telescope is turned in azimuth and
the vertical circle reading remains unchanged. Read the angle ©,.

Let A be the azimuth of the line OR, ie. the angle between the true meridian
and the reference object. Since the direction of the meridian is midway between the two
positions of the star, the azimuth of the line may be determined according as both the
posittons of the star are to the same side of R or to the different sides of R.

Case I : Both positions of the star to the same side [Fig. 1.43 (a)].

B = ZROM, ; 8 = LROM:
A = azimuth = ZROP, (where P is the position of the pole)
B -0, B +8;
a E L |
'3 2

Hence the azimgh of the line is egual to half the sum ;JJI" the mwo observed angles.

Knowing the azimuth of the line OR, the azimuth of any other line through €@ can
be determined by measuring the horizontal angle between OR and that line. Also if it
8, + 8,

is required to set out the direction of the true meridian, and angle equal io 3

be set out from the line OR. _
Case II. Both positions of the star are on opposite sides of the line. [Fig. 1.43 (B)].

Azimuth = A = ZM\OP - ZM\OR = § £M,OM; — £M\OR = 1 (8, +83) - 0, = EL;.‘.{'

Hence the azimueh of the line is equal to half the difference of the mwo observed
angles.

In the observations taken above, it is assumed that the instrument is in perfect adjustment.
If it is mot so, it is necessary to take at least four observations (two with face left and
two with face right) to eliminate the instrumental errors. The position M, of the star is
observed with both the faces, and the position M, is also observed with both the faces,
and the mean is taken. However, in the duration that elapses berween two face observations
of M,, the positon and altiede of the star slightly changes and this should be properly

can
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accounted for. In Fig. 1.44,
M, and M, are the two positions of
the star to one side of the meridian
when both face observations are taken,
and M, and M, are the two positions
of the star to the other side of the
meridian, in such a way that M, and
M, have equal altiade, and M, and
M, have equal altimde.

The angles 6,, 8, 6, and 6, with
the R.M. corresponding to the positions
H..H;.H,IMH;EIEMEdHfD]-
lows :

{1} The instrument s set at O
and, with both plates clamped to zero,
bisect R with the wvertical circle tw
the left.

(2) Unclamp the upper clamp, turn the telescope in azimuth and bisect the star at
M,. Note the horizontal angle 6, and the vertical angle (i.e. the altitude) o.

{3) Change the face of the instrument and again bisect R with both plates clamped
to zero. During this time, the star goes to the position M,. Unclamp the upper clamp
and turm the telescope in azimuth to bisect the star at M,. Clamp the vertical circle, Read
the horizontal angle 6, and the wvertical angle o'

(4) Leave the instrument undisturbed with the wvertical circle clamped w the angle
a'. When the star reaches the other side of the meridian, unclamp the upper clamp and
turn the telescope in azimuth to bisect the star in position M, when it attains the altimde
a' (i.e. an altitode equal to that at M,). Read the horizontal angle ,.

(5) Change the face of the instrument and again bisect the R.O. with both the plates
clamped to zero. Set the angle o (i.e. the altitode of the star at the position M,). Unclamp
the upper clamp and turn the telescope in azimuth to bisect the star at the position
M, when it attains the altitude o. Read the horizontal angle 6, in this position.

Thus, we have got four horizontal angles, ie. 9, 8,8, and®,. The mean of
8, and B, gives the position of the star to one side of the meridian when it has an average

FIG, 1.44

+r
mimdcaqu-]m“i“.smmymMmmme.@aumimnﬂmM
FEY
1o the other side of the meridian when it has the same average altiude, i.e. {u-iij.

When the average positions of the star are to the same side of the R.M., we have
E|+E':+1[E':+E-_'B:+E|]_[Es+ﬂﬂ+l[ﬁ:.+ﬂqj
2 2 2 2 4 ’
Similarly. if both the average positions of the star are to the opposite sides, we

Azimuth of OR=4=

have
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1 B|+H';|_ 3_1+H4 1
A== -={8,+8;) =
3 3 + 5 2'[1+ 2}

1. (b) OBSERVATION ON SUN AT EQUAL ALTITUDES

When the sun is observed for equal altifudes, the sequence of observations is the
same as that for a star. Since the actual altitnde of the sun is not required, s upper
limb or lower limb may be observed throwghow. A series of horizontal angles is measured
between the reference mark and the sun in the foremoon, and a similar series is observed
with the sun at the same altitudes in the afternoon. Since the sun's centre cannot be bisected,
observations should be made on the right-hand and left-hand limbs of the sun with the
telescope normal and inverted in boih the morning as well as afternoon observations. However,
in the interval between the forenoon and the afternoon observations of equal altimudes, the
declination of the sun changes, and hence the mean of the horizontal angles requires a
suitable correction to determine the avimuth of the survey line from it. To apply the correction,
the watch-time of each observation should also be recorded. The correction is given by

¢ = (5w 8g) sec § . cosec ! (1.34)

where ¢ = angular correction to be applied to the algebraic mean of the observed
horizontal angles w give the azimuth of the reference line
f = half the interval between the times of egual altitude,
@ = latitnde of the observer's place.
Sy = sun’s average declination of morning observations.
dw=sun's average declination of eveming observations.
(2) OBSERVATIONS ON A CIRCUMPOLAR STAR AT ELONGATION
A circumpolar star is that which is always above the horizon, and which does not,
therefore, set. Such a star appears to the observer to describe a circle above the pole
(see Fig. 1.19). A circumpolar star is said to be at elongation when it is at its greatest
distance east or west of the meridian. When the star is at its greatest distance to the

k4

{8y + 84) - (B + 8;)
3 .

al
Horizon

maridian

(a) Apparent path of a star
as seen from outside the
colastiai sphers

FIG. 1.43. STAR AT ELONGATION.
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east of the meridian, it is said to be in eastern clongation. When it is at its greatest
distance to the west of the meridian, it is said to be in western elongation. In this position,
the star's diurnal circle is tangent to the vertical ciwcle to the star.

Figs. 1.45 (a) and 1.45 (b} show two views of the stars at elongation. M, is the
position of the star at iis eastern elongation, and M, is the position of the star as s
western elongation. In this position, the vertical circle of star makes its greatest angle wiih
the plane of the meridian. The vertical through M, (or M,) is tangential to the diurnal
path of the star shown by dotied circle. Evidently, therefore, <ZM,P is a right angle.
Also, when the star is at western elongation (position M), ZZM.P is a right angle.

Al the instant of elongation of the star, its motion is vertical and it is in a favourable
position for observations upon its azimuth because its horizontal movement is very slight
for some time before and some time after it arrives M, (or M,). When the star is in
eastern clongation (M), it appears 1o move vertically downwards, and when it 15 In western
elongation, it appears to move vertically upwards at the instant of elongation. It is clear
from the figure that the points M, and M, will always be at a greater altiude than the
celestial pole P. However, greater the declination of the star, more nearly will be the alumde
of M, and M, approach that of P.

Prior to making the field observations, it is necessary to calculate the time at which
the star will elongate. This can be done as follows:

(i’ The hour angle (H) of the star can be calculated from equation 1.19

an B

cusH=t—=tﬂnHmtﬁ
tan &

(ff) Calculate the local sidereal ume of elongation
L.S.T. (of elongation)=R. A. + H

Use plus sign for western elongation and minus sign for eastern elongation.

{fify Convert this L.ST. to mean time by method discussed earlier.

Thus, the time of elongation of the star is known. At least 15 w 20 minutes
before the time of elongation, the instrument is set up and carefully levelled. Five minutes
before the time of elongation, a pointing is made on the reference mark. The upper clamp
i5 then unclamped and the star is sighted. The star is then followed in azimuth. At the
time of elongation, the star stops moving horizontally, and appears to move vertically along
the vertical hair. This will take place exactly at the time calculated above. The horizontal
circle reading gives the angle that the star makes with the reference line. To this, if we
add the azimuth of the star, the azimuth of the survey line can very easily be known.

The azimuth of the star at its elongation can be calculated from Eg. 1.21:

gin 4 = g=msﬁ.w:ﬂ.

COE

However, in order to eliminate the error, at least two observations should be made
— one with face left a few minutes before the elongation and other with the face right
a few minutes after the elongation. If more time is taken between these two sets of readings,
the azimuth will not be correct. In general, the observations should not be extended beyond
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five minutes on either side of the time of elongation and during this time as many readings
between the R.M. and the star as are possible should be taken.

The following table gives the time after the moment of elongation when the aizmuth
changes by 5" for a place in latimde 30%:

Polar distance Time after momemt of elongation
of the star before azimuth changes by 5~
10° 3 min. 33 sec.
15° 3 min. 7 sec.
20° 2 min. 35 sec.
30° 2 min. 11 sec.

As there will be a corresponding and nearly equal period before elongation, it follows
that for stars having 20° polar distance, 5 min. and 10 seconds can be the maximum
time to the observer before the azimuth can change by 5 in that period. For a star
whose polar distance is 10°, the corresponding time is 7 min. 6 sec. The nearer the siar

is to the pole the greater the length of time available for the observations. In ordinary
observations, a surveyor uses a 20" theodolite so as to determine the azimuth within 20",
Hence, it will be sufficiently accurate if he takes two observations of the star, ome with
the face left and the other with the face right, not exactly at the time of elongation,
but one just before and the other just after the elongation.

However, for very accurate results, it is better to apply the following correction 1o
the value of azimuth (4) of the star from the formula for elongation.
correction (in seconds) = 1.96 tan A sin® § (g — 1Y’ (1.35)
where . —1r is the sidereal imterval in minutes between the time of observation and that
of elongation. The above formula is applied only when (r, - ) does not exceed 30 minutes.
The Effect of an Error in the Latitude

For the calculation of the azimuth, the declination (5) of the star and the latiude
(@) of the place of observation must be accurately known. The declination is taken from

the star almanac. Let us now study the effect of an error in the latitude on the determination
of the azimuth

Let y=error in the latimde and x = corresponding error in the azimuth.
We have sind="0 o sinA.cos®=coss ANy
cos B

Putting the actual values of 4 and 6 in the above expression, we get
sin{d + x) cos (8 + y) = cosb
Expanding sin (4 + x) and cos (8 + y), and replacing sin x, sin y by x and y respectively,
and cos x, cos y by unity, we get
{sin A +xcos A) (cos B - y sin 8) = cos 8 weel2)
Subtracting (1) from (2), and neglecting the term having the product of small quantities
X and y, we pet
xcosAcosB-ysinAsin8=0
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sin A
— sin

or x=ytanBtan 4 = y tan 8

i 2 3
Subsinaing s A= 23  ang VT aa -\ 1o 950 0o o'
COs

B cos” @

cos &

we et .t-}'llnﬂ.m ...{1.36)

From the above expression,

If =0, x=0
If 0=4, r=m
Also, if &=190° x=0,

Hence, in any given latitude, the error Is least when the star selected is nearesi
to the pole.

'Ihefuuuwingmmm&m[;]ufmmMmmummjm.

Declination Latirude = 107 Latitude = 30* Latitude = 40°
(& zfy xly Xy
G 0.22 0.40 0.70
= 0.14 .24 0.40
BO 0.06 0.10 .19

An error in latitude of say 5" will produce an error in azimuth of less than
5" if the value of declination 15 less than the value of latitude. The error in azimuth
will, however, be greater than the error is latitude if the value or the declination of the
star approaches the value of the latitude :
(3) AZIMUTH BY HOUR ANGLE OF THE STAR OR THE SUN

In this method, the azimuth of a star or sun is determined by observing the hour
angle when it is on or near i prime vertical. In the field, the angle between the star
and the R.M. is measured, and the chronometer time at the instant of observation is observed
very accurately. The altiude of the star is not necessary in this method and hence there
is no effect of the errors of refraction. The field work is carried out in the following:

(i) Set up the theodolite over the station point and level it accurately.

(ify Select a suitable star as near the prime vertical as possible.

(ifiiy Bisect the R.M. with both the plates clamped to zero, and with the vertical
circle 1o the lefi.

(iv) Unclamp the upper clamp, rotate the telescope in the azimuth and sight the
star. When the star is exactiy at the intersection of the cross-wires, give the signal to
the chronometer observer o observe the chronometer time very accurately. Take the reading
of the horizontal circle.
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{v) Repeat the observations with face right.

The mean of the above readings will give the chronometer time and the angle between
the star and the R.M.

From the observed mean time of the chronometer, the local sidereal tme can be
easily calculated by the method discussed earlier. The hour angle of the star can be computed
from the expression.

L.S.T. = R. A. * Hour angle.

The R.A. of the star can be known from
the star almanac.

Thus, the hour angle of the star {(or the
sun) is known from the observed chronometer
time. In case the chromometer is fast or slow,
its correction should be known before hand,
and the same should be applied to the observed
time before hour angle is calculated.

Knowing the hour angie, the declination
and the latitude of the place, the azimuth can
be calculated by the solution of the astronomical triangle.

Thus, in Fig. 1.46, M is the position of the star at the instant of observanon when
its hour angle is H.

ZP = co-latitade = (90° - 8) = ¢ (known)
MP = co-declination = (90° - §) = p (known)
ZZPM =hour angle = H (known).
The value of the azimuth (4) can be calculated from the following expression :
tan A =tanH . cos B . cosec (B-8) LA1.3T)
where B=tan ' (tan & sec H) ...(1.38)

Knowing the azimuth of the star, the azimuth of the survey line can be known.

The above method, though simple and straight forward, is not very much used since
separate observations for determining the chronometer error are required. However, if the
chronometer error is known, the method is much better than ex-meridian altimdes. However,
if the star is observed near its prime vertical, the errors of time have very little effect
on the resuis.

While computing the value of H from the chronometer time, a linear relationship
between the chronometer tmings and the motion of the star in the arzimuth was assumed.
However, for more precise work, a correction for the curvature of the path of the star

must be applied to the mean of the face left and face right observations. The correction
(Ad) in seconds to be applied to the azimuth is given by

AA" =+ g sin A cos © sec’ & (cos @ sin § - 2 cos A cos 8) x (A 1) x sin 17 .(1.39)

where A 7= difference in time, expressed in seconds of arc, between the face right and
face left observation.

FlGi. 1.46
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The correction i evidently zero at culmination.
(4) AZIMUTH BY OBSERVATIONS ON POLARIS OR CLOSE CIRCUMPOLAR STAR

The most precise determination of azimuth may be made by measuring the horizontal
angle between the R.M. and a close circumpolar star. The chronometer time of each observation
is noted very precisely. From the corrected chronometer times the hour angle of the circumpolar
star can then be obtained as discussed earlier. The azimuth of the star can then be calculated
by the solution of the astronomical triangle. Since the close circumpolar stars move very
slowly in azimuth and errors in the observed times will thus have a small effect upon
the computed azimuths, it is evidemt that only such stars should be chosen for primary
or precise work.

Since Polaris (o Ursae Minoris) is the brightest circumpolar star, it is used in preference
to others whenever practicable. In general, however, the observations on close circumpolar
stars have the following advantages :

(1) Since the motion in the azimoth is very
slow, the number of observations may be increased
materially and greater accuracy may be secured.

(2) Observations may be made at any convenient
time, without calculating the time of elongation or
waiting for the time of elongation.

(3) If observations are made on the bright
pole star, it is usupally possible w sight the star
during the twilight when no artificial illumination
for the R.M. and for the instrument 15 necessary.

In Fig. 1.47, P is the pole, Z is the zenith FIG. 1.47. OBSERVATIONS TO POLARIS.
of the observer and M is the position of the close
circumpolar star. The dotted circle shows the diurnal path of the polar star.

The hour angle H (ZZPM) iz known from the observed chronometer time.

LMEP = A = azimuth of the pole star (o be computed)

PM = polar distance = co-declination (known)
ZP = co-latimde = ¢=90° -6 (known)

The azimuth (4) is given by

sin H

m"{:msﬂtmﬁ—siuﬂmsﬁ
or o A=secO, cotdsint. () .-(1.40)
where a=tan @ cot 5 cos H (141}

are tabulated for different values of A in the Special Publication

I4, United States Coast and Geodetic Survey.

The wvalue to be taken for the hour angle is that corresponding to the mean of
correcied chronometer timings of n observations. However, for the accurate results, the

The values of log n L
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curvature of the path of the star should be taken into consideration, and the calculated
azimuth should be corrected by the following amount :
] ind L
Curvature correction for ome m=tand$ln 5223“.1 1,,‘!“ .-(1.42)
I sin 1
where n=number of the observations in one set
At = angular equivalent of the sidereal time interval (in seconds) between the
individual observation and the mean of the set.
For the most accurate work, the striding level should also be observed. If the horizontal
axis is inclined during a pointing on the star or the R.M., the horizontal circle reading
should be corrected by :

Level mrrﬂ:tmn=2—i~{zw- LE) tan o ...(1.43)

where d = value of ome division of the striding level
EW and IE = sum of west and east reading of the bubble end, reckoned from centre of
bubble in direct and reversed position
a = altimde of star or R.M.

Programme of observations

The field observations are arranged in the following steps :

(1) With the face left, point twice the R.M. Read both the verniers of the horizontal
circle at each pointing.

(2) With the face left, point twice the star and read both the verniers of the horizontal
circle at each pointing. Note the timing of each pointing.

(3) Change the face. Read twice on the star with face right and note the time and
the angles.

i4) Read twice upon the R.M. with face right.

Alternative programme of field observafions

i. Set the instrument over the instrument mark. With both the plates clamped
zero, sight the R.M.

2. Turn the telescope in azimuth and hisect the star. Note the chronometer time.
Read the stnding level and reverse it
Read the circle.
Intersect the star again and note the time.
Read rthe striding level.
Read the circle.
Point to R.M. and read the circle.
5. (@ AZIMUTH BY EX-MERIDIAN OBSERVATIONS ON STAR

The determination of azimuth by ex-meridian observation of a star or sun is the
method most commonly used by a surveyor except for the determination of primary standard.
The observations are the same as that for the determination of time, and the two determinations
may be combined if the watch times of the altitudes are also recorded. Knowing the latitude

@ -0 & n B La



of the place and the declination of the star, the
astronomical triangle can be observed for azimuth.

Since the mean refraction for objecis at am
altimde of 45° is 57", it necessary fo correct
for refraction in the measurements of the altmde.
The refraction correction is almost uncertain for
stars very near to horizon. The stars should be
observed when it is changing rapidly in altitude
and slowly in azimuth. A favourable position occurs
when the star is on the prime vertical when the
influence of errors of observed altitude is small.

In Fig. 1.48, M is the position of the sar = % E“"ﬁ"gﬂ OBSERVATION

when its altitude (o) is observed.

In the Astronomical triangle,
ZP = co-latinnde = 90° - 8 = ¢ (known)
MP = co-declination of star =90° -&=p (known)
ZM = corrected co-altitede of star = 90° - a = 7 (observed)
The azimuth (4) can be calculated by one of the following expressions :

L1 sin (s=z).sin{s-c) 1 , 4 sin s . sin {5 - p)
mfﬂ_v sin 7 . sin ¢ ' mid_\,’ sin 2 . sin ¢
:\Iuin{.t-z}:in{s—f}

sin § . sin (5 - p)

At least two measurements of the alimude and the horizomtal angle with the R.M.
should be taken, ome with face left and the other with face right. In the imterval between
the face left and face right observations, the star moves considerably in altirude. If the
azimuth is calculated from any one of the above formulae by using mean value of the
altitude, it will not be exactly the same thing as the mean of the azimuth in the two
observed positions. The error will be negligible if the difference in altitude of the star
at the two observations is not more than 1° or 2°. However, if the change in altimude is
more and if the mean value of the altiode is taken to compute the azimuth, the correction
to be applied to the latter is given by

ﬂd":i:mﬂ. sec? a (sin o - 2 cot A cosec 2M) (A a)’ sin 1" L (1.44)

where M =the parallactic angle ZMP =sin ' (cos 6 . sin 4 . sec 8).

The valoe of the correction may be computed by using a four figure log table using
the values of the various angles to the nearest minute.

Programme of field observations

1. Set the instrument over the station mark amd level it very accurately.

2. Clamp both the plates to zero and sight the R.M. with face lefi.

3. Unclamp the upper clamp, and bisect the star. Note the horizontal and vertical
angles.

tmi-..ﬂl= ; where ;=%[p+r.‘+z}.



FIELD ASTRONOMY 103

4. Change the face of the theodolite and bisect the star again. Obtain the vertical
angle and the horizontal angle to the reference mark as before. .

5. Observe a second set in the same manner with a new zero.
5. (B) AZIMUTH BY EX-MERIDIAN OBSERVATION ON THE SUN

The general procedure of observations are the same as for a star. However, since
the declination of the sun changes very rapidly, an exact knowledge about the time of
observation is very essential. Also apart from the correction due to refraction, the parallax
correction is also to be applied to the observed altitude, since the sun is very near to
the earth than the star.

FIG. 1.49. OBSERVATIONS OF THE SUN

The required altiude and the horizontal angles are those to the sun's centre. Hence
the hairs should be set tangential to the two limbs simultaneously. The opposite limbs are
then observed by changing the face, as shown in Fig. 1.49 (a) and (b). If however, the
diaphragm has no vertical hair, the sun must be placed in opposite angles as shown in
Fig. 1.49 (c) and (d).

Programme of field observations

1. Set the instrument over the station mark and level it very accurately.

2, Clamp both the plates 1o zero, and sight the R.M.

3. Turn to the sun and observe altitude and horizontal angle with the sun in quadrant 1
(Fig. 1.50) of the cross-wire system. The motion in the azimuth is slow, and the vertical
hair is kept in contact by the upper slow motion screw, the sun being allowed to make
contact with the horizontal hair. The time of observation is also noted.

4. Using the rwo tangeni screws, as quickly as possible, bring the sun into gquadrant
3 of the cross-wires, and again read the horizontal and vertical angle. Observe also the

chronometer time.
Q O
Q O
Quadrant 3 Cuadrant
FIG. 1.50. SUN'S LIMB OBSERVED IN VARIOUS QUADRANTS

Quadrant 1 Quadrant 2 4
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5. Tum to the R.M., reverse the face and take another sight on the R.M.

6. Take two more observations of the sun precisely in the same way as in steps
(3} and (4) above, but this time with the sun in guadrants 2 and 4. Note the time of
each observation.

7. Finally bisect the R.M. to see that the reading is zero.

During the above four observations (two with face left and two with face right),
the sun changes its position considerably, and accurate results cannot be obtained by averaging
the measured altitudes and the times. However, the time taken between the first two readings,
with the sun in quadramts 1| and 3, s very little and hence the measured altiudes and
the corresponding times can be averaged to get one value of the azimuth. Similarly, the
altitudes and the timings of the last two readings, with the sun in quadrants 2 and 4,
can be averaged to get another valpe of the azimuth. The two values of azimuths so
obtained (one with face left and the other with face right) can be averaged to get the
final value of the azimuth.

For very precise work, the altitude readings should be corrected for the inclination,
if any, of the trunnion axis as discussed earlier.

The reduction is performed in the same manner as for the corresponding star observation.
The correct value of sun’s declination can be computed by knowing the time of observation,
by the methods discussed earlier.

The Effect of an Error in Latitude upon the Calculated Azimuth

Let y=ermor in co-latitnde {c)
and x=the corresponding error in the calculated value of azimuth.
We know that COS p=C05 CCos Z+sincsinz. cosd (1)
Hence cos p=cos (c+ y)cos z+sin (¢ + y)sin 2 . cos (A +x) o 2)
Subtracting these two and making the approximations that
gin x=x, siny=y, cosx=1 and cosy=1, we get

cosz.ysinc+sinzsinccoos A —sinz(sinc+ycosc)=fcosd-xsind)=0
of cosz.ysinc-ysinzoosccoos A +xsinz sincsinA=0

(neglecting the terms having product of x and y)

~ CO§ I §in ¢ + 8in 7 cos ¢ cos 4
sinz.sin¢.sinA

- cot H
o .(1.43)

It is clear from the above formula that for a given value of v, x is maximum when
cot H is maximum, i.e, when H is minimum. Hence ar all times near noon, the error
in azimuth produced by a defective knowledge of the latitude is very much increased. The
error is least at 6 AM. or 6 P.M, The error also increases with increase in the value
of 8, and is the greatest near the pole.

The Effect of an Error in the Sun's Declination wpon the Calculated Azimuth

Let y=ermor in the co-declination (p) of the sun.

=

which gives on simplification, x=
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x = corresponding error in calculated value of A.

Then x=(cosec c. cosec H). y . oo 1.46)

For a given value of y, x is maximum af tmes pear to noon, and is least at
6 AM., and at 6 P.M.

Also, x increases as the latimde of the place increases. This method becomes unreliable
in arctic or amtarctic regions where the given value of y produces very great error in
the azimuth.

The Effect of an Error in the Measured Altitude

Let y=ermor in the co-alutde (2)

x = corresponding error in the caiculated value of azimuth

Then x=={cot M. cosec z) v ; where M = parallactic angle ZMP. ...(1.47)

The wvalue of x is infimtely great when M =0°or 180°, ie. when the sun is on
the meridian. Hence, in this case also, it is concluded that the resulting error in azimuth
is very great if the observations are made near noon. The error is however, small if
angle M is near 90°

Example 1.48. A star was observed af western elongation ai a station A in latitude
54° 30" N and longimde 52° 30° W. The declination of the star was 62° 12°2]" N and
its right ascension 10" 58™ 36", the G.5.T. of G.M.N. being 4" 38™ 32°. The mean observed
horizontal angle berween the  referring objec B and the siar was 65 ° 18° 42", Find
(@) the alntude of star ai elomgation, (B) the azimugh of the line AP and (¢) the local
mean time of elongation.

Solution

{a) Altitude of the star, irs hour angle and
azgmuth.

Since the star 15 observed at elongation, the
angle ZMP of the astronomical triangle ZMP is a
right angle. Hence, from Napier's rule for circular
parts. *

sinu=5ina sin 54° 30 e
sin & sin 62° 12° 21
or o = 66° 58' 6.7
Hence the altitude of the star
= 66° 58 6.7,

- -
T

cos & cos 62° 12 21"

Also, sind= =
s cos B cos 54° 30 (2)

o A= 583°2%

and mﬁ_tnnﬂ tan 54° 30

“Wn b tan 62° 12° 21"

or H=42°21"20" =2 49™ 28.3* . (3) FiGG. 1.51. STAR AT WESTERN
ELONGATION.
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(») Agmuth of the lne.
Since the star was at western elongation, it is to the west of the meridian,
o Azimuth of the line AB = azimuth of the star + horizontal angle between the line
and the ' star = 53° 25' + 65° 18" 42"= 118° 43' 42*
Azimuth of line AR in clockwise from north = 360° — 118° 43" 427= 241° 16° 18",
(¢} Local mean time of observation.

In order to calculate the local mean tme of observation, let us firsi calculate the
LST. of LMN. from the given value of G.5.T. of G.M.N. -

Longitude = 52° 30 W= 3" 30" west.
Acceleration at the rate of 9.8565 per hour
3" x 9.8565 = 29.57 seconds
30™ x 0.1642 = 4,93 seconds

Total acceleration = 34,50 seconds
G.S.T. of G.M.N. = 4" 38™ 32°

Add acceleration 34.5°

L.5.T. of L.M.N. = 4" 39™ pg.5°
Now L.5S.T. of observation=R.A. of star + HA. of the star

= 10" 58™ 36° + 2" 40™ 25.3%= 13" 48™ 01.3°
Thus L.S.T. = 13" 48™ 01.3°
Submract L.S.T. of L.M.N. =4" 39™ 06.5°

Sl from L.M.N. =9"§" 548"

Let us now convert the S.1. into the mean time interval by  subtracting at the
retardation at the rate of 9.8296 per sidercal hour.

" x 08206 = 88.47 seconds
8™« 0.1638 = 1.31 seconds
54.8° % 0.0027 = 0.15 second

Total retardation = 89.93 seconds = 1™ 29.93°
Mean time interval from L.M.N.

= 8.1. - retardation = 9" 8™ 54 8% - 1™ 29 3*
L.M.T. of observation = 9" 7™ 24.87*

Fig. 1.51 shows the relative positions of observer (A), the sar (M), the pole (P,
the T and R.O. at the imstamt of observation.
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Example 1.49. A star was observed al its eastern elomgation in latitude 53 ° 32° N
and the mean angle between a line and rthe siar was found 1o be 75° 187207, the mar
and the line being to the opposite sides of rthe meridian. Find (a) the azimuh of the
line, (b) the altitude of the siar at observation, (c) the LM.T. of observaiion with the
following data -

Declination of the star 56 42°53" 2N

Longitude of the place sh40™ 187 W

RA. of the star 10" 58" 3.9°

ST. &t GMM. 47 58™ 23,847 (P.L)
Solution

Since the star was observed at its elongation,
the astronomical triangle ZPM is right angled
at M. The azimuth altinde and hour angle of

| the star can be calculated from the Napicr's
rube.

i i T

. sin & sin 53° 32
(@) Thus, smas= I R O3 ,
a=T4°9 32".9 Jenat
Hence altimde of the star=74°9 32".9 Ay longation
, cos & cos 56° 42' 537.21
() sin A = ey ey

A=6T"25 18" 2 E
Since the line and the star are o the

opposite sides of the meridian, the azimuth of
the line 1o the west of meridian FlG. 1.52, STAR AT EASTERN ELONGATION.

= Angle between the line and the star — Azimuth of the star
=T75% 18" 20" - 67° 25" 1B".2=7"53"1".8 to the west of the meridian
Azimuth of the line clockwise from the north
= 360° - 7% 53" 1".8 = 3527 6' 58".2.

() £ ZPM = H, = Easterly hour angle of the star.
tan £ fan 53° 32
Hence H, = =
08 T = and  wan 56° 42 53°.2
From which Hy=27°3 22" 4 = |" 49™ 21.5*

Hence westerly hour angle of the star = A= 24" - H, (sec Fig. 1.52)
= 24"~ 1" 49™ 21 5
=22% 10™ 38.5°
Add R.A. of the star = 10" 58™ 3.9°

L.5.T. of observation =33"8"™ 424" =9"8" 424"
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To convert this L.S.T. to LM.T., let us first find the L.S.T. of LM.M. from
the given value of G.5.T. at G.M.M.

Longitude = 5" 40™ 18° W
Acceleration for this at the rate of 9.8565 seconds per hour of longitude is

5 x 9.8565 = 49.28 seconds

40™ x 0.1642 = 6.57 seconds

18" x 0.0027 = 0.05 second

Total correction = 55.90 seconds
LS5T. at LMM.=G.S5T. at G.M.M. + acceleration
= 4" 58™ 23 84" + 55.90° = 4" 59™ 19.74°
Now S.0. between the LM.M. and elongation
= LAST.-LS5T. st LMM.
= 9" 8™ 42 4% — 4" 597 19.74% = 4" 097 22.66"

This may be converted to mean tme interval by subfracting the retardation at the
rate of 9.8296 seconds per sidereal hour.

4" x 9. 8296 = 39,32 seconds
9™ « 0.1638 = 1.47 secomds

22.66° x 0.0027 = 0.06 second

Total retardation =40.85 seconds
Mean time interval = 5.1, = retardation
= 4" 09™ 22.66° - 40.85" = 4" §™ 41.81°
Fig. 1.52 shows the relative positions, in plan, of the observer (Z), the pole (P),
the star (M), the Y, and referring object (R.O.).

Example 1.50. Ar a place (Latitude 35° N, Longitude 15° 30° E), the following
observations were fakem on a star !

Observed angle between the RM. and star = 36" 28718 (clockwise)

RA. of star : 1ot 12" 6.3°
Declination of star 0" 648 4
G.M.T. of observation : reh 2" 28.6°
G.ST of GMM. : 10* 127 36.2°
Calculate the rrue bearing of the reference mark.
Solution

Here, the observations have been taken for the hour angle of the star to calculaie
the azimuth of the line. From the observed chwronometer time (G.M.T.) let us first calcalae
the hour angle of the star.
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G.S5.T. of G.M.M.= 10" 12™ 36.2°%,

Since the place has western longitude, let us subtract the retardation from the given
G.5.T. of GM.M. w0 calculate the L.ST. of LMM.

Longimde = 15° 30 E= 1" 2" E
1® x 9.8656 = 9.87 seconds
0™ % 0.1642 =4.93 seconds

Total = 14.80 seconds
L.ST of LMM. = 10° 12™ 36.2° - 14.80° = 10" 12™ 21.4°

Now G.M.T. of observation = 19" 12™ 28.6"
Add east longitude = 1" ™

L.M.T. of observation= 20" 14™ 28.6°

Convert this L. M.T. into 5.1. by adding the acceleration
at the rate of 9.8656 per hour.

20" x 9.8656 = 197.13 seconds
4™ =% 0.1642 = 2.30 seconds
28.6° % 0.0027 = 0.79 second

Total = 200,22 seconds = 3™ 20.22*
5.1 .= Mean time + acceleration

= 20" 14™ 28.6" + 3™ 20,22° = 20" 17™ 48.82° FIG. 1.53
L.S.T. of observation=L.S.T. of L.M.M. +S.I.

= 10" 127 21.4° + 20" 17™ 48 R2°

= 30" 30™ 10.22°
Subtract R.A. of star = 10" 12™ 6.30°

Hour angle of the star = 20" 18™ 3.92° = 304° 30" 58”.8 (westerly)
Smallest hour angle in arc (fe easterly hour angle)
= H, = 360° - H= 360" - 304" 30" 58".8 = 55" 29" |".2 1)
Thus the hour angle is known to us.
The value of the azimuth (4) of the star is calculated from the following expression:
tan A =tan i . cos B . cosec (B - 0) (Egq. 1.3T)
where tan B =tand sec H (Eg. 1.38) =tan20° 6" 48".4 . sec 55° 29" 1.2

' B =32° 52 27"
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and B-8=32"52'21"-35"=-27"3}"
Hence tan A =tan55° 29’ 1.2" cos 32° 52' 27" cosec ( - 2° 7' 33")
A= 91" 43" 48"

Now clockwise angle from R.M. o the star = 36° 28° 18"
True bearing of the line = Azimuth of star - angle between the line and the star
=917 43" 48" - 36° 28" 18" = 457 15" 30",
Example 1.51. The following observations of the sun were laken for azimuth of a
line in connection with a survey
Mean time = 16" 30™
Mean horizontal angle berween the sun and the referring object = 18 = 207 30"
Mean corrected aliffude = 33 ° 357107
Declination of the sun from NA.=+ 22°05'36"
Latitude of place = 532° 30" 20" (UL}
Determine azimuth of line.
Solution,
In the astronomical triangle ZPM,
ZM = zenith distance = 2 = 90° - a = 90° - 33° 35" 10" = 56° 24" 50~
PM = Polar distance = co-declination = 90° - §
=007 - 22° 05" 36" = 67° 54" 24"
ZP = co-latinude = 90° — 52° 30" 20" = 37° 29" 40"
By cosine rule
cos PM = cos ZP . cos ZM + sin ZP sin ZM ., cos A
cos PM —cos ZP . cos ZM  cos 67° 54" 24" — cos 37° 29" 40" | cos 56° 24" 50
sin ZP _sin ZM sin 37° 29' 40", sin 56° 24' 50"
From which A =977 6 48"
Azimuth of the sun= 97" 6" 48"
Since the sun is to the west (or left) of the RO, the true bearing of R.O.
= Azimuth of sun+ horizontal angle
= 97° ' 48" + 18% 20" 30" = 115° 27" 18" (Clockwise from North).
Example 1.52. At a point in latitude 557 46°12" N, the altitude of sun’s  centre

was found to be 23° 17732 at $"I7™ PM. (GM.T.). The horizomtal angle of the R.M.
and sun's cemtre was 63" 2430, Find the azimuth of the sun.

or cog A =

Data;
(@) Sum’s declination of G.AN. on day of observation =7 45" N
(b)  Variation of declination per hour =- 37"

(€}  Refraction for altitude 23 ° 207 =0=2712"
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(d) Parallax for altitude

(¢) Eguation of time (App. — mean)
Solution

(1) Calculation of declination
G.M.T. of ohservation

Add Equation of tme

G.A.T. of observation
MNow declination at G.A.T.

Apparent time interval since G AN,

il

=08

=6"0° (LR.S.E)

=5" 17" 0" (P.M.)
=" 67 o

" 23™0F (P.ML)
I7° 46" 52 N
= 5" 23™ of

Variation in the declination in this time interval at the rate of 37" per hour

= 3" 39" (decrease).
Declination  at

(2) Calculation altitude
Observed altuude of sun’s centre
Subtract refraction correction

Add parallax correction

Correct  altitude
Now, co-altide
Co-declimation
Co-latitode

§-¢=352"123 46"
Mow, the azimuth

G.A.T. of ohservation

=c=90°-8 =90° -
=p=90° - § = 90° - 17° 43' 13" = T2° 16" 47"
=2 90° - a = 90° - 23° 15’ 28" = 66° 44’ 32"

§-p=14" 20" 47" ;

17° 46" 52" - 3" 39"
= 17* 43" 13"

= 23 17" 32"
= 0* 2" 12"
= 23° |5 20"
= 0 8"
=13 15' 28"
5% 46" 12"= 34% 13" 487

25 = 1737 15" 07"
5 = B6® 37" 347
§-z=19"33 02"

of the sun is given by
meamea |

tan A afsin(s—z)sin(s—c) 4 [ sin 19° 53° 02" sin 52° 23" 46"
sin & . §in (5 = p) - sin 86° 37 34" sin 14° 20" 47
g—=46‘ 15" 437 or A =92°31"26".

