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PREFACE

It has been over twenty years since we published the first edition of this book. Over that
period, our original contention that numerical methods and computers would figure more
prominently in the engineering curriculum—particularly in the early parts—has been dra-
matically borne out. Many universities now offer freshman, sophomore, and junior courses in
both introductory computing and numerical methods. In addition, many of our colleagues are
integrating computer-oriented problems into other courses at all levels of the curriculum. Thus,
this new edition is still founded on the basic premise that student engineers should be provided
with a strong and early introduction to numerical methods. Consequently, although we have
expanded our coverage in the new edition, we have tried to maintain many of the features that
made the first edition accessible to both lower- and upper-level undergraduates. These include:

e Problem Orientation. Engineering students learn best when they are motivated by
problems. This is particularly true for mathematics and computing. Consequently, we
have approached numerical methods from a problem-solving perspective.

e Student-Oriented Pedagogy. We have developed a number of features to make this
book as student-friendly as possible. These include the overall organization, the use
of introductions and epilogues to consolidate major topics and the extensive use of
worked examples and case studies from all areas of engineering. We have also en-
deavored to keep our explanations straightforward and oriented practically.

e Computational Tools. We empower our students by helping them utilize the standard
“point-and-shoot” numerical problem-solving capabilities of packages like Excel,
MATLAB, and Mathcad software. However, students are also shown how to develop
simple, well-structured programs to extend the base capabilities of those environ-
ments. This knowledge carries over to standard programming languages such as Visual
Basic, Fortran 90, and C/C++. We believe that the current flight from computer
programming represents something of a “dumbing down” of the engineering curricu-
lum. The bottom line is that as long as engineers are not content to be tool limited,
they will have to write code. Only now they may be called “macros” or “M-files.”
This book is designed to empower them to do that.

Beyond these five original principles, the seventh edition has new and expanded problem
sets. Most of the problems have been modified so that they yield different numerical solu-
tions from previous editions. In addition, a variety of new problems have been included.

The seventh edition also includes McGraw-Hill’s Connect® Engineering. This online
homework management tool allows assignment of algorithmic problems for homework,
quizzes, and tests. It connects students with the tools and resources they’ll need to achieve
success. To learn more, visit www.mcgrawhillconnect.com.

McGraw-Hill LearnSmart™ is also available as an integrated feature of McGraw-Hill
Connect® Engineering. It is an adaptive learning system designed to help students learn faster,
study more efficiently, and retain more knowledge for greater success. LearnSmart assesses
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a student’s knowledge of course content through a series of adaptive questions. It pinpoints
concepts the student does not understand and maps out a personalized study plan for success.
Visit the following site for a demonstration. www.mhlearnsmart.com

As always, our primary intent in writing this book is to provide students with a sound
introduction to numerical methods. We believe that motivated students who enjoy numeri-
cal methods, computers, and mathematics will, in the end, make better engineers. If our
book fosters an enthusiasm for these subjects, we will consider our efforts a success.

Acknowledgments.  We would like to thank our friends at McGraw-Hill. In particular,
Lorraine Buczek and Bill Stenquist, who provided a positive and supportive atmosphere for
creating this edition. As usual, Beatrice Sussman did a masterful job of copyediting the man-
uscript and Arpana Kumari of Aptara also did an outstanding job in the book’s final production
phase. As in past editions, David Clough (University of Colorado), Mike Gustafson (Duke),
and Jerry Stedinger (Cornell University) generously shared their insights and suggestions. Use-
ful suggestions were also made by Bill Philpot (Cornell University), Jim Guilkey (University
of Utah), Dong-1l Seo (Chungnam National University, Korea), Niall Broekhuizen (NIWA,
New Zealand), and Raymundo Cordero and Karim Muci (ITESM, Mexico). The present edition
has also benefited from the reviews and suggestions by the following colleagues:

Betty Barr, University of Houston

Jalal Behzadi, Shahid Chamran University

Jordan Berg, Texas Tech University

Jacob Bishop, Utah State University

Estelle M. Eke, California State University, Sacramento

Yazan A. Hussain, Jordan University of Science & Technology
Yogesh Jaluria, Rutgers University

S. Graham Kelly, The University of Akron

Subha Kumpaty, Milwaukee School of Engineering

Eckart Meiburg, University of California-Santa Barbara
Prashant Mhaskar, McMaster University

Luke Olson, University of Illinois at Urbana-Champaign
Richard Pates Jr., Old Dominion University

Joseph H. Pierluissi, University of Texas at El Paso

Juan Perdn, Universidad Nacional de Educacion a Distancia (UNED)
Scott A. Socolofsky, Texas A&M University

It should be stressed that although we received useful advice from the aforementioned
individuals, we are responsible for any inaccuracies or mistakes you may detect in this edi-
tion. Please contact Steve Chapra via e-mail if you should detect any errors in this edition.

Finally, we would like to thank our family, friends, and students for their enduring
patience and support. In particular, Cynthia Chapra, Danielle Husley, and Claire Canale
are always there providing understanding, perspective, and love.

Steven C. Chapra
Medford, Massachusetts
steven.chapra@tufts.edu

Raymond P. Canale
Lake Leelanau, Michigan
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MODELING, COMPUTERS,
AND ERROR ANALYSIS

PT1.1

MOTIVATION

Numerical methods are techniques by which mathematical problems are formulated so
that they can be solved with arithmetic operations. Although there are many kinds of
numerical methods, they have one common characteristic: they invariably involve large
numbers of tedious arithmetic calculations. It is little wonder that with the development
of fast, efficient digital computers, the role of numerical methods in engineering problem
solving has increased dramatically in recent years.

PT1.1.1 Noncomputer Methods

Beyond providing increased computational firepower, the widespread availability of com-
puters (especially personal computers) and their partnership with numerical methods has
had a significant influence on the actual engineering problem-solving process. In the
precomputer era there were generally three different ways in which engineers approached
problem solving:

1. Solutions were derived for some problems using analytical, or exact, methods. These
solutions were often useful and provided excellent insight into the behavior of some
systems. However, analytical solutions can be derived for only a limited class of
problems. These include those that can be approximated with linear models and
those that have simple geometry and low dimensionality. Consequently, analytical
solutions are of limited practical value because most real problems are nonlinear and
involve complex shapes and processes.

2. Graphical solutions were used to characterize the behavior of systems. These
graphical solutions usually took the form of plots or nomographs. Although graphical
techniques can often be used to solve complex problems, the results are not very
precise. Furthermore, graphical solutions (without the aid of computers) are extremely
tedious and awkward to implement. Finally, graphical techniques are often limited
to problems that can be described using three or fewer dimensions.

3. Calculators and slide rules were used to implement numerical methods manually.
Although in theory such approaches should be perfectly adequate for solving complex
problems, in actuality several difficulties are encountered. Manual calculations are
slow and tedious. Furthermore, consistent results are elusive because of simple
blunders that arise when numerous manual tasks are performed.

During the precomputer era, significant amounts of energy were expended on the
solution technique itself, rather than on problem definition and interpretation (Fig. PT1.1a).
This unfortunate situation existed because so much time and drudgery were required to
obtain numerical answers using precomputer techniques.
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FIGURE PT1.1

The three phases of engineering
problem solving in (a) the
precomputer and (b) the
computer era. The sizes of the
boxes indicate the level of
emphasis directed toward each
phase. Computers facilitate the
implementation of solution
fechniques and thus allow more
emphasis fo be placed on the
creative aspects of problem
formulation and interpretation
of results.

FORMULATION ALHULILAION]
Fundamental In-depth exposition
laws explained of relationship of
brieF;I problem to fundamental
y laws
LA SOLUTION
Elaborate and often Easv-to-use
complicated method to cort1 uter
make problem tractable P
method
INTERPRETATION INTERPRETATION

Ease of calculation
allows holistic thoughts
and intuition to develop;

system sensitivity and behavior
can be studied

(a) (b)

In-depth analysis
limited by time-
consuming solution

Today, computers and numerical methods provide an alternative for such compli-
cated calculations. Using computer power to obtain solutions directly, you can approach
these calculations without recourse to simplifying assumptions or time-intensive tech-
niques. Although analytical solutions are still extremely valuable both for problem
solving and for providing insight, numerical methods represent alternatives that greatly
enlarge your capabilities to confront and solve problems. As a result, more time is
available for the use of your creative skills. Thus, more emphasis can be placed on
problem formulation and solution interpretation and the incorporation of total system,
or “holistic,” awareness (Fig. PT1.1b).

PT1.1.2 Numerical Methods and Engineering Practice

Since the late 1940s the widespread availability of digital computers has led to a veri-
table explosion in the use and development of numerical methods. At first, this growth
was somewhat limited by the cost of access to large mainframe computers, and, conse-
quently, many engineers continued to use simple analytical approaches in a significant
portion of their work. Needless to say, the recent evolution of inexpensive personal
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PT1.2

computers has given us ready access to powerful computational capabilities. There are
several additional reasons why you should study numerical methods:

1. Numerical methods are extremely powerful problem-solving tools. They are capable
of handling large systems of equations, nonlinearities, and complicated geometries
that are not uncommon in engineering practice and that are often impossible to solve
analytically. As such, they greatly enhance your problem-solving skills.

2. During your careers, you may often have occasion to use commercially available
prepackaged, or “canned,” computer programs that involve numerical methods. The
intelligent use of these programs is often predicated on knowledge of the basic
theory underlying the methods.

3. Many problems cannot be approached using canned programs. If you are conversant
with numerical methods and are adept at computer programming, you can design
your own programs to solve problems without having to buy or commission expensive
software.

4. Numerical methods are an efficient vehicle for learning to use computers. It is well
known that an effective way to learn programming is to actually write computer
programs. Because numerical methods are for the most part designed for
implementation on computers, they are ideal for this purpose. Further, they are
especially well-suited to illustrate the power and the limitations of computers. When
you successfully implement numerical methods on a computer and then apply them
to solve otherwise intractable problems, you will be provided with a dramatic
demonstration of how computers can serve your professional development. At the
same time, you will also learn to acknowledge and control the errors of approximation
that are part and parcel of large-scale numerical calculations.

5. Numerical methods provide a vehicle for you to reinforce your understanding of
mathematics. Because one function of numerical methods is to reduce higher
mathematics to basic arithmetic operations, they get at the “nuts and bolts” of some
otherwise obscure topics. Enhanced understanding and insight can result from this
alternative perspective.

MATHEMATICAL BACKGROUND

Every part in this book requires some mathematical background. Consequently, the in-
troductory material for each part includes a section, such as the one you are reading, on
mathematical background. Because Part One itself is devoted to background material on
mathematics and computers, this section does not involve a review of a specific math-
ematical topic. Rather, we take this opportunity to introduce you to the types of math-
ematical subject areas covered in this book. As summarized in Fig. PT1.2, these are

1. Roots of Equations (Fig. PT1.2a). These problems are concerned with the value of
a variable or a parameter that satisfies a single nonlinear equation. These problems
are especially valuable in engineering design contexts where it is often impossible
to explicitly solve design equations for parameters.

2. Systems of Linear Algebraic Equations (Fig. PT1.2b). These problems are similar in
spirit to roots of equations in the sense that they are concerned with values that
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FIGURE PT1.2
Summary of the numerical
methods covered in this book.

(@) Part 2: Roots of equations
Solve f(x) = 0 for x.

(b) Part 3: Linear algebraic equations
Given the a's and the ¢'s, solve

aq1Xq + dqpXp = Cq
Conps) ar Copi) S @)
for the x's.

(¢) Part 4: Optimization

Determine x that gives optimum f(x).

(d) Part 5: Curve fitting
Sx)

Regression

(e) Part 6: Integration
I=["f(x)dx
Find the area under the curve.

Sfx)
Root
X
X2
——————— Solution
X1
S
X
X
Sfx)

(.
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FIGURE PT1.2
(concluded)

(f) Part 7: Ordinary differential equations

Given y
dy A
F=5 =fey
solve for y as a function of 1. ® Slope =
Yie1 =Y+ flt, y;) At A—T—f(ti’ i)
— At —>1
1 1
tl ti+1 t
(g) Part 8: Partial differential equations
Given
u . du Y
U OU_ gy,
a? o ay? 5

solve for u as a function of
xandy

satisfy equations. However, in contrast to satisfying a single equation, a set of values
is sought that simultaneously satisfies a set of linear algebraic equations. Such
equations arise in a variety of problem contexts and in all disciplines of engineering.
In particular, they originate in the mathematical modeling of large systems of
interconnected elements such as structures, electric circuits, and fluid networks.
However, they are also encountered in other areas of numerical methods such as
curve fitting and differential equations.

Optimization (Fig. PT1.2¢). These problems involve determining a value or values
of an independent variable that correspond to a “best” or optimal value of a function.
Thus, as in Fig. PT1.2¢, optimization involves identifying maxima and minima. Such
problems occur routinely in engineering design contexts. They also arise in a number
of other numerical methods. We address both single- and multi-variable unconstrained
optimization. We also describe constrained optimization with particular emphasis on
linear programming.

Curve Fitting (Fig. PT1.2d). You will often have occasion to fit curves to data points.
The techniques developed for this purpose can be divided into two general categories:
regression and interpolation. Regression is employed where there is a significant
degree of error associated with the data. Experimental results are often of this kind.
For these situations, the strategy is to derive a single curve that represents the general
trend of the data without necessarily matching any individual points. In contrast,
interpolation is used where the objective is to determine intermediate values between
relatively error-free data points. Such is usually the case for tabulated information.
For these situations, the strategy is to fit a curve directly through the data points and
use the curve to predict the intermediate values.

Integration (Fig. PT1.2¢). As depicted, a physical interpretation of numerical
integration is the determination of the area under a curve. Integration has many
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applications in engineering practice, ranging from the determination of the centroids
of oddly shaped objects to the calculation of total quantities based on sets of discrete
measurements. In addition, numerical integration formulas play an important role in
the solution of differential equations.

6. Ordinary Differential Equations (Fig. PT1.2f). Ordinary differential equations are of
great significance in engineering practice. This is because many physical laws are
couched in terms of the rate of change of a quantity rather than the magnitude of
the quantity itself. Examples range from population-forecasting models (rate of
change of population) to the acceleration of a falling body (rate of change of velocity).
Two types of problems are addressed: initial-value and boundary-value problems. In
addition, the computation of eigenvalues is covered.

7. Partial Differential Equations (Fig. PT1.2g). Partial differential equations are used
to characterize engineering systems where the behavior of a physical quantity is
couched in terms of its rate of change with respect to two or more independent
variables. Examples include the steady-state distribution of temperature on a heated
plate (two spatial dimensions) or the time-variable temperature of a heated rod (time
and one spatial dimension). Two fundamentally different approaches are employed
to solve partial differential equations numerically. In the present text, we will
emphasize finite-difference methods that approximate the solution in a pointwise
fashion (Fig. PT1.2g). However, we will also present an introduction to finite-element
methods, which use a piecewise approach.

ORIENTATION

Some orientation might be helpful before proceeding with our introduction to nu-
merical methods. The following is intended as an overview of the material in Part One.
In addition, some objectives have been included to focus your efforts when studying
the material.

PT1.3.1 Scope and Preview

Figure PT1.3 is a schematic representation of the material in Part One. We have designed
this diagram to provide you with a global overview of this part of the book. We believe
that a sense of the “big picture” is critical to developing insight into numerical methods.
When reading a text, it is often possible to become lost in technical details. Whenever
you feel that you are losing the big picture, refer back to Fig. PT1.3 to reorient yourself.
Every part of this book includes a similar figure.

Figure PT1.3 also serves as a brief preview of the material covered in Part One.
Chapter 1 is designed to orient you to numerical methods and to provide motivation by
demonstrating how these techniques can be used in the engineering modeling process.
Chapter 2 is an introduction and review of computer-related aspects of numerical meth-
ods and suggests the level of computer skills you should acquire to efficiently apply
succeeding information. Chapters 3 and 4 deal with the important topic of error analysis,
which must be understood for the effective use of numerical methods. In addition, an
epilogue is included that introduces the trade-offs that have such great significance for
the effective implementation of numerical methods.
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TABLE PT1.1 Specific study objectives for Part One.

1. Recognize the difference between analytical and numerical solutions.
. Undersfand how conservation laws are employed to develop mathematical models of physical
systems.

N

3. Define top-down and modular design.

4. Delineate the rules that underlie sfructured programming.

5. Be capable of composing structured and modular programs in a high-level computer language.

6. Know how to translate structured flowcharts and pseudocode into code in a highevel language.

7. Start to familiarize yourself with any software packages that you will be using in conjunction with
this fext.

8. Recognize the distinction between fruncation and round-off errors.

9. Understand the concepts of significant figures, accuracy, and precision.

10. Recognize the difference between true relafive error &, approximate relative error &,, and
acceptable error €, and understand how &, and &, are used to terminate an iterative computation.

11. Understand how numbers are represented in digital computers and how this representation induces
round-off error. In particular, know the difference between single and extended precision.

12. Recognize how computer arithmetic can introduce and amplify round-off errors in calculations. In
particular, appreciate the problem of subtractive cancellation.

13. Understand how the Taylor series and its remainder are employed to represent continuous functfions.

14. Know the relationship between finite divided differences and derivatives.

15. Be able to analyze how errors are propagated through functional relationships.

16. Be familiar with the concepts of stability and condition.

17. Familiarize yourself with the trade-offs outlined in the Epilogue of Part One.

PT1.3.2 Goals and Objectives

Study Obijectives. Upon completing Part One, you should be adequately prepared to
embark on your studies of numerical methods. In general, you should have gained a
fundamental understanding of the importance of computers and the role of approxima-
tions and errors in the implementation and development of numerical methods. In addi-
tion to these general goals, you should have mastered each of the specific study objectives
listed in Table PT1.1.

Computer Objectives.  Upon completing Part One, you should have mastered sufficient
computer skills to develop your own software for the numerical methods in this text. You
should be able to develop well-structured and reliable computer programs on the basis
of pseudocode, flowcharts, or other forms of algorithms. You should have developed the
capability to document your programs so that they may be effectively employed by users.
Finally, in addition to your own programs, you may be using software packages along
with this book. Packages like Excel, Mathcad, or The MathWorks, Inc. MATLAB® pro-
gram are examples of such software. You should become familiar with these packages,
so that you will be comfortable using them to solve numerical problems later in the text.



Mathematical Modeling and
Engineering Problem Solving

Knowledge and understanding are prerequisites for the effective implementation of any
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car
if you do not understand how it works.

This is particularly true when using computers to solve engineering problems.
Although they have great potential utility, computers are practically useless without a
fundamental understanding of how engineering systems work.

This understanding is initially gained by empirical means—that is, by observation
and experiment. However, while such empirically derived information is essential, it is
only half the story. Over years and years of observation and experiment, engineers and
scientists have noticed that certain aspects of their empirical studies occur repeatedly.
Such general behavior can then be expressed as fundamental laws that essentially embody
the cumulative wisdom of past experience. Thus, most engineering problem solving
employs the two-pronged approach of empiricism and theoretical analysis (Fig. 1.1).

It must be stressed that the two prongs are closely coupled. As new measurements are
taken, the generalizations may be modified or new ones developed. Similarly, the general-
izations can have a strong influence on the experiments and observations. In particular,
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from
which conclusions can be drawn. From an engineering problem-solving perspective, such
a framework is most useful when it is expressed in the form of a mathematical model.

The primary objective of this chapter is to introduce you to mathematical modeling
and its role in engineering problem solving. We will also illustrate how numerical meth-
ods figure in the process.

A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very
general sense, it can be represented as a functional relationship of the form

Dependent independent forcin
P =f ( p & > (1.1)

. R arameters .
variable variables ’ p ’ functions
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FIGURE 1.1
The engineering problem-
solving process.
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where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of
the system’s properties or composition; and the forcing functions are external influences
acting upon the system.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relationship to large complicated sets of differential equations. For example, on the
basis of his observations, Newton formulated his second law of motion, which states
that the time rate of change of momentum of a body is equal to the resultant force
acting on it. The mathematical expression, or model, of the second law is the well-
known equation

F = ma (1.2)

where F = net force acting on the body (N, or kg m/s®), m = mass of the object (kg),
and a = its acceleration (m/sz).
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FIGURE 1.2

Schematic diagram of the
forces acting on a falling
parachutist. Fp is the downward
force due to gravity. F is the
upward force due fo air
resistance.

The second law can be recast in the format of Eq. (1.1) by merely dividing both
sides by m to give
F
a=— (1.3)
m
where a = the dependent variable reflecting the system’s behavior, F = the forcing
function, and m = a parameter representing a property of the system. Note that for this
simple case there is no independent variable because we are not yet predicting how
acceleration varies in time or space.
Equation (1.3) has several characteristics that are typical of mathematical models of
the physical world:

1. It describes a natural process or system in mathematical terms.

2. It represents an idealization and simplification of reality. That is, the model ignores
negligible details of the natural process and focuses on its essential manifestations.
Thus, the second law does not include the effects of relativity that are of minimal
importance when applied to objects and forces that interact on or about the earth’s
surface at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive
purposes. For example, if the force on an object and the mass of an object are known,
Eq. (1.3) can be used to compute acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained eas-
ily. However, other mathematical models of physical phenomena may be much more
complex, and either cannot be solved exactly or require more sophisticated mathematical
techniques than simple algebra for their solution. To illustrate a more complex model of
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A
model for this case can be derived by expressing the acceleration as the time rate of
change of the velocity (dv/dr) and substituting it into Eq. (1.3) to yield

dv F L4

dt  m a4
where v is velocity (m/s) and ¢ is time (s). Thus, the mass multiplied by the rate of
change of the velocity is equal to the net force acting on the body. If the net force is
positive, the object will accelerate. If it is negative, the object will decelerate. If the net
force is zero, the object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters. For
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two
opposing forces: the downward pull of gravity Fj, and the upward force of air resistance Fy:

If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as

Fp = mg (1.6)

where g = the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.81 m/s”.
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EXAMPLE 1.1

Air resistance can be formulated in a variety of ways. A simple approach is to as-
sume that it is linearly proportional to velocity' and acts in an upward direction, as in

Fy=—cv (1.7)

where ¢ = a proportionality constant called the drag coefficient (kg/s). Thus, the greater
the fall velocity, the greater the upward force due to air resistance. The parameter ¢
accounts for properties of the falling object, such as shape or surface roughness, that
affect air resistance. For the present case, ¢ might be a function of the type of jumpsuit
or the orientation used by the parachutist during free-fall.

The net force is the difference between the downward and upward force. Therefore,
Egs. (1.4) through (1.7) can be combined to yield

dv _mg —cv

1.8
r " (1.8)
or simplifying the right side,
dv c (19)
—=g—-——v .
a % m

Equation (1.9) is a model that relates the acceleration of a falling object to the forces
acting on it. It is a differential equation because it is written in terms of the differential
rate of change (dv/dt) of the variable that we are interested in predicting. However, in
contrast to the solution of Newton’s second law in Eq. (1.3), the exact solution of
Eq. (1.9) for the velocity of the falling parachutist cannot be obtained using simple
algebraic manipulation. Rather, more advanced techniques, such as those of calculus,
must be applied to obtain an exact or analytical solution. For example, if the parachutist
is initially at rest (v = 0 at + = 0), calculus can be used to solve Eq. (1.9) for

u(t) = %(1 — e~ (c/mry (1.10)

Note that Eq. (1.10) is cast in the general form of Eq. (1.1), where v(f) = the dependent
variable, + = the independent variable, ¢ and m = parameters, and g = the forcing function.

Analytical Solution to the Falling Parachutist Problem

Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient
is equal to 12.5 kg/s.

Solution. Inserting the parameters into Eq. (1.10) yields

~9.81(68.1)

25 (1- e*(12.5/68.l)1) = 5344 (1 — efo.lssssz)

v(7)

which can be used to compute

'In fact, the relationship is actually nonlinear and might better be represented by a power relationship such as
Fy = —cv*. We will explore how such nonlinearities affect the model in problems at the end of this chapter.
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v, m/s

0.00
16.42
27.80
35.68
41.14
44.92
47.54
53.44

N
")

8 o O ®ONNO

According to the model, the parachutist accelerates rapidly (Fig. 1.3). A velocity of 44.92
m/s is attained after 10 s. Note also that after a sufficiently long time, a constant veloc-
ity, called the terminal velocity, of 53.44 m/s is reached. This velocity is constant because,
eventually, the force of gravity will be in balance with the air resistance. Thus, the net
force is zero and acceleration has ceased.

Equation (1.10) is called an analytical, or exact, solution because it exactly satisfies
the original differential equation. Unfortunately, there are many mathematical models
that cannot be solved exactly. In many of these cases, the only alternative is to develop
a numerical solution that approximates the exact solution.

As mentioned previously, numerical methods are those in which the mathematical
problem is reformulated so it can be solved by arithmetic operations. This can be illustrated

FIGURE 1.3

The analytical solution to the
falling parachutist problem as
computed in Example 1.1.
Velocity increases with fime and
asymptotically approaches a
terminal velocity.

Terminal velocity
40 -
)
E —
=
20
0 | | |
0 4 8 12

t, s
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The use of a finite difference to
approximate the first derivative
of v with respect fo 1.

for Newton’s second law by realizing that the time rate of change of velocity can be
approximated by (Fig. 1.4):
dv  Av  v(tiy) — vt
dv _ Av _ vty () .
dt At ti+ 1 ti
where Av and At = differences in velocity and time, respectively, computed over finite
intervals, v(f;) = velocity at an initial time 7, and v(t;,;) = velocity at some later time ;.
Note that dv/dt = Av/At is approximate because Ar is finite. Remember from calculus that

dv . Av

— =1 ="
dt A}E) At
Equation (1.11) represents the reverse process.
Equation (1.11) is called a finite divided difference approximation of the derivative
at time #,. It can be substituted into Eq. (1.9) to give

v(tivy) — v(t) c
- @ = - ti
liv1 — I £ m v)
This equation can then be rearranged to yield

v(tiy) = v(t) + [g - ;U(fi)](l‘iﬂ —1) (1.12)

Notice that the term in brackets is the right-hand side of the differential equation
itself [Eq. (1.9)]. That is, it provides a means to compute the rate of change or slope of v.
Thus, the differential equation has been transformed into an equation that can be used
to determine the velocity algebraically at ., using the slope and previous values of
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EXAMPLE 1.2

v and . If you are given an initial value for velocity at some time #;, you can easily com-
pute velocity at a later time 7;,. This new value of velocity at #,.; can in turn be employed
to extend the computation to velocity at 7., and so on. Thus, at any time along the way,

New value = old value + slope X step size

Note that this approach is formally called Euler’s method.

Numerical Solution to the Falling Parachutist Problem

Problem Statement.  Perform the same computation as in Example 1.1 but use Eq. (1.12)
to compute the velocity. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (f; = 0), the velocity of the parachutist is
zero. Using this information and the parameter values from Example 1.1, Eq. (1.12) can
be used to compute velocity at f;; = 2 s:

=0+ [981 - 12'5(0)}2 = 19.62 m/
v ' 68.1 DS S

For the next interval (from r = 2 to 4 s), the computation is repeated, with the result
12.5
v=1962 + | 981 — 6871(19.62) 2 = 32.04 m/s

The calculation is continued in a similar fashion to obtain additional values:

v, m/s

0.00
19.62
32.04
39.90
44.87
48.02
50.01
53.44

*
)

SO ®OANO

The results are plotted in Fig. 1.5 along with the exact solution. It can be seen that
the numerical method captures the essential features of the exact solution. However, be-
cause we have employed straight-line segments to approximate a continuously curving
function, there is some discrepancy between the two results. One way to minimize such
discrepancies is to use a smaller step size. For example, applying Eq. (1.12) at 1-s intervals
results in a smaller error, as the straight-line segments track closer to the true solution.
Using hand calculations, the effort associated with using smaller and smaller step sizes
would make such numerical solutions impractical. However, with the aid of the computer,
large numbers of calculations can be performed easily. Thus, you can accurately model the
velocity of the falling parachutist without having to solve the differential equation exactly.

As in the previous example, a computational price must be paid for a more accurate
numerical result. Each halving of the step size to attain more accuracy leads to a doubling
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FIGURE 1.5

Comparison of the numerical
and analytical solutions for the
falling parachutist problem.
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of the number of computations. Thus, we see that there is a trade-off between accuracy
and computational effort. Such trade-offs figure prominently in numerical methods and
constitute an important theme of this book. Consequently, we have devoted the Epilogue
of Part One to an introduction to more of these trade-offs.

CONSERVATION LAWS AND ENGINEERING

Aside from Newton’s second law, there are other major organizing principles in engineering.
Among the most important of these are the conservation laws. Although they form the
basis for a variety of complicated and powerful mathematical models, the great conserva-
tion laws of science and engineering are conceptually easy to understand. They all boil
down to

Change = increases — decreases (1.13)

This is precisely the format that we employed when using Newton’s law to develop a
force balance for the falling parachutist [Eq. (1.8)].

Although simple, Eq. (1.13) embodies one of the most fundamental ways in which
conservation laws are used in engineering—that is, to predict changes with respect to
time. We give Eq. (1.13) the special name time-variable (or transient) computation.

Aside from predicting changes, another way in which conservation laws are applied
is for cases where change is nonexistent. If change is zero, Eq. (1.13) becomes

Change = 0 = increases — decreases
or

Increases = decreases (1.14)
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FIGURE 1.6

A flow balance for steady-state
incompressible fluid flow at the
junction of pipes.
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Thus, if no change occurs, the increases and decreases must be in balance. This case,
which is also given a special name—the steady-state computation—has many applica-
tions in engineering. For example, for steady-state incompressible fluid flow in pipes, the
flow into a junction must be balanced by flow going out, as in

Flow in = flow out

For the junction in Fig. 1.6, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the falling parachutist, steady-state conditions would correspond to the case
where the net force was zero, or [Eq. (1.8) with dv/dr = 0]

mg = cv (1.15)
Thus, at steady state, the downward and upward forces are in balance, and Eq. (1.15)
can be solved for the terminal velocity
mg

c

v =

Although Egs. (1.13) and (1.14) might appear trivially simple, they embody the two
fundamental ways that conservation laws are employed in engineering. As such, they will
form an important part of our efforts in subsequent chapters to illustrate the connection
between numerical methods and engineering. Our primary vehicles for making this con-
nection are the engineering applications that appear at the end of each part of this book.

Table 1.1 summarizes some of the simple engineering models and associated conserva-
tion laws that will form the basis for many of these engineering applications. Most of the
chemical engineering applications will focus on mass balances for reactors. The mass balance
is derived from the conservation of mass. It specifies that the change of mass of a chemical
in the reactor depends on the amount of mass flowing in minus the mass flowing out.

Both the civil and mechanical engineering applications will focus on models devel-
oped from the conservation of momentum. For civil engineering, force balances are
utilized to analyze structures such as the simple truss in Table 1.1. The same principles
are employed for the mechanical engineering applications to analyze the transient
up-and-down motion or vibrations of an automobile.
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TABLE 1.1 Devices and types of balances that are commonly used in the four major areas of engineering. For each
case, the conservation law upon which the balance is based is specified.

Field

Device

Organizing Principle Mathematical Expression

Chemical engineering

Civil engineering

Mechanical engineering

Electrical engineering

Structure

TN Machine
s

Circuit

Conservation of mass  Mass balance:

Input QGL Output

Over a unit of time period
Amass = inputs — outputs

Conservation of Force balance:
momentum +Fy

—-Fy ~— @ — +Fy,
_FV

At each node
>, horizontal forces (F,) =0
3, vertical forces (F,) =0

Conservation of Force balance: Upward force
momentum
x=0
Downward force
d’x _ P P
m P downward force — upward force
Conservation of charge Current balance:
+i; —@— —i
For each node ! T 3
> current (i) =0
+iy
Conservation of energy Voltage balance: i1R4
iR, 3
isR3

Around each loop
3 emf's — 3 voltage drops for resistors = 0
(-3 iR=0
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TABLE 1.2 Some practical issues that will be explored in the engineering applications
at the end of each part of this book.

1. Nonlinear versus linear. Much of classical engineering depends on linearization fo permit analytical
solutions. Although this is offen appropriate, expanded insight can often be gained if nonlinear
problems are examined.

2. large versus small systems. Without a computer, it is often not feasible to examine systems with over
three inferacting components. With computers and numerical methods, more redlistic mulicomponent
systems can be examined.

3. Nonideal versus ideal. Idealized laws abound in engineering. Often there are nonidealized
alternatives that are more realistic but more computationally demanding. Approximate numerical
approaches can facilitate the application of these nonideal relationships.

4. Sensitivity analysis. Because they are so involved, many manual calculations require a great deal of
time and effort for successful implementation. This somefimes discourages the analyst from
implementing the multiple computations that are necessary fo examine how a system responds under
different conditions. Such sensitivity analyses are facilitated when numerical methods allow the
computer fo assume the computational burden.

5. Design. It is often a straightforward proposition to determine the performance of a system as a
function of its parameters. It is usually more difficult 1o solve the inverse problem—that is, defermining
the parameters when the required performance is specified. Numerical methods and computers often
permit this fask fo be implemented in an efficient manner.

Finally, the electrical engineering applications employ both current and energy bal-
ances to model electric circuits. The current balance, which results from the conservation
of charge, is similar in spirit to the flow balance depicted in Fig. 1.6. Just as flow must
balance at the junction of pipes, electric current must balance at the junction of electric
wires. The energy balance specifies that the changes of voltage around any loop of the
circuit must add up to zero. The engineering applications are designed to illustrate how
numerical methods are actually employed in the engineering problem-solving process.
As such, they will permit us to explore practical issues (Table 1.2) that arise in real-world
applications. Making these connections between mathematical techniques such as nu-
merical methods and engineering practice is a critical step in tapping their true potential.
Careful examination of the engineering applications will help you to take this step.

1.1 Use calculus to solve Eq. (1.9) for the case where the initial
velocity, v(0) is nonzero.

1.2 Repeat Example 1.2. Compute the velocity to t = 8 s, with a
step size of (a) 1 and (b) 0.5 s. Can you make any statement regard-
ing the errors of the calculation based on the results?

1.3 Rather than the linear relationship of Eq. (1.7), you might
choose to model the upward force on the parachutist as a second-
order relationship,

Fy=—c'v

where ¢’ = a bulk second-order drag coefficient (kg/m).
(a) Using calculus, obtain the closed-form solution for the case
where the jumper is initially at rest (v = 0 at 7 = 0).

(b) Repeat the numerical calculation in Example 1.2 with the same
initial condition and parameter values, but with second-order
drag. Use a value of 0.22 kg/m for ¢’.

1.4 For the free-falling parachutist with linear drag, assume a first

jumper is 70 kg and has a drag coefficient of 12 kg/s. If a second jumper

has a drag coefficient of 15 kg/s and a mass of 80 kg, how long will it

take him to reach the same velocity the first jumper reached in 9 s?

1.5 Compute the velocity of a free-falling parachutist using Euler’s

method for the case where m = 80 kg and ¢ = 10 kg/s. Perform the

calculation from ¢ = 0 to 20 s with a step size of 1 s. Use an initial
condition that the parachutist has an upward velocity of 20 m/s at

t = 0.Atz = 10, assume that the chute is instantaneously deployed

so that the drag coefficient jumps to 60 kg/s.
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1.6 The following information is available for a bank account:

Date Deposits Withdrawals Interest Balance
5/1 1522.33
220.13 327.26
6/1
216.80 378.51
7/1
450.35 106.80
8/1
127.31 350.61
9/1

Note that the money earns interest which is computed as
Interest = i B;

where i = the interest rate expressed as a fraction per month, and B;

the initial balance at the beginning of the month.

(a) Use the conservation of cash to compute the balance on 6/1,
7/1, 8/1, and 9/1 if the interest rate is 1% per month (i =
0.01/month). Show each step in the computation.

(b) Write a differential equation for the cash balance in the form

dB
— =f(D@), W), 1)

dt

where ¢ = time (months), D(#) = deposits as a function of time
($/month), W(r) = withdrawals as a function of time ($/month).
For this case, assume that interest is compounded continu-
ously; that is, interest = iB.

(¢) Use Euler’s method with a time step of 0.5 month to simulate
the balance. Assume that the deposits and withdrawals are ap-
plied uniformly over the month.

(d) Develop a plot of balance versus time for (a) and (c).

1.7 The amount of a uniformly distributed radioactive contaminant

contained in a closed reactor is measured by its concentration ¢

(becquerel/liter or Bq/L). The contaminant decreases at a decay

rate proportional to its concentration—that is,

decay rate = —kc

where k is a constant with units of day~'. Therefore, according to
Eq. (1.13), a mass balance for the reactor can be written as
dc
dt

change | _ (decrease
in mass by decay
(a) Use Euler’s method to solve this equation from r = 0 to 1 d

with k = 0.175d"'. Employ a step size of Ar = 0.1. The con-
centration at t = 0 is 100 Bq/L.

= —kc

(b) Plot the solution on a semilog graph (i.e., In ¢ versus ) and
determine the slope. Interpret your results.

1.8 A group of 35 students attend a class in a room that measures
11 m by 8 m by 3 m. Each student takes up about 0.075 m* and
gives out about 80 W of heat (1 W = 1 J/s). Calculate the air tem-
perature rise during the first 20 minutes of the class if the room is
completely sealed and insulated. Assume the heat capacity, C,, for
air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20°C and
101.325 kPa. Note that the heat absorbed by the air Q is related to
the mass of the air m, the heat capacity, and the change in tempera-
ture by the following relationship:

T,
0= mj C,dT = mC, (T, — T))

T,

The mass of air can be obtained from the ideal gas law:

PV = " RT
MwT

where P is the gas pressure, V is the volume of the gas, Mwt is the
molecular weight of the gas (for air, 28.97 kg/kmol), and R is the
ideal gas constant [8.314 kPa m3/(kmol K)].

1.9 A storage tank contains a liquid at depth y, where y = 0 when
the tank is half full. Liquid is withdrawn at a constant flow rate Q to
meet demands. The contents are resupplied at a sinusoidal rate
3Q sin’(0).

FIGURE P1.9

Equation (1.13) can be written for this system as

d(A
% =3Qsin’(r) — O
changein) _ . B
( volume ) = (inflow) — (outflow)

or, since the surface area A is constant

dy _ Q. > Q
o 73A sin“(t) N
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Use Euler’s method to solve for the depth y from ¢ = 0 to 10 d with
a step size of 0.5 d. The parameter values are A = 1250 m* and
Q = 450 m*/d. Assume that the initial condition is y = 0.
1.10 For the same storage tank described in Prob. 1.9, suppose that
the outflow is not constant but rather depends on the depth. For this
case, the differential equation for depth can be written as

1.5
b_ 49 sin’(1) — ell*y”

dt A A

Use Euler’s method to solve for the depth y from # = O to 10 d with a step
size of 0.5 d. The parameter values are A = 1250 mz, 0 =450 m3/d,
and « = 150. Assume that the initial condition is y = 0.

1.11 Apply the conservation of volume (see Prob. 1.9) to simulate
the level of liquid in a conical storage tank (Fig. P1.11). The liquid
flows in at a sinusoidal rate of Q;, = 3 sin’(¢) and flows out accord-
ing to

Oou = 3(y - yuul)ll5
Qout = 0

where flow has units of m*d and y = the elevation of the water sur-
face above the bottom of the tank (m). Use Euler’s method to solve
for the depth y from # = 0 to 10 d with a step size of 0.5 d. The pa-
rameter values are r,,, = 2.5 m, y,,, = 4 m, and y,, = 1 m. Assume
that the level is initially below the outlet pipe with y(0) = 0.8 m.

Y = You
y = yout

Yiop

Yout

FIGURE P1.11

1.12 In our example of the free-falling parachutist, we assumed that
the acceleration due to gravity was a constant value. Although this is
a decent approximation when we are examining falling objects near
the surface of the earth, the gravitational force decreases as we move
above sea level. A more general representation based on Newton’s
inverse square law of gravitational attraction can be written as

2

glx) = g(O)m

where g(x) = gravitational acceleration at altitude x (in m) mea-

sured upward from the earth’s surface (m/s?), g(0) = gravitational

acceleration at the earth’s surface (= 9.81 m/s?), and R = the earth’s

radius (= 6.37 X 10° m).

(a) In a fashion similar to the derivation of Eq. (1.9) use a force
balance to derive a differential equation for velocity as a func-
tion of time that utilizes this more complete representation of
gravitation. However, for this derivation, assume that upward
velocity is positive.

(b) For the case where drag is negligible, use the chain rule to ex-
press the differential equation as a function of altitude rather
than time. Recall that the chain rule is

dv _dv dr
dt  dx dt

(¢) Use calculus to obtain the closed form solution where v = v, at
x=0.

(d) Use Euler’s method to obtain a numerical solution from x = 0
to 100,000 m using a step of 10,000 m where the initial velocity
is 1500 m/s upward. Compare your result with the analytical
solution.

1.13 Suppose that a spherical droplet of liquid evaporates at a rate

that is proportional to its surface area.

av A
dt
where V = volume (mm?), 7 = time (min), k = the evaporation rate
(mm/min), and A = surface area (mm?). Use Euler’s method to
compute the volume of the droplet from # = 0 to 10 min using a step
size of 0.25 min. Assume that £ = 0.08 mm/min and that the droplet
initially has a radius of 2.5 mm. Assess the validity of your results
by determining the radius of your final computed volume and veri-

fying that it is consistent with the evaporation rate.

1.14 Newton’s law of cooling says that the temperature of a body
changes at a rate proportional to the difference between its
temperature and that of the surrounding medium (the ambient
temperature),

ar_ k(T — T,

dt ¢ )
where T = the temperature of the body (°C), + = time (min),
k = the proportionality constant (per minute), and 7,, = the ambi-
ent temperature (°C). Suppose that a cup of coffee originally has
a temperature of 70°C. Use Euler’s method to compute the
temperature from # = 0 to 10 min using a step size of 2 min if
T, = 20°C and k = 0.019/min.
1.15 As depicted in Fig. P1.15, an RLC circuit consists of three
elements: a resistor (R), and inductor (L) and a capacitor (C). The
flow of current across each element induces a voltage drop.
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Kirchhoff’s second voltage law states that the algebraic sum of
these voltage drops around a closed circuit is zero,

. di  q
IR+L—+—==0
d C
where i = current, R = resistance, L = inductance, t = time, ¢ = charge,
and C = capacitance. In addition, the current is related to charge as in

dg
d !