Example 1.53. Ar a station in latitude 52 ° 8" N, longitude 19 ° 30" E, the direction
of the meridian is known approximately bt in order to fix it more precisely it is decided
to make an evra-meridian observation of bright-star (6= 29" 52'N, R. A. = 16 B23™30% in
the late afternoon. It is considered that the most suitable time is 17"5™ GM.T on a
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date when G.5.T. of GM.M. in 3" 12™ 12°. Calculate the approximate direction, east or
west of the meridian, and the altitude, ar which the telescope should be poinied 1o locare
the siar so that exact observations may be
made on il

Solution. In order to calculate the hour

angle of the star, let us first compute the
L.5.T. of observation of the star.

G.M.T. of observation = 17" 5™ ¢* \

Tocovert it into 5.1, add the acceleration
at the rate of 9.8656 secomds per hour,

17" « 9.8656 = 167.56 seconds
5™« (0.1642 = 0.82 second

Total = 168,38 seconds = 2™ 48.38°
S.I. = G.M.T. + acceleration
= 7" 5™ 4+ 2™ 48.38%= 17" 7™ 48.38"

G.5.T. of observation=G.8.T. of GM.M.4+ 5.1
= 3" 127 120 4 17" 7 48.38°
= 20" 20™ 0.38°

Add west longitude = 1" 18"

s L.8.T. of observation = 21"38™0.38°
Subtract R.A. of star = 16" 23™ 30.0°

H.A. of star = 5" 14™ 30.38° = 78° 37" 36"

In Fig. 1.54, M is the position of the star at the mstant of observation, in relation
to the sun and Y. Z is zenith of the observer and P is the pole.

. PM = co-declination = 90° — 29° 52'= 60° 08" = p

PZ = co-latimde  =90°-52°8" =37"52'=¢

Now, from tue astronomical triangle ZPM,

sino—-sin5sin@ cosz—cospoosc
cos & . cos B - gin p . sin ¢

or cos z=cos H . sin p sin ¢ + cos p cos ©

cos H=

= cos 78" 37" 36" . sin 60° 08" . sin 37° 52" + cos 607 08 . cos 37° 52
From which z=060°T 32"
s Alttude of star = 90° — 7 = 29° 52 28"
sin A _ sin H

Also by mle, —— = ——
sinp sinz
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sin.-l:sinp.%=shﬁﬂ”ﬂﬂ'.

A

in H

= 78" 38" 56" (west).

Example 1.54.
observations for azimuth.
Object Face
i Q L
2 Sun L
3 Sun R
4 R R
Horizomeal Circle
A B
I. e 12720 2000020 10"
2 112® 20°30 * 29220720
3. 293° 30740 " iz 030"
4. 211° 50" 30" 312 50°20"

113

sin 78° 37" 36"

sin 60° 7' 32"

Find the azimuth of the line QR from the following ex-meridian

Alritude Level
(. E
54 4.6
52 4.8
Verrical Circle
c D
24° 30720 " 24% 307 40"
25° 00700 " 25 100"

Latitude of station Q=36 48'30" N ; Longitude of station O=4"12"32°E
Declination of the sun o GMN.=]*32'16".8N decreasing 567.2 per hour
Mean of L.M.T. of two observations = 4" 15™ 30° P.M. by watch ; watch 4 seconds

slow at noon, gaining 0.8 seconds per day.

The value of level division = 15

Correction for horizontal parallax = 8".76

Correction jfor refraction = 57" cot (apparent altitude).

Solution.

Mean horizomtal angle = % [(112° 208 25" = 30° 12' 15") + (293° 40 35" - 211° 50" 257)]
= 2 [(82° 8" 10" + 81° 50' 107)] = 81° 59’ 107

Mean observed altiude = mean of the four vernier readings = 247 45° 307

Level correction = 4

L0 -ZXIE
4
10.6 - 9.4
4

x 15" =+4"5

« value of the one level division

Apparent altitude = 24° 45' 30" + 4".5 = 24° 45" 34".5
Refraction correction = — 57" cot 24° 45 34".5=1'6".7
Correction for parallax =+ 8".77 cos 24° 45° 34" 5 =7".8
True altioade = 24° 45" 34" 5-1" 6" 7+7".8 = 247 44" 35".6
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Mean time of observation = 4" 5™ 3
Waich correction = + [ 4 - M] =+ 3.86°
24
Correct L.M.T. = 4" 15™ 33 86"
Deduct East Longitude = 4" 12" 32.0°
G.M.T. of observation =0" 3™ 1.86°
Sun's declination at G.M.N. =1°32' 16"8 N
Variation for 3™ 1.86° = ~ 56".2 (0.0505") = — 2.8°

Declinaton of sun at the instani of observation
=1"32" 16" B -28" =1"32 147
Now, in the astronomical triangle ZPM,

ZP=¢=90° — 8 = 90" - 36° 48" 30" = 53° 11" 30"

IM=1=90" - a=90° - 24° 44' 35".6 =65° 15" 24" 4

PM=p=90"-5=90"-1" 32" 14" = B&° 27" 46"
25 = 206" 54' 40" 4

&= 103= 27" 2072
S §-c=50°1550"2 | s-7=38°"11"55"8 ; 5s-p=14" 59" 33".8
The azimuth A is given by
A _ \’m‘n{s-z] sin (s - ) _ \[ sin 38° 11' 55".8 . sin 50° 15' 50”2
2° Y Tsins.sim(s-p) " sin 103° 27 20°.2. sin 14° 50’ 33" .8

%=ﬁz° T4"9 or A=124°14'98

Azimuth of the sun= 124" 14' 9" B
(west, since the sun was observed in the evening)
Clockwise angle from the R.M. to the sun=8§1" 59 10~
Azimuth of line from north towards west
= 124° 14’ 9".8 4+ 81° 59" 10" = 206 13" 19".8
Azimuth of line from north (clockwise)
= 3607 - 206° 13" 19".8 = 153" 46" 40".2.
1.17. THE DETERMINATION OF LATITUDE
The following are some of the most practicable and most generally used methods
for determmning the latide of a place

1. By meridian altiode of sun or star.
2. By zenith pair observation of stars.
3. By meridian altimde of star at lower and upper culmination.
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4. By ex-meridian observation of star or sun.

By prime vertical transits.

5.
6. By determining the altiude of the pole star.
7. By circum-meridian altitude of sun or star.

1. (@) LATITUDE BY MERIDIAN ALTITUDE OF STAR

In this method, the alumde of a heavenly
body is measured when it is crossing the meridian.
The method is based on the important fact that
the lattude of the place is equal o the altimde
of the pole. If we can measure the meridian altitude
of the star whose declination (and hence polar distance)
s known, the latinde can be easily computed.
The observed altitude should be comrected for the
refraction, as discussed earher. The accuracy of
determination may be increased if it is possible
o take two observations for altimde upon the same
star, the face of instrument being reversed after
the first reading is taken. This is possible with
close circumpolar stars, specially when observanons
are taken with an ordinary 20% theodolite. The
method 18, therefore, used for less refined deter-
minations. The direction of the meridian of the

FIG. 1.55. MERIDIAN ALTITUDE OF STAR

place must be known, or must be established before the observations are made.
To calculate the latitude (8) of the place of observation from the known value of
declination (5) and the observed value of the altitude (o), we will consider the four cases

that arise according to the position of the star

(Fig. 1.55).

Case 1. When the star is between the horizon and the equator.
M, is the position of the star when it is between the horizon and the equator.

ZP = po-latinude = 90° - @
EZ = latitude = 6
SM, = o, = altitnde of the star

My = 9® — oy = 7; = zenith distance of the star
EM | = § = declination of the star (south)
MNow .EE=E’I':IIL—EH| ar l}-:{"}l}“—m]—&.=:;.—-ﬁ.

Hence latitude = zenith distance - declination.
Case 2. When the star is between the equator and the zenith.
M, is the position of the star when it is between the equator and the zenith.

SM; = as = altitude of the star

My = (907 - o) = 2 = zenith  distance of the star
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EM; = & = declination of the star.
Now EZ = ZM; + EM,

or B o= (90% = as) + 6 or Bmz4+b

HIGHER SURVEYING

Hence latitude = zenith distance + declination.
Case 3. When the star is between the zemith and the pole.
M, is the position of the star when it is between the zenith and the pole.

NM, = a; = altimde of the star

ZMy = (90° — @y) = 2y = zenith distance of the star

EMy= &; = declination of the star
Now EM = EM, - ZM,
ar B=86:-(9" -m) =8 -1

Hence latitude = declination - zenith distance.
Case 4. When the star is beiween the pole and the horizon.

M, 18 the position of the star when it s between the pole and the honzon.

NM, = oy = altitude of the star

ZMy= (90" - ay) = 7y = zenith distance of the star

FM, = &; = declination of the star.

Now PN = altinde of the pole = latimde of the place =8

=J.'IM4+PH¢ =u.+{PF—FM..}

= gy + (90° ~ &) = (90° - z) + (90" - &,) = 180" - (7, + &)
Hence latitude = 180° —(zenith distance + declination).
1. () LATITUDE BY MERIDIAN ALTITUDE OF THE SUN

The altitude of the sun at local apparent
noon (meridian passage) may be measured by placing
the line of sight of the transit in the plane of
the meridian and observing the altitude of the
upper or lower hmb of the sun when it is on
the vertical cross hair. The observed altitude is
then corrected for instrumental errors, refraction,
parallax and semi-diameter. The mean time of ob-
servation should also be noted. The declination
of the sun continually changes, and hence a correct
knowledge of mean time and longitude of the
place of observation is essential in order to compute
the value of declination at the instant of observation.
Knowing the altitude and the declination of the
sun at the instant of observation, the latitude can
be computed as follows (Fig. 1.56).

In Fig. 1.56, M is the position of the sun.

SM = o = meridian altitude of the sun (corrected).

FIG.

1.56. MERIDNAN ALTITUDE
OF THE SUN.
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ZM = 90° - o = z = meridian zenith distance of the sun.
EM = § = declination of the sun.
Then latitude = 8 = EZ = ZM + EM
=90 -a)+b=1+48
or latitude = zenith distance + declination.
In the above expression, § is positive or negative according as the sun is to north
or south of the equator.

If the direction of the meridian is not known, the maximum altitude of the sun
15 observed and may be taken as the meridian altitude. This is not strictly true, due to
sun's changing declination. However, the difference between the maximum altitude and the
meridian altitude is usually a fraction of a second, and may be entirely neglected for observations
made with the engineer's (ransit or the sextant.

Mean | Jan. | Feb.| Mar. | Apr. | May | June | July | Aug. | Sep.| Oct. | Nov.| Dec.|mMean
tme |10 20|10 20{10 20|10 20[10 20{10 20{10 20{10 20{10 20{10 20{10 20{10 20) time
11:45 < 11:45
K
Fd
11: 11:50
; i \
[ i
11:58 ‘z," i 1185
'F 1
Maan . K Mean
noon \.L jﬂ noon
F4SSEEEss \
12:08 12:05
|1

12:10 12:10

™

1

FIG. 1.57. MEAN TIME OF APPARENT NOON.

In order that the observer may be well ready for taking the observations at the
meridian transit, standard time or the watch time of local apparent noon must be known.
The standard time of local apparent noon varies throughout the year. Fig. 1.57 shows
graphically the local mean time of the local apparent noon. The standard time can be
known by applying a correction for the difference in longitude between the local meridian
and the standard meridian. The observer should be ready to begin observing at this time.

(2) LATITUDE BY ZENITH PAIR OBSERVATIONS OF STARS

This method 15 an improvement over the previous method to get more precise results.
The errors of observation, refraction and instrument can be effectively reduced by making
observations upon two stars which culminate at approximately equal latitudes on opposite
sides of observer’s zenith. The altimde of one star at its culmination is observed first.
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The telescope is then reversed in azimuoth and the meridian altitude of the other star 1s
then observed. The two stars chosen should be such that their right ascensions differ by
10 to 30 minotes. The tume of culmination of these two stars will then differ by 10
i0 30 munuies and the observer will have sufficient time in observing the second star after
taking the reading of the first and reversing.

Thus, let M, and M, (Fig. 1.55) be the two stars having approximately equal altumades
to the porth and south side of the observer's zenith, and having their time of culminations
differing by 10 w 30 mimutes.

As derived earlier,

For the position M., latitude B = (90° - a3) + &; sl(1)
For the position M,, latitude 0 = §; — (90° - o) c(2)
. , : - 8+ &
Average ]ll'imdﬂzi-[-;{m"-uﬂ+ﬁ.3!.+ |.51,_{mn"{13}l]=u11ﬂ.1+ 12 3

From the above expression, it is clear that the average latitude depends wpon the
difference in latitudes of the two stars, and not on the individual latitude. Hence any error
in the correction for the refraction will be common to both the latitudes (which are approximately
equal) and will be eliminated by taking the difference of the two latitudes. Similarly, the
mstrumental errors are also largely eliminated because these will be practically the same
with each observation.

It should be noted that the face of the instrument is mor reversed while reading
the altitude of the secomd star. To take the reading for the meridian aliitude, the telescope
is directed to the tue meridian, and the altimde is measured when the star intersects the
vertical wire.,

(3) LATITUDE BY MERIDIAN ALTITUDE OF A CIRCUMPOLAR STAR AT UPPER

AND LOWER CULMINATIONS

In this method, the altiude of a circumpolar sitar is measured both at s upper
as well as the lower culmination, The mean of these two altitudes gives the alimde of
the pole and hence the latitude of the place
of observation. This is proved below (Fig. 1.58).

M is a circumpolar star. A s IS position
at the upper culminaton when its altitude is
maximum. B 1s its position at the lower culmination
when its altinde 5 minimum. The dotied circle
shows the path of the star round the pole.

AN = @, = altitude of the star at its
upper culmination.

BN = a; = altimde of the sar at its
lower culmination.

Now latiude of place = alumde of the
pole =6 = PN

FIG. 1.58
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PN=BN+ BP =u0; + BP
Also PN=AN -AP=ua, - AP
Adding the mwo, we get
2PN = (y = AP) + (a2 + BF)
But AP = BP = co-declination of the star

L R o |
2PN = o, + g of PN=B=——n

Hence the latitude of the place of observation is equal to half the sum of the altitude
observed ai its upper and lower culminations. In this method, the knowledge of the declination
of the star is not necessary. However, the method is open o the objection that 12 sidereal
hours elapse between the two observations. The method is, therefore, not much used.
4y LATITUDE BY EX-MERIDIAN OBSERVATION OF STAR OR SUN

In this method, the altimde of the star is observed in
any position. The exact chronometer time is also noted at the
instant the observation is taken. The known mean time of the
chronometer is converted into the local sidereal time. The hour
angle of the star can then be computed from the expression:

LS.T. =R.A. of the star + HA. of the star. o=

In the astronomical triangle MPZ in Fig. 1.59,

E'-!'=‘S'U°—c:=%—ut {known)

PH=91]“—5=%—B (known)

ZMPZ = H (known)

Hence the side ZP = (90° - 8) can be calculated from the
cosine formula FlG. 1.59

B =&

(e cosl E_Blcos!( ®—glasinl®—olsnl®_5)

mt.tz q.l_mslx Ejms.tz 5J+amL1 EJELﬂ.l‘ -SJ{:::ISH

or sin = §mn 6 8in & 4 cos 8 cos 6 cos H 1)
In the above equation, there are two terms for @, ie., sin @ and cos &, The equation

can be best solved by introducing two arbitrary unkmowns m and n as follows :

Let sinf=msinn ...{f{) and cosScos H=mcosn ... (E)
Dividing (i) by (i), we get
sin & sin n
cos Boos H -~ cos m or tan S sec H =tann LAty L (1.48)

Substituting the value of equations (f) and (if) in equation (1), we get
sma=5m0.msinn -+ cos . mcosn
or sin a = m {sin 8 sin 1 + cos 8 cos n)
or gin o = m cog (B - n)
or m = sin « sec (8 - n) . 1.49)
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Substituting the value of m in equation (i), we get
sind=s8ino. sec(0—n).sinn
or cos (B ~n)=sino . sinn. cosec AV L L50)

Thus, the value of n is obtained from equation (i), and then substituted in equation
(iv) o get the value of 8. For the use of the method of computation of 6, see example
1.60.

(5) LATITUDE BY PRIME VERTICAL TRANSIT

As defined earlier, the prime ver-
tical is a plane at right angles o the
meridian, running truly east and west.
A star, having polar distance less than
90" and greater than the co-latitude of
the place, will cross the prime vertical
twice in a sidereal day. The field work,
therefore, consists in measuring the time
imterval between east and west transits
of the star, The best stars for observations
are those that cross the prime vertical
near the zenith.

Thus in Fig. 1.60 {(a), S, W, N
and E are the south, west, north and
east points on the horizon. Z is the zenith
of the observer, and P the pole. The
dotted circle shows the path of a cir-
cumpolar star, WZE is the plane of the
prime vertical passing through the west-
east points and hence perpendicular to
the meridian at Z. M, and M, are the
east and west transits of the siar across
the prime wvertical. Half the time that
elapses between the two transits
M, and M, in sidereal hours represenis
the angle M PZ (H).

From the right angled triangle M PZ FIG. 1.60. LATITUDE BY PRIME VERTICAL TRANSIT
M P=50"-§ (known})
LM PE = H (known)
ZP = (90" - 8), o be computed.
From the Napier's rule for the right-angled triangle, [Fig. 1.60 (c)].
sine of the middle part = product of tangents of adjacent parts
sin (90° = H) = 1an (90° - @) tan 5
or cos H = cot 6 tand
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ar tan 8 = tan & . sec H
where H = half the interval of time between the east and the west transits

expressed in angular measure.

Since the alrimude is not measured in this method, the errors dee to uncertainty in
the value of refraction is largely eliminated. Also, the exact knowledge of local time is
not required since we have to simply measure the interval of sidereal hours that elapses
between the two transits, However, the approximate local time of prime-vertical transits
must be known. To take the time readings, the instrument has to be directed towards
the direction of prime vertical, first to the east side and then to the west side, and measure
the time when transit occurs, ie., where the star crosses the wvertical cross-hair.

The effect of an Error in the Determination of the Time Interval

Let y=error in the determination of the tme interval
and x = corresponding error in the latiude.
. .a -
Then = x=y B 2aj@n 8 .(1.51)
2 tan’ &

From the above relationship between the two errors, we draw the following conclusions:

{1y If &=08, x is very small. However, the star would pass through the zenmith and
observations cannot be made.

{2y If §=0, the star would pass through E and W points, the interval between
the transits will be exactly 12 hours whatever may be the position of the observer and

hence the determination cannot be made., The wvalue of x will be great for very small
value of &.

chctﬂicsmsuhﬁ:nedahuuldheashighupunﬂlepﬁmevmﬁ:alasiscumiﬂm
with an exact determination of the time of transit.

The effect of an Error in the Direction of Prime Vertical

The error in the setting out of the direction of the prime vertical has very little
effect in the latitude of the place for ordimary engineering purposes. If the eastern transit
occurs earlier due to the wrong direction of the prime vertical, the western transit will
also take place correspondingly earlier, though not exactly by the same amount. In a
latiwde of 307, even if the prime vertical is set out by 1° out of its true position, the
resulting error in latitude determination will be less then 17 for observations on a star
having declination = 20°.
Siriding Level Correction to Prime Vertical Determinations

For the prime vertical determinations, the instrument must be in perfect adjustment.
If the transverse axis of the mmstrument is inclined by a certain value, the resulting error
m the determination will be equal to this value. Hence swriding level should always be
nsed when rtaking the vertical observations.

Thus, in Fig. 1.61, if the transverse axis is inclined, ECW is the circle upon which
observations are made instead of the true prime vertical EZW. The star is then observed

to the transit at the point M on the inclined prime vertical. The observed angle
MPC =H.
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Then cot CP -~ tand = sec M, if we take ZPCM =907,
Then wue co-latitude = CP + ZC
or true latitude = 90° - co-latitude = observed latiude + ZC
where ZC = angular measure of the level correction =N;Sd ...(1.52)
where N=mean reading of north side of bubble.

5= mean reading of south side of bubble.

d=value of one division.

Use —sign if C and P are 1o the same
side of Z and + sign if € and P are w the
opposite side of Z.

Thus if the south end of the axis is
higher, C and P will be to the same side
aof £ and the level correction ZC should be
subiracted from the calculated value of the 5 N
latitude to get the true value of the laritude.

However, if the north end of the axis
is higher, C and P will be 1o the opposite E
sides of Z and the level correction ZC should FIG. 1.61
be added to the calculated value of the latitude
fo gel the true value of the latitude,

(6) LATITUDE BY DETERMINING THE ALTITUDE OF THE POLE STAR AT ANY TIME

We know that the latitude of a place
15 equal to the alitde of the pole. If there
were any star af the pole, we could have observed
its altinde. However, the pole star is very
near to the pole. The altiude observations on
the pole star can, therefore, be made at any
known time, and correction can be applied o
the observed altitude o get the latitude of the
place of observation.

Thus, in Fig. 1.62, M is the position
of the pole star at the time of observation.
Let o« be the observed altimde. The mean
time is also observed from the chronometer,
and is converted into sidercal time. The hour angle H is then computed from the relation:

L.ST.=RA. of pole star + Hour angle.

F1G. 1.62.

In the triangle ZPM, E’d’=%—u (known) | m=[;
ZZPM = H (known)

—E}=p (known)
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The co-latiude ZP can be calculated from the cosine formula
ms(l—u]=m[i—ﬂ]:nslfinﬁ]+sln{£-ﬂ}ai.u[:%—ﬁ]msﬂ

2 2 2 2
or sin @ = sin @ sin & + cos © cos & cos H
or sin & = sin 6 cos p + cos 0 cos § cos H A1)

Let o differ from 8 by a small amount @, so that
a=0+x, where x is the small correction
Substituting a=04+x m (1), we gt
sin @ cos x + cos O sin x = sin 8 cos p + cos O sin pcos H
Expanding the terms having small gquantities x and p, we get

I
smﬂ-[l—1+...]+mﬂ X ﬁ+...]-smﬂ I_I'" +cos Beos H | p ﬁ+--_ L02)
Neglecting the square and higher values of x and p in the above, we get

x=pcos H A0y (1.53)

This gives the values of x lo the first approximation.
MNext, retaining the squares of x and p, and neglecting their higher powers in equation
(2), we get

1
:mﬁ=pﬂmﬂcmH~E1~sinﬂ+§squ

2
Putting X =pcost H, we get xtpmﬁ+%tanﬂsmzﬂ iy (1.54)

This gives the value of x to the second approximation.
The second term in this expression is very small, and becomes still small when
multiplied by p’. Hence we can approximately write tan 0 =tana so that
.I=pmsH—-;-pl.unu. sin® H
where x and p are in circular measure.
If, however, x and p are measured in seconds, we get
x=p:n-sH-%p’la.uu.si.u1H-sin 1"
The correct latiude is, therefore, given by
B=a-x
or E:u—pmﬁ+%p’lana.ai.nzh'.sinl" ...{1.55)
The above formula gives accurate results within 17,

The field observations comsist in observing four altimdes in quick succession - first
with face right, two with face lefi and then again with face right —and the chronometer
time of all the four determinations are observed. The mean values of the four altimdes
and the four times are taken for the computabon of @. The dechnation and R.A. of the
pole star are taken from the mawrical almanac.
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{7) LATITUDE BY CIRCUM-MERIDIAN ALTITUDE OF STAR OR THE SUN

The crcum-meridian observations are the observations of stars or the sun taken near
to the meridian. The method is used for very accurate determination of latitude by observing
the circum-meridian altitndes at noted times of each of the several stars for a few minutes
before and after transit and reducing them 1o the meridian altmede. The errors due o
erroncous value of refraction, personal error and those due to instrumemnts are very much
reduced by observing an equal pumber of north and south stars in pairs of similar altitude,
Accurate chronometer time and its error is also essential to calculate the hour angle of
the individual stars. The observation of each star is commenced about 10™ before the computed
time of transit and is continued for about z
10™ after tramsit. Equal number of the face right
and face left observations are necessary on a particular F
star. However, both face observations are not taken
if observations are adequately paired on north and
south stars.

In Fig. 1.63, let

2= MZ = zenith distance of sar M,
corrected for refraction
p=MP = polar distance
r = PZ = co-latitude
H = #MPZ = Hour IIlg]E FlG. 1.63
From the astronomical triangle MPZ, we get
COS 2= 008 € COS p + sin ¢ . sin p cos H el 1)

Let x = correction to be applied to the observed z to get the meridian zenith distance
when the star is on meridian.
Then meridian zenith distance =z - 1.
Again, when the star is on the meridian, its zenith distance
=MZ=MP-ZP=p-c.

Hence I-x=p-c LA2)
Writing msH=1-zsm=g in (1), we get
m:=mcm¢p+sinr5inp—lainf.sinp.si.nlg
or :mz-w{c-p}—lﬁnr,sinp.sng
or cmz—cns[p-r]=-25§nc-sinp_smlg
Substilating p-c=z-x from (2), we get
msz—m{:—;]=—lsinc.sinpsin=g
N S Xy . .Iﬁ
smismll.pz] sin ¢ . sin p sin’ 3
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sin ¢ . sinp . "g
From which sin 3"
sin (2-7 )
Since x is small, we can replace sini— by irsjnl", if x is measured in seconds
of arc.
w3
Its:i.uc-sinp_zsm 3
. x sin 1"
sin 2~ 3
Also, putting sin[z-%]uin (z-x)=sin(p-c) {approximately)
.2 H
. . 2 sin® —
_sinc.sinp 2
we g *tap-c) sml” --3)
But sin c=¢os B ; §in p = cos &
and sin (p = €)= sin (meridian zenith distance) = cos (meridian altiade) = cos b
where k= meridian altimde.
Then equation (3) reduces to
Isin:H
a8 & £l
w2 .(4) (1.56)
cos h sin 1
But h=a+x, where o =observed altitude
.3 H
2 sin® =
Hence huq+ 800088 7 2 .(6)
cos h sin 1
or h=o+ Bm . A1.5T)
, 1 H
2 sin® —
cos . cos & 9
= —— __[l. =—2=_.[1.57
where B po— [1.57 (@] and m — [1.57 (b))

(H is in arc measure)
The factor m is usually taken from the tables.

If a series of observations are made upon the same star, the factor B is the same
for each observation.

In the factor B, the value O to be used is the approximate value deduoced from
the map or determined from the meridian observations. Similarly, h is the meridian altimde
computed from the approximate latitude and the known declination of the star,

Let iy, O3, @y ..., = circum-meridian altitndes of the same star
my, My, my... = corresponding value of m.
Th'E'ﬂ h|=ﬂ-|+ﬂﬂh ¥ h:=ﬂz+.ﬂ?ﬂ1 H |'I3=CI]+.B-I'I'I]. eic. elc.

Hence ho = 0 + Bmy
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where ho=mean of the deduced meridian altitudes
ag = mean of the actual observed altiudes
my = mean of the computed factors m
Thus the meridian altimde of the star 15 known.
More exact formula
A more elaborate formula for getting the meridian altitude from the observed circum-meridian
is as follows : :
h=co+ Bm+ Cw' ...{1.58)
2 sin* 2L
where C=8tan h 158 (a@)] amd m' =

T -.[1.58 (b)]

The term C.m' is never more than 1"
Knowing the meridian altitode (h), the latinde 6 can be calculated by the formula
developed in method 1 of determination of latitude.
If special tables are not available, m can be calculated as follows
. 3 H
2 sin® —
111 2

m=——2>= _, {(where H i5 arc measure) ;
gin 1

But 1 sec. time (H)=15" arc
_1sin’i-{15H}

m= ey (where H is in seconds of nme) ...[1.539 {(a)]
25, (nl"yY 225 . |
_EH'sinl'_IH'Iﬂﬁl‘ﬁﬁ
2
=_l%fﬁ‘ H being in seconds of time. ..(1.59)

Example 1.55. The meridian altitude of a star was observed to be 65° 4018 on
a cerigin day, the siar lying between the pole and the zemith. The declinaiion of the siar
was 53° 12°10" N. Find the altitude of the place of observation.

Solution. (Fig. 1.35)

M, is the position of the star under observation. Let us first correct the altitude
of the star for refracton.

Comrection for refraction = 57" cot 65° 40" 18" = 25".78
True altitude = observed altimde - refraction
= 65% 40" 18" - 25°.78 = 65° 39’ 42" 22
zenith distance 2, = 90° — 65° 39" 4222 = 24°20'17".78
Now latiude = declination - zenith distance
=8 — 23 =53 12" 10" - 24° M) 17" 48 = 28" §1' 82", 22 N.
Example 1.56. The meridian altitude of a star was observed to be 68° 36°2HF on

a cerfain day, the siar lying berween the zemith and the equaior. The declination of rthe
star was 26° J12°10" N. Find the latitude of the place of observation.
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Solution. (Fig. 1.55) _

M, 15 the position of the star under observation. Let us first correct alutude of the
star for refraction.

Refraction correction = 57° cot 64° 36' 20" = 27°.06
True altitude = observed altitude — refraction
= 647 36’ 20" - 27".06 = 64" 35" 52".94
Zenith distance = 73 = 90° = 64° 35" 52".94 = 25° 24" 7".06

o Latitude = &; + z; = 26° 12" 10" + 25" 24" 7".06 = 51° 36’ 17".06 N.

Example 1.57. An observarion for altitude was made ai a place in longitude
75 20°15" W. The meridian altitude of the sun's lower limb was observed 1o be
44° 127307, the sun being 1o the souwth of the zemith. Sun's declination at G.AN. on the
day of observation was + 22° 18 12".8, increasing 6".82 per hour, and semi diameter 157 45" 86.
Find the latitude of the place of observation.

Solution. (Fig. 1.56)

In Fig. 1.56, M is the position of the sun, to the south of zemith.

The latitude of the place = corrected declination + corrected zenith distance.

Let us first correct the observed altitude for refraction, parallax and semi-diameter.

{fl  correction for refraction == 57" cot 44° 12' 30" = - 59°.6
{(ii) correction for parallax =+ §".78 cos 44° 12" 30" = + 6".29
{(fify correction for semi-diameter =+ 15" 45".86. The correction is additive

since the sun's lower limb was observed.
Now observed altitude of sun = 44° 127 30"

Add parallax correction = 06".29

Add semi-diameter = 15" 45" 86

= 44% 28" 22" 15

Subtract refraction correction = 50" 60

Correct altimude = 44° 27' 227,55
Zenith distance z=90° - 44° 27° 22°.55 =45° 32" 37".45 (1)
Now when the sun is over the meridian, the L.A.N. is zero.
Longimde = 75°20° 15" W 5" 1™ 21° west
L.A.T. of observation = 0" 0™ ¢°
Add west longitude = 5" 17 21*

G.A.T. of observation = 5" 1™ 21°
Declination of sun at G AN, = 227 18" 12".8
Add increase = (67,82 x 5.022) = 34~.25

Declination of sun at L.AN.=22° 18" 47".05 2}
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Since the sun is to the south of the latitede,

B=d+z=22° 18 47".05 + 45° 32’ 37" .45 = 67° 51" 25" 5.

Example 1.58. A star of declination 46° 45°33" (sowth) is ro be observed ar lower
and upper transit at a place in approximate latitude 80° south. Find the approximate apparent
altitudes ar which the star should be sighted in order that accurate observations may be
made upon il

Solution

In Fig. 1.64, P' is the south pole
and Z is the zenith of the observer. EQ
is the equator, and N5 is the horizon, N
and § being north and south peoinis on
it. M, 15 the position of the star at its
upper transit and M, is the position at lower
transit.

o, = apparent altitede at upper
transit (north)

o = apparent altitude at lower
transit (south)

Now oy = NOM, = NOZ - M\OZ = 950" - (EOZ - EOM,)

=90% = (8 - §) =90° = B + § = 90° = B0" + 46° 45" 30" = 56° 45' 30" N.
Similarly, ax = SOM; = POS-POM; =0 -9 -8)=0-90"+§

= 80" - 90° + 46" 45" 30" = 36" 45" 30" 8.

Example 1.59. The following data relate to an observation of latitude by zenith pair.
Calculate the latirude.

Srar Dieclination bserved alftitude
i Ernil
My A 25748 8 4% 8T I N
My o ol Al 47 54" a4 8
Solution.

In Fig. 1.64, M, and M, denote the two stars ; P’ is the south pole.
From the observations fo sfar M, :

Latitude = 8 = EOZ = NOZ - NOE = 90° - (NOM, - EOM ) = 90" — o, + & 1)
where w; = altitude of star M, and &, = declination of the star M,
From the observaiions fo star M, : -
Latitade © =P 08 =90° - (5; - o) = 90" = §; + a2 veA2)
where ay=altitnde of star M; and &; =declination of star M;

ﬂh—ﬂ'-:_l_al—&z
2 2

Hence average Iatitudt=%[(’90“—m+ﬁ.}+{9ﬂ'—E¢+u;}:|=9[l“—
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In the above expression, o, and o, are the observed altiudes., These two altitudes

are not exactly equal, and hence there will be linle difference in the refraction correction
for the two altimdes.
Taking into account the refraction correction, we have
omy" (corrected) =0y, - and «;" (corrected) = oy —
where ri and r; are the refraction corrections.
-0 -8 n-n

Hence average latitude = 907 - 57— =3 + 3

Here r; = 58" cot o, = 58" cot 48° 18" 12" = 51".68
r;= 58" cot o = 58" cot 47° 54° 6" = 52" .41
Substituting the wvalues, we get
48% 18" 12" — 47 54" 4" + 20° 25" 48"-79° 30" 52" N 51".68-52" 41
2 p 2
= 00° ~ 24" 6" — 597 5 4" - 07,36 = 30° 30" 49".64

It will be seen here that if the effect of refraction iz assumed w be cancelled,
the latitnde will be 30° 30" 50", The effect of refraction is thus extremely small, and may
be almost neglected if latitude is required to an accuracy of nearest 1.

Example 1.60. The altitudes of a star were observed at iis upper and lower culmination
al a place in north latitude and correcied for refraction. The values obtained are as follows:

Star : a Aldebaran
Altitude a lower culmination = 18° 36"40"
Altirude @ upper culmination = 5% 4820
Find the latiude of the place and the declination of the siar.
Solution. (Fig. 1.58)
_ @ ; Ca _ 18 36% 40 ;59“4&' 20" . 39° 12* 30"
Declination of the star=EA=EZ+ZA=EZ+ (ZN-AN) =0 + (90° - a;)
=090° + 8 — o, =907 + 39° 12" 30" - 59° 48" 20" = 69" 24" 10",
Check : Declination = EA = EP = AP = 9%0® = AP =90° - BP = 90F ~ (§ - a3)
= 90° - 39° 12" 30" + 18° 36" 40" = 69° 24' 10",
Example 1.61. A star was observed for lavitide determination, and its corrected altitude
ix 40° 36° 30". The declination of the star is 10° 36 40" and hour angle is 46" 36° 207, Computs

the laritude of the place of observation.
Solution. (Fig. 1.59). The latiude of the place is computed from the formula
sinc=sin0sind+cos B .cos é. cos H A1)
To solve this equation for 8, let sinS=msinn and cos §cos H = mcos n,
Then, by reduction, the value of n is given by
tan n = tan & sec A = tan 10° 36' 40" sec 46° 36' 207
or n= 15" 15" 12"

Average latitude = 90° -

The latiude 8
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Then, the value of 8 is given by
cos (B — n) = sin « . sin n . cosec § = sin 40° 36" 30" . sin 15° 15' 12" cosec 10° 36' 40"
8- n=21° 36 33"
or B=n+21°36' 33" = 15° 15 12% + 21° 36" 33" = 36° 51' 45~
Example 1.62. Find the latitude of the place from the following data :
Longitude of the place, 108° 30°W
Altitude of sun's upper limb, 42° 12°40"
LM.T. of observation 2" 50™ P. M.
Date of observation : Dec. 15, 1947
Sun’s declination at 0 howr on Dec. 15, 1947 : 23° 12718".6 (South) increasing at
1r.6 per hour.
Equation of time at 0" on Dec. 15=+6"18.5°, decreasing. at 1.2*° per hour.
Sun's semi-diameter = 15"16".4
Solution
{a) Calculation of true altitude
Correction for refraction = 57 cot @ = 57" cot 42° 12’ 40"= 62°.84 (subtractive)
Correction for parallax = 8".77 cos o = 8".77 cos 42° 12" 40" = 6".50 (additive)
Correction for semi-diameter = 15° 16".4 (subtractive)
Met correction = - 627,84 + 6,50 — 15’ 16".4 =— 16' 12".74
True altitude = 42° 12" 40" — 16' 127.74 = 41° 55' 27".26.
(b) Calculation of hour angle
Longitude = 108 30" W T W
L.M.T. of observation = 14" 50 P.M.
G.M.T. of observation = 22" 04™
ET. at 0"=+6™18.5"
Decrease at 1.2° per hour for 22° 04™ = (1.2 = 22" 4™) = 26.48"
Now interval since L.M.N.=L.M.T.- 12" = 14" 50™ - 12
-II:I _ﬁﬂm
Add ET. = 26.48°

Interval since L.A.N.=2"50™ 26.48*

Hence hour angle (H) = interval since L.A.N.= 2" 50™ 26.48°= 42° 36' 37".20
(c) Calculation of declination

G.M.T. of observation = 22" 4™
Declination of sun at 0"=23°12'18"6 5§
Increase at 10".6 per hour for 22" 047 = (10".6 x 22" 4™) = 233.91° = 3' 53".91
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Sun's declination at the time of observation
=23 12° 18".6 + 3" 53".91 = 23" 16’ 12".51 (south).
{d) Calculation of the lafitude
The latitude can be calculated from the following formula :
7P s'm%{d+H}
2 sinld-H
Let us first calculate the value of the azimuth (A) of the sun.
In the astronomical triangle ZPM, we have
ZM = co-altitude = 90° - 41° 55" 27".26 = 48° 4° 32".74
PM = co-declination = 90° + 23° 16" 12°.51 = 1137 16' 12".51
£ ZPM = H=42° 36" 37°.1
Using the sine rule, we get
sin P gin 113° 16" 12".51

. tan L (PM - ZM) (1)

in PZM = - . in 42° 36' 37".2
sin snzM M = s ol
PEIM = A = 123° 42" 36"
A+ H
S = §(123° 42 36" + 42° 36' 37".20) = 83° 9’ 36".6
A-H |
== (1230 42 36" - 420 36' 37".20) = 40° 32 59".4
PM - ZM . M _ }(113° 16 12°.51 - 48° 4’ 32°.74) = 32° 35' 49".9

Substituting these values in Equ. 1 above, we get
ZP =in B3 9 36".6

= . * 35 .
S 40° 32 50" 3 tan 327 35" 49" 9

2
%:M“ 20" 29" 4
or ZP = 88" 40 58" 8 = co-latitude

Latitude of the place = 90° - 88° 40" 58" 8 = 1" 19" 1".2.

Example 1.63. Observations on a star a-aldebaran were made at a place in N-laiitude
for determining the latitude of the place by prime vertical transit. The following is the
record obtained :

Interval between the passage of a-aldebaran across prime vertical = 9" 22™ 6* mean time.

Mean readings of the bubble on striding level = 11° and 16"

Value of each division=J]6"

Declination of the star =[5 20°48" N

Determine the latitude of the place of observation.

Solution. When the observations are made on a star at its prime vertical transit,
the latiude (Fig. 1.60) is given by
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tan @ =tan & ., sec H A1)
Let us first calculate the hour angle (H) of the star at its prime vertical transit.

Interval between the passage across prime vertical = 9" 22™ 6° meantime.

To convert it into sidereal time interval add acceleration at the rate of 9.8565 seconds
per hour of meantime,

9" x 9.8565 = 88.71 seconds
22™ x 0.1642 = 3.61 seconds

6%« 0.0027 = 0,02 second

Total acceleration = 92,34 seconds = 1™ 32.34°
Sidereal time interval = 9" 22™ 6°+1™ 32.34°
= 9" 23™ 38 34° = 140° 54’ 35".1
H =half the time interval = 70° 27° 17".55
Hence tan © = tan 15° 20" 48" sec 70° 27" 17".55

6 = 39° 20" 25".6
Since the trunnion axis is inclined, let us correct the value,
Error due 1o striding hvﬂ=¥ud=lﬁ*” v 16 = 40 *

As the north end of the axis is higher, the correction is additive.
Hence correct © = 39" 20° 25".6 + 40" = 39° 21° 5".6.

Example 1.64. In longitude 7°20° W, an observation for latitude was made on
Polaris on a certain day. The mean of the observed latitude was 48° 36" 407 and the average
of the local mean rimes, 20" 24™ 50°. The readings of the barometer and thermometer
were 30.42 inches and 58° F respectively. Find the latitude, given the following:

RA. of Polaris = 1" 41™ 48.64'
Declination of Polaris = 88° 58°28".26
G.5.T. of GMM. = 16" 48 20.86".

Solution

(@) Calculation of polar distance.

From Chamber's Mathematical Tables (page 431)

Mean refraction for 487 36" 40" = 51"
Correction for 58°F temp. =-1"
Correction for barometer =+ 1"
Refraction correction = 51" (subtractive)

True altitude = observed altitude - refraction = 48° 36" 407 - 51" = 48" 35' 49",
(b) Calewlation of hour angle (H).
The hour angle can be calculated by subtracting the R.A. from L.S.T.
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Longitude = 7° 200 W=0" 29" 20" W

Acceleration at the rate of 98565 seconds per hour of longinude
26™ % 0,1642 = 4.76 seconds
20° = 0.0027 = 0.05 seconds

Acceleration = 4. 81 seconds
LST. of LMM.= G.S.T. of G.M.M. + acceleration
= 16" 48™ 20.86° + 4.81" = 16" 48™ 25.67°
L.M.T. of observation = 20" 24™ 50°

To convert it imto sidereal interval, add acceleration at the rate of 9.8565 seconds
per mean hour.

20" x 9.8565 = 197.13 seconds
24™ % 0.1642 = 3,94 seconds
50° =« 0.0027 =  0.14 second

Total acceleration = 201.21 seconds = 3™ 21.21°
Sidereal imterval since L.M.M. = Meantime interval + acceleration.
= 20" 24™ 50° + 3™ 21.21%,
= 20" 28™ 11.21°
Add L.S.T. of L.M.M. = 16" 48™ 25.67°

L.5.T. = 37" 16™ 35.88° - 24"
= 13" 16™ 36.88"
Deduct R.A. of Polaris= 1" 41™ 48.64°

Hour angle (H)= 11" 347 46.24* = 173° 42" 3" 6.
Now, latitude H-::ﬂ-pmsﬂ'+]iain 1" p* sin® H . tan a.
p = polar distance = 90° - 88 58" 28".26 = 1° " 31".74 = 3691".74
First correction = p cos H = 3691".74 cos 173 42" 3".6 = - 3660".5=-1° |' 9".5
Second correction = 3 sin 1" p’ sin® H . tan &

} X s (3691.74Y7 sit’ (173° 42° 3*.6) tan 46° 35' 49" = + 0".5.

(Mote, The above calculations for first and second corrections may be done with
a five figure log table if the answer 15 required to the nearest 17.)

Hence O =48 35°40° - (- 1° 1" 9".5)+ 0".5 = 49° 36" 59" N.
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Example 1.65. The latitude of a station 4° 20°E of the [20° W meridian was defermined
by reducing an ocbservation of B Aquilae to meridian, the true altitude of the star being
39°20°30" and the approximare latitude of the starion 56 ° 54730" N.

The time of the observation, 10" 55™ 30° was faken with a mean time chronometer,
which was 1™ 25 fast on the standard time of the 120 ° meridian. The R.A. and declination

of the star were respectively 19" 52™ 16° and 6 ® 15°02" N, G.5.T. at G.M.N. being 8" 30" 20°.
Determine the exact laiitude by applying the circum-meridian correction 1o the observed
latitude.
Solution. The meridian altimsde £ is given by h = o + Bm
cos B .cosd  cos B . cos b

where B= =
cos h cos o
Esin:-'g
and =sm]_.whereHisinnrcmmru.

Let us first calculate the hour angle.
G.S.T. of G.M.N. =8"30™ 20°
Longitude = 4° 20" E of 120° W meridian = 115° 40° W = 7" 42™ 40"
. Acceleration for 7" 42™40° at 9.8565 sec, per hour = 1' 16”
L.S.T. of LMN.=G.5.T. of G.M.N.+ acceleration
= 8" 30™ 20° + 1™ 16" = 8" 31™ 36
L.S.T.= R.A. = 19" 527 |6
S.I. after LM.N =LS.T. -LS.T. of LMN.
= 19" 527 16° - 8" 31™ 36" = 11" 20™ 40
To convert it to mean (ime interval, subtract the reiardation at the rate of 9.8296
per sidereal hour.
: Retardation = (9.8296%) (11" 20™ 40%) = 1™ 51.95°
M.T. imterval after L.M.N.=S.I. after L.M.N. - retardation,
= 117 20™ 40° - 1™ 51.95° = 11" 18™ 48.05°
Observed standard mean time = 10% 55™ 30°
Chronometer correction = - 1™ 25°

. Corrected standard mean time = 10" 45™ 05
Correction for 4* 20' Longitude (E) =+ 17" 20°

L.M.T. of observation = 11" 11™ 25°
Mean wtme nterval before transit = M.T. interval after LM N. =L M.T.

= 11" 18™ 48.05° - 11" 11™ 25° = 0" 7™ 23.05°
Acceleration for 77 23.05° of meantime = 1.21°
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S.1. before transit=M.T. interval before transit + acceleration

= T 23.05% + 1.21%F = 7™ 24.26" = 444 3° .0
2 sin’ L+ H
Now M= ————e  {where 1 sec. time H= 15" arc.}
gifi |
| I F Ij . -
) 2 sin i—flﬁ?ﬂ:IlTTﬂlism 17)
gin 1" gin 1"
225 H* H . . {444.3Y
- = - = = 107".6
3% 206265~ ig3a’ b M in seconds =~
g = 08 Gcos & cos 6° 13027 . cos 56° 54' 30"
T gosa cos 39° 200 30"
cos 6° 15" 027 |, cos 56 54° 30" .
mh = =444 3" = 1" 15".5]
Hence cos 39° 20° 307
Hence corfect meridian altitude = & = & + miB8 = 39° 20° 30" + 1" 157.5]1 = 39° 21° 45".51
and 0= 00% - b+ 5= 90°% - 39° 21" 45".51 + 6° 15 02" = 56° 53 16".49 N.

1.18. DETERMINATION OF LONGITUDE

Since the difference in longiudes between itwo places is equal o the difference in
their local times, the longitude of a place can be determined by determining the local
time (mean or sidercal) at the place and subtracting it from the Greenwich tme (mean
or sidereal) at the same instant. The local fime can be determined by any of the methods
discussed earlier. However, the finding of the Greenwich time at the instant of observations
is the main important part of the longitude determination. If the local time is grearer than
the Greenwich time {or the standard time), the place is to the east of Greenwich meridian
{or the standard meridian). Similarly, if the local tme is lesser than the Greenwich time
(or the standard time), the place is to the west of Greenwich meridian. The various methods
of determinmg the longitude are :

{1} By transportation of chronometers.

(2) By electric telegraph.

(3) By wireless time signals.

(4} By observing the moon and the stars which culminate at the same time.

{3) By celestial signals.

{6} By lunar distances.

Methods (4) to (6) are only of historical interest and will not be discussed here.
(1} LONGITUDE BY TRANSPORTATION OF CHRONOMETERS

In this method, the chronometer time i1s noted at the instant of making the observations
for the local time. The chronometer reading s then corrected for its time and rate. For
this, the chronometer should be previously compared with Greenwich time and its error
and rate should be known. Thus, at che instant of the celestial observations we know the

correct Greenwich time. Comparing the calculated local time with that of the chronometer
time, we can find the longwude of the place of observanon.
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Chronometer is a very delicate instrument. The main difficulty arises from the fact
that its rate while being transported, and while it is stalionary is not the same. Hence
the travelling rate of the chronometer should also be ascertained for precise determinations.
Suppose it is required to cetermine the difference in longitude between two stations A and
B. the chronometer being regulated to give the time of station 4. The ‘rate’ of the chronometer,
ie., the amount by which it gains or loses in 24 hours 15 found at A. The chronometer
is then transported to the station B of unknown longimde and its error is determined with
reference to this meridian. I the chronometer runs perfectly, the Iwe walch correciions
will differ by just the difference in longitde.

The method is now not used by surveyors except where wireless or telegraphic communications
are not available. However, it is still used for the determination of longitude at sea.
(Z) LONGITUDE BY ELECTRIC TELEGRAPH

If the two places are connected by an electric telegraph, the longitude can be determined
very accurately by sending telegraphic signals in opposite directions for the chronometer
times (local). Let 4 and B be the stations, 4 being w the east of B.

Let 1 =1local time of A at which the signal 15 semi from A4 w0 B,
and is=local time of B at which the signal is received at B.

If the transmission time is neglected, the difference n longiude (§) s given by
§=1 -1, 1, being greater than .

If, however, 5 is the time of transmission., (7, + 5) is the acmal local time of A
corresponding to the local time r; at B. Hence the difference in longitude is

b=+ -b={NH-l)+5 A1)
Simlarly, let a signal be semt in the reverse direchon from B 1w A
Let &' =local ome of B at which the signal is sent from B 10 4,
' =local time of A at which the signal is received.
If the transmission time 15 neglected, we get
ben' -0

If, however, 5 is the time taken in transmiiting the signal (1" 4 5} is the acwal local
of B comesponding tw the local time 1" of A. Hence the difference in longimde is

=0 =0 s =n -~

By averaging the two results, we get

Difference in longitude =% LR 7 Rl (I ) R %{ =)+ =)

(3) LONGITUDE BY WIRELESS SIGNALS

The advemt of wireless signals has rendered the carrying of the ume of the reference
meridhan comparatively easy and most accurate. Time signals are now sent out from various
wireless stations at stated intervals, and the surveyor, by their aid, may check his chronometer
in almost any part of the world. A list of wireless signals, their times and durations of
emission together with their wave lengths and type of signals, is given in the Admiraly
list of wireless signals, which 15 published annually : and changes or anv corrections are
notified in the weekly Notices to Mariners. Greenwich meantime signals are sent and usually
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continue, for a period of five minutes. The signals are rhythmic and consist of a series
of 61 Morse dots to the minute, the beginning and end of each minute being denoted
by a dash, which is counted as zero of the series which follows.

L 3

10.

11.

12.

13.

PROBLEMS

At a poinmt A in latitude 50° N, a siraight line is ranged out, which runs due east of A. This

straight line is prolonged for 60 MNautical miles 10 B. Find the latitude of B, and f it be desired
o travel due MNorh from B so as @ meet the 50° paralle]l again ai C, find the angle ABC x
which we must set oot, and the distance BC. (L)

The R.A. of a star being 20" 24™ 13,72, compute the L.M.T. of ks culmination at Madras (Long.
80° 14 19°5E ) on Sept. 6, the GST. at 0" GMT. on that date being 22" 57™ 06.95°

Find the L.5T. &t a saion in longiude 76° 20° E at 9.30 AM. (Indian Zone Time) on August
10 on that date at G.M.M. The R.A. of mean sun is 9" 137 30.9° (G.U)

From the N.A., it is found that on the dae of observation, G.5.T. of G.M.N. is 3" 14™ 26°. Taking
retardation as 9.85 sec. per hour of longimode, find the LM.T. in a place 75° W, when the local

sidereal time is 5" 20™ O, (B.U.)

Find the local mean time at which [ Leonis made its upper transit on ™ May 1940 at a place 60° E.
Given R.A. of P Leonis on 1™ May was 11 46™ 02° and G.5.T. of G.M.N was 9 237 23° (B.U.)

Find the R.A. of the meridian of Bombay at 4.30 P.M. Given : Longitude of Bombay

72° 4% 46" 8 East ; G.S.T. mt G.MM.=10° 107 40.73° on that day.
(Note: R.A. of a place =L.5.T.)

What are the systems of co-ordinates employed to locate position of a beavenly body 7 Why it
15 necessary, 0 have several sysiems msticad of one 7

Explan the sysiems of time reckoning kmown as sidereazl apparent solar and mean solar time, and
show how they differ from each other. (lLRE5.E)

What is equation of tme ? Show, by means of sketches, that it vanishes four times a year.

Explain with aid of sketches how the quantities of the following groups are related 1w each other:

{fy The RA. of a star, the hour angle of the star at any instamt and the sideresl time
that msiang,

(i) Equation of fime, appareni time and mean time,

Show that the equation of time vanishes four times in a year, (A.M.1E.)
iz} Explain tbe following terms
() Equation of time , (i) Celestial sphere, (i) Parallax, and () Sidereal time,

(b) An cbservation was made on Dec. 30, 1919 in longitude 82° 17 30" E; the meridian altitude
of the sun's lower limb was 40° 15° 137, The sun was on the south of the obscrver's zenith.
Calculate the approximate latitude of the place. Correction for refraction 17 107 ; for paraliax
=869 . cormection for semi-diameter 16° 17°.5. Dechination of star at (A N.= 23° 13" 15",
decreasing at the rae of 97.17 per hour (B.L.)

What are ‘parallax’ and ‘refraction’ and how do they affect the measurement of vertical angles

in astromomical work ?

Give rough values of the corrections necessary when measuring a vertical angle of 45°. (AM.ICE.)

In longitude 60° W, an observation was made on [ Tauri, whose R.A. was 5" 21™ 59.48° If
the hour angle of the star was 9" 15™ 8% find the local mean time of observation.
Given G.S.T. &t G.M.N. = 14" 46™ 39.53°,



138

14.

16.

17.

19.

21.
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On a cemain date, the right ascension of a-Draconis was 14" 2™ 5°. From the N.A. and the longitude

of the place, the local sidereal time of local mean noon was found to be 6" 35™ 44° The declination
of the star was 64747 33" N. Find the local mean time of cast clongation. Assume the latitude
of 60°N. (AM.ILCE)
If the time be found by a single altitude, show that a small error in the latitude will have no
effect on the time when the body is in the prime wverical,

Determine the G.M.T. at which the star w-Aurigae crossed the meridian of a sation in longimde
28° 31" E in the northern hemisphere at wpper culmination on May 31st 1926, the declination of
the star being 45 35" 25" N, and iis right ascension % 11™ 6" with G.S.T. of G.M.N. 4" 32" 55°, If
the true altiede of the star was 76° 3 507, find also the latiude of the station. (B.U}
Draw a diagram o show the celestial sphere for a point 15° N, 75% E, showing the horizon, meridian,
zenith, pole and celestial eguator.

Mark also the pah of the sun at mid-summer, and the position of a-Bootes (decl. of 20¢° N;
RA. 14°10™ a 22" GST. (LL.R.)

An observation of time was made on Aldebaran (o-Tauri) on Ocr, 1, 1940 in altitede 327 12° 507 N, the
mean of two observed altinde being 28 36° 207, The average sidereal time of observing these
altiudes was 0" 15 28.4° by the sidercal chronometer,

Find the error of the chronometer given that the star’s R.A. ind declination were 4" 32™ 31.1° and
167 23" 30".5 respectively and that the star was east of the meridian,

On Tth Feb., a star (R.A. 59" 44% is in wransit at Sidney (Longitude 153° 12° 23" E) when the
time by the observer’s wach which should keep local tmes is 8" 0™ 33' Given that the mean
sun's R.A. al a mean noon at Greenwich on Tth Feb. is 21" 8™ 36.1° and that | hour of §.T.
is= equivalent o 59 50.2° of meantime, find w0 the nearest second how much the waich is slow
or fasi, iMath. Trip.)
Reduce the following meridian observations for Litude

Star Declination Right Ohserved Altitide Level
Ascension Alvirude object end £ye end

M 60° 02 507 § b sgm ot | I I5TS 54 46

My 19¢ 32° 10" N 14h (2 338 | S0° SB* 10" N 5.2 18

The wvalue of level division is 14", Take the refraction correction as — 58" cot altitude. If the
longitude is 142° 36' E and the sidereal time of mean noon at Greenwich is 4" 6™ 17°, at what
local mean umes will the two wansits occur 7

Your longitude & 75% E of Greenwich.

You are required w find the error o the nearest  second of a meantime chronometer at mid-night
Ist-2nd March.
In order o find this, yvou have timed the transit of wo stars near mid-night as follows
Transit of ¢ Mali 23" 3™ |4']

the chropometer

. o P Gemini 1" 43™ $2° by

Helevant extracts from the Nauiical Almamacs are
R.A. of « Mali 6"19™01°

R.A. of B Gemini 8" 30™ 56
Sidereal time of Greenwich mean moon Ist March : 18° 45™ 12,

Criticise the method of determining azimuths from elongation observations, stating its limitations
in high altinsdes.



FIELLDy ASTRONOMY s

3

A star & of declination 84% 42° &V is observed al castern clongation when its clockwise angle from
a sarvey ling is 1187 2. Immediately afterwards another star [ of declination 72° 24' N is observed
at western  elongation, s clockwise angle from OF being 94° 6.

Determine the azimuih of the line OF, fLLP

At a point in tatitede N 557 46° 127 the altitude of the sun's centre was foond w be 23 17° 327

517" PM. (Greenwich meantime). The theodolite was first poimed 0 8 reference mark, the vernier
reading bemg 0F OF 007 ; the horeontal angle between the sun's cenire and the melerence mark
at the time of observanon was found to be O8° 24° 307, Tind graphical azimuth of the reference
mark from the centre of the instrument.

Data : Sun's declination at Greenwich apparent noon on day of observation ... 17° 46" 32" N

Varaton of declimation per hour ceo = 3B"

Hefraction for altiude of 30° 20 A .

Parallax, in  altinude LR

Equation of time (apparend — mean) N (LLL.)

To determime the acimuth of reference object from station B, (Lat 507 30° 30" M) of  a trlangulation

survey, the sun was observed ai 47 307 13° p.M. (G.M.T,) afier crossing the meridian. The observed
altitude of the sun's centre was 38° 28" 257 and the horizontal angle measured anticlockwise from

R.0. 1o the sun was 161° 35 20", The apparent declination of the sun ar G.M.N. was
20* 5 3870 N increasing 3742 per bour. The sun's horzonal parallax may be taken as 8°.7 and
the refraction correction =387 ¢ot a. Calculate the azimuth of R.O. {IL.R.3.E)

A star was observed al ‘Western elongation at a place in lat. 28° 20° 5 and longimude 1247 24" W, when
its clockwise bearing from a survey line was (5647,

Determine the local mean fime of clongation, also the azimuth of the line, given that the siar's
declination was 76° 36 55* § and its right ascension 6" 41™ 52°, the G.5.T. of G.M.N. being 5° 12™ 20°.

(UL
An observation of azimeth was made during the early hours of the morping of 1 Jan. 1940,
on o Ursae Minors (Polaris) at elongation at 8 place of latwdde 45 N, and longiude 5" E.

The declination of the star on that date was+ 88° 59 03" and s RA. was 1"43% 32

The mean observed horizomtal angle between the sar and the RO, was 42° 37 227, R.O. being
w the west of the wuar.

Find {g) which eclongation was used 7
by ithe exact local mean time of elongation.
i) the azimuth of the R.O.

Given GS.T. of GMT. 0" on 1 Jan 1940 was 6" 38™01.9° {U.B.)
Al a place in longitude 31° 41° 407 S, 121° 32 30" E, a star whose R.A. =0"22™ 15.6%, declination
T 37 54" 8 is observed at castern alongation when its clockwise horizontal angle, from a survey
lime £ 15 1107 14" 307, Find the ammuth of the survey hine and the local mean ume of the

elongation, if the mean time of the transit of T ar Greenwich s 1" 20™57* from mid-night.

To determine the lainede of a place (longiude 37° W) observations were made on Polars and
its corrected altitude was found o be 46% 17" 28" when the mean time of observation was

7" 43" 35° P.M. Find the latitude of the place. piven the following
G.5.T. at G.M.M on the day of chservation = 107 51™ 31.5°

RA. of Polaris =127 37.7°
Declination of Polaris = 4= BR® 51" 08"
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29, A meridian altinde of the lower limb of the sun is taken on Sth Nov. 1934 in latiede N, longiude
78 25° W. Given the observed altiude = 47" 18' 44", parallax = 6 , refraction = 53°.6; declination
of the sun at mid-night &3 Nov. 1934 = § 157 24° 27" .4 with an houwrly variation of 467.23 increasing,
semi-dia. 16" 9%.5.

Calculate the latibude of the observer's station, the egquation of tme at mid-night 4/5 Nov. 1934
is + 16™ 21.5* with an hourly variation - 0.044%, (A LM.E)

Answers

. Latitude of B=49° 59 22°6 : ZABC=B88"48 40" ; BD = 0624 Nautical miles.

Lo 21" 24m 284

L 8197303

4. 25 4™ 24.31°,

5.0 ™S448t PM..

6. oh4gam a5 51*

1. (b)Y N26° 17 791

12 +6 ;-5T

13 3 48™ 54 208

4. s"4™ P M. nearly.

16, 10P4s™ 23270 ; 32226 16 N,

8.  Chronometer slow 2.5°

1%, s6.67" slow.

0. p=19"30"22"6 ; LMT.s : 9" 522740" PM. for M, ; 10°06™ 10° P.M. for M,

il Choronometer slow  28°

22, 112743 56"

23, M4°2 8" from south.

24, 4024127

5. Msgf 19.13% : 180° 45 7".75 from § point.

26. (g} West (b OPS5T™27.6° Jan 2; 315° 56 38"

2T 55710 407 8 127 34.2° PML

28 46° 03 367N

9. 26°4T 56" N,



Photogrammetric Surveying

2.1. INTRODUCTION

Photogrammetric surveying or photogrammetry is the science and art of obtaining accurate
measurements by use of photographs, for various purposes such as the construction of planimetric
and topographic maps, classification of soils, interpretation of geology, acquisition of malitary
intelligence and the preparation of composite pictures of the ground. The photographs are
taken either from the air or from staon on the ground. Terresirial photogrammetry s
that branch of photogrammetry wherein photographs are taken from a fixed position on
or near the ground. Aerial photogrammerry is that branch of photogrammetry wherein the
photographs are taken by a camera mounted in an aircraft flying over the area. Mapping
from aerial photographs is the best mapping procedure yet developed for large projects,
and are invaluable for military intelligence. The major users of aerial mapping methods
are the civilian and mlitary mapping agencies of the Government.

The conception of using photographs for purposes of measurement appears w have
originated with the experiments of Aime Laussedat of the Corps of Engineers of the French
Army. who mn 1851 produced the hrst measuring camera. He developed the mathematical
analysis of photographs as perspective projections, thereby increasing their apphication two
opography. Aenal photography from balloons probably began about 1858. Almost concurrently
{1858}, but independently of Laussedat, Meydenbauer in Germany carried our the first experiments
in making critical measurements of architectural details by the intersection method on the
basis of two photographs of the building. The ground photography was perfected in Canada
by Capt. Deville, then Surveyor General of Canada in 188B. In Germany, most of the
progress on the theoretical side was due o Hauck.

in 1901, Pulfrich in Jena introduced the stereoscopic principle of measurement and
designed the sterecomparator. The stereoautograph was designed (1909} at the Zeiss workshops
im Jena, and this opened a wide field of practical application. Scheimpflug, an Australian
captain, developed the idea of double projector in 1898, He originated the theory of perspective
transformation and incorporated its principles in the photoperspectograph. He also gave the
idea of radial triangulation. His work paved the way for the development of aerial surveying
and aerial photogrammetry.

In 1875, Oscar Messter built the first aerial camera in Germany and J.W. Bagloy
and A. Brock produced the first aenal cameras 1 U.S.A. In 1923, Bauversfeld designed

the Zeiss stereoplanigraph. The optical industries of Germany, Switzerland, Daly and France,
{141)
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and later also those of the U.S.A. and U.S.S.R. ook up the mamufacture and constant
further development of the cameras and plotting mstruments. In World War II, both the
sides made extensive use of aerial photographs for their military operations. World War
Il gave rise w new developments of aerial photography technigues, such as the application
of radio control to photoflight navigation, the new wide-angle lenses and devices w achieve
true vertical photographs.
TERRESTRIAL PHOTOGRAMMETRY

2.2. BASIC PRINCIPLES

The principle of terrestrial photogrammetry was improved upon and perfected by Capt.
Deville, then Surveyor General of Canada in 1888, In terrestrial photogrammetry, photographs
are taken with the camera supported on the ground. The photographs are taken bv means
of a phototheodolite which is 3 combination of a camera and a theodolite. Maps are then
compiled from the photographs.

The principle underlying the method of terresirial photogrammetry 15 exactly similar
to that of plane table surveying, f.e. if the directions of samée objects photographed from
two exiremities of measured base are known, their positions can be located by the intersection
of two rays to the same object. However, the difference between this and plane tabling
is that more details are at once obtained from the photographs and their subsequent plotting
eic. is done by the office while in plane tabling all the detailing is done in the field
itself.

Thus in Fig 2.1, A and B are 200y 4 o 'y 4 g
the two stanons at the ends of base
AB. The arrows indicate the directions
of horizontal pointings (in plan) of
the camera. For each pair of pictures
taken from the two ends, the camera s Buy A

axis is kept parallel o each other.

From economy and speed point of FIG. 2.1. DIRECTION OF POINTINGS IN

view, minimum number of phoio- THRFESTRIAL PHUTOGRAMMETIRY

graphs should be used tw cover the whole area and 1o achieve this, 1 5 essential to
select the best positions of the camera stations, A thorough smudy-of the area should be
done from the existing maps, and a ground reconnaissance should be made. The selection
of actual stations depemds upon the size and rugpedness of the area to be surveyed. The
camera should be directed downward rather than upward, and the stations should be at
the higher poinis on the area.

The rterrestrial photogrammetry can be divided into two branches

() Plane-table photogrammetry.

(ify Terrestrial stereophotogrammetry.

The plane table photogrammetry consists essentially in taking a photograph of the
area o be mapped from each of the two or three stations. The photograph perpendiculars
may be oriented at any angle to the base, but usually from an acute angle with the latier.
The main difficulty arises i the identifications of image points in a pair of photographs.




FHOTUGRAMMETRIC SURVEYING 43

In the case of homogeneous areas of sand or grass, identification becomes mmpossible. The
principles of stereophotogrammetry, however, produced the remedy.

In terresirial stereophotogrammerry, due o considerable improvement of accuracy obtained
by the stereoscopic measurement of pairs of photographs, the camera base and the angles
of intersection of the damm rays to the points to be measured can be considerably reduced
since the camera axes at the two stations exhibit great similarity to each other. The image
points which are parallactically displaced relative to each other in the two photographs are
fused to a single spatial image by the slereoscopic measurement.

2.3. THE PHOTO-THEODOLITE

The photo-theodolite is a combination of a 1 second theodolite and a terrestrial camera.
Fig. 2.2 illustrates a back view of Bridges-Lee photo-theodolite made by Messers L.Cassella,
London. Fig. 2.3 shows the photograph of a modern photo-theodolite manufacrured by Mis
Wild Heerbrugg Lid.

A photo-theodolite essentially consists of the following pams. (Fig. 2.2) :

(1} A camera box A of fived focus type. The focal length of the lens is generally
15 cm or more. The camera box is mounted on the axis exactly in the same manner
as the vermier plate of a theodolite. Thus, the box can be rotated in azimuth about its
vertical axis.

(2) A hollow rectangular frame [ placed vertically 1o the rear side. The frame carries
two cross-hairs & and &7, the intersection of which is exactly opposite to the optical centre
of the lens. The line of collimation is defined as the line joining the imtersection of the
cross-hairs 1o the optical centre of the lens. The cross wires are pressed tughtly against
sensitive plate and are thus photographed on the photographic plate along with the feld
object, Two small celluloid strips can be fitted into the grooves in the lower corners of
the frame [, and can be easily removed to write any description upon them in ink which
i5 also photographed.

(3} Across the rear of the vertical frame is also carried a straight transparent celluoloid
fangent scale. Upon the base of the frame is pivoted a magnetic needle carrying a vertical
cvlindrical transparent scale (M) gradvated to 30 minutes.

{4} The sensified photographic plate is placed between the vertical frame ([} and
the back which is held by the spring. Before uncapping the lens, the front of the side
15 withdrawn o expose the plate and the vertical frame (I} is moved backward and forward
by the screw (/) untl the hair lines and the tangent scale are in contact with the plate.
The magnenc needle is also set free to swing on its pivot. When the lens is uncapped
{after the needle comes to rest), the photographs of hair lines, tangent scale, and the circular
scale of the needle are imprinted on the negative. The reading of the scale at its intersection
with the vertical hair on the photograph gives the magnetic bearing of the principal vertical
plane {i.e. the vertical plane comtaining the oprical axis).

(3} The box is supported on the tripod and is furnished with an inner and an outer
axis, each of which is fined with a clamp and fine adjusting screw. The graduated horizontal
circle carries verniers reading to single minutes. These are supported on a levelling head
carrying three fool screws,
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(6) On the top of the box, a relescope is fited. The telescope can be rotated in
a vertical plane, about a horizontal axis, and 15 fitted with vertical arc with verniers, clamp,
and slow motion screw. The line of sight of the telescope is set in the same vertical
plane as the optical axis of camera.

2.4. DEFINITIONS (Fig. 2.4)

Camera Axis. Camera axis is the line passing through the centre of the camera
lens perpendicular both to the camera plate (negative) and the picture plane (photograph).
The optical axis coincides with the camera axis in a camera free from manufacturing imperfections.

Picture Plane. Picture plane is the plane perpendicular to the camera axis at the
focal distance in front of the lens. It is represented by the positive contact print or photograph
taken from a plae or film.

Principal Point. Principal point (¢ or ') is defined by the intersection of the camera
axis with either the picture plane (positive) or the camera plate (negative).

Focal Length. Focal length (f) is the perpendicular distance from the cenire of the
camera lens to either the picture plane or the camera plate. It satisfics the following relation

f_w

T

where u and v are conjugate object and image distances.

Picture plang_—¥
(Positive) Principal
line

Camera axis

Camera piate
(Negative)

Fl:. 2.4
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Focal Plane (Image Plane). Focal plane is the plane (perpendicular to the axis of
the lens) in which images of points in the object space of the lens are focused.

Nodal Point. Nodal point is either of two points on the optical axis of a lens (or
a system of lenses) so located that when all object distances are measured from one point
and all image distances are measured from the other, they satisfy the simple lens relation

1,11
aTVIF
Also a ray emergent from the second point is parallel w0 the ray incident at the firsi.

Perspective Centre. Perspective centre is the point of origin or termination of bundles
of perspective rays. The two such points usually associated with a survey photograph are
the interior perspective centre and the exterior perspective cemtre. In a distortionless lens
camera system, one perspective centre encloses the same angles as the other, and in a
perfectly adjusted lens camera system, the interior and exteiior cemtres correspond to the
rear and front nodal points, respectively.

Principal Distanmce. When the contact prints from original negatives are enlarped (or
reduced) before their use in the compilation of subsequent maps, the value of the focal
length {f) of the camera is not applicable to the revised priots. The changed value of
/. holding the same geometrical relations, is kmown as the principal disiance. In other words,
it is the perpendicular distance from the internal perspective centre to the plane of a particular
finished negative or print. This distance is equal to the calibrated focal length corrected
for both the enlargement or reduction ratio and the film (or paper) shrinkage (or expansion)
and maintains the same perspective angles as the internal perspective cenire 0 points on
the finished npegative or print as existed in the camera at the moment of exposure. This
15 a geomeincal property of each particular finished negative or print.

Principal Plane. Principal plane is plane which comtains principal line and the optical
axis. It is, thereforce, perpendicular to the picoure plane and the camera plate.

Print. A print is a photographic copy made by projection or comtact printing from
a photographic negative or from a transparent drawing as in blue-printing.

Fiducial Mark. A fidocial mark is one of two, three or four marks, located in
contact with the photographic emulsion in a camera image plane to provide a reference
line or lines for the plate measurement of images.

Fiducial Axis. Opposite fiducial marks define a reference line. Two pairs of opposite
fidocial marks define rwo reference lines that intersect at 90°. These two lines are referred
o a5 the x and y axes or the fiducial axes.

Film Base. Film base is a thin, flexible, transparem sheet of cellulose nitrate, celiulose
acetate or similar material, which is coated with a light sensitive emulsion and used for
taking photographs.

2.5, HORIZONTAL AND VERTICAL ANGLES FROM TERRESTRIAL PHOTOGRAFH

The horizontal and vertical angles to various poimts in a photograph can easily be
found analytically, graphically or instrumentally. Fig. 2.5 (4) shows two poims 4 and B
photographed with camera axis honzontal so that the picture plane is vertical and the horizon
line 15 horizontal. The image of the ground points 4 and B appear at a and b respectively
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But aa' =Vq, bb'=¥p ; oa' = fsec og and ob'= [ sec ap
__ Ya : __ Y
Hence tan Py = Faec a, L22a tan fip = Fec o LLJ2.2080

The algebraic sign of vertical angle depends on the sign of v co-ordinates. Evidemtly,
PBe will be a depression angle,

The horizontal and vertical angles can also be determined graphically, as shown in
Fig. 2.5 {c) where the line k, &k, represents the true horizon of the photograph. The line
ko is constructed perpendicular to k, k, and represents the optical axis, the distance
ke being made equal to f With a pair of dividers, make ka' =x;, and kb" = x; by making
the measurements from the photographs. Join a'c and b'o. The angles o, and o, can then
be measured.