(a) If the initial values are i{(0) = 0 and ¢(0) = 1 C, use Euler’s
method to solve this pair of differential equations from ¢t = 0 to
0.1 s using a step size of Ar = 0.01 s. Employ the following
parameters for your calculation: R = 200 ), L = 5 H, and
C=10"F

(b) Develop a plot of i and g versus z.

Resistor Inductor Capacitor
di q
iR L dt 3

FIGURE P1.15

1.16 Cancer cells grow exponentially with a doubling time of 20 h
when they have an unlimited nutrient supply. However, as the cells
start to form a solid spherical tumor without a blood supply, growth
at the center of the tumor becomes limited, and eventually cells
start to die.

(a) Exponential growth of cell number N can be expressed as
shown, where u is the growth rate of the cells. For cancer cells,
find the value of u.
dN N

a "

(b) Write an equation that will describe the rate of change of tumor
volume during exponential growth given that the diameter of
an individual cell is 20 microns.

(c) After a particular type of tumor exceeds 500 microns in diam-
eter, the cells at the center of the tumor die (but continue to take
up space in the tumor). Determine how long it will take for the
tumor to exceed this critical size.

1.17 A fluid is pumped into the network shown in Fig. P1.17. If

0, =06, 0; = 04, 0; = 0.2, and Qg = 0.3 m’/s, determine the

other flows.

r s ry
04 0. 0 o
% o o

FIGURE P1.17

1.18 The velocity is equal to the rate of change of distance x (m),

dx

E = v(?)

(P1.18)

(a) Substitute Eq. (1.10) and develop an analytical solution for
distance as a function of time. Assume that x(0) = 0.

(b) Use Euler’s method to numerically integrate Eqs. (P1.18) and
(1.9) in order to determine both the velocity and distance fallen
as a function of time for the first 10 s of free-fall using the same
parameters as in Example 1.2.

(c) Develop a plot of your numerical results together with the ana-
lytical solution.

1.19 You are working as a crime-scene investigator and must pre-

dict the temperature of a homicide victim over a 5-hr period. You

know that the room where the victim was found was at 10°C when
the body was discovered.

(a) Use Newton’s law of cooling (Prob. 1.14) and Euler’s method
to compute the victim’s body temperature for the 5-hr period
using values of k = 0.12/hr and A7 = 0.5 hr. Assume that the
victim’s body temperature at the time of death was 37°C, and
that the room temperature was at a constant value of 10°C over
the 5-hr period.

(b) Further investigation reveals that the room temperature had
actually dropped linearly from 20 to 10°C over the 5-hr period.
Repeat the same calculation as in (a) but incorporate this new
information.

(¢) Compare the results from (a) and (b) by plotting them on the
same graph.

1.20 Suppose that a parachutist with linear drag (m = 70 kg,

¢ = 12.5 kg/s) jumps from an airplane flying at an altitude of a kilo-

meter with a horizontal velocity of 180 m/s relative to the ground.

(a) Write a system of four differential equations for x, y, v, = dx/dt
and v, = dy/dt.
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(b) If the initial horizontal position is defined as x = 0, use Euler’s
methods with Az = 1 s to compute the jumper’s position over
the first 10 s.

(c) Develop plots of y versus ¢ and y versus x. Use the plot to
graphically estimate when and where the jumper would hit the
ground if the chute failed to open.

1.21 As noted in Prob. 1.3, drag is more accurately represented as

depending on the square of velocity. A more fundamental represen-

tation of the drag force, which assumes turbulent conditions (i.e., a

high Reynolds number), can be formulated as

1
F,= *EpAC‘,vM

where F,; = the drag force (N), p = fluid density (kg/m®), A = the fron-
tal area of the object on a plane perpendicular to the direction of motion
md),v = velocity (m/s), and C, = a dimensionless drag coefficient.
(a) Write the pair of differential equations for velocity and position
(see Prob. 1.18) to describe the vertical motion of a sphere with di-
ameter d (m) and a density of p, (kg/km®). The differential equation
for velocity should be written as a function of the sphere’s diameter.
(b) Use Euler’s method with a step size of Az = 2 s to compute the posi-
tion and velocity of a sphere over the first 14 s. Employ the follow-
ing parameters in your calculation: d = 120 cm, p = 1.3 kg/m’,
p, = 2700 kg/m®, and C; = 0.47. Assume that the sphere has
the initial conditions: x(0) = 100 m and v(0) = —40 m/s.
(c) Develop a plot of your results (i.e., y and v versus ) and use it
to graphically estimate when the sphere would hit the ground.
(d) Compute the value for the bulk second-order drag coefficient
¢, (kg/m). Note that, as described in Prob. 1.3, the bulk second-
order drag coefficient is the term in the final differential equa-
tion for velocity that multiplies the term v |v].
1.22 As depicted in Fig. P1.22, a spherical particle settling through a
quiescent fluid is subject to three forces: the downward force of gravity
(F), and the upward forces of buoyancy (Fp) and drag (Fp). Both the
gravity and buoyancy forces can be computed with Newton’s second
law with the latter equal to the weight of the displaced fluid. For lami-
nar flow, the drag force can be computed with Stokes’s law,

Fp = 3mpdv

where u = the dynamic viscosity of the fluid (N s/m%), d = the
particle diameter (m), and v = the particle’s settling velocity (m/s).
Note that the mass of the particle can be expressed as the product of
the particle’s volume and density p, (kg/m*) and the mass of the dis-
placed fluid can be computed as the product of the particle’s volume
and the fluid’s density p (kg/m®). The volume of a sphere is 7d*/6. In
addition, laminar flow corresponds to the case where the dimension-
less Reynolds number, Re, is less than 1, where Re = pdv/u.

(a) Use a force balance for the particle to develop the differential

equation for dv/dt as a function of d, p, p,, and p.

(b) At steady-state, use this equation to solve for the particle’s
terminal velocity.

(¢) Employ the result of (b) to compute the particle’s terminal
velocity in m/s for a spherical silt particle settling in water:
d=10um, p =1 g/lem?, p, = 2.65 g/em’, and . = 0.014 g/(cms).

(d) Check whether flow is laminar.

(e) Use Euler’s method to compute the velocity from r = 0to 2™ s
with Az = 27'% 5 given the parameters given previously along
with the initial condition: v (0) = 0.

/

<i>
FG
I

:
!

FIGURE P1.22

1.23 As described in Prob. 1.22, in addition to the downward force
of gravity (weight) and drag, an object falling through a fluid is also
subject to a buoyancy force that is proportional to the displaced
volume. For example, for a sphere with diameter d (m), the sphere’s
volume is V = 7d*/6 and its projected area is A = 7rd*/4. The buoy-
ancy force can then be computed as F;, = —pVg. We neglected
buoyancy in our derivation of Eq. (1.9) because it is relatively small
for an object like a parachutist moving through air. However, for a
more dense fluid like water, it becomes more prominent.

(a) Derive a differential equation in the same fashion as Eq. (1.9),
but include the buoyancy force and represent the drag force as
described in Prob. 1.21.

(b) Rewrite the differential equation from (a) for the special case
of a sphere.

(¢) Use the equation developed in (b) to compute the terminal
velocity (i.e., for the steady-state case). Use the following
parameter values for a sphere falling through water: sphere
diameter = 1 cm, sphere density = 2700 kg/m®, water density =
1000 kg/m?, and C, = 0.47.

(d) Use Euler’s method with a step size of At = 0.03125 s to nu-
merically solve for the velocity from # = 0 to 0.25 s with an
initial velocity of zero.

1.24 As depicted in Fig. P1.24, the downward deflection y (m) of a

cantilever beam with a uniform load w (kg/m) can be computed as

w
24E1

y (x* — 4L + 6L%%%)

where x = distance (m), £ = the modulus of elasticity = 2 X 10!
Pa, I = moment of inertia = 3.25 X 10 m*, w = 10,000 N/m, and
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L = length = 4 m. This equation can be differentiated to yield the
slope of the downward deflection as a function of x:
dy w

o gl (4x> — 12Lx° + 12L%)
X

If y = 0 atx = 0, use this equation with Euler’s method (Ax = 0.125 m)
to compute the deflection from x = 0 to L. Develop a plot of your results
along with the analytical solution computed with the first equation.

x=0 x=1L
e

0 Y 7 -

y

FIGURE P1.24
A cantilever beam.

1.25 Use Archimedes’ principle to develop a steady-state force bal-
ance for a spherical ball of ice floating in seawater (Fig. P1.25). The
force balance should be expressed as a third-order polynomial (cubic)
in terms of height of the cap above the water line (%), the seawater’s
density (p)), the ball’s density (p;), and the ball’s radius (7).

11<]

FIGURE P1.25

1.26 Beyond fluids, Archimedes’ principle has proven useful in
geology when applied to solids on the earth’s crust. Figure P1.26
depicts one such case where a lighter conical granite mountain
“floats on” a denser basalt layer at the earth’s surface. Note that the
part of the cone below the surface is formally referred to as a frus-
tum. Develop a steady-state force balance for this case in terms of
the following parameters: basalt’s density (p,), granite’s density
(p,), the cone’s bottom radius (r), and the height above (h,) and
below (/,) the earth’s surface.

Granite

Basalt

FIGURE P1.26




2.1

Programming and Software

In Chap. 1, we used a net force to develop a mathematical model to predict the fall
velocity of a parachutist. This model took the form of a differential equation,

dv c
.
dt £ m

We also learned that a solution to this equation could be obtained by a simple numerical
approach called Euler’s method,

dv,-

dt

Vig = v+ —At
Given an initial condition, this equation can be implemented repeatedly to compute
the velocity as a function of time. However, to obtain good accuracy, many small steps
must be taken. This would be extremely laborious and time-consuming to implement by
hand. However, with the aid of the computer, such calculations can be performed easily.
So our next task is to figure out how to do this. The present chapter will introduce
you to how the computer is used as a tool to obtain such solutions.

PACKAGES AND PROGRAMMING

Today, there are two types of software users. On one hand, there are those who take what
they are given. That is, they limit themselves to the capabilities found in the software’s
standard mode of operation. For example, it is a straightforward proposition to solve a
system of linear equations or to generate a plot of x-y values with either Excel or MATLAB
software. Because this usually involves a minimum of effort, most users tend to adopt this
“vanilla” mode of operation. In addition, since the designers of these packages anticipate
most typical user needs, many meaningful problems can be solved in this way.

But what happens when problems arise that are beyond the standard capability of
the tool? Unfortunately, throwing up your hands and saying, “Sorry boss, no can do!” is
not acceptable in most engineering circles. In such cases, you have two alternatives.

First, you can look for a different package and see if it is capable of solving the
problem. That is one of the reasons we have chosen to cover both Excel and MATLAB
in this book. As you will see, neither one is all encompassing and each has different

27
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2.2

strengths. By being conversant with both, you will greatly increase the range of problems
you can address.

Second, you can grow and become a “power user” by learning to write Excel VBA'
macros or MATLAB M-files. And what are these? They are nothing more than computer
programs that allow you to extend the capabilities of these tools. Because engineers should
never be content to be tool limited, they will do whatever is necessary to solve their prob-
lems. A powerful way to do this is to learn to write programs in the Excel and MATLAB
environments. Furthermore, the programming skills required for macros and M-files are the
same as those needed to effectively develop programs in languages like Fortran 90 or C.

The major goal of the present chapter is to show you how this can be done. However,
we do assume that you have been exposed to the rudiments of computer programming.
Therefore, our emphasis here is on facets of programming that directly affect its use in
engineering problem solving.

2.1.1 Computer Programs

Computer programs are merely a set of instructions that direct the computer to perform
a certain task. Since many individuals write programs for a broad range of applications,
most high-level computer languages, like Fortran 90 and C, have rich capabilities.
Although some engineers might need to tap the full range of these capabilities, most
merely require the ability to perform engineering-oriented numerical calculations.

Looked at from this perspective, we can narrow down the complexity to a few
programming topics. These are:

e Simple information representation (constants, variables, and type declarations).
e Advanced information representation (data structure, arrays, and records).

e Mathematical formulas (assignment, priority rules, and intrinsic functions).
 Input/output.

e Logical representation (sequence, selection, and repetition).

e Modular programming (functions and subroutines).

Because we assume that you have had some prior exposure to programming, we will
not spend time on the first four of these areas. At best, we offer them as a checklist that
covers what you will need to know to implement the programs that follow.

However, we will devote some time to the last two topics. We emphasize logical
representation because it is the single area that most influences an algorithm’s coherence
and understandability. We include modular programming because it also contributes
greatly to a program’s organization. In addition, modules provide a means to archive
useful algorithms in a convenient format for subsequent applications.

STRUCTURED PROGRAMMING

In the early days of computers, programmers usually did not pay much attention to
whether their programs were clear and easy to understand. Today, it is recognized that
there are many benefits to writing organized, well-structured code. Aside from the obvious
benefit of making software much easier to share, it also helps generate much more efficient

'VBA is the acronym for Visual Basic for Applications.
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program development. That is, well-structured algorithms are invariably easier to debug
and test, resulting in programs that take a shorter time to develop, test, and update.

Computer scientists have systematically studied the factors and procedures needed
to develop high-quality software of this kind. In essence, structured programming is a
set of rules that prescribe good style habits for the programmer. Although structured
programming is flexible enough to allow considerable creativity and personal expression,
its rules impose enough constraints to render the resulting codes far superior to unstruc-
tured versions. In particular, the finished product is more elegant and easier to understand.

A key idea behind structured programming is that any numerical algorithm can be
composed using the three fundamental control structures: sequence, selection, and rep-
etition. By limiting ourselves to these structures, the resulting computer code will be
clearer and easier to follow.

In the following paragraphs, we will describe each of these structures. To keep this
description generic, we will employ flowcharts and pseudocode. A flowchart is a visual
or graphical representation of an algorithm. The flowchart employs a series of blocks and
arrows, each of which represents a particular operation or step in the algorithm (Fig. 2.1).
The arrows represent the sequence in which the operations are implemented.

Not everyone involved with computer programming agrees that flowcharting is a
productive endeavor. In fact, some experienced programmers do not advocate flow-
charts. However, we feel that there are three good reasons for studying them. First, they
are still used for expressing and communicating algorithms. Second, even if they are
not employed routinely, there will be times when they will prove useful in planning,
unraveling, or communicating the logic of your own or someone else’s program. Finally,
and most important for our purposes, they are excellent pedagogical tools. From a

FIGURE 2.1

Symbols used in flowcharts.

SYMBOL NAME FUNCTION

C) Terminal Represents the beginning or end of a program.

,1\ ,Ts Flowlines Represents the flow of logic. The humps on the horizontal arrow indicate that
it passes over and does not connect with the vertical flowlines.

Process Represents calculations or data manipulations.
D Input/output Represents inputs or outputs of data and information.
<> Decision Represents a comparison, question, or decision that determines alternative
paths to be followed.

O Junction Represents the confluence of flowlines.
Off-page Represents a break that is continued on another page.

D connector

<:| Count-controlled  Used for loops which repeat a prespecified number of iterations.

loop



30

PROGRAMMING AND SOFTWARE

teaching perspective, they are ideal vehicles for visualizing some of the fundamental
control structures employed in computer programming.

An alternative approach to express an algorithm that bridges the gap between flow-
charts and computer code is called pseudocode. This technique uses code-like statements
in place of the graphical symbols of the flowchart. We have adopted some style conventions
for the pseudocode in this book. Keywords such as IF, DO, INPUT, etc., are capitalized,
whereas the conditions, processing steps, and tasks are in lowercase. Additionally, the
processing steps are indented. Thus the keywords form a “sandwich” around the steps
to visually define the extent of each control structure.

One advantage of pseudocode is that it is easier to develop a program with it than
with a flowchart. The pseudocode is also easier to modify and share with others. However,
because of their graphic form, flowcharts sometimes are better suited for visualizing
complex algorithms. In the present text, we will use flowcharts for pedagogical purposes.
Pseudocode will be our principal vehicle for communicating algorithms related to
numerical methods.

2.2.1 Logical Representation

Sequence. The sequence structure expresses the trivial idea that unless you direct it
otherwise, the computer code is to be implemented one instruction at a time. As in Fig. 2.2,
the structure can be expressed generically as a flowchart or as pseudocode.

Selection.  In contrast to the step-by-step sequence structure, selection provides a means
to split the program’s flow into branches based on the outcome of a logical condition.
Figure 2.3 shows the two most fundamental ways for doing this.

The single-alternative decision, or I[F/THEN structure (Fig. 2.3a), allows for a detour
in the program flow if a logical condition is true. If it is false, nothing happens and the
program moves directly to the next statement following the ENDIF. The double-alternative
decision, or /[F/THEN/ELSE structure (Fig. 2.3b), behaves in the same manner for a true
condition. However, if the condition is false, the program implements the code between
the ELSE and the ENDIF.

FIGURE 2.2

(a) Flowchart and

(b) pseudocode for the
sequence structure.

Instruction,
Instruction, Instruction;
; Instruction,
Instructiong
Instruction, Instruction,
Instruction,

(a) Flowchart  (b) Pseudocode
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FIGURE 2.3

Flowchart and pseudocode for
simple selection constructs.

(a) Single-alternative selection
(IF/THEN) and (b) double-

alternative selection

(IF/THEN/ELSE).

Flowchart Pseudocode

?

IF condition THEN
True block

True Block ENDIF

A 4

IF condition THEN
True block
A / v ELSE
True Block False block
I ENDIF

False Block

A 4
a

(b) Double-alternative structure (IF/THEN/ELSE)

Although the IF/THEN and the IF/THEN/ELSE constructs are sufficient to construct
any numerical algorithm, two other variants are commonly used. Suppose that the ELSE
clause of an IF/THEN/ELSE contains another IF/THEN. For such cases, the ELSE and
the IF can be combined in the IF/THEN/ELSEIF structure shown in Fig. 2.4a.

Notice how in Fig. 2.4a there is a chain or “cascade” of decisions. The first one is
the IF statement, and each successive decision is an ELSEIF statement. Going down the
chain, the first condition encountered that tests true will cause a branch to its correspond-
ing code block followed by an exit of the structure. At the end of the chain of conditions,
if all the conditions have tested false, an optional ELSE block can be included.

The CASE structure is a variant on this type of decision making (Fig. 2.4b). Rather
than testing individual conditions, the branching is based on the value of a single fest
expression. Depending on its value, different blocks of code will be implemented. In
addition, an optional block can be implemented if the expression takes on none of the
prescribed values (CASE ELSE).

Repetition. Repetition provides a means to implement instructions repeatedly. The
resulting constructs, called loops, come in two “flavors” distinguished by how they are
terminated.
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Flowchart Pseudocode

IF condition; THEN
Block;

ELSEIF condition,
Block,

ELSEIF conditions
Blocks

ELSE
Block,

ENDIF

(@) Multialternative structure (IF/THEN/ELSEIF)

SELECT CASE Test Expression
CASE Value;
Block;
CASE Value,
Block,

Test
expression

Value,

CASE Values
Block;

Value, Value, Else

Block,

Block, Blocks Block, CASE ELSE
Blocky

| | | END SELECT

FIGURE 2.4

(b) CASE structure (SELECT or SWITCH)

Flowchart and pseudocode for supplementary selection or branching constructs. (a) Multiple-
alternative selection (IF/THEN/ELSEIF) and (b) CASE construct.

The first and most fundamental type is called a decision loop because it terminates
based on the result of a logical condition. Figure 2.5 shows the most generic type of
decision loop, the DOEXIT construct, also called a break loop. This structure repeats
until a logical condition is true.

It is not necessary to have two blocks in this structure. If the first block is not
included, the structure is sometimes called a pretest loop because the logical test is
performed before anything occurs. Alternatively, if the second block is omitted, it is
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Flowchart Pseudocode

Block; D0
Block;
IF condition EXIT
Block,
ENDDO
FIGURE 2.5
The DOEXIT or break loop.
Flowchart Pseudocode
True . i = start
i > finish
? =1 t
.= restep DOFOR i = start, finish, step
False Block
ENDDO
v
FIGURE 2.6 Block
The countcontrolled or DOFOR \/ [

construct.

called a posttest loop. Because both blocks are included, the general case in Fig. 2.5 is
sometimes called a midtest loop.

It should be noted that the DOEXIT loop was introduced in Fortran 90 in an effort
to simplify decision loops. This control construct is a standard part of the Excel VBA
macro language but is not standard in C or MATLAB, which use the so-called WHILE
structure. Because we believe that the DOEXIT is superior, we have adopted it as our
decision loop structure throughout this book. In order to ensure that our algorithms are
directly implemented in both MATLAB and Excel, we will show how the break loop
can be simulated with the WHILE structure later in this chapter (see Sec. 2.5).

The break loop in Fig. 2.5 is called a logical loop because it terminates on a logical
condition. In contrast, a count-controlled or DOFOR loop (Fig. 2.6) performs a specified
number of repetitions, or iterations.

The count-controlled loop works as follows. The index (represented as i in Fig. 2.6)
is a variable that is set at an initial value of starf. The program then tests whether the
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EXAMPLE 2.1

index is less than or equal to the final value, finish. If so, it executes the body of the
loop, and then cycles back to the DO statement. Every time the ENDDO statement is
encountered, the index is automatically increased by the step. Thus the index acts as a
counter. Then, when the index is greater than the final value (finish), the computer auto-
matically exits the loop and transfers control to the line following the ENDDO statement.
Note that for nearly all computer languages, including those of Excel and MATLAB, if
the step is omitted, the computer assumes it is equal to 1.2

The numerical algorithms outlined in the following pages will be developed exclu-
sively from the structures outlined in Figs. 2.2 through 2.6. The following example
illustrates the basic approach by developing an algorithm to determine the roots for the
quadratic formula.

Algorithm for Roots of a Quadratic
Problem Statement. The roots of a quadratic equation
ax* +bx+c=0

can be determined with the quadratic formula,

x, b= VP — dac|
_ (E2.1.1)
X 2a

Develop an algorithm that does the following:

Step 1: Prompts the user for the coefficients, a, b, and c.

Step 2: Implements the quadratic formula, guarding against all eventudlities (for example,
avoiding division by zero and allowing for complex roots).

Step 3: Displays the solution, that is, the values for x.

Step 4: Allows the user the option to refurn fo step 1 and repeat the process.

Solution.  We will use a top-down approach to develop our algorithm. That is, we will
successively refine the algorithm rather than trying to work out all the details the first
time around.

To do this, let us assume for the present that the quadratic formula is foolproof
regardless of the values of the coefficients (obviously not true, but good enough for now).
A structured algorithm to implement the scheme is

D0
INPUT a, b, ¢
rl = (=b + SQRT(Y — 4ac))/(2a)
r2 = (—=b — SQRT(K — 4ac))/(2a)
DISPLAY rl1, r2
DISPLAY 'Try again? Answer yes or no'
INPUT response
IF response = 'no" EXIT
ENDDO

%A negative step can be used. In such cases, the loop terminates when the index is less than the final value.
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A DOEXIT construct is used to implement the quadratic formula repeatedly as long as
the condition is false. The condition depends on the value of the character variable response.
If response is equal to ‘yes’ the calculation is implemented. If not, that is, response = ‘no’
the loop terminates. Thus, the user controls termination by inputting a value for response.

Now although the above algorithm works for certain cases, it is not foolproof. Depend-
ing on the values of the coefficients, the algorithm might not work. Here is what can happen:

e If @ = 0, an immediate problem arises because of division by zero. In fact, close
inspection of Eq. (E2.1.1) indicates that two different cases can arise. That is,
If b # 0, the equation reduces to a linear equation with one real root, —c/b.
If b = 0, then no solution exists. That is, the problem is trivial.
e If @ # 0, two possible cases occur depending on the value of the discriminant,
d = b* — 4ac. That is,
If d = 0, two real roots occur.
If d < 0, two complex roots occur.

Notice how we have used indentation to highlight the decisional structure that underlies
the mathematics. This structure then readily translates to a set of coupled IF/THEN/ELSE
structures that can be inserted in place of the shaded statements in the previous code to give
the final algorithm:

D0
INPUT a, b, c
ri = 0: r2=0: il = 0: i2= 0
IF a = 0 THEN
IF b # 0 THEN
rl = —c/b
ELSE
DISPLAY "Trivial solution"
ENDIF
ELSE
discr = b — 4 *a * ¢
IF discr = 0 THEN

rl = (=b + Sgrt(discr))/(2 * a)

r?2 = (=b — Sgrt(discr))/(2 * a)
ELSE

rl = =b/(2 * a)

r2 = rl

i1 = Sqrt(Abs(discr))/(2 * a)
i2=—il
ENDIF

ENDIF

DISPLAY rl, r2, il, i2

DISPLAY 'Try again? Answer yes or no'

INPUT response

IF response = 'no' EXIT

ENDDO
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The approach in the foregoing example can be employed to develop an algorithm
for the parachutist problem. Recall that, given an initial condition for time and velocity,
the problem involved iteratively solving the formula

LY @.1)

Vit V; dt .
Now also remember that if we desired to attain good accuracy, we would need to employ
small steps. Therefore, we would probably want to apply the formula repeatedly from
the initial time to the final time. Consequently, an algorithm to solve the problem would
be based on a loop.

For example, suppose that we started the computation at + = 0 and wanted to predict
the velocity at + = 4 s using a time step of Ar = 0.5 s. We would, therefore, need to
apply Eq. (2.1) eight times, that is,

4

= =3
0.5

n
where n = the number of iterations of the loop. Because this result is exact, that is, the
ratio is an integer, we can use a count-controlled loop as the basis for the algorithm.
Here is an example of the pseudocode:

g = 9.81

INPUT cd, m

INPUT t1, vi, tf, dt

t=ti

v = vi

n= (tf — ti) / dt

DOFOR i =1 T0 n
dvdt = g — (cd/ m) *v
v = v+ dvdt *dt
t=1t+ dt

ENDDO

DISPLAY v

Although this scheme is simple to program, it is not foolproof. In particular, it will
work only if the computation interval is evenly divisible by the time step.’ In order to
cover such cases, a decision loop can be substituted in place of the shaded area in the
previous pseudocode. The final result is

g = 9.81
INPUT cd, m
INPUT ti1, vi, tf, dt
t=ti
v=vi
This problem is compounded by the fact that computers use base-2 number representation for their internal

math. Consequently, some apparently evenly divisible numbers do not yield integers when the division is
implemented on a computer. We will cover this in Chap. 3.
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h = dt
DO
IF t + dt > tf THEN
h=tf—-1=t
ENDIF

dvdt = g — (cd / m) * v
v=vVv+dvdt *h
t=t+ h
IF t = tf EXIT

ENDDO

DISPLAY v

As soon as we enter the loop, we use an IF/THEN structure to test whether adding
t + dr will take us beyond the end of the interval. If it does not, which would usually
be the case at first, we do nothing. If it does, we would need to shorten the interval by
setting the variable step & to tf — t. By doing this, we guarantee that the next step falls
exactly on zf. After we implement this final step, the loop will terminate because the
condition ¢ = tf will test true.

Notice that before entering the loop, we assign the value of the time step, df, to
another variable, 4. We create this dummy variable so that our routine does not change
the given value of dr if and when we shorten the time step. We do this in anticipation
that we might need to use the original value of dr somewhere else in the event that this
code is integrated within a larger program.

It should be noted that the algorithm is still not foolproof. For example, the user
could have mistakenly entered a step size greater than the calculation interval, for
example, tf — i = 5 and dtf = 20. Thus, you might want to include error traps in your
code to catch such errors and to then allow the user to correct the mistake.

MODULAR PROGRAMMING

Imagine how difficult it would be to study a textbook that had no chapters, sections, or
paragraphs. Breaking complicated tasks or subjects into more manageable parts is one
way to make them easier to handle. In the same spirit, computer programs can be divided
into small subprograms, or modules, that can be developed and tested separately. This
approach is called modular programming.

The most important attribute of modules is that they be as independent and self-
contained as possible. In addition, they are typically designed to perform a specific,
well-defined function and have one entry and one exit point. As such, they are usually
short (generally 50 to 100 instructions in length) and highly focused.

In standard high-level languages such as Fortran 90 or C, the primary programming
element used to represent each module is the procedure. A procedure is a series of com-
puter instructions that together perform a given task. Two types of procedures are com-
monly employed: functions and subroutines. The former usually returns a single result,
whereas the latter returns several.

In addition, it should be mentioned that much of the programming related to software
packages like Excel and MATLAB involves the development of subprograms. Hence,
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Excel macros and MATLAB functions are designed to receive some information, perform
a calculation, and return results. Thus, modular thinking is also consistent with how
programming is implemented in package environments.

Modular programming has a number of advantages. The use of small, self-contained
units makes the underlying logic easier to devise and to understand for both the developer
and the user. Development is facilitated because each module can be perfected in isolation.
In fact, for large projects, different programmers can work on individual parts. Modular
design also increases the ease with which a program can be debugged and tested because
errors can be more easily isolated. Finally, program maintenance and modification are
facilitated. This is primarily due to the fact that new modules can be developed to perform
additional tasks and then easily incorporated into the already coherent and organized scheme.

While all these attributes are reason enough to use modules, the most important
reason related to numerical engineering problem solving is that they allow you to main-
tain your own library of useful modules for later use in other programs. This will be the
philosophy of this book: All the algorithms will be presented as modules.

This approach is illustrated in Fig. 2.7, which shows a function developed to imple-
ment Euler’s method. Notice that this function application and the previous versions
differ in how they handle input/output. In the former versions, input and output directly
come from (via INPUT statements) and to (via DISPLAY statements) the user. In the
function, the inputs are passed into the FUNCTION via its argument list

Function Euler(dt, ti, tf, yi)
and the output is returned via the assignment statement
y = Euler(dt, ti., tf, yi)

In addition, recognize how generic the routine has become. There are no references
to the specifics of the parachutist problem. For example, rather than calling the dependent

FIGURE 2.7

Pseudocode for a function that
solves a differential equation
using Euler's method.

FUNCTION Euler(dt, ti, tf, yi)

t=ti

y=uyi

h = dt

DO

IF t + dt > tf THEN
h=1tf—-1t¢
ENDIF

dyvdt = dy(t, y)
y=y+ dydt * h
t=t+ h
IF t = tf EXIT
ENDDO
Euler = y

END Euler
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variable v for velocity, the more generic label, y, is used within the function. Further,
notice that the derivative is not computed within the function by an explicit equation.
Rather, another function, dy, must be invoked to compute it. This acknowledges the fact
that we might want to use this function for many different problems beyond solving for
the parachutist’s velocity.

EXCEL

Excel is the spreadsheet produced by Microsoft, Inc. Spreadsheets are a special type of
mathematical software that allow the user to enter and perform calculations on rows and
columns of data. As such, they are a computerized version of a large accounting work-
sheet on which large interconnected calculations can be implemented and displayed.
Because the entire calculation is updated when any value on the sheet is changed, spread-
sheets are ideal for “what if?” sorts of analysis.

Excel has some built-in numerical capabilities including equation solving, curve
fitting, and optimization. It also includes VBA as a macro language that can be used to
implement numerical calculations. Finally, it has several visualization tools, such as
graphs and three-dimensional surface plots, that serve as valuable adjuncts for numerical
analysis. In the present section, we will show how these capabilities can be used to solve
the parachutist problem.

To do this, let us first set up a simple spreadsheet. As shown below, the first step
involves entering labels and numbers into the spreadsheet cells.

A | B | % | b |

1 |Parachutist Problem

=
'3 m 68.1 kg

4 lcd 12.5 ky's

5 dt 0.1s

5]

7t vhum (m/s] vanal (m/g)

8 0 0.000

3 2

Before we write a macro program to calculate the numerical value, we can make
our subsequent work easier by attaching names to the parameter values. To do this, select
cells A3:B5 (the easiest way to do this is by moving the mouse to A3, holding down the
left mouse button and dragging down to B5). Next, go to the Formulas tab and in the
Defined Names group, click Create from Selection. This will open the Create Names
from Selection dialog box, where the Left column box should be automatically selected.
Then click OK to create the names. To verify that this has worked properly, select cell B3
and check that the label “m” appears in the name box (located on the left side of the
sheet just below the menu bars).
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Move to cell C8 and enter the analytical solution (Eq. 1.9),

=9.81*m/cd* (1-exp (-cd/m*A8) )

When this formula is entered, the value O should appear in cell C8. Then copy the for-
mula down to cell C9 to give a value of 16.405 m/s.

All the above is typical of the standard use of Excel. For example, at this point you
could change parameter values and see how the analytical solution changes.

Now, we will illustrate how VBA macros can be used to extend the standard capa-
bilities. Figure 2.8 lists pseudocode alongside Excel VBA code for all the control struc-
tures described in Sec. 2.2 (Figs. 2.3 through 2.6). Notice how, although the details
differ, the structure of the pseudocode and the VBA code are identical.

We can now use some of the constructs from Fig. 2.8 to write a macro function to
numerically compute velocity. Open VBA by selecting®

Tools Macro Visual Basic Editor

Once inside the Visual Basic Editor (VBE), select
Insert Module

and a new code window will open up. The following VBA function can be developed
directly from the pseudocode in Fig. 2.7. Type it into the code window.

Option Explicit

Function Euler(dt, ti, tf, yi, m, cd)

Dim h As Double, t As Double, y As Double, dydt As Double

t = ti

y = vyi

h = dt

Do
If t + dt > tf Then
h =tf -t
End If

dydt = dy(t, y, m, cd)
y =y + dydt * h

t =t +h

If t >= tf Then Exit Do
Loop
Euler = vy

End Function

Compare this macro with the pseudocode from Fig. 2.7 and recognize how similar
they are. Also, see how we have expanded the function’s argument list to include the
necessary parameters for the parachutist velocity model. The resulting velocity, v, is then
passed back to the spreadsheet via the function name.

“The hot key combination Alt-F11 is even quicker!



FIGURE 2.8

The fundamental control
structures in [a) pseudocode

and (b) Excel VBA.

(a) Pseudocode

(b) Excel VBA

IF/THEN:
IF condition THEN If b <> 0 Then
True block rl = -¢c /b
ENDIF End If
IF/THEN/ELSE:
IF condition THEN If a < 0 Then
True block b = Sgr (Abs(a))
ELSE Else
False block b = Sqgr(a)
ENDIF End If

IF/THEN/ELSEIF:
IF condition; THEN

If class = 1 Then

Block; X =X + 8

ELSEIF condition, ElseIf class < 1 Then
Block; X =X - 8

ELSEIF condition; ElseIf class < 10 Then
Blocks X = x - 32

ELSE Else
Block, X = X - 64

ENDIF End If

CASE:

SELECT CASE Test Expression
CASE Value;

Select Case a + b
Case Is < -50

Block; x = -5
CASE Value, Case Is < O
Block, x =-5- (a +Db) / 10
CASE Values Case Is < 50
Blocks x = (a + b) / 10
CASE ELSE Case Else
Blocky x =5
END SELECT End Select
DOEXIT:
D0 Do
Block; i=1+1
IF condition EXIT If i >= 10 Then Exit Do
Block, j o= i*x
ENDDO Loop

COUNT-CONTROLLED LOOP:

DOFOR 7 = start, finish, step
Block

ENDDO

For 1 = 1 To 10 Step 2
X = X + 1
Next i
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Also notice how we have included another function to compute the derivative. This
can be entered in the same module by typing it directly below the Euler function,

Function dy(t, v, m, cd)
Const g As Double = 9.81
dy =g - (cd / m) * v
End Function

The final step is to return to the spreadsheet and invoke the function by entering the
following formula in cell B9

=Euler (dt,A8,A9,B8,m, cd)

The result of the numerical integration, 16.531, will appear in cell B9.

You should appreciate what has happened here. When you enter the function into
the spreadsheet cell, the parameters are passed into the VBA program where the calcula-
tion is performed and the result is then passed back and displayed in the cell. In effect,
the VBA macro language allows you to use Excel as your input/output mechanism. All
sorts of benefits arise from this fact.

For example, now that you have set up the calculation, you can play with it. Suppose
that the jumper was much heavier, say, m = 100 kg (about 220 1b). Enter 100 into cell B3
and the spreadsheet will update immediately to show a value of 17.438 in cell B9. Change
the mass back to 68.1 kg and the previous result, 16.531, automatically reappears in cell B9.

Now let us take the process one step further by filling in some additional numbers for
the time. Enter the numbers 4, 6, . . . 16 in cells A10 through A16. Then copy the formu-
las from cells B9:C9 down to rows 10 through 16. Notice how the VBA program calculates
the numerical result correctly for each new row. (To verify this, change df to 2 and compare
with the results previously computed by hand in Example 1.2.) An additional embellish-
ment would be to develop an x-y plot of the results using the Excel Chart Wizard.

The final spreadsheet is shown below. We now have created a pretty nice problem-
solving tool. You can perform sensitivity analyses by changing the values for each of

| A B | e | o | & | F | & | w | & | 4
1 |Parachutist Problem
7 60
3 m 68.1 kg
4 cd 12.5 kg/s 50 g ="
5 |dt 01s ;|
5 a0 A
7t vnum {m/fs) vanal {m/s) ,‘/
g | 0 0.000 0.000 |30 ’
9| 2 16548  16.422 R
10 4 27972 27.798 £
1) 6 35850  35.678 % / m et (i)
12 | 8 a3 a7 || — — vanal [m/s)
13 | 10 45063 44919 ,
14 | 12 47.658  47.539 4
15 14 0450 49353 | ° ' ! : '
16 16 50.687  50.611 0 > 10 13 20
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the parameters. As each new value is entered, the computation and the graph would be
automatically updated. It is this interactive nature that makes Excel so powerful. How-
ever, recognize that the ability to solve this problem hinges on being able to write the
macro with VBA.

It is the combination of the Excel environment with the VBA programming language
that truly opens up a world of possibilities for engineering problem solving. In the com-
ing chapters, we will illustrate how this is accomplished.

MATLAB

MATLAB is the flagship software product of The MathWorks, Inc., which was cofounded
by the numerical analysts Cleve Moler and John N. Little. As the name implies, MATLAB
was originally developed as a matrix laboratory. To this day, the major element of MAT-
LAB is still the matrix. Mathematical manipulations of matrices are very conveniently
implemented in an easy-to-use, interactive environment. To these matrix manipulations,
MATLAB has added a variety of numerical functions, symbolic computations, and visu-
alization tools. As a consequence, the present version represents a fairly comprehensive
technical computing environment.

MATLAB has a variety of functions and operators that allow convenient implemen-
tation of many of the numerical methods developed in this book. These will be described
in detail in the individual chapters that follow. In addition, programs can be written as
so-called M-files that can be used to implement numerical calculations. Let us explore
how this is done.

First, you should recognize that normal MATLAB use is closely related to program-
ming. For example, suppose that we wanted to determine the analytical solution to the
parachutist problem. This could be done with the following series of MATLAB commands

>> g=9.81;

>> m=68.1;

>> cd=12.5;

>> tf=2;

>> v=g*m/cd* (1-exp (-cd/m*tf))

with the result being displayed as

v o=
16.4217

Thus, the sequence of commands is just like the sequence of instructions in a typical
programming language.

Now what if you want to deviate from the sequential structure. Although there are
some neat ways to inject some nonsequential capabilities in the standard command mode,
the inclusion of decisions and loops is best done by creating a MATLAB document called
an M-file. To do this, make the menu selection

File New Script
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and a new window will open with a heading “MATLAB Editor/Debugger.” In this
window, you can type and edit MATLAB programs. Type the following code there:

g=9.81;

m=68.1;

cd=12.5;

tf=2;

v=g*m/cd* (1l-exp (-cd/m*tf))

Notice how the commands are written in exactly the way as they would be written
in the front end of MATLAB. Save the program with the name: analpara. MATLAB will
automatically attach the extension .m to denote it as an M-file: analpara.m.

To run the program, you must go back to the command mode. The most direct way
to do this is to click on the “MATLAB Command Window” button on the task bar (which
is usually at the bottom of the screen).

The program can now be run by typing the name of the M-file, analpara, which
should look like

>> analpara

If you have done everything correctly, MATLAB should respond with the correct answer:

v =
16.4217

Now one problem with the foregoing is that it is set up to compute one case only. You
can make it more flexible by having the user input some of the variables. For example,
suppose that you wanted to assess the impact of mass on the velocity at 2 s. The M-file
could be rewritten as the following to accomplish this

g=9.81;

m=input ('mass (kg): ');
cd=12.5;

tf=2;

v=g*m/cd* (1l-exp (-cd/m*tf))

Save this as analpara2.m. If you typed analpara2 while being in command mode, the
prompt would show

mass (kg) :
The user could then enter a value like 100, and the result will be displayed as

v =
17.3597

Now it should be pretty clear how we can program a numerical solution with an
M-file. In order to do this, we must first understand how MATLAB handles logical and
looping structures. Figure 2.9 lists pseudocode alongside MATLAB code for all the
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(a) Pseudocode (b)) MATLAB
IF/THEN:
IF condition THEN if b ~= 0

True block rl = -¢ / b;
ENDIF end
IF/THEN/ELSE:
IF condition THEN if a < 0

True block b = sgrt(abs(a));
ELSE else

False block b 5 sqgrt(a);
ENDIF end

IF/THEN/ELSEIF:

IF condition; THEN if class ==
Block; X = X + 8;
ELSEIF condition, elseif class < 1
Block, X =X - 8;
ELSEIF conditions elseif class < 10
Blocks X = X - 32;
ELSE else
Blocky X = X - 64;
ENDIF end
CASE:
SELECT CASE Test Expression switch a + b
CASE Value; case 1
Block; x = -25;
CASE Value, case 2
Block; x =-5- (a+ b) / 10;
CASE Values case 3
Blocks x = (a + b) / 10;
CASE ELSE otherwise
Blocky x = 5;
END SELECT end
DOEXIT:
DO while (1)
Block; i=1+ 1;
IF condition EXIT if i >= 10, break, end
Blocks j o= i*x;
ENDDO end
FIGURE 2.9
The fundamental control COUNT-CONTROLLED LOOP:
structures in (o) pseudocode DOFOR i = start, finish, step for i = 1:2:10
and (b) the MATLAB program- Block X = X + 1;

ming language. ENDDO end
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control structures from Sec. 2.2. Although the structures of the pseudocode and the
MATLAB code are very similar, there are some slight differences that should be noted.