To find the vertical angle [Fig. 2.5 {(c)], erect perpendiculars a'a and #b 1o
oa' and ob' respectively. Make o' a =y, and b b = y;, thus getting points a and b respectively.
Join g0 and bo. The angles aoa’ and bob’ are the desired vertical angles.

2.6. HORIZONTAL POSITION OF A POINT FROM PHOTOGRAPHIC MEASUREMENT:

CAMERA AXIS HORIZONTAL

In plane table terrestrial photogrammetry, two photographs are taken from the ends

of a base line. The position of the points can be plotted by graphical intersection as illustrated
in Fig. 2.6.

Let P and ¢ be the known positions of the camera stations. Knowing the camera
azimuths (i.e., bearings of camera axis) ¢, and ¢, at both the stations, the horizon lines

A B

Flz. 1.6. GRAPHICAL INTERSECTION.
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da, ky b, and a, k, b, can be drawn at perpendicular distances of 2 f from P and {0 respectively.
On each photograph, the x-co-ordinates of points @ and b are scaled by a pair of proportionate
dividers set for a 2 to 1 ratio, and transferred to the photograph traces. as shown by
the positions a,, b, and a, and b; respectively in both the photographs taken with the camera
anes horizontal at the tme of exposure. Join Pa, and Ph, and prolong them. Simalarly,
join (a, and Ob, and prolong them to intersect the corresponding lines in A and B respectively,
thus giving horizontal positions of A and B

Camera Position by Resection. To fix the posinons of the camera stanons, a separate
ground control 15 necessary. A B
However, the camera station can
also be located by three point
resection if the positions of three
prominent points (which may be
photogrammetric triangulation
stations) are known and they are
also photographed.

Thus, in Fig. 2.7. (a), et
let A, B and C be the three a
stations photographed. From § o {b)
1.5, the angles w0 A, B and FIG 2.7 CAMERA POSITION BY THREE POINT RESSECTION.
C can be determined either

graphically or analytically and hence angles o, {=a, o, and o, { = o, * o) are known.
If these angles are known graphically, a tracing paper resection on the plotied positions
of A, B and C {on the map) will fix the map position of the camera station (P). If,
however. the angles o, and o, are known analytically, the values may be set off by a
three armed prowractor for a graphical resection, or the valoes may be used to solve the
three-point problem analytically for determining the positon of the camera station.

Azimuth of a line from Photographic Measurement. The magnetic bearing or azimuth
of the principal vertical plane is given by the reading of the cylindrical scale at its intersection
with the vertical hair on the photograph. The horizontal angles of the lines with the principal
plane can be calculated as discussed in § 2.5,

Thus, in Fig. 2.8(g), a, b and ¢ are the positions of the three points A, B and
C. The honzontal angles o, , o and oo (Fig. 2.8 b) can be determined. If § is the
azimuth of the principal plane {(or the camera azimuth), we have

tp = azimuth of B =4 + ag
$: = azimuth of C=¢ + o,
o= azmmuth of A =¢ —a,+ 360°
In general, therefore, we have
Azimuth aof line = camera azimuth + o

Due regard must be given to the algebraic sign of o. It may be considered positive
when measured to the right of of and negative when measured o the lefi. If the azimuth

L
[Eil]

o
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calculated from the above relation
comes out to be negative,
360° must be added to the result.

Orientation of Picture Traces

The accuracy in the ploted
positions of various pomnits depends
upon the correct orientation and
placing of picture traces on the
plan. The two conditions that are |
i he fulfilled are: (1) the picture
trace should be perpendicular to
the line joining the plotted position
() of the station and the principal
point (k), and (2} the principal ()
point (k) should be at the focal FIG. 2.8. AZIMUTH OF LINES FROM PHOTOGRAPHIC
distance from . When enlarge- MEASUREMENT
ments are used, the enlarged focal
length should be laid down. ¥ Principal point

In the case of photo-theo-
dolite used for the photographic
surveying, the bearing of the prin-
cipal plane is known. In that case,
the principal plane is laid at the
known bearing, the principal point
(k) 15 marked at a distance (f)
from the camera station () and
the picture trace is drawn per-
pendicular to that of the principal
plane.

If, however, the photograph
includes any point whose position
18 known on the plane, the ori-
entation may be performed with
respect to it as follows : (Fig.
2.9y,

Let A be the known position  FIG. 2.9. ORIENTATION OF PICTURE TRACE FROM KNOWN
{on the plane) of the point and POSITION OF POINT
O be the known position of the camera station. Let ka be the distance (on the photographs)
of the point A from the principal plane. Join OA and produce . With © as the centre
and radius equal to f(=oa,), draw an arc. At a;, draw a line a,a, perpendicular to oa,.
making a,a, equal to the photographic distance ak. Join a0, cuthing the arc in k. Thus,
the position of the principal point and that of the principal plane is known. Through &,
draw ka perpendicular to ok, thus giving us position of the picture trace.

| SE—

=4 EE L=§
[+ ) S

(&)

K

Picture trace

Pringigal
plans

f

(S
]
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2.7. ELEVATION OF A POINT BY PHOTOGRAPHIC MEASUREMENT

The elevation of a point photo-
graphed from two camers stations can
be easily calculated from the measured
co-ordinates of the images.

Thus, in Fig. 2.10 {a), (&), le
A be the point whose elevation is to
be Jdetermined with respect to the camera
axis. A4, is the projection of 4 on
a horizontal plane passing through
0. Let x and y be the co-ordinates
of the photographic image (a) of the
point A. As determined earlier, the hori-
zontal angle (o) and vertical angle (B)
are given by Fig. 2.10 (a).

tan o = = (1)

or = m Y

In Fig. 2.10 (&),
oay = ‘u'f + 1 = fsec o
L moa=f=.4 AO0A,
Hence, from the similar triangles,
Y A
oa, 0OA,

V=dd = 04,2

INT)

e

or V Dy Dy

= ——LC0F X

T fsca f

FIG. 2.10. ELEVATION BY PHOTOGRAFPHIC
MEASUREMENT.

Due regard must be paid to the sign of v.
If the clevation of the camera axis is known, the elevation of the point can be

calculated from the relation

h=H . +V+rc

where h = elevation of the point
Hy = elevation of the camera lens
¢ = correction for curvature and refraction.

HIGHER 5URVEYIMG

ool 2. 4)
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FIG >3 PHOTO-THEODOLITE BY M/S WILD HEERBRUGG LTD.
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lan a, . tan oy = 202
fl
1u+-ﬁ
tan o, + tan F
Now tan 6 = tan (oy + o) = e R S
1 = tan oy lan o T . Xb
| -2
I
X+ X
tan 8 (f* = Xa. X ) =f{xa + 38 ) or ﬁ-ﬂ—nxﬁn
tan @
which gives,
a+ 2
- Ib+'\j—h'"+lb}+4x,n . -
~ tan 8 tam 8 _I.:+Ib+‘\,'[1—u+-’-'lr+ ; (2.5)
/= 2 " 2tané 2 Yo oAb Pl

Thus, the wvalue of f can be calculated.

Example 2.1. Three points A, B and C were photographed and their co-ordinates
with respect to the lines joining the collimation marks on the photograph are :

Point x ¥
a - 35.52 mm + 21.43 mm
b + 8.48 mm - 16.38 mm
'] + 48.26 mm + 36.72 mm

The focal length of the lens is 120.80 mm. Determine the azimuths of the lines
OB and OC, if that of OA is 354° 30" The axis of the comera was level at the time

of the exposiure al the station O,

Solution
Fig. 2.8 shows the position of the points.
Xg — 3352 s yar
Laf = mm  ——— 2 = -
g F = 12080 Ol 16° 23
xp +B.A48
tan op =22 = - 4420
% = = 12080 e

48.26
120.80

Azimuth of camera axis= ¢ = g — o0 = 354° W' -(-16°23") = 10° 5%
Azimuth of B=d¢+ ap=10°53 +4°=14°5¥
Azimuth of C=¢+a;=10"53" 4 21° 47= 32° 40,
Example 2.2. Photographs of a certain area were taken from P and Q. two camere

stations, 100 m apart. The focal length of the camera is 150 mm. The axis of the camera
makes an angle of 60° and 40° with the base line at stations P and Q respectively. The

tanu;:%:-i— e = + 21° 47
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image of a poimt A appears 20.2 mm to the right and 16.4 mm above the hair [lines

on the photograph taken at P and 35.2
mm to the left on the photograph iaken
ar Q.

Calculate the distance PA and QA
and elevation of potmt A, if the elevation

of the instrument axis ar P is
126845 m. P 1|:':.:Jm Q
)
Solution
Fig. 2.13 (a) shows the position of Jozhel 352
the ground point 4 with respect to the KM o 1
stations P and  and the picture fraces. (b} fe)
Fig. 2.13 (b} shows the photograph taken A
at Pand Fig. 2.13 (¢) shows the photograph a
taken at @, with the positions of a properly P
marked. & A
From the photograph at P, @
FiG. 2.13
ke 202
oy = tan f—tan —Iju—?'-lﬂ

£ APQ = 60° — a = 60° - 7° 40'= 52° 20y

From the photograph at

. ka
iy = lan ' — = tan
f

150

o 35.2

—_—

13® 12

LAQP = 40° — oy = 40° = [3° 12'= 26" 48’

From the

LPAQ = 180" = 52° 20 — 76" 48"= 100° 52'

triangle APQ,
. sin AQP sin 26° 48’
AP=PQ . Gn PAQ':Im' sin 100° 52~ o m
. sin APQ _ sin 52° 20°
and AC=PQ - Gnpag = ' Sn o sz 06 m

Calculaion of R.L. of A
From the photograph at P,

Pa, =V 2 + f2= V(20.2)" + (150)*= 151,33 mm.
Let A4, be the projection of A on the horizontal line Pa, drawn through P (Fig.

2.15 d). Then from the similar triangles,

Ady_PA
Tl y FII:I

v 45,
-‘H1'ﬂ!|-£‘d'“ 16.4 x 45.9 4975 m

Pa, 151.53
R.L. of A=R.L. of instrument axis+ A4, = 126.845 + 4.975 m = 131.820 m.
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Example 2.3. The distance from two points on a phoiographic poini io the principal
line are 68.24 mm o the lefi. and 58.48 mm 1o the right. The angle between the points
measured with a transit is 44° 307 Determine the focal length of the lens.

Solution

Distance of first point frum principal line = 1, = 68.24 mm
Distance of second point from principal line = x, = 58.48 mm
Angle between the two points = B = 44° 30

The focal length is given by the expression (Eg. 2.5),

I|+I:
*r_imuﬂ

xi+x  68.24 +58.48
2tan 6 2 tan 44° 30°

where

=64.47 (
!

ki
+ X
+‘¢{1I—tﬂ+-:!x1
4 tan” 8

.It'l'..I: _ 2 _
T :r = (64.67) = 4156.9

Xy x;=08.24 « 58.48 = 3990.4

Substituting the values, we get

f=64.47 4+ \ 4156.9 + 3990.4 = 64.47 + 90.26 = 154,73 mm

AERIAL PHOTOGRAMMETRY

2.9, AERIAL CAMERA

The primary function of the terrestrial
camera as well as the aerial camera 15 the
same, i.e., that of taking pictures. However,
since the aerial camera is mounted on a
fast moving aeroplane, its requirements are
quite different. The aerial camera requires
© (i) fast lens, (i) high speed and efficient
shutter, (0if) high speed emulsion for the
film, and (iv) a magazine to hold large rolls
of film. As such, an aerial camera may
be considered to be a surveying instrument
of great precision.

Fig. 2.14 shows the photograph of
the wild RC-9 automatic supper wide angle
camera. Fig. 2.16 shows the schematic diagram
of an acrial camera.

An aerial camera consists of the fol-
lowing essential pars

(fy  the lens assembly (including
lens, diaphragm, shutter and
filter)
the camera cone

the focal plane

L)
(i)

L
4.
)

5 5
E"
i
. MAGAZINE 2. FOCAL PLANE 3. BODY
TRUNNION 3. CONE f. LENY
. AHUTTER 8. DIAFHRAGM 9. FILTER

FlG. 2.16 SCHEMATIC DIAGRAM OF AERIAL
CAMERA.
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(fv) the camera body

(v} the drive mechanism

(v) the magazine

({) The Lens Assembly

The lens assembly consists of the
lenses, the diaphragm, the shutter and the
filter.

Fig. 2.15 shows the cross-section
of the high performance lenses manufac-
tured by Wild Heerbrugg Lid. Wild Aviotar
f : 4 [Fig. 2.15 (a)] is normal angle
lens while Wild Universal-Aviogon [ :
5.6 [Fig. 2.15 (b)] and Wild Super-Aviogon
f . 5.6 [Fig. 2.15 (c)] are wide angle
lenses and super wide angle lenses re-
spectively. The following are the details
of the lenses manufactured by M/s Wild
Heerbrugg Litd. (Table below)

The other lenses commonly used
are : ({) Bausch and Lomb Metrogen |
: 6.3 wide angle lens with 93° coverage,
most commonly used in the United States,
() Zeiss Topogon f: 6.3 with 937 coverage,
and (iiiy Goertz Aerotar f : 6.8 with 75°
coverage.

Since the air-craft 1s at a considerable
distance from the terrain to be photo-
graphed, all the points can be considered
to be at an infinite distance from the
lens and hence the focal plane of the
aerial camera can be fixed ar one location.
Thus, an aerial camera is always of a
fixed focus type, the focus being set for
infinity.

153

z = s .

()

FIz. 2.17. THE LENS NODES.

Camera Lens Focal Lemgth | Picture size | Field Aungle
(/) em fem) |

Wild RC 8 for 19 em and | Aviowr [ : 4 21 P 1Bx1E | a0

24 em film width Aviogon f : 5.6 1.5 | 18x18 | a0
Umiversal Aviegon f : 5.6 13,2 23 w23 9

Wild RC 9 for 24 cm Super-Aviogon f @ 5.6 ] 8.8 Bx23 120°

film width Super-Infrangon f: 5.6 8.8 23 x 23 120°*

Wild RC 7a for plates Aviotar [ : 4 17 14 = 14 L

15 % 15 cm Aviogon [ © 5.6 10 14 x 14 %
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of decrease the size of the opening to restrict the size of the bundle of rays to pass
through the lens. If the diaphragm opening is larger, the shutter speed has to be greater.
The Filter :

A filter consists of a piece of coloured glass placed in fromt of the lens. It filters
the stray light (blue and wviolet) in the atmosphere caused by haze and moisture. It also
protects the lens from the flying particles in the atmosphere.

(i) Camera Cone :

The camera cone supports the entire lens assembly including the filter. At the top
of it are provided the collimation marks which define the focal plane of the camera. The
cone 15 made up of the material having low co-efficient of thermal expansion so that the
collimation marks and the lens system are held in the same relative positions at operational
temperatures. The elements of imterior orientarion are fixed by the relative positions of
the lens, the lens axis, the focal plane and the collimation marks.

(iii)y The Focal Plane :

The collimation marks are provided at the upper surface of the come. The focal
planc is provided exactly above the collimation marks. It is kept at such a distance from
the near nodal point that best possible image is obtained.

{iv} The Camera Body :

The camera body is the part of the camera provided at the top of the cone. Sometimes,
it forms the integral part of the cone in which case they act as an integral part to preserve
the interior orientation once the camera is calibrated.

{(v) The Drive Mechanism :

The camera drive mechanism is housed in the camera body and is used for (i) winding
and tripping the shutter (ii) operating the vacuum system for flattening the film, and (iii)
winding the film. It may be either operated manually or automatically.

{vi} Magazine :

A magazine holds the exposed and unexposed films and houses the film flanening
device at the focal plane. The power operation of the movable parts of the magazine is
supplied from the drive mechanism. The film is flartened at the focal plane either by inserting
a piece of opiical glass in the focal plane opening or by applying a vacuum to ribbed
plate criss-crossed with tiny grooves and provided to the back of the film.

2.10, DEFINITIONS AND NOMENCLATURE

1. Vertical Photograph. A vertical photograph is an aerial photograph made with
the camera axis (or optical axis) coinciding with the direction of gravity.

2. Tilted photograph. A tilted photograph is an aerial photograph made with the
camera axis (or optical axis) unintentionally tilted from the vertical by a small amount,
usually less than 3° (Fig. 2.18).

3. Oblique Photograph. An oblique photograph is an aerial photograph taken with
the camera axis directed infemtionally between the horizontal and the vertical. If the apparent
horizon is shown in the photograph, it is said to be high obligue. If the apparent horizon
5 not shown, it is said to be low obligue.
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4. Perspective Projection. A o h
perspective projection is the one pro-
duced by straight lines radiating from t
a common (or selected) point and
passing through point on the sphere A
to the plane of projection. A Pho-
fograph is a perspective projection.
5. Exposure station. Exposure
station is a poimt in space, in the —x
air, occupied by the camera lens at
the instant of exposure. Precisely, it
is the space position of the from
nodal point at the instant of exposure.

Phatograph

+ XK

y =

D

L C -
6. Fl!"'hﬂ height. Flying hel.ghl {37 Direction of Night
is the elevation of the exposure station —
above sea level or any other selected Direction

datum. of gravity

7. Flight line. It is a line
drawn on a map fo represent the
rack of the aircraft.

8. Focal length. It is the dis- Naorth
tance from the front nodal point of

the lens o the plane of the photograph !

(i,e., OK in the Fig. 2.18). It is :'l

also the distance of the image plane N K

from the rear nodal point. Equivalent

focal length is the distance of the FIG. 2.18. TILTED PHOTOGRAPH

image plane from the rear nodal point
(or the distance of the plane of the photograph from the front nodal plane) yielding the
best average definition.

9. Principal point. Principal point is a point where a perpendicular dropped from
the front modal point strikes the photograph. (Also, it is the foot of a perpendicular to
the image plane from the rear nodal point in a camera lens system free from manufacturing
errors). This principal point is considered tw coincide with the intersecton of the r-axis
amd the y-axis. In Fig. 2.18, k is the principal point. The point X is known as the grownd
principal point where the line OK prodoced meets the ground.

10. Nadir point. Nadir poini is a poimt where a plumb line dropped from the from
nodal point pierces the photograph. Thus, in Fig. 2.18, n is the nadir point, which is
a point on the photograph vertically beneath the exposure station. This point 15 also known
as the photo-nadir or photo plumb point.

11. Ground nadir point. Ground nadir point or ground plumb point 15 the damum
intersection with the plumb line through the front nodal point. It is the point on the ground
vertically beneath the exposure station such as poimt & in Fig. 2.18.
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O = perspective centre or the rear nodal point of the camera lens (or the

Ok = principal distance
t=angle of tilt =< kon = angular deviation of the photograph perpendicular from
the plumb line
n = photo-nadir or photo plumb point
N = ground nadir or ground plumb point
noN = plumb line or vertical line through the perspective centre
i = isocentre
{=ground isocentre
nik = principal line
h = horizon point
fy i iz =axis of tlt=isometric parallel
Relation Between Principal Poini, Plumb Point and Isocenire :
From Figs. 2.18 and 2.19,
(1) nk=distance of the nadir poimt from the principal poin
nk

E=unr of nk=kO. tani=frans ...(2.6)
since kQ = f= principal distance
(2) & =distance of the isocentre from the P:im:'rpal point
%ztm% or hni’ﬂ-tanénfﬂn% N
(3) kh = distance along the principal line, from the principal point to the horizon poim
%:mtt or kb m kO cot ¢=fcotr -..(2.8)

2.11. SCALE OF A VERTICAL PHOTOGRAPH

Since a photograph is the perspective projection, the images of ground points are
displaced where there are variations in the ground elevation. Thus, in Fig. 2.20 (a) the
images of two points A and A, vertically above each other, are displaced on a wvertical
photograph and are represemted by a and a, respectively. Due to this displacement, there
is no uniform scale between the points on such a photograph, except when the ground
points have the same elevation. If the elevation of points vary, the scale of the vertical
photograph will vary from point to point on the photograph.

Let us first take the case when the ground is horizontal, ie., all the points are
having the same elevation, such as shown in Fig. 2.20 ({(a).

_ _ _map distance
Let 8 = scale 2 L di
From Fig. 2.20 (a), s=ta O __J __[ .(2.9)

KA KA H-h H-h
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x a
“h Tk F 9
i
3 = -
H—1h, K mon
H
H
H
I K. ‘E
i
f :
| L
h K, i
i i
i Datum |
— .JL.J‘ 'y = o
FIG., 2.20. (a) SCALE OF A VERTICAL FIG. 2.20. (&) SCALE OF A VERTICAL
PHOTOGRAPH PHOTOGRAPH.

where H = height of the exposure station (or the air plane ) above the mean sea level
f=focal length of the camera
h = height of the ground above mean sea level

Let us now take the case when the points are not having the same elevation, as
represented in Fig. 2.20 (&),

Let A and B be two points having elevations A, and hy respectively above mean
sea level. They are represemied by a and b respectively on the map. k is the principal
point of the vertical photograph taken at height M above mean sea level.

The scale of the photograph at the elevation h, is evidently equal to the ratio

N . ak Ok _ f
From similar triangles, AK. 0K, H-h

_ak_
AK,

Hence the scale of the photograph at the elevation b, is egual to ﬁ

Similarly, the scale of the photograph at the elevation by is equal w0 the ratio ——.

bk Ok f
BK, OK, H-h~

From similar triangles,

Hemethescaleufthﬂphmugraphatﬂwheigmmisequnmﬁ.

In general, therefore, the scale of the photograph is given by
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__
S = H<h
where Sy = scale at the elevation A.
The scale of the photograph can also be designated by the representative fraction
(Ru), i.e
1

(57

where (H - #h) and f are expressed in the same unit (i.e. metres).

Datum Scales (5,)

The datum scale of a photograph is that scale which would be effective over the
entire photograph if all the ground points were projected vertically downward on the mean
sea level before being photographed. Thus, from Fig. 2.20 (a),

_§,-Ra Ot f
Datum “’l"‘s“mﬁ_gg‘ﬁ (2,10
where K and A, are the projections of k and A on the damm plane.

Average Scale (5,)

The average scale of a vertical photograph is that which would be effective over
the entire photograph if all the ground points were projected vertically downward or upward
on a plane representing the average elevation of the terrain before being photographed.

Thus, S = gL 21
where hg = average elevation of the terrain

To Find the Scale of a Photograph

If the images to ground points of equal elevation and known horizontal distance
appear on the photograph, the scale of the photograph can be determined by comparing
the ground length and the corresponding length on the photograph. Thus, if [ is the distance
on the photograph, between the two points 4 and B having the same elevation h and
the horizontal distance (ground) between them to be L, the scale at the height h is given
by

Ry =

{
5'1.=E (2,12)
The distance L measured on the ground either directly or by the triangulation, or
it can be taken from the existing maps, if available. To find the average or fairly representative
scale of photograph several known lines on the photograph should be measured and compared
and the average scale should be adopted. In case a reliable map of the area iz available,
the photographic scale can be found by comparing the photo distance and the map distance
between two well-defined points at the same elevation.
Thus Photo scale _ photo distance
| Map scale  map distance
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If the focal length of the lens and the flying height (H) above m.s.l. 15 known,
the scale can be found from the relation
-
Sk 0 —h ..{2.13)
2.12. COMPUTATION OF LENGTH OF LINE BETWEEN POINTS OF DIFFERENT
ELEVATIONS FROM MEASUREMENTS ON A VERTICAL PHOTOGRAFH

In Fig. 2.21, let A and B be
two ground points having elevatons
h; and hy above datum, and the co-
ordinates (X, ¥o), (Xs, Yo ) respec-
tively with respect to the ground co-
ordinate axes which coincide in
direction with the photographic co-
ordinates x and y-axis. The origin of
the ground co-ordinates lie vertically
beneath the exposure station.

Let @ and b be the corresponding
points of the photograph, and

{-:-u'l- J:Iﬂ} " {-I.b'- ]'"b} hE ﬂ'I.E m”mldi-ﬂE H ! h|
co-ordinates. From similar triangles, . ', +Y : i
Ok _Fa_Ya_ _f r,,' ™ o
Gfﬂ .xﬂ .rq H - hg E + “ - i__.l,..-"' 'I'E
P {Origin)
Also, K _ X _B__J o -

FIG. 2.21. COMPUTATION OF LENGTH OF A LINE.

Hence, we have Ak [2.14 (a)]
H =
o= Ih“,h ..J21.4 (b))
m=”}”".x.-.. 214 (9] h.=H}ﬂ".n (214 (d))
And, in geperal, the co-ordinates X and ¥ of any poini at an elevation are :
y H-h —  H-h
f ¥ I r-
The length L between the two poinis 4 and B is then given by
L= '\1' (Xa — Xp)' + (Yo - V)’ -(2.15)

The value of X, X, and ¥, and ¥, must be substitwted with their proper algebraic signs.
2.13, DETERMINATION OF HEIGHT (H) OF LENS FOR A VERTICAL PHOTOGRAPH

If the images of two points A and B having different known elevations and known
length berween them appear on the photograph, the elevation or height H of the exposure
station can be calculated by a reversed procedure from that of the preceding article.
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Since the photograph is the perspective view,
the ground relief is shown in perspective
on the photograph. Every point on the pho-
ograph is therefore, displaced from their
true orthographic position. This displacement
is called relief displacement.

Thus, in Fig. 222, A, B and K are
three ground points having elevations
By he and by above datm. Ag, By and K@
are their datum positions respectively, when
projected vertically downwards on the datum
plane. On the photograph, their positions
are a, b and k respectively, the points k
being chosen vertically below the principal
point. If the datum points 4, By and
Ky are mmagined to be photographed along
with the ground points, their positions will
be ap, b and k respectively. As is clear
from the figure, the points a and b are
displaced outward from their datum photograph
positions, the displacement being along the
corresponding radial lines from the principal
point. The radial distance aa, is the relief
displacement of A while bby is the relief
displacement of B. The point k£ has not been
displaced since it coincides with the principal
point of the photograph.

To calculate the amount of relief dis-
placement, consider Fig. 2.23 which shows
a vertical section through the photograph of
Fig. 2.22 along the line ka.

In Fig. 2.23,

Let r=radial distance a from &

ry = radial distance of a, from &
R= K{. a‘g
Then, from similar triangles,

L __r ich re=-td_
H-h-R from which r HoT 1)

Also ﬁ:%. from which ru=%£ D

Hence the relief displacement (d) is
given by

1k

FIG. 2.22. RELIEF DISPLACEMENT ON
VERTICAL PHOTOGRAFH.

TTT'D
lk B,

H=h

I, AP

FIG. 2.3, CALCULATION OF RELIEF
DISPLACEMENT.
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FIG 2.14. WILD RC-9 AUTOMATIC AERIAL CAMERA
(BY COURTESY OF MANUFACTURERS)

FIG 2.15. LENSES FOR WILD AERIAL CAMERAS
(BY COURTESY OF MANUFACTURERS)

(TO FACE PAGE 155)
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HIGHER SURVEYING
8.65 cm . 20 cm

200 m  (H - 500)m

20 = 2000

or (H = 500) = 365 = 4624 m
H=4624 + 500 = 5124 m
Sun = 20 cm __lem
{5124 - 800)m 2162 m
Hence S0 12 1 cm = 216.2 cm.

Example 2.7. A section line AB appears to be [0.16 cm on a photograph for which
the focal length is 16 cm. The corresponding line measures 2534 cm on a map which
is to a scale 1/50,000. The terrain has an average elevation of 200 m above mean seq

level, Calculate the flying altitude of the aircraft, above mean sea level, when the photograph
was laken.

Soletion.

The relation between the photo scale and map scale s given by
Photo scale  Photo distance
Map scale - Map distance

!

Here, map scale =

50,000 . Let the photo scale be "
L/n 10.16
1/50.000  2.54
1 1016 1 1 B
n" 254 “S0000 12s00 O "= 12500
. 1_ f 1 (16/100) m
Again, Swm=lc o " 12800 (H-2000m
or {H-—Iﬂﬂ}=%x125ﬂﬂ=2ﬁﬂ} o
Hence H=2000 + 200 = 2200 m.

Example 2.8. Two points A and B having elevations of 500 m and 300 m respectively
above datum appear on the vertical photograph having focal length of 20 cm and flying
altitude of 2500 m above datum. Their corrected phoiographic co-ordinates are as follows:

Point Photographic Co-ordinates
x {cm) y (cm)
a + 165 + 1.36
] - 192 + 3.65
Determine the length of the ground line AB.
Solution
The ground co-ordinates are given by
x.:H_}-"_".:F——-—-hzm""m % (+2.65)= +265 m

20
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H - ha _ _Correci AB
Hugprox . — hey  Computed AB

H-400 545 _ ) _
35323 —a00 - 553 g o+ From which  H =400 + 2100 = 2500

Using this value of H 1o calculate the co-ordinates, we pet

2500 - 500 2500 — 500

L=TH2.55=+255 H F.;=T¥1.3-ﬁ= + 136
2500 - 300 3 -

I¢=—1r—x{—1.92}=—ll],1 ; F.g=-§%§{ﬂx3.ﬁﬁ=+4m.5

L= (265 + 211.2)" + (136 — 401,5)* = 545
This agrees with the measured length. Hence height of lens = 2500 m.

Example 2.10. The disiance from the principal point to an image on a photograph
is 6.44 cm, and the elevation of the object above the datum (sea level ) is 250 m. What
is the religf displacement of the poimi if the datwn scale is I/10.000 and the focal length
of the camera is 20 cm 7

Solution.

The datm scale is given by

1 (20/100) m
10,000 Hm
From which H = ﬁc?n < 10,000 = 2000 m above m.s.l.
Again, the relief displacement (d) is given by
o 644 = 250
d - 'r—" i —— P -
H 2000 0.505 cm
Example 2.11. A tower TB (Fig.2.24), 50 m high, appears in a vertical photograph
faken at a flight altitude of 2500 m above mean sea level. The distance of the image
of the top af the tower is 6.35 cm. Compuie the displacemeni of the image of the top
of the rower with respect 1o the image of its bowtom. The elevation of the bottom of the
tower is 1250 m.

Solution
Let H = height of the lens above the botiom of the tower.

The displacemeni d of the image of the wp with respect w the image of the bowom
s given by

Sd-=

fr
=5
where b =height of the tower above its base =50 m ; H =2500- 1250 = 1250 m
50 x 6,35
= ——— =), .
1350 0.25 cm

Example 2.12. A vertical photograph of a fla area having an average elevation
of 250 metres above mean sea level was taken with a camera having a focal length of
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Let N and M be the points on on and om exiended, at heighis of h above damm.
Thus N, M and A have the same elevation. The triangle NMA is in a horizontal plane.

From the similar triangles om'a and ONA, we pget

m‘a=ﬂm‘
NA ON
But Om'=0n-mn=fsect-mnsnt ; ON=ONs-NN.=H-h

m'a  Map distance
NA  Grounddistance
Substituting the values in (1), we get
_ Jsec - mn sin 1
- H-h

In the above expression mmn is the distance +y
along the principal line, between the photo
nadir and the foot of the perpendicular from
the point under consideration. To find 1ts value,
let us consider the system of co-ordinates axes
llustrated in Fig. 2.26.

Let the photographic co-ordinates of the
image a be x and y. Let 5 be the angle of
swing and 9 be the angle between the y-axis
and the principal line. If the y-axis be rotated
to the position of the principal line, the new
axis (or y'-axis) will be inclined to the original
axis by an angle 0 given by

B=180" -3 2.21)

As in analytic geometry, the angle FIG. 2.26. CO-DRDINATE AXES THROUGH
@ is considered to be positive when the rotation PLUMB POINT
15 in the counfer-clockwise direction and negative when it is in the clockwise direction.
Thus, the angle 8 in Fig. 2.26. is pegative. Let the new x-axis {or x'-axis) be selected
through the nadir point n. The distance kn is equal to frans (see Egq. 2.6). The new
co-ordinates (1',y") of the point @ with reference to the »' and ¥ axis are given by

x=xcos B+ ysnb . [2.22 {a)]
¥=-xsinf+yvcos <+ ftang e [2.22 (b))

The distance mm is therefore equal to y'. Substituting this in (2), we get
fseci—y'sint
- H—h

It 15 clear that the co-ordinates y° is the same for the points on the line ma. Hence
the scale, which is the linear function of v, is constant for all the poinis on a line perpendicular
to the principal line.

For finding the scale at a given point on the photograph by Eq. 2.23, the followmng
data is essential :

= scale at a point whose elevation is h = 8

Sa A2}

S

..(2.23)
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The mew co-ordinates r' and ¥ may be computed from Eq. 2.22. The length L of the
iine AF can then be calculated from Eq. 2.24 (c).
Compare the computed length of AB with that of the correct length from the relationship
H—ha _ Correct AB
Heapprox = hay  Computed AB
where H 15 the new value of the flying height.
Step 3 :
Repeai step 2 fill the computed length of AR agrees with its correct length within
the required degree of accuracy.
2.18. TILT DISTORTION OR TILT DISPLACEMENT
If a terrain is photographed, once with a ulied photograph and then with a vertical
photograph, both taken at the same flight altitude and with the same focal length, the
two photographs will match at the axis of dlt only. The image of any other point, not
on the axis of tilt, will be displaced either outward or inward with respect to its corresponding
posiion on a vertical photograph.
Tilt distortion or tilt displacement is defined as the difference between the distance
of the image of a poimt on the tilted photograph from the socentre and the distance of

the image of the same point on the photograph from the isocentre if there had been no
tilt.

Fig. 2.27 shows a vertical 0
photograph and tilted photograph of ) Tited phatograph
the same terrain, inlersecting each
other in a line which is the axis
of alt. n is the nadir point of the
tilted photograph, and serves as the
principal point of the vertical pho-
wgraph. k is the principal point
of the tilted photograph. The portion
of the tled photo above the axis
of ult is known as the upper par
while the portion below it 15 known
as the lower part of the photograph.

Let us consider two ground
points 4 and B photographed both
om the vertical photograph as well
as on the tilied photograph. a and
b are their images on the tlied
photo while o' and b' are the cor-
responding images on the vertical
photograph. If the vertical photo-
graph is now rotated about the axis
of tlt until it is in the plane of

FiG.. 2.17. TILT DISTORTION.
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and b are the images of (wo points on the tiltied photograph, along its principal line,
while a' and b are the corresponding positions on the vertical photograph. Since { is the
point. of rotation, d, and d, represent the displacements of the points a and b with respect
to a' and & respectively. Let o be the inclination of the ray Oa with Ok Similarly,
B is the inclination of the ray Ob o Ok

Thus d; = tlt displacement of a with respect w 4

or dy = ia' - ia
But ig'=n'a-ni=ftm{i+a)-Flani/2 and la=ka+ ki=ftan a + flant/2
Hence da=ftan (r + a)=ftan 172 - fran & = fran 1/2

or dy=ftan (i + @) - tana - 2 tan i/2] ..[2.25)(a)

similarly, dp = ib - iV
ib=kb-ki=ftanf-fuans/2 @ i=nb +ni=Ffanp -+ flant/2
: dy=ftan f - frant/2 - ftan(p - ) — ftan /2
or dy = f[tan P - tan (P - 1) -~ 2 1an 1/2] -+ [2.25(b)]

In the above expressions, the angles o and [ can be found by the relations
ka ki
tan @ = —, and tan fj = —.
7 P27

It can be shown that equations [2.25 (a.b)] can be represented by the approximate
formula

(ia)* sin 1
B ——— s E.Zﬁ
7 ( )

It is quite clear from the figure that the tilt displacement of a point on the upward
half of a tlied photograph is imward (such as for point a) while the tlt displacement
of a poomt on the downward or nadir point half is owward (such as for b)

Equations 2.25 give the tlt displacements for the points on the principal line. The
tilt displacement of a point not lying on the principal line is greater than that of a corresponding
point on the principal line.

Let [= angle measured at the isocentre from the principal line to the point.
d, = displacement of the point on the upward half of the tilted photograph.
dy = displacement of the point on the downward half of the rlted phowgraph.

In Fig. 2.28 (plan), the point g is not on the principal line while point a is on
the principal line. gg' is the displacement of ¢ while aa' is the displacement of point
a. Since both g and a are equidistant from the axis of tilt, we have

gq' = aa’ sec |
where [ 15 the angle at the isocentre from the principal lme to the point 4.
Hence the ratio of the uli displacement of a point not on the principal line o that

of a point on the principal line is equal fo the secant of the angle at the itsocentre from
the principal [ine 1o the point.

Thus, the expressions for o, and d; can be written as :

d=
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dy = fsec [ [tan (r + @) — tan a — 2 tan /2] o[ 2.2Hal]

dg = fsec ! [an B - tan (f - 1) - 2 tan r/2] LJ2.27(6)]

In Fig. 2.28 (plan), p’g’'r’s’ represenis a square on the vertical photograph. The
corresponding  displaced points on the tlted photographs are p, g, r and 5. Since the tlt

displacements are always radial from the isocentre, the corresponding figure p g r 5 becomes
a rhombus.

2.19. RELIEF DISPLACEMENT ON A
TITLED PHOTOGRAPH

It has been shown in § 2.14 that
the relief displacement on a vertical pho-
tograph is radial from the principal point.
The points are displaced radially ourward
from their datum photograph positions. Fig.
2.29 shows the reliel displacement on a
tilted photograph..

A, B and N are ground points, and
A,. By, N, are their corresponding damm
positions. N and N, being vertically below
the nadir point n. 4 and B are imaged
at @ and b respectively, a;, and b, are
the damum photograph positions of 4, and
By, ¢ 15 the isocentre and k is the principal
point. The plane O N N, A, A 158 a vertical
plane since it contains the plumb line ON.
The points #, a; and a lie on the same
vertical plane. Since the points n, a, and

a also lie on the photograph, they are

in the same line, ie., g, and a lie on  pG. 229 RELIEF DISPLACEMENT ON A TILTED
a radial line from the nadir point. Similarly, PHOTOGRAFH.

the point n, b, and b are on the same
line, and b, and b are radial from the nadir point. Thus, on a lilted photograph, the
relief displacement is radial from the nadir poini. The amount of relief displacement on
a tilted photograph depends uwpon : (i) flying height, (i) distance of the image from the
nadir point, (#if) elevation of the ground point, and (iv) position of the poimt with respect
to the principal line and to the axis of tilt. In the case of near vertical photograph, where
the tilt is less than 3°, the relief displacement can be calculated from equations 2.19 with
the modification that the radial distances r and r’ are measured from the nadir point and
not from the principal point.

Thus =2 228@)  ad d= 2t .[2.28(8)
where d is the relief displacement on a tilted photograph,
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r=radial distance of image poimt from the photographic nadir.
rp = radial distance of damum image point from the photographic nadir.
2.20. COMBINED EFFECTS OF TILT AND RELIEF

It has been shown in § 2.18 that on a dled photograph covering the ground with
no relief, the tilt distortion is radial
from the isocentre. In the previous
article, it has been shown that
the relief distortion is radial from
the nadir point. To study the com-
bined effect on the tilt and relief,
let ws refer Fig. 2.30.

Fig. 2.30 shows the dis-
placements of five points 4, B,
C, D and E in typical positions.
dy, by, €y, iy, ;, are their corre-
sponding datum photograph po-
sitions. o', b, ", ¢ are corre-
sponding positions after the image
has undergone relief displacement.
a, b ¢, d and e are the cor-
responding positions after the im-
age has undergone tilt displace-
ment.

For the point 4, the relief FiG. 2.3). COMBINED EFFECT OF TILT AND RELIEF
displacement is a, @' radially out- DISPLACEMENT.
ward from the nadir point and the tilt displacement is a'a radially inward to the isocenire
as it lies in the wpper part of the photograph. Thus, the relief displacement and the tilt
displacement tend to compensate each other.

For the poimt B, the reliel displacement by &' 15 radially outward from the nadir
point, and the tilt displacement &' b 15 radially inward to the isocentre as it lies m the
upper part of the photograph. The position of the point has been so chosen that
by , b and b lie on the principal line., Here also, hoth the displacements tend to compensate
each other.

For the point D, the relief displacement d,d° is radially ourward from the nadir
point, and the tlt displacement 4 'd is zero since the image J° happens to fall on the
axis of tilt along which there is no tilt displacement.

For the point C, the relief displacement o, ¢ is radially outward from the nadir
point while the ult displacemeni ¢ 'c is radially outward from the isocentre since it lies
in the lower part of the phowgraph. The position of the point has been so chosen that
" and ¢ lie on the principal line. The relief displacement and the it displacemem
are cumulative,
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Lastly, for the point E, the relief displacement e,¢' is radially outward from the
nadir point and the tilt displacement e'e is radially outward from the isocentre since it
lies in the lower part of the photograph. Here also, both the displacements are cumulative.

Thus, it can be concluded thar the rilt and relief displacements tend 1o cancel in
the upper part of the photograph while they are cumulative in the lower. parl.

In actual practice, the effects of tilt can be analysed only where precise equipment
and trained personnel are available. These effects are more often removed by re-photographing
the prints with the aid of accurately established control points in the photograph. Within
certain limits of permissible errors, the effect of tilt can be eliminated by means of various
projectors. In spite of scale vari-
ation, relief displacement and tilt

displacement, an aerial photo- Tl o :

graph taken with a calibrated _h_.”_"__i_ _i__j__i__ ______________ B

precision aerial camera is precise I 1 O I -

perspective view of the terrain, _i_ﬂ___' s e I _;_5___;_____ N

and precise measurements and AR PO O T O I

highly accurate results may be R R S R A T U :

obtained from it. | Crersens S S i e

3_1]_ FL[GHT PLANNING _-.i. SR T P — ‘:_ ..... R ———— i.
FOR AERIAL PHO- ; i !
TOGRAPHY STttt raanas T
When wvertical photo- ‘E'Fﬂm

graphs are to be used for the En 5 =

preparation of maps, all the meth- A\ /1

ods of compilation require that

the plumb points of the preceding

and succeeding prints are visible

in each photograph. Photographs

are taken at the proper interval

along each strip 1o give the de- AT ‘i : “ ‘ L S
sired overlap of photographs in fb) Overtap in direction of flights

the given strip. Each strip is
spaced at pre-determined dis-
tances to ensure desired side lap
berween adjacent strips.

The overlap of photo-
graphs in the direction of flight
line is called longitudinal overlap
or forward overlap or simply
overlap. Along a given flight
line, photographs are taken at
such frequency as to cause suc-
cessive photographs to overlap

{c) Side lap between Might lines

FIG. 2.31. THE OVERLAP AND SIDE LAP OF PHOTOGRAPHS.
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each other by 55 to 65 per cent. Fig. 2.31 (a) shows threc successive flight lines. Fig.
2.31 (b) shows the vertical section containing the flight line and showing the overlap. Since
the overlap is more than 50 per cent. altermate photographs will overlap one another by
10 to 30 per cemt. When photographs are taken with this overlap, the entire area may
be examined stereoscopically. The overlap between adjacent flight lines is known as lareral
overlap or sidelap. The sidelap amoumts to about 15 to 35 per cent. Fig. 2.31 (¢) shows
the vertical section taken normal to the three flight lines of Fig. 2.31 (a).

The number of individual photographs required to cover a given area increases with
the increase in the overlap and sidelap, thus increasing the amount of work both in the
field as well as in the office.

Reasons for Overlap

The following are some of the reasons for keeping overlap in the photographs

{1} To tie the different prints together accurately, it is desirable that the principal
point of each print should appear on the edges of as many adjacent sirips as possibie.

(2) The distortions caused by the lens and by the tilt, and the rehef displacements
are more propounced in the outer part of the photograph than near the centre of ecach
photograph. If the overlap is more than 50%, these distortions and displacements can be
overcome gquite effectively while constructing the maps.

(3} In order to view the pairs of photographs sterecscopically, only the overlapped
portion 15 useful. Hence the overlap should at least be 0% .

{4) Due to the overlap, each portion of the territory is photographed three to four
times. Hence any picture distorted by excessive tilt or by cloud shadows etc. can be rejected
without the necessity of a new photograph.

{3) If the flight lines are not maintained straight and parallel, the gaps between adjacent
stips will be left. These gaps can be avoided by having sidelap.

(6} In the stereoscopic examination, objects can be viewed from more than one angle
if sufficient overlap is provided.

Fig. 2.32 shows a photographic flight with an awtomatic aerial camera, the overlap
of successive vertical photographs being 60%.

EFFECTIVE COVERAGE OF THE PHOTOGRAFPH

The amount of overlap and sidelap to be used in flight planning depends upon the
effective coverage of each photograph. The relation between the separation of flight lines
and the separation between photographs must be arranged fo give the greatest area to each
slereopair.

The effective coverage of each photograph depends upon (i) size of format or focal
plane opening. (if) focal length and (iif) angular coverage of the lens. The effective angular
coverage of the lems with the 12 in. (30.4 cm) focal length is represented by a cone
the apex of which lies at the fromt nodal point and the apex angle of which 15 about
60°. In general, the effective coverage with a 12 in. lens will embrace more than
9 = 9" format size, and hence the entire photograph is usable (Fig. 2.33 a). The effective
angular coverage with a 6" (15.2 cm) wide angle lens i1s a cone of rays the apex of
which 15 about 86°. A sizeable portion of the 9" x 9" format is not usable, and the useful
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FIG. 2.33. ANGULAR COVERAGE.

circle at the negative plane is equal to 2f u.u%= 11.2* approximately. Due to errors in

directing the camera and in following
the flight lines, this should be reduced
o at least 10.4 in., as shown in Fig.
2.33 (c).

The effective area of overlap be-
tween the two photographs is that bound
by the overlapping circles representing

the effective coverage of the photographs.
Since the stereomodels must fit each other,

the useful steroareas must be assumed
o be rectangles having a width equal
o the interval B between exposures. the
two longer sides of this rectangle pass
through the principal points of the pho-
tographs. The stereoareas is shown cross
hatched, and the largest rectangle possible
is drawn within this area.
Let W= distance between the
flight strips
A; = stereo-areas

(i.e., area of the rectangle)

g of circle o ! g of circle

e ——
{a) Eflective ovedap
£ of i
W
Can |
(b) Spacing betwaen flight lines

FIG. 2.34. FLIGHT LINES AND INTERVALS.
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Then. A; = BW vk 1)

But %W=~iﬂhs’ (2)
Ay=20N R - B For A, to be maximum %:.—:}:R’-Iﬂ"

which gives R = B2 A3

Hence when R=352 in., the value of B=3467 in

Overlap in terms of inches on the photograph = 9.00 - 3.67 = 5.33"

: % overlap=5.33/9=59.2% in the direction of flight.
Agam substiuting the value of R=BV2 in (2), we pet

%W='\||231—B= _B

- W= 18 ... (4)(2.29)

Hence for maximum rectangular area, the rectangle musi have the dimension in the
direction of flight to be ome-half the dimension normal to the direction of fligh.
From Fig. 233 (d), %— “: or R=0867H

Substinating this in (2), we get

B=:‘,'Tﬂ=q%xu.aﬁ?ﬂ=n.mﬂ

Substituting in (4), W=122H
where H is the height of lens above ground.

Hence the distance between the successive flights equals to 1,22 umes the height
of flight above the ground. This 15 the mavimum allowable distance when the principal
point of the photographs fall directly opposite one another on the two flight lines.

As found earlier, W=2B=12=x367=734 in.

. Side lap berween flight lines, in terms of inches on the photograph = 9 - 7.34 = .66
Side lap=1.66/9=184%
If H=3000 metres, B =061 x3000=]830 m and W= 122« 3000 = 3660 m

Hence, an exposure should be taken at every 1830 m and the separation of flight
strips  should be 3660 m.

The above analysis presumes ideal conditions, i.e. (f) level terrain, (i) vertical photographs,
(iii) no crab, (iv) no drift of the air craft and (v) constamt flying height. The flight path
centre lines are laid out parallel to the longest dimension of the area, onm any existing
map. Unless the area to be mapped is exactly covered by a certain number of flight paths
spaced at the computed value of W, W should be reduced to introduce one more flight
path to utilize the excess of photography for increasing the side overlap.

SELECTION OF FLYING ALTITUDE

The selection of height above ground depends upon the accuracy of the process to
be used and the contour interval desired. Several inter-related factors which affect the selection
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of flying height, such as desired scale, relief displacement, and tilt, have already been
discussed, Since vertical accuracy in a topographic map is the limiting factor in the photogrammetric
process, the flying height is often related to the contour interval of the finished map. The
process is rated by its C-factor which is the number by which the contour interval is
muliiplied t© obiain the maximum height about the ground.
Thus, Fiying height = (Contour interval) x (C factor)
C-factor for various processes vary from 500 to 1500, and depends upon the conditions
surrounding the entire map-compilation operation.
NUMBER OF PHOTOGRAPHS NECESSARY TO COVER A GIVEN AREA
In the preliminary estimate, the number of photographs required 15 calculated by dividing
the total area to be photographed by the net area covered by a single photograph.
Let A =total area to he photographed
I =length of the photograph in the direction of flight
w = width of the photograph normal to the direction of flight
5= scale of photograph =_,FHE:{_I'|:-% {i.e.l cm = 5 metres )
L =net ground distance corresponding to /
W= net ground distance to corresponding to w
a=net ground area covered by each photograph = L = W
P, = percentage overlap between successive photographs in the direction of flight
(expressed as a ratio)
P, = side lap (expressed as a ratio).
Since each photograph has a longitudinal lap of P, the acmal ground length (L)

covered by each photograph is given by

L={1-P)sl ' i)
Similarly, the acwual ground width (W) covered by each photograph is given by
We (1l - Py) 5w 1)

Hence the ground area (@) covered by each photograph
a=LW=(1-P)sl(1-Ps.w=l.ws(l-P)(l =Py [2.30 (a)]
The oumber of the photographs () required is given by
Nsd/sa ...{2.30)
If, however, instead of the total area 4, the rectangular dimensions (i.e.. length and
width) of the ground are given, the number of the photographs required are computed
by calculating the number of strips and the number of photographs required in each strip
and muloplying the two.
Let L;=dimension of the area parallel w the direction of flight
L» = dimension of the area normal o the direction of flight
N, = number of photographs in each strip
N = number of sirips required
N =rotal mumber of photographs w cover the whole area.
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Mow net length covered by each photograph =L =(1 - P)) sl
Number of photographs in each strip is given by

Y TR

A A T Ty

Similarly, net width covered by each photograph = W= (1 - Pu) sw

Hence the number of the sirips required are given by

+1 -..[2.31(a)]

S, L2
Ny = w1 0= Pom + 1 (2318
Thus, the number of photographs required is
- iy bl —22 4|
N=Nix M= | St | % T+ (231

INTERVAL BETWEEN EXPOSURES
The time imterval between the exposures can be calculated if the ground speed of
the airplane and the ground distance (along the direction of flight between exposures are
known.
Let V=ground speed of the airplane (km/hour)
L=ground distance covered by each photograph in the direction of flight
=(1-P)sl in km
T=tme interval between the exposures,
3600 L
v
The exposures are regulated by measuring the time required for the image of a ground
point o pass between two lines on a ground-glass plate of the view-finder. Usually, however,
the mierval 15 not calculated, but the camera is tripped automatically by syncromsing the
speed of a moving grid in the view-finder with the speed of the passage of images across

a screen.
CRAB AND DRIFT

Then T=

. (2.32)

Crab. Crab is the term used
to designate the angle formed between L i
the flight line and the edges of the Line
photograph in the direction of flight,
as shown in Fig. 2.35 {(a). Al the
instant of exposure, if the focal plane () Crab of photographs

of the camera is not square with the
direction of flight, the crab is caused e S
in the photograph. The arrangements I
are always made to rotate the camera
about the vertical axis of camera mount. [ B
Crabbing should be eliminated since
it reduces effective coverage of the
photograph.

R —

i
P p—
1
!
__l._______
i
i

|

(b} Drift

FIG. 2.35. CRAR AND DRIFT,
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Drift. Drift is caused by the failure of the photograph to stay on the predetermined
flight line. If the aircraft is set on its course by compass without allowing for wind velocity,
it will drift from #s course, and the photographs shall be as shown in Fig. 2.35 (b).
If the drifting from the predetermined flight line is excessive, reflights will have w be
made because of serious gapping between adjacent flight lines.

COMPUTATION OF FLIGHT PLAN

For the computation of the gquantities for the flight plan, the following data is required:
Focal length of the camera lens
Alttude of the flight of the aircraft
Size of the area to be photographed
Size of the photograph
Longitudinal overlap
Lateral overlap
Position of the outer flight lines with respect to the boundary of the area
Scale of the flight map

9. Ground speed of arcraft.

Enowing the above, the amount of film required can be calculated before hand, the
flight lines can be delineated on the map and the time interval between exposures can
be determined if an intervalometer is 0 be used.

Example 2.13. The scale of an aerial photograph is I em=100 m. The photograph
size 5 20 cm x 20 cm. Determine the number of photographs reguired to cover an area
of 100 sq. km if the longitudinal lap is 60% and the side lap is 30 %.

of =1 Sn Wh o L bk e

Solution.

Here [=20 cm : w=20cm :;: Pr=0.60: P, =030
_Him) .
:—f—[m}—lm {fi.,e. 1cme= 100 m)

The acmal ground length covered by each photograph is
L={1-P)sl={1~06)100x20=800m=08 km
Actual ground width covered by each photograph is
W= {l-PJsw=(1-03100%20=1400m =14 km
Net ground area covered by each photograph is
a=LxW=08x14=112 sq. km.
Hence number of photographs required is

a 1.12
Example 2.14. The scale of an aerial photography is I cm = 100 m. The photograph
size Is 20cm x 20 cm. Determine the number of photographs required 1o cover an area
10km = 10 km, if the longiudinal lap is 60% and the side lap is 30%.
Solution.
Here Li=10 km ; Ly=10 km
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Number of photographs in each strip is given by
U IR 10,000
(1 - Pisl (1 - 0.6) x 100 = 20
Number of flight lines required is given by
I TR 10,000
(1 = Py) sw (1 = 0.3) 100 = 20
Hence number of photographs required will be
N=N=Ny=l4x9=126

The spacing of the flight lines would be 10/9=1.11 km and not 1.4 as calculated
theoretically in the previous example.

Example 2.15. The scale of an aerial photograph is I om =100 m. The photograph
size i5 20 em x 20 cm. Determine the number of photographs required 1o cover an area
of 8km x 12.5 km, if the longitudingl lap is 60% and the side lap is 30%.

_ 12500
(1 - 0.6) = 100 = 20
= S900 +1=
(1 - 0.3) 100 = 20
Number of photographs = 17 = 7 = 119,

Example 2.16. An area 30 km long in the north-sowh direction and 24 km in the
east-west direction s to be photographed with a lens having 30 cm focal length for ihe
purpose of comstructing a mosaic. The photograph size is 20 cm x 20 cm. The average scale
is to be I : 12,000 effective ar an elevation of 400 m above datum. Overlap is 1o be
atleast 60% and the side lap is to be ai least 30%. An intervalometer will be wsed 1o
comtrol the interval between exposures. The ground speed of the aircraft will be maintained
at 2K km per howr. The flight lines are to be laid ow in a north-south direction on
an exisiing map having a scale of I : 60,0000 The mwo ourer flight lines are (o coincide
with the east and west boundaries of the area. Determine the daa for the flight plan.

Solution.
(i) Flying height
We have, H{m) H(m) _ 12,000
Sfim) 0.3 (m) i
H=12000 =03 =3600 m above ground
Height above datmum = 3600 + 400 = 4000 m.
(i) Theoretical ground spacing of flight lines
The ground width covered by each photograph, with 30% side lap is given by
W= (1 - Pg) sw.

N,

+1=125+1=14

+1=76+1=9

N;

Solution. Ny

+1 =17

M 7

H (m) _ 3600 (m) _
fim) ~ 30 (cm)

where w=width of photograph =20 cm ; 5= scale=

ie., lem=120 m : Py = 0.30
W=(1-0.3)120 x 20 = 1680 m.
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(i) Number of flight lines required

The number of flight lines i5 given by Eq. 231 (b), ie
La Ly 24,000 m

= s Y

(1 = Py) sw I W 1680 m

(iv) Actual spacing of flight lines : Since the number of flight lines is w be an

integral mumber, the actual flight lines = 16 and the number of flight strips or spacings

= 15, Hence the actual spacing is given by

Zdiﬂjﬂﬂ = 1600 m, against the theoretically calculated value of 1680 m.

(v} Spacing flight lines on flight map

Flight map is on a scale of 1 : 60,000 or 1 cm =600 m. Hence the distance on

the flight map corresponding to a ground dismm=%=:.m cm.

N + 1= 142 + | = 16.

W=

(vi) Ground distance behween exposures

The ground length covered by each photograph in the direction of flight with an
overlap of 60% s given by L=(l-P)sl =1 -0.6)= 120 x 20 = 960 m.

(vii) Exposure interval

The time interval between exposures is usually the integral number of seconds.

V=200 km per hnur:ﬁ mfsec.= 55.36 m/sec.

: . : 960 (m)

red nterval e = | 7.3 sec. £ 17 sec.
The requt exposure nterval 1s 355 (m/ se0) sec

{viti) Adjusted ground distance bétween exposures
Keeping the exposure interval as an integral number of seconds the adjusted ground
distance covered by each photograph is given by
L=VxT=3356(m/sec) = 7.0 (sec) = 945 m.
(vit) Number of photographs per flight line
The mumber of photographs per flight line is given by
L L 30,000
M= Tma T s
{ix) Total number of photographs required is
Ne Ny Ny=33 %16 =528
1.22. THE GROUND CONTROL FOR PHOTOGRAMMETRY
The ground comtrol survey consists in locating the ground positions of points which
can be identified on aerial photographs. The ground control is essential for establishing
the position and onentation of each photograph in space relative to the ground. The extent
of the ground control required is determined by (a) the scale of the map, () the navigational
control and (¢) the cartographical process by which the maps will be produced. The ground
survey for establishing the control can be divided into two paris
(@) Basic control (i) Photo control.

+ 1=31.6+1 =33,
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The basic comtrol consists in establishing the basic net-work of triangulation statioms,
traverse stations, azimuth marks, bench marks etc.

The photo comtrol consists in establishing the horizontal positions or elevations of
the images of some of the identified points on the photographs, with respect to the basic
control.

Each of these controls introduces horizomtal control as well as verrical control and
is known as basic horizontal comtrol, basic verical comirol, horizomtal photo control, and
vertical photo contrel respectively. The elevation of a vertical photo control point is determined
by carrying a line of levels from a basic control bench mark to the point, and then carrying
to the original bench mark or to a second bench mark for checking. The horizontal photo
control points are Iocated with respect to the basic control by third order or fourth-order
riangulation, third order traversing, stadia traversing, trigomometric traversing, substance-bar
wraversing etc. etc., depending upon the accuracy required. Vertical photo control may be
established by third-order leveling, fly levelling, transit-stadia levelling or precision barometric
altimetry etc., depending upon the desired accuracy.

The photo control can be established by two methods

(i)  Post-marking method

{if  Pre-marking method.

In the post-marking method, the photo control points are selected after the aenal
photography. The distinct advantage of this method is in positive identification and favourable
location of points.

in the pre-marking method, the photo-control points are selected on the ground first,
and then included in the photograph. The marked points on the ground can be identified
on the subsequent photograph. If the control traverse or triangulation station or bench marks
are to be incorporated in the photo-control net work, they are marked with paint, flags
eic. in such a way that identification on the photographs becomes easier. The selected
control points should be sharp and clear in plan.

2.23. RADIAL LINE METHOD OF PLOTTING (ARUNDEL'S METHOD)

The radial line plot, often called photo-triangulation is the most accurate means of
plotting a planimetric map from aerial photographs without the use of expensive instruments.
As discussed earlier, the displacement of image due to relief is radial from the principal
point of vertical photograph. Hence the angles measured on the photograph at the principal
point are tue horizontal angles, independent of the height of the object and the flying
height. The vertical photograph in space can thus be considered as an angle-measuring device
similar to a transit or a plane table. Also, on ulted photographs, angles measured at the
isocentre are true horizontal angles independent of tilt, provided that all objects photographed
have the same elevation. On a near-vertical photograph, the isocentre is very near to the
principal point. Hence the angles measured in the vicinity of these points are very nearly
equal to the true honzomtal angles, independent of tilt or elevation.
Thus, the radial line method is based on the following perspective properties of a
vertical or near vertical photograph :
1. The displacements in a photograph due to ground relief and lt are, within the
limit of graphical measurement, radial from the principal point of the photograph.
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(iiy Map position of principal points by two point resection
Let @ and b be two photo-control points appearing in both the photographs overlapping
each other. A and B are the plomed positions on the map sheet.

On photograph No. 1 (Fig. 2.37 a), w L AU
y .

k, is the principal point and k, is the principal : v
point of photograph No. 2 transferred on \
w it. Rays ka, kb and kk, are drawn. Kt = t——k, b
A tracing paper is put on it and the rays
are traced.

On photograph No. 2 (Fig. 2.37 b), N o
k; is its principal point and k, is the principal (&) Photograph 1 (b} Photograph 2
point of photograph No. 1, transferred on E N i

to it. Rays k,a, kb and Kk, are drawn. !
A rracing paper is put on it and the rays
are traced. Both the tracing papers are laid Yy

together on the map sheet in such a way ‘\ }-k!
that the rays kk; and k&, coincide when h
one 18 placed over the other. The rays hY
ka and ka will intersect at a and the B
rays kb and kb will intersect at b. The "
two tracing papers are moved now in such

a way that these intersections coincide with FIG. 2.37. LOCATION OF PRINCIPAL POINTS BY
§ i e TSECT
A and B respectively, and at the same time 2-POINT RESECTION.

the lines kik, and k&, coincide each other. The points k, and k, are then transferred o
the map sheet by pricking through. The line kk, on the map sheet constitutes the base
line with &, and &, as the instrument stations.
(b) TO TRANSFER IMAGES FROM A PHOTOGRAFPH TO A MAP

Since the angles measured on the photograph at the principal point are true horizontal
angles, the position of a point can be located by intersecting the rays to that point from
two principal pomnts. Im Fig. 2.38, let p and g be the images of two points on two

{c) Map sheel

1-1 " 1-2 p P
hq +* l—-_____+-_-_| '-_'+—-_.___‘_ + h'.r }i \1
LY . k +——— kK,
q q -ﬂ
(&) Phatograph 1 (b} Photograph 2 {c) Map shest

FIG. 2.38. LOCATION OF POINTS BY INTERSECTION.
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photographs overlapping each other. &, and &, are the two principal points. As discussed
in the previous paragraph, the principal points k, and k; can be transferred to the map
by the known positions of the photo control points. On each photograph, the rays can
be drawn to the points p and g and can be traced on two sheets of acing paper. Both
the sheets are then placed on the map sheet and properly oriented rill the map positions
of k, and &k, coincide respectively with the traced positions. The intersection of rays
k,p and k, p gives the position of P, and that of &g and kg give the posiion of Q.
The actual plotting of planimetric maps by radial line method is done in the following
sleps -
(1} Transfer of principal points and plotting the line of flight
{2} Marking the photographs
{3) Plotting the map control
(4) Transferring photographic detail.
{1) Transfer of Principal Poinis and Ploiting the Line of Flight

The principal pomnt of each photograph can be marked on it by means of two intersecting
lines drawn between the opposite fiducial marks which are there on the middles of all
the four edges of the photograph. The point of intersection of these two collimating lines
is the principal point of the photograph. Each photograph is given its serial number and
the number of the strip in which it was taken. For example, photograph Nos. 7. § and
9 of strip No. 2 will be marked as 2-7, 2-8 and 2-9 respectively. The principal points
of these photographs may be marked as k&, &k, and k, respectively.

Simce the longitudinal lap is generally 60% or more, the three photographs will have
common overlap of atleast 20% as shown shaded in Fig. 2.39.

If all the photographs of a particular strip are arranged in properly overlapped positions,
it will be observed that on the first photograph, its principal point will appear at its middle
while the transferred principal point of photograph No. 2 will appear at right hand edge.
On photograph No. 2 and all other photographs except the last, three principal points will
appear — one of its own at the middle and two at its two edges, as shown in Fig.
2.39 where photograph No. 2 has the principal points k,, &k, and k,. The principal points
of each photograph can be transferred on to the adjacemt photographs, one w its right
and one to the left of it, by fusion under a stereoscope (see § 2.24 for principles of
stereoscopic vision and fusion). For this, two adjacent
photographs are put under the stereoscope and are |14
oriented correctly with respect to each other till
the line of flight of the pictures is parallel w
the line joining the centres of two lenses of the
stercoscope. The distance between the photographs
i5 adjusted until fusion occors and the relief of
the landscape 15 clearly wvisible. In this position,
the principal poim of one photograph will be seen
directly and its image will be projected upon the
other photograph. Then with a needle the position
of the point can be wransferred to the adjacent FIG. 2.39
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Each of the succeeding photograph i marked in a similar manner until other ground
control points are reached. The end photograph of the strip must include at least one control
point.

(3} Plotting the Map Control

The data of the separate photographs are combined into a map showing correct relative
locations of the selected points and the comtrol points with the help of a sheet of transparent
film base (cellulose acetate) or a good quality tracing paper which exhibits very small changes
in its dimensions with changing ammospheric conditions.

The plotted positions of ground control poims Py, P, and P, chosen om photographs
I and 2 are known on the base map. The tracing 15 streiched on the base map and
these control points are transferred by pricking through with a needle. Phowograph No. 1
15 then slid under the tracing and is oriented in such a way that the radial hines through poinis
Py, P, and P, of the photograph pass through the plotted <ontrol poimis Py, P, P, on the
tracing. In this position, all the rays and poims are traced. The principal poimt &, and
the tansferred principal point &, are also traced,

Photograph No. 2 1s then shid under the tracing and is oriented in such a way
that rays previously drawn on the itracing pass through the corresponding points on the
photograph, keeping the traced flight line k, &, coinciding with flight line &, &, on the photograph.
Thus, photograph No. 2 is correctly oriented. In this position, all rays and points are
traced. Im this manner, each of the successive photograph is slid under the tracing, oriemed
and the rays traced till another ground control point is reached.

Fig. 2.4]1 shows the plotting of the map control on the tracing. It will be observed
that at each of the pass points, there will appear

three intersecting rays. The position of each of the P, P
points is located on the tracing at the point of intersection e k.¢ pe
of the threée rays. This point of intersection may not \P’\F'-:

appear to coincide with the corresponding point on
the photograph, because of the displacements due to 9.& #k }é
2

ground relief. Sometimes, due 10 errors of plotting, A 2R
the three rays may nol intersect at a point, but may

form a small triangle of error. In that case, the centre a0

of the triangle is taken as the position of the point, > $x, *{—3,:,

The plotting work is thus continued till the next
ground control point s reached. In a perfect map

control work, the image of the control point, as located | 4L ;é & _;.‘;.Q
by the intersecting rays, will be the plotted position [k 4R
of the point traced from the base map. ~

In case, the plotted position of the ground control  FiG. 2.41. COMPILATION OF MAP CONTROL.
point does not coincide with its traced position, as
usually is the case, the lines of flight, or the positions of the principal points are adjusied
as shown in Fig. 2.42. P is the position of the ground control point as located by the
intersection of rays, and P" is the corresponding position as traced from the base map.
Thus, the total error is P’ P in magnitude as well as direction. Each of the principal



194 HIGHER SURVEYING

points &y, kg &k ..... k; is shifted to positions
k', k', k¢, ...k, in a direction parallel o PP by
a distance proportional to the distance of that poim
from the initial fixed poimt k,. The positions of
other pass poinis are also adjusted accordingly.

It should be noted that when the tracing is
begun, the scale is not at all known. The unknown
scale is established by the distance between the
two principal points &k, and k. The scale of the
data assembled on the film or tracing can then
be determined by measuring the distance between
the first conirol point and the last control point
on it

{4) Transferring Photographic Details

To transfer the photographic details, each pho-
tograph is slid under the tracing and oriented 10 g 242, ADIUSTMENT OF THE LINES
the map comtrol. The details are then traced on OF FLIGHT.
the tracing. Next photograph is then slid and oriented
and corresponding rays are drawn to the points. The imtersection of the two sets of rays
obtained from the two photographs will give the plotied positions of the points, as illustrated
in Fig. 2.38. The detals can be transferred 1o the hase map enher by photograph or
by tracing over a carbon sheet.

Plain Templets Method of Control

The templet method is variation of the radial line method, and is used with greater
convenience when a considerable area is 1w be ploted by radial-line method.

Templets are of two kinds

{f)y  Plain templets (fty Sloned templets.

The plain templets are acmally the substituies of the tracing acetate paper of film.
The plain templets are transparent sheeis, preferably of acetate, and of size slightly bigger
than each photograph. The ground control poinlts and pass points or minor conirol points
are selected and marked on each photograph as explained earlier. The prnincipal pownt of
cach photograph 15 also transferred to the adjacent photographs. Separate templets are used
for each photograph. The templet is placed on the photograph and the posinon of principal
points are pricked through on to the templet. Radial lines are now drawn on the templet
from the principal point over each control point already marked on the photograph, Thus,
templets are marked for each and every photograph.

The first templet is then placed on the base map having the plotted positions of
the ground control, and is oriented such that the rays of the templet pass through the
plotted control points. After this, the second and third templets are also adjusted and oriented
properly by the same method as used for the radial line method. All the templets oriented
in this way are fastened together by Scotch tape, till another set of ground control points
i reached. If the ground conrol points on the templets do not coincide with the corresponding
map positions due to various sources of errors explained already, adjustments are made
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by stretching or twisting the whole assembly of wmplets as whole until the map positions
of ground control points coincide with the corresponding positions on the templets. The
system of control points established on the combined assembly of templets is then transferred
0 the base map by pricking through the acetate sheets with needle.

Slotted Templet Method of Control

The slotted templet is an improvement over the plain templet. In this method, all
rays from the principal points on minor and ground control points are replaced by slos
cut in cardboard or acetate templets (Fig, 2.43).

The templets may either be of

acetate sheets or sheets of thin, firm
cardboard of about the same size of
the photographs. As in the radial line
method, the ground and minor control
points are selected on each photograph
and marked with needle points. These
points are then transferred to the templet
by pricking through the photograph.
The templet is thus marked with the
principal point of the photograph, the
two transferred principal points of the
adjacent photographs, and the ground
and photo-control points. The templet [_sws T o
is then taken o the slot-cuiting machine.
A small hole is then punched at the
principal point. Slots representing rays
radiating from the principal point to the marked points are cut into the templets by the
machine, The stot cutting blade of the machine is designed so that it can be centred accurately
over the photograph position of any point marked on the templet. The width of the slots
cut are of the same size as the diameter of smuds (Fig. 2.43) which are inserted through
the slots, One such templet is prepared for each photograph. The metal studs to be inserted
in the slots are drilled centrally with a fine hole to accommodate a steel pin

A specially prepared floor or dais is uvsed for assembly of the slotted templets. The
base map containing the accurately plotted ground control points is stretched on the floor.
The first templet is put on the base map and 15 onented with respect to the ground control
points. Those photo-point steds which correspond to known ground control points are then
fixed in position on the map by pins (Fig. 2.43) driven through the central holes of the
studs, The movable smds (ie. studs having no central pins) are inserted through those
slots representing the rays to each selected photo point. The second, third and other templets
are then put on the map amd oriented one after the other by the method explained earlier,
till another set of ground control points are reached. The assembled templets are adjusted
until two or more slots belonging t© each ground control point will fit over the fixed
stud belonging to that point. When this is achieved, all the free studs representing the
photo-control points and principal points will be automatically adjusted. The positions thus
found for the movable or free studs are the most probable positions for the corresponding

FiG. 243, SLOTTED TEMPLET METHOD.
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photo points, and their positions are then transferred to the map by inserting sharp metal
pins through the central holes of the smuds.

If the effect of tlt is more in a photograph, its emplet will not fit the assembly.
Before it can be used, it will need to be rephotographed and the tilt effect removed.
The important advantage of the slomed templet method is that any fault due t© wrong
position of the slot or other sources 13 mechanically detected when the templets do not fit,

STEREOSCOPY AND PARALLAX

2.24. STEREOSCOPIC VISION

The: depth perception is the mental process of determining
relative distance of objects from the observer from the impressions &,
received through the eyes. Due to binocular vision, the observer
is able to perceive the spatial relations, i.e., the three dimensions
of his field of view. *

The impression of depth is caused mainly due to three
reasons : (1) relative apparent size of near and far objects,
(2) effects of hght and shade, and (3) viewing of an object
simultanecusly by two eyes which are separated in space.
Out of these, the third one is the most important. Each eye

views an object from a slightly different position, and by E: Eye base E,
a physiological process the two separate images combine together b "
in the brain enabling us w see in three dimensions.

FIGG. 2.44. ANGLES OF
Angle of Parallax (or Parallactic Angle) PARALLAX.

In normal binocular vision. the apparent movement of a point viewed first with one
eve and then with the other is known as parallar. Since an object 15 viewed simultanecusly
by two eyes, the rwo rays of vision converge at an angle upon the object viewed. The
angle of parallax or the parallactic angle is the angle of convergence of the wo rays
of vision. In Fig. 244, 4 and B are two objects in the field of view, and are being
viewed by the two eves represented in space by the positons, E, and E, . E, E; = b is known
as the eye base. The angle EAE, is the angle of parallax (p,) of object 4, and the
angle E BE, is the angle of parallax (g,) of object B. The object B, for which the parallactic
angle g, is greater, will be judged to be nearer the observer than the object 4 for which
the parallactic angle ¢, 15 smaller. The measure of the distance BA 15 evidently provided
by the difference in the parallactic angles of A and B. This difference. ie
Po— 0, (=5p) 15 termed as the differential parallax.