In particular, look at how we have represented the DOEXIT structure. In place of
the DO, we use the statement WHILE(1). Because MATLAB interprets the number 1 as
corresponding to “true,” this statement will repeat infinitely in the same manner as the
DO statement. The loop is terminated with a break command. This command transfers
control to the statement following the end statement that terminates the loop.

Also notice that the parameters of the count-controlled loop are ordered differently. For
the pseudocode, the loop parameters are specified as start, finish, step. For MAT-
LAB, the parameters are ordered as start:step: finish.

The following MATLAB M-file can now be developed directly from the pseudocode
in Fig. 2.7. Type it into the MATLAB Editor/Debugger:

g=9.81;

m=input ('mass (kg):');
cd=12.5;

ti=0;

tf=2;

vi=0;

dt

ﬁ
o
SR

f, break, end

disp('velocity (m/s):')
disp (v)

Save this file as numpara.m and return to the command mode and run it by entering:
numpara. The following output should result:

mass (kg): 100

velocity (m/s):
17.4559

As a final step in this development, let us take the above M-file and convert it into
a proper function. This can be done in the following M-file based on the pseudocode
from Fig. 2.7

function yy = euler(dt,ti,tf,yi,m,cd)

t = ti;
y = yi;
h = dt;
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while (1)
if t + dt > tf
h =tf - t;
end

dydt = dy(t, y, m, cd);
y =y + dydt * h;

t =t + h;

if t >= tf, break, end
end
Yy = Yi

Save this file as euler.m and then create another M-file to compute the derivative,

function dydt = dy(t, v, m, cd)
g = 9.81;
dydt = g - (cd / m) * v;

Save this file as dy.m and return to the command mode. In order to invoke the function
and see the result, you can type in the following commands

>> m=68.1;

>> cd=12.5;

>> ti=0;

>> tf=2.;

>> vi=0;

>> dt=0.1;

>> euler(dt,ti,tf,vi,m,cd)

When the last command is entered, the answer will be displayed as

ans =
16.5478

It is the combination of the MATLAB environment with the M-file programming
language that truly opens up a world of possibilities for engineering problem solving. In
the coming chapters we will illustrate how this is accomplished.

MATHCAD

Mathcad attempts to bridge the gap between spreadsheets like Excel and notepads. It
was originally developed by Allen Razdow of MIT who cofounded Mathsoft, Inc., which
published the first commercial version in 1986. Today, Mathsoft is part of Parametric
Technology Corporation (PTC) and Mathcad is in version 15.

Mathcad is essentially an interactive notepad that allows engineers and scientists to
perform a number of common mathematical, data-handling, and graphical tasks. Informa-
tion and equations are input to a “whiteboard” design environment that is similar in spirit
to a page of paper. Unlike a programming tool or spreadsheet, Mathcad’s interface
accepts and displays natural mathematical notation using keystrokes or menu palette
clicks—with no programming required. Because the worksheets contain live calculations,
a single keystroke that changes an input or equation instantly returns an updated result.
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2.7

Mathcad can perform tasks in either numeric or symbolic mode. In numeric mode,
Mathcad functions and operators give numerical responses, whereas in symbolic mode results
are given as general expressions or equations. Maple V, a comprehensive symbolic math
package, is the basis of the symbolic mode and was incorporated into Mathcad in 1993.

Mathcad has a variety of functions and operators that allow convenient implementa-
tion of many of the numerical methods developed in this book. These will be described
in detail in succeeding chapters. In the event that you are unfamiliar with Mathcad,
Appendix C also provides a primer on using this powerful software.

OTHER LANGUAGES AND LIBRARIES

In Secs. 2.4 and 2.5, we showed how Excel and MATLAB function procedures for
Euler’s method could be developed from an algorithm expressed as pseudocode. You
should recognize that similar functions can be written in high-level languages like Fortran
90 and C++. For example, a Fortran 90 function for Euler’s method is

Function Euler(dt, ti, tf, yi, m, cd)

REAL dt, ti, tf, yi, m, cd
Real h, t, y, dydt

t = ti

y = vyi

h = dt

Do
If (t + dt > tf) Then
h=1tf -t
End If

dydt = dy(t, y, m, cd)
y =y + dydt * h
t=t+h
If (t >= tf) Exit

End Do

Euler =y

End Function

For C, the result would look quite similar to the MATLAB function. The point is
that once a well-structured algorithm is developed in pseudocode form, it can be readily
implemented in a variety of programming environments.

In this book, our approach will be to provide you with well-structured procedures
written as pseudocode. This collection of algorithms then constitutes a numerical library
that can be accessed to perform specific numerical tasks in a range of software tools and
programming languages.

Beyond your own programs, you should be aware that commercial programming
libraries contain many useful numerical procedures. For example, the Numerical Recipe
library includes a large range of algorithms written in Fortran and C.’ These procedures
are described in both book (for example, Press et al. 2007) and electronic form.

*Numerical Recipe procedures are also available in book and electronic format for Pascal, MS BASIC, and
MATLAB. Information on all the Numerical Recipe products can be found at http://www.nr.com/.
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PROBLEMS

2.1 Write pseudocode to implement the flowchart depicted in
Fig. P2.1. Make sure that proper indentation is included to make
the structure clear.

FIGURE P2.1

2.2 Rewrite the following pseudocode using proper indentation

Do

J=J+1
X=x+5
IF x > 5 THEN
¥y =X

ELSE

y=20
ENDIF
zZ=x+y
IF z > 50 EXIT
ENDDO

2.3 Develop, debug, and document a program to determine the
roots of a quadratic equation, ax® + bx + ¢, in either a high-level
language or a macro language of your choice. Use a subroutine
procedure to compute the roots (either real or complex). Perform
test runs for the cases (a)a = 1, b =6,c =2;(b)a =0,b = —4,
c=16;()a=3,b=25c=17.

2.4 The sine function can be evaluated by the following infinite series:

YooY i

smx=xf§+§fﬂ+
Write an algorithm to implement this formula so that it computes
and prints out the values of sin x as each term in the series is added.
In other words, compute and print in sequence the values for

sinx = x
. X’
siInx = x — ——
3!
‘ 3 e
sinx =x — — + —
31 5!

up to the order term n of your choosing. For each of the preceding,
compute and display the percent relative error as

true — series approximation

% error = X 100%

true

Write the algorithm as (a) a structured flowchart and (b) pseudocode.
2.5 Develop, debug, and document a program for Prob. 2.4 in either a
high-level language or a macro language of your choice. Employ the
library function for the sine in your computer to determine the true
value. Have the program print out the series approximation and the error
at each step. As a test case, employ the program to compute sin(1.5) for
up to and including the term x'*/15!. Interpret your results.

2.6 The following algorithm is designed to determine a grade for a
course that consists of quizzes, homework, and a final exam:

Step 1: Input course number and name.

Step 2: Input weighting factors for quizzes (WQ), homework
(WH), and the final exam (WF).

Step 3: Input quiz grades and determine an average quiz grade (AQ).

Step 4: Input homework grades and determine an average home-
work grade (AH).

Step 5: If this course has a final grade, continue to step 6. If not, go
to step 9.

Step 6: Input final exam grade (FE).

Step 7: Determine average grade AG according to

~ WQ X AQ + WH X AH + WF X FE

AG
WQ + WH + WF

X 100%

Step 8: Go to step 10.
Step 9: Determine average grade AG according to

~ WQ X AQ + WH X AH

AG
WQ + WH

X 100%
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Step 10: Print out course number, name, and average grade.

Step 11: Terminate computation.

(a) Write well-structured pseudocode to implement this algorithm.

(b) Write, debug, and document a structured computer program
based on this algorithm. Test it using the following data to
calculate a grade without the final exam and a grade with the
final exam: WQ = 30; WH = 40; WF = 30; quizzes = 98, 95,
90, 60, 99; homework = 98, 95, 86, 100, 100, 77; and final
exam = 91.

2.7 The “divide and average” method, an old-time method for

approximating the square root of any positive number a can be

formulated as

_x+ta/x

* 2

(a) Write well-structured pseudocode to implement this algorithm
as depicted in Fig. P2.7. Use proper indentation so that the
structure is clear.

(b) Develop, debug, and document a program to implement this
equation in either a high-level language or a macro language of
your choice. Structure your code according to Fig. P2.7.

F T
y
tol =106
SquareRoot =0 x=al2
y=(x+a/x)/2
e=|(y-x)y|
x=y

!

T

SquareRoot = x

FIGURE P2.7

2.8 An amount of money P is invested in an account where interest
is compounded at the end of the period. The future worth F yielded
at an interest rate i after n periods may be determined from the
following formula:

F=P( +i)

Write a program that will calculate the future worth of an investment
for each year from 1 through n. The input to the function should
include the initial investment P, the interest rate i (as a decimal),
and the number of years n for which the future worth is to be calcu-
lated. The output should consist of a table with headings and
columns for 7 and F. Run the program for P = $100,000, i = 0.04,
and n = 11 years.

2.9 Economic formulas are available to compute annual payments
for loans. Suppose that you borrow an amount of money P and
agree to repay it in n annual payments at an interest rate of i. The
formula to compute the annual payment A is

i1+ "
1+"—1

Write a program to compute A. Test it with P = $55,000 and an
interest rate of 6.6% (i = 0.066). Compute results forn = 1, 2, 3, 4,
and 5 and display the results as a table with headings and columns
for n and A.

2.10 The average daily temperature for an area can be approxi-
mated by the following function,

T= Tmean + (Tpeak - Tmean)cos(w(t - tpeak))

where T = the average annual temperature, Tp.,c = the peak
temperature, w = the frequency of the annual variation (= 27/365),
and 7, = day of the peak temperature (= 205 d). Develop a
program that computes the average temperature between two days
of the year for a particular city. Test it for (a) January—February
(t = 0 to 59) in Miami, Florida (Tyyeqn = 22.1°C; Ty = 28.3°C),
and (b) July—August (r = 180 to 242) in Boston, Massachusetts
(Tinean = 10.7°C; Tpeye = 22.9°C).

2.11 Develop, debug, and test a program in either a high-level
language or a macro language of your choice to compute the
velocity of the falling parachutist as outlined in Example 1.2.
Design the program so that it allows the user to input values for
the drag coefficient and mass. Test the program by duplicating
the results from Example 1.2. Repeat the computation but em-
ploy step sizes of 1 and 0.5 s. Compare your results with the
analytical solution obtained previously in Example 1.1. Does a
smaller step size make the results better or worse? Explain your
results.

2.12 The bubble sort is an inefficient, but easy-to-program,
sorting technique. The idea behind the sort is to move down
through an array comparing adjacent pairs and swapping the
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values if they are out of order. For this method to sort the array
completely, it may need to pass through it many times. As the
passes proceed for an ascending-order sort, the smaller elements
in the array appear to rise toward the top like bubbles. Eventu-
ally, there will be a pass through the array where no swaps are
required. Then, the array is sorted. After the first pass, the larg-
est value in the array drops directly to the bottom. Consequently,
the second pass only has to proceed to the second-to-last value,
and so on. Develop a program to set up an array of 20 random
numbers and sort them in ascending order with the bubble sort
(Fig. P2.12).

m=n-1

L

switch = false

4 +—> 0;j4q

‘ Y

switch = true

< ——

FIGURE P2.12

2.13 Figure P2.13 shows a cylindrical tank with a conical base.
If the liquid level is quite low in the conical part, the volume is
simply the conical volume of liquid. If the liquid level is mid-
range in the cylindrical part, the total volume of liquid includes
the filled conical part and the partially filled cylindrical part.
Write a well-structured function procedure to compute the
tank’s volume as a function of given values of R and d. Use

decisional control structures (like If/Then, Elself, Else, End If).
Design the function so that it returns the volume for all cases
where the depth is less than 3R. Return an error message
(“Overtop”) if you overtop the tank, that is, d > 3R. Test it with
the following data:

R 1 ] ] ]
d | o5 1.2 3.0 31
T 2R
d v
R
FIGURE P2.13
I
y ___________
) :
b
X
1 v

FIGURE P2.14

2.14 Two distances are required to specify the location of a point
relative to an origin in two-dimensional space (Fig. P2.14):

e The horizontal and vertical distances (x, y) in Cartesian
coordinates
* The radius and angle (r, 0) in radial coordinates.
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It is relatively straightforward to compute Cartesian coordinates
(x, y) on the basis of polar coordinates (r, ). The reverse process
is not so simple. The radius can be computed by the following
formula:

2 2

r= x°+y

If the coordinates lie within the first and fourth coordinates (i.e.,
x > 0), then a simple formula can be used to compute 6

0 = tan” ! <X)
X

The difficulty arises for the other cases. The following table sum-
marizes the possibilities:

x y 0

<0 >0 fan~y/x) +
<0 <0 fany/x) — @
<0 =0 T

=0 >0 /2

=0 <0 —a/2

=0 =0 0

(a) Write a well-structured flowchart for a subroutine procedure to
calculate r and 0 as a function of x and y. Express the final
results for 6 in degrees.

(b) Write a well-structured function procedure based on your
flowchart. Test your program by using it to fill out the follow-
ing table:

y

0

1

1

=1 1
0

=1

=1

=1

0

2.15 Develop a well-structured function procedure that is passed a
numeric grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria
A Q0 = numeric grade = 100
B 80 = numeric grade < 90
C 70 = numeric grade < 80
D 60 = numeric grade < 70
F numeric grade < 60

2.16 Develop well-structured function procedures to determine
(a) the factorial; (b) the minimum value in a vector; and (c) the
average of the values in a vector.

2.17 Develop well-structured programs to (a) determine the square
root of the sum of the squares of the elements of a two-dimensional
array (i.e., a matrix) and (b) normalize a matrix by dividing each
row by the maximum absolute value in the row so that the maxi-
mum element in each row is 1.

2.18 Piecewise functions are sometimes useful when the relation-
ship between a dependent and an independent variable cannot be
adequately represented by a single equation. For example, the
velocity of a rocket might be described by

117 — 5t 0=tr=10
1100 — 5¢ 10=r=20
v(r) =450t + 2(r — 20)> 20 =<1=30
1520702730 ¢ > 30
0 otherwise

Develop a well-structured function to compute v as a function of ¢.
Then use this function to generate a table of v versus ¢ for r = —5
to 50 at increments of 0.5.

2.19 Develop a well-structured function to determine the elapsed
days in a year. The function should be passed three values: mo = the
month (1-12), da = the day (1-31) and 1eap = (0 for non-leap
year and 1 for leap year). Test it for January 1, 1999; February 29,
2000; March 1, 2001; June 21, 2002; and December 31, 2004.
Hint: a nice way to do this combines the for and the switch
structures.

2.20 Develop a well-structured function to determine the elapsed
days in a year. The first line of the function should be set up as

function nd = days(mo, da, year)

where mo = the month (1-12), da = the day (1-31) and year = the
year. Test it for January 1, 1999; February 29, 2000; March 1, 2001;
June 21, 2002; and December 31, 2004.

2.21 Manning’s equation can be used to compute the velocity of
water in a rectangular open channel,

- W(BH)”

n \B + 2H



PROBLEMS

53

where U = velocity (m/s), S = channel slope, n = roughness coef-
ficient, B = width (m), and H = depth (m). The following data are
available for five channels:

n S B H
0.035 0.0001 10 2
0.020 0.0002 8 ]
0.015 0.0010 20 1.5
0.030 0.0007 24 3
0.022 0.0003 15 2.5

Write a well-structured program that computes the velocity for
each of these channels. Have the program display the input data
along with the computed velocity in tabular form where velocity
is the fifth column. Include headings on the table to label the
columns.

2.22 A simply supported beam is loaded as shown in Fig. P2.22.
Using singularity functions, the displacement along the beam can
be expressed by the equation:

-5 15
u,(x) = = lx = 0 — (x = 5y + P 8)’
+ 750 — 7 + %ﬁ — 238.25x

By definition, the singularity function can be expressed as
follows:

(= ay = {(x —a)" whenx > a}

0 when x < a

Develop a program that creates a plot of displacement versus
distance along the beam x. Note that x = 0 at the left end of the
beam.

20 kips/ft

150 kip-ft

15 kips

5’

FIGURE P2.22

2.23 The volume V of liquid in a hollow horizontal cylinder
of radius r and length L is related to the depth of the liquid % by

— h
V= {rzcos_l(r ; )— (r—m\V2rh - 1 |L

Develop a well-structured function to create a plot of volume versus
depth. Test the program for r = 2 mand L = 5 m.

2.24 Develop a well-structured program to compute the ve-
locity of a parachutist as a function of time using Euler’s
method. Test your program for the case where m = 80 kg and
¢ = 10 kg/s. Perform the calculation from ¢ = 0 to 20 s with a
step size of 2 s. Use an initial condition that the parachutist
has an upward velocity of 20 m/s at# = 0. At = 10 s, assume
that the parachute is instantaneously deployed so that the drag
coefficient jumps to 50 kg/s.

2.25 The pseudocode in Fig. P2.25 computes the factorial. Express
this algorithm as a well-structured function in the language of your
choice. Test it by computing 0! and 5!. In addition, test the error
trap by trying to evaluate —2!.

FUNCTION fac(n)
IF n= 0 THEN
X =1
DOFOR 1 =1, n
X=X-1
END DO
fac = x
ELSE
display error message
terminate
ENDIF
END fac

FIGURE P2.25

20.26 The height of a small rocket y can be calculated as a function
of time after blastoff with the following piecewise function:

y = 38.1454r + 0.137437 0=r<15
y = 1036 + 130.909(7 — 15) + 6.18425(r — 15)*

—0.428(1 — 15)° 15=1<33
y = 2900 — 62.468(1 —33) — 16.9274(1 —33)?

+0.41796(r —33)° r > 33
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Develop a well-structured pseudocode function to compute y as a
function of 7. Note that if the user enters a negative value of 7 or if
the rocket has hit the ground (y = 0) then return a value of zero
for y. Also, the function should be invoked in the calling program
as height (t). Write the algorithm as (a) pseudocode, or (b) in
the high-level language of your choice.

20.27 As depicted in Fig. P2.27, a water tank consists of a
cylinder topped by the frustum of a cone. Develop a well-
structured function in the high-level language or macro lan-
guage of your choice to compute the volume given the water
level h (m) above the tank’s bottom. Design the function so
that it returns a value of zero for negative /#’s and the value of
the maximum filled volume for A’s greater than the tank’s maxi-
mum depth. Given the following parameters, H; = 10 m, r; = 4 m,
H, = 5 m, and r, = 6.5 m, test your function by using it to
compute the volumes and generate a graph of the volume as a
function of level from 4 = —1 to 16 m.

FIGURE P2.27




Approximations and
Round-Off Errors

Because so many of the methods in this book are straightforward in description and
application, it would be very tempting at this point for us to proceed directly to the main
body of the text and teach you how to use these techniques. However, understanding the
concept of error is so important to the effective use of numerical methods that we have
chosen to devote the next two chapters to this topic.

The importance of error was introduced in our discussion of the falling parachutist
in Chap. 1. Recall that we determined the velocity of a falling parachutist by both ana-
Iytical and numerical methods. Although the numerical technique yielded estimates that
were close to the exact analytical solution, there was a discrepancy, or error, because the
numerical method involved an approximation. Actually, we were fortunate in that case
because the availability of an analytical solution allowed us to compute the error exactly.
For many applied engineering problems, we cannot obtain analytical solutions. Therefore,
we cannot compute exactly the errors associated with our numerical methods. In these
cases, we must settle for approximations or estimates of the errors.

Such errors are characteristic of most of the techniques described in this book. This
statement might at first seem contrary to what one normally conceives of as sound
engineering. Students and practicing engineers constantly strive to limit errors in their
work. When taking examinations or doing homework problems, you are penalized, not
rewarded, for your errors. In professional practice, errors can be costly and sometimes
catastrophic. If a structure or device fails, lives can be lost.

Although perfection is a laudable goal, it is rarely, if ever, attained. For example, despite
the fact that the model developed from Newton’s second law is an excellent approximation,
it would never in practice exactly predict the parachutist’s fall. A variety of factors such as
winds and slight variations in air resistance would result in deviations from the prediction. If
these deviations are systematically high or low, then we might need to develop a new model.
However, if they are randomly distributed and tightly grouped around the prediction, then the
deviations might be considered negligible and the model deemed adequate. Numerical
approximations also introduce similar discrepancies into the analysis. Again, the question
is: How much the next error is present in our calculations and is it tolerable?

This chapter and Chap. 4 cover basic topics related to the identification, quan-
tification, and minimization of these errors. In this chapter, general information con-
cerned with the quantification of error is reviewed in the first sections. This is

55
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3.1

followed by a section on one of the two major forms of numerical error: round-off
error. Round-off error is due to the fact that computers can represent only quantities
with a finite number of digits. Then Chap. 4 deals with the other major form: trun-
cation error. Truncation error is the discrepancy introduced by the fact that numeri-
cal methods may employ approximations to represent exact mathematical operations
and quantities. Finally, we briefly discuss errors not directly connected with the
numerical methods themselves. These include blunders, formulation or model errors,
and data uncertainty.

SIGNIFICANT FIGURES

This book deals extensively with approximations connected with the manipulation of
numbers. Consequently, before discussing the errors associated with numerical methods,
it is useful to review basic concepts related to approximate representation of the numbers
themselves.

Whenever we employ a number in a computation, we must have assurance that it
can be used with confidence. For example, Fig. 3.1 depicts a speedometer and odom-
eter from an automobile. Visual inspection of the speedometer indicates that the car is
traveling between 48 and 49 km/h. Because the indicator is higher than the midpoint
between the markers on the gauge, we can say with assurance that the car is traveling
at approximately 49 km/h. We have confidence in this result because two or more rea-
sonable individuals reading this gauge would arrive at the same conclusion. However,
let us say that we insist that the speed be estimated to one decimal place. For this case,

FIGURE 3.1

An automobile speedometer and odometer illustrating the concept of a significant figure.
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one person might say 48.8, whereas another might say 48.9 km/h. Therefore, because of
the limits of this instrument, only the first two digits can be used with confidence. Estimates
of the third digit (or higher) must be viewed as approximations. It would be ludicrous to
claim, on the basis of this speedometer, that the automobile is traveling at 48.8642138 km/h.
In contrast, the odometer provides up to six certain digits. From Fig. 3.1, we can conclude
that the car has traveled slightly less than 87,324.5 km during its lifetime. In this case, the
seventh digit (and higher) is uncertain.

The concept of a significant figure, or digit, has been developed to formally designate
the reliability of a numerical value. The significant digits of a number are those that can
be used with confidence. They correspond to the number of certain digits plus one esti-
mated digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings
of three and seven significant figures, respectively. For the speedometer, the two certain
digits are 48. It is conventional to set the estimated digit at one-half of the smallest scale
division on the measurement device. Thus the speedometer reading would consist of the
three significant figures: 48.5. In a similar fashion, the odometer would yield a seven-
significant-figure reading of 87,324.45.

Although it is usually a straightforward procedure to ascertain the significant figures
of a number, some cases can lead to confusion. For example, zeros are not always sig-
nificant figures because they may be necessary just to locate a decimal point. The num-
bers 0.00001845, 0.0001845, and 0.001845 all have four significant figures. Similarly,
when trailing zeros are used in large numbers, it is not clear how many, if any, of the
zeros are significant. For example, at face value the number 45,300 may have three, four,
or five significant digits, depending on whether the zeros are known with confidence. Such
uncertainty can be resolved by using scientific notation, where 4.53 X 10%, 4.530 X 10%
4.5300 % 10* designate that the number is known to three, four, and five significant figures,
respectively.

The concept of significant figures has two important implications for our study of
numerical methods:

1. As introduced in the falling parachutist problem, numerical methods yield approxi-
mate results. We must, therefore, develop criteria to specify how confident we are in
our approximate result. One way to do this is in terms of significant figures. For
example, we might decide that our approximation is acceptable if it is correct to four
significant figures.

2. Although quantities such as 7, e, or \/7 represent specific quantities, they cannot be
expressed exactly by a limited number of digits. For example,

7 = 3.141592653589793238462643 ...

ad infinitum. Because computers retain only a finite number of significant figures,
such numbers can never be represented exactly. The omission of the remaining
significant figures is called round-off error.

Both round-off error and the use of significant figures to express our confidence in
a numerical result will be explored in detail in subsequent sections. In addition, the
concept of significant figures will have relevance to our definition of accuracy and preci-
sion in the next section.


user
Highlight


58

APPROXIMATIONS AND ROUND-OFF ERRORS

3.2

ACCURACY AND PRECISION

The errors associated with both calculations and measurements can be characterized with
regard to their accuracy and precision. Accuracy refers to how closely a computed or
measured value agrees with the true value. Precision refers to how closely individual
computed or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice.
The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a nu-
merical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias)
is defined as systematic deviation from the truth. Thus, although the shots in Fig. 3.2¢ are
more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because
they are both centered on the upper left quadrant of the target. Imprecision (also called
uncertainty), on the other hand, refers to the magnitude of the scatter. Therefore, although
Fig. 3.2b and d are equally accurate (that is, centered on the bull’s-eye), the latter is
more precise because the shots are tightly grouped.

Numerical methods should be sufficiently accurate or unbiased to meet the require-
ments of a particular engineering problem. They also should be precise enough for adequate

FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a] Inaccurate
and imprecise; (b) accurate and imprecise; (c] inaccurate and precise; (d) accurate and precise.

Increasing accuracy

Increasing precision
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3.3

EXAMPLE 3.1

engineering design. In this book, we will use the collective term error to represent both
the inaccuracy and the imprecision of our predictions. With these concepts as background,
we can now discuss the factors that contribute to the error of numerical computations.

ERROR DEFINITIONS

Numerical errors arise from the use of approximations to represent exact mathematical
operations and quantities. These include truncation errors, which result when approxima-
tions are used to represent exact mathematical procedures, and round-off errors, which
result when numbers having limited significant figures are used to represent exact num-
bers. For both types, the relationship between the exact, or true, result and the approxi-
mation can be formulated as

True value = approximation + error 3.1

By rearranging Eq. (3.1), we find that the numerical error is equal to the discrepancy
between the truth and the approximation, as in

E, = true value — approximation 3.2)

where E, is used to designate the exact value of the error. The subscript 7 is included to
designate that this is the “true” error. This is in contrast to other cases, as described
shortly, where an “approximate” estimate of the error must be employed.

A shortcoming of this definition is that it takes no account of the order of magnitude
of the value under examination. For example, an error of a centimeter is much more sig-
nificant if we are measuring a rivet rather than a bridge. One way to account for the mag-
nitudes of the quantities being evaluated is to normalize the error to the true value, as in

. . true error

True fractional relative error = ———
true value
where, as specified by Eq. (3.2), error = true value — approximation. The relative error
can also be multiplied by 100 percent to express it as

true error

g =—""100% (3.3)
true value

where g, designates the true percent relative error.

Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a
bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are
10,000 and 10 cm, respectively, compute (@) the true error and (b) the true percent rela-
tive error for each case.

Solution.
(a) The error for measuring the bridge is [Eq. (3.2)]
E, = 10,000 — 9999 = 1 cm
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and for the rivet it is
E,=10—9=1cm
(b) The percent relative error for the bridge is [Eq. (3.3)]

100% = 0.01%

&

~ 10,000

and for the rivet it is

= L100‘7 = 10%

& 10 0 (9
Thus, although both measurements have an error of 1 cm, the relative error for the rivet

is much greater. We would conclude that we have done an adequate job of measuring
the bridge, whereas our estimate for the rivet leaves something to be desired.

Notice that for Eqgs. (3.2) and (3.3), E and & are subscripted with a ¢ to signify that
the error is normalized to the true value. In Example 3.1, we were provided with this
value. However, in actual situations such information is rarely available. For numerical
methods, the true value will be known only when we deal with functions that can be
solved analytically. Such will typically be the case when we investigate the theoretical
behavior of a particular technique for simple systems. However, in real-world applications,
we will obviously not know the true answer a priori. For these situations, an alternative
is to normalize the error using the best available estimate of the true value, that is, to the
approximation itself, as in

approximate error

€, = — 100% (3.4)
approximation

where the subscript a signifies that the error is normalized to an approximate value. Note
also that for real-world applications, Eq. (3.2) cannot be used to calculate the error term
for Eq. (3.4). One of the challenges of numerical methods is to determine error estimates
in the absence of knowledge regarding the true value. For example, certain numerical
methods use an iferative approach to compute answers. In such an approach, a present
approximation is made on the basis of a previous approximation. This process is performed
repeatedly, or iteratively, to successively compute (we hope) better and better approxima-
tions. For such cases, the error is often estimated as the difference between previous and
current approximations. Thus, percent relative error is determined according to
current approximation — previous approximation

€ = . 100% (3.5)
current approximation

This and other approaches for expressing errors will be elaborated on in subsequent chapters.

The signs of Egs. (3.2) through (3.5) may be either positive or negative. If the
approximation is greater than the true value (or the previous approximation is greater
than the current approximation), the error is negative; if the approximation is less than
the true value, the error is positive. Also, for Egs. (3.3) to (3.5), the denominator may
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be less than zero, which can also lead to a negative error. Often, when performing
computations, we may not be concerned with the sign of the error, but we are interested
in whether the percent absolute value is lower than a prespecified percent tolerance &,.
Therefore, it is often useful to employ the absolute value of Egs. (3.2) through (3.5).
For such cases, the computation is repeated until

led < & (3.6)

If this relationship holds, our result is assumed to be within the prespecified acceptable
level g, Note that for the remainder of this text, we will almost exclusively employ
absolute values when we use relative errors.

It is also convenient to relate these errors to the number of significant figures in the
approximation. It can be shown (Scarborough, 1966) that if the following criterion is
met, we can be assured that the result is correct to at least n significant figures.

g = (0.5 X 10°")% (3.7)

Error Estimates for lterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, the exponential function can be computed using

2 3 xn

X — X .o _—

e 1 +x+ ) + 3 + + ol (E3.2.1)
Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ¢". Equation (E3.2.1) is called a Maclaurin series expansion.

Starting with the simplest version, ¢* = 1, add terms one at a time to estimate ",
After each new term is added, compute the true and approximate percent relative errors
with Eqgs. (3.3) and (3.5), respectively. Note that the true value is ™ = 1.648721 .. ..
Add terms until the absolute value of the approximate error estimate g, falls below a
prespecified error criterion g, conforming to three significant figures.

Solution.  First, Eq. (3.7) can be employed to determine the error criterion that ensures
a result is correct to at least three significant figures:

g = (0.5 X 10" )% = 0.05%

Thus, we will add terms to the series until g, falls below this level.
The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term, as in

ef=1+x
or for x = 0.5,
P =1+05=15
This represents a true percent relative error of [Eq. (3.3)]

~ 1648721 — 1.5

- 100% = 9.02%
& 1.648721 ¢ ¢
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Equation (3.5) can be used to determine an approximate estimate of the error, as in

1.5—-1
g, = ———100% = 33.3%
1.5
Because ¢, is not less than the required value of g, we would continue the computation
by adding another term, x*/2!, and repeating the error calculations. The process is con-
tinued until e, < g,. The entire computation can be summarized as

Terms Result & (%) £q (%)
1 1 39.3
2 1.5 Q.02 33.3
3 1.625 1.44 /.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below &, = 0.05% and the
computation is terminated. However, notice that, rather than three significant figures, the
result is accurate to five! This is because, for this case, both Egs. (3.5) and (3.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
as discussed in Chap. 6, this is not always the case for Eq. (3.5), it is true most of the time.

3.3.1 Computer Algorithm for Ilterative Calculations

Many of the numerical methods described in the remainder of this text involve iterative cal-
culations of the sort illustrated in Example 3.2. These all entail solving a mathematical
problem by computing successive approximations to the solution starting from an initial guess.

The computer implementation of such iterative solutions involves loops. As we saw
in Sec. 2.1.1, these come in two basic flavors: count-controlled and decision loops. Most
iterative solutions use decision loops. Thus, rather than employing a prespecified number
of iterations, the process typically is repeated until an approximate error estimate falls
below a stopping criterion, as in Example 3.2.

A pseudocode for a generic iterative calculation is presented in Fig. 3.3. The function
is passed a value (val) along with a stopping error criterion (es) and a maximum al-
lowable number of iterations (maxit). The value is typically either (1) an initial value
or (2) the value for which the iterative calculation is to be made.

The function first initializes three variables. These include (1) a variable iter that
keeps track of the number of iterations, (2) a variable sol that holds the current estimate
of the solution, and (3) a variable ea that holds the approximate percent relative error.
Note that ea is initially set to a value of 100 to ensure that the loop executes at least once.

These initializations are followed by the decision loop that actually implements the
iterative calculation. Prior to generating a new solution, sol is first assigned to solold.
Then a new value of sol is computed and the iteration counter is incremented. If the
new value of sol is nonzero, the percent relative error ea is determined. The stopping
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FUNCTION IterMeth(val, es, maxit)
iter = 1
sol = val
ea = 100
DO
solold = sol
sol = ...
iter = iter + 1
IF sol # 0 ea=abs((sol — solold)/sol)*100
IF ea = es OR iter = maxit EXIT
END DO
IterMeth = sol
END IterMeth

FIGURE 3.3
Pseudocode for a generic iterative calculation.

criteria are then tested. If both are false, the loop repeats. If either are true, the loop
terminates and the final solution is sent back to the function call. The following example
illustrates how the generic algorithm can be applied to a specific iterative calculation.

Computer Implementation of an lterative Calculation

Problem Statement. Develop a computer program based on the pseudocode from
Fig. 3.3 to implement the calculation from Example 3.2.

Solution. A function to implement the Maclaurin series expansion for ¢* can be based on
the general scheme in Fig. 3.3. To do this, we first formulate the series expansion as a formula:
X!

X o~

e =
=on!

Figure 3.4 shows functions to implement this series written in VBA and MATLAB software.
Similar codes could be developed in other languages such a C++ or Fortran 95. Notice
that whereas MATLAB has a built-in factorial function, it is necessary to compute the
factorial as part of the VBA implementation with a simple product accumulator fac.

When the programs are run, they generate an estimate for the exponential function.
For the MATLAB version, the answer is returned along with the approximate error and
the number of iterations. For example, e' can be evaluated as

>> format long
>> [val, ea, iter] = IterMeth(1l,1e-6,100)

val =
2.718281826198493
ea =
9.216155641522974e-007
iter =
12
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We can see that after 12 iterations, we obtain a result of 2.7182818 with an approxi-
mate error estimate of = 9.2162 X 10~ "%. The result can be verified by using the built-in
exp function to directly calculate the exact value and the true percent relative error,

>> trueval=exp (1)

trueval =
2.718281828459046

>> et=abs ((trueval-val) /trueval) *100
et

8.316108397236229e-008

As was the case with Example 3.2, we obtain the desirable outcome that the true error
is less than the approximate error.

(a) VBA/Excel (b) MATLAB
Function IterMeth(x, es, maxit) function [v,ea,iter] = IterMeth(x,es,maxit)
/ initialization % initialization
iter = 1 iter = 1;
sol = 1 sol = 1;
ea = 100 ea = 100;
fac = 1
' iterative calculation % iterative calculation
Do while (1)
solold = sol solold = sol;
fac = fac * iter
sol = sol + x * iter / fac sol = sol + x * iter / factorial (iter);
iter = iter + 1 iter = iter + 1;
If sol <> 0 Then if so0l~=0
ea = Abs((sol - solold) / sol) * 100 ea=abs ((sol - solold)/sol)*100;
End If end
If ea <= es Or iter >= maxit Then Exit Do if ea<=es | iters>=maxit,break,end
Loop end
IterMeth = sol v = sol;
End Function end

FIGURE 3.4

[a) VBA/Excel and (b) MATLAB functions based on the pseudocode from Fig. 3.3.

With the preceding definitions as background, we can now proceed to the two types
of error connected directly with numerical methods: round-off errors and truncation
erTors.
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3.4

ROUND-OFF ERRORS

As mentioned previously, round-off errors originate from the fact that computers retain
only a fixed number of significant figures during a calculation. Numbers such as , e,
or \V/7 cannot be expressed by a fixed number of significant figures. Therefore, they
cannot be represented exactly by the computer. In addition, because computers use a
base-2 representation, they cannot precisely represent certain exact base-10 numbers. The
discrepancy introduced by this omission of significant figures is called round-off error.

3.4.1 Computer Representation of Numbers

Numerical round-off errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is called a word.
This is an entity that consists of a string of binary digits, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first
review some material related to number systems.

Number Systems. A number system is merely a convention for representing quantities.
Because we have 10 fingers and 10 toes, the number system that we are most familiar
with is the decimal, or base-10, number system. A base is the number used as the refer-
ence for constructing the system. The base-10 system uses the 10 digits—O0, 1, 2, 3, 4,
5, 6, 7, 8, 9—to represent numbers. By themselves, these digits are satisfactory for
counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position
or place value specifying the magnitude. The right-most digit in a whole number repre-
sents a number from O to 9. The second digit from the right represents a multiple of 10.
The third digit from the right represents a multiple of 100 and so on. For example, if
we have the number 86,409 then we have eight groups of 10,000, six groups of 1000,
four groups of 100, zero groups of 10, and nine more units, or

(8 X 10*) + (6 X 10°) + (4 X 10*) + (0 X 10") + (9 x 10°) = 86,409

Figure 3.5a provides a visual representation of how a number is formulated in the
base-10 system. This type of representation is called positional notation.

Because the decimal system is so familiar, it is not commonly realized that there are
alternatives. For example, if human beings happened to have had eight fingers and eight
toes, we would undoubtedly have developed an octal, or base-8, representation. In the
same sense, our friend the computer is like a two-fingered animal who is limited to two
states—either O or 1. This relates to the fact that the primary logic units of digital com-
puters are on/off electronic components. Hence, numbers on the computer are represented
with a binary, or base-2, system. Just as with the decimal system, quantities can be
represented using positional notation. For example, the binary number 11 is equivalent
to (1 X2 + (1 X 2% =2 + 1 = 3 in the decimal system. Figure 3.5b illustrates a
more complicated example.

Integer Representation. Now that we have reviewed how base-10 numbers can be
represented in binary form, it is simple to conceive of how integers are represented on
a computer. The most straightforward approach, called the signed magnitude method,
employs the first bit of a word to indicate the sign, with a 0 for positive and a 1 for
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1?4 1(|)3 1(|)2 1(|Ii1 1(|)°

8 6 4 0 9

N\ Nt NS
0 X 10 = 0
4 X 100 = 400

(@) 6 X 1,000= 6,000
8 x 10,000 = 80,000
86,409

P SR S SR 2B )

1 0 1. 0 1 1 o0 1

0x 2= 0
TX 4= 4
8
0

1X 8=
0X 16 =
1X 32= 32
(b) 00X 64= 0
1 X 128 = 128
173

FIGURE 3.5
How the [a) decimal (base-10) and the (b) binary (base-2) systems work. In (b), the binary num-

ber 10101101 is equivalent o the decimal number 173.

1{0{0(O0OfO0O|O0O|O0O[O(T|O|T[O|T]T]O0]|1

T Nur%ber
Sign

FIGURE 3.6
The representation of the decimal integer —173 on a 16-bit computer using the signed
magnitude method.

negative. The remaining bits are used to store the number. For example, the integer value
of —173 would be stored on a 16-bit computer, as in Fig. 3.6.

EXAMPLE 3.4 Range of Integers

Problem Statement. Determine the range of integers in base-10 that can be represented
on a 16-bit computer.
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Solution.  Of the 16 bits, the first bit holds the sign. The remaining 15 bits can hold
binary numbers from 0 to 111111111111111. The upper limit can be converted to a
decimal integer, as in

(IX2") + (1 x283) + -+ (1 x2") + (1 x2°

which equals 32,767 (note that this expression can be simply evaluated as 2'° — 1). Thus,
a 16-bit computer word can store decimal integers ranging from —32,767 to 32,767. In
addition, because zero is already defined as 0000000000000000, it is redundant to use
the number 1000000000000000 to define a “minus zero.” Therefore, it is usually em-
ployed to represent an additional negative number: —32,768, and the range is from
—32,768 to 32,767.

Note that the signed magnitude method described above is not used to represent
integers on conventional computers. A preferred approach called the 2’s complement
technique directly incorporates the sign into the number’s magnitude rather than provid-
ing a separate bit to represent plus or minus (see Chapra and Canale 1994). However,
Example 3.4 still serves to illustrate how all digital computers are limited in their capa-
bility to represent integers. That is, numbers above or below the range cannot be repre-
sented. A more serious limitation is encountered in the storage and manipulation of
fractional quantities as described next.

Floating-Point Representation.  Fractional quantities are typically represented in com-
puters using floating-point form. In this approach, the number is expressed as a fractional
part, called a mantissa or significand, and an integer part, called an exponent or charac-
teristic, as in

m-b°

where m = the mantissa, b = the base of the number system being used, and e = the
exponent. For instance, the number 156.78 could be represented as 0.15678 X 10’ in a
floating-point base-10 system.

Figure 3.7 shows one way that a floating-point number could be stored in a word.
The first bit is reserved for the sign, the next series of bits for the signed exponent, and
the last bits for the mantissa.

FIGURE 3.7

The manner in which a floating-point number is stored in a word.

Signed

exponent |

Mantissa

Sign
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Note that the mantissa is usually normalized if it has leading zero digits. For ex-
ample, suppose the quantity 1/34 = 0.029411765 . . . was stored in a floating-point base-
10 system that allowed only four decimal places to be stored. Thus, 1/34 would be stored
as

0.0294 % 10°

However, in the process of doing this, the inclusion of the useless zero to the right of
the decimal forces us to drop the digit 1 in the fifth decimal place. The number can be
normalized to remove the leading zero by multiplying the mantissa by 10 and lowering
the exponent by 1 to give

0.2941 X 107!

Thus, we retain an additional significant figure when the number is stored.
The consequence of normalization is that the absolute value of m is limited. That is,

1
—=m <1 3.8
p =" (3-8)

where b = the base. For example, for a base-10 system, m would range between 0.1 and 1,
and for a base-2 system, between 0.5 and 1.

Floating-point representation allows both fractions and very large numbers to
be expressed on the computer. However, it has some disadvantages. For example,
floating-point numbers take up more room and take longer to process than integer
numbers. More significantly, however, their use introduces a source of error because
the mantissa holds only a finite number of significant figures. Thus, a round-off
error is introduced.

Hypothetical Set of Floating-Point Numbers

Problem Statement.  Create a hypothetical floating-point number set for a machine that
stores information using 7-bit words. Employ the first bit for the sign of the number, the
next three for the sign and the magnitude of the exponent, and the last three for the
magnitude of the mantissa (Fig. 3.8).

FIGURE 3.8

The smallest possible positive floating-point number from Example 3.5.

21 20 271 272 28

O(1(1(1T|1]0]|0O0

—
/ T R Magnitude

of mantissa

Sign of  Sign of
number exponent

Magnitude
of exponent
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Solution.  The smallest possible positive number is depicted in Fig. 3.8. The initial 0
indicates that the quantity is positive. The 1 in the second place designates that the
exponent has a negative sign. The 1’s in the third and fourth places give a maximum
value to the exponent of

I1x2'+1x2°=3

Therefore, the exponent will be —3. Finally, the mantissa is specified by the 100 in the
last three places, which conforms to

IX2'"+0xX224+0x%x23=05

Although a smaller mantissa is possible (e.g., 000, 001, 010, 011), the value of 100 is used
because of the limit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible
positive number for this system is +0.5 X 277, which is equal to 0.0625 in the base-10
system. The next highest numbers are developed by increasing the mantissa, as in

0111101 = (1 X 27"+ 0x 272+ 1 x27%) x27% = (0.078125)
0111110 = (1 X 27"+ 1 X272+ 0 x27%) x 27° = (0.093750)
0111111 = (1 X 27"+ 1 X272+ 1 x27%) x27°=(0.109375)

Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.
At this point, to continue increasing, we must decrease the exponent to 10, which
gives a value of

I1x2'4+0x2°=2

The mantissa is decreased back to its smallest value of 100. Therefore, the next num-
ber is

0110100 = (1 X 27"+ 0x 272+ 0 x 27%) x 272 = (0.125000),,

This still represents a gap of 0.125000 — 0.109375 = 0.015625. However, now when
higher numbers are generated by increasing the mantissa, the gap is lengthened to
0.03125,

0110101 = (1 X 27"+ 0x 272+ 1 x27%) x 272 = (0.156250)
0110110 = (1 X 27"+ 1 X272+ 0 x 2% x 272 = (0.187500),,
0110111 = (1 X 27"+ 1 X272+ 1 x 2% x27%=(0.218750)

This pattern is repeated as each larger quantity is formulated until a maximum number
is reached,

0011111 = (1 X2 '+ 1 X272+ 1 x27%) x2°=(7)
The final number set is depicted graphically in Fig. 3.9.

Figure 3.9 manifests several aspects of floating-point representation that have
significance regarding computer round-off errors:

1. There Is a Limited Range of Quantities That May Be Represented. Just as for the
integer case, there are large positive and negative numbers that cannot be represented.
Attempts to employ numbers outside the acceptable range will result in what is called
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Chopping Rounding

/\f\

7
} + + { Overflow —

@

Underflow “hole”
at zero

FIGURE 3.9

The hypothetical number system developed in Example 3.5. Each value is indicated by a fick

mark. Only the positive numbers are shown. An identical set would also extend in the negative
direction.

an overflow error. However, in addition to large quantities, the floating-point repre-
sentation has the added limitation that very small numbers cannot be represented. This
is illustrated by the underflow “hole” between zero and the first positive number in
Fig. 3.9. It should be noted that this hole is enlarged because of the normalization
constraint of Eq. (3.8).

2. There Are Only a Finite Number of Quantities That Can Be Represented within the
Range. Thus, the degree of precision is limited. Obviously, irrational numbers cannot
be represented exactly. Furthermore, rational numbers that do not exactly match one
of the values in the set also cannot be represented precisely. The errors introduced by
approximating both these cases are referred to as quantizing errors. The actual
approximation is accomplished in either of two ways: chopping or rounding. For
example, suppose that the value of m = 3.14159265358 . . . is to be stored on a base-
10 number system carrying seven significant figures. One method of approximation
would be to merely omit, or “chop off,” the eighth and higher terms, as in 7 =
3.141592, with the introduction of an associated error of [Eq. (3.2)]

E, = 0.00000065 ...

This technique of retaining only the significant terms was originally dubbed
“truncation” in computer jargon. We prefer to call it chopping to distinguish it from
the truncation errors discussed in Chap. 4. Note that for the base-2 number system
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in Fig. 3.9, chopping means that any quantity falling within an interval of length Ax
will be stored as the quantity at the lower end of the interval. Thus, the upper error
bound for chopping is Ax. Additionally, a bias is introduced because all errors are
positive. The shortcomings of chopping are attributable to the fact that the higher terms
in the complete decimal representation have no impact on the shortened version. For
instance, in our example of 7, the first discarded digit is 6. Thus, the last retained digit
should be rounded up to yield 3.141593. Such rounding reduces the error to

E, = —0.00000035 ...

Consequently, rounding yields a lower absolute error than chopping. Note that for the
base-2 number system in Fig. 3.9, rounding means that any quantity falling within an
interval of length Ax will be represented as the nearest allowable number. Thus, the upper
error bound for rounding is Ax/2. Additionally, no bias is introduced because some errors
are positive and some are negative. Some computers employ rounding. However, this
adds to the computational overhead, and, consequently, many machines use simple
chopping. This approach is justified under the supposition that the number of significant
figures is large enough that resulting round-off error is usually negligible.

. The Interval between Numbers, Ax, Increases as the Numbers Grow in Magnitude.

It is this characteristic, of course, that allows floating-point representation to preserve
significant digits. However, it also means that quantizing errors will be proportional
to the magnitude of the number being represented. For normalized floating-point
numbers, this proportionality can be expressed, for cases where chopping is employed,
as

|Ax|

Ll R (3.9)
]

and, for cases where rounding is employed, as

1Ay _ € (3.10)
W2 '

where € is referred to as the machine epsilon, which can be computed as

€=0b'"" (.11)

where b is the number base and 7 is the number of significant digits in the mantissa.
Notice that the inequalities in Eqs. (3.9) and (3.10) signify that these are error bounds.
That is, they specify the worst cases.

Machine Epsilon

Problem Statement. Determine the machine epsilon and verify its effectiveness in char-
acterizing the errors of the number system from Example 3.5. Assume that chopping is used.

Solution.  The hypothetical floating-point system from Example 3.5 employed values
of the base b = 2, and the number of mantissa bits # = 3. Therefore, the machine epsi-
lon would be [Eq. (3.11)]

¢=2'"3=025
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epsilon = 1
Do
IF (epsilon+1 = 1)EXIT
epsilon = epsilon/2
END DO
epsilon = 2 X epsilon

FIGURE 3.11

Pseudocode to determine
machine epsilon for a binary
computer.

| | | | d | |

Largest relative
error

FIGURE 3.10
The largest quantizing error will occur for those values falling just below the upper bound of the
first of a series of equispaced infervals.

Consequently, the relative quantizing error should be bounded by 0.25 for chopping. The
largest relative errors should occur for those quantities that fall just below the upper
bound of the first interval between successive equispaced numbers (Fig. 3.10). Those
numbers falling in the succeeding higher intervals would have the same value of Ax but
a greater value of x and, hence, would have a lower relative error. An example of a
maximum error would be a value falling just below the upper bound of the interval
between (0.125000),, and (0.156250),,. For this case, the error would be less than

0.03125
———=10.25
0.125000

Thus, the error is as predicted by Eq. (3.9).

The magnitude dependence of quantizing errors has a number of practical applica-
tions in numerical methods. Most of these relate to the commonly employed operation
of testing whether two numbers are equal. This occurs when testing convergence of
quantities as well as in the stopping mechanism for iterative processes (recall Example
3.2). For these cases, it should be clear that, rather than test whether the two quantities
are equal, it is advisable to test whether their difference is less than an acceptably small
tolerance. Further, it should also be evident that normalized rather than absolute differ-
ence should be compared, particularly when dealing with numbers of large magnitude.
In addition, the machine epsilon can be employed in formulating stopping or convergence
criteria. This ensures that programs are portable—that is, they are not dependent on the
computer on which they are implemented. Figure 3.11 lists pseudocode to automatically
determine the machine epsilon of a binary computer.

Extended Precision. It should be noted at this point that, although round-off errors
can be important in contexts such as testing convergence, the number of significant
digits carried on most computers allows most engineering computations to be performed
with more than acceptable precision. For example, the hypothetical number system in
Fig. 3.9 is a gross exaggeration that was employed for illustrative purposes. Commercial
computers use much larger words and, consequently, allow numbers to be expressed with
more than adequate precision. For example, computers that use IEEE format allow
24 bits to be used for the mantissa, which translates into about seven significant base-10
digits of precision' with a range of about 10** to 10%.

'Note that only 23 bits are actually used to store the mantissa. However, because of normalization, the first bit
of the mantissa is always 1 and is, therefore, not stored. Thus, this first bit together with the 23 stored bits
gives the 24 total bits of precision for the mantissa.
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With this acknowledged, there are still cases where round-off error becomes critical.
For this reason most computers allow the specification of extended precision. The most
common of these is double precision, in which the number of words used to store
floating-point numbers is doubled. It provides about 15 to 16 decimal digits of precision
and a range of approximately 10°* to 10°%.

In many cases, the use of double-precision quantities can greatly mitigate the effect
of round-off errors. However, a price is paid for such remedies in that they also require
more memory and execution time. The difference in execution time for a small calcula-
tion might seem insignificant. However, as your programs become larger and more com-
plicated, the added execution time could become considerable and have a negative impact
on your effectiveness as a problem solver. Therefore, extended precision should not be
used frivolously. Rather, it should be selectively employed where it will yield the maxi-
mum benefit at the least cost in terms of execution time. In the following sections, we
will look closer at how round-off errors affect computations, and in so doing provide a
foundation of understanding to guide your use of the double-precision capability.

Before proceeding, it should be noted that some of the commonly used software pack-
ages (for example, Excel, Mathcad) routinely use double precision to represent numerical
quantities. Thus, the developers of these packages decided that mitigating round-off errors
would take precedence over any loss of speed incurred by using extended precision. Others,
like MATLAB software, allow you to use extended precision, if you desire.

3.4.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in round-off error. In the following section, we
will first illustrate how common arithmetic operations affect round-off errors. Then we will
investigate a number of particular manipulations that are especially prone to round-off errors.

Common Arithmetic Operations. Because of their familiarity, normalized base-10
numbers will be employed to illustrate the effect of round-off errors on simple addition,
subtraction, multiplication, and division. Other number bases would behave in a similar
fashion. To simplify the discussion, we will employ a hypothetical decimal computer
with a 4-digit mantissa and a 1-digit exponent. In addition, chopping is used. Rounding
would lead to similar though less dramatic errors.

When two floating-point numbers are added, the mantissa of the number with the
smaller exponent is modified so that the exponents are the same. This has the effect of align-
ing the decimal points. For example, suppose we want to add 0.1557 - 10" + 0.4381 - 10~ ".
The decimal of the mantissa of the second number is shifted to the left a number of
places equal to the difference of the exponents [1 — (—1) = 2], as in

0.4381-10"" — 0.004381 - 10"
Now the numbers can be added,

0.1557 -10'
0.004381 - 10"
0.160081 - 10"

and the result chopped to 0.1600 - 10'. Notice how the last two digits of the second
number that were shifted to the right have essentially been lost from the computation.
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Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 - 10?
—0.2686 - 10?
0.0955 - 10°

For this case the result is not normalized, and so we must shift the decimal one place
to the right to give 0.9550 - 10" = 9.550. Notice that the zero added to the end of the man-
tissa is not significant but is merely appended to fill the empty space created by the shift.
Even more dramatic results would be obtained when the numbers are very close, as in

0.7642 - 10°
—0.7641 - 10°
0.0001 - 10°

which would be converted to 0.1000 - 10° = 0.1000. Thus, for this case, three nonsig-
nificant zeros are appended. This introduces a substantial computational error because
subsequent manipulations would act as if these zeros were significant. As we will see in
a later section, the loss of significance during the subtraction of nearly equal numbers is
among the greatest source of round-off error in numerical methods.

Multiplication and division are somewhat more straightforward than addition or sub-
traction. The exponents are added and the mantissas multiplied. Because multiplication
of two n-digit mantissas will yield a 2n-digit result, most computers hold intermediate
results in a double-length register. For example,

0.1363-10° X 0.6423-10"" = 0.08754549 - 10

If, as in this case, a leading zero is introduced, the result is normalized,
0.08754549 - 10* — 0.8754549 - 10"

and chopped to give
0.8754- 10

Division is performed in a similar manner, but the mantissas are divided and the
exponents are subtracted. Then the results are normalized and chopped.

Large Computations.  Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often
interdependent. That is, the later calculations are dependent on the results of earlier ones.
Consequently, even though an individual round-off error could be small, the cumulative
effect over the course of a large computation can be significant.

Large Numbers of Interdependent Computations

Problem Statement. Investigate the effect of round-off error on large numbers of in-
terdependent computations. Develop a program to sum a number 100,000 times. Sum
the number 1 in single precision, and 0.00001 in single and double precision.

Solution.  Figure 3.12 shows a Fortran 90 program that performs the summation. Whereas
the single-precision summation of 1 yields the expected result, the single-precision
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FIGURE 3.12

Fortran Q0 program to

sum a number 10° times.
The case sums the number 1
in single precision and the
number 107 in single and
double precision.

PROGRAM fig0312

IMPLICIT none

INTEGER: : 1

REAL::suml, sum2, x1, x2

DOUBLE PRECISION: :sum3, x3

suml=0.

sum2=0.

sum3=0.

x1=1.

x2=1.e-5

x3=1.d-5

DO i=1,100000
suml=suml+x1
sum2=sum2+x2
sum3=sum3+x3

END DO

PRINT *, suml

PRINT *, sum2

PRINT *, sum3

END

output:

100000.000000

1.000990

9.999999999980838E-001

summation of 0.00001 yields a large discrepancy. This error is reduced significantly when
0.00001 is summed in double precision.

Quantizing errors are the source of the discrepancies. Because the integer 1 can be
represented exactly within the computer, it can be summed exactly. In contrast, 0.00001
cannot be represented exactly and is quantized by a value that is slightly different from
its true value. Whereas this very slight discrepancy would be negligible for a small com-
putation, it accumulates after repeated summations. The problem still occurs in double
precision but is greatly mitigated because the quantizing error is much smaller.

Note that the type of error illustrated by the previous example is somewhat atypical
in that all the errors in the repeated operation are of the same sign. In most cases the
errors of a long computation alternate sign in a random fashion and, thus, often cancel
out. However, there are also instances where such errors do not cancel but, in fact, lead
to a spurious final result. The following sections are intended to provide insight into ways
in which this may occur.

Adding a Large and a Small Number.  Suppose we add a small number, 0.0010, to
a large number, 4000, using a hypothetical computer with the 4-digit mantissa and the
1-digit exponent. We modify the smaller number so that its exponent matches the larger,

0.4000  -10*

0.0000001 - 10*
0.4000001 - 10*
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which is chopped to 0.4000 - 10*. Thus, we might as well have not performed the
addition!

This type of error can occur in the computation of an infinite series. The initial terms
in such series are often relatively large in comparison with the later terms. Thus, after a few
terms have been added, we are in the situation of adding a small quantity to a large quantity.

One way to mitigate this type of error is to sum the series in reverse order—that is,
in ascending rather than descending order. In this way, each new term will be of com-
parable magnitude to the accumulated sum (see Prob. 3.5).

Subtractive Cancellation.  This term refers to the round-off induced when subtracting
two nearly equal floating-point numbers.

One common instance where this can occur involves finding the roots of a quadratic
equation or parabola with the quadratic formula,

X _ —b=* \/ b*—4ac

X2 2a

(3.12)

For cases where b> >> 4ac, the difference in the numerator can be very small. In such
cases, double precision can mitigate the problem. In addition, an alternative formulation
can be used to minimize subtractive cancellation,

X —2c

= > (3.13)

X2 b= Vb — dac
An illustration of the problem and the use of this alternative formula are provided in the
following example.

Subtractive Cancellation

Problem Statement. Compute the values of the roots of a quadratic equation with a = 1,
b = 3000.001, and ¢ = 3. Check the computed values versus the true roots of x; = —0.001
and x, = —3000.

Solution.  Figure 3.13 shows an Excel/VBA program that computes the roots x; and
X, on the basis of the quadratic formula [(Eq. (3.12)]. Note that both single- and
double-precision versions are given. Whereas the results for x, are adequate, the
percent relative errors for x; are poor for the single-precision version, g; = 2.4%.
This level could be inadequate for many applied engineering problems. This result
is particularly surprising because we are employing an analytical formula to obtain
our solution!

The loss of significance occurs in the line of both programs where two relatively
large numbers are subtracted. Similar problems do not occur when the same numbers
are added.

On the basis of the above, we can draw the general conclusion that the quadratic
formula will be susceptible to subtractive cancellation whenever 5* >> 4ac. One way to
circumvent this problem is to use double precision. Another is to recast the quadratic
formula in the format of Eq. (3.13). As in the program output, both options give a much
smaller error because the subtractive cancellation is minimized or avoided.
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Option Explicit 'Display results
Sheets ("sheetl") .Select
Sub £ig0313() Range ("b2") .Select
Dim a As Single, b As Single ActiveCell.Value = x1
Dim ¢ As Single, d As Single ActiveCell .Offset (1, 0) .Select
Dim x1 As Single, x2 As Single ActiveCell.Value = x2
Dim xlr As Single ActiveCell.Offset (2, 0).Select
Dim aa As Double, bb As Double ActiveCell.Value = x11
Dim cc As Double, dd As Double ActiveCell.Offset (1, 0).Select
Dim x11 As Double, x22 As Double ActiveCell.Value = x22
ActiveCell.Offset (2, 0).Select
'Single precision: ActiveCell.Value = xlr
a=1: b = 3000.001: c = 3 End Sub
d =S8qgr(b * b - 4 * a * ¢)
xl = (-b + 4d) / (2 * a)
x2 = (-b - d) / (2 * a) OUTPUT :
'Double precision:
aa = 1: bb = 3000.001: cc = 3 A B | c |
dd = Sqr(bb * bb - 4 * aa * cc) _1 |Single-precision results: |
x11 = (-bb + dd) / (2 * aa) 2 | -0.000976563|
x22 = (~bb - d4d) / (2 * aa) 3 |x2 ..—SDDD.DDDDDDDD_
4 |Double-precision results: |
75 |x1 | -0.00100000)
'Modified formula for first root B |x2 -3000.00000000
'single precision: 7 |Modified formula for first root (single precision): |
xlr = =2 * ¢ / (b + 4) B | -0.00100000

FIGURE 3.13

Excel/VBA program to defermine the roots of a quadratic.

Note that, as in the foregoing example, there are times when subtractive cancellation
can be circumvented by using a transformation. However, the only general remedy is to
employ extended precision.

Smearing. Smearing occurs whenever the individual terms in a summation are larger
than the summation itself. As in the following example, one case where this occurs is in
series of mixed signs.

EXAMPLE 3.9  Evaluation of € using Infinite Series

Problem Statement. The exponential function y = ¢* is given by the infinite series
2 3

l+x+—+2+

= e

Y 2 3

Evaluate this function for x = 10 and x = —10, and be attentive to the problems of

round-off error.

Solution.  Figure 3.14a gives an Excel/VBA program that uses the infinite series to
evaluate ¢*. The variable i is the number of terms in the series, term is the value of the
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(a) Program
Option Explicit

Sub fig0314 ()

Dim term As Single,

Dim sum As Singl
Dim i As Integer
i = 0: term = 1#

Range ("bl") .Sele

X = ActiveCell.Value
Range ("a3:c1003") .ClearContents

Range ("a3") .Sele
Do

If sum = test Then Exit Do

e,

ct

ct

ActiveCell.Value
ActiveCell.Offset (
ActiveCell.Value
ActiveCell.Offset (
ActiveCell.Value
ActiveCell.Offset (

i=1+1
test = sum
term = x ~ 1 /

Application.WorksheetFunction.Fact (i)

sum = sum + term

Loop
ActiveCell.Offse
ActiveCell.Value
ActiveCell.Offse
ActiveCell.Value
End Sub

FIGURE 3.14

t(

t(

sum = 1#: test = O#
Sheets ("sheetl") .Select

0
0

test As Single
x As Single

(b) Evaluation of e*°

A B [ C |

¥ | 10!
i term: sum
0 1.000000 1.000000
1 10.000000 | 11.000000
2] 50000000 £1.000000
3
4

166 BEEET 2 227 BRRET2
416 FEEESE.  Bdd 333313
5 833333313 1477 GEEB26

27| 9D183R50E-0Z)  22026.416016
28| 5.2798B0E-02] 22026.449219
132 | 29| 1.130996E-02) 22026 4605933
2 30| 3.7E998BE-03 22026 454844
12168125E-03] 22026 466757
Exact value = | 22026 465795

ﬂ|2|%! ‘Dﬁ“d‘m‘m‘b‘m‘m|—n
]

LAJILAJ
B
(X1}

w

0, 1).Select (¢) Evaluation of e'°

= term A, | B | C |

0, 1).Select 1 |x 100

= sum | 2 | i terrn sum |

1, -2).Select IE=E ] 1.000000 1.000000 |
| 4 | il -10.000000) -5.000000/
i 2 50.000000 41.000000
| B | 3 -166.6E6672 -125.666672
|7 | 4 416666656 251.000000 |
| B | 5 -B33333313 542333313
|44 41 -2889311E08] 1.103359E-04

, 1) .Select |45 | 420 F17407E-100  1.103366E-04

"Exact value = " |46 | 43 -1.655211E-10] 1.103365E-04

, 1).8elect |47 | 44| 3.761843E-11| 1.103365E-04

Exp (x) |45 45| -B.359651E-12]  1.103365E-04
45 Exact value = 4 539553E-05

(a) An Excel/VBA program fo evaluate €* using an infinite series. (b] Evaluation of €.

X

(c) Evaluation of ™.

current term added to the series, and sum is the accumulative value of the series. The
variable fest is the preceding accumulative value of the series prior to adding ferm. The
series is terminated when the computer cannot detect the difference between test and sum.

Figure 3.14b shows the results of running the program for x = 10. Note that this
case is completely satisfactory. The final result is achieved in 31 terms with the series
identical to the library function value within seven significant figures.

Figure 3.14¢ shows similar results for x = —10. However, for this case, the results of
the series calculation are not even the same sign as the true result. As a matter of fact, the
negative results are open to serious question because ¢* can never be less than zero. The
problem here is caused by round-off error. Note that many of the terms that make up the
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sum are much larger than the final result of the sum. Furthermore, unlike the previous case,
the individual terms vary in sign. Thus, in effect we are adding and subtracting large num-
bers (each with some small error) and placing great significance on the differences—that
is, subtractive cancellation. Thus, we can see that the culprit behind this example of smear-
ing is, in fact, subtractive cancellation. For such cases it is appropriate to seek some other
computational strategy. For example, one might try to compute y = €' as y = (¢ H'".
Other than such a reformulation, the only general recourse is extended precision.

Inner Products. As should be clear from the last sections, some infinite series are
particularly prone to round-off error. Fortunately, the calculation of series is not one of
the more common operations in numerical methods. A far more ubiquitous manipulation

is the calculation of inner products, as in

n
Doy =xytxny ot Ly,

i=1

This operation is very common, particularly in the solution of simultaneous linear alge-
braic equations. Such summations are prone to round-off error. Consequently, it is often
desirable to compute such summations in extended precision.

Although the foregoing sections should provide rules of thumb to mitigate round-off
error, they do not provide a direct means beyond trial and error to actually determine
the effect of such errors on a computation. In Chap. 4, we will introduce the Taylor
series, which will provide a mathematical approach for estimating these effects.

PROBLEMS

3.1 Convert the following base-2 numbers to base-10: (a) 101101,
(b) 101.011, and (¢) 0.01101.

3.2 Convert the following base-8 numbers to base-10: 71,263 and
3.147.

3.3 Compose your own program based on Fig. 3.11 and use it to
determine your computer’s machine epsilon.

3.4 In a fashion similar to that in Fig. 3.11, write a short program
to determine the smallest number, x,,;,, used on the computer you
will be employing along with this book. Note that your computer
will be unable to reliably distinguish between zero and a quantity
that is smaller than this number.

3.5 The infinite series

"1
Sf(n) ZZF

converges on a value of f(n) = 7*/90 as n approaches infinity.
Write a program in single precision to calculate f(n) for n = 10,000
by computing the sum from i = 1 to 10,000. Then repeat the calcu-
lation but in reverse order—that is, from i = 10,000 to 1 using incre-
ments of —1. In each case, compute the true percent relative error.
Explain the results.

3.6 Evaluate ¢ using two approaches

SRR SO i
et =1 — x4+ -
2 3!
and
1 1
e = — =
x [
l+x+=+=+-
2 3!

and compare with the true value of 6.737947 X 107>, Use 20 terms
to evaluate each series and compute true and approximate relative
errors as terms are added.

3.7 The derivative of f(x) = 1/(1 — 3x%) is given by

6x
(1 — 3x%)?

Do you expect to have difficulties evaluating this function at
x = 0.577? Try it using 3- and 4-digit arithmetic with chopping.
3.8 (a) Evaluate the polynomial

y=x — 5 + 6x + 0.55
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at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate the
percent relative error.
(b) Repeat (a) but express y as

y=((x—5x+6)x +0.55

Evaluate the error and compare with part (a).

3.9 Calculate the random access memory (RAM) in megabytes
necessary to store a multidimensional array that is 20 X 40 X 120.
This array is double precision, and each value requires a 64-bit
word. Recall that a 64-bit word = 8 bytes and 1 kilobyte = 2'°
bytes. Assume that the index starts at 1.

3.10 Determine the number of terms necessary to approximate cos x
to 8 significant figures using the Maclaurin series approximation

2 4 6 8
R + —_—
2

I O S
cosx = FTRETIEY

Calculate the approximation using a value of x = 0.37. Write a
program to determine your result.

3.11 Use 5-digit arithmetic with chopping to determine the roots of
the following equation with Egs. (3.12) and (3.13)

x* — 5000.002x + 10

Compute percent relative errors for your results.

3.12 How can the machine epsilon be employed to formulate a
stopping criterion & for your programs? Provide an example.

3.13 The “divide and average” method, an old-time method for
approximating the square root of any positive number a, can be
formulated as

_x+ta/x

* 2

Write a well-structured function to implement this algorithm based
on the algorithm outlined in Fig. 3.3.



4.1

Truncation Errors and
the Taylor Series

Truncation errors are those that result from using an approximation in place of an
exact mathematical procedure. For example, in Chap. 1 we approximated the deriva-
tive of velocity of a falling parachutist by a finite-divided-difference equation of the
form [Eq. (1.11)]
dl; Av _ v(tip1) — v(t) @1
dr At tiv) — 1
A truncation error was introduced into the numerical solution because the difference
equation only approximates the true value of the derivative (recall Fig. 1.4). In order to
gain insight into the properties of such errors, we now turn to a mathematical formulation
that is used widely in numerical methods to express functions in an approximate fashion—
the Taylor series.

THE TAYLOR SERIES

Taylor’s theorem (Box 4.1) and its associated formula, the Taylor series, is of great
value in the study of numerical methods. In essence, the Taylor series provides a means
to predict a function value at one point in terms of the function value and its deriva-
tives at another point. In particular, the theorem states that any smooth function can
be approximated as a polynomial.

A useful way to gain insight into the Taylor series is to build it term by term. For
example, the first term in the series is

Sxiv1) = flx) “4.2)

This relationship, called the zero-order approximation, indicates that the value of f at the
new point is the same as its value at the old point. This result makes intuitive sense
because if x; and x;,, are close to each other, it is likely that the new value is probably
similar to the old value.

Equation (4.2) provides a perfect estimate if the function being approximated is, in
fact, a constant. However, if the function changes at all over the interval, additional terms
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Box 4.1 Taylor's Theorem

Taylor’s Theorem
If the function fand its first n + 1 derivatives are continuous on an in-
terval containing @ and x, then the value of the function at x is given by

S0 = fla) + Flar —a) + 1 -
3)
o 3(za)(x —a) + -
"(a) .
+ " (x —a)" + R, (B4.1.1)
where the remainder R, is defined as
R, = J @f“*”(r)dz (B4.1.2)
n!

a

where r = a dummy variable. Equation (B4.1.1) is called the Taylor
series or Taylor’s formula. If the remainder is omitted, the right side
of Eq. (B4.1.1) is the Taylor polynomial approximation to f(x). In
essence, the theorem states that any smooth function can be ap-
proximated as a polynomial.

Equation (B4.1.2) is but one way, called the integral form, by
which the remainder can be expressed. An alternative formulation
can be derived on the basis of the integral mean-value theorem.

First Theorem of Mean for Integrals
If the function g is continuous and integrable on an interval contain-
ing a and x, then there exists a point £ between a and x such that

J gt)ydt = g(§)(x — a) (B4.1.3)

In other words, this theorem states that the integral can be repre-
sented by an average value for the function g(§) times the interval
length x — a. Because the average must occur between the mini-
mum and maximum values for the interval, there is a point x = £ at
which the function takes on the average value.

The first theorem is in fact a special case of a second mean-
value theorem for integrals.

Second Theorem of Mean for Integrals
If the functions g and / are continuous and integrable on an interval
containing a and x, and & does not change sign in the interval, then
there exists a point ¢ between a and x such that

X

J gMh(r)dr = g(§)[ h(t) dt

a a

(B4.1.4)

Thus, Eq. (B4.1.3) is equivalent to Eq. (B4.1.4) with a(r) = 1.
The second theorem can be applied to Eq. (B4.1.2) with

(x—1"
g0 =f"00 k) =
As t varies from a to x, h(?) is continuous and does not change sign.
Therefore, if f“*"(¢) is continuous, then the integral mean-value

theorem holds and

(n+1)
G

— n+1
" (4 1) )

This equation is referred to as the derivative or Lagrange form of
the remainder.

of the Taylor series are required to provide a better estimate. For example, the first-order
approximation is developed by adding another term to yield

S ) =fx) + f1(x) (xie — x)

(4.3)

The additional first-order term consists of a slope f'(x;) multiplied by the distance between
x; and x;,;. Thus, the expression is now in the form of a straight line and is capable of
predicting an increase or decrease of the function between x; and x;,;.

Although Eq. (4.3) can predict a change, it is exact only for a straight-line, or linear,
trend. Therefore, a second-order term is added to the series to capture some of the cur-
vature that the function might exhibit:

S =) + () (X

"(x;)
—x) + ! 2 (X1 — xi)2 (4.4)
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EXAMPLE 4.1

In a similar manner, additional terms can be included to develop the complete Taylor
series expansion:

fOi) = ) + f1(x) (i — ) +f;7)'€i)(xi+l - xi)z
Gy (.
+ A 3('%) (X471 — xi)3 + -+ ! n('Xl) (X1 — x)" + R, “4.5)

Note that because Eq. (4.5) is an infinite series, an equal sign replaces the approximate
sign that was used in Egs. (4.2) through (4.4). A remainder term is included to account
for all terms from n + 1 to infinity:

(n+1)

R, = m (a1 = X)"" 4.6)
where the subscript n connotes that this is the remainder for the nth-order approximation
and ¢ is a value of x that lies somewhere between x; and x;,;. The introduction of the &
is so important that we will devote an entire section (Sec. 4.1.1) to its derivation. For
the time being, it is sufficient to recognize that there is such a value that provides an
exact determination of the error.

It is often convenient to simplify the Taylor series by defining a step size h = x;,; — X;
and expressing Eq. (4.5) as

" O "(x;
f(x;) 2 +f (x7) W4 - +whn + R, 4.7
2! 3! i

fiv) = f(x) + f'(x)h +

where the remainder term is now

SO

" (n+ 1) “8)

Taylor Series Approximation of a Polynomial

Problem Stafement. Use zero- through fourth-order Taylor series expansions to approxi-
mate the function

f(x) = —0.1x* — 0.15x" — 0.5x> — 0.25x + 1.2
from x; = 0 with 2 = 1. That is, predict the function’s value at x;,; = 1.

Solution.  Because we are dealing with a known function, we can compute values for
f(x) between 0 and 1. The results (Fig. 4.1) indicate that the function starts at f(0) = 1.2
and then curves downward to f(1) = 0.2. Thus, the true value that we are trying to predict
is 0.2.

The Taylor series approximation with n = 0 is [Eq. (4.2)]

fxip) = 1.2
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fx) flx)

X;

Zero order ® flx;, ;) = flx)
1.0 — FO o q) = fl) + f)h
0.5 — Sfl 4 ) = ) + f(x)h + f,;)!Ci) h?
f(xi + 1)
0 : |
x= 0 Xig1= 1 x
FIGURE 4.1

The approximation of f(x) = —0.1x* = 0.15x* — 0.5 = 0.25x + 1.2 at x = 1 by zeroorder,
firstorder, and second-order Taylor series expansions.

Thus, as in Fig. 4.1, the zero-order approximation is a constant. Using this formulation
results in a truncation error [recall Eq. (3.2)] of

E=02-12=-10

at x = 1.
For n = 1, the first derivative must be determined and evaluated at x = 0O:

£'(0) = —0.4(0.0)° — 0.45(0.0)* — 1.0(0.0) — 0.25 = —0.25
Therefore, the first-order approximation is [Eq. (4.3)]
f(xi+1) = 1.2 — 0.25h

which can be used to compute f{l1) = 0.95. Consequently, the approximation begins to
capture the downward trajectory of the function in the form of a sloping straight line
(Fig. 4.1). This results in a reduction of the truncation error to

E, =02 —095=-0.75

For n = 2, the second derivative is evaluated at x = O:
£"(0) = —1.2(0.0)> — 0.9(0.0) — 1.0 = —1.0
Therefore, according to Eq. (4.4),

f(xis1) = 1.2 — 0.25h — 0.5K*

and substituting 2 = 1, f(1) = 0.45. The inclusion of the second derivative now adds
some downward curvature resulting in an improved estimate, as seen in Fig. 4.1. The
truncation error is reduced further to 0.2 — 0.45 = —0.25.
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Additional terms would improve the approximation even more. In fact, the inclusion
of the third and the fourth derivatives results in exactly the same equation we started with:

flx) = 1.2 — 0.25h — 0.5* — 0.15h* — 0.1A*

where the remainder term is

VAKS)

5 _
5 =0

Ry

because the fifth derivative of a fourth-order polynomial is zero. Consequently, the Taylor
series expansion to the fourth derivative yields an exact estimate at x;,; = 1:

f) =12 = 025(1) = 0.5(1) = 0.15(1)" = 0.1(1)* = 0.2

In general, the nth-order Taylor series expansion will be exact for an nth-order
polynomial. For other differentiable and continuous functions, such as exponentials and
sinusoids, a finite number of terms will not yield an exact estimate. Each additional term
will contribute some improvement, however slight, to the approximation. This behavior
will be demonstrated in Example 4.2. Only if an infinite number of terms are added will
the series yield an exact result.

Although the above is true, the practical value of Taylor series expansions is that,
in most cases, the inclusion of only a few terms will result in an approximation that is
close enough to the true value for practical purposes. The assessment of how many terms
are required to get “close enough” is based on the remainder term of the expansion.
Recall that the remainder term is of the general form of Eq. (4.8). This relationship has
two major drawbacks. First, & is not known exactly but merely lies somewhere between
x; and x;,;. Second, to evaluate Eq. (4.8), we need to determine the (n + 1)th derivative
of f(x). To do this, we need to know f(x). However, if we knew f(x), there would be no
need to perform the Taylor series expansion in the present context!

Despite this dilemma, Eq. (4.8) is still useful for gaining insight into truncation errors.
This is because we do have control over the term 4 in the equation. In other words, we
can choose how far away from x we want to evaluate f(x), and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.8) is usually expressed as

Rn — O(hn+1)

where the nomenclature O(4""") means that the truncation error is of the order of #"*'. That
is, the error is proportional to the step size & raised to the (n + I)th power. Although this
approximation implies nothing regarding the magnitude of the derivatives that multiply #"*',
it is extremely useful in judging the comparative error of numerical methods based on Taylor
series expansions. For example, if the error is O(h), halving the step size will halve the error.
On the other hand, if the error is O(h%), halving the step size will quarter the error.

In general, we can usually assume that the truncation error is decreased by the ad-
dition of terms to the Taylor series. In many cases, if & is sufficiently small, the first- and
other lower-order terms usually account for a disproportionately high percent of the error.
Thus, only a few terms are required to obtain an adequate estimate. This property is
illustrated by the following example.
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EXAMPLE 4.2

Use of Taylor Series Expansion to Approximate a Function with an Infinite
Number of Derivatives

Problem Statement. Use Taylor series expansions with n = 0 to 6 to approximate
f(x) = cos x at x;;; = /3 on the basis of the value of f(x) and its derivatives at x; =
/4. Note that this means that h = w/3 — @7 /4 = w/12.

Solution.  As with Example 4.1, our knowledge of the true function means that we can
determine the correct value f(7/3) = 0.5.
The zero-order approximation is [Eq. (4.3)]

T ™
f() = cos () = 0.707106781
3 4

which represents a percent relative error of

0.5 — 0707106781
0.5

100% = —41.4%

&;

For the first-order approximation, we add the first derivative term where f(x) = —sin x:

T T AV AN
f(3> = cos (4) — sin (4) (12> = 0.521986659

which has &, = —4.40 percent.
For the second-order approximation, we add the second derivative term where
f"(x) = —cos x:

fl=)=cos( ) —sin( ) =) - —=( =) =0.497754491
3 4 4)\12 2 12

with &, = 0.449 percent. Thus, the inclusion of additional terms results in an improved
estimate.

The process can be continued and the results listed, as in Table 4.1. Notice that the
derivatives never go to zero, as was the case with the polynomial in Example 4.1. There-
fore, each additional term results in some improvement in the estimate. However, also
notice how most of the improvement comes with the initial terms. For this case, by the
time we have added the third-order term, the error is reduced to 2.62 X 1072 percent,

TABLE 4.1 Taylor series approximation of f(x) = cos x at x;,; = 7/3 using a base
point of 7/4. Values are shown for various orders (n) of approximation.

Order n £7)(x) f(=/3) £
0 cos X 0.707106781 —41.4
1 —sin x 0.521986659 —-4.4
2 —cos x 0.497754491 0.449
3 sin x 0.499869147 2.62 x 1072
4 cos x 0.500007551 —-1.51 x 1073
5 —sin x 0.500000304 -6.08 x 107°
6 —cos x 0.499999088 2.44 x 107°
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which means that we have attained 99.9738 percent of the true value. Consequently,
although the addition of more terms will reduce the error further, the improvement
becomes negligible.

4.1.1 The Remainder for the Taylor Series Expansion

Before demonstrating how the Taylor series is actually used to estimate numerical errors,
we must explain why we included the argument ¢ in Eq. (4.8). A mathematical derivation
is presented in Box 4.1. We will now develop an alternative exposition based on a some-
what more visual interpretation. Then we can extend this specific case to the more
general formulation.

Suppose that we truncated the Taylor series expansion [Eq. (4.7)] after the zero-
order term to yield

S = f(xy)
A visual depiction of this zero-order prediction is shown in Fig. 4.2. The remainder, or
error, of this prediction, which is also shown in the illustration, consists of the infinite
series of terms that were truncated:
3
[ o [P
2! 3!

Ry = f'(x)h + W+

It is obviously inconvenient to deal with the remainder in this infinite series format.
One simplification might be to truncate the remainder itself, as in

Ry = f'(xph (4.9)

FIGURE 4.2
Craphical depiction of a zero-order Taylor series prediction and remainder.

flx)
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Although, as stated in the previous section, lower-order derivatives usually account for
a greater share of the remainder than the higher-order terms, this result is still inexact
because of the neglected second- and higher-order terms. This “inexactness” is implied
by the approximate equality symbol (=) employed in Eq. (4.9).

An alternative simplification that transforms the approximation into an equivalence
is based on a graphical insight. As in Fig. 4.3, the derivative mean-value theorem states
that if a function f(x) and its first derivative are continuous over an interval from x; to
Xis1, then there exists at least one point on the function that has a slope, designated by
f(é), that is parallel to the line joining f(x;) and f(x;,,). The parameter & marks the x
value where this slope occurs (Fig. 4.3). A physical illustration of this theorem is that,
if you travel between two points with an average velocity, there will be at least one mo-
ment during the course of the trip when you will be moving at that average velocity.

By invoking this theorem it is simple to realize that, as illustrated in Fig. 4.3, the
slope f(§) is equal to the rise R, divided by the run A, or

& =R
f& ==

which can be rearranged to give

Ry = f(§)h (4.10)

Thus, we have derived the zero-order version of Eq. (4.8). The higher-order versions are merely
a logical extension of the reasoning used to derive Eq. (4.10). The first-order version is

S,
Ry =" ~h .11
FIGURE 4.3

Graphical depiction of the derivative mean-value theorem.

flx)
Slope =f'(£)
pe =f"(& N
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EXAMPLE 4.3

For this case, the value of & conforms to the x value corresponding to the second de-
rivative that makes Eq. (4.11) exact. Similar higher-order versions can be developed from
Eq. (4.8).

4.1.2 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors
throughout this book, it may not be clear to you how the expansion can actually be
applied to numerical methods. In fact, we have already done so in our example of the
falling parachutist. Recall that the objective of both Examples 1.1 and 1.2 was to pre-
dict velocity as a function of time. That is, we were interested in determining v(7). As
specified by Eq. (4.5), v(¢) can be expanded in a Taylor series:

v"(1;)

V(1) = 0(t) + V) (e = 1) 5 (g — 1)’ + - + R, (4.12)

Now let us truncate the series after the first derivative term:
v(tiy) = v(t) +v' ()t — 1) + R (4.13)

Equation (4.13) can be solved for

v(tiv1) — v(t) R,
V(1) = —— < - (4.14)
Livi — 1 liv1 — 1
N——
First-order Truncation
approximation error

The first part of Eq. (4.14) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series ap-
proach, we have now obtained an estimate of the truncation error associated with this
approximation of the derivative. Using Eqs. (4.6) and (4.14) yields

R v(©),
fo1 — 1 o Ui ) (4.15)
or
R
= Oty — 1) (4.16)
livi — 1

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.14)] has a trun-
cation error of order #;,; — t;. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

The Effect of Nonlinearity and Step Size on the Taylor Series Approximation
Problem Statement. Figure 4.4 is a plot of the function
Jl) = x" (E4.3.1)

form = 1, 2, 3, and 4 over the range from x = 1 to 2. Notice that for m = 1 the function
is linear, and as m increases, more curvature or nonlinearity is introduced into the function.
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flx)

15 —

10 —

FIGURE 4.4
Plot of the function flx) = X" form = 1, 2, 3, and 4. Notice that the function becomes more
nonlinear as m increases.