Stereoscopic Fusion

The principles of stereoscopic vision can readily be applied w photogrammetry. An
aerial camera takes a series of exposures at regular intervals of tme. If a pair of photographs
i5 taken of an object from two slightly different positions of the camera and then viewed
by an apparamus which ensures that the left eye sees only the lefi-hand picture and the
right eye is directed to the right hand picture, the two separate images of the object will
fuse together in the brain o provide the observer with a spatial impression. This is known
as a sierecscopic fusion. The pair of two such photographs 15 known as stereopair. Two
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devices are used for viewing stereopairs : the stereoscope and the anaglyph. To illustrate
the phenomenon of stereoscopic fusion, let us conduct an experiment (see Figs. 2.45 and
2.46) described below.

Fig. 2.45 shows two pairs of dots near the top edge of a sheet of paper. The

">
-

FIG. 2.45 FIG. 2.46. STEREOSCOPIC FUSION,

distance berween dots A and A, is less than the dots B and 8,. Place a piece of cardboard
between AB and A, B,, in the plane perpendicular to the sheet so that the left dots A,
B are seen with the left eye and the right dots A, , B, are seen with the right eye. By
staring hard, it will be observed that 4 and A4, fuse wgether o form a single dot which
appears closer than the fused image of B and B, (Fig. 2.46).

The apparent difference in level is known as stereoscopic depth and depends on the
spacing between the dots. The spacing between the dots is called the parallax difference.
Clues to Depth Perception

As stated earlier, the depth perception is the mental process of determining relative
distance of objects from the observer from the impression received through the eyes. Numerous
umpressions are received that serve as clwes to depth, and the following clues are important
from photogrammetry point of view :

(1) Head parallax {2y Accommodation

{3) Convergence (4)  Rentinal disparity.

{I' Head Parallax : Head parallax is the apparent relative movement of object at
different distances from the observer when the observer moves,
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(2} Accommodation : Accommodation is the process by which the lens of the eye
can be flattened (to focus npearby points on the retina) or made more convex (to focus
nearby points on the retina) in accordance with requirements placed on it. Due to the
accommodation of lens, the brain gets an approximate clue to distance (or depth). The
ability of the eyve tw accommodate this way become less for weak eves ;. it begins 1o
reduce in the forties and is usually completely lost in the sixties.

() Conmvergence : In order to sec an object clearly (or sharply) it 15 necessary
that the mmage of thc desired object is placed on the most sensitive part of each retina
(the fovea). This causes the two eyes to turn or converge. The convergence of the eyes
is therefore a clue to distance since the eyes converge more for nearby points and less
for farther poimts and brain is aware of their relative positions. In Fig. 2.46, the axes
of the eyes are directed to poinis A" and B' behind the plane of paper whereas the eyes
must be focused for the plane of paper if the dots are to remain sharply defined. Thus,
the convergence of the eyes (o view A’ and B') is not in sympathy with their accommodation
{to view A and B sharply).

{(4) Retinal Disparity : The picture of an object received by the two eyes are slightly
different since the two eyes are at different positions. The difference between the images
on the retinas is called rerimal disparity. Since it is a function of the relarive distance
of objects viewed, it provides a very strong distance clue. In photogrammetry, this is the
only clue which is aciually wsed. The range and intensity of stereoscopic perception can
be increased by two ways

(i) by apparently increasing the base between view points,
{if) by magnifying the field of view by use of lenses.
Stereoscope

Stereoscope 1S an instrument used of viewing stereopairs. Stereoscopes are designed
for two purposes

{1} To assist in presenting to the eves the images of a pair of photographs so that
the relationship between convergence and accommodation is the same as would be in namral
vision,

(2) To magnify the perception of depth.

There are two basic types of stereoscopes for stereoscopic viewing of photographs:

{1) Mirror stereoscope (2) Lens stereoscope.
(1) The Mirror Stereoscope : The mirror stereoscope, shown diagrammatically in Fig. 2.47
{b), comsists of a pair of small eye-piece mirrors m and m', and a pair of larger wing
mirrors, M and M', each of which is oriented at 45° with the plane of the photographs.

Fig. 2.47 {(a) shows a mail mounted on a block of timber, and is being photographed
by two camera posibons. The camera lens 15 placed first in the position of left eye and
then in the position of right eye, amd separate photographs are taken in each position.
It will be noted that the head of the nail is to the left in the left film and two the right
in the right film. ab and o't are the images of the nail AF in the two films.

Contact prints from these negatives are placed in the mirror stereoscope as shown
in Fig. 2.47 (b), where only images of the nail are drawn. The four mirrors transfer
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the image of the higher object B has moved a distance of 7.25 cm. Then the parallax
of the lower point is 6.05 cm and that of the higher point is 7.25 cm.

In the left photograph, a and & are the images of the two points. & is the rransferred
principal poimt of the right photograph. Both the images @ and b are to the right of the
y-axis of the left photograph. In the right photograph, o and b’ are the images of the
same points, both the images being w the left of the y-axis. Thus the images (a, &)
of the points have moved to (a', &) between the two exposures. The movement aa’ (shown
on the left photographs) is the parallax of A, and bb' is the true parallax of B. The
parallax of the higher point is more than the parallax of the lower point. Thus, each
image in a changing terrain elevation bas a slightly different parallax from that of a neighboring
image. This point-to-poini difference in parallax exhibited berween poinis on a stereopair
makes possible the viewing of the photographs stereoscopically fo gain an impression of
a confinuous three dimensional image of a terrain.

The following are the ideal conditions for obtaining aerial stereoscopic views of the
ground surface

(1) two photographs are taken with sufficient overlap.
(2} the elevation of the camera positions remains the same for the two exposures.

{3) the camera axis is vertical so that the picture planes lie in the same horizontal
plane.

Algebraic Definition of Parallax : As defined earlier the displacement of the image of
a point on two successive exposures is called the parallax of the point. On a pair of
overlapping photographs, the parallax is thus equal to the x-coordinate of the point measured
on the left-hand photograph (or previous photograph) minus the x-coordinate of the point
measured on the right-hand photograph (or next photograph). Thus
p=x-x' veul 2.23)
Thus, x-axis passes through the principal point and is parallel w the flight line,
while the y-axis passes through the principal point and is perpendicular to the line of flight.
In general, however, the flight-line x-axis is usnally very close to the collimation mark
x-axis, because of the effort made w eliminate drift and crab at the time of photography.
Thus, in Fig. 2.51, the parallax of points 4 and B are given by
Pa=Xa—-X"y and Py =Xs =X "p
In substituting the numerical values of x amd x', their proper algebraic sign must
be taken into consideration. Thus, in Fig. 2.51, if x;=2.55 cm, x'y = = 3.50 cm, x5 = - 4.05 cm
and x'p=-3.20 cm, we have
Pa=+ 255 —(-3.50) = 605 cm
po=+405 -(-3.200=7.25 cm.

2.26. PARALLAX EQUATIONS FOR DETERMINING ELEVATION AND GROUND
CO- ORDINATES OF A POINT

Let A be a point whose ground co-ordinates and elevation are to be found by paraliax
measurement.
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In the left photograph (Fig. 2.52), draw Om" parallel w O'm’' of right photograph.

Then, n the triangles Om"m and OMO'

00" 15 parallel to m" m

(dm coincides with, and is parallel w0 OM

Om™ 18 parallel o o' m'

Hence they are similar, and their corresponding altitodes are f and (H - i) respectively,

Thus, ﬁ=$, But mm"=km+km"=x-x'=p and OO =B = air base
& .i_'_ ; =% - {3}
or H-h-%f ..(2.35)

This is the parallax equation for the clevation of the point.
Again from equations (1) and (2),

But

Hence

This is the parallax equation for the ground co-ordinates of the point.

Difference in Elevation by
Stereoscopic Parallaxes

In Fig. 2.53, A, 4, is a
Hagpole being photographed from
two camera positions @ and
' The top A, of the flagpole
has an elevation of h, above the
datum, and the bottom A4, has an
elevation of k, above the datm.
H is the camera height for both
the exposures.

In the left photographs,
a, and a4, are the two images of
A, and A,, and their x-co-ordinates
are x, and x, respectively.

Similarly, in the right pho-
tograph, a', and a°; are the images
of Ay and A; respectively, and their
r-co-grdinates are x', and x*; re-
spectively.

=£x and

o]

E

\

r:

B

¥
P

Ground

Datum

-—-_________JL-_

PARALLAXES.

o

hl'

...{2.36)

FIG. 1.53. DIFFERENCE IN ELEVATION BY STEREOSCOPIC
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Evidently, the parallax p, for the bottom of the flagstaff is given by

P]FI]'I'j “:ll
Similarty., the parallax p: for the top of the flagstaff is given by
Pr=X:—X3 2
Hence the difference in parallax (A p) of top and bottom points is given by
Ap=p—-m ==X} - (x; - x') .{3)
From equation 2.35, the elevation of any point is given by
h=t-2
P
Hence, for the twop and bowrom of flagstaff, we get
h.:H-E‘[ and it ln"i'—:ﬂéIIF
m o]

Difference in elevation (A &) is given by,
Ah=h-m=(H-E) (g B) B ¥

b m m [
or an:[‘ﬁ)sf ..{2.37)
or Ah= ;:‘ ;’1 By 23N
Now Ap=p~p. Of pr=p+Ap
A
Hence, we have ah=m.ﬂf ..(2.38)

Mean Principal Base (by) : The distance between the principal point of a photograph
and the position of transferred principal point of its next photograph obtained under fusion
throngh stereoscope is called principal base. Thus, in Fig. 2.51,

k' = b = principal base of left photograph
and k'k=b'=principal base of right photograph.

It should be noted that b and &' will not be equal since the elevation of ground
positions of the principal points (K and K') are not the same.

The mean principal base is the mean value of the principal bases of the photographs.

b+ b
2

If the ground principal points (K and K") have the same elevation, then under ideal
conditions, by = b.

MNow, in Fig. 2,53, let the datum pass through the bottom 4, of the flagstaff (i.e.
h; =0). Assuming the ground to be now the datum plane, the ground principal points K
and K will be art the same elevation, and the parallax of the principal points (i.e., the

principal basc) will be equal to b. If H is the height of camera above the damm (i.e
above A4, now), the general relationship between b and B is given by

Thus, bw =
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or iy . N— ..(2.39)

f
aph at datum elevation. Substituting this value of air

= |
" i

where 5§ is the scale of the photog
base in equation 2.38, we get

T

53=L.
i+ AR
Since K, K and A, are all at the same elevation, their parallaxes are the same.
Hence pi = parallax of principal points = b

Hence, we get the parallax equation
HA HA
h = P _ d ..[2.40)
b+Ap p+Ap

While using equations 2.40, the following assumptions must always be kept in mind:

(1) The vertical control point (i.e., point 4,) and the two ground principal poinis
lie at the same elevation.

(2) The flying height (H) is measured above the elevation of the control point and
not sea level (unless the comirol point happens to lie at sea level).

In practical applications, the mean principal base (b,) is used in place of b, and
flying height above the average terrain is taken as the value of H.
Alternative form of Parallax Equation for A&

B
H-h

We have, Py = e and g =

1 ‘5' hy — My
= hy "FB{H—MHH—JI:}

ol
Ap=pi-p=fB| gy
But Ah=hy=hyand hy= Ak + by

Ah

AP S H-AR— )

or ApH-h)Y -Ap(H-h)Ah=fBAR
or AR[(H-h)Ap+fB)=(H-h)}Ap
Apo H-Hh)Ap
H-h)Ap+fB
Dropping the suffix of h, we get
(H-hyAp
Ah= 241
(H-hAp+/[B (2.41@)
where h is the elevation of lower point above datam.
- it
Putting fB=Hb, we get  Ah=— M AP L (2.41)

(H-hyAp+bH
It should be noted that the above egquation is in its most general form. Egq. 2.40
15 the special form of this, and can be obtained by puiting k=0 (i.e., lower poimt at
damm) in Eq. 2.41). Thus
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(H-0"Ap = H'Ap  Hfp
(H-0)Ap+bH HAp+bHH Ap+D

1.27. EFFECTS OF CHANGES IN ELEVATION & AND PARALLAX p
The difference of elevation between two points is given by eguation 2.37, iLe.,

Ah= ..(2.42)

Ah=22"0 pe
P pe

In order to find Ak, therefore, the parallaxes p, and p, of both the poimts are
10 be measured very carefully. If, however many computations are required (as in mapping},
the above method of finding A& is quite inconvenient. In such circumstance, the following
two methods are in common use :

(1)  the wnit-change method. (2) the parallax-table method.

[n both the methods, use of precise instruments (such as parallax bar. stereccomparator
or contour finder) are used to measure the difference in parallax (A p) directly by means
of micrometer scales and the fusion of two dots in the stereoscopic view, into a so-called
floating mark (see § 2.28).

(I} The Unit-Change Method

From equation 2.35, we have

H-h=2 or h=H-Z A1)
P p
By differentiation, we get dh-g":—rd;u-
3
Substituting p=ﬁ% (from Eq. 2.35), we get dh=m; ;'} .dp ...(2.42)
i B_H _(H—h
Since 5T we have also ith BH . dp L [2.42 (a)]

The above cquations express the rate of change of p for the infinitesimal change
dh in the value of A

The instroments used for measuring parallaxes are divided in millimeter, and hence
the unit of change in parallax is taken as one millimeter. Let the rate of change dh be
assumed 0 be constant for 1 mm change in dp.

Then dp =1 mm = A py (say).

If the value of Afy is compured for a corresponding value of Aps=1 mm, the
total value of A & (i.e., difference in elevation ) is found by multiplying Ak by the number
of millimeters in A p.

Egquation 2.42 can then be written as

(h — k)’ Apo
Ahy= ———— ..]2.43
S 1 1245 @l
_(H-hy (H-hy . B
or Ah= B YT (since Apy=1mm ) ...(2.43)

and Ah=Ahy=Ap . (2.44)
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Let H=800 m ; b = 100 mm
and h be increased by 10 m for the imterval (H - k&)= B000 m to (H - &) = 3000 m, and
then by 5 m for interval (H - h)=3000 two (H-h)=1500 m.

When h=0, H-h=8000 m and ZAp =0

When h=10, H-h=T7T990 m and EM=1T9;JIG={].125 mm
When h = 1000 m, H-h=T000 m and Eﬂp=%ﬂﬁ=l4.m mm
When & = 5000 m, H - h=3000 and Eﬂp=%=l&ﬁ.ﬁﬁ? mm.

Thus, the values of TAp for the different values of h can be found and a master
parallax table between (H - h) and ZAp can be prepared. Such a table will, however,
be useful for direct computations only if H=8000 and by= 100 mm. The values of
ZAp in the table may, however, be adapted to other conditions also if they are multiplied
by a constant K soch that

by { photo) x H (photo)
- 100 x 8000 +(2.46)

Example 2.17. A photoprammetric survey s carried owl to a scale of 1 : 20000.
A camera with a wide angle lens of = 150 mm was wsed with 23 on x 23 cm plate size

for a net 60% overlap along the line of flight. Find the error in height given by an
error of 0.1 mm in measuring the parallax of the poins.
Solution. Scale = L
1 150/ 1000 (m)
20,000 Him)

150
]ﬂmnil}.m-m m

The length of the air base is given by

B=[l—%]h={l—ﬂ.ﬁ}

K

or H=

w 20,000 = 1840 m

23
100
From equation 3.41, we have
H - hy
( I#'} dp
Corresponding © the damum elevation, the error dh for dp=0.1 mm is
{3000 - 0y
k= 1840 150
Example 2.18. In a pair of overlapping vertical photographs, the mean distance between
rwo principal points both of which lle on the datum is 6.375 cm. At the time of photography,
the air-craft was 600 m above the datum. The camera has a focal length of 150 mm.

In the common overlap, a rtall chimney 120 m high with iis base in the datum surface
is observed. Determine difference of parallax for top and bottom of chimney.

dh =

* 0.1 = 3.26 m.
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The movable plate can be moved to the left or to the right by means of a micrometer
screw which reads nearest o 0.01 mm, the total movement being about 25 mm. When
these two dots are viewed properly under a stereoscope, they fuse into a single dot called
floating mark. The marks are made to fuse by moving the right hand mark either 10
the left or to the right. After they have been fused, a slight movement of the movable
mark will give the viewer the mmpression that the floating mark is moving up or down
relative to the stereoscopic image. As the right hand mark is moved towards the left one,
the floating mark appears to rise ; if it is moved to the right, the floating mark will
appear to fall. These effects are due to the fact that the movement to the left increases
the parallax of the marks, whereas the movement to the right decreases the parallax of
the marks. Hence, if the floating mark is apparently placed on the ground at a known
elevation, and the micrometer scale is read and is then moved to another point of unknown
elevation, and the micrometer is turned until the floating mark again apparently rests on
the ground surface, the difference in the two micrometer readings 15 a measure of
A p from which the difference in elevation can be calculated. This is the principle of the
parallax bar,

Fig. 2.56 illustrates the principle of a parallax bar. On the lefi photograph, k is
its principal point and &' is the conjugate principal point transferred from the next photograph.
Similarly on the right hand photograph, & is its principal point and k is the conjugate
principal point transferred from the left photograph. Thus, k& is the flight line on both
the photographs, To orient them for sterecscopic observation, a fine straight line is drawn
on a sheet of heavy drafting paper and the left hand photograph is placed on it in such
a way that flight line is in exact coincidence with the line on the paper. This can be
easily done by the laying a straight edge
over the photograph and orienting it to
the line, The separation of the two marks
of the parallax bar is set o a distance
L (measured within 1/2 mm), inswch | kel lxoow |
a way that it reads approximately the ﬁ-l:-
middle reading. The right hand photograph N
15 then orented by means of the flight
line and is so placed as to cause a separation
L between the principal point on one pho-
tograph and to corresponding position on
the other photograph. The two photographs
are then fused under a stereoscope (Fig.
2.48) and set so that their positions may
not be altered.

Let it be reguired to measure the
parallax difference between two points A
and C whose images appear on both the
photographs at (a2, ¢) and {a'.c") respec-
tively. The left mark of the parallax bar

is placed over a and the parallax bar g 256 PRINCIPLE OF A PARALLAX BAR.
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scale at a particular elevation—
either at the datum elevation or
the average elevation of the terrain.
Fig. 2.58 shows a photograph
with a dlt 7 at the exposure station
O and flying height h. The negative
and the photograph are parallel to
each other., The rectified enlarge-
ment &' k' a’ is inclined at an angle
¢ with the negative, and its principal
distance is p = mf. The horizontal
plane of the rectified photograph
is known as the easel plane. It
is to be noted that for the rectified
enlargement of the photograph, the
negative should be placed at a dis-
tance f from the lens. The lens
will project the images from the
negative in the proper direction,
but since the distance from the lens
to the negative is equal to the focal
length of the lens, the projected  °

bundles of the rays will be parallel i Detum
to one another and they would never FIG. 2.58. RECTIFICATION AND ENLARGEMENT.
come to focus the enlargement plane.

This is shown in Fig. 2.59 {(a). This gives the condition that the entire negative must
be placed behind the focal plane of the lens used in the rectifier.

Scheimpllug Condition

As discussed in the previous paragraph if the negative plane is placed at the focal
plane of the lens, the image cannot be focused. This is illustrated in Fig. 2.59 (a). If,
however, the negative plane is placed beyomd the focal plane, at a distance g from the
lens and r 15 the corresponding position of the enlargement, the following two conditions

are to be satisfied simultaneously :

%+%=% and r=mq -(2.48)
where F is the focal length of the lens of the rectifier and m is the magnification.

The relationships stated above are for a wvertical photograph. However, these apply
also for a tilked photograph. These conditions are shown mm Fig. 2.59 (¢). x and x' are
the conjugate distances for the point a, while y and ¥ are conjugate distances for the
point b. Hence, we have

1.1 1 1
— i — —
xr x F

1 1
and -t ===
y ¥ F



214 HIGHER SURVEYING

.~ Negative

s i [ e v

{¢) Beheimplhug condition
FIG. 2.59.

The negative plane makes an angle o with the lens plane, and the easel plane makes
an angle B with the lens plane. It is to be noted that all the three planes intersect along
one line. This 15 an important condition known as Scheimpflug condition.

The Scheimpflug condition, which must exist in order to produce sharp focus between
the negative plane and the easel plane when these planes are not parallel, states that the
negative plane, the plane of the lens, and the easel plane must intersect along one line.

In order to allow for a continnous range of tilt angles and magnification . there
are in pgeneral, five independent elements necessary for rectification. These are

(1)  Variation of the projection distance.

(2) Tilt of the plane of projection about a horizontal axis.

(3) Rotation of the negative in its own plane (swing).

{4) Displacement of the negative in its own plane vertical fo tilt axis.

(5) Dasplacement of negative in its own plane parallel o 1l axis.

An awromatic rectifier is a rectifier so constructed that it automatically maintains the
relationship between the object distance and the image distance, and at the same time fulfills
the Scheimpflug condition. Fig. 2.60 shows the Wild E4 rectifier-enlarger introdvced at



FiGi 2.60. WILD E4 RECTIFIER-ENLARGER

(TO FACE PAGE 215)
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FORMING A STEREOSCOPIC MODEL (U.5. GEOLOGICAL SURVEY)
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the 1964 Congress of Photogrammetry in Lisbon. The lens equation is automatically fulfille_d
by a cam inversor and the Scheimpflug condition is automatically fulfilled by an electromic
simulator. Both cam inversor and electromic simulator are equipped with synchro systems.
The instrument has enlargement ratios over a range from 0.8 X to 7 X and can be used
for a largest negatve size of 23 cm = 23 em (9" = 9"). For further operational details, the
reader is advised to see pamphlet P-1.302 e issued by M/s Wild Heerbrugg Lid.

2.30. MOSACIS

Vertical photographs look so much like the ground that a set can be fined together
to form a maplike photograph of the ground. Such an assembly or getting of a series
of overlapping photographs is called a mosaic. To a varying degree of accuracy, a mosaic
is a map substitute, The mosaic has an over-all average scale comparable to the scale
of a planimetric map.

Since they are taken at slightly varying altitudes and they comtain tilis, they often
do not fit each other very well. It is best w rephotograph them before they are used
o bring them to desired scale and to eliminate some of the rilt

A comtrolled mosaic is obtained when the photographs are carefully assembled so
that the horizontal control points agree with their previously plotted positions. Making controlled
mosaics is an art. A mosaic which is assembled without regard to any plotted control
is called an wncomtrolled mosaic.

The photographs are laid in such a sequence as to allow photo number and flight
number of each photograph to appear on the finished assembly. This assembly 15 called
an index mosaic. An index mosaic is a form of uncontrolled mosaic,. A mosaic which
is  assembled from a single strip of photograph is called a strip mosaic.

The photographs used for preparing mosaics may consist of direct contact prints, of
prints which have all been ratioed to a given datum scale in an enlarger, or of prints
which have been fully rectified and ratioed in a rectifier.

A mosaic differs from a map in the following respects :

(1} A mosaic is composed of a series of perspective of the area, whereas a map
i5 single orthographic projection.

(2) A mosaic contains local relief displacements, tilt distortions and non uniform scales,
whiles a map shows the correct horizontal positions at a uniform scale.

I (3) Various features appear as realistic photographic images onm a mosaic, whereas
‘they are portrayed by standard symbols on a map,

2.31. STEREOSCOPIC PLOTTING INSTRUMENTS

| A stereoscopic plotting instrument is an optical instrument of high precision in which
|the spatial relationship of a pair of photographs at the instant of exposure is reconstructed.
in such an instrument, the rays from the two photographs are projected and caused 1o
miersect in its measuring space to form a theoretically perfect model of the terrain. A
/measured mark, visible to the operator is used to measure the stereoscopic model in all
(wee dimensions. The horizomtal movement of the measuring mark throughout the model
15 transmitted (o a plotiing pencil, which traces out the map position of the features appearing
in the overlap area of two photographs forming the model.
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A stereoscopic plotting instrument has four general components:

(1) a projection system {2y a viewing system

(3) a measuring system (4) a tracing system.

It is bevond the scope of the present book to illustrate fully the theory and working
of the wvarious plotting machines. However a brief description of the multiplex plotter is
given below.

The Multiplex Plotter

The multiplex is probably the most widely used of any type of plotting machine.
The equipment includes a reduction printer, a set of projectors mounted in series on a
horizontal bar and a tracing table which provides both a floating mark and a tracing pencil
to draw the map. The reduction printer produces reduced pictures on small glass plates.
The P em =23 cm (or 9 = 9") size is thus reduced to a size 4cm x4 ¢m on the glass
plates called diaposinives.

Fig. 2.61 shows a pair of multiplex projectors forming a stereoscopic model. Each
projector consists of a light source, a plate holder for the diapositive plate, and a lens
which transmits the rays coming from the diapositive plate into the open space below the
projector, The spatial mode! is obtained by projecting one photograph of an overlapping
pair in red light and the other in blue-green light, and by observing the combination of
colours through spectacles containing one red and one blue-green lens. This model, 1 fact,
has three dimensions, and is not o be considered as virtual stereoscopic image as seen
in a simple stereoscope. This method of viewing is called the amaghyph system of viewing
reflected light and fulfills the condition of siereoscopic viewing.

Provision is made to move each of the projector in the directions of the X Y2
co-ordinate axes, and also fo rofate the projecior abowr each of these axes, The X-motion
15 parallel to the supporting bar, the F-motion is perpendicular o the supporting bar and
in the horizontal direction, while the Z-motion is perpendicular to the supporting bar amd
in the vertical direction. These six motions of each projector, independent of the others,
make it possible to orient each projector in exactly in the same relation to the control
points on the drawing table below, which the camera in the air had to the same corresponding
actual ground points.

The rracing table contains a circular white disc with a pinhole in its centre. A light
bulb below the disc provides a small pin point of light. This illuminated pin point is
visible from the projectors and forms the measuring mark or floating mark in the spatial
model. The disc can be raised or lowered so that the floating mark rests on the ground
of the model. The tracing pencil point vertically below the floating mark gives position
of the point on the map sheet. The tracing pencil traces pencil traces on the plotting
sheet the horizontal movements of the floating mark. The disc is raised or lowered by
means of a screw on the centre post at the back of the tracing stand. On the left post
of the tracing stand is a millimetre scale on which is read the height of the disc above
the drawing table which may be considered as the datum plane. The elevation of any
point in the spatial model can be found by reading the vertical scale of the tracing stand,
after the floating mark has been set on the given point.
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{@) Prove that on a tilted photograph height displacements are radial from the plomb point.

{#} Derive an expression for the height displacements in @ vemical photograph.

{m) Explain with reference o0 aerial photographs, what i meani by end overlap and side overlap

and why they are provided 7

(b How do you determine the number of phetographs necessary two cover a given ared in an
aerial survey 7

Write a note on radial line method of ploiting.

Wrie short notes on the following :

(o) Siereoscopic vision. (b) Mirror stercoscope. (¢} Crab and drifi. {dy Parallax bar.

Describe, with the belp of neat skeich a photo-theodolite.

(@) Explain how do vou determine the focal length of the camera lens of a photo-theodolite.

(b) The distance from two points on & photographic print (0 the principal line are 42.36 mm
o the left and 38.16 mm to the right. The angle between the points measured with a transit
is 30° 45, Determine the focal length of the lens.

(@) How do you determine the scale of an aerial photograph ? What do you understand by the

terms C‘datum scale’ amd C“average scale” 7

A line PQ 2100 m fong, lying at an elevation of 400 m measures 10.08 cm on a vertical photograph.
If the focal length of the lens is 24 om determine the scale of the photograph in an area, the
average clevation which is 600 m.

A line AB lies on a terrain having an average clevation 400 m above mean sea-level. It

appears © be 8.72 cm on a phowgraph for which focal leng  is 24 cm. The same line measures
1

40000°

Calculase the flying akitude of the aircraft, above mean sea level, when the photograph was taken.

An object has an clevation of 400 m above mean sea-level. The distance from the principal point

t the image of that point on the photograph is 4.86 cm. If the datum scale is ”EI“] and focal
length of the camera s 24 om, determine the reliel displacement of the point.

A wwer AR s 40 m high, and the elevation of its bomom £ is 800 m above mean sea-level.
The distance of the image of the lower on a verical photograph, taken at a flight altiude of
1800 m above mean sea-level, is 842 cm. Compuie the displacemeni of the image of the top
of the tower with respect to the image of its botiom,

A tower, lying on a flat area having an average clevation of 800 m above mean sca-level, was
photographed with a camera having a focal length of 24 cm. The distance between the images
of wp and bottom of the tower measures 0.34 cm on the photograph. A line AB, 200 m long
on the ground, measures 12.2 cm on the same photograph, Determine the beight of the wwer
if the distance of the image of the top of the wwer is 8.92 cm from the principal point

The scale of an aerial photograph is | c¢cm =160 m, and the size of the photograph is
20 em x 20 cm. If the longitudinal lap is 65% and side lap = 35%, detlermine the number of photographs
required 0 cover an arca of 237 sg. km.

2.18 cm on a4 map which is t© a scale of

ANSWERS
) i
1828-8 m ---—[ . , 286-4] m.
14030 m. 13.(0% 14638 m.
1 cm =200 m. 15, 2800 m.
0675 ¢om, 17. 034 cm

60 m. 19, 100.



Electro-Magnetic Distance
Measurement (EDM)

3.1. INTRODUCTION
There are three methods of measuring distance between any two given points
1. Direct distance measurement (DDM), such as the one by chaining or taping.

2. Opiical distance measurement (ODM), such as the one by tacheometry, horizontal
subtense method or telemetric method using optical wedge attachments.

3. Electro-magnetic distance measurement (EDM) such as the one by geodimeter,

tellurometer or distomat etc.

The method of direct distance measurement is unsuitable in difficult terrain, and some
times impossible when obstructions occur. The problem was overcome after the development
of optical distance measuring methods., But mn ODM method also, the range s limited
to 150 to 150 m and the accuracy obtammed is 1 in 1000 to 1 in 10000, Electromagnefic
distance measurement (EDM) enables the accuracies upto 1 in 10°, over ranges upto 100 km.

EDM is a general term embracing the measurement of distance using electronic methods.
In electro-magnetic (or electronic) method, distances are measured with instruments that rely
on propagation, reflection and subsequent reception of either radio, visible light or infra-red
waves. There are in excess of hfty different EDM systems available. However, we wall
discuss here the following instruments :

(f}  Geodimeter (i)  Tellurometer {(iify Distomats.

3.1. ELECTROMAGNETIC WAVES

The EDM method is based on generation, propagation, reflechon and subsequent reception
of electromagnetic waves. The type of electromagnetic waves generated depends on many
factors but principally, on the pature of the elecirical signal used o generate the waves.
The evolution and use of radar in the 1939-45 war resulted in the applicaton of radio
waves to surveying. However, this was suitable only for defence purposes, since it could
not give the requisite accuracy for geodetic surveying. E. Bergestrand of the Swedish Geographical
Survey, in collaboration with the manufaciurers, Messrs AGA of Sweden, developed a method
based on the propagation of modulared light waves using instrument called geodimeter. Another
instrument, called rellurometer was developed, using radio waves. Modern short and medium

(219)
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range EDM instruments (such as Distomats) commonly used in surveying use modulated
infra-red waves.

Properties of electromagnetic waves

Electromagnetic waves, though extremely complex in nawre, can be represented in
the form of periodic sinusoidal waves shown in Fig. 3.1. It has the following properties:

1. The waves completes a cycle in moving from dentical points 4 1o £ or B to
For D w H

2, The number of times the wave com- - W
pletes a cycle in one second is termed as
frequency of the wave. The frequency is rep- A c G
resented by [ hertz (Hz) where 1 hertz (Hz) E
is one cycle per second. Thus, if the frequency
f is equal to 10 Hz, it means that the waves =
One langth

completes 10" cycles per second. wave

3. The length traversed in one cycle or cycle
by the wave is termed as wave length and
is denoted by A (metres). Thus the wave
length of a wave is the distance between two identical points (such as A and E or B
and F) on the wave.

4. The period is the time taken by the wave to travel through one cycle or one
wavelength. It is represented by T seconds.

5. The velocity (v) of the wave is the distance travelled by in one second.

The frequency, wavelength and period can all vary according to the wave producing
source. However, the wvelocity v of an electromagnetic wave depends upon the medium
through which it is travelling. The velocity of wave in a vacuum is termed as speed of
fight, denoted by symbol ¢, the value of which is presently known to be 299792.5 km/s.
For simple calculations, it may be assumed to be 3 x 10° m/s.

The above properties of an electromagnetic wave can be represented by the relation,
c 1
f=5x=7 3.1
Another property of the wave, known as phase of the wave, and denoted by symbol
@, i85 a very convenient method of identifying fraction of a wavelength or cycle, in EDM.
One cycle or wave-length has a phase ranging from 0° to 360°. Various points 4, B,
C ew. of Fig. 3.1 has the following phase values :

FIG 3.1 PERIODIC SINUSOIDAL WAVES.

Point —- A B C D E F G H
Phase 4° O a0 180 270 360 af 180 270
(or )

Fig. 3.2 gives the electromagnetic spectrum. The type of electromagnetic wave is
known by its wavelength or its frequency. However, all these travel with a velocity approximarely
equal to 3 = 10° m/s. This velocity forms the basis of all electromagnetic measurements.,
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FIG. 3.2 ELECTROMAGNETIC SPECTRUM.

Measurement of transit times

Fig. 3.3 (a) shows a survey line AB, the length D of which is to be measured
using EDM equipment placed at ends A and B. Let a transmiiter be placed at A w0 propagate
electromagnetic waves towards B, and let a receiver be placed at B, along with a timer.
If the timer at B starrs at the instant of transmission of wave from 4, and sfops at the

instant of reception of incoming wave at B, the fransit time for the wave from A and
B in known.

A B

, , (a)

HAVAAVAAVE !

p'_l /\ /-\ /;=L ,' _.|.|: Ir .,1 'l ~:.*.’ '[1:}
IVIRAVARAVERVERVERVEE

4 =0 I by = 180°
- 2 - 2 »

FIG, 3.3, MEASUREMENT OF TRANSIT TIME.
From this transit time, and from the known velocity of propagation of the wave,
the distance D between 4 and B can be easily computed. However, this transit tme is

of the order of | = 10™°s which requires very advanced electronics. Also it is extremely
difficult to start the timer at B when the wave is transmitted at 4. Hence a reflector
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is placed at B instead of a receiver. This reflector reflects the waves back towards A,
where they are received (Fig. 3.3 (#)]. Thus the equipment at A acts both as a transmitter
as well as receiver. The double transit time can be easily measured at 4. This will require
EDM timing devices with an accuracy of + 1= 1075,

Phase Comparison
Generally, the various commercial EDM systems available do not measure the transit
time directly. Instead, the distance is determined by measuring the phase difference between
the transmitted and reflected signals. This phase difference can be expressed as fraction
of a cycle which can be converted into umis of iime when the frequency of wave is
known. Modern techniques can easily measure upio ﬁﬁ part of a wavelength.
In Fig. 3.3 (b), the wave transmitted from A towards B is instantly reflected from
B wwards A, and is then received a1 A, as shown by dotted lines. The same sequence
is shown in Fig. 3.3 {(¢) by opening owt the wave, wherein 4 and A" are the same,
The distance covered by the wave is
2D = nih + Ak L(3.2)
where d = distance between 4 and B
i = wavelength
n= whole number of wavelengths travelled by the wave
Al = fraction of wavelength travelled by the wave.

The measurement of component AX is kmown as phase comparison which can be
achieved by electrical phase detectors.

Let iy = phase of the wave as it is transmitted at A
gz = phase of the wave as it 18 received at 4
Then a1=mdl"ﬁ3“ﬁ“;§“‘d*i“—ﬁ-x1 or an:ifilgﬂ‘f” «hL.(3.3)

The determination of other component ni of equation 3.2 is referred to as resolving

the ambiguity of the phase comparison, and this can be achieved by any one of the following
methods.

(i} by increasing the wavelength manually in multiples of 10, so that a coarse measurement
of D) is made, enabling » 10 be deduced.

(if) by measuring the line AF using three different (but closely related) wavelengths,
so0 as o form three simultaneous equations of the form

W= i+ Ak 2D =ml+ Ak ; 2D = ks 4+ Al
The solution of these may give the value of D.
In the latest EDM equipment, this problem is solved sutomatically, and the distance
D is displayed.
For example, let A for the wave of Fig. 3.3 (¢) be 20 m. From the diagram,
=6, p, =0°and g, = 180°.