Employ the first-order Taylor series to approximate this function for various values of the
exponent m and the step size h.

Solution.  Equation (E4.3.1) can be approximated by a first-order Taylor series expansion,
as in

fxie) = f(x) + mx™'h (E43.2)
which has a remainder

S U s )
2! 3! 4!

R,

First, we can examine how the approximation performs as m increases—that is, as the func-
tion becomes more nonlinear. For m = 1, the actual value of the function at x = 2 is 2.
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The Taylor series yields

f2)=1+1(1) =2
and

Rl =0
The remainder is zero because the second and higher derivatives of a linear function
are zero. Thus, as expected, the first-order Taylor series expansion is perfect when the
underlying function is linear.

For m = 2, the actual value is f(2) = 2? = 4. The first-order Taylor series
approximation is

f(2)=1+2(1)=3
and
Ri=31)*+0+0+-=1

Thus, because the function is a parabola, the straight-line approximation results in a
discrepancy. Note that the remainder is determined exactly.
For m = 3, the actual value is f(2) = 2% = 8. The Taylor series approximation is

f2) =143(1)%1) =4

and
R =517 +%1)’+0+0+-=4

Again, there is a discrepancy that can be determined exactly from the Taylor series.
For m = 4, the actual value is (2) = 2* = 16. The Taylor series approximation is
fQ)=1+41)°1) =5

and
R=51+3D)’+ 3D +0+0+ =11

On the basis of these four cases, we observe that R, increases as the function be-
comes more nonlinear. Furthermore, R; accounts exactly for the discrepancy. This is
because Eq. (E4.3.1) is a simple monomial with a finite number of derivatives. This
permits a complete determination of the Taylor series remainder.

Next, we will examine Eq. (E4.3.2) for the case m = 4 and observe how R; changes
as the step size & is varied. For m = 4, Eq. (E4.3.2) is

fx + ) = f(x) + 4xh

If x = 1, f(1) = 1 and this equation can be expressed as
fA+h)=1+4h

with a remainder of

R, = 61° + 41 + 1K'
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0.1

|Slope| = 2

0.01 —

0.001 ' '
1 0.1 0.01

FIGURE 4.5

loglog plot of the remainder R; of the firstorder Taylor series approximation of the function f(x) = x*
versus step size h. A line with a slope of 2 is also shown to indicate that as h decreases, the
error becomes proportional fo h?.

TABLE 4.2 Comparison of the exact value of the function f(x) = x* with the firstorder
Taylor series approximation. Both the function and the approximation are
evaluated at x + h, where x = 1.

First-Order

h True Approximation R,

1 16 5 11

0.5 5.0625 3 2.0625
0.25 2.441406 2 0.4414006
0.125 1.601807 1.5 0.101807
0.0625 1.274429 1.25 0.024429
0.03125 1.130982 1.125 0.005982
0.015625 1.063980 1.0625 0.001480

This leads to the conclusion that the discrepancy will decrease as 4 is reduced. Also, at
sufficiently small values of &, the error should become proportional to 4. That is, as A is
halved, the error will be quartered. This behavior is confirmed by Table 4.2 and Fig. 4.5.

Thus, we conclude that the error of the first-order Taylor series approximation
decreases as m approaches 1 and as & decreases. Intuitively, this means that the Taylor
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series becomes more accurate when the function we are approximating becomes more
like a straight line over the interval of interest. This can be accomplished either by reduc-
ing the size of the interval or by “straightening” the function by reducing m. Obviously,
the latter option is usually not available in the real world because the functions we analyze
are typically dictated by the physical problem context. Consequently, we do not have
control of their lack of linearity, and our only recourse is reducing the step size or includ-
ing additional terms in the Taylor series expansion.

4.1.3 Numerical Differentiation

Equation (4.14) is given a formal label in numerical methods—it is called a finite divided
difference. It can be represented generally as

Flay = LE) 2O e — ) 4.17)
Xiv1 — X
or
Af;
flx) = P + O(h) (4.18)

where A f; is referred to as the first forward difference and h is called the step size, that
is, the length of the interval over which the approximation is made. It is termed a “forward”
difference because it utilizes data at i and i + 1 to estimate the derivative (Fig. 4.6a). The
entire term A f/h is referred to as a first finite divided difference.

This forward divided difference is but one of many that can be developed from the
Taylor series to approximate derivatives numerically. For example, backward and centered
difference approximations of the first derivative can be developed in a fashion similar to
the derivation of Eq. (4.14). The former utilizes values at x;_; and x; (Fig. 4.6b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.6¢). More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series. Finally, all the above versions
can also be developed for second, third, and higher derivatives. The following sections
provide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can
be expanded backward to calculate a previous value on the basis of a present value, as in

f"(xi) ]’l2 .

fGi) = fo0) = fOh +7— = (4.19)
Truncating this equation after the first derivative and rearranging yields
X;) — J(Xi— \Y% i
Py =T = S0 Vi (4:20)

h h

where the error is O(h), and V f; is referred to as the first backward difference. See Fig. 4.6b
for a graphical representation.
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flx)

flx)

flx)

i+1

()

FIGURE 4.6
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference
approximations of the first derivative.
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EXAMPLE 4.4

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

fGiv) = f(x) + f'(x)h +f;’) . 4.21)
to yield
f®<)
fxis) = fxi-) + 2f(xeph + ———— 3

which can be solved for

fGie) = [ U0
2h 6

') =

or

Sxi) = fxi-0)

_ 2
" o(h?) 4.22)

f(l)_

Equation (4.22) is a centered difference representation of the first derivative. Notice that
the truncation error is of the order of /4> in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis
yields the practical information that the centered difference is a more accurate represen-
tation of the derivative (Fig. 4.6¢). For example, if we halve the step size using a forward
or backward difference, we would approximately halve the truncation error, whereas for
the central difference, the error would be quartered.

Finite-Divided-Difference Approximations of Derivatives

Problem Statement.  Use forward and backward difference approximations of O(/) and
a centered difference approximation of O(h?) to estimate the first derivative of

f(x) = —0.1x* — 0.15x> — 0.5 — 0.25x + 1.25

at x = 0.5 using a step size 7 = 0.5. Repeat the computation using # = 0.25. Note that
the derivative can be calculated directly as

fi(x) = —0.4x° — 0.45x> — 1.0x — 0.25
and can be used to compute the true value as f'(0.5) = —0.9125.

Solution.  For h = 0.5, the function can be employed to determine
Xi-1 =0 Sxim) = 1.2
xi =05 f(xp) =0925
=10 f(xi+;) =02
These values can be used to compute the forward divided difference [Eq. (4.17)],

0.2 — 0.925
FO5) =55 =~ 145 e = 589%

Xi+1
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the backward divided difference [Eq. (4.20)],

0925 — 1.2
f(05)=———"—=-055 le| = 39.7%
0.5
and the centered divided difference [Eq. (4.22)],
02—-1.2
f(0.5) = 1o = —-1.0 l&] = 9.6%
For h = 0.25,

Xy =025  f(x_,) = 1.10351563
x;, =05 fx) = 0925
Xop =075 f(x.)) = 0.63632813

which can be used to compute the forward divided difference,

0.63632813 — 0.925
f0.5) = 025 = —1.155 le)| = 26.5%

the backward divided difference,

0.925 — 1.10351563
£1(0.5) = 035 = 0714  |g|=217%

and the centered divided difference,

0.63632813 — 1.10351563
03 = —0934 |g|=24%

f10.5) =

For both step sizes, the centered difference approximation is more accurate than
forward or backward differences. Also, as predicted by the Taylor series analysis, halving
the step size approximately halves the error of the backward and forward differences and
quarters the error of the centered difference.

Finite Difference Approximations of Higher Derivatives. Besides first derivatives,
the Taylor series expansion can be used to derive numerical estimates of higher deriva-
tives. To do this, we write a forward Taylor series expansion for f(x;;,) in terms of f(x;):

S "(x;)

— 2 oo
S @’ + (4.23)

f(xi2) = fQx) + f'(x)(2h) +

Equation (4.21) can be multiplied by 2 and subtracted from Eq. (4.23) to give
fGien) = 2Cxr) = =f(0) + f' ()R + -

which can be solved for

Fx) = S(xiv2) — 2f}(;i+1) + f(x;) + o) 424)
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4.2

This relationship is called the second forward finite divided difference. Similar manipula-
tions can be employed to derive a backward version
_ Jxi) = 2f(xi-1) + f(xi-2)

') = 2 + O(h)

and a centered version

Fx) = S(xiv) — zf}(;i) + f(xi-1) + o)

As was the case with the first-derivative approximations, the centered case is more accurate.
Notice also that the centered version can be alternatively expressed as

fxi) — f(x) _f(xi) — flxi-1)
h

" ~
S(x) = h
Thus, just as the second derivative is a derivative of a derivative, the second divided
difference approximation is a difference of two first divided differences.

We will return to the topic of numerical differentiation in Chap. 23. We have intro-
duced you to the topic at this point because it is a very good example of why the Taylor
series is important in numerical methods. In addition, several of the formulas introduced
in this section will be employed prior to Chap. 23.

ERROR PROPAGATION

The purpose of this section is to study how errors in numbers can propagate through
mathematical functions. For example, if we multiply two numbers that have errors, we
would like to estimate the error in the product.

4.2.1 Functions of a Single Variable

Suppose that we have a function f(x) that is dependent on a single independent variable x.
Assume that ¥ is an approximation of x. We, therefore, would like to assess the effect
of the discrepancy between x and X on the value of the function. That is, we would like
to estimate

Af(x) = [flx) — f(%)]
The problem with evaluating Af(%) is that f(x) is unknown because x is unknown. We can
overcome this difficulty if ¥ is close to x and f(X) is continuous and differentiable. If these
conditions hold, a Taylor series can be employed to compute f(x) near f(X), as in
J'(%)
2

f(x) = f(X) + f(D)(x — %) + (x — %)+

Dropping the second- and higher-order terms and rearranging yields

J&) = fE =D (x — %)
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FIGURE 4.7
Graphical depiction of first-
order error propagation.

flx)

True error
|f/()|Ax

|
|
1.
|
|
|
|
|
1
|
|
|
|
|
|
|
) IR, N

EXAMPLE 4.5

or
Af(%) = |f(%)|A% (4.25)
where Af(X) = |f(x) — f(%)| represents an estimate of the error of the function and
AX = |x — X| represents an estimate of the error of x. Equation (4.25) provides the capabil-
ity to approximate the error in f(x) given the derivative of a function and an estimate of the
error in the independent variable. Figure 4.7 is a graphical illustration of the operation.

Error Propagation in a Function of a Single Variable

Problem Statement. Given a value of ¥ = 2.5 with an error of A% = 0.01, estimate
the resulting error in the function f(x) = x°.

Solution.  Using Eq. (4.25),
Af(%) =3(2.5)*(0.01) = 0.1875
Because f(2.5) = 15.625, we predict that
f(2.5) = 15.625 = 0.1875

or that the true value lies between 15.4375 and 15.8125. In fact, if x were actually 2.49,
the function could be evaluated as 15.4382, and if x were 2.51, it would be 15.8132. For
this case, the first-order error analysis provides a fairly close estimate of the true error.




4.2 ERROR PROPAGATION 99

EXAMPLE 4.6

4.2.2 Functions of More than One Variable

The foregoing approach can be generalized to functions that are dependent on more
than one independent variable. This is accomplished with a multivariable version of the
Taylor series. For example, if we have a function of two independent variables u and
v, the Taylor series can be written as

af of
S, vig) = f(u;, vy) + (u,+1 —u) + g(viﬂ - v)
2 2

1[o°f 5 a°f
+ 2'|: 2(u1+1 ui) + 2814611

(Uip1 — u) (Vi — V)

82
+ —]:(v,-ﬂ — vi)z} + (4.26)
v

where all partial derivatives are evaluated at the base point i. If all second-order and
higher terms are dropped, Eq. (4.26) can be solved for

)
s = | Laa+ |2
v
where Ait and AD = estimates of the errors in u and v, respectively.
For n independent variables X, X,,..., X, having errors AZX;, AX,,..., Ax, the
following general relationship holds:
o) ) 9
Af()’z‘], iz, n) = f A.X] ‘f A.iz + -+ 7f A;Cn (427)
0x; 0x, X,

Error Propagation in a Multivariable Function
Problem Statement. The deflection y of the top of a sailboat mast is

FL*

YT 8E

where F' = a uniform side loading (N/m), L = height (m), E = the modulus of elasticity
(N/mz) and / = the moment of inertia (m4). Estimate the error in y given the following data:

F =750 N/m AF = 30 N/m
L=9m AL = 0.03m
E=175X10°N/m*> AE =5 X 10’ N/m?
1= 0.0005 m* AT = 0.000005 m*

Solution.  Employing Eq. (4.27) gives

O ay | ay| . ~ ayl -
Ay(F,L,E,I) = fAF-I—*AL-f—fAE-l-*AI
oL oFE al
or
.. . . LY _ F[* . FL* . FL' .
Ay(F, L, E, ])E —=AF + —=AL + ?AE + ~7~2AI
8EI 2EI 8E-1 SEI
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Substituting the appropriate values gives
Ay = 0.006561 + 0.002187 + 0.001094 + 0.00164 = 0.011482

Therefore, y = 0.164025 = 0.011482. In other words, y is between 0.152543 and
0.175507 m. The validity of these estimates can be verified by substituting the extreme
values for the variables into the equation to generate an exact minimum of

720(8.97)*
Ymin = 9 = (0.152818
8(7.55 X 10°)0.000505

and

B 780(9.03)*
Tmax T 8(7.45 X 10°)0.000495

= 0.175790

Thus, the first-order estimates are reasonably close to the exact values.

Equation (4.27) can be employed to define error propagation relationships for
common mathematical operations. The results are summarized in Table 4.3. We will
leave the derivation of these formulas as a homework exercise.

4.2.3 Stability and Condition

The condition of a mathematical problem relates to its sensitivity to changes in its input
values. We say that a computation is numerically unstable if the uncertainty of the input
values is grossly magnified by the numerical method.

These ideas can be studied using a first-order Taylor series

fx) = f(X) + (B (x — %)
This relationship can be employed to estimate the relative error of f(x) as in
[ —f®) _ O~ 3
f(x) f(®)

The relative error of x is given by

X — X

=t

TABLE 4.3 Estimated error bounds associated with common
mathematical operations using inexact numbers & and ¥.

Operation Estimated Error
Addition Ao+ 7) AT+ AV
Subtraction Alo— 9 AT+ AV
Multiplication Ao X 7 |0|AV + |7|AT

Y |0]AV + |V|AT
Division Al = e e—

v v
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EXAMPLE 4.7

A condition number can be defined as the ratio of these relative errors
Xf'(X)
S(%)

The condition number provides a measure of the extent to which an uncertainty in x is
magnified by f(x). A value of 1 tells us that the function’s relative error is identical to the
relative error in x. A value greater than 1 tells us that the relative error is amplified, whereas
a value less than 1 tells us that it is attenuated. Functions with very large values are said to
be ill-conditioned. Any combination of factors in Eq. (4.28) that increases the numerical
value of the condition number will tend to magnify uncertainties in the computation of f(x).

Condition number = (4.28)

Condition Number

Problem Statement. Compute and interpret the condition number for

f(x) =tanx for¥ = % + o.1<727)

f(x) = tanx for X = g + 0.0l(;)

Solution.  The condition number is computed as
%(1/cos’x)

tan X
For ¥ = 7 /2 + 0.1(7/2),

1.7279(40.86) o
-6314 '

Condition number =

Condition number =

Thus, the function is ill-conditioned. For ¥ = 7 /2 + 0.01(7/2), the situation is even
worse:
1.5865(4053)

Condition number = = —101
—63.66

For this case, the major cause of ill conditioning appears to be the derivative. This makes sense
because in the vicinity of 77/2, the tangent approaches both positive and negative infinity.

4.3

TOTAL NUMERICAL ERROR

The total numerical error is the summation of the truncation and round-off errors. In
general, the only way to minimize round-off errors is to increase the number of significant
figures of the computer. Further, we have noted that round-off error will increase due to
subtractive cancellation or due to an increase in the number of computations in an analy-
sis. In contrast, Example 4.4 demonstrated that the truncation error can be reduced by
decreasing the step size. Because a decrease in step size can lead to subtractive cancella-
tion or to an increase in computations, the truncation errors are decreased as the round-off
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Point of
diminishing
returns

log error

log step size

FIGURE 4.8

A graphical depiction of the trade-off between round-off and truncation error that somefimes
comes info play in the course of a numerical method. The point of diminishing returns is shown,
where round-off error begins to negate the benefits of step-size reduction.

errors are increased. Therefore, we are faced by the following dilemma: The strategy for
decreasing one component of the total error leads to an increase of the other component.
In a computation, we could conceivably decrease the step size to minimize truncation
errors only to discover that in doing so, the round-off error begins to dominate the solu-
tion and the total error grows! Thus, our remedy becomes our problem (Fig. 4.8). One
challenge that we face is to determine an appropriate step size for a particular computation.
We would like to choose a large step size in order to decrease the amount of calculations
and round-off errors without incurring the penalty of a large truncation error. If the total
error is as shown in Fig. 4.8, the challenge is to identify the point of diminishing returns
where round-off error begins to negate the benefits of step-size reduction.

In actual cases, however, such situations are relatively uncommon because most com-
puters carry enough significant figures that round-off errors do not predominate. Neverthe-
less, they sometimes do occur and suggest a sort of “numerical uncertainty principle” that
places an absolute limit on the accuracy that may be obtained using certain computerized
numerical methods. We explore such a case in the following section.

4.3.1 Error Analysis of Numerical Differentiation

As described in the Sec. 4.1.3, a centered difference approximation of the first derivative
can be written as (Eq. 4.22):

oo i) — fae) fO@)
fx) = " 6 h

True Finite-difference Truncation
value approximation error

(4.29)
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EXAMPLE 4.8

Thus, if the two function values in the numerator of the finite-difference approximation
have no round-off error, the only error is due to truncation.

However, because we are using digital computers, the function values do include
round-off error as in

fxiy) :f(xi—l) + e
S :f(xi+1) t ey

where the f’s are the rounded function values and the e’s are the associated round-off
errors. Substituting these values into Eq. (4.29) gives

fGiv) = fxiny) L G T Cin _f(3)(§)h2

AS 2h 2h 6
True Finite-difference Round-off Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a round-
off error which increases with step size and a truncation error that decreases with step
size.

Assuming that the absolute value of each component of the round-off error has an
upper bound of &, the maximum possible value of the difference e;,; — ¢; will be 2e.
Further, assume that the third derivative has a maximum absolute value of M. An upper
bound on the absolute value of the total error can therefore be represented as

Total =
otal error 7 W 5

f') — (4.30)

An optimal step size can be determined by differentiating Eq. (4.30), setting the result
equal to zero and solving for

3e
Bopt = ﬁlﬁ 4.31)

Round-off and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(h?) to estimate the first derivative of the following function at x = 0.5,

f(x) = —0.1x* — 0.15x — 0.5x* — 0.25x + 1.2

Perform the same computation starting with # = 1. Then progressively divide the step
size by a factor of 10 to demonstrate how round-off becomes dominant as the step size
is reduced. Relate your results to Eq. (4.31). Recall that the true value of the derivative
is —0.9125.

Solution.  We can develop a program to perform the computations and plot the results.
For the present example, we have done this with a MATLAB software M-file. Notice
that we pass both the function and its analytical derivative as arguments. In addition, the
function generates a plot of the results.
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function diffex(func,dfunc,x,n)
format long

dftrue=dfunc (x) ;

h 1

éu (x+h) -func (x-h) )/ (2*h) ;
dftrue-D(1)) ;

B

/-\'J'O

func(x+h)—func(x—h))/(2*h);
=abs (dftrue-D (1)) ;

L:[Hl D! El] '

fprintf (' step size finite difference true error\n');
fprintf ('%$14.10f %16.14f %16.13f\n',L);

loglog (H,E) ,xlabel ('Step Size'),ylabel ('Error')
title('Plot of Error Versus Step Size')

format short

The M-file can then be run using the following commands:

>> ff=@(x) -0.1*x"4-0.15*x"3-0.5*x"2-0.25*x+1.2;
>> df=@(x) -0.4*x"3-0.45*x"2-x%-0.25;
>> diffex (ff,df,0.5,11)

When the function is run, the following numeric output is generated along with the plot
(Fig. 4.9):

step size finite difference true error

1.0000000000 -1.26250000000000 0.3500000000000
0.1000000000 -0.91600000000000 0.0035000000000
0.0100000000 -0.91253500000000 0.0000350000000
0.0010000000 -0.91250035000001 0.0000003500000
0.0001000000 -0.91250000349985 0.0000000034998
0.0000100000 -0.91250000003318 0.0000000000332
0.0000010000 -0.91250000000542 0.0000000000054
0.0000001000 -0.91249999945031 0.0000000005497
0.0000000100 -0.91250000333609 0.0000000033361
0.0000000010 -0.91250001998944 0.0000000199894
0.0000000001 -0.91250007550059 0.0000000755006

The results are as expected. At first, round-off is minimal and the estimate is dominated
by truncation error. Hence, as in Eq. (4.30), the total error drops by a factor of 100 each
time we divide the step by 10. However, starting at 7 = 0.0001, we see round-off error
begin to creep in and erode the rate at which the error diminishes. A minimum error is
reached at 7 = 10~°. Beyond this point, the error increases as round-off dominates.

Because we are dealing with an easily differentiable function, we can also investigate
whether these results are consistent with Eq. (4.31). First, we can estimate M by evalu-
ating the function’s third derivative as

M =|£305)| = | —2.4(0.5) — 09| = 2.1
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Plot of error versus step size
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FIGURE 4.9

Plot of error versus step size.

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of
the upper bound on round-off would be about € = 0.5 X 10", Substituting these values
into Eq. (4.31) gives

5/3(0.5 X 107'9)

=N 43X 107

which is on the same order as the result of 1 X 107° obtained with our computer program.

4.3.2 Control of Numerical Errors

For most practical cases, we do not know the exact error associated with numerical meth-
ods. The exception, of course, is when we have obtained the exact solution that makes
our numerical approximations unnecessary. Therefore, for most engineering applications
we must settle for some estimate of the error in our calculations.

There are no systematic and general approaches to evaluating numerical errors for
all problems. In many cases, error estimates are based on the experience and judgment
of the engineer.

Although error analysis is to a certain extent an art, there are several practical program-
ming guidelines we can suggest. First and foremost, avoid subtracting two nearly equal
numbers. Loss of significance almost always occurs when this is done. Sometimes you can
rearrange or reformulate the problem to avoid subtractive cancellation. If this is not pos-
sible, you may want to use extended-precision arithmetic. Furthermore, when adding and
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4.4

subtracting numbers, it is best to sort the numbers and work with the smallest numbers
first. This avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of both
truncation and round-off errors. Several examples have been presented in this chapter.
Prediction of total numerical error is very complicated for even moderately sized problems
and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.

The tendency is to push forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible to substitute the results
back into the original equation to check that it is actually satisfied.

Finally you should be prepared to perform numerical experiments to increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change model parameters or input values. We may want to try different nu-
merical algorithms that have different theoretical foundations, are based on different com-
putational strategies, or have different convergence properties and stability characteristics.

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe economic ramifications, it is appropriate to take special
precautions. This may involve the use of two or more independent groups to solve the
same problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this
book. We will leave these investigations to specific sections.

BLUNDERS, FORMULATION ERRORS,
AND DATA UNCERTAINTY

Although the following sources of error are not directly connected with most of the
numerical methods in this book, they can sometimes have great impact on the success
of a modeling effort. Thus, they must always be kept in mind when applying numerical
techniques in the context of real-world problems.

4.4.1 Blunders

We are all familiar with gross errors, or blunders. In the early years of computers, er-
roneous numerical results could sometimes be attributed to malfunctions of the computer
itself. Today, this source of error is highly unlikely, and most blunders must be attributed
to human imperfection.

Blunders can occur at any stage of the mathematical modeling process and can
contribute to all the other components of error. They can be avoided only by sound
knowledge of fundamental principles and by the care with which you approach and
design your solution to a problem.

Blunders are usually disregarded in discussions of numerical methods. This is no
doubt due to the fact that, try as we may, mistakes are to a certain extent unavoidable.
However, we believe that there are a number of ways in which their occurrence can be
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minimized. In particular, the good programming habits that were outlined in Chap. 2 are
extremely useful for mitigating programming blunders. In addition, there are usually
simple ways to check whether a particular numerical method is working properly.
Throughout this book, we discuss ways to check the results of numerical calculations.

4.4.2 Formulation Errors

Formulation, or model, errors relate to bias that can be ascribed to incomplete mathe-
matical models. An example of a negligible formulation error is the fact that Newton’s
second law does not account for relativistic effects. This does not detract from the ad-
equacy of the solution in Example 1.1 because these errors are minimal on the time and
space scales associated with the falling parachutist problem.

However, suppose that air resistance is not linearly proportional to fall velocity, as
in Eq. (1.7), but is a function of the square of velocity. If this were the case, both the
analytical and numerical solutions obtained in the Chap. 1 would be erroneous because
of formulation error. Further consideration of formulation error is included in some of
the engineering applications in the remainder of the book. You should be cognizant of
these problems and realize that, if you are working with a poorly conceived model, no
numerical method will provide adequate results.

4.4.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data upon
which a model is based. For instance, suppose we wanted to test the falling parachutist
model by having an individual make repeated jumps and then measuring his or her
velocity after a specified time interval. Uncertainty would undoubtedly be associated
with these measurements, since the parachutist would fall faster during some jumps than
during others. These errors can exhibit both inaccuracy and imprecision. If our instru-
ments consistently underestimate or overestimate the velocity, we are dealing with an
inaccurate, or biased, device. On the other hand, if the measurements are randomly high
and low, we are dealing with a question of precision.

Measurement errors can be quantified by summarizing the data with one or more
well-chosen statistics that convey as much information as possible regarding specific
characteristics of the data. These descriptive statistics are most often selected to represent
(1) the location of the center of the distribution of the data and (2) the degree of spread
of the data. As such, they provide a measure of the bias and imprecision, respectively.
We will return to the topic of characterizing data uncertainty in Part Five.

Although you must be cognizant of blunders, formulation errors, and uncertain data,
the numerical methods used for building models can be studied, for the most part, inde-
pendently of these errors. Therefore, for most of this book, we will assume that we have
not made gross errors, we have a sound model, and we are dealing with error-free mea-
surements. Under these conditions, we can study numerical errors without complicating
factors.
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PROBLEMS

4.1 The following infinite series can be used to approximate e":

=1+ +x2+x3+ e

e = Y+

2 3! n!
(a) Prove that this Maclaurin series expansion is a special case of
the Taylor series expansion [(Eq. (4.7)] withx; = 0 and h = x.
(b) Use the Taylor series to estimate f(x) = e¢ " at x;4; = 1 for
x; = 0.2. Employ the zero-, first-, second-, and third-order

versions and compute the |g| for each case.
4.2 The Maclaurin series expansion for cos x is

P L

cosx=1=+ et

Starting with the simplest version, cos x = 1, add terms one at a
time to estimate cos(r/3). After each new term is added, compute
the true and approximate percent relative errors. Use your pocket
calculator to determine the true value. Add terms until the absolute
value of the approximate error estimate falls below an error crite-
rion conforming to two significant figures.

4.3 Perform the same computation as in Prob. 4.2, but use the
Maclaurin series expansion for the sin x to estimate sin(7/3).

4.4 The Maclaurin series expansion for the arctangent of x is de-
fined for |x| = 1 as

ad 1
arctanx = 72( +)1 x2!

(a) Write out the first four terms (n = 0, . . ., 3).

(b) Starting with the simplest version, arctan x = x, add terms one
at a time to estimate arctan(7r/6). After each new term is added,
compute the true and approximate percent relative errors. Use
your calculator to determine the true value. Add terms until the
absolute value of the approximate error estimate falls below an
error criterion conforming to two significant figures.

4.5 Use zero- through third-order Taylor series expansions to

predict f(3) for

f(x) =25x> — 6x* + 7x — 88

using a base point at x = 1. Compute the true percent relative error
g, for each approximation.

4.6 Use zero- through fourth-order Taylor series expansions to pre-
dict f(2.5) for f(x) = In x using a base point at x = 1. Compute the
true percent relative error g, for each approximation. Discuss the
meaning of the results.

4.7 Use forward and backward difference approximations of O(h)
and a centered difference approximation of O(h%) to estimate the
first derivative of the function examined in Prob. 4.5. Evaluate the
derivative at x = 2 using a step size of # = 0.2. Compare your results
with the true value of the derivative. Interpret your results on the
basis of the remainder term of the Taylor series expansion.

4.8 Use a centered difference approximation of O(h%) to estimate
the second derivative of the function examined in Prob. 4.5. Per-
form the evaluation at x = 2 using step sizes of # = 0.25 and 0.125.
Compare your estimates with the true value of the second deriva-
tive. Interpret your results on the basis of the remainder term of the
Taylor series expansion.

4.9 The Stefan-Boltzmann law can be employed to estimate the
rate of radiation of energy H from a surface, as in

H = AecT*

where H is in watts, A = the surface area (mz), e = the emissivity
that characterizes the emitting properties of the surface (dimension-
less), o = a universal constant called the Stefan-Boltzmann con-
stant (= 5.67 X 107 W m 2K *), and T = absolute temperature
(K). Determine the error of H for a steel plate with A = 0.15 m>,
e = 0.90, and T = 650 = 20. Compare your results with the exact
error. Repeat the computation but with 7 = 650 % 40. Interpret
your results.
4.10 Repeat Prob. 4.9 but for a copper sphere with
radius = 0.15 £ 0.01 m, e = 0.90 = 0.05, and T = 550 = 20.
4.11 Recall that the velocity of the falling parachutist can be com-
puted by [Eq. (1.10)],
v(t) = ﬂ(1 — ¢~ (e/mr)

c
Use a first-order error analysis to estimate the error of v at r = 6, if
g=98landm=50butc =125 * 1.5.
4.12 Repeat Prob. 4.11 with g = 9.81,1 = 6,¢c = 12.5 = 1.5, and
m =50 =* 2.
4.13 Evaluate and interpret the condition numbers for

@ f(x)=Vxk—-1+1 for x = 1.00001

®) fx) = ¢ forx = 10
© f)=VX+1-x for x = 300
@) fr) = % for x = 0,001

sin x

e fx)=—7—— for x = 1.00017
1 + cosx

4.14 Employing ideas from Sec. 4.2, derive the relationships from
Table 4.3.

4.15 Prove that Eq. (4.4) is exact for all values of x if f(x) =
ax® + bx + c.
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4.16 Manning’s formula for a rectangular channel can be written
as
1 (BH)’"

n (B + 2H)*?

where 0 = flow (m¥/s),n = a roughness coefficient, B = width (m),
H = depth (m), and S = slope. You are applying this formula to a
stream where you know that the width = 20 m and the depth = 0.3 m.
Unfortunately, you know the roughness and the slope to only a = 10%
precision. That is, you know that the roughness is about 0.03 with a
range from 0.027 to 0.033 and the slope is 0.0003 with a range from
0.00027 to 0.00033. Use a first-order error analysis to determine the
sensitivity of the flow prediction to each of these two factors. Which
one should you attempt to measure with more precision?

4.17 If |x] < 1, it is known that

1
1 —x

=l4+x+2+24+ -

Repeat Prob. 4.1 for this series for x = 0.1.
4.18 A missile leaves the ground with an initial velocity v, form-
ing an angle ¢, with the vertical as shown in Fig. P4.18. The maxi-

&
\o
Yo

FIGURE P4.18

mum desired altitude is aR where R is the radius of the earth. The
laws of mechanics can be used to show that

indy = (1 + a)y/l — — (&)2

where v, = the escape velocity of the missile. It is desired to fire the
missile and reach the design maximum altitude within an accuracy of
*+2%. Determine the range of values for ¢, if v, /vy = 2 and & = 0.25.
4.19 To calculate a planet’s space coordinates, we have to solve the
function

fx) =x—1—-05sinx

Let the base point be a = x; = 7 /2 on the interval [0, 77]. Determine
the highest-order Taylor series expansion resulting in a maximum
error of 0.015 on the specified interval. The error is equal to the
absolute value of the difference between the given function and the
specific Taylor series expansion. (Hint: Solve graphically.)

4.20 Consider the function f(x) = x* — 2x + 4 on the interval [—2, 2]
with 4 = 0.25. Use the forward, backward, and centered finite differ-
ence approximations for the first and second derivatives so as to
graphically illustrate which approximation is most accurate. Graph all
three first derivative finite difference approximations along with the
theoretical, and do the same for the second derivative as well.

4.21 Derive Eq. (4.31).

4.22 Repeat Example 4.8, but for f(x) = cos(x) at x = 7/6.

4.23 Repeat Example 4.8, but for the forward divided difference
(Eq. 4.17).

4.24 Develop a well-structured program to compute the Maclaurin
series expansion for the cosine function as described in Prob. 4.2.
The function should have the following features:

* Iterate until the relative error falls below a stopping criterion
(es) or exceeds a maximum number of iterations (maxit).
Allow the user to specify values for these parameters.

¢ Include default values of es (= 0.000001) and maxit (= 100)
in the event that they are not specified by the user.

* Return the estimate of cos(x), the approximate relative error, the
number of iterations, and the true relative error (that you can
calculate based on the built-in cosine function).
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TRADE-OFFS

Numerical methods are scientific in the sense that they represent systematic techniques
for solving mathematical problems. However, there is a certain degree of art, subjective
judgment, and compromise associated with their effective use in engineering practice.
For each problem, you may be confronted with several alternative numerical methods
and many different types of computers. Thus, the elegance and efficiency of different
approaches to problems is highly individualistic and correlated with your ability to
choose wisely among options. Unfortunately, as with any intuitive process, the factors
influencing this choice are difficult to communicate. Only by experience can these skills
be fully comprehended and honed. However, because these skills play such a prominent
role in the effective implementation of the methods, we have included this section as an
introduction to some of the trade-offs that you must consider when selecting a numerical
method and the tools for implementing the method. It is hoped that the discussion that
follows will influence your orientation when approaching subsequent material. Also, it
is hoped that you will refer back to this material when you are confronted with choices
and trade-offs in the remainder of the book.

1. Type of Mathematical Problem. As delineated previously in Fig. PT1.2, several types
of mathematical problems are discussed in this book:
(a) Roots of equations.
(b) Systems of simultaneous linear algebraic equations.
(¢) Optimization.
(d) Curve fitting.
(e) Numerical integration.
(f) Ordinary differential equations.
(g) Partial differential equations.

You will probably be introduced to the applied aspects of numerical methods by confront-
ing a problem in one of the above areas. Numerical methods will be required because
the problem cannot be solved efficiently using analytical techniques. You should be
cognizant of the fact that your professional activities will eventually involve problems in
all the above areas. Thus, the study of numerical methods and the selection of automatic
computation equipment should, at the minimum, consider these basic types of problems.
More advanced problems may require capabilities of handling areas such as functional
approximation, integral equations, etc. These areas typically demand greater computation
power or advanced methods not covered in this text. Other references such as Carnahan,
Luther, and Wilkes (1969); Hamming (1973); Ralston and Rabinowitz (1978); Burden
and Faires (2005); and Moler (2004) should be consulted for problems beyond the scope
of this book. In addition, at the end of each part of this text, we include a brief summary
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and references for advanced methods to provide you with avenues for pursuing further

studies of numerical methods.

2. Type, Availability, Precision, Cost, and Speed of Computer. You may have the option
of working with a variety of computation tools. These range from pocket calculators
to large mainframe computers. Of course, any of the tools can be used to implement
any numerical method (including simple paper and pencil). It is usually not a question
of ultimate capability but rather of cost, convenience, speed, dependability, repeatability,
and precision. Although each of the tools will continue to have utility, the recent rapid
advances in the performance of personal computers have already had a major impact
on the engineering profession. We expect this revolution will spread as technological
improvements continue because personal computers offer an excellent compromise in
convenience, cost, precision, speed, and storage capacity. Furthermore, they can be
readily applied to most practical engineering problems.

3. Program Development Cost versus Software Cost versus Run-Time Cost. Once the
types of mathematical problems to be solved have been identified and the computer
system has been selected, it is appropriate to consider software and run-time costs.
Software development may represent a substantial effort in many engineering projects
and may therefore be a significant cost. In this regard, it is particularly important that
you be very well acquainted with the theoretical and practical aspects of the relevant
numerical methods. In addition, you should be familiar with professionally developed
software. Low-cost software is widely available to implement numerical methods that
may be readily adapted to a broad variety of problems.

4. Characteristics of the Numerical Method. When computer hardware and software
costs are high, or if computer availability is limited (for example, on some timeshare
systems), it pays to choose carefully the numerical method to suit the situation. On
the other hand, if the problem is still at the exploratory stage and computer access
and cost are not problems, it may be appropriate for you to select a numerical method
that always works but may not be the most computationally efficient. The numerical
methods available to solve any particular type of problem involve the types of trade-
offs just discussed and others:

(@) Number of Initial Guesses or Starting Points. Some of the numerical methods for
finding roots of equations or solving differential equations require the user to
specify initial guesses or starting points. Simple methods usually require one
value, whereas complicated methods may require more than one value. The
advantages of complicated methods that are computationally efficient may be
offset by the requirement for multiple starting points. You must use your experience
and judgment to assess the trade-offs for each particular problem.

(b) Rate of Convergence. Certain numerical methods converge more rapidly than
others. However, this rapid convergence may require more refined initial guesses
and more complex programming than a method with slower convergence. Again,
you must use your judgment in selecting a method. Faster is not always better.

(¢) Stability. Some numerical methods for finding roots of equations or solutions for
systems of linear equations may diverge rather than converge on the correct answer
for certain problems. Why would you tolerate this possibility when confronted
with design or planning problems? The answer is that these methods may be
highly efficient when they work. Thus, trade-offs again emerge. You must decide
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if your problem requirements justify the effort needed to apply a method that may
not always converge.

(d) Accuracy and Precision. Some numerical methods are simply more accurate or
precise than others. Good examples are the various equations available for
numerical integration. Usually, the performance of low-accuracy methods can be
improved by decreasing the step size or increasing the number of applications
over a given interval. Is it better to use a low-accuracy method with small step
sizes or a high-accuracy method with large step sizes? This question must be
addressed on a case-by-case basis taking into consideration the additional factors
such as cost and ease of programming. In addition, you must also be concerned
with round-off errors when you are using multiple applications of low-accuracy
methods and when the number of computations becomes large. Here the number
of significant figures handled by the computer may be the deciding factor.

(e) Breadth of Application. Some numerical methods can be applied to only a
limited class of problems or to problems that satisfy certain mathematical
restrictions. Other methods are not affected by such limitations. You must
evaluate whether it is worth your effort to develop programs that employ
techniques that are appropriate for only a limited number of problems. The
fact that such techniques may be widely used suggests that they have
advantages that will often outweigh their disadvantages. Obviously, trade-offs
are occurring.

(f) Special Requirements. Some numerical techniques attempt to increase accuracy
and rate of convergence using additional or special information. An example
would be to use estimated or theoretical values of errors to improve accuracy.
However, these improvements are generally not achieved without some
inconvenience in terms of added computing costs or increased program
complexity.

(g) Programming Effort Required. Efforts to improve rates of convergence, stability,
and accuracy can be creative and ingenious. When improvements can be made
without increasing the programming complexity, they may be considered elegant
and will probably find immediate use in the engineering profession. However, if
they require more complicated programs, you are again faced with a trade-off
situation that may or may not favor the new method.

It is clear that the above discussion concerning a choice of numerical methods
reduces to one of cost and accuracy. The costs are those involved with computer time
and program development. Appropriate accuracy is a question of professional judg-
ment and ethics.

5. Mathematical Behavior of the Function, Equation, or Data. In selecting a particular
numerical method, type of computer, and type of software, you must consider the
complexity of your functions, equations, or data. Simple equations and smooth data
may be appropriately handled by simple numerical algorithms and inexpensive
computers. The opposite is true for complicated equations and data exhibiting
discontinuities.

6. Ease of Application (User-Friendly?). Some numerical methods are easy to apply;
others are difficult. This may be a consideration when choosing one method over
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another. This same idea applies to decisions regarding program development costs
versus professionally developed software. It may take considerable effort to convert
a difficult program to one that is user-friendly. Ways to do this were introduced in
Chap. 2 and are elaborated throughout the book.

7. Maintenance. Programs for solving engineering problems require maintenance because
during application, difficulties invariably occur. Maintenance may require changing
the program code or expanding the documentation. Simple programs and numerical
algorithms are simpler to maintain.

The chapters that follow involve the development of various types of numerical methods
for various types of mathematical problems. Several alternative methods will be given
in each chapter. These various methods (rather than a single method chosen by the au-
thors) are presented because there is no single “best” method. There is no best method
because there are many trade-offs that must be considered when applying the methods
to practical problems. A table that highlights the trade-offs involved in each method will
be found at the end of each part of the book. This table should assist you in selecting
the appropriate numerical procedure for your particular problem context.

IMPORTANT RELATIONSHIPS AND FORMULAS

Table PT1.2 summarizes important information that was presented in Part One. The table
can be consulted to quickly access important relationships and formulas. The epilogue
of each part of the book will contain such a summary.

ADVANCED METHODS AND ADDITIONAL REFERENCES

The epilogue of each part of the book will also include a section designed to facilitate
and encourage further studies of numerical methods. This section will reference other
books on the subject as well as material related to more advanced methods.'

To extend the background provided in Part One, numerous manuals on computer
programming are available. It would be difficult to reference all the excellent books and
manuals pertaining to specific languages and computers. In addition, you probably already
have material from your previous exposure to programming. However, if this is your first
experience with computers, your instructor and fellow students should also be able to
advise you regarding good reference books for the machines and languages available at
your school.

As for error analysis, any good introductory calculus book will include supplemen-
tary material related to subjects such as the Taylor series expansion. Texts by Swokowski
(1979), Thomas and Finney (1979), and Simmons (1985) provide very readable discus-
sions of these subjects. In addition, Taylor (1982) presents a nice introduction to error
analysis.

Finally, although we hope that our book serves you well, it is always good to con-
sult other sources when trying to master a new subject. Burden and Faires (2005); Ralston

'Books are referenced only by author here; a complete bibliography will be found at the back of this text.
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TABLE PT1.2 Summary of important information presented in Part One.

Error Definitions

True error E, = true value — approximation

frue value — approximation
True percent relative error &= 100%

frue value

present approximation — previous approximation

Approximate percent relative error £, = — 100%
present approximation

Stopping criterion Terminate computation when

gy < &

where & is the desired percent relative error

Taylor Series

Taylor series expansion fur] = fix) + Flxlh + f”2l>|<,) B2
+ % Bt e+ f[”r”(!x,) h"+ R,
where
Remainder = (f:;”(]g))! o+l
or
R, = O
Numerical Differentiation
First forward finite divided difference Flx) = Fixia1) = flx) + Olh)

h
[Other divided differences are summarized in Chaps. 4 and 23.)

Error Propagation
For n independent variables x;, xo,..., x, having errors A%y, A%, ... A%, the error in the function
f can be estimated via

of

dXn

of of
Af = ’—‘ Az + ‘—’ Ay + - +
8><] 6)(2

A%,

and Rabinowitz (1978); Hoffman (1992); and Carnahan, Luther, and Wilkes (1969) pro-
vide comprehensive discussions of most numerical methods. Other enjoyable books on
the subject are Gerald and Wheatley (2004), and Cheney and Kincaid (2008). In addition,
Press et al. (2007) include algorithms to implement a variety of methods, and Moler
(2004) and Chapra (2007) are devoted to numerical methods with MATLAB software.
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ROOTS OF EQUATIONS

PT2.1

MOTIVATION

Years ago, you learned to use the quadratic formula

_ —b = \/b> — 4ac

x= 5 (PT2.1)
a
to solve
fx)y=a’ +bx+c=0 (PT2.2)

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They rep-
resent the values of x that make Eq. (PT2.2) equal to zero. Thus, we can define the root
of an equation as the value of x that makes f(x) = 0. For this reason, roots are sometimes
called the zeros of the equation.

Although the quadratic formula is handy for solving Eq. (PT2.2), there are many other
functions for which the root cannot be determined so easily. For these cases, the numerical
methods described in Chaps. 5, 6, and 7 provide efficient means to obtain the answer.

PT2.1.1 Noncomputer Methods for Determining Roots

Before the advent of digital computers, there were several ways to solve for roots of
algebraic and transcendental equations. For some cases, the roots could be obtained by
direct methods, as was done with Eq. (PT2.1). Although there were equations like this
that could be solved directly, there were many more that could not. For example, even
an apparently simple function such as f(x) = ¢ * — x cannot be solved analytically. In
such instances, the only alternative is an approximate solution technique.

One method to obtain an approximate solution is to plot the function and determine
where it crosses the x axis. This point, which represents the x value for which f(x) = 0,
is the root. Graphical techniques are discussed at the beginning of Chaps. 5 and 6.

Although graphical methods are useful for obtaining rough estimates of roots, they
are limited because of their lack of precision. An alternative approach is to use trial and
error. This “technique” consists of guessing a value of x and evaluating whether f(x) is
zero. If not (as is almost always the case), another guess is made, and f(x) is again
evaluated to determine whether the new value provides a better estimate of the root. The
process is repeated until a guess is obtained that results in an f(x) that is close to zero.

Such haphazard methods are obviously inefficient and inadequate for the require-
ments of engineering practice. The techniques described in Part Two represent alterna-
tives that are also approximate but employ systematic strategies to home in on the true
root. As elaborated on in the following pages, the combination of these systematic meth-
ods and computers makes the solution of most applied roots-of-equations problems a
simple and efficient task.
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PT2.1.2 Roots of Equations and Engineering Practice

Although they arise in other problem contexts, roots of equations frequently occur in the
area of engineering design. Table PT2.1 lists several fundamental principles that are
routinely used in design work. As introduced in Chap. 1, mathematical equations or
models derived from these principles are employed to predict dependent variables as a
function of independent variables, forcing functions, and parameters. Note that in each
case, the dependent variables reflect the state or performance of the system, whereas the
parameters represent its properties or composition.

An example of such a model is the equation, derived from Newton’s second law,
used in Chap. 1 for the parachutist’s velocity:

m
v = gT (1 — e @/mn) (PT2.3)

where velocity v = the dependent variable, time ¢ = the independent variable, the grav-
itational constant g = the forcing function, and the drag coefficient ¢ and mass m =
parameters. If the parameters are known, Eq. (PT2.3) can be used to predict the parachut-
ist’s velocity as a function of time. Such computations can be performed directly because
v is expressed explicitly as a function of time. That is, it is isolated on one side of the
equal sign.

TABLE PT2.1 Fundamental principles used in engineering design problems.

Fundamental Dependent Independent Parameters
Principle Variable Variable
Heat balance Temperature Time and Thermal properties
posifion of material and
geometry of system
Mass balance Concentration or Time and Chemical behavior
quantity of mass posifion of material, mass

transfer coe{ficienfs,
and geometry of

system
Force balance Magnitude and Time and Strength of material,
direction of forces posifion structural properties,
and geometry of
system
Energy balance Changes in the kinefic- Time and Thermal properties,
and potentialenergy posifion mass of material,
stafes of the sysfem and systfem geometry
Newton's laws Acceleration, velocity, Time and Mass of material,
of motion or location position system geometry,

and dissipafive
parameters such
as friction or drag
Kirchhoff's laws Currents and voltages Time Electrical properties
in electric circuits of systems such as
resistance, capacitance,
and inducfance
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However, suppose we had to determine the drag coefficient for a parachutist of a
given mass to attain a prescribed velocity in a set time period. Although Eq. (PT2.3)
provides a mathematical representation of the interrelationship among the model vari-
ables and parameters, it cannot be solved explicitly for the drag coefficient. Try it. There
is no way to rearrange the equation so that c is isolated on one side of the equal sign.
In such cases, ¢ is said to be implicit.

This represents a real dilemma, because many engineering design problems involve
specifying the properties or composition of a system (as represented by its parameters)
to ensure that it performs in a desired manner (as represented by its variables). Thus,
these problems often require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (PT2.3).
This is done by subtracting the dependent variable v from both sides of the equation to give

flc) = ? (1 —e ™) —y (PT2.4)
The value of ¢ that makes f(c¢) = O is, therefore, the root of the equation. This value
also represents the drag coefficient that solves the design problem.

Part Two of this book deals with a variety of numerical and graphical methods for deter-
mining roots of relationships such as Eq. (PT2.4). These techniques can be applied to engi-
neering design problems that are based on the fundamental principles outlined in Table PT2.1
as well as to many other problems confronted routinely in engineering practice.

MATHEMATICAL BACKGROUND

For most of the subject areas in this book, there is usually some prerequisite mathematical
background needed to successfully master the topic. For example, the concepts of error
estimation and the Taylor series expansion discussed in Chaps. 3 and 4 have direct relevance
to our discussion of roots of equations. Additionally, prior to this point we have mentioned
the terms “algebraic” and “transcendental” equations. It might be helpful to formally define
these terms and discuss how they relate to the scope of this part of the book.

By definition, a function given by y = f(x) is algebraic if it can be expressed in the
form

LY e A iy F f=0 (PT2.5)

where f; = an ith-order polynomial in x. Polynomials are a simple class of algebraic
functions that are represented generally by

(x) = ag + aix + ax® + o+ ax" (PT2.6)
0

where n = the order of the polynomial and the a’s = constants. Some specific examples
are

frlx) =1 — 2.37x + 7.5x° (PT2.7)
and

fox) =5 — X + 7x° (PT2.8)
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A transcendental function is one that is nonalgebraic. These include trigonometric,
exponential, logarithmic, and other, less familiar, functions. Examples are

f(x) =Inx*—1 (PT2.9)
and
f(x) = e **sin(3x — 0.5) (PT2.10)

Roots of equations may be either real or complex. Although there are cases where com-
plex roots of nonpolynomials are of interest, such situations are less common than for
polynomials. As a consequence, the standard methods for locating roots typically fall
into two somewhat related but primarily distinct problem areas:

1. The determination of the real roots of algebraic and transcendental equations. These
techniques are usually designed to determine the value of a single real root on the
basis of foreknowledge of its approximate location.

2. The determination of all real and complex roots of polynomials. These methods are
specifically designed for polynomials. They systematically determine all the roots of
the polynomial rather than determining a single real root given an approximate location.

In this book we discuss both. Chapters 5 and 6 are devoted to the first category.
Chapter 7 deals with polynomials.

ORIENTATION

Some orientation is helpful before proceeding to the numerical methods for determining
roots of equations. The following is intended to give you an overview of the material in
Part Two. In addition, some objectives have been included to help you focus your efforts
when studying the material.

PT2.3.1 Scope and Preview

Figure PT2.1 is a schematic representation of the organization of Part Two. Examine this
figure carefully, starting at the top and working clockwise.

After the present introduction, Chap. 5 is devoted to bracketing methods for finding
roots. These methods start with guesses that bracket, or contain, the root and then sys-
tematically reduce the width of the bracket. Two specific methods are covered: bisection
and false position. Graphical methods are used to provide visual insight into the tech-
niques. Error formulations are developed to help you determine how much computational
effort is required to estimate the root to a prespecified level of precision.

Chapter 6 covers open methods. These methods also involve systematic trial-and-
error iterations but do not require that the initial guesses bracket the root. We will dis-
cover that these methods are usually more computationally efficient than bracketing
methods but that they do not always work. One-point iteration, Newton-Raphson, and
secant methods are described. Graphical methods are used to provide geometric insight
into cases where the open methods do not work. Formulas are developed that provide
an idea of how fast open methods home in on the root. An advanced approach, Brent’s
method, that combines the reliability of bracketing with the speed of open methods is
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FIGURE PT2.1

Schematic of the organization of the material in Part Two: Roots of Equations.

described. In addition, an approach to extend the Newton-Raphson method to systems of
nonlinear equations is explained.

Chapter 7 is devoted to finding the roots of polynomials. After background sections
on polynomials, the use of conventional methods (in particular the open methods from
Chap. 6) are discussed. Then two special methods for locating polynomial roots are
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described: Miiller’s and Bairstow’s methods. The chapter ends with information related
to finding roots with Excel, MATLAB software, and Mathcad.

Chapter 8 extends the above concepts to actual engineering problems. Engineering case
studies are used to illustrate the strengths and weaknesses of each method and to provide
insight into the application of the techniques in professional practice. The applications also
highlight the trade-offs (as discussed in Part One) associated with the various methods.

An epilogue is included at the end of Part Two. It contains a detailed comparison
of the methods discussed in Chaps. 5, 6, and 7. This comparison includes a description
of trade-offs related to the proper use of each technique. This section also provides a
summary of important formulas, along with references for some numerical methods that
are beyond the scope of this text.

PT2.3.2 Goals and Objectives

Study Obijectives.  After completing Part Two, you should have sufficient information
to successfully approach a wide variety of engineering problems dealing with roots of
equations. In general, you should have mastered the techniques, have learned to assess
their reliability, and be capable of choosing the best method (or methods) for any par-
ticular problem. In addition to these general goals, the specific concepts in Table PT2.2
should be assimilated for a comprehensive understanding of the material in Part Two.

Computer Objectives. The book provides you with software and simple computer algo-
rithms to implement the techniques discussed in Part Two. All have utility as learning tools.

Pseudocodes for several methods are also supplied directly in the text. This informa-
tion will allow you to expand your software library to include programs that are more
efficient than the bisection method. For example, you may also want to have your own
software for the false-position, Newton-Raphson, and secant techniques, which are often
more efficient than the bisection method.

Finally, packages such as Excel, MATLAB, and Mathcad have powerful capabilities for
locating roots. You can use this part of the book to become familiar with these capabilities.

TABLE PT2.2 Specific study objectives for Part Two.

1. Undersfand the graphical inferpretation of a root
2. Know the graphical inferpretation of the folse-position method and why it is usually superior fo the
bisection method

3. Understand the difference between brackefing and open methods for root location

4. Understand the concepts of convergence and divergence; use the two-curve graphical method fo
provide a visual manifestation of the concepts

. Know why brackefing methods always converge, whereas open methods may sometimes diverge

. Redlize that convergence of open methods is more likely if the initial guess is close to the true root

. Undersfand the concepts of linear and quadratic convergence and their implications for the
efficiencies of the fixed-pointiteration and Newton-Raphson methods

. Know the fundamental difference between the false-position and secant methods and how it relafes
to convergence

9. Understand how Brent's method combines the reliability of bisection with the speed of open methods

10. Understand the problems posed by multiple roots and the modifications available to mitigate them
1. Know how to extend the single-equation Newton-Raphson approach fo solve systems of nonlinear
equations

N O O

[ee}
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EXAMPLE 5.1

Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a function
typically changes sign in the vicinity of a root. These techniques are called bracketing
methods because two initial guesses for the root are required. As the name implies, these
guesses must “bracket,” or be on either side of, the root. The particular methods described
herein employ different strategies to systematically reduce the width of the bracket and,
hence, home in on the correct answer.

As a prelude to these techniques, we will briefly discuss graphical methods for
depicting functions and their roots. Beyond their utility for providing rough guesses,
graphical techniques are also useful for visualizing the properties of the functions and
the behavior of the various numerical methods.

GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to
make a plot of the function and observe where it crosses the x axis. This point, which
represents the x value for which f(x) = 0, provides a rough approximation of the root.

The Graphical Approach

Problem Statement. Use the graphical approach to determine the drag coefficient ¢
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-
falling for time # = 10 s. Note: The acceleration due to gravity is 9.81 m/s”.

Solution.  This problem can be solved by determining the root of Eq. (PT2.4) using the
parameters t = 10, g = 9.81, v = 40, and m = 68.1:

9.81(68.1
f(C) — (C )(1 _ 87(0/68'1)10) _ 40

or

f(C) — 668CO6(1 _ 8—0.1468430) _ 40 (ESII)

Various values of ¢ can be substituted into the right-hand side of this equation to compute
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c f(c)

4 34.190
8 17712
12 6.114
16 —2.230
20 —8.368

These points are plotted in Fig. 5.1. The resulting curve crosses the ¢ axis between 12 and
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

668.06
14.75

f(14.75) = (1 — ¢~ MBI 40 = 0.100

which is close to zero. It can also be checked by substituting it into Eq. (PT2.3) along
with the parameter values from this example to give
~ 9.81(68.1)

14 75 (1 _ e*(14A75/68A1)1()) — 40‘100

which is very close to the desired fall velocity of 40 m/s.

FIGURE 5.1

The graphical approach for determining the roots of an equation.
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FIGURE 5.2

lllustration of a number of
general ways that a root may
occur in an inferval prescribed
by a lower bound x; and an
upper bound x,. Parts (a) and
(c) indicate that if both f(x) and
fix,) have the same sign, either
there will be no roots or there
will be an even number of roots
within the interval. Parts (b) and
(d) indicate that if the function
has different signs at the end
points, there will be an odd
number of roots in the interval.

Graphical techniques are of limited practical value because they are not precise. However,
graphical methods can be utilized to obtain rough estimates of roots. These estimates can be
employed as starting guesses for numerical methods discussed in this and the next chapter.

Aside from providing rough estimates of the root, graphical interpretations are im-
portant tools for understanding the properties of the functions and anticipating the pitfalls
of the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots
can occur (or be absent) in an interval prescribed by a lower bound x; and an upper
bound x,. Figure 5.2b depicts the case where a single root is bracketed by negative and
positive values of f(x). However, Fig. 5.2d, where f(x;) and f(x,) are also on opposite
sides of the x axis, shows three roots occurring within the interval. In general, if f(x;)
and f(x,) have opposite signs, there are an odd number of roots in the interval. As indi-
cated by Fig. 5.2a and c, if f(x;) and f(x,) have the same sign, there are either no roots
or an even number of roots between the values.

Although these generalizations are usually true, there are cases where they do not
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinu-
ous functions (Fig. 5.3b) can violate these principles. An example of a function that is
tangential to the axis is the cubic equation f(x) = (x — 2)(x — 2)(x — 4). Notice that
x = 2 makes two terms in this polynomial equal to zero. Mathematically, x = 2 is called
a multiple root. At the end of Chap. 6, we will present techniques that are expressly
designed to locate multiple roots.

The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop
general computer algorithms guaranteed to locate all the roots in an interval. However,
when used in conjunction with graphical approaches, the methods described in the

FIGURE 5.3
lllustration of some exceptions to the general cases depicted in fx)
Fig. 5.2. [a) Multiple root that occurs when the function is fangen-
fial to the x axis. For this case, although the end points are of op-
posite signs, there are an even number of axis infersections for
the interval. (b) Discontinuous function where end points of oppo-
site sign bracket an even number of roots. Special strategies are
required for defermining the roots for these cases.
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following sections are extremely useful for solving many roots of equations problems
confronted routinely by engineers and applied mathematicians.

EXAMPLE 5.2 Use of Computer Graphics to Locate Roots
Problem Statement. Computer graphics can expedite and improve your efforts to locate
roots of equations. The function
f(x) = sin10x + cos3x

has several roots over the range x = 0 to x = 5. Use computer graphics to gain insight
into the behavior of this function.
Solution.  Packages such as Excel and MATLAB software can be used to generate plots.
Figure 5.4a is a plot of f(x) from x = 0 to x = 5. This plot suggests the presence of
several roots, including a possible double root at about x = 4.2 where f(x) appears to be

FIGURE 5.4

The progressive enlargement of f{x) = sin 10x + cos 3x by the computer. Such interactive graphics
permifs the analyst to determine that two distinct roots exist between x = 4.2 and x = 4.3.
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tangent to the x axis. A more detailed picture of the behavior of f(x) is obtained by chang-
ing the plotting range from x = 3 to x = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4c, the
vertical scale is narrowed further to f(x) = —0.15 to f(x) = 0.15 and the horizontal scale
is narrowed to x = 4.2 to x = 4.3. This plot shows clearly that a double root does not exist
in this region and that in fact there are two distinct roots at about x = 4.23 and x = 4.26.

Computer graphics will have great utility in your studies of numerical methods. This
capability will also find many other applications in your other classes and professional
activities as well.

5.2

THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed (Fig. 5.1)
that f(x) changed sign on opposite sides of the root. In general, if f(x) is real and con-
tinuous in the interval from x; to x, and f(x;) and f(x,) have opposite signs, that is,

S flx,) <0 5.1

then there is at least one real root between x; and x,,.

Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. Then the location of the sign change (and consequently,
the root) is identified more precisely by dividing the interval into a number of subinter-
vals. Each of these subintervals is searched to locate the sign change. The process is
repeated and the root estimate refined by dividing the subintervals into finer increments.
We will return to the general topic of incremental searches in Sec. 5.4.

The bisection method, which is alternatively called binary chopping, interval halving,
or Bolzano’s method, is one type of incremental search method in which the interval is
always divided in half. If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying at the
midpoint of the subinterval within which the sign change occurs. The process is repeated
to obtain refined estimates. A simple algorithm for the bisection calculation is listed in
Fig. 5.5, and a graphical depiction of the method is provided in Fig. 5.6. The following
example goes through the actual computations involved in the method.

FIGURE 5.5

Step 1: Choose lower x; and upper x, guesses for the root such that the function changes sign
over the interval. This can be checked by ensuring that fix)f(x,) < O.
Step 2: An estimate of the root x, is determined by

X+ X,
2

Step 3: Make the following evaluations to determine in which subinterval the root lies:
(a) If fix)flx) < O, the root lies in the lower subinterval. Therefore, set x, = x, and return
fo step 2.
(b] If fix)fix) > O, the root lies in the upper subinterval. Therefore, set x; = x, and return
fo step 2.
(c) If Aix)fix) = O, the root equals x,; terminate the computation.

X, =
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FIGURE 5.6

A graphical depiction of the
bisection method. This plot
conforms fo the first three
iterations from Example 5.3.

EXAMPLE 5.3

Bisection

Problem Statement. Use bisection to solve the same problem approached graphically
in Example 5.1.

Solution.  The first step in bisection is to guess two values of the unknown (in the
present problem, c) that give values for f(c) with different signs. From Fig. 5.1, we can
see that the function changes sign between values of 12 and 16. Therefore, the initial
estimate of the root x, lies at the midpoint of the interval

12416
2

X, 14

This estimate represents a true percent relative error of g = 5.3% (note that the true
value of the root is 14.8011). Next we compute the product of the function value at the
lower bound and at the midpoint:

f(12)f(14) = 6.114(1.611) = 9.850

which is greater than zero, and hence no sign change occurs between the lower bound
and the midpoint. Consequently, the root must be located between 14 and 16. Therefore,
we create a new interval by redefining the lower bound as 14 and determining a revised
root estimate as

14+ 16

15
2

Xy

which represents a true percent error of €, = 1.3%. The process can be repeated to obtain
refined estimates. For example,

F(14) f(15) = 1.611(—0.384) = —0.619
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EXAMPLE 5.4

Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the
root estimate for the third iteration is calculated as

which represents a percent relative error of &, = 2.0%. The method can be repeated until
the result is accurate enough to satisfy your needs.

In the previous example, you may have noticed that the true error does not decrease
with each iteration. However, the interval within which the root is located is halved with
each step in the process. As discussed in the next section, the interval width provides an
exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtain
a refined estimate of the root. We must now develop an objective criterion for deciding
when to terminate the method.

An initial suggestion might be to end the calculation when the true error falls
below some prespecified level. For instance, in Example 5.3, the relative error dropped
to 2.0 percent during the course of the computation. We might decide that we should
terminate when the error drops below, say, 0.1 percent. This strategy is flawed because
the error estimates in the example were based on knowledge of the true root of the
function. This would not be the case in an actual situation because there would be no
point in using the method if we already knew the root.

Therefore, we require an error estimate that is not contingent on foreknowledge of
the root. As developed previously in Sec. 3.3, an approximate percent relative error g,
can be calculated, as in [recall Eq. (3.5)]

new __ _old
r r
new
Xy

100% (5.2)

E, =

where x™" is the root for the present iteration and x2' is the root from the previous it-

eration. The absolute value is used because we are usually concerned with the magnitude
of g, rather than with its sign. When &, becomes less than a prespecified stopping cri-
terion g, the computation is terminated.

Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of & = 0.5%. Use Eq. (5.2) to compute the errors.

Solution.  The results of the first two iterations for Example 5.3 were 14 and 15. Sub-
stituting these values into Eq. (5.2) yields

15— 14

T 100% = 6.667%

|€d =




130

BRACKETING METHODS

Recall that the true percent relative error for the root estimate of 15 was 1.3%. Therefore,
g, is greater than g,. This behavior is manifested for the other iterations:

Iteration x| X, X, £q (%) e (%)
] 12 16 14 5413
2 14 16 15 6.667 1.344
3 14 15 14.5 3.448 2.035
4 14.5 15 14.75 1.695 0.345
5 14.75 15 14.875 0.840 0.499
6 14.75 14.875 14.8125 0.422 0.077

Thus, after six iterations g, finally falls below & = 0.5%, and the computation can
be terminated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.7 suggests that g, captures the general downward trend of ;. In addition, the plot
exhibits the extremely attractive characteristic that e, is always greater than g, Thus,

FIGURE 5.7

Errors for the bisection method.

True and estimated errors are
plotted versus the number of
iterations.

Approximate

Percent relative error

0.1 —

Iterations
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when g, falls below g, the computation could be terminated with confidence that the
root is known to be at least as accurate as the prespecified acceptable level.

Although it is always dangerous to draw general conclusions from a single example,
it can be demonstrated that &, will always be greater than &, for the bisection method. This
is because each time an approximate root is located using bisection as x, = (x; + x,)/2,
we know that the true root lies somewhere within an interval of (x, — x))/2 = Ax/2.
Therefore, the root must lie within *+Ax/2 of our estimate (Fig. 5.8). For instance, when
Example 5.3 was terminated, we could make the definitive statement that

x, =145 + 05

new

Because Ax/2 = x™V — x2 (Fig. 5.9), Eq. (5.2) provides an exact upper bound on
the true error. For this bound to be exceeded, the true root would have to fall outside
the bracketing interval, which, by definition, could never occur for the bisection method.
As illustrated in a subsequent example (Example 5.6), other root-locating techniques do
not always behave as nicely. Although bisection is generally slower than other methods,

FIGURE 5.8

Three ways in which the interval
may bracket the root. In (a) the
true value lies af the center of
the inferval, whereas in (b} and
(c) the true value lies near the
extreme. Notice that the dis-
crepancy between the frue
value and the midpoint of the
interval never exceeds half the

interval length, or Ax/2.
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the neatness of its error analysis is certainly a positive aspect that could make it attrac-
tive for certain engineering applications.

Before proceeding to the computer program for bisection, we should note that the
relationships (Fig. 5.9)
X, — X

old _ Tu
;
2

X, X,

new __
r

and
X+ x,
T2

new __

can be substituted into Eq. (5.2) to develop an alternative formulation for the approximate
percent relative error

Xy — X1

100% (5.3)

x, +x

This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to
calculate an error estimate on the basis of our initial guesses—that is, on our first iteration.
For instance, on the first iteration of Example 5.2, an approximate error can be computed as

- ‘16—12
16 + 12

€aq

‘100% = 14.29%

Another benefit of the bisection method is that the number of iterations required to
attain an absolute error can be computed a priori—that is, before starting the iterations.
This can be seen by recognizing that before starting the technique, the absolute error is

E)=x)—x) = AX°
where the superscript designates the iteration. Hence, before starting the method, we are
at the “zero iteration.” After the first iteration, the error becomes

. AY

E, = EY

Because each succeeding iteration halves the error, a general formula relating the error
and the number of iterations n is

A.XO
E' = 5.4
" (5.4)
If E,, is the desired error, this equation can be solved for
log(Ax"/ Eqa) Ax°
n=— Ll e (25 (5.5
log 2 E,q

Let us test the formula. For Example 5.4, the initial interval was Ax, = 16 — 12 = 4.
After six iterations, the absolute error was

14.875 — 14.75|

E = 0.0625
¢ 2
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We can substitute these values into Eq. (5.5) to give

_ log(4/0.0625) 6
a log 2 B

Thus, if we knew beforehand that an error of less than 0.0625 was acceptable, the for-
mula tells us that six iterations would yield the desired result.

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.5) can provide a useful
root-location algorithm. We will explore such applications in the end-of-chapter problems.

5.2.2 Bisection Algorithm

The algorithm in Fig. 5.5 can now be expanded to include the error check (Fig. 5.10).
The algorithm employs user-defined functions to make root location and function evalu-
ation more efficient. In addition, an upper limit is placed on the number of iterations.
Finally, an error check is included to avoid division by zero during the error evaluation.
Such would be the case when the bracketing interval is centered on zero. For this situ-
ation, Eq. (5.2) becomes infinite. If this occurs, the program skips over the error evalu-
ation for that iteration.

The algorithm in Fig. 5.10 is not user-friendly; it is designed strictly to come up
with the answer. In Prob. 5.14 at the end of this chapter, you will have the task of mak-
ing it easier to use and understand.

FIGURE 5.10
Pseudocode for function to
implement bisection.

FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
iter = 0
Do
xrold = xr
xr = (xI + xu) / 2
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) * 100
END IF
test = f(x1) * f(xr)
IF test < 0 THEN

Xu = Xxr
ELSE IF test > 0 THEN
Xl = xr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO
Bisect = xr

END Bisect
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5.2.3 Minimizing Function Evaluations

The bisection algorithm in Fig. 5.10 is just fine if you are performing a single root
evaluation for a function that is easy to evaluate. However, there are many instances
in engineering when this is not the case. For example, suppose that you develop a
computer program that must locate a root numerous times. In such cases you could
call the algorithm from Fig. 5.10 thousands and even millions of times in the course
of a single run.

Further, in its most general sense, a univariate function is merely an entity that re-
turns a single value in return for a single value you send to it. Perceived in this sense,
functions are not always simple formulas like the one-line equations solved in the pre-
ceding examples in this chapter. For example, a function might consist of many lines of
code that could take a significant amount of execution time to evaluate. In some cases,
the function might even represent an independent computer program.

Because of both these factors, it is imperative that numerical algorithms minimize
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular,
notice that in making two function evaluations per iteration, it recalculates one of the
functions that was determined on the previous iteration.

Figure 5.11 provides a modified algorithm that does not have this deficiency. We have
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at

FIGURE 5.11

Pseudocode for bisection sub-
program which minimizes
function evaluations.

FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
iter = 0
fl = f(xI)
DO
xrold = xr
xr = (xI + xu) / 2
fr = f(xr)
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) * 100
END IF
test = fl * fr
IF test < 0 THEN

XU = Xr
ELSE IF test > 0 THEN
Xl = xr
fl = fr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO
Bisect = xr

END Bisect
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the root estimate is calculated. Previously calculated values are saved and merely reassigned
as the bracket shrinks. Thus, n + 1 function evaluations are performed, rather than 2n.

THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force”
approach is relatively inefficient. False position is an alternative based on a graphical insight.

A shortcoming of the bisection method is that, in dividing the interval from x; to x,
into equal halves, no account is taken of the magnitudes of f(x;) and f(x,). For example,
if f(x)) is much closer to zero than f(x,), it is likely that the root is closer to x; than to
x, (Fig. 5.12). An alternative method that exploits this graphical insight is to join f(x;)
and f(x,) by a straight line. The intersection of this line with the x axis represents an
improved estimate of the root. The fact that the replacement of the curve by a straight
line gives a “false position” of the root is the origin of the name, method of false position,
or in Latin, regula falsi. It is also called the linear interpolation method.

Using similar triangles (Fig. 5.12), the intersection of the straight line with the
X axis can be estimated as

fOo)_ f)

X, — X X, — X,

(5.6)
which can be solved for (see Box 5.1 for details).

f(xu) (-xl - xu)
- 5.7
AT R — f5) oD

FIGURE 5.12

A graphical depiction of the
method of false position. Similar
friangles used to derive the for
mula for the method are

shaded.

yACY)

Jx)
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Box 5.1

Cross-multiply Eq. (5.6) to yield
f(xl)(xr - xu) = f(xu)(xr - )C[)

Collect terms and rearrange:

Xy [f(xl) _f(xu)] = xuf(xl) - -xlf(xu)

Divide by f(x)) — f(x,):

Derivation of the Method of False Position

then adding and subtracting x, on the right-hand side:

-xuf(xl) —x - -xlf(-xu)
fo) = fx) " fw) = fx)

Collecting terms yields

xuf(xu) xlf(xu)

X, =X,

X, =X -
T ) — f) f) — f(x)
L) ) I | |
f(xl) - f(xu) _ f(xu) (= x)
This is one form of the method of false position. Note that it al- Xr = X Fx) — f(x)

lows the computation of the root x, as a function of the lower and

upper guesses x; and x,. It can be put in an alternative form by

expanding it:

X f(x1) xf(x,)

which is the same as Eq. (5.7). We use this form because it involves
one less function evaluation and one less multiplication than Eq.
(B5.1.1). In addition, it is directly comparable with the secant
method, which will be discussed in Chap. 6.

T ) — f) fG) — f)

EXAMPLE 5.5

This is the false-position formula. The value of x, computed with Eq. (5.7) then replaces
whichever of the two initial guesses, x; or x,, yields a function value with the same sign
as f(x,). In this way, the values of x; and x, always bracket the true root. The process is
repeated until the root is estimated adequately. The algorithm is identical to the one for
bisection (Fig. 5.5) with the exception that Eq. (5.7) is used for step 2. In addition, the
same stopping criterion [Eq. (5.2)] is used to terminate the computation.

False Position

Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 [Eq. (E5.1.1)].

Solution.  As in Example 5.3, initiate the computation with guesses of x; = 12 and
x, = 16.

First iteration:

x=12  f(x)=6.1139
x, =16  f(x,) = —2.2303
—2.2303(12 — 16)

=16 — = 14.309
r 6.1139 — (—2.2303)

which has a true relative error of 0.88 percent.

Second iteration:

f(x) f(x,) = —1.5376
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Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the
next iteration, x, = 14.9113:

x =12 f(x) = 6.1139
149309  f(x,) = —0.2515
—0.2515(12 — 14.9309)

14.9309 — = 14.8151
6.1139 — (—0.2515)

Xy

Xy

which has true and approximate relative errors of 0.09 and 0.78 percent. Additional
iterations can be performed to refine the estimate of the roots.

A feeling for the relative efficiency of the bisection and false-position methods can
be appreciated by referring to Fig. 5.13, where we have plotted the true percent relative
errors for Examples 5.4 and 5.5. Note how the error for false position decreases much
faster than for bisection because of the more efficient scheme for root location in the
false-position method.

Recall in the bisection method that the interval between x; and x,, grew smaller during
the course of a computation. The interval, as defined by Ax/2 = |x, — x;|/2 for the first
iteration, therefore provided a measure of the error for this approach. This is not the case

FIGURE 5.13

Comparison of the relative
errors of the bisection and the
false-position methods.
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EXAMPLE 5.6

for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.5
the lower guess x; remained at 12 while x, converged on the root. For such cases, the
interval does not shrink but rather approaches a constant value.

Example 5.5 suggests that Eq. (5.2) represents a very conservative error criterion.
In fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous
iteration. This is because for a case such as Example 5.5, where the method is converg-
ing quickly (for example, the error is being reduced nearly an order of magnitude per
iteration), the root for the present iteration x;°" is a much better estimate of the true value
than the result of the previous iteration x2'“. Thus, the quantity in the numerator of Eq. (5.2)
actually represents the discrepancy of the previous iteration. Consequently, we are assured
that satisfaction of Eq. (5.2) ensures that the root will be known with greater accuracy
than the prescribed tolerance. However, as described in the next section, there are cases
where false position converges slowly. For these cases, Eq. (5.2) becomes unreliable, and
an alternative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem to always be the bracketing method of
preference, there are cases where it performs poorly. In fact, as in the following example,
there are certain cases where bisection yields superior results.
A Case Where Bisection Is Preferable to False Position
Problem Statement. Use bisection and false position to locate the root of

flo) =x"" =1
between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration x| Xy X, £q (%) &4 (%)
1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2 percent. For false
position, a very different outcome is obtained:

Iteration X X, X, £q(%) £4(%)
1 0 1.3 0.09430 0.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 171 59.2
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f®)

10

FIGURE 5.14

Plot of f[x) = x'® = 1, illustrating slow convergence of the false-position method.

After five iterations, the true error has only been reduced to about 59 percent. In
addition, note that ¢, < &,. Thus, the approximate error is misleading. Insight into these
results can be gained by examining a plot of the function. As in Fig. 5.14, the curve
violates the premise upon which false position was based—that is, if f(x;) is much closer
to zero than f(x,), then the root is closer to x; than to x, (recall Fig. 5.12). Because of
the shape of the present function, the opposite is true.

The forgoing example illustrates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often supe-
rior to bisection, there are invariably cases that violate this general conclusion. Therefore,
in addition to using Eq. (5.2), the results should always be checked by substituting the root
estimate into the original equation and determining whether the result is close to zero. Such
a check should be incorporated into all computer programs for root location.

The example also illustrates a major weakness of the false-position method: its one-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to
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stay fixed. This can lead to poor convergence, particularly for functions with significant
curvature. The following section provides a remedy.

5.3.2 Modified False Position

One way to mitigate the “one-sided” nature of false position is to have the algorithm
detect when one of the bounds is stuck. If this occurs, the function value at the stagnant
bound can be divided in half. This is called the modified false-position method.

The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used
to determine when one of the bounds stays fixed for two iterations. If this occurs, the
function value at this stagnant bound is halved.

The effectiveness of this algorithm can be demonstrated by applying it to Example 5.6.
If a stopping criterion of 0.01% is used, the bisection and standard false-position

FIGURE 5.15
Pseudocode for the modified
false-position method.

FUNCTION ModFalsePos(x1, xu, es, imax, xr, iter, ea)
iter = 0
fl = f(x1)
fu = f(xu)
Do
xrold = xr
Xr = xu— fu* (x1 —xu) / (fl — fu)
fr = f(xr)
iter = iter + 1
IF xr <> 0 THEN
ea = Abs((xr — xrold) / xr) * 100
END IF
test = f1 * fr
IF test < 0 THEN

Xu = xr
fu = f(xu)
iu=20

il=17l + 1

If il = 2 THEN 1 = 1/ 2
ELSE IF test > 0 THEN

Xl = xr
fl = f(x1)
il =0

u=iu+1
IF iu= 2 THEN fu = fu / 2
ELSE
ea =0
END TF
IF ea < es OR iter = imax THEN EXIT
END DO
ModFalsePos = xr
End MODFALSEPOS
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methods would converge in 14 and 39 iterations, respectively. In contrast, the modified
false-position method would converge in 12 iterations. Thus, for this example, it is
somewhat more efficient than bisection and is vastly superior to the unmodified false-
position method.

INCREMENTAL SEARCHES AND DETERMINING
INITIAL GUESSES

Besides checking an individual answer, you must determine whether all possible roots
have been located. As mentioned previously, a plot of the function is usually very useful
in guiding you in this task. Another option is to incorporate an incremental search at the
beginning of the computer program. This consists of starting at one end of the region of
interest and then making function evaluations at small increments across the region.
When the function changes sign, it is assumed that a root falls within the increment. The
x values at the beginning and the end of the increment can then serve as the initial guesses
for one of the bracketing techniques described in this chapter.

A potential problem with an incremental search is the choice of the increment length.
If the length is too small, the search can be very time consuming. On the other hand, if
the length is too great, there is a possibility that closely spaced roots might be missed
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A
partial remedy for such cases is to compute the first derivative of the function f'(x) at
the beginning and the end of each interval. If the derivative changes sign, it suggests that
a minimum or maximum may have occurred and that the interval should be examined
more closely for the existence of a possible root.

Although such modifications or the employment of a very fine increment can allevi-
ate the problem, it should be clear that brute-force methods such as incremental search
are not foolproof. You would be wise to supplement such automatic techniques with any
other information that provides insight into the location of the roots. Such information
can be found in plotting and in understanding the physical problem from which the
equation originated.

FIGURE 5.16

Cases where roofs could be
missed because the increment
length of the search procedure
is too large. Note that the last
root on the right is multiple and
would be missed regardless of
increment length.

fx)
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PROBLEMS

5.1 Determine the real roots of f(x) = —0.5x> + 2.5x + 4.5

(a) Graphically.

(b) Using the quadratic formula.

(¢) Using three iterations of the bisection method to determine the
highest root. Employ initial guesses of x, = 5 and x, = 10.
Compute the estimated error g, and the true error g, after each
iteration.

5.2 Determine the real root of f(x) = 5% — 5x% + 6x — 2:

(a) Graphically.

(b) Using bisection to locate the root. Employ initial guesses of
x; = 0 and x, = 1 and iterate until the estimated error g, falls
below a level of &, = 10%.

5.3 Determine the real root of f(x) = —25 + 82x — 90x* +

44x* — 8x* + 0.7x:

(a) Graphically.

(b) Using bisection to determine the root to &, = 10%. Employ
initial guesses of x; = 0.5 and x, = 1.0.

(c) Perform the same computation as in (b) but use the false-
position method and g, = 0.2%.

5.4 (a) Determine the roots of f(x) = —12 — 21x + 18x* —

2.75x> graphically. In addition, determine the first root of the function

with (b) bisection, and (c) false position. For (b) and (c) use initial

guesses of x, = —1 and x, = 0, and a stopping criterion of 1%.

5.5 Locate the first nontrivial root of sin x = x* where x is in radi-

ans. Use a graphical technique and bisection with the initial interval

from 0.5 to 1. Perform the computation until g, is less than &, = 2%.

Also perform an error check by substituting your final answer into

the original equation.

5.6 Determine the positive real root of In(x?) = 0.7 (a) graphi-

cally, (b) using three iterations of the bisection method, with initial

guesses of x; = 0.5 and x, = 2, and (c) using three iterations of the

false-position method, with the same initial guesses as in (b).

5.7 Determine the real root of f(x) = (0.8 — 0.3x)/x:

(a) Analytically.

(b) Graphically.

(¢) Using three iterations of the false-position method and initial
guesses of 1 and 3. Compute the approximate error g, and
the true error g, after each iteration. Is there a problem with
the result?

5.8 Find the positive square root of 18 using the false-position

method to within g, = 0.5%. Employ initial guesses of x; = 4 and

x, = 5.

5.9 Find the smallest positive root of the function (x is in radians)

x2|cos \/);| = 5 using the false-position method. To locate the re-

gion in which the root lies, first plot this function for values of x

between O and 5. Perform the computation until g, falls below

&, = 1%. Check your final answer by substituting it into the orig-

inal function.

5.10 Find the positive real root of f(x) = =8 — 3587 +
450x — 1001 using the false-position method. Use initial guesses
of x; = 4.5 and x, = 6 and perform five iterations. Compute both
the true and approximate errors based on the fact that the root is
5.60979. Use a plot to explain your results and perform the compu-
tation to within g, = 1.0%.

5.11 Determine the real root of x> = 80: (a) analytically and
(b) with the false-position method to within &, = 2.5%. Use initial
guesses of 2.0 and 5.0.