M= _ '?I?':!-'i.lh:'r
ah + A A= nd + 360° A
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180 - 0

360 w 20

or 2D = (6 = 20) +

52 D=65 m.
This measurement of distance by EDM is analogous to the measurement of AB by
taping. wherein
D=ml+Al
where | =length of tape =20 m (say)
m = whole No. of tapes =3
A I = remaining length of the tape in the end bay
Hence the recording in the case of taping will be D=3mx20+5=65 m.
3.3, MODULATION
As stated above, EDM measurements involve the measurement of fraction AL of the
cycle. Modern phase comparison techniques are capable of resolving to better than

ﬁ part of a wavelength. Assume + 10 mm to be the accuracy requirement for surveying

equipment, this must represent of the measuring wavelength. This means that

1
1000
A =10 1000 mm = 10 m, which is a maximum value, However, by use of modern circuitory,
A can be increased to 40 m, which corresponds to f=7.5 x 10° Hz. Thus, the lowest
value of f that can be used is 7.5 x 10° Hz. At present, the range of frequencies that

can be used in the measuring process is limited to :pmmjnmely 7.5x 1010 5 x 10" Hz

In order to increase the ac-
curacy, it is desirable to use an W

extremely high frequency of propa- Measuring wave Humﬂmm

gation. However, the available phase
comparison techniques cannot be used
at frequencies greater than
1

5= 10" Hz which corresponds to a
wavelength A = 0.6 m. On the other
hand, the lower frequency value in Modulated carmar wave Modulated camiar wave
the range of 7.5 = 10°t0 5 = 10* Hz (a) Ampiitude modulation (b) Frequency modulation
is not suitable for direct transmission
through atmosphere because of the
the effects of interference, reflection, fading and scatter.

The problem can be overcome by the technique of modulation wherein the measuring
wave used for phase comparison is superimposed on a carrier wave of much higher frequency.
EDM uses two methods of modulating the carrier wave :

(@) Ampliude modulation. (b) Frequency modulation.

In amplitude modulation, the carrier wave has constant frequency and the modulating

wave (the measuring wave) information is conveyed by the amplinde of the carrier waves.
In the frequency modulation, the carrier wave has comstant amplimde, while its frequency

FIG. 3.4. MODULATION
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varies in proportion to the amplitude of the modulating wave. Frequency modulation is
used in all microwave EDM instruments while amplitude modulation is done in visible light
instruments and infrared instruments using higher carrier frequencies.

3.4. TYPES OF EDM INSTRUMENTS

Depending upon the type of carrier wave employed, EDM instruments can be classified
under the following three heads :

{a) Microwave Instrumenis

(b) Visible light instruments

() Infrared instruments.

For the corresponding frequencies of carrier waves, reader may refer back to Fig.
3.2, It is seen that all the above three categories of EDM instruments use short wavelengths
and hence higher frequencies.

1. Microwave insiruments

These instruments come under the category of long range instruments, where in the

carrier frequencies of the range of 3 to 30 GHz (1 GHz= 10%) enable distance measurements
upto 100 km range. Tellurometer come under this category.

Phase comparison technique is used for distance measurement. This necessitates the
erection of some form of reflector at the remote end of the line. If passive reflector
i5 placed at the other end, a weak signal would be available for phase comparison. Hence
an electronic signal is required to be erected at the reflecting end of the line. This instrument,
known as remote instrument is identical to the master instrument placed at the measuring
end. The remote instrumeni receives the transmitted signal, amplifies it and transmits it
back to the master in exactly the phase at which it was received. This means that microwave
EDM instruments require two instruments and two operators. Frequency modulation is used
in most of the microwave instruments. The method of varying the measuring wavelength
in multiplies of 10 is used to obtain an unambiguious measurement of distance. The microwave
signals are radiated from small aerials (called dipoles) mounted in front of each instrument,
producing directional signal with a beam of width varying from 2° to 20°. Hence the
alignment of master and remote units is not critical. Typical maximum ranges for microwave
instruments are from 30 to 80 km, with an accuracy of £ 15 mmto + 5 mm/km.

2. Visible light instruments

These instruments use visible light as Prism mounted

in hausing

carrier wave, with a higher frequency, of the
order of 5 = 10" Hz. Since the transmitting
power of carrier wave of such high frequency
falls off rapidly with the distance, the range
of such EDM instruments is lesser than those
of microwave units. A geodimeter comes under
this category of EDM instruments. -
The carrier, transmitted as light beam, Comar cube prism Raflectsd fay smerges
is concentrated on a signal using lens or mirror cansiruction paralled to incident ray
system, so that signal loss does not take place. FIG. 3.5. CORNER CUBE PRISM
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Since the beam divergence is less than 17, accurate alignment of the instrument is necessary.
Comer-cube prisms, shown im Fig. 3.5 are used as reflectors at the remote end. These
prisms are constructed from the corners of glass cubes which have been cut away In a
plane making an angle of 45° with the faces of the cube.

The light wave, directed into the cut-face is reflected by highly silvered inner surfaces
of the prism, resulting in the reflection of the light beam along a parallel path. This is
obtainable over a range of angles of incidence of about 20° w the normal of the [ront
face of the prism. Hence the aligment of the reflecting prism towards the main EDM instrument
a the receiver (or fransmiming) end 8 nov cnncal,

The advantage of visible light EDM instruments, over the microwave EDM instruments
is that only one instrument is required, which work in comjunction with the inexpensive
corner cube reflector. Amplitude modulation  is employed, using a form of electro-optical
shutter. The line is measured using three different wavelengths, using the same carrier in
each case. The EDM instrument in this category have a range of 25 km, with an accuracy
of £10 mm © +2 mm'km. The recent instruments use pulsed light sources and highly
specialised modulation and phase comparison techniques, and produce a very high degree
of accuracy of 202 mm w +]1 mm/km with a range of 2 w 3 km.

3. Infrared instroments

The EDM instruments in this group use near imfrared radiation band of wavelength
about 0.9 p m as carrier wave which is easily obtained from gallium arsenide (Ga As) infrared
emitting diode. These diodes can be very easily directly amplirude modulated at high frequencies,
Thus, modulated carmer wave 15 obtained by an inexpensive method. Due to this reason,
there is predominance of infrared instruments in EDM. Wild Distomats fall under this category
of EDM instruments.

The power output of the diodes is low. Hence the range of these instruments is
limited to 2 to 5 km. However, this range is quite sufficient for most of the civil engineering
works. The EDM mstruments of this category are very light and compact, and these can
be theodolite mounted. This enables angles and distances to be measured simultaneously
at the site. A rypical combination s Wild DI 1000 infra-red EDM with Wild T 1000
elecironic theodolite (*Theomat”). The accuracy obtainable is of the order of + 10 mm, irrespective
of the distance In most cases.

The carrier wavelength in this group is close to the wvisible light spectrum. Hence
infrared source can be transmitted in a similar manner tw the visible light system using
geometric optics, a lens/mirror system being used 1o radiate a highly collimated beam of
angular divergence of less than 15'. Corner cube prisms are used at the remote end, to
reflect the signal.

Electronic tacheometer, such as Wild TC 2000 ‘Tachymat’® 13 a further development
of the infrared (and laser) distance measurer, which combines theodolite and EDM units.
Microprocessor controlled angle measurement give very high degree of accuracy, enabling
horizontal and vertical angles, and the distances (horizontal, vertical, inclined) to be automatically
displaced and recorded.
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3.5. THE GEODIMETER

The method, based on the propagation of modulared light waves, was developed by
E. Bergestrand of the Swedish Geographical Survey in collaboration with the manufacturer,
M/s AGA of Sweden. Of the several models

of the geodimeter manufacured by them, ! 2 o
model 2-A can be used only for observations M *, To reflector
made at night while model-4 can be used 3 3 .
for limited day tme observations.

Fig. 3.6 shows the schematic diagram 7
of the geodimeter. Fig. 3.7 shows the pho- 5
tograph of the front panel of model-4 geodi-
meter moumed on the tripod, The main
instrument is stationed at one end of the
line {to be measured) wath its back facing
the other end of the line, while a reflector
(consisting either of a spherical mirror or
a reflex prism system) is placed at the
other end of the line.

The light from an incandescent lamp

: . g 1. Incandascant lamp 5. Variabla elactrical delay umit
(1) is focused by means of an achromatic 7. Ko enl B, Hull Infeator
condenser and passed through a Kerr cell 3 wicors prisms 7. Crystal controlled osciliator
(2). The Kerr cell consist of two closely 4. Photo tube B. Variable light dalay unit.

spaced conducting plates, the space between
which is filled with nitrobenzene. When
high wvoltage is applied to the plates of the cell and a ray of light is focused on i,
the ray is split into two parts, each moving with different velocity. Two Nicol's prisms
(3) are placed on either side of the Kerr cell. The light leaving the first Nicol's prisms
i5 plane polarised. The light is split into two (having a phase difference) by the Kerr
cell. On leaving the Kerr cell, the light is recombined. However, because of phase difference,
the resulting beam is elliptically polarised. Diverging light from the second polariser can
be focused to a parallel beam by the transmitter objective, and can then be reflected from
a mirror lens o a large spherical concave mirror.

On the other end of the line being measured is put a reflex prism system or a
spherical mirror, which reflects the beam of light back to the geodimeter. The receiver
system of the geodimeter consists of spherical concave mirror, mirror lens and receiver
objective. The light of variable intensity after reflection, impinges on the cathode of the
photo mbe (4). In the photo mbe, the light photons impinge on the cathode causing a
few primary electrons to leave and travel, accelerated by a high frequency voltage, to the
first dynode, where the secondary emission takes place. This is repeated through a further
eight dynodes. The final electron current at the anode is some hundreds of thousand tmes
greater than thar at the cathode. The sensitivity of the photo mbe is varied by applying
the high frequency-Kerr cell voltage between the cathode and the first dynode. The low
frequency vibrations are climinated by a series of electrical chokes and condensers. The
passages of this modulating voltage through the instrument is delayed by means of an adjustable

FIG. 3.6, SCHEMATIC DIAGRAM OF THE GEODIMETER.
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electrical delay unit (5). The difference between the photo wbe currents during the positive
and negative bias period is measured on the mull indicaror (6) which is a sensitive D.C.
moving coil micro-ammeter. In order to make both the negative and positive current intensities
equal {i.e. in order to obtain pull-point), the phase of the high frequency voltage from
the Kerr cell must be adjusted =90° with respect wo the wvoltage generated by light at
the cathode.

Thus, the light which is focused to a narrow beam from the geodimeter stationed
at one end to the reflector stationed at the other end of the line, s reflected back 1o
the photo multiplier. The variation in the intensity of this reflected light capses the current
from the photo multiplier o vary where the current is already being varied by the direct
signal from the crystal controlled oscillater (7). The phase difference between the two pulses
received by the cell are a measure of the distance between geodimeter and the reflector
(i.e., length of the line),

The distance can be measured at different frequencies. On Model-2A of the geodimeter,
three frequencies are available. Model-4 has four frequencies. Four phase positions are available
on the phase position indicator. Changing phase indicates that the polarity of the Kerr
cell terminals of high and low tension are reversed in turn. The ‘fine’ and ‘coarse’ delay
switches control the setting of the electrical defay between the Kerr cell and the photo
multiplier. The power required is obiained from a mobile gasoline generator. Model-4 has
a mght range of 15 meters o 15 km, a daylight range of 15 1w 300 metres and an
average error of £ 10 mm % five millionth of the distance. It weighs about 36 kg without
the generator.

3.6. THE TELLUROMETER

In the Tellurometer, high frequency radio waves (or microwaves) are used niead
of light waves. It can be worked with a light weight 12 or 24 wvolt battery. Hence the
mstrument is highly portable. Observations can be taken both during day as well as night,
while in the geodimeter, observations are normally restricted in the night. However, two
such Tellurometres are required, one to be stationed at each end of the line, with two
highly skilled persons, to take observations. One instrument is used as the masier sel or
control sei while the other instrument is used as the remote ser or slave sei. In Model
MRA-2 (manufactured by M/s. Cooke, Troughton and Simms Lid), ecach set can either
be used as the master set or remote set by switching at ‘master’ and ‘remote’ positions
respectively. Fig. 3.8 shows the photograph of Tellurometer {Model MRA-2).

Fig. 3.9 shows the block diagram of the Tellurometer, first designed by Mr. T.L.
Wadley of the South African Council for Scientific and Industrial Research. Radio waves
are emitted by the master instrument at a frequency of 3000 Mec.s. (3 = 10° c.p.s.) from
a klystron and have superimposed on them a crystal controlled frequency of 10 Me.s. The
high frequency wave is termed as carrier wave. Waves at high frequencies can be propagated
in straight line paths other than long distance muoch more readily. The low frequency wave
i5 known as the paitern wave and is used for making accurate measurements. The light
frequency pattern wave is thus said to be frequency modulated (F.M.) by low frequency
pattern wave. This modulated signal is received at the remote station where a second Klystron
is generating another carrier wave at 3033 Mc.s. The difference between the two high
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FIG. 3.9 BLOCK DIAGRAM OF THE TELLUROMETER SYSTEM.

frequencies, fe. 3033 - 3000=33 Mc.s. (known as iwermediale frequency) is obtained by
an electirical ‘mixer’, and 15 used o provide sufficient sensitivity in the internal detector
circuits at each instrument. In addition to the carrier wave of 3033 Mc.s., a crystal at
the remote station is generating a frequency of 9.999 Mc.s. This is heterodvned with the
incoming 10 Mc.s. o provide a 1 k c.p.s. signal. The 33 Mc.s. intermediate frequency
signal is amplitude modulated by 1 k c.p.s. signal. The amplitude modulated signal passes
to the amplitude demodulator, which detects the 1 k c.p.s. frequency. At the pulse forming
circuit, lpu]s:mﬂ:arcpmmfm[um:ynflkcps is obtained. This pulse is then
applied to the klystron and frequency modulates the signal emitted, i.e., 3033 Mc.s. modulated
by 9.999 Mc.s. and pulse of 1 k c.p.s. This signal is received at the master station.
A further compound heterodyne process takes place here also, where by the two carrier
frequencies subtract o give rise t©o an intermediate frequency of 33 Me.s. The two pattern
Jrequencies of 10 and 9.999 Mc.s. also subtract to provide 1 k c.p.s reference frequency
as amplimde modulation. The change in the phase between this and the remote | k c.p.s.
signal is @ measure of the distance . The value of phase delay is expressed in time units
and appear as a break in a circular wace on the oscilloscope cathode tay tbe.
Four low frequencies (4, B, C and D) of values 10.00, 9.99,9.90 and 9.00 Mc.p.s.
employed at the master station, and the values of phase delays corresponding to each
these are measured on the oscilloscope cathode ray tube. The phase delay of B, C
D are subtracted from A in wrn. The A values are termed as ‘fine readings’ and
B, C, D values as “coarse readings’. The oscilloscope scale 15 divided into 100 pans.
wavelength of 10 Mc.s. pattern wave as approximately 100 fi. (30 m) and hence

=8
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each division of the scale represents 1 foot on the two-way journey of the waves or approximately
0.5 foot on the length of the line. The final readings of 4,4 - B, A - C and A - D readings
are recorded in millimicro seconds (10" seconds) and are converted into distance readings
by assuming that the velocity of wave propagations as 299,792.5 km/sec. It should be
noted that the success of the system depends on a property of the heterodyne process,

that the phase difference between two heterodyne signal is maintained in the signal that
resulis from the mixing.

3.7. WILD “DISTOMATS’

Wild Heerbrugg manufacture EDM equipment under the trade name ‘Distomat’, having
the following popular models :

. Distomat DI 1000 2. Distomat DI 55 3. Distomat DI 3000

4. Distomat DIOR 3002 5. Tachymat TC 2000 (Electronic tacheometer)

1. Distomate DI 1000

Wild Distomat DI 1000 is very small, compact EDM, particularly useful in building
construction, civil engineering construction, cadastral and detail survey, particularly in populated
areas where 99% of distance measurements are less than 500 m. It is an EDM that makes
the tape redundant. It has a range of 500 m to 2 single prism and 800 m to three prisms
{1000 m in favourable conditions), with an accuracy of 5 mm + 5 ppm. It can be fined
to all Wild theodolites, such as T 2000, T 2000 8, T2 eic.

The infra-red measuring beam is reflected by a prism at the other end of the line.
In the five seconds that it takes, the DI 1000 adjusts the signal strength o optimum level,
makes 2048 measurements on two frequencies, carries out a full internal calibration, computes
and displays the result. In the tracking mode 0.3 second updates follow the initial 3- second
measurement. The whole sequence is amtomatic. One has to simply point o the reflector,
touch a key and read the result.

The Wild modular system ensures full compatibility between theodolites and Distomats.
The DI 1000 fis T 1, T 16 and T 2 optical theodolites, as shown in Fig. 3.10 (a).
An optional key board can be wsed. It also combines with Wild T 1000 electronic theodolite
and the Wild T 2000 informatics theodolite to form fully electronic rotal station [Fig. 3.10
(0)]. Measurements, reductions and calculations are carried out automatically. The DI 1000
also connects to the GRE 3 data terminal [Fig. 3.10 (¢)]. If the GRE 3 iz connected
to an electronic theodolite with DI 1000, all information is transferred and recorded at
the wuch of a single key. The GRE can be programmed to carry out field checks and
computations.

When DI 1000 distomat is used separately, it can be comtrolled from its own key
board. There are only three keys on the DI 1000, each with three functions, as shown
Fig. 3.11. Colour coding and a logical operating sequence ensure that the instrument is
easy to wse, The keys control all the functions. There are no mechanical switches. The
liguid-crystal display is unusually large for a miniaturized EDM. Measured distances are
presented clearly and unambiguously with appropriate symbols for slope, horizontal distance,
height and setting out. In test mode, a full check is provided of the display, bamery power
and return signal strength. An aodible tone can be activated to indicate return of signal.
Scale (ppm) and additive constant {mm) settings are displayed at the start of each measurement.
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Input of ppm takes care of any ammospheric correction, reduction to sea level and projection
scale factor. The mm input corrects for the prism type being used. The microprocessor
permanently stwores ppm and mm valpes and applies them © every measurement. Displayed
heights are corrected for earth curvamre and mean refraction.

DI 1000 is designed for use as the standard measuring ool in short range work.
A single prism reflector is sufficieni for most tasks. For occasional longer distance (upio
B0 m), a three prism reflector can be used. The power 15 fed from NiCd rechargeable
batieries.

2. Distomat DI 55

Wild DI 55 iz a medium range infra-red EDM controlled by a small powerful microprocessor,
It is multipurpose EDM. The 2.5 km range to single prism covers all short-range reguirements:
detail, cadastral, engineering, topograhic survey, setting out, mining, tunnelling etc. With
its 5 km range 1o 11 prisms, it is ideal for medium-range control survey : iraversing,
rigonometrical heighting, photogrammetric control, breakdown of triangelation and GPS nerworks
etc. Finely mmed opio-electronics, a stable oscillator, and a microprocessor that continuously
evaluates the results, ensure the high measuring accuracy of 3 mm + 2 ppm standard deviation

is standard measuring mode and 10m + 2 ppm standard deviation in tracking measuring
mode.

Fig. 3.12 shows the view of DI 55. It has three control keys, each with three
functions. There are mo mechanical switches. A powerful microprocessor controls the DI
55, Simply touch the DIST key to measure, Signal anenuation is fully awtomatic. Typical
measuring time is 4 seconds. In tracking mode, the measurement repeats automatically every
second. A break in the measuring beam due to traffic efc., does not affect the accuracy.
A large, liquid-crystal display shows the measured distance clearly and unambiguously throughout
the entire measuring range of the instrument. Symbols indicate the displayed values. A
series of dashes shows the progress of the measuring cycle. A prism constant from
~ 99 mm to + 99 mm can be input for the prism type being used. Similarly, ppm values
from - 150 ppm to + 150 ppm can be input for automatic compensation for aimospheric
conditions, height above sea level and projection scale factor. These wvalues are stored until
replaced by new values. The microprocessor corrects every measurement automatically.

Dl 55 can be also fited w Wild electronic theodolites T 1000 and T 2000 [Fig.
3.13 {a)] or w Wild optical theodolites T 1, T 16, T 2, [Fig. 3.13 (b)]. The infra-red
measuring beam is parallel to the line of signal. Only a single pointing is needed for
both angle and distance measurements. When fitted o an optical theodolite, an optional
key board [Fig. 3.13 (b] covert it to efficient low cost effective total station. The following
parameters are directly obtained for the corresponding input waloes (Fig. 3.14):

(@) Input the vertical angle for

{(iy Horzontal distance

(ify Height difference corrected for earth curvature and mean refraction.
(b} Input the horizontal angle for

(i} Coordinate differences A E and A N.
(c) Imput the distance to be set out for

(Y A D, the amount by which the reflector has to be moved forward or back.
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Pair of displayed valwes. The panel directly displays angles, distances, heights and
co-ordinates of the observed point where the signal (reflector prism) is kept (Fig. 3.26).
Height above datum and station co-ordinates can be entered and stored.

N

P 1-
‘L
FiGe 3.26.

The following pairs are displaved
() Hz circle V circle
(i) Hz circle Horizontal distance
(iify Height difference Height above datum
(ivi Slope distance V circle
{v) Easting Northing.

Remote object height (ROH). The direct
height readings of inaccessible objects, such as towers
and power lines, the height difference and height
above datum changes with telescope. However, both
the pairs of values are displaved automatically.
The microprocessor applies the correction for earth
curvature and mean refraction. Corrected heighis
are displayed.

Traversing program. The coordinates of the
reflector and the bearing on the reflector can be
stored for recall at the next set-up. Thus, traverse

point coordinates are available in the field and _ -
closures can be wverified immediarely, ey N M
Setting out for direction, distance and height. ’

The required direction and horizontal distance can FIG. 328 TRAVERSING.
be emered. The mstrument displays:
(i) The angle through which the theodolite ]
has © be turned. \ . /.'
{fi}) The amount by which the reflector has B
to be moved. %
And by means of remoie object height (ROH)
capability, markers can be placed at the required
height above darum.

FIG. 3.27. DETERMINATION OF ROH.

FIG. 3.2, SETTING OUT,
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Setting out can be fully sutomated with GRE 3 data terminal. The bearings and
distances to the points to be set out are computed from the stored coordinates and wransferred
automatically tw the TC 2000 roral sravion.

Differences in Hz and V. For locating targets and for real time comparisons of
measurements in deformation and monitoring surveys, it is advantageous to display angular
differences in the horizontal and vertical planes between a required direction and the acmal
relescope  poiniing.

3.8. TOTAL STATION

A total station is a combination of an electronic theodolite and an electronic distance
meter (EDM). This combination makes it possible to determine the coordinates of a reflector
by aligning the instruments cross-hairs on the reflector and simultanecusly measuring the
vertical and horizontal angles and slope distances. A micro-processor in the instrument takes
care of recording, readings and the necessary computations. The data is easily transferred
to a computer where it can be used to generate a map. Wild, "Tachymat® TC 2000, described
in the previous article is one such fofal station manufactured by M/s Wild Heerbrugg.

As a teaching tool, a total station fulfills several purposes. Learming how to properly
use a total station involves the physics of making measurements, the geometry of calculations,
and statistics for analysing the results of a traverse. In the field, it requires team work,
planning, and careful observations. If the total station is equipped with data-logger it also
involves mterfacing the data-logger with a computer, transferring the data, and working
with the data on a computer. The more the user understands how a mwtal station works,
the better they will be able o use it
Fundamental measurements : When aimed al an appropriate target, a tolal station measures
three parameters (Fig. 3.31)

1. The rotation of the instrument's optical axis from the instrument north in a horizonial
plane : i.e. horizomal angle

2. The inclination of the optical axis from the local vertical ie. vertical angle.

&
Ling of sight
= 2 /4
2 ﬁ&' @’ | (Refiector, A)
= 1
m M
?
5| & oF
Instrumant
north "
instrurmant i
{1} i

Harizontal ““LL__LL

angie (M)

FIG. 331. FUMDAMEMTAL MEASUREMEMNTS MADE BY A TOTAL STATION
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vertical angles accordingly. The compensator can only make small adjustments, so the instrument
still has o be well leveled. If it 18 oo far out of level, the instrument will give some
kind of "tit" error message.

Because of the compensator, the instrument has to be pointing exactly at the target

in order to make an accurate vertical angle measurement. If the instrument is not perfectly
leveled then as you turn the instrument about the vertical axis (i.e., change the horizontal
angle) the wertical angle displayed will also change.
3. Slope Distance : The instrument to reflector distance is measured using an Electronic
Distance Meter (EDM). Most EDM's use a Galliuom Aresmde Diode to emit an infrared
light beam. This beam s usually modulated to two or more different frequencies. The
infrared beam is emitted from the total station, reflected by the reflector and received and
amplified by the total station. The received signal is then compared with a reference =ignal
generated by the instrument (the same signal generator that wansmits the microwave pulse)
and the phase-shift is defermined. This phase shift is a measure of the travel time and
thus the distance berween the total station and the reflector.

This method of distance measurement 18 not sensitive to phase shifts larger than one
wavelength, so it cannot detect instrument-reflector distances greater than 1/2 the wave length
{the imstrument measures the two-way travel distance). For example, if the wavelength of
the infrared beam was 4000 m then if the reflector was 2500 m away the nstrument
will return a distance of 500 m.

Since measurement to the nearest millimeter would require very precise measurements
of the phase difference, EDM’s send out two (or more) wavelengths of light. One wavelength
may be 4000 m, and the other 200 m. The longer wavelength can read distances from
1 m w 2000 m w the nearest meter, and then the second wavelength can be used
measure distances of | mm © 9.999 m. Combining the two results gives a distance accurate
to millimeters. Since there is overlap in the readings, the meter value from each reading
can be used as a check.

For example, if the wavelengths are %, = 1000 m and 2, =10 m, and a target is
placed 151.5]1 metres away, the distance returned by the A, wavelength would be 151
metres, the A, wavelength would return a distance of 1.51 m. Combining the two results
would give a distance of 151.51 m.

Basic calculations

Towal Stabons only measure three parameters | Horizontal Angle, Vertical Angle, and
Slope Distance. All of these measurements have some error associated with them, however
for demonstrating the geometric calculations, we will assume the readings are without error.
Horizontal distance

Let us use symbol [ for instrument (total station) and symbol R for the reflector.
In order to calculate coordinates or elevations it is first pecessary m convert the slope
distance to a horizontal distance. From inspection of Fig. 3.32 the horizontal distance (H,) is

Hp = Sp cos (90° - Z,) = 5p sin Z4 wA1)(3.4)

where 5, is the slope distance and Z, is the zenith angle. The horizontal distance
will be used in the coordinate calculations.
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Vertical distance

We can consider two vertical distances. One is the Elevarion Difference (dZ) between
the two points on the ground. The other is the Vertical Difference { V) between the tilting
axis of the instrument and the tilting axis of the reflector. For elevation difference calculation
we need to know the height of the tlting-axis of the instrument ([;), that is the height
of the cemer of the telescope, and the height of the cemter of the reflector { Ry)

The way to keep the calculation straight is to imagine that you are on the ground
under the imstumemt (Fig. 3.32). If you move up the distance /;, , then travel horizontally
tw a vertical line passing through the reflector then up {(or down) the vertical distance
{ Vp) to the reflector, and then down to the ground ( B, ) you will have the elevation
difference 4Z between the two points on the ground. This can be written as

dZ = Vp + (Iy - Ry) A2} L (3.5)

The quantities J, and R, are measured and recorded in the field. The verical difference

Vy, 15 calculated from the vertical angle and the slope distance (see Fig. 3.32)

Vo = Sp sin (90° - Z,) = Sp 08 Z, (3} ..(3.6)
Substituting this result (3) into equation (2) gives
dZ = Sp cos Za + (fy — Ru) L4 3T

where dZ is the change in elevation with respect to the ground under the total station.
We have chosen to group the mnstrument and reflector heights. Note that if they are the
same then this pant of the eguation drops out. If vou have to do calculations by hand
it 15 convemient to set the reflector height the same as the insorument height.

If the instrument is at a known elevation, [, . then the elevation of the ground beneath
the reflector, R, is

Re=1Iz + Spcos Zy 4 (Iy - Ry) A5 (3.8

Coordinate calculations
So far we have only used the vertical angle and slope distance to calculate the elevation
of the ground under the reflector. This is the Z-coordinare (or elevation) of a poinmt. We

¥
5 " Rellector
| (Rg, Ry R

T |

g dE = Hp, 8in H g

[+ " H"“

I Hun Hg, T

n

z T Total station

© i g “Er IH. If:‘

Total station {Ig, Iy, In Ersl:
' 3 1 HD .
East % )
Redlactor
Re. Ry Rzl
(a) {)

FIG. 3.33. COMPUTATION OF EAST AND MORTH COOMNATES OF THE REFLCTOR
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now want to calculate the X- {or East) and Y- {or MNorth) coordinates. The zero direction
set on the instrument 15 instrument north. This may not have any relation on the ground
to true, magnetic or grid north. The relationship must be determined by the wser. Fig.
3.33 shows the geometry for two different cases, one where the horizontal angle is less
than 180° and the other where the horizontal angle is greater tham 180°. The sign of
the coordinate change [positive in Figure 3.33 (@) and negative in Fig. 3.33 (b)] is taken
care of by the wigonometric functions, so the same formula can be used in all cases,
Let us use symbol E for easting and N for northing, and symbol [/ for the instrument
(i.e total station) and R for the reflector. Let R, and R, be the easung and northing
of the reflector and /; and [, be the easting and northing of the instrument (i.e. wwtal
station)

From inspection of Fig. 3.33 the coordinates of the relector relative to the total
stafion are

dE = CI.'IIHEE in Eﬂiﬂg =H35inH“

dN = Change in Northing = H, cos H,

where H, is the horizontal distance and H, is the horizontal angle measured in
a clockwise sense from instrument north. In terms of fundamental measurments (i.e. equation
1) this is the same as

dE = Sp sin &, sin H,p 3
dN = Sp cos (90" = Z,) cos Hue = Sp sin Z; cos Hae 3,100

If the easting and northing coordinates of the mstrument station are known (in grid
whose north direction is the same as instrument north) then we simply add the instrument
coordinates to the change in easting and northing to get the coordinates of the reflector.
The coordinates of the ground under the reflector, in terms of fundamemal measurments

are :
Re =g+ 5p sin Z, sin H.g B ERRY
Ry= I+ 5 5in Z; cos H e (312)
Ry = Iz + Sp cos Z4 + (Iy — Ry) A3 13D

where [, [, and [, are the coordinates of the total station and R.. R, . R, are
the coordinates of the ground under the reflector. These calculations can be easily done
in a spreadsheet program.

All of these ralculations can be made within a total station, or in an attached electronic
notebook. Although it is tempting o let the total station do all the calculations, it is wise
to record the three fundamental measurements. This allows calculations to be checked, and
provides the basic data that is needed for a more sophisticated error analysis.



Remote Sensing

4.1. INTRODUCTION

Remote sensing is broadly defined as science and art of collecting information about
objects, area or phenomena from distance withowt being in physical contact with them.
In the present comtext, the defimition of remote sensing is resiricted to mean the process
of acquiring information about any object without physically contacting it in any way regardless
of whether the observer is immediately adjacent to the object or millions of miles away.
Human eye is perhaps the most familiar example of a remote sensing system. In fact,
sight, smell and hearing are all rudimentary forms of remote sensing. However, the term
remote sensing is restricted to methods that employ eleciromagnetic energy (such as light,
heat, microwave) as means of detecting and measuring target characteristics. Air craft and
satellites are the common plaiforms used for remote sensing. Collection of data is wsually
carried out by highly sophisticated semsors (i.c. camera, multispectral scanner, radar etc.).
The information carrier, or communication link is the electromagnetic energy. Remote sensing
data basically consists of wave length intensity information by collecting the electromagnetic
radhation leaving the object at specific wavelength and measuring its intensity. Photo interpredation
can at best be considered as the primifive form of remote sensing. Most of the modemn
remote sensing methods make use of the reflected infrared bands, thermal infrared bands
and microwave portion of the electromagnetic spectrum.
Classification of remote sensing

Remote sensing is broadly classified into two categories

(1) Passive remoie sensing and () Active remote sensing
Passive remofe sensing : It uses sun as a source of EM energy and records the energy
that is naturally radiated and/or reflected from the objects.
Active remove sensing : It uses its own source of EM energy, which iz directed towards
the object and return energy 15 measured.
4.2, HISTORICAL SKETCH OF REMOTE SENSING

Remote sensing became possible with the invention of camera in the nineteenth century,
Astronomy was one of the first fields of science to exploit this technique. Although, it
was during the first World War that free flying aircrafts were used in a remote sensing
role, but the use of remote sensing for environmental assessment really became established
after the second World War. It not only proved the wvalue of aerial photography in land

(241)
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reconnaissance and mapping, but had also driven technological advances in air borne camera
design, film characteristics and photogrammetic analysis.

However, opto early 1960°s air borpe missions were one of the expensive surveys,
providing data for relatively small area at a single instant of time, Moreover, all the photographs
were black and white. Colour photography came into existence after the invention of infrared
films in 1950. From about 1960, remoie sensing underwent a major developmeni when
it extended o space and sensors began to be placed in space. From 1970°s started the
new era of remote sensing. The first designated earth resources satellite was launched in
July 1972, originally named as ERTS-1 which is now referred as Landstat-1. It was designed
o acguire data from earth surface as systematic, repetitive and multi-spectral basic. The
first Radar remote sensing satellite, SEASAT, was launched m 1978

Prior to mid 1980's, the majority of satellites had been deployed by USA and USSRE.
France launched first of SPOT series in 1985 and in 1988, first Indian Remote Sensing
Satellite (IRS-1A) was put info orbit. Satellites launched by Japan include JERS (Japanese
Earth Resources Satellite) and MOS (Marine Observation Satellite). Radar satellites have
been launched in 1991 and 1995 by European Consortium (ERS) and by Canada in 1995
(RADARSAT).

4.3. IDEALIZED REMOTE SENSING SYSTEM

An idealised remote sensing system consists of the following stages (Fig. 4.1)
Energy source

Propagation of energy through atmosphere

Energy interaction with earth’'s surface features.

Airborne/space borne sensors receiving the reflected and emitted energy
Transmission of data to earth station and generation of data produce.
Multiple-data users

1. The energy source : The uniform energy source provides energy over all wave lengths.
The passive RS system relies on sun as the sirongest source of EM energy and measures

energy that is either reflected and or emitted from the earth’s surface features. However,
active RS systems use their own source of EM energy.

2. Propagation of energy from the atmosphere : The EM energy, from the source pass
through the atmosphere on its way to earth’s surface. Also, after reflection from the earth’s
surface, it again pass through the atmosphere on its way to sensor. The atmosphere modifies
the wave length and spectral distribution of energy to some extent, and this modification
varies particularly with the wave length.

3. Interaction of emergy with surface features of the earth : The imteraction of EM
energy, with earth’s surface features generates reflected and/or emitted signals (spectral response
patterns or signatures). The speciral response patterns play a central role in detection, identification
and analysis of earth's surface material.

4. Air borne/space borme sensors : Sensors are electromagnetic instruments designed to
receive and record retransmitted energy. They are mounted on satellites, aeroplanes or even
balloons. The sensors are highly sensitive to wave lengths, yielding data on the absolute
brightness from the object as a function of wavelength.

R o ol e
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@ Uniform energy source
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FIG. 4.1 IDEALISED REMOTE SENSING S5YSTEM

5. Transmission of data to earth station and data product generation : The data from
the sensing system is transmitted to the ground based carth station along with the welemetry
data, The real-time (instantanecus) data handling system consists of high density data tapes
for recording and visual devices (such as television) for quick look displays. The dara
products are mainly classified into two categories

{fy  Pictorial or Photographic product (analogue)
and (i) Digital product

6. Multiple data wsers : The multiple data users are those who have knowledge of great
depth, both of their respective disciplines as well as of remote sensing data and analysis
techniques. The same set of data becomes various forms of information for different users

with the understanding of their field and imterpretation skills.
4.4. BASIC PRINCIPLES OF REMOTE SENSING

Remote sensing employ electromagnetic energy and to a great extent relies on the
inferaction of electromagnetic energy with the mater (object). It refers to the sensing of
EM radiation, which is reflected, scattered or emitted from the object.

4.4.1. ELECTROMAGNETIC ENERGY

It is a form of energy that moves with the velocity of lght (3 = 10° m/sec) in
a harmonic pattern consisting of sinusoidal waves, equally and repetitively spaced in time.
[t has two helds : (/) elecncal field and (i) magnetic field, both being orthogonal to
each other. Fig. 4.2 show the electromagnetic wave patiern, in which the elecric componenis
are vertical and magnetic components are horizontal.
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Electromagnetic energy consists of photons having particle like properties such as energy
and momentum. The EM energy is characterised in terms of wvelocity ¢ (=3 » 10" m/s),
wave length A and frequency f. These parameters are related by the equation -

T
= £ LA 1)
I

where A= wave length, which is the distance between two adjacent peaks. The wave
lengths  sensed by many remofe sensing systems are extremely small and
are measured in terms of micro meter (pm or 10 m ) or nanometer
(nm or 10" m)
f= frequency, which is defined as the number of peaks that pass any given
point in one second and is measured in Hertz (Hz).

The amplitude is the maximum value of the electric (or magnetic) field and is a
measure of the amount of energy thai is wansported by the wave.

Wave theory concept explains how EM energy propagates m the form of a wave.
However, this energy can only be detected when it interacts with the matter. This interaction
suggests that the energy consists of many discrete units called photons whose energy ()
is given by

Q=hf=2E 42)

where h= Plank’s constant = 6.6252 = 10 * Js

The above equation suggests that shorter the wave length of radiation, more is the
energy content,

4.4.2. ELECTROMAGNETIC SPECTRUM

Although visible light is the most obvious manifestation of EM radiation, other forms
also exist. EM radiation can be produced at a range of wave lengths and can be categorised
according to its position into discrete regions which is generally referred to elecrro-magnetic
spectrum. Thus the electromagnefic spectrum is the continuum of energy that ranges from
meters to nano-meters in wave length (Fig. 4.3) travels at at the speed of light and propagates
through a vacuum like the outer space (Sabine, 1986). All matter radiates a range of electromagnetic
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FIG. 4.3, ELECTROMAGMETIC SPECTRUM

energy, with the peak intensity shifting toward progressively shorter wave length at an increasing
temperature of the matter. In general, the wave lengths and frequencies vary from shorter
wavelength-high frequency cosmic waves to long wave length-low frequency radio waves
(Fig. 4.3 and Table 4.1).

TABLE 4.1. ELECTROMAGNETIC SPECTRAL REGIONS (SABINE, 198T)

Region Wave length Remaris

1. Gamma ray |<0.03 nm Incoming radiation is completely absorbed by the upper atmosphere and is pot available
for remode sensing

2. X-ray 0.03 to 3.0 nm_| Completely ahsorbed by atmosphere. Not employed in remaole sensing .

3 Ultravioler (0.3 w0.4pm |Incoming wavelengihs less than 0.3 p m are completely absorbed by ozone in the wpper
jatmosphere

4. Photo graphic| 0.3 to 0.4 pm "rmsm'mm through aimosphere. Deteciable with film and phoiodeteciors, bt

UV band atmospheric sCanering is seven:

3. Visible 0.4t 0.7 pm | Images with film and photo detectors. Includes reflecied energy peak of carth at 0.5 pm.

6. Infrared 0.7 o 1.00 um | Interaction with matter varies with wave length. Atmosphenc transmisshon windows are
separated.

7. Reflecied [R(0.7 to 3.0 pm | Reflected solar radigtion that contains information sbowt thermal properties of materials.

5T t The bands from 0.7 fo 0.9 pm is detectable with film and is called the photographic 1R
hiamd,

E-Thu'lmll'lli:!m!um Principal stmospheric windows in the 8 to 14 pm thermal region. Images a1 these
wavelengths are scquired by oplical mechanical scanners and special vidicon sysiems but
not by film. Microwave 0.1 w 30 cm longer wavelength can penetrate clouds, fog and
rain. Images may be acquired in the active or passive mode

9. Radar 0.1 60 30 em  |Active form of microwave remote sensing. Radar images are acquired at vanous

10. Radio > 3 cm Longest wavelength portion of electromagnetic spectrum. Some classified radars with
very long wavelengths operate in this region.
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Earths atmosphere absorbs epergy in Gamma ray, X-ray and most of the wlira-violet
region. Therefore, these regions are not used for remote sensing. Remore sensing deals
with energy in visible, infrared, thermal and microwave regions. These regions are further
subdivided into bands such as blue, green, red (in visible region), near infrared, mid-infrared,
thermal and microwave etc. It 15 important to realize that significant amoumt of remote
sensing performed within infrared wave length is not related t heat. It is photographic
infrared at a slightly longer wave length (invisible 1o human eye) than red. Thermal infrared
remote sensing is carried out at longer wave lengths.

4.4.3. WAVE LENGTH REGIONS AND THEIR APPLICATIONS IN REMOTE SENSING

Fig 4.3 shows the EM spectrum which is divided imto discrete regions on the basis
of wavelength, Romote sensing mosthy deals with energy in visible (Blue, green, red) infrared
{near-infrared, mid-infrared, thermal-infrared) regions Table 4.2 gives the wave length region
along with the principal applications in remote sensing. Energy reflected from earth during
daytime may be recorded as a function of wavelength. The maximum amount of energy
is reflected at 0.5 pm, called the reflecied emergy peak. Earth also radiates energy both
during day and night time with maximum energy radiated at 9.7 p m, called radianr energy
peak.

TABLE 4.2. WAVE LENGTH REGIONS AND THEIR AFPLICATIONS IN REMOTE SENSING

|
Region Wave Length (um) | Principal Applicotions
{a} Visible Region
1. Blue 0.45 - 0.52 Coastal morphology and sedimentation siady, soil and
vegetation differentiation. coniferous and deciduous
vEpttation discrimination.
1. Gres=n 0.5 - 0.60 Vigor assessment, Rock and soil discrhimination,
Turbidity and bathymetry siudies.
1. Red 0.63 - (.69 Flant species differennation
(b} Infrared Region
4. Mear [Infrared 076 = (.90 Vegewation vigour, Biomass, delipeation of water
feaires, land forms. geomorphic siudies.
% Mid-infrared 1.55 = 1.75 Viegetation moisture content, soil maisiure Conient, snow
and clowd differentiation
6. Mid-infrared 208 -2.35 Differentiation of peological materials & soils
T. Thermal IR 10 - 50 For hot targets, i.e. Fires and volcanoes
8. Thermal IR 104 - 12.5 Therma! sensing, vegetation discrimination, volcanic
studies.

4.4.4. CHARACTERISTICS OF SOLAR RADIATION

All objects above 0K emit EM radiation at all wavelengths due to conversion of
heat energy into EM energy. All stars and planets emit radiation. Our chief star, the Sun,
is almost a spherical body with a diameter of 1.39 x 10° km. The continuous comversion

of hydrogen to helium which is the main constiment of the Sun, generates the energy
that is radiated from the ouer layers. Passive remote sensing uses Sun as its source of
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EM radiation. Sun is the strongest source of radiant energy and can be approxmmated by
a body source of temperature 5750 - 6000° K. Although Sun produces EM radiation across
a range of wave lengths, the amount of epergy it produces is not evenly distnbuted along
this range. Approximately 43% is radiated within the visible wavelength (0.4 to 0.7 um),
and 48% of the energy is transmitted at wave length greater than 0.7 p m, mainly within
infrared range.

If the energy received at the edge of earth's atmosphere were distnbuted evenly over
the earth, it would give an average incident flux density of 1367 W./m’. This is known
as the solar constant. Thirty five percent of incident radiamt flux is reflected back by
the earth. This includes the energy reflected by clouds and atmosphere. Seventeen percent
of it is absorbed by the atmosphere while 48% is absorbed by the earth's surface materials
(Mather, 1987).

4.4.5. BASIC RADIATION LAWS
Stefan-Bolizmann law
All bodies above temperature of 0° K emit EM radiation and the energy radiated
by an object at a particular temperature is given by
M=aT* (4.3)
where M = total spectral exitance of a black body, W./m’
o= Stefan-Boltzmann constant = 5.6697 = 10" Wrm'/K'
T = absolute emperamre
A black body is a hypothetical ideal radiator that totally absorbs and remits all energy
incident upon it. The distribution of spectral exitance for a black body at 3900° K closely
approximates the sun's spectral exitance curve (Mather 1987), while the earth can be considered
o act like a black body with a temperature of 290 °K.
Wien's displacement law
The wave length at which a black body radiates its maximum energy is inversely
proportional to temperature and is given by

-4
Ao = (d.4)

hw=wave length of maximum spectral exitance
A =Wien's constant = 2.898 x 107" mK
I = temperature of the body
As the temperature of the black body increases, the dominamt wave length of the
emitted radiation shifts towards shorter wave length.
3. Plank’s law
The total energy radiated in all directions by unit area in unit tme in a spectral
band for a given by is given by
M, = F_E%ﬁ"T .(4.5)

where M, = Spectral exitance per unit wave length
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C, = First radiation comstant =3.742 = 107" Wr/m’
C; = Second radiation constant = 1.4388 = 10 mK
It enables to assess the proportion of total radiant exitance within selected wave length.
4.5. EM RADIATION AND THE ATMOSPHERE

In remote sensing, EM radiation must pass through ammosphere in order to reach
the earth's surface and to the sensor after reflection and emission from earth’s surface
features. The water vapour, oxygen, ozone, C0;, aerosols, etc. present in the atmosphere
infleence EM radiation through the mechanism of (i) scattering, and (i) absorption.
Scattering

It is unpredictable diffusion of radiation by molecules of the gases, dust and smoke
in the atmosphere. Scattering reduces the image contrast and changes the spectral signatures
of ground objects. Scartering is basically classified as (i) selective, and (i) non-selective,
depending upon the size of particle with which the electromagnetic radiation interacts. The
selective scamer is further classifed as (a) Rayleigh's scarter, and (b) Mies scairer.

Rayieigh’s scaffer: In the upper part of the atmosphere, the diameter of the gas
molecules or particles is much less than the wave length of radiation. Hence haze results
on the remotely sensed imagery, causing a bluish grey cast on the image, thus reducing
the contrast. Lesser the wave length, more is the scattering.

Mie"s seatter : In the lower layers of atmosphere, where the diameter of water vapour
or dust particles approximately equals wave length of radiaton, Mie's scatter occurs.

Non-selective scatter : Non-selective scattering occurs when the diameter of particles,
is several times more (approximately ten times) than radiation wavelength. For visible wave
lengths, the main sources of nom-selective scaitering are pollen grains, cloud droplets, we
and snow crystals and raindrops. It scatters all wave length of visible light with equal
efficiency. It justifies the reason why cloud appears white in the image.

Absorption

In comtrast to scattering. atmospheric absorption results the effective loss of energy
as a consequence of the auenuating nature of atmospheric constituents, like molecules of
ozone, €O, and water vapour. Oxygen absorbs in the ultraviolet region and also has an
absorption band centered on 6.3 pm. Similarly OO0, prevents a number of wave lengths
reaching the surface. Water vapour is an extremely important absorber of EM radiation
within infrared part of the spectrum.

Almospheric windows

The amount of scattering or absorption depends upon (i) wave length, and (i) composition
of the atmosphere. In order (o minimise the effect of atmosphere, it is essential to choose
the regions with high fransmittance.

The wavelengths at which EM radiations are partially or wholly rransmitted through
the atmosphere are known as atmospheric windows and are used o acquire remote Sensing
delir.

Typical armospheric windows on the regions of EM radiation are shown in Fig. 4.4
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FIG. 4.4 ATMOSPHERIC WINDOWS

The sensors on remote sensing satellites must be designed in such a way as to obtain
data within these well defined ammospheric windows.
4.6. INTERACTION OF EM RADIATION WITH EARTH'S SURFACE

EM energy that stnkes or encounters matter (object) is called incident radiaiion. The
EM radiation striking the surface may be (i) reflected/scatiered, (i) absorbed, and/or (i)
rransmitted. These processes are not mumally exclusive — EM radiations may be partiaily
reflecied and partially absorbed, Which processes actually occur depends on the following
factors (1) wavelength of radiation (2) angle of incidence, (3) surface roughness, and (4)
condition and composition of surface material.

FIG. 4.5, INTERACTION MECHANISM

Interaction with matter can change the following properties of incident radiation:
(@) Inmtensity (b) Direction {c) Wave length (d) Polarisation, and (¢) Phase.
The science of remote sensing detects and records there changes.
The energy balance equation for radiation at a given wave length ( A) can be expressed
as follows.
Eis=Eps+ Eqv+ Ers ...(4.6)
where E;i = Incident energy; Ee = Reflected energy
E.x = Absgrbed energy; Ery= Transmitted energy.

The proportion of each fraction (E,,/E, ,/E;,) will vary for different materials depending
upon their composition and condition. Within a given features type, these proportions will
vary at different wave lengths, thus helping in discrimination of differens objects. Reflection,
scatiering, emission are called surface phenomenon because these are determined by the
properties of surface, viz. colour, roughness. Transmission and absorption are called volume
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Indian Remote Sensing Satellites (IRS)

1. Satellite for Earth Observation (SEO-I), now called Bhaskara-1 was the first Indian
remote sensing satellite launched by a soviet launch vehicle from USSR in June, 1979,
into a near circular orbit.

2. SEO-II, (Bhaskara II) was launched in Nov. 1981 from a Soviet cosmodrome.

3. India’s first semi-operational remote sensing satellite (IRS) was launched by the
Soviet Unmion in Sept. 1987,

4. The IRS series of satellites launched by the [RS mission are : IRS [A, IRS
IB, IRS IC, IRS ID and IRS P4.

4.8, SENSORS

Remote sensing sensors are designed to record radiations in one or more pars of
the EM spectrum. Sensors are electronic instruments that receive EM radiation and generate
an eleciric signal that correspond to the emergy variation of different earth surface features.
The signal can be recorded and displayed as numerical data or an image. The strength
of the signal depends upon (i) Energy flux, (i) Altimde, (i) Spectral band width, (iv)
Instantaneous field of view (IFOV), and (v} Dwell time.

A scanning system employs detectors with a narrow field of view which sweeps across
the terrain o produce an image. When photons of EM energy radiated or reflected from
earth surface feature encounter the detector, an electrical signal is produced that vares in
proportion to the mumber of photons.

Sensors on board of Indian Remote sensing satellites (IRS)

1. Linear Imaging and Self Scanning Sensor (LISS I)

This payload was on board IRS 1A and 1B satellites. It had four bands operating
in visible and near IR region.

2. Linear Imaging and Self Scanning Sensor (LISS II)

This payload was on board IRS lA and |B satellites. It has four bands operating
in visible and near IR region.

3. Linear Imaging and Self Scanning Semsor (LISS III)

This payload is on board IRS IC and 1D satellites. It has three bands operating
in visible and near IR region and one band in short wave infra region.

4. Panchromatic Sensor (PAN)

This payload is on boards IRS 1C and 1D satellites. It has one band.

5. Wide Field Sensor (WiFS)

This payload is on boards IRS 1C and 1D satellites. It has two bands operating
in visible and near [R region.

6. Modular Opto-Electronic Scanner (MOS)

This payload s on board IRS P3 satellne.

7. Ocean Colour Monitor (OCM)

This payload is on board IRS P4 satellite. It has eight spectral bands operating in
visible and near IR region.
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8. Mulii Scanning Microwave Radiomeier (MSMR)
This payload 15 on board IRS 1D satellite. This is a passive microwave sensor.

4.9. APPLICATIONS OF REMOTE SENSING

Remote sensing affords a practical means for accurate and conlinuous monitoring of
the earth’s natural and other resources and of determining the impact of man's activines
on ar, water and land. The launch of IRS 1C satellite (Dec. 1995) with state of an
sensors provided a new dimension and further boosted the applications of space-base remole
sensing technology for natural resources management. With the unique combinations of payload,
the IRS-1C has already earmed the reputation as the 'Sareflite for all applications’ IRS-1C/1D
carry three imaging sensors (LISS-III, PAN and WiF5S) characterised by different resolutions
and coverage capabilities. These three imaging sensors provide image data for virtually all
levels of applications ranging from cadastral survey to regional and national level mapping.
The LISS-IIT data with 21.2- 23.5 m resolution has significantly improved separability amongst
various crops and vegetation types, leading o identification of small fields and benter classification
sccuracy. The frequent availability of data from WiFS payload has helped in monitoring
dynamic phenomena like vegetation, floods, droughts, forest fire etc.. A major benefit of
the multi-sensor IRS-1C/1D payload is the capability to merge the mult spectral LISS-II
data, with high resolution PAN imagery. This merger of multispectral and high resolution
data facilitates detailed land cover classification and delinestion of linear and narrow roads/lanes,
structures, vegetation types and parcels of land.

A summary of RS applications s given below, discipline wise.

1. Agriculture

(i  Early season estimation of total cropped area

(fiy Monitoring crop condition using crop growth profile,

(fii) Idemtification of crops and their coverage estimation in mulii-cropped

regions.

(ivi Crop yield modelling

(v Cropping system/crop rotation studies

(v} Command area management

(vif}) Detection of mmsture stress in crops and quantification of its effect on

crop  yield

(viti) Detection of crop wviolations

{ix} Zoom cultivation—desertification
2. Forestry

{fy  Improved forest type mapping

{ity Monitoring large scale deforestation, forest fire

(i) Monitoring vrban forestry

{iv} Forest stock mapping

(v} Wild lhife habital assessment
3. Land wse and soils

(i} ~Mapping land usefcover (level III) at 1 : 25000 scale or better
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(ify Change detection
(iif) Identification of degraded lands/erosion prone areas
(iv) Soil categorisation
4. Geology
(i)  Lithological and structural mapping
(ify Geo morphological mapping
(iify Ground water exploration
{iv) Engineering geological studies
(v)  Geo-environmental smdies
{vi) Drainage analysis
(vii) Mineral exploration
{viify Coal fire mapping
{ix) Oil field detection
5. Urban Land wuse
() Urban land use level IV mapping
(i} Updating of urban transport network
(fify Monitoring urban sprawl
(iv) Identification of unauthorised structures.
6. Water resources
() Monitoring surface water bodies frequently and estimation of their spatial
extent
(ffy Snmow-clond discrimination leading to better delineation of snow area.
(iify Glacier inventory
7. Coastal Enviromment
(fy More detailed inventory of coastal land uvse on 1:25000 scale
{(tfy  Discrimination of coastal vegetation types.
(iify Monitoring sediment dynamics
(iv) Siting of coastal structures
8. (cean Resources
(i) ~Wealth of oceans /explorations/productivity
{iiy Potential fishing zone
(fify Coral reef mapping
(iv) Low tide/high tide marking
9. Warershed
(i  Delineation of watershed boundaries/partitioning of micro watershed
{ify Watershed characterisation at large scale (size, shape, drainage, landuse/cover)
(fiiy Siting of water harvesting structures
(iv) Monitoring watershed development
(v} Major rniver valley projects.
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10. Environment
(i) Impact assessment on vegetanion, water bodies.
(if)  Siting applications
(iif) Loss of biological diversity/biosphere reserves/ecological hot spot areas /wet
land environment.
11. Street network-based applications
{1} Vehicle routing and scheduling
(i)  Location analysis—site selection—evacuation plans.
12, Land parcel-based applications
(i) Zoning, sub division plan review,
(i) Land acquisition
(itfy Environmental management
{iv} Water quality managemeni
(+¥) Maintenance of ownership
I3. Natural resources based applications
(i) Management of wild and scenmic rivers, recreation resources, flood plains,
wet lands, agricultural lands, aquifers, forest, wild life etc..
(ify Environmental Impact Analysts (EIA)
{(ifry  View shed analysis
(ivl Hazardous or toxic facility siting
(v} Ground water modelling and contamination tracking
(vi) Wild life analysis, migration routes planning.
I4. Facilities management
(' Locating vnderground pipes, cables
(ify Balancing loads in electrical networks
(ifii) Planning facility maintenance
{iv) Tracking energy use.
15. Disasters
(fy ~ Mapping flood inundated area, damage assessment
(if)  Disaster warning mitigation
16. Digital elevation models
(i} Contours (> 10 m)
(i)  Slope /Aspect analysis
{(fif) Large scale thematic mapping upto 1:25000 scale.

FROBLEMS
What do you understand by remote sensing 7 Differentiate between active and passive remote sensing.
Explain, with the help of a peat sketch, an idealized remote sensing System
Write a demiled pote on electro-magnetic energy used for remote sensing.
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What do you understand by electro-magnetic spectrum 7 State the wave length regions, along with
their uses, for remote zensing applications.
Explain the inleraction mechanism of EM radigtion with earth’s surface, stating ihe basic interaction
ECEation.
Write 2 note on remote sensing observation platforms
Write a note on various types of sensors used for remote sensing in India.
Write a detsiled note on applications of remote sensing.



Geographical Information System
(GIS)

5.1. INTRODUCTION : DEFINITION

Geographical information system (GIS) is an organised collection of computer hardware
and software, geographic data (spatial as well as non-spatial) and people, designed to efficiently
capture, store, update, mampulate, analyse and display all forms of geographically referenced
information. There are several geographical questions that are to be answered apparently
such as (f) What is the population of a particular city ? (i) How has the distribution
of urban and rural population changed between the past two decades 7 (i) What are the
characteristics of soil m a particular land parcel 7 (iv) Are there any trend in the patterns
of earthguakes in India which could help predict future earthquake 7 (v) What are the
archaeological patterns of prehistoric land uwse 7 (v) What are the archaeological patterns
of prehistoric land use 7 The art, science, engineering and technology required o answer
these geographic questions constitute what is called Geographical Information System (GIS).
GIS is a genetic term, denoting the use of computers to create and depict digital representation
of the Earth's surface.

Geographical information is information about geography, that is information tied w
some specific set of location on the earth’s surface including the zones of atmosphere.
Spatial s often used synonymously with or even in preference to ‘geographical’. Today,
the term GIS tends to be applied whenever geographical information in digital form is
manipulated. Thus, using a computer to make a map is referred o as GIS. This entails
using the same computer to analyse geographical information and to make future forecasts
using complex models of geographical processes. The earth’s images collected by remoie
sensing  satellites are geographical data, but the systems that process the images are not
w be called GIS as long as they remain confined to this parmicular form of data in such
cases. GIS rends ro be reserved for system that integrate remotely sensed data with other
rypes, or process data thar have already been cleaned and ransformed.

Thus, Geographical Information Systems (GIS) are decision support computer based
systems for collecting, storing, preseniing and analysing peographical spatial information.
These systems are spatially referenced data bases giving users the potentiality to control
queries over space, and usually through tme. The basic output of GIS or spatial dawa
analysis system i a map.

(25N
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FIG. 5.1. ESSENTIALS OF GIS

5.2. THE FOUR M'S

There are the following four activities that urban planner or scientists or resources

managers or others use geographic information for (Fig. 5.2) :

and

(i}
(i)
(i)
(iv)

Measurement
Mapping
Monitoring
Modelling

They observe and measwre environmental parameters and develop maps which portray
the characteristics of the earth. They monitor changes in our surroundings in space and
time. In additon to these, they mode! alternatives of actions and process operation in the
environment. These four activities {i.e. four M's) can be enhanced by using information
system technologies through GIS.
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FIG. 52. THE FOUR M'S,
5.3. CONTRIBUTING DISCIPLINES FOR GIS

The contributing disciplines for the evolution of a GIS are (Burrough,

(1)  Geography (ify  Cartography

(iiiy CAD, CAC, computer softwares (iv) , Automated cartography
(v}  Surveying (vi) Photogrammetry

(v} Digital photogrammetry (viiif) Remote sensing

(ix) Mathematics (x)  Statstics.

Geography is broadly concerned with understanding the World and man’s place in

. while cartography is concerned with the display of spatial information. Surveying and
phcrmgrammtr}' provide high quality data on pmmnm of cadastral objects like land parcel |
and building, and topography. Aerial photogrammetry is one of the most powerful data—uptunng
techniques for the creation of GIS spatial database, Remore semsing is becoming an important |
source of geographical data, providing digital images derived from space and the air. Remote |
sensing provides techniques for data acquisition and processing any where on the globe

Gengraphy Mathematics Sunaying
Cartography Photogramemetny
CAD, CAC GIS Diigitai
Computer softwars phatogrammelny
Suniomated ) Ramaole sensing
Canograpy Sakistcs mc_hmm,g?

FiG. 53 CONTRIBUTING DISCIPLINES FOR GIS
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at a low cost, and conmsisteni updaie potential. While integrated with GIS, remotely sensed
imagery can be merged with other data in a GIS providing real-time spatial information.
Computer Assisted Design (CAD) provides software, techmiques for data input, display and
visualisation, and representation in 3-dimensions. Data Base Management System (DBMS)
contributes methods for representing data in digital form and procedures for system design
and update. Several branches of mathematics are used im GIS system design and analysis
of spatial data, while statistics is uwsed to build models and perform spatial data analysis
in GIS.

Availability of large quantities of spatial data in the form of digital aerial photograph,
digital remote sensing imagery, advancement of computer hardware, software and software
development, increasing demand of spatial information for management, and infrastrucrure
development parameters, lead o have a system 0 handle all these requirements, In order
to handle such data to meet these demands to store, retrieve , handle, analyse, manipulate
and display the results, it requires a computer based system which is known as Geographical
Information Sysiem (GI5)

5.4, GIS OBJECTIVES

GIS provides a medium for studving one or more of the fundamental issues that
arise in using digital information technology to examine the surface of the earth or any
related systems. GIS offers capabilities of integrating multisector, multflevel and multi period
database system for capture, storage, retrieval, analysis and display of spatial dara. It is
a peneral purpose technology for handling geography data in digital form .

The following are the GIS objectives.

Maximize the efficiency of planning and decision making.

Provide efficient means for dala distribution and handling.

Elimination of redundant database—minimize duplication.

Capacity to integrate information from many sources.

Complex analysis / query involving geographical referenced data o generate
new information.

ol ol ol

For any application, there are five generic question that a GIS can answer :

() Location : What exists at a paricular location,

(if) Condition  : ldemtify location where certain conditions exits.
(ifi) Trends : What has changed since.

{tv) Paftern : What spatial pattern exists.

(v) Modelling : What if ....... ?

Overview of Information System

The function of an information system is to improve one's ability 0 make decisions.
An information system is the chain of operation that take us from planning the observation
and collection of data to siorage and manipulation and analysis of data, and to use the
derived information in some decision making process. Fig 5.4 shows the simplified information
system overview.
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FiG. 5.5. HARDWARE COMPONENTS OF GIS

() Data input and verification.

{(ffy Data storage and database management

(iffy Data transformation and manipulation
and (iv) Data ouwrput and presentation,

The details of various GIS softwares are discussed in § 5.11
Representation of the spatial information

Geographical features are depicted on a map by (i) point (i) Line (iif) Polygon/Area.

(i} Point feature : A point is discrete location depicted by a special symbol or label;
it has a single x. y co-ordinates.

(ify Line feature : Tt represents a linear feature and has a set of ordered x, ¥
co-ordinates.

(fify Polygon / Area feafure : It 15 an area feamre where boundary encloses a homogeneous
area.

Representation of non-spatial (attribute ) information.
It consists of exmral description on the properties associated with geographical entifies.

Attributes are stored as a set of numbers and characters in the form of a table. Many
atiribute data files can be linked together through the uwse of common dentifier code.
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Orpanising map data

Map feawres are logically organised into a set of layers or themes of information.
Some of the most common considerations for organising layers are :

(t) Feature type : Typically, layers are organised so that points, line and polygons
are stored in separate layers.

(ify Logical group : Features are organised logically by what they represent .

(iify [Imiended wse : Application specific.

5.6. TOPOLOGY

Geographic data describes objects in terms of location, their attributes and spatal
relationship with each other (Topology). It is a mathematical procedure that determines the
spatial relationships of feamres.

Area Definition : Polygons are stored as set of lines, rather than defining polygon
as a loop of co-ordinates. Line co-ordinates are stored only once, hence reduces the storage
space.

Contiguity : Identification of polygon, which touch each other. It is implemented
by finding left and nght polygon of each arc and takes care of shared arcs.

Connectivity : Identification of interconnected arcs. From and To node indicate the
direction. Node coordinates are siored only once.

Advantages of topology :
1. Polygon network is fully integrated.

2. Optimal storage and free from excessive amount of redundant information.
3. Neighbours are identified.

4. Polygon in polygon can be represented.
5.7. DATA MODELS :

Geographical variations are infinitely complex and muost be represented in terms of
discrete objects. Conversion of real world geographical variation into discrete objects is
done through data models. It represents the linkage between the real world domain of geographic
data and computer representation of these features. Data models are of two types :

{g) Raster data model
and (b Vector data model
(@) Raster data model :

+« Divides the entire area into rectangular grid cells,

« Each cell contains a single value and every location corresponds to a cell.

» One set of cells and associated values is a Layer.

Capabilities :

» Displaying layers : Each cell can be assigned a unique colour on the display.

¢ [Local operations @ Cells by cell basis.

fi} Recoding - Assigning cells to different classes.

fif) Overlaying layers - Layers can be overlaid / combined on the basis of arithmetic,

logical cniteria or unigue combinations.

* Focal operations @ Considering the neighbourhood cells.
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5.8. DATA STRUCTURES

There are number of different ways to organize the data inside the mformation system.
The choice of data structure may affect both : Data storage volume and processing efficiency.
Many GIS have specialised capabilities for storing and manipulating attribute data in addition
o spatial information. Three basic data structures are - (i) Relational, (i) Hierarchical
and (i) Network.

1. Relational data structure - It is the most popular model for GIS. Many GIS
packages have different names e.g. INFO in ARC/INFO, DBASE 111 in PC-based GIS
etc. Data are stored as simple records, known as tuples, containing an ordered set of
attribute values that are grouped together in two-dimensional tables,

(i
(if)
{iif)
()
(v
()

{vil)
{wiil)

It organizes the data in terms of two-dimensional tables.

Each table s 2 scparate file.

Each row in the table is a record.

Each record has a set of atributes.

Each column in the table is an attribute.

Different tables are related through the uwse of a common dentifier called
KEY.

Data are extracted by relanon which are defined by query.

Relation algebra to create new tables.

Relarional data structure (s tme-consuming because of sequential search te find dala.
1. Hierarchical dota structure - Taking

into consideration the data which have inherem

quality of hierarchy (tree structure), this database

was introduced.

]

(i)

Uy
(iv)

(v}
(vi)

Each node can be divided into

one or more additional node.

MNodes have only one parent.

Swored data gets more and more

detailed as once branches further

out on the tree

This data structure have one to many relationship.
Cannot go between records at the same level unless they share the same
parent.

Only one link between two records.

Travel within database is restricted to path up and down,

FIG. 5.6 HIERARCHICAL DATA STRUCTURE

Large index files have to be maimained and certain anribute value may have o
be repeated many nimes leading fo data redundancy which increases storage and access

Cirsl.

3 Network data strocture - This stucture is similar to hierarchical structure with
the exception that in this structure a node may have more than one parent.

(0
()

Each node can be divided into one or more additional node. Nodes can
have parent.

Stored data gets more and more detalled as ome branches further out on
the tree.
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(fify This data structure have one to many and many to one relationship.

(iv) Can go between records at the same level.

The darabase is enlarged by overhead of pointers. These pointers must be updaved
every fime a change is made 1o database causing considerable overhead.

FIG. 5.7 NETWORK DATA STRUCTURE
5.9. DATABASE MANAGEMENT

Database may be defined as a data and information stored or as a structured collection
of interrelated information on a defined subject. A DBMS is a software that permits one
or more users o work efficiently with the data. The essential components of DBMS include
means o define database, insert mew data, delete old data, update, query and sort faciliry.

Generally, a proper database organization needs o ensure the following -

iy Reduction in data redundancy - Same information is not stored at multiple
places and data is shared.
fify Data integrity — A system of validation checks o enforce the necessary
structure consirainis.
{iii)  Secwrity restrictions — To minimize damage to data. Of specific imporance
in multi-user environment,
(iv) Physical data independence - The underlying data storage and manipulation
hardware is transparent to the uoser,
(vl Data manipulation, query facilily ond programming lools.
(vi) Data follows prescribed models, rules and stangards - To maintain consiste-
ncy in data elements.
5.10. ERRORS IN GIS
Errors in GIS environment can be classified into following “majpor groups
1. Error associated with data :
iy Age of data - Reliability decreases with age.
{ify Map scale - Non-availability of data at proper scale or use of data at
differemt scales.
(firy  Density of observations - Sparsely dense dataser 5 less reliable.
(ivi Data inaccuracy- positional, elevation, minimum mapable unit eic.
(v} Inaccuracy of contents - Atiributes are erroneocusly attached.
2. Errors associated with processing :

(fy Map digivization errors — due o boundary locanon problems on map and
errors associated with digital representation of feature,
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(viiliy GRID : It is a raster or cell based geoprocessing tool box imtegrated with
ARC / INFO which divides the area into individual locations.
(ix) ARCVIEW : Arcview module 5 a software tool that creates an environment
o display and querry the comtemts of spatial database.,
(x}) ARCTOOLS : It is a general purpose memu based interface o ARC / INFO
o perform common geoprocessing fask with a better speed ease.
(xiy ARCSTORM : Arc storm (ARC storage manager) 15 a geographic data stor-
age facility 1o manage ARC/INFO databases intended for public use (multi-users).
(xiiy COGO : It is the coordinate pgeometry module of ARC/INFO which supports
the functions performed by land surveyors and civil engineers.
2. PAMAP GIS
The PAMAP GIS is a product of PAMAP Graphics Lid Canada, It adopts an integrated
raster as well as vector representation of the spatial elements. It uses vector for data caprure
and storage and rasters for analysis purposes.
Major modules of PAMAP GIS
(i GIS MAPPER.
(i ANALYSER.
(fiii INTERPRETER.
{ivi MODELLER.
(v} NETWORKE.
{vi) FILETRANSLATOR.
3. SPANS
Spatial Analysis System (SPANS) is a GIS package developed by TYDAC Technologies,
Canada, having powerful modelling function for application. It adopts a mixed vector tesselation
approach w the GIS .
Major modules of SPANS
(£ CORE GIS MODULE.
(iy TYDIG
(i) CONTOURING/DEM MODULE.
{ivi POTMAP (POTENTIAL MAPPING MODULE).
(v) RASTER INTERFACE MODULE.
4. GENAMAP

The Genamap package is marketed by Gena Sys, an international developer. It handles
data in both vector and rasier form.
5. INTERGRAFPH MGE

Intergraph provides MGE (Modular GIS Environment) as a solution for mapping /GIS
application for infrastructure, environmental and natural resources management and digital
cartograph. It adopts a wvector cum raster data structure for spatial data handling.
6. ISROGIS.

ISROGIS has been developed by Indian Space Research Organization (ISRO). It adopts
PM quadtree data structure, which is edge based strocture that decomposes the vector in
map into quads, and is then organized using the vector structure.
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Major modules/ functionalities of ISROGIS

(i) CREATE : For creation of maps and themes

(ify EDIT : For systematic editing of spatial features.

iy MAKE . For providing symbolisation, annotations.

iiv) ANALYSIS : For aoverlay analysis.

(v} QUERRY : For obtaining information related to spatial and attribute data.
(vi) LAYOUT : For canographic work.

(vii) 3-D MODULE : For handling Z-axis of spatial data.

5.11. LINKAGE OF GIS TO REMOTE SENSING.

Image derived from optical and digital remote sensing systems mounted n aircrafi
and satellite provide much spatial information and major data as an input to GIS. Remote
sensing data are a major source of data for the mapping of resources like geology, forestry,
water resources, land use and land cover. Imtegration of the two technologies, remote sensing
and GIS can be used to develop decision support systems for a planner or decision maker.
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Remote sensed images can be used for two purpose : (i} as a source of spatial data within
GIS and (i) using the furnciionality of GIS in processing remotely sensed data in -both
pictorial and digital modes.

Remote sensing images including the imformation extracted from soch images, along
with GPS (global positioning system) data, have become primary data sources for modern
GIS. Indeed, the boundaries between remote sensing, GIS and GPS technology have become
blurred, and theses combined fields will cominue to revoluwtionise the invemiory, monitoring
and managing nafural resources on a day-today basis. There are two methods of exiracting
data for GIS from the remote sensing data. They are (i) Visual interpretation of satellite
imageries in pictorial format, and (i) computer processing of remotely sensed digital data.
The output of either of these anmalysis methods can be considered an inpur for GIS for
any kind of application. Fig. 5.8 shows and overview of the linkage of remote sensing
and GIS.

GIS and Remote sensing are linked both historically and functionally. Earlier smdies
on the application of GIS technique for creating decision support systems and other computer
based spabnal information extraction have revealed that 75% t 85% of the spatial data
layers have been derived from the analysis of aerial photography and satrellite image data.
As a result of this, remote sensing and GIS have become very importamt and have been
associated with each other. Remore sensing data can be readily merged with other sources
of geo-coded information in a Gf5. Remote sensing and GIS have almost become an unavoidable
source for cross checking or updating in digital surveying. Furthermore, the GIS software
can now accept the Global Positioning System (GPS) information in their program, as an
additional advantage. However, to accomplizh the integration of remotely sensed data imto
vector based GIS require the additions of relaively sophisticated image processing package
fo these systems. For instance ARC/INFO, ARC/VIEW and ARC/GRID softwares accomplish
much of this integration Remote sensing and GIS can conmtribute a grear deal to our study
af patterns and processes on rthe surface of the earth and fo creaie decision support
SYSIEms.

5.13, APPLICATIONS AREAS OF GIS AND REMOTE SENSING

See & 4.9
PROBLEMS

i. (@) What do yvou understand by a geographical imformation system 7

(hy What are the essentials of a GIS 7

What are the four M's for which geographic informations is used 7 Elaborate.
What are the contributing disciplines for GIS ?

What are the objectives of a GIS.

Write a note on the components of a GIS.

Explain various wpes of data structures wsed i GIS,

Emumerate various types ol GIS software packages.

Wrile 2 noe on linkage of GIS w remoe sensing.

© o g W R N

Wrie a note on application arcas of GIS and remole sensing.
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