5.12 Given

fx) = —2x° — 1.5x* + 10x + 2

Use bisection to determine the maximum of this function. Employ
initial guesses of x; = 0 and x, = 1, and perform iterations until
the approximate relative error falls below 5%.
5.13 The velocity v of a falling parachutist is given by

v = ﬂ(l _ e*(f‘/m)t)

c

where g = 9.81m/s’. For a parachutist with a drag coefficient
¢ = 15 kg/s, compute the mass m so that the velocity is v = 36 m/s
att = 10 s. Use the false-position method to determine m to a level
of &, = 0.1%.
5.14 Use bisection to determine the drag coefficient needed so that
an 82-kg parachutist has a velocity of 36 m/s after 4 s of free fall.
Note: The acceleration of gravity is 9.81 m/s>. Start with initial
guesses of x; = 3 and x, = 5 and iterate until the approximate
relative error falls below 2%. Also perform an error check by sub-
stituting your final answer into the original equation.
5.15 As depicted in Fig. P5.15, the velocity of water, v (m/s),
discharged from a cylindrical tank through a long pipe can be

computed as
V2gH t)
2L

v = V2gH tanh(

- —

FIGURE P5.15
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where g = 9.81 m/s>, H = initial head (m), L = pipe length (m),
and ¢ = elapsed time (s). Determine the head needed to achieve
v = 5 m/s in 2.5 s for a 4-m-long pipe (a) graphically, (b) by
bisection, and (c¢) with false position. Employ initial guesses of
x; = 0 and x, = 2 m with a stopping criterion of ¢, = 1%. Check
you results.
5.16 Water is flowing in a trapezoidal channel at a rate of Q = 20 m’/s.
The critical depth y for such a channel must satisfy the equation
2
0=1- %B

gA:
where g = 9.81 m/sz, A, = the cross-sectional area (mz), and B =
the width of the channel at the surface (m). For this case, the width
and the cross-sectional area can be related to depth y by

2
and AC=3y+yE

B=3+y
Solve for the critical depth using (a) the graphical method, (b) bisec-
tion, and (c) false position. For (b) and (c¢) use initial guesses of
x; = 0.5 and x, = 2.5, and iterate until the approximate error falls
below 1% or the number of iterations exceeds 10. Discuss your results.
5.17 You are designing a spherical tank (Fig. P5.17) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

__pBR— 1

Vv
3

where V = volume (m?), 1 = depth of water in tank (m), and R =
the tank radius (m).

FIGURE P5.17

If R = 3 m, to what depth must the tank be filled so that it holds
30 m*? Use three iterations of the false-position method to determine

your answer. Determine the approximate relative error after each
iteration. Employ initial guesses of 0 and R.

5.18 The saturation concentration of dissolved oxygen in freshwa-
ter can be calculated with the equation (APHA, 1992)

1.575701 X 10°  6.642308 X 10’
T, T2
1.243800 X 10"  8.621949 x 10"
* 73 B T

Inoy = —139.34411 +

where o, = the saturation concentration of dissolved oxygen in
freshwater at 1 atm (mg/L) and 7, = absolute temperature (K).
Remember that 7, = T + 273.15, where T = temperature (°C).
According to this equation, saturation decreases with increasing
temperature. For typical natural waters in temperate climates, the
equation can be used to determine that oxygen concentration ranges
from 14.621 mg/L at 0°C to 6.413 mg/L at 40°C. Given a value of
oxygen concentration, this formula and the bisection method can be
used to solve for temperature in °C.

(a) If the initial guesses are set as 0 and 40°C, how many bisection
iterations would be required to determine temperature to an
absolute error of 0.05°C?

(b) Develop and test a bisection program to determine 7 as a func-
tion of a given oxygen concentration to a prespecified absolute
error as in (a). Given initial guesses of 0 and 40°C, test your
program for an absolute error = 0.05°C and the following
cases: o = 8, 10, and 12 mg/L. Check your results.

5.19 According to Archimedes principle, the buoyancy force is equal

to the weight of fluid displaced by the submerged portion of an

object. For the sphere depicted in Fig. P5.19, use bisection to deter-
mine the height / of the portion that is above water. Employ the follow-
ing values for your computation: » = 1 m, p, = density of sphere =

200 kg/m®, and p,, = density of water = 1000 kg/m’. Note that the

volume of the above-water portion of the sphere can be computed with

h2
V= %(3r ~h)

FIGURE P5.19
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5.20 Perform the same computation as in Prob. 5.19, but for the
frustrum of a cone, as depicted in Fig. P5.20. Employ the following
values for your computation: r; = 0.5m,r, = 1 m,h = 1 m, p, =
frustrum density = 200 kg/m*, and p,, = water density = 1000 kg/m”.
Note that the volume of a frustrum is given by

h
V= %(r% + 3+ )

"

FIGURE P5.20

5.21 Integrate the algorithm outlined in Fig. 5.10 into a complete,

user-friendly bisection subprogram. Among other things:

(a) Place documentation statements throughout the subprogram to
identify what each section is intended to accomplish.

(b) Label the input and output.

(¢) Add an answer check that substitutes the root estimate into the
original function to verify whether the final result is close to
Zero.

(d) Test the subprogram by duplicating the computations from
Examples 5.3 and 5.4.

5.22 Develop a subprogram for the bisection method that mini-

mizes function evaluations based on the pseudocode from Fig. 5.11.

Determine the number of function evaluations () per total itera-

tions. Test the program by duplicating Example 5.6.

5.23 Develop a user-friendly program for the false-position

method. The structure of your program should be similar to the

bisection algorithm outlined in Fig. 5.10. Test the program by

duplicating Example 5.5.

5.24 Develop a subprogram for the false-position method that min-

imizes function evaluations in a fashion similar to Fig. 5.11. Deter-

mine the number of function evaluations (n) per total iterations.

Test the program by duplicating Example 5.6.

5.25 Develop a user-friendly subprogram for the modified false-

position method based on Fig. 5.15. Test the program by deter-

mining the root of the function described in Example 5.6.

Perform a number of runs until the true percent relative error

falls below 0.01%. Plot the true and approximate percent relative

errors versus number of iterations on semilog paper. Interpret
your results.

5.26 Develop a function for bisection in a similar fashion to Fig. 5.10.

However, rather than using the maximum iterations and Eq. (5.2),

employ Eq. (5.5) as your stopping criterion. Make sure to round the

result of Eq. (5.5) up to the next highest integer. Test your function by

solving Example 5.3 using E, ; = 0.0001.
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For the bracketing methods in Chap. 5, the root is located within an interval prescribed
by a lower and an upper bound. Repeated application of these methods always results
in closer estimates of the true value of the root. Such methods are said to be convergent
because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas
that require only a single starting value of x or two starting values that do not

FIGURE 6.1

Craphical depiction of the
fundamental difference between
the (a) bracketing and (b) and
(c) open methods for roof
location. In (a), which is the
bisection method, the root is
constrained within the interval
prescribed by x and x,. In
contrast, for the open method
depicted in (b) and (c), a
formula is used to project from
x; 1o X;41 in an iterative fashion.
Thus, the method can either (b)
diverge or (c) converge rapidly,
depending on the value of the
initial guess.
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6.1

EXAMPLE 6.1

necessarily bracket the root. As such, they sometimes diverge or move away from
the true root as the computation progresses (Fig. 6.1b). However, when the open
methods converge (Fig. 6.1c¢), they usually do so much more quickly than the brack-
eting methods. We will begin our discussion of open techniques with a simple version
that is useful for illustrating their general form and also for demonstrating the con-
cept of convergence.

SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formula
can be developed for simple fixed-point iteration (or, as it is also called, one-point it-
eration or successive substitution) by rearranging the function f(x) = 0 so that x is on
the left-hand side of the equation:

x = g(x) 6.1

This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation. For example,

¥=2x+3=0
can be simply manipulated to yield
¥ +3
x =
2

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides
to yield

X = sinx + x

The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as
a function of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can
be used to compute a new estimate x;,, as expressed by the iterative formula

Xiv1 = g(x;) 6.2)

As with other iterative formulas in this book, the approximate error for this equation can
be determined using the error estimator [Eq. (3.5)]:

Xiv1r — X

100%

g, =
Xi+1

Simple Fixed-Point lteration
Problem Statement. Use simple fixed-point iteration to locate the root of f(x) = ¢ * — x.
Solution.  The function can be separated directly and expressed in the form of Eq. (6.2) as

— —X;
Xit1 = €
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EXAMPLE 6.2

Starting with an initial guess of x, = 0, this iterative equation can be applied to compute

i Xi £q (%) & (%)
0] 0 100.0

1 1.000000 100.0 76.3

2 0.367879 171.8 35.1

3 0.692201 46.9 22.1

4 0.500473 38.3 11.8

5 0.606244 17.4 6.89
6 0.545396 11.2 3.83
7 0.579612 5.90 2.20
8 0.560115 3.48 1.24
Q 0.571143 1.93 0.705
10 0.564879 111 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

6.1.1 Convergence

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration.
This property, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the
“possibility” of convergence. The concepts of convergence and divergence can be de-
picted graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure
and behavior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function
f(x) = ¢ — x. An alternative graphical approach is to separate the equation into two
component parts, as in

filx) = fo(x)
Then the two equations

yi = fix) (6.3)
and

y2 = fa(x) 64)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of f(x) = 0.

The Two-Curve Graphical Method

Problem Statement. Separate the equation ¢ * — x = 0 into two parts and determine
its root graphically.
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Solution.  Reformulate the equation as y; = x and y, = ¢ *. The following values can
be computed:

X V4 Y2

0.0 0.0 1.000
0.2 0.2 0.819
0.4 0.4 0.670
0.6 0.6 0.549
0.8 0.8 0.449
1.0 1.0 0.368

These points are plotted in Fig. 6.2b. The intersection of the two curves indicates a root
estimate of approximately x = 0.57, which corresponds to the point where the single
curve in Fig. 6.2a crosses the x axis.

FIGURE 6.2

Two alternative graphical fx)
methods for determining the roof

of flx) = e — x. |a) Root at

the point where it crosses the

x axis; (b) root at the infersec-

tion of the componenf functions.

Root
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The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be reexpressed as a pair of equations y; = x
and y, = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.3) and (6.4), the roots of f(x) = 0 correspond to the abscissa value at the inter-
section of the two curves. The function y; = x and four different shapes for y, = g(x)
are plotted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of x, is used to determine the corre-
sponding point on the y, curve [x,, g(xy)]. The point (x;, x;) is located by moving left
horizontally to the y; curve. These movements are equivalent to the first iteration in the
fixed-point method:

x; = g(xo)

Thus, in both the equation and in the plot, a starting value of x, is used to obtain an
estimate of x;. The next iteration consists of moving to [x;, g(x;)] and then to (x,, x,).
This iteration is equivalent to the equation

X, = g(xp)

FIGURE 6.3

lteration cobwebs depicting
convergence (a and b) and
divergence (c and d) of simple
fixed-point iteration. Graphs (a)
and (c) are called monotone
patterns, whereas (b] and (d)
are called oscillating or spiral
patterns. Note that convergence
occurs when |g'(x)| < 1.

N=x

¥, = 8()

X2 X X0 X Xo X

(a) ()

Yy = g(x) V= g(x)

yir=x
=%

xo X )CO X
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Box 6.1

From studying Fig. 6.3, it should be clear that fixed-point iteration
converges if, in the region of interest, |g’(x)| < 1. In other words,
convergence occurs if the magnitude of the slope of g(x) is less than
the slope of the line f(x) = x. This observation can be demonstrated
theoretically. Recall that the iterative equation is

X1 = 8(x;)

Suppose that the true solution is
x, = g(x,)

Subtracting these equations yields

X = X = 8(x) — g(x) (B6.1.1)

The derivative mean-value theorem (recall Sec. 4.1.1) states that if
a function g(x) and its first derivative are continuous over an inter-
val a = x = b, then there exists at least one value of x = ¢ within
the interval such that

, g(b) — gla)
§) == — (B6.1.2)

—a
The right-hand side of this equation is the slope of the line joining
g(a) and g(b). Thus, the mean-value theorem states that there is at
least one point between a and b that has a slope, designated by g'(§),

which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

Convergence of Fixed-Point Iteration

Now, if we let a = x; and b = x,, the right-hand side of Eq.
(B6.1.1) can be expressed as

g(x) = g(x) = (x, — x)g'(§)

where ¢ is somewhere between x; and x,. This result can then be
substituted into Eq. (B6.1.1) to yield

(= x)8'(§)

If the true error for iteration i is defined as

(B6.1.3)

X T Xiv1 <

Ei=x—x
then Eq. (B6.1.3) becomes

Er,i+l = g'(f)Et,i

Consequently, if |¢'(x)| < 1, the errors decrease with each iteration.
For |g'(x)| > 1, the errors grow. Notice also that if the derivative is
positive, the errors will be positive, and hence, the iterative solution
will be monotonic (Fig. 6.3a and c). If the derivative is negative, the
errors will oscillate (Fig. 6.3b and d).

An offshoot of the analysis is that it also demonstrates that when
the method converges, the error is roughly proportional to and less
than the error of the previous step. For this reason, simple fixed-
point iteration is said to be linearly convergent.

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case
for Fig. 6.3c and d, where the iterations diverge from the root. Notice that convergence
seems to occur only when the absolute value of the slope of y, = g(x) is less than
the slope of y; = x, that is, when |g’(x)| < 1. Box 6.1 provides a theoretical deriva-
tion of this result.

6.1.2 Algorithm for Fixed-Point Iteration

The computer algorithm for fixed-point iteration is extremely simple. It consists of a
loop to iteratively compute new estimates until the termination criterion has been met.
Figure 6.4 presents pseudocode for the algorithm. Other open methods can be pro-
grammed in a similar way, the major modification being to change the iterative formula
that is used to compute the new root estimate.
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FIGURE 6.4
Pseudocode for fixed-point
iteration. Note that other open

FUNCTION Fixpt(x0, es, imax, iter, ea)
xr = x0
iter = 0
Do
xrold = xr
xr = g(xrold)
iter = iter + 1
IF xr # 0 THEN
Xr— xrold
Xxr

ea =

‘-100

END IF
IF ea < es OR iter = imax EXIT
END DO

methods can be cast in this Fixpt = xr
general format. END Fixpt
@)

FIGURE 6.5

Craphical depiction of the
Newton-Raphson method.

A tangent to the function of x;
[that is, f'(x]] is extrapolated
down fo the x axis fo provide
an esfimate of the root at X 1.

Slope = f'(x;)

f@) pmmmmmm e

6.2

THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
tion (Fig. 6.5). If the initial guess at the root is x;, a tangent can be extended from the
point [x;, f(x;)]. The point where this tangent crosses the x axis usually represents an

improved estimate of the root.
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The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation (an alternative method based on the Taylor series is described in Box 6.2). As
in Fig. 6.5, the first derivative at x is equivalent to the slope:

i - 0
flx) = fea) — 0 (6.5)

Xi = Xi+1

which can be rearranged to yield

. f(x)
£

Xi+1 = X; (6.6)

which is called the Newton-Raphson formula.

Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) =

X

e — x, employing an initial guess of x, = 0.
Solution.  The first derivative of the function can be evaluated as
fix) = —e " =1
which can be substituted along with the original function into Eq. (6.6) to give

e — x

Xi+1 :xi_ﬁ

Starting with an initial guess of x, = 0, this iterative equation can be applied to compute

i Xi (%)

0 0 100

1 0.500000000 11.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 <10°®

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In
addition, however, the Taylor series derivation of the method (Box 6.2) provides theo-
retical insight regarding the rate of convergence as expressed by E;; = O(E?). Thus the
error should be roughly proportional to the square of the previous error. In other words,
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Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

Aside from the geometric derivation [Eqgs. (6.5) and (6.6)], the
Newton-Raphson method may also be developed from the Taylor
series expansion. This alternative derivation is useful in that it also
provides insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be
represented as

fOi) = fx) + f/(x) (i — X))
f1(& )

+ 21 (X1 — X))

(B6.2.1)

where ¢ lies somewhere in the interval from x; to x;. ;. An approxi-
mate version is obtainable by truncating the series after the first
derivative term:

FGie) =) + ) (i — X))
At the intersection with the x axis, f(x;+;) would be equal to
Zero, or

0= f(x;) + f(x) (xie1 — X))
which can be solved for
f(x)
S
which is identical to Eq. (6.6). Thus, we have derived the Newton-
Raphson formula using a Taylor series.

Aside from the derivation, the Taylor series can also be used to

estimate the error of the formula. This can be done by realizing that
if the complete Taylor series were employed, an exact result would

(B6.2.2)

Xivl = X —

be obtained. For this situation x;,; = x,, where x is the true value
of the root. Substituting this value along with f(x,) = 0 into
Eq. (B6.2.1) yields

1"
2!

0 =flx) + flx)(x, — x) + (x, — x)° (B6.2.3)

Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give

0=f'C)(x, — x01) + @(Xr - x)’

2 (B6.2.4)

Now, realize that the error is equal to the discrepancy between x;4
and the true value x,, as in

Eijv1 = X, — Xiy
and Eq. (B6.2.4) can be expressed as

VA¢3)
2!

0 =f(x)E ;s + E}i (B6.2.5)
If we assume convergence, both x; and ¢ should eventually be ap-
proximated by the root x,, and Eq. (B6.2.5) can be rearranged to yield

_f“(xr) 2
E;; B6.2.6
21 Tt (B62.0)

According to Eq. (B6.2.6), the error is roughly proportional to the
square of the previous error. This means that the number of correct
decimal places approximately doubles with each iteration. Such
behavior is referred to as quadratic convergence. Example 6.4
manifests this property.

Li+l =

the number of significant figures of accuracy approximately doubles with each iteration.
This behavior is examined in the following example.

EXAMPLE 6.4

Problem Statement.

error, as in

'),
E . =—"F
ti+1 2f,(xr) 1,0

Solution.

fla) = e =1

Error Analysis of Newton-Raphson Method

As derived in Box 6.2, the Newton-Raphson method is quadrati-
cally convergent. That is, the error is roughly proportional to the square of the previous

(E6.4.1)

Examine this formula and see if it applies to the results of Example 6.3.

The first derivative of f(x) = ¢ * — x is
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which can be evaluated at x, = 0.56714329 as f'(0.56714329) = —1.56714329. The
second derivative is

flon=e”
which can be evaluated as f"(0.56714329) = 0.56714329. These results can be substituted
into Eq. (E6.4.1) to yield

0.56714329

By = —— e o
2(—1.56714329)

E7; = 0.18095E7;
From Example 6.3, the initial error was E,, = 0.56714329, which can be substituted
into the error equation to predict
E,, = 0.18095(0.56714329)* = 0.0582
which is close to the true error of 0.06714329. For the next iteration,
E,, = 0.18095(0.06714329)* = 0.0008158
which also compares favorably with the true error of 0.0008323. For the third iteration,
E,; = 0.18095(0.0008323)* = 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner
because, as we come closer to the root, x and ¢ are better approximated by x, [recall our
assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

E,4 = 0.18095(0.000000125)* = 2.83 X 10"

Thus, this example illustrates that the error of the Newton-Raphson method for this case
is, in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the
previous iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where
it performs poorly. A special case—multiple roots—will be addressed later in this chapter.
However, even when dealing with simple roots, difficulties can also arise, as in the fol-
lowing example.

Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f(x) = x'° — 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution.  The Newton-Raphson formula for this case is

10
X, — 1

Xi+1 = X — 102°
1

which can be used to compute
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Iteration x
0 0.5
] 51.65
2 46 485
3 41.8365
4 37.65285
5 33.887565
o 1.0000000

Thus, after the first poor prediction, the technique is converging on the true root of 1,
but at a very slow rate.

Aside from slow convergence due to the nature of the function, other difficulties
can arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where
an inflection point [that is, f"(x) = 0] occurs in the vicinity of a root. Notice that
iterations beginning at x, progressively diverge from the root. Figure 6.6 illustrates
the tendency of the Newton-Raphson technique to oscillate around a local maximum
or minimum. Such oscillations may persist, or as in Fig. 6.6b, a near-zero slope is
reached, whereupon the solution is sent far from the area of interest. Figure 6.6¢
shows how an initial guess that is close to one root can jump to a location several
roots away. This tendency to move away from the area of interest is because near-
zero slopes are encountered. Obviously, a zero slope [f'(x) = 0] is truly a disaster
because it causes division by zero in the Newton-Raphson formula [Eq. (6.6)].
Graphically (see Fig 6.6d), it means that the solution shoots off horizontally and
never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some
functions, no guess will work! Good guesses are usually predicated on knowledge of the
physical problem setting or on devices such as graphs that provide insight into the be-
havior of the solution. The lack of a general convergence criterion also suggests that
good computer software should be designed to recognize slow convergence or diver-
gence. The next section addresses some of these issues.

6.2.3 Algorithm for Newton-Raphson

An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6)
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must
also be modified to compute the first derivative. This can be simply accomplished by the
inclusion of a user-defined function.
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Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional
features:

fx)

(a)

Fx)

fx) :
l
. /\ " /\

(c)
£ /
(d)

FIGURE 6.6

Four cases where the Newfon-Raphson method exhibits poor convergence.
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6.3

1. A plotting routine should be included in the program.

2. At the end of the computation, the final root estimate should always be substituted
into the original function to compute whether the result is close to zero. This check
partially guards against those cases where slow or oscillating convergence may lead
to a small value of g, while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard
against oscillating, slowly convergent, or divergent solutions that could persist interminably.

4. The program should alert the user and take account of the possibility that f'(x) might
equal zero at any time during the computation.

THE SECANT METHOD

A potential problem in implementing the Newton-Raphson method is the evaluation of
the derivative. Although this is not inconvenient for polynomials and many other func-
tions, there are certain functions whose derivatives may be extremely difficult or incon-
venient to evaluate. For these cases, the derivative can be approximated by a backward
finite divided difference, as in (Fig. 6.7)

SO = f(x)

Xi—-1 = X

flx) =

This approximation can be substituted into Eq. (6.6) to yield the following iterative
equation:

S (i — x)

- SGiz) — f(x) (6.7)

Xiv1 = X

FIGURE 6.7

Craphical depiction of the se-
cant method. This fechnique is
similar to the Newton-Raphson
technique (Fig. 6.5) in the sense
that an estimate of the root is
predicted by extrapolating a
tangent of the function to the

x axis. However, the secant
method uses a difference rather
than a derivative to estimate the
slope.

fx)

f(x,')

VACTINY)
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EXAMPLE 6.6

Equation (6.7) is the formula for the secant method. Notice that the approach requires
two initial estimates of x. However, because f(x) is not required to change signs between
the estimates, it is not classified as a bracketing method.

The Secant Method

Problem Statement. Use the secant method to estimate the root of f(x) = ¢ * — x. Start
with initial estimates of x_; = 0 and x, = 1.0.

Solution.  Recall that the true root is 0.56714329. . . .
First iteration:

x-1 =0  flx_;) = 1.00000

X =1 f(xo) = —0.63212

—0.63212(0 — 1)
x=1- = 061270 & = 8.0%
1 — (—0.63212)

Second iteration:

Xy =1 f(xg) = —0.63212
x; = 0.61270 f(x;) = —0.07081

(Note that both estimates are now on the same side of the root.)

_o6la70 - —0070811 —061270) _ ., 0589
=0 —0.63212 — (—0.07081) K

Third iteration:
x; = 0.61270 f(x;) = —0.07081
x, = 0.56384 f(x;) = 0.00518

0.00518(0.61270 — 0.56384)
x; = 0.56384 — = 0.56717 g, = 0.0048%
—0.07081 — (—0.00518)

6.3.1 The Difference Between the Secant and False-Position Methods

Note the similarity between the secant method and the false-position method. For example,
Egs. (6.7) and (5.7) are identical on a term-by-term basis. Both use two initial estimates to
compute an approximation of the slope of the function that is used to project to the x axis
for a new estimate of the root. However, a critical difference between the methods is how
one of the initial values is replaced by the new estimate. Recall that in the false-position
method the latest estimate of the root replaces whichever of the original values yielded a
function value with the same sign as f(x,). Consequently, the two estimates always bracket
the root. Therefore, for all practical purposes, the method always converges because the root
is kept within the bracket. In contrast, the secant method replaces the values in strict sequence,
with the new value x;.; replacing x; and x; replacing x;_;. As a result, the two values can
sometimes lie on the same side of the root. For certain cases, this can lead to divergence.
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EXAMPLE 6.7

Comparison of Convergence of the Secant and False-Position Techniques

Problem Statement. Use the false-position and secant methods to estimate the root of
f(x) = In x. Start the computation with values of x;, = x;,_; = 0.5 and x, = x; = 5.0.

Solution.  For the false-position method, the use of Eq. (5.7) and the bracketing criterion
for replacing estimates results in the following iterations:

Iteration x| X, X,
1 0.5 5.0 1.8546
2 0.5 1.8546 1.2163
3 0.5 1.2163 1.0585

As can be seen (Fig. 6.8a and c), the estimates are converging on the true root which is
equal to 1.

FIGURE 6.8

Comparison of the false-position and the secant methods. The first iterations (a) and (b) for both
techniques are identical. However, for the second iterations [c) and (d), the points used differ. As
a consequence, the secant method can diverge, as indicated in (d).

False position Secant
@) Sfx,) fx) VAED)
X, X
fGp)
(a) (b)
S S yACTENY)
Sx,)
X, x
f&xp)

(0)

(d)
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For the secant method, using Eq. (6.7) and the sequential criterion for replacing
estimates results in

Iteration Xiq X; Xii1
1 0.5 50 1.8546
2 5.0 1.8546 —0.10438

As in Fig. 6.84d, the approach is divergent.

Although the secant method may be divergent, when it converges it usually does so
at a quicker rate than the false-position method. For instance, Fig. 6.9 demonstrates the
superiority of the secant method in this regard. The inferiority of the false-position
method is due to one end staying fixed to maintain the bracketing of the root. This
property, which is an advantage in that it prevents divergence, is a shortcoming with
regard to the rate of convergence; it makes the finite-difference estimate a less-accurate
approximation of the derivative.

FIGURE 6.9

Comparison of the frue percent
relative errors &, for the methods
to determine the roots of

flx = e — x.

10

107"

1072

103

True percent relative error

1074

uosydey-uoimaN

10—5 —

10-6 I [ I I I

Iterations
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EXAMPLE 6.8

6.3.2 Algorithm for the Secant Method

As with the other open methods, an algorithm for the secant method is obtained simply
by modifying Fig. 6.4 so that two initial guesses are input and by using Eq. (6.7) to
calculate the root. In addition, the options suggested in Sec. 6.2.3 for the Newton-Raphson
method can also be applied to good advantage for the secant program.

6.3.3 Modified Secant Method

Rather than using two arbitrary values to estimate the derivative, an alternative approach
involves a fractional perturbation of the independent variable to estimate f'(x),

flx) = Slx; + S;i) — f(x)
X

where 6 = a small perturbation fraction. This approximation can be substituted into Eq. (6.6)
to yield the following iterative equation:

_ ox; f(x;)
fG + 6x) — f(x)

Xi+1 = X; (68)

Modified Secant Method

Problem Statement. Use the modified secant method to estimate the root of f(x) =

e " — x. Use a value of 0.01 for § and start with x, = 1.0. Recall that the true root is
0.56714329. . ..
Solution.
First iteration:
xp =1 f(xy) = —0.63212

Xo+ 8% = 101 f(x, + 8x,) = —0.64578
0.01(—0.63212)

=1- = 0.537263 = 53%
N —0.64578 — (—0.63212) & ¢

Second iteration:

xo = 0.537263 f(x) = 0.047083

xo + 8xp = 0.542635  f(x, + &x;) = 0.038579
0.005373(0.047083)

x; = 0.537263 — =0.56701  |g,| = 0.0236%

0.038579 — 0.047083

Third iteration:

xo = 0.56701 f(x) = 0.000209
X + 8xp = 0.572680  f(xo + Sx) = —0.00867

0.00567(0.000209) s
x; = 0.56701 — = 0567143 |g| = 2365 X 107°%

—0.00867 — 0.000209
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6.4

The choice of a proper value for & is not automatic. If § is too small, the method
can be swamped by round-off error caused by subtractive cancellation in the denomina-
tor of Eq. (6.8). If it is too big, the technique can become inefficient and even divergent.
However, if chosen correctly, it provides a nice alternative for cases where evaluating
the derivative is difficult and developing two initial guesses is inconvenient.

BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm
that does just that by applying a speedy open method wherever possible, but reverting
to a reliable bracketing method if necessary. The approach was developed by Richard
Brent (1973) based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.2) whereas two differ-
ent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.

6.4.1 Inverse Quadratic Interpolation

Inverse quadratic interpolation is similar in spirit to the secant method. As in Fig. 6.10a,
the secant method is based on computing a straight line that goes through two guesses.
The intersection of this straight line with the x axis represents the new root estimate. For
this reason, it is sometimes referred to as a linear interpolation method.

Now suppose that we had three points. In that case, we could determine a quadratic
function of x that goes through the three points (Fig. 6.10b). Just as with the linear secant
method, the intersection of this parabola with the x axis would represent the new root
estimate. And as illustrated in Fig. 6.10b, using a curve rather than a straight line often
yields a better estimate.

Although this would seem to represent a great improvement, the approach has a
fundamental flaw: It is possible that the parabola might not intersect the x axis! Such
would be the case when the resulting parabola had complex roots. This is illustrated by
the parabola, y = f(x), in Fig. 6.11.

FIGURE 6.10

Comparison of (a) the secant
method and (b) inverse qua-
dratic inferpolation. Note that
the dark parabola passing
through the three points in

(b) is called “inverse” because it
is written in y rather than in x.

f®) )

(@) (b)
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FIGURE 6.11

Two parabolas fit to three
points. The parabola written as
a function of x, y = fx), has
complex roofs and hence does
not intersect the x axis. In
contrast, if the variables are
reversed, and the parabola
developed as x = fly), the
function does intersect the

X axis.

EXAMPLE 6.9

The difficulty can be rectified by employing inverse quadratic interpolation. That is,
rather than using a parabola in x, we can fit the points with a parabola in y. This amounts
to reversing the axes and creating a “sideways” parabola [the curve, x = f(y), in Fig. 6.11].

If the three points are designated as (x;—», ¥;—»), (x;—1, ¥i—1), and (x;, y;), a quadratic
function of y that passes through the points can be generated as

=y —»)
Vi1 = Yi—2) i1 — )
= yi-2)(y — yi-1) N
i = Yi—2) i = Yi-1) l

y = yi-)» — )
= . —|—
80 iz = YD Wiz — ) i

i—1

(6.9)
As we will learn in Sec. 18.2, this form is called a Lagrange polynomial. The root, x;, i,
corresponds to y = 0, which when substituted into Eq. (6.9) yields

Yi—1)i
Viea = YD Wiz — Y0

Yi—2 Vi
Yie1 = Yie1 = Y)
Yi-2Yi-1
X,
i = Yie) i — yie1)

Xi+1 = Xi—2 Xi—1

: (6.10)
As shown in Fig. 6.11, such a “sideways” parabola always intersects the x axis.

Inverse Quadratic Interpolation

Problem Statement. Develop quadratic equations in both x and y for the data points
depicted in Fig. 6.11: (1, 2), (2, 1), and (4, 5). For the first, y = f(x), employ the qua-
dratic formula to illustrate that the roots are complex. For the latter, x = g(y), use inverse
quadratic interpolation (Eq. 6.10) to determine the root estimate.
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Solution. By reversing the x’s and y’s, Eq. (6.9) can be used to generate a quadratic in x as

f(x):(x—Z)(x—4) +(x—l)(x—4) +(x—1)(x—2)
(1 =2)(1—4) 2-12—-4) 4-1)4-2)

or collecting terms
f(x) =x"—4x+5

This equation was used to generate the parabola, y = f(x), in Fig. 6.11. The quadratic
formula can be used to determine that the roots for this case are complex,

4=V - 4)6)
= 5 =

X 2+

Equation (6.9) can be used to generate the quadratic in y as

_ (y—l)(y—5)1+ (y—2)(y—5)2+ -2y D
2-1D2-5 (1-=2)1-5) S-2)5-1

gy

or collecting terms
g(y) =0.5x* —25x + 4
Finally, Eq. (6.10) can be used to determine the root as
~1(=5) —2(=5) ~2(-1)

Xi+1 — 1+ 2+ 4 =4

2-D@2-5) (I =2)(1 =5) G-2)5-1D

Before proceeding to Brent’s algorithm, we need to mention one more case where
inverse quadratic interpolation does not work. If the three y values are not distinct (that
i, Yj—» = y;—1 O y;—; = ¥;), an inverse quadratic function does not exist. So this is where
the secant method comes into play. If we arrive at a situation where the y values are not
distinct, we can always revert to the less efficient secant method to generate a root using
two of the points. If y,_» = y;_;, we use the secant method with x,_; and x;. If y,_; = y,,
we use x;_, and x;_;.

6.4.2 Brent’s Method Algorithm

The general idea behind the Brent’s root finding method is whenever possible to use
one of the quick open methods. In the event that these generate an unacceptable result
(i.e., a root estimate that falls outside the bracket), the algorithm reverts to the more
conservative bisection method. Although bisection may be slower, it generates an
estimate guaranteed to fall within the bracket. This process is then repeated until the
root is located to within an acceptable tolerance. As might be expected, bisection
typically dominates at first but as the root is approached, the technique shifts to the
faster open methods.

Figure 6.12 presents pseudocode for the algorithm based on a MATLAB software
M-file developed by Cleve Moler (2005). It represents a stripped down version of
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FIGURE 6.12
Pseudocode for Brent's root
finding algorithm based on a

MATLAB mHile developed by
Cleve Moler (2005).

Function fzerosimp(x1, xu)

eps = 2.22044604925031E-16

tol = 0.000001

a=xl: b= xu: fa= f(a): fb = f(b)
c=a: fc=fa:d=b—-cre=d

Do
IF fb = 0 EXIT
IF Sgn(fa) = Sgn(fb) THEN (If necessary, rearrange points)
a=c:fa=fc:d=b—-c:e=4d
ENDIF

IF |fa| < |fb| THEN
c=b:b=aa=c
fc = fb: fb = fa: fa = fc
ENDIF
m= 0.5%*(a—b) (Termination test and possible exit)
tol = 2 * eps * max(|b|, 1)
IF |m| = tol Or fb = 0. THEN
EXIT
ENDIF
(Choose open methods or bisection)
IF |e| = tol And |fc| > |fb| THEN

s=fb/ fc

IF a = c THEN (Secant method)
p=2%*m*s
g=1-3s

ELSE (Inverse quadratic interpolation)

q= fc/ fa: r= fb/ fa
p=s*@2*m*q*(@—-r)—(b—c)*(r—-1))
g=(—1) *(r—1) * (s = 1)

ENDIF

IFp> 0 THEN g = —q ELSE p = —p

IF2*p<3*m*q~— |to]l *q| AND p < |0.5 % e *q| THEN
e=d:d=p/q

ELSE
d=m:e=m
ENDIF
ELSE (Bisection)
d=m:e=m
ENDIF
c=b: fc=f1b

IF |d| > tol THEN b = b + d Else b = b — Sgn(b — a) * tol
b = f(b)

ENDDO

fzerosimp = b

END fzerosimp
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6.5

the £zero function which is the professional root location function employed in MAT-
LAB. For that reason, we call the simplified version: fzerosimp. Note that it requires
another function, f, that holds the equation for which the root is being evaluated.

The fzerosimp function is passed two initial guesses that must bracket the root.
After assigning values for machine epsilon and a tolerance, the three variables defining
the search interval (a, b, c) are initialized, and f is evaluated at the endpoints.

A main loop is then implemented. If necessary, the three points are rearranged to
satisfy the conditions required for the algorithm to work effectively. At this point, if the
stopping criteria are met, the loop is terminated. Otherwise, a decision structure chooses
among the three methods and checks whether the outcome is acceptable. A final section
then evaluates £ at the new point and the loop is repeated. Once the stopping criteria
are met, the loop terminates and the final root estimate is returned.

Note that Sec. 7.7.2 presents an application of Brent’s method where we illustrate
how the MATLAB’s fzero function works. In addition, it is employed in Case Study
8.4 to determine the friction factor for air flow through a tube.

MULTIPLE ROOTS

A multiple root corresponds to a point where a function is tangent to the x axis. For
example, a double root results from

Jx) = (x=3)(x— Dx— 1) (6.11)

or, multiplying terms, f(x) = x> — 5x* + 7x — 3. The equation has a double root because
one value of x makes two terms in Eq. (6.11) equal to zero. Graphically, this corresponds
to the curve touching the x axis tangentially at the double root. Examine Fig. 6.13a at
x = 1. Notice that the function touches the axis but does not cross it at the root.

A triple root corresponds to the case where one x value makes three terms in an
equation equal to zero, as in

Jx) = (x=3)x— Dx— Dx—1)

or, multiplying terms, f(x) = x* — 6x° + 12x* — 10x + 3. Notice that the graphical
depiction (Fig. 6.13D) again indicates that the function is tangent to the axis at the root,
but that for this case the axis is crossed. In general, odd multiple roots cross the axis,
whereas even ones do not. For example, the quadruple root in Fig. 6.13¢ does not cross
the axis.

Multiple roots pose some difficulties for many of the numerical methods described
in Part Two:

1. The fact that the function does not change sign at even multiple roots precludes
the use of the reliable bracketing methods that were discussed in Chap. 5. Thus,
of the methods covered in this book, you are limited to the open methods that
may diverge.

2. Another possible problem is related to the fact that not only f(x) but also f'(x) goes
to zero at the root. This poses problems for both the Newton-Raphson and secant
methods, which both contain the derivative (or its estimate) in the denominator of
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4 — Double
root

—4
(b)
S
4 = Quadruple

root

FIGURE 6.13

Examples of multiple roots that
are tangential to the x axis.
Notice that the function does
not cross the axis on either side
of even multiple roots (a) and
(c), whereas it crosses the axis

for odd cases (b).

EXAMPLE 6.10

their respective formulas. This could result in division by zero when the solution
converges very close to the root. A simple way to circumvent these problems is based
on the fact that it can be demonstrated theoretically (Ralston and Rabinowitz, 1978)
that f(x) will always reach zero before f'(x). Therefore, if a zero check for f(x) is
incorporated into the computer program, the computation can be terminated before
f'(x) reaches zero.

3. It can be demonstrated that the Newton-Raphson and secant methods are linearly,
rather than quadratically, convergent for multiple roots (Ralston and Rabinowitz,
1978). Modifications have been proposed to alleviate this problem. Ralston and
Rabinowitz (1978) have indicated that a slight change in the formulation returns it to
quadratic convergence, as in

J(x)
m !,

Sf(x)
where m is the multiplicity of the root (that is, m = 2 for a double root, m = 3 for

a triple root, etc.). Of course, this may be an unsatisfactory alternative because it
hinges on foreknowledge of the multiplicity of the root.

Xip1 = X — (6.12)

Another alternative, also suggested by Ralston and Rabinowitz (1978), is to define
a new function u(x), that is, the ratio of the function to its derivative, as in

Jx)
J'(x)
It can be shown that this function has roots at all the same locations as the original

function. Therefore, Eq. (6.13) can be substituted into Eq. (6.6) to develop an alternative
form of the Newton-Raphson method:

u(x) = (6.13)

u(x;)
Xit1 = X — 75 (6.14)
u'(x;)
Equation (6.13) can be differentiated to give
vy = OO @ =0 ") ors)

FEENE

Equations (6.13) and (6.15) can be substituted into Eq. (6.14) and the result simplified
to yield

X =X — — f(zxi)f (x) . (6.16)
LF'Ca) 1™ = fa) f7(x)

Modified Newton-Raphson Method for Multiple Roots

Problem Statement. Use both the standard and modified Newton-Raphson methods to
evaluate the multiple root of Eq. (6.11), with an initial guess of x, = 0.
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Solution.  The first derivative of Eq. (6.11) is f'(x) = 3x* — 10x + 7, and therefore,
the standard Newton-Raphson method for this problem is [Eq. (6.6)]

X, —5x}+ x5 — 3
3x7 — 10x; + 7

Xiv1 = X —

which can be solved iteratively for

i x; e (%)
0 0 100
1 0.4285714 57
2 0.6857143 31
3 0.8328654 17
4 0.9133290 8.7
5 0.9557833 4.4
6 0.9776551 2.2

As anticipated, the method is linearly convergent toward the true value of 1.0.
For the modified method, the second derivative is f”(x) = 6x — 10, and the iterative
relationship is [Eq. (6.16)]
B (x; — 5x7 + Tx; — 3)(3x7 — 10x; + 7)
Bx? — 10x; + 7)* — (x} — 5x} + Tx; — 3)(6x; — 10)

Xiv1 = X

which can be solved for

i Xi & (%)

0 0 100

1 1.105263 11

2 1.003082 0.31

3 1.000002 0.00024

Thus, the modified formula is quadratically convergent. We can also use both methods
to search for the single root at x = 3. Using an initial guess of x, = 4 gives the following
results:

i Standard &t (%) Modified g (%)

0 4 33 4 33

1 3.4 13 2.636364 12

2 3.1 3.3 2.820225 6.0

3 3.008696 0.29 2.961728 1.3

4 3.000075 0.0025 2.998479 0.051

5 3.000000 2 x 1077 2.990008 7.7 x107°

Thus, both methods converge quickly, with the standard method being somewhat more
efficient.
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6.6

The preceding example illustrates the trade-offs involved in opting for the modified
Newton-Raphson method. Although it is preferable for multiple roots, it is somewhat
less efficient and requires more computational effort than the standard method for simple
roots.

It should be noted that a modified version of the secant method suited for multiple
roots can also be developed by substituting Eq. (6.13) into Eq. (6.7). The resulting
formula is (Ralston and Rabinowitz, 1978)

u(x;) (- — x;)

Xiv1 = X —
' ' u(x;—) — u(x;)

SYSTEMS OF NONLINEAR EQUATIONS

To this point, we have focused on the determination of the roots of a single equation. A
related problem is to locate the roots of a set of simultaneous equations,

fl(xlaxb ""xn) =0
f2(-xl,-x2, ’xn) =0

(6.17)

fn(xl, Xy nn ’xn) =0

The solution of this system consists of a set of x values that simultaneously result in all
the equations equaling zero.

In Part Three, we will present methods for the case where the simultaneous equations
are linear—that is, they can be expressed in the general form

fx) =ax; +t ax, + -+ ax,—b=0 (6.18)

where the b and the a’s are constants. Algebraic and transcendental equations that do not
fit this format are called nonlinear equations. For example,

X +xy =10
and
y + 3xy* = 57

are two simultaneous nonlinear equations with two unknowns, x and y. They can be
expressed in the form of Eq. (6.17) as

u(x,y) =x* +xy —10=0 (6.194)
v(x,y) =y + 30’ = 57=0 (6.19b)

Thus, the solution would be the values of x and y that make the functions u(x, y) and
v(x, y) equal to zero. Most approaches for determining such solutions are extensions of
the open methods for solving single equations. In this section, we will investigate two
of these: fixed-point iteration and Newton-Raphson.
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EXAMPLE 6.11

6.6.1 Fixed-Point lteration

The fixed-point-iteration approach (Sec. 6.1) can be modified to solve two simultaneous,
nonlinear equations. This approach will be illustrated in the following example.

Fixed-Point lteration for a Nonlinear System

Problem Statement.  Use fixed-point iteration to determine the roots of Eq. (6.19). Note
that a correct pair of roots is x = 2 and y = 3. Initiate the computation with guesses of
x=15andy = 3.5.

Solution.  Equation (6.19a) can be solved for

Xiyy = 10 - (B6.11.1)
Vi
and Eq. (6.190) can be solved for
Vie1 = 57 — 3x; v} (B6.11.2)

Note that we will drop the subscripts for the remainder of the example.
On the basis of the initial guesses, Eq. (E6.11.1) can be used to determine a new
value of x:
_ 10— (1.5)°

= 2.21429
35

This result and the initial value of y = 3.5 can be substituted into Eq. (E6.11.2) to
determine a new value of y:

y =57 — 3(2.21429)(3.5)* = —24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on
the second iteration:

10 — (2.21429)* 020910
- —2437516
y =57 — 3(—0.20910)(—24.37516)* = 429.709
Obviously, the approach is deteriorating.

Now we will repeat the computation but with the original equations set up in a
different format. For example, an alternative formulation of Eq. (6.19a) is

x=VI10 — xy
and of Eq. (6.19b) is
57 —y
3x

y =

Now the results are more satisfactory:

x = V10 — 1.5(3.5) = 2.17945
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[57-35
y =] = 286051
3(2.17945)

x = V10 — 2.17945(2.86051) = 1.94053

_[s7—2se0s1
Y7V 3(1.94053) :

Thus, the approach is converging on the true values of x = 2 and y = 3.

The previous example illustrates the most serious shortcoming of simple fixed-point
iteration—that is, convergence often depends on the manner in which the equations are
formulated. Additionally, even in those instances where convergence is possible, diver-
gence can occur if the initial guesses are insufficiently close to the true solution. Using
reasoning similar to that in Box 6.1, it can be demonstrated that sufficient conditions for
convergence for the two-equation case are

Ju u
—+ | — <1
0x dy

and
v Jv
—| + || <1
ox ady

These criteria are so restrictive that fixed-point iteration has limited utility for solving
nonlinear systems. However, as we will describe later in the book, it can be very useful
for solving linear systems.

6.6.2 Newton-Raphson

Recall that the Newton-Raphson method was predicated on employing the derivative (that
is, the slope) of a function to estimate its intercept with the axis of the independent
variable—that is, the root (Fig. 6.5). This estimate was based on a first-order Taylor
series expansion (recall Box 6.2),

S = fx) + (g — x) f(x) (6.20)

where x; is the initial guess at the root and x;.; is the point at which the slope intercepts
the x axis. At this intercept, f(x;;;) by definition equals zero and Eq. (6.20) can be rear-
ranged to yield

_ J(x:)
1)
which is the single-equation form of the Newton-Raphson method.

The multiequation form is derived in an identical fashion. However, a multivariable
Taylor series must be used to account for the fact that more than one independent

Xit1 = X (6.21)
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variable contributes to the determination of the root. For the two-variable case, a first-
order Taylor series can be written [recall Eq. (4.26)] for each nonlinear equation as

au,- aui
iy = wp + (g = X) 7+ i1 — YD) (6.22a)
ox dy
and
8vi avi
Vigr = v+ (e — X)) 7+ (Vivr — ) (6.22b)

ox ay
Just as for the single-equation version, the root estimate corresponds to the values of x and
y, where u;;; and v;4; equal zero. For this situation, Eq. (6.22) can be rearranged to give

Bui Bu,» E)u,« 8M,~
axi#—l + gyi-%—l = —u; + xia + yl‘g (6.23a)
Bvi (91],‘ Gv,« Gv,«
g-xi-%—l + 5)’#1 = —v + xia + yi@ (6.23b)

Because all values subscripted with i’s are known (they correspond to the latest guess
or approximation), the only unknowns are x;;; and y;;;. Thus, Eq. (6.23) is a set of two
linear equations with two unknowns [compare with Eq. (6.18)]. Consequently, algebraic
manipulations (for example, Cramer’s rule) can be employed to solve for

dv; Ju;
“ay Yy
Xiv1 = X; — S A (6.24a)
Bui 6vi Bu,« Bvi
dx Ay Jy 0x
aui a‘Ui
Vi~ T U
=y, — —ax ox (6.24b)
yi+1 yi Bui 6vi Bu,« Bvi ’
dx Ay Jy 0x

The denominator of each of these equations is formally referred to as the determinant
of the Jacobian of the system.

Equation (6.24) is the two-equation version of the Newton-Raphson method. As in
the following example, it can be employed iteratively to home in on the roots of two
simultaneous equations.

Newton-Raphson for a Nonlinear System

Problem Statement. Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (6.19). Note that a correct pair of roots is x = 2 and y = 3. Initiate the
computation with guesses of x = 1.5 and y = 3.5.

Solution.  First compute the partial derivatives and evaluate them at the initial guesses
of x and y:
6u0 auo

—=2x+y=2(15) +35=65 —=x=15
0x dy
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Bvo

ax

= 3y* = 3(3.5)% = 36.75

Bvo
. =1+6xy=1+6(1.5)(3.5) =325
y

Thus, the determinant of the Jacobian for the first iteration is
6.5(32.5) — 1.5(36.75) = 156.125

The values of the functions can be evaluated at the initial guesses as
uy = (1.5)> + 1.5(3.5) — 10 = —2.5
vy = 3.5 + 3(1.5)(3.5)> — 57 = 1.625

These values can be substituted into Eq. (6.24) to give
~ —2.5(325) — 1.625(1.5)
156.125

| 1.625(6.5) — (—2.5)(36.75)
156.125

x=15 = 2.03603

y=35 = 2.84388

Thus, the results are converging to the true values of x = 2 and y = 3. The computation
can be repeated until an acceptable accuracy is obtained.

Just as with fixed-point iteration, the Newton-Raphson approach will often diverge if
the initial guesses are not sufficiently close to the true roots. Whereas graphical methods
could be employed to derive good guesses for the single-equation case, no such simple
procedure is available for the multiequation version. Although there are some advanced
approaches for obtaining acceptable first estimates, often the initial guesses must be ob-
tained on the basis of trial and error and knowledge of the physical system being modeled.

The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. Because the most efficient way to do this involves matrix algebra and
the solution of simultaneous linear equations, we will defer discussion of the general

approach to Part Three.

PROBLEMS

6.1 Use simple fixed-point iteration to locate the root of
f(x) = sin(Vx) — x

Use an initial guess of x, = 0.5 and iterate until ¢, = 0.01%. Verify
that the process is linearly convergent as described in Box 6.1.
6.2 Determine the highest real root of

fx) =2 — 11.7x* + 17.7x = 5

(a) Graphically.

(b) Fixed-point iteration method (three iterations, x, = 3). Note: Make
certain that you develop a solution that converges on the root.

(¢) Newton-Raphson method (three iterations, x, = 3).

(d) Secant method (three iterations, x_; = 3, x, = 4).

(e) Modified secant method (three iterations, x, = 3, 6 = 0.01).
Compute the approximate percent relative errors for your solutions.
6.3 Use (a) fixed-point iteration and (b) the Newton-Raphson
method to determine a root of f(x) = —0.9x% + 1.7x + 2.5 using
Xxo = 5. Perform the computation until g, is less than &, = 0.01%.
Also perform an error check of your final answer.

6.4 Determine the real roots of f(x) = —1 + 5.5x — 4x* + 0.5x°
(a) graphically and (b) using the Newton-Raphson method to
within g, = 0.01%.

6.5 Employ the Newton-Raphson method to determine a real root for
f(x) = —1 + 5.5x — 4x* + 0.5x” using initial guesses of (a) 4.52
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and (b) 4.54. Discuss and use graphical and analytical methods to ex-
plain any peculiarities in your results.

6.6 Determine the lowest real root of f(x) = —12 — 21x +
18x* — 2.4x%: (a) graphically and (b) using the secant method to a
value of g, corresponding to three significant figures.

6.7 Locate the first positive root of

f(x) = sinx + cos(1 + -1

where x is in radians. Use four iterations of the secant method with

initial guesses of (a) x;—; = 1.0 and x; = 3.0; (b) x,_; = 1.5 and

x; = 2.5, and (¢) x;—; = 1.5 and x; = 2.25 to locate the root. (d) Use

the graphical method to explain your results.

6.8 Determine the real root of x** = 80, with the modified secant

method to within &, = 0.1% using an initial guess of x, = 3.5 and

6 =0.01.

6.9 Determine the highest real root of f(x) = x* — 6x* + 11x — 6.1:

(a) Graphically.

(b) Using the Newton-Raphson method (three iterations, x; = 3.5).

(¢) Using the secant method (three iterations, x;+; = 2.5 and
x; = 3.5).

(d) Using the modified secant method (three iterations, x; = 3.5,
6 = 0.01).

6.10 Determine the lowest positiverootof f(x) = 7sin(x)e * — 1:

(a) Graphically.

(b) Using the Newton-Raphson method (three iterations, x; = 0.3).

(¢) Using the secant method (five iterations, x;—; = 0.5 and
x; = 0.4).

(d) Using the modified secant method (three iterations, x; = 0.3,
6 = 0.01).

6.11 Use the Newton-Raphson method to find the root of

fx) =e "4 —x) -2

Employ initial guesses of (a) 2, (b) 6, and (c) 8. Explain your results.
6.12 Given

fx) = =2x° — 1.5x* + 10x + 2

Use a root location technique to determine the maximum of this
function. Perform iterations until the approximate relative error
falls below 5%. If you use a bracketing method, use initial guesses
of x; = 0 and x, = 1. If you use the Newton-Raphson or the modi-
fied secant method, use an initial guess of x; = 1. If you use the
secant method, use initial guesses of x;_; = 0 and x; = 1. Assuming
that convergence is not an issue, choose the technique that is best
suited to this problem. Justify your choice.

6.13 You must determine the root of the following easily differen-
tiable function,

¥ =5 — 5x

Pick the best numerical technique, justify your choice and then
use that technique to determine the root. Note that it is known
that for positive initial guesses, all techniques except fixed-point
iteration will eventually converge. Perform iterations until the
approximate relative error falls below 2%. If you use a bracket-
ing method, use initial guesses of x; = 0 and x, = 2. If you use
the Newton-Raphson or the modified secant method, use an ini-
tial guess of x; = 0.7. If you use the secant method, use initial
guesses of x;_; = O and x; = 2.

6.14 Use (a) the Newton-Raphson method and (b) the modified
secant method (6 = 0.05) to determine a root of f(x) = X — 16.05x* +
88.75x> — 192.0375x” + 116.35x + 31.6875 using an initial guess
of x = 0.5825 and &, = 0.01%. Explain your results.

6.15 The “divide and average” method, an old-time method for
approximating the square root of any positive number a, can be
formulated as

_x+ta/x
2

X

Prove that this is equivalent to the Newton-Raphson algorithm.
6.16 (a) Apply the Newton-Raphson method to the function f(x) =
tanh(x*> — 9) to evaluate its known real root at x = 3. Use an initial
guess of x, = 3.2 and take a minimum of four iterations. (b) Did the
method exhibit convergence onto its real root? Sketch the plot with
the results for each iteration shown.

6.17 The polynomial f(x) = 0.0074x* — 0.284x" + 3.355x* —
12.183x + 5 has a real root between 15 and 20. Apply the Newton-
Raphson method to this function using an initial guess of x, = 16.15.
Explain your results.

6.18 Use the secant method on the circle function (x + 1) +
(y — 2)> = 16 to find a positive real root. Set your initial guess to
x; = 3 and x;_; = 0.5. Approach the solution from the first and
fourth quadrants. When solving for f(x) in the fourth quadrant, be
sure to take the negative value of the square root. Why does your
solution diverge?

6.19 You are designing a spherical tank (Fig. P6.19) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

v = mp PR
3

where V = volume (m*), h = depth of water in tank (m), and R =
the tank radius (m). If R = 3 m, what depth must the tank be filled
to so that it holds 30 m®? Use three iterations of the Newton-
Raphson method to determine your answer. Determine the ap-
proximate relative error after each iteration. Note that an initial
guess of R will always converge.
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FIGURE P6.19

6.20 The Manning equation can be written for a rectangular open
channel as

_ VSBH)"
n(B + 2H)*?

where Q = flow [m%/s], § = slope [m/m], H = depth [m], and n =
the Manning roughness coefficient. Develop a fixed-point iteration
scheme to solve this equation for H given Q = 5, S = 0.0002, B = 20,
and n = 0.03. Prove that your scheme converges for all initial guesses
greater than or equal to zero.

6.21 The function x* — 2x* — 4x + 8 has a double root at x = 2.
Use (a) the standard Newton-Raphson [Eq. (6.6)], (b) the modi-
fied Newton-Raphson [Eq. (6.12)], and (c¢) the modified Newton-
Raphson [Eq. (6.16)] to solve for the root at x = 2. Compare and
discuss the rate of convergence using an initial guess of x, = 1.2.
6.22 Determine the roots of the following simultaneous nonlinear
equations using (a) fixed-point iteration and (b) the Newton-Raphson
method:

y=—x+x+075
y+ 5xy = x°

Employ initial guesses of x = y = 1.2 and discuss the results.
6.23 Determine the roots of the simultaneous nonlinear equations

=4+ -4*=5

P +y =16

Use a graphical approach to obtain your initial guesses. Determine
refined estimates with the two-equation Newton-Raphson method
described in Sec. 6.6.2.

6.24 Repeat Prob. 6.23 except determine the positive root of

y:x2+1
y = 2cosx

6.25 A mass balance for a pollutant in a well-mixed lake can be
written as

vy - Qc — kV Ve
dt

Given the parameter values V = 1 X 106m3, 0=1X 10° m3/yr,
W =1 X 10°g/yr, and k = 0.25 m*/g"/yr, use the modified secant
method to solve for the steady-state concentration. Employ an ini-
tial guess of ¢ = 4 g/m® and & = 0.5. Perform three iterations and
determine the percent relative error after the third iteration.

6.26 For Prob. 6.25, the root can be located with fixed-point
iteration as

)
¢ =

kV
or as

C:W—kV\/E
¢

Only one will converge for initial guesses of 2 < ¢ < 6. Select the
correct one and demonstrate why it will always work.

6.27 Develop a user-friendly program for the Newton-Raphson
method based on Fig. 6.4 and Sec. 6.2.3. Test it by duplicating the
computation from Example 6.3.

6.28 Develop a user-friendly program for the secant method based
on Fig. 6.4 and Sec. 6.3.2. Test it by duplicating the computation
from Example 6.6.

6.29 Develop a user-friendly program for the modified secant
method based on Fig. 6.4 and Sec. 6.3.2. Test it by duplicating the
computation from Example 6.8.

6.30 Develop a user-friendly program for Brent’s root location
method based on Fig. 6.12. Test it by solving Prob. 6.6.

6.31 Develop a user-friendly program for the two-equation
Newton-Raphson method based on Sec. 6.6.2. Test it by solving
Example 6.12.

6.32 Use the program you developed in Prob. 6.31 to solve Probs.
6.22 and 6.23 to within a tolerance of &, = 0.01%.
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Roots of Polynomials

In this chapter, we will discuss methods to find the roots of polynomial equations of the
general form

fux) = ay + aix + ax® + - + ax" 7.1

where n = the order of the polynomial and the a’s = constant coefficients. Although the
coefficients can be complex numbers, we will limit our discussion to cases where they
are real. For such cases, the roots can be real and/or complex.

The roots of such polynomials follow these rules:

1. For an nth-order equation, there are n real or complex roots. It should be noted that
these roots will not necessarily be distinct.

If n is odd, there is at least one real root.

3. If complex roots exist, they exist in conjugate pairs (that is, A + wi and A — i),

where i = V—1.

Before describing the techniques for locating the roots of polynomials, we will provide
some background. The first section offers some motivation for studying the techniques;
the second deals with some fundamental computer manipulations involving polynomials.

04

POLYNOMIALS IN ENGINEERING AND SCIENCE

Polynomials have many applications in engineering and science. For example, they are used
extensively in curve-fitting. However, we believe that one of their most interesting and
powerful applications is in characterizing dynamic systems and, in particular, linear systems.
Examples include mechanical devices, structures, and electrical circuits. We will be explor-
ing specific examples throughout the remainder of this text. In particular, they will be the
focus of several of the engineering applications throughout the remainder of this text.

For the time being, we will keep the discussion simple and general by focusing on
a simple second-order system defined by the following linear ordinary differential equa-
tion (or ODE):

d’y dy
a, e + a, ar + agy = F(¢) (7.2)
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where y and ¢ are the dependent and independent variables, respectively, the a’s are
constant coefficients, and F(¢) is the forcing function.

In addition, it should be noted that Eq. (7.2) can be alternatively expressed as a pair
of first-order ODEs by defining a new variable z,

_

= 7.
dt 73

Z

Equation (7.3) can be substituted along with its derivative into Eq. (7.2) to remove the
second-derivative term. This reduces the problem to solving

dz _ F(t) — aiz — agy

7.4
0 ” (74)
dz _ (1.5)
dt Z .

In a similar fashion, an nth-order linear ODE can always be expressed as a system of n
first-order ODE:s.

Now let’s look at the solution. The forcing function represents the effect of the
external world on the system. The homogeneous or general solution of the equation deals
with the case when the forcing function is set to zero,

R 76
ap e a; dr apy = (7.6)
Thus, as the name implies, the general solution should tell us something very fundamental
about the system being simulated—that is, how the system responds in the absence of
external stimuli.
Now, the general solution to all unforced linear systems is of the form y = €. If
this function is differentiated and substituted into Eq. (7.6), the result is

ayr’e” + ayre” + age” =0
or canceling the exponential terms,
a2r2 +ar+ay=0 1.7)

Notice that the result is a polynomial called the characteristic equation. The roots
of this polynomial are the values of r that satisfy Eq. (7.7). These r’s are referred to as
the system’s characteristic values, or eigenvalues.

So, here is the connection between roots of polynomials and engineering and
science. The eigenvalue tells us something fundamental about the system we are modeling,
and finding the eigenvalues involves finding the roots of polynomials. And, whereas
finding the root of a second-order equation is easy with the quadratic formula, finding
roots of higher-order systems (and hence, higher-order polynomials) is arduous analyti-
cally. Thus, the best general approach requires numerical methods of the type described
in this chapter.

Before proceeding to these methods, let us take our analysis a bit farther by in-
vestigating what specific values of the eigenvalues might imply about the behavior of
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physical systems. First, let us evaluate the roots of Eq. (7.7) with the quadratic
formula,
r_—ap x \Va} — 4aya,
r 24}
Thus, we get two roots. If the discriminant (a% — 4a,ay) is positive, the roots are real
and the general solution can be represented as
y =" + ¢ (7.8)
where the ¢’s = constants that can be determined from the initial conditions. This is
called the overdamped case.
If the discriminant is zero, a single real root results, and the general solution can be
formulated as
y = (¢ + can)e (7.9)
This is called the critically damped case.
If the discriminant is negative, the roots will be complex conjugate numbers,
r .
= A E ui
r
and the general solution can be formulated as
y = ¢ MBI 4 o JAui
FIGURE 7.1
The general solution for linear ? 5 Y
ODEs can be composed of (a) S
exponential and (b) sinusoidal ','

components. The combination
of the two shapes results in the
damped sinusoid shown in ().

(4

'¢
'l
\

(d)\ ! /(b)
\ /N
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7.2

The physical behavior of this solution can be elucidated by using Euler’s formula
e = cosut + isin ut

to reformulate the general solution as (see Boyce and DiPrima, 1992, for details of the
derivation)

y = c;eM cos ut + ¢ sin ut (7.10)
This is called the underdamped case.

Equations (7.8), (7.9), and (7.10) express the possible ways that linear systems re-
spond dynamically. The exponential terms mean that the solutions are capable of decay-
ing (negative real part) or growing (positive real part) exponentially with time (Fig. 7.1a).
The sinusoidal terms (imaginary part) mean that the solutions can oscillate (Fig. 7.10).
If the eigenvalue has both real and imaginary parts, the exponential and sinusoidal shapes
are combined (Fig. 7.1¢). Because such knowledge is a key element in understanding,
designing, and controlling the behavior of a physical system, characteristic polynomials
are very important in engineering and many branches of science. We will explore the
dynamics of several engineering systems in the applications covered in Chap. 8.

COMPUTING WITH POLYNOMIALS

Before describing root-location methods, we will discuss some fundamental computer
operations involving polynomials. These have utility in their own right as well as provid-
ing support for root finding.

7.2.1 Polynomial Evaluation and Differentiation

Although it is the most common format, Eq. (7.1) provides a poor means for determin-
ing the value of a polynomial for a particular value of x. For example, evaluating a
third-order polynomial as

flx) = a;x° + ax® + ax + ag (7.11)
involves six multiplications and three additions. In general, for an nth-order polynomial,

this approach requires n(n + 1)/2 multiplications and n additions.
In contrast, a nested format,

f:(x) = ((azx + ax)x + a))x + ay (7.12)

involves three multiplications and three additions. For an nth-order polynomial, this ap-
proach requires n multiplications and n additions. Because the nested format minimizes
the number of operations, it also tends to minimize round-off errors. Note that, depend-
ing on your preference, the order of nesting can be reversed:

f(x) = ag + x(ay + x(ay + xa3)) (7.13)
Succinct pseudocode to implement the nested form can be written simply as
DOFOR j = n, 0, —1

p=p*xtalj)
END DO
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where p holds the value of the polynomial (defined by its coefficients, the a’s) evaluated
at x.

There are cases (such as in the Newton-Raphson method) where you might want to
evaluate both the function and its derivative. This evaluation can also be neatly included
by adding a single line to the preceding pseudocode,

DOFOR j = n, 0, -1
df = df * x+p

p=p*x+alj)
END DO

where df holds the first derivative of the polynomial.

7.2.2 Polynomial Deflation

Suppose that you determine a single root of an nth-order polynomial. If you repeat your
root location procedure, you might find the same root. Therefore, it would be nice to
remove the found root before proceeding. This removal process is referred to as polyno-
mial deflation.

Before we show how this is done, some orientation might be useful. Polynomials
are typically represented in the format of Eq. (7.1). For example, a fifth-order polynomial
could be written as

fs(x) = —120 — 46x + 79x" — 3% — Tx* + X° (7.14)

Although this is a familiar format, it is not necessarily the best expression to understand
the polynomial’s mathematical behavior. For example, this fifth-order polynomial might
be expressed alternatively as

)=+ Dx—4Hx =5 +3)(x—2) (7.15)

This is called the factored form of the polynomial. If multiplication is completed
and like terms collected, Eq. (7.14) would be obtained. However, the format of Eq. (7.15)
has the advantage that it clearly indicates the function’s roots. Thus, it is apparent that
x = —1,4,5, =3, and 2 are all roots because each causes an individual term in Eq. (7.15)
to become zero.

Now, suppose that we divide this fifth-order polynomial by any of its factors, for
example, x + 3. For this case, the result would be a fourth-order polynomial

fir) = (x+ D(x—4)(x —5)(x—2) = —40 — 2x + 27x* — 10X + x*  (7.16)

with a remainder of zero.

In the distant past, you probably learned to divide polynomials using the approach
called synthetic division. Several computer algorithms (based on both synthetic division
and other methods) are available for performing the operation. One simple scheme is
provided by the following pseudocode, which divides an nth-order polynomial by a
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monomial factor x —

r=aln)
a(n) = 0
DOFOR i = n—1, 0, —1

s =al(i)
a(i) =r
r=s+r*t
END DO

If the monomial is a root of the polynomial, the remainder r will be zero, and the coef-
ficients of the quotient stored in a, at the end of the loop.

EXAMPLE 7.1  Polynomial Deflation

Problem Statement. Divide the second-order polynomial,
f) = (x—4)(x +6) =x" +2x — 24

by the factor x — 4.

Solution.  Using the approach outlined in the above pseudocode, the parameters are

n=2a = —24,a, =2,a = 1,and t = 4. These can be used to compute
r=a =1
a, = 0

The loop is then iterated fromi =2 — 1 = 1to 0. Fori = 1,

s=a; =2

a1=r=1

r=s+rt=2+14)=6
Fori = 0,

s=ay= —24

ag=r==~6

r=—24+6(4) =0

Thus, the result is as expected—the quotient is gy, + a;x = 6 + x, with a remainder of zero.

It is also possible to divide by polynomials of higher order. As we will see later in
this chapter, the most common task involves dividing by a second-order polynomial or
parabola. The subroutine in Fig. 7.2 addresses the more general problem of dividing an
nth-order polynomial a by an mth-order polynomial d. The result is an (n — m)th-order
polynomial g, with an (m — 1)th-order polynomial as the remainder.

Because each calculated root is known only approximately, it should be noted that
deflation is sensitive to round-off errors. In some cases, round-off error can grow to the
point that the results can become meaningless.

Some general strategies can be applied to minimize this problem. For example, round-off
error is affected by the order in which the terms are evaluated. Forward deflation refers to the
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7.3

SUB poldiv(a, n, d, m, q, r)

DOFOR j = 0, n
r(j) = a(j)
q(j) =0

END DO

DOFOR k = n—m, 0, —1
q(k+1) = r(m+k) / d(m)
DOFOR j = m+k—=1, k, —1

r(j) = r(j)—q(k+1) * b(j—k)
END DO

END DO

DOFOR j = m, n
rij) =20

END DO

n = n—m

DOFOR 7 = 0, n
a(i) = q(i+1)

END DO

END SUB

FIGURE 7.2
Algorithm fo divide a polynomial (defined by its coefficients a) by a lower-order polynomial d.

case where new polynomial coefficients are in order of descending powers of x (that is, from
the highest-order to the zero-order term). For this case, it is preferable to divide by the roots
of smallest absolute value first. Conversely, for backward deflation (that is, from the zero-order
to the highest-order term), it is preferable to divide by the roots of largest absolute value first.

Another way to reduce round-off errors is to consider each successive root estimate
obtained during deflation as a good first guess. These can then be used as a starting
guess, and the root determined again with the original nondeflated polynomial. This is
referred to as root polishing.

Finally, a problem arises when two deflated roots are inaccurate enough that they
both converge on the same undeflated root. In that case, you might be erroneously led
to believe that the polynomial has a multiple root (recall Sec. 6.5). One way to detect
this problem is to compare each polished root with those that were located previously.
Press et al. (2007) discuss this problem in more detail.

CONVENTIONAL METHODS

Now that we have covered some background material on polynomials, we can begin to
describe methods to locate their roots. The obvious first step would be to investigate the
viability of the bracketing and open approaches described in Chaps. 5 and 6.

The efficacy of these approaches depends on whether the problem being solved involves
complex roots. If only real roots exist, any of the previously described methods could have
utility. However, the problem of finding good initial guesses complicates both the bracketing
and the open methods, whereas the open methods could be susceptible to divergence.
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When complex roots are possible, the bracketing methods cannot be used because
of the obvious problem that the criterion for defining a bracket (that is, sign change)
does not translate to complex guesses.

Of the open methods, the conventional Newton-Raphson method would provide a
viable approach. In particular, concise code including deflation can be developed. If a
language that accommodates complex variables (like Fortran) is used, such an algorithm
will locate both real and complex roots. However, as might be expected, it would be
susceptible to convergence problems. For this reason, special methods have been devel-
oped to find the real and complex roots of polynomials. We describe two—the Miiller
and Bairstow methods—in the following sections. As you will see, both are related to
the more conventional open approaches described in Chap. 6.

MULLER’S METHOD

Recall that the secant method obtains a root estimate by projecting a straight line to the
x axis through two function values (Fig. 7.3a). Miiller’s method takes a similar approach,
but projects a parabola through three points (Fig. 7.30).

The method consists of deriving the coefficients of the parabola that goes through
the three points. These coefficients can then be substituted into the quadratic formula to
obtain the point where the parabola intercepts the x axis—that is, the root estimate. The
approach is facilitated by writing the parabolic equation in a convenient form,

H(x) =alx — x)* 4+ b(x — x) + ¢ (7.17)

We want this parabola to intersect the three points [xy, f(xo)], [x;, f(x))], and [x,, f(x,)]. The
coefficients of Eq. (7.17) can be evaluated by substituting each of the three points to give

flxo) = alxg — x)° + b(xg — x,) + ¢ (7.18)
fx) = al — x)* + b(x; —x) + ¢ (7.19)
f(x) = a(x, — )2+ b(x, — xy) + ¢ (7.20)
FIGURE 7.3
A comparison of two related ) Straight F(x)
approaches for locating roots: line ' '
(a) the secant method and : !
(b) Miller's method. Root ! | Parabola
estimate : :
| |
| |
| |
| |
| |
| |
! !
Xy X Xy X
Root Root Root
estimate

(@) (b)
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Note that we have dropped the subscript “2” from the function for conciseness. Because
we have three equations, we can solve for the three unknown coefficients, a, b, and c.
Because two of the terms in Eq. (7.20) are zero, it can be immediately solved for
¢ = f(x,). Thus, the coefficient ¢ is merely equal to the function value evaluated at the
third guess, x,. This result can then be substituted into Egs. (7.18) and (7.19) to yield
two equations with two unknowns:

fxo) = f(x2) = alxg — x3)> + b(xy — x,) (7.21)
f(x) = f(xy) = alx; — x3)> + b(x; — xp) (7.22)

Algebraic manipulation can then be used to solve for the remaining coefficients,
a and b. One way to do this involves defining a number of differences,

hy = x; — xo hy =x, — x| (7.23)
_f(xl) — f(x) _f(xz) — f(x) '
Oy =——""" o =—"—"7"—
X1 — Xo X2 7 X
These can be substituted into Eqgs. (7.21) and (7.22) to give
(hy + h))b — (hy + hy)a = hydy + h, 8,
hy, b— o oa= h8,
which can be solved for a and b. The results can be summarized as
0, — &
= 7.24
T+ 7.24)
b = ahl + 81 (725)
¢ = f(xy) (7.26)

To find the root, we apply the quadratic formula to Eq. (7.17). However, because of
potential round-off error, rather than using the conventional form, we use the alternative
formulation [Eq. (3.13)] to yield

—2c
X3 = X = o (7.27a)
b * Vb* — 4dac
or isolating the unknown x; on the left side of the equal sign,
—2c
X3 = Xp + (727b)

b = Vb — dac

Note that the use of the quadratic formula means that both real and complex roots can
be located. This is a major benefit of the method.

In addition, Eq. (7.27a) provides a neat means to determine the approximate error.
Because the left side represents the difference between the present (x3) and the previous
(x,) root estimate, the error can be calculated as

X3 7 Xp
X3

100%

&, =
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EXAMPLE 7.2

Now, a problem with Eq. (7.27a) is that it yields two roots, corresponding to the
* term in the denominator. In Miiller’s method, the sign is chosen to agree with the sign
of b. This choice will result in the largest denominator, and hence, will give the root
estimate that is closest to x,.

Once x3 is determined, the process is repeated. This brings up the issue of which
point is discarded. Two general strategies are typically used:

1. If only real roots are being located, we choose the two original points that are near-
est the new root estimate, xs.

2. If both real and complex roots are being evaluated, a sequential approach is employed.
That is, just like the secant method, x;, x,, and x; take the place of x,, x;, and x,.

Miiller’s Method

Problem Statement. Use Miiller’s method with guesses of x,, x;, and x, = 4.5, 5.5,
and 5, respectively, to determine a root of the equation

fx)=x —13x — 12
Note that the roots of this equation are —3, —1, and 4.
Solution.  First, we evaluate the function at the guesses
f(4.5) = 20.625 f(5.5) = 82.875 f(5) =48

which can be used to calculate

hy=55—45=1 hy=5—-55=-05
82.875 — 20.625 48 — 82.875
0g=———" =622 0= ————=09.
0 55— 45 62.25 : 5-55 6975
These values in turn can be substituted into Egs. (7.24) through (7.26) to compute
6975 — 6225

a 15 b =15(—-0.5) + 69.75 = 62.25 c =48

-05+1

The square root of the discriminant can be evaluated as
V6225 - 4(15)48 = 31.54461

Then, because [62.25 + 31.54451| > |62.25 — 31.54451|, a positive sign is employed in
the denominator of Eq. (7.27b), and the new root estimate can be determined as

—2(48)
W=t 005 1 3154451 04T
and develop the error estimate
—1.023513
3.976487

Because the error is large, new guesses are assigned; x, is replaced by x;, x; is replaced
by x,, and x, is replaced by x;. Therefore, for the new iteration,

X =55 x =5 x5 =23.976487

100% = 25.74%

€, =
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and the calculation is repeated. The results, tabulated below, show that the method con-
verges rapidly on the root, x, = 4:

i Xr £q (%)

0 5

] 3.976487 25.74

2 4.00105 0.6139

3 4 0.0262

4 4 0.0000119

Pseudocode to implement Miiller’s method for real roots is presented in Fig. 7.4.
Notice that this routine is set up to take a single initial nonzero guess that is then
perturbed to develop the other two guesses. Of course, the algorithm can also be

FIGURE 7.4
Pseudocode for Miiller's method.

SUB Muller(xr, h, eps, maxit)

Xo = Xp

X; = X, + h*x.
Xo = X» — h*x.
Do

iter = iter + 1
ho = X1 — X
h = X, — X
dp = (f(x;) — f(x)) | hy
d = (f(x;) — f(x;)) [
a= (d — dp) / (hy + hy)
b= a*h; + ¢
c = f(xy)
rad = SQRT(b*b — 4*a*c)
If |b+rad| > |b—rad| THEN
den = b + rad
ELSE
den = b — rad
END IF
dx, = —=2%c / den
Xp = Xo + dX,
PRINT iter, X,
IF (ldx.| < eps*x. OR iter >= maxit) EXIT

Xo = X1

X1 = X2

Xz = Xp
END DO

END Miiller
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7.5

programmed to accommodate three guesses. For languages like Fortran, the code will
find complex roots if the proper variables are declared as complex.

BAIRSTOW'’S METHOD

Bairstow’s method is an iterative approach related loosely to both the Miiller and Newton-
Raphson methods. Before launching into a mathematical description of the technique,
recall the factored form of the polynomial,

)=+ DHDx—4Hx =5 +3)(x—2) (7.28)

If we divided by a factor that is not a root (for example, x + 6), the quotient would be
a fourth-order polynomial. However, for this case, a remainder would result.

On the basis of the above, we can elaborate on an algorithm for determining a root of
a polynomial: (1) guess a value for the root x = 7, (2) divide the polynomial by the factor
x — t, and (3) determine whether there is a remainder. If not, the guess was perfect and
the root is equal to ¢. If there is a remainder, the guess can be systematically adjusted and
the procedure repeated until the remainder disappears and a root is located. After this is
accomplished, the entire procedure can be repeated for the quotient to locate another root.

Bairstow’s method is generally based on this approach. Consequently, it hinges on
the mathematical process of dividing a polynomial by a factor. Recall from our discus-
sion of polynomial deflation (Sec. 7.2.2) that synthetic division involves dividing a poly-
nomial by a factor x — ¢. For example, the general polynomial [Eq. (7.1)]

fux) = ag + ajx + ax* + -+ + a,x" (7.29)
can be divided by the factor x — ¢ to yield a second polynomial that is one order lower,
foo1(x) = by + byx + byx® + -+ bx" ! (7.30)

with a remainder R = b,, where the coefficients can be calculated by the recurrence
relationship
b, = a,
b; = a; + bt fori=n—1t0
Note that if  were a root of the original polynomial, the remainder b, would equal zero.
To permit the evaluation of complex roots, Bairstow’s method divides the polynomial

by a quadratic factor x> — rx — s. If this is done to Eq. (7.29), the result is a new poly-
nomial

foa(X) = by + byx + -+ + b, X" + bx"?
with a remainder
R = b](.x - r) + bo (731)

As with normal synthetic division, a simple recurrence relationship can be used to perform
the division by the quadratic factor:
b, = a, (7.32a)
bn—l = dp—1 + rbn (732b)
b; = a; + rbjy, + sbi fori=n—-—2t00 (7.32¢)
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The quadratic factor is introduced to allow the determination of complex roots.
This relates to the fact that, if the coefficients of the original polynomial are real, the
complex roots occur in conjugate pairs. If x> — rx — s is an exact divisor of the
polynomial, complex roots can be determined by the quadratic formula. Thus, the
method reduces to determining the values of r and s that make the quadratic factor
an exact divisor. In other words, we seek the values that make the remainder term
equal to zero.

Inspection of Eq. (7.31) leads us to conclude that for the remainder to be zero, b,
and b; must be zero. Because it is unlikely that our initial guesses at the values of r and s
will lead to this result, we must determine a systematic way to modify our guesses so
that b, and b, approach zero. To do this, Bairstow’s method uses a strategy similar to
the Newton-Raphson approach. Because both b, and b, are functions of both r and s,
they can be expanded using a Taylor series, as in [recall Eq. (4.26)]

ab ab
by(r + Ar,s + As) = b, + —LAr+ — As
ar as
ab, b,
bo(r + Ar,s + As) = by + 8—0 Ar + 6—0 As (1.33)
r s

where the values on the right-hand side are all evaluated at r and s. Notice that second-
and higher-order terms have been neglected. This represents an implicit assumption that
—r and —s are small enough that the higher-order terms are negligible. Another way of
expressing this assumption is to say that the initial guesses are adequately close to the
values of r and s at the roots.

The changes, Ar and As, needed to improve our guesses can be estimated by setting
Eq. (7.33) equal to zero to give

ab b
“LAr+ =L As = —b, (7.34)
ar as
ab, ab,
2L Ar+ —2As = —b, (7.35)
ar as

If the partial derivatives of the b’s can be determined, these are a system of two equa-
tions that can be solved simultaneously for the two unknowns, Ar and As. Bairstow
showed that the partial derivatives can be obtained by a synthetic division of the b’s in
a fashion similar to the way in which the b’s themselves were derived:

c, = b, (7.36a)
Cn—1 = bn—l + re, (736b)
¢ =b; + rci t scis fori=n—2to1 (7.36¢)

where dby/or = ¢, dby/ds = 0b,/dr = c,, and 0b;/ds = c3. Thus, the partial derivatives
are obtained by synthetic division of the b’s. Then the partial derivatives can be substi-
tuted into Egs. (7.34) and (7.35) along with the b’s to give

CzAr + C3AS = _bl

C]AV + CQAS = _b()
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EXAMPLE 7.3

These equations can be solved for Ar and As, which can in turn be employed to improve
the initial guesses of r and s. At each step, an approximate error in r and s can be esti-
mated, as in

A
60| = ‘:‘100% (737)
and
As
|€as| = o 100% (7.38)

When both of these error estimates fall below a prespecified stopping criterion g, the
values of the roots can be determined by

r+= \Vr +4s
X= (7.39)

At this point, three possibilities exist:

1. The quotient is a third-order polynomial or greater. For this case, Bairstow’s method
would be applied to the quotient to evaluate new values for r and s. The previous
values of r and s can serve as the starting guesses for this application.

2. The quotient is a quadratic. For this case, the remaining two roots could be evaluated
directly with Eq. (7.39).

3. The quotient is a first-order polynomial. For this case, the remaining single root can
be evaluated simply as

N
x=—= (7.40)
r

Bairstow’s Method

Problem Statement.  Employ Bairstow’s method to determine the roots of the polynomial
fs(x) = x° — 3.5x% + 2.75x° + 2.125x* — 3.875x + 1.25

Use initial guesses of » = s = —1 and iterate to a level of &, = 1%.

Solution.  Equations (7.32) and (7.36) can be applied to compute

bs =1 b, = —4.5 by = 6.25 b, = 0.375 b, = —10.5
by = 11.375
cs =1 cy = —55 c; = 10.75 c, = —4.875 ¢y = —16.375

Thus, the simultaneous equations to solve for Ar and As are

—4.875Ar + 10.75As = 10.5
—16.375Ar — 4.875As = —11.375

which can be solved for Ar = 0.3558 and As = 1.1381. Therefore, our original guesses
can be corrected to

r=—1+ 03558 = —0.6442
s = —1+ 1.1381 = 0.1381
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and the approximate errors can be evaluated by Egs. (7.37) and (7.38),
0.3558 ’ 1.1381
—0.6442 0.1381

Next, the computation is repeated using the revised values for r and s. Applying Eqgs. (7.32)
and (7.36) yields

bs=1 by= —4.1442 by =55578 b, = —2.0276 b, = —1.8013
by = 2.1304
cs=1 ¢4 = —47884 ¢3=287806 ¢, = —8.3454 ¢, =4.7874
Therefore, we must solve
—8.3454Ar + 8.7806As = 1.8013
4.7874Ar — 8.3454As = —2.1304
for Ar = 0.1331 and As = 0.3316, which can be used to correct the root estimates as
r= —0.6442 + 0.1331 = —0.5111  |g,,| = 26.0%
s = 0.1381 + 0.3316 = 0.4697 |eas| = 70.6%

The computation can be continued, with the result that after four iterations the
method converges on values of r = —0.5 (|e,,| = 0.063%) and s = 0.5 (|e,;| = 0.040%).
Equation (7.39) can then be employed to evaluate the roots as

05 V(=0.5)% + 4(0.5)
2
At this point, the quotient is the cubic equation
fx) =x° — 4x* + 5.25x — 2.5

Bairstow’s method can be applied to this polynomial using the results of the previous

100% = 55.23% leq,s| =

‘Sa,rl -

‘100% = 824.1%

=0.5,-1.0

step, r = —0.5 and s = 0.5, as starting guesses. Five iterations yield estimates of r = 2
and s = —1.249, which can be used to compute
2 = V22 + 4(—1.249) _
x = 5 =1 = 0.499i

At this point, the quotient is a first-order polynomial that can be directly evaluated
by Eq. (7.40) to determine the fifth root: 2.

Note that the heart of Bairstow’s method is the evaluation of the b’s and c¢’s via
Egs. (7.32) and (7.36). One of the primary strengths of the method is the concise way
in which these recurrence relationships can be programmed.

Figure 7.5 lists pseudocode to implement Bairstow’s method. The heart of the algo-
rithm consists of the loop to evaluate the b’s and ¢’s. Also notice that the code to solve
the simultaneous equations checks to prevent division by zero. If this is the case, the
values of r and s are perturbed slightly and the procedure is begun again. In addition,
the algorithm places a user-defined upper limit on the number of iterations (MAXIT)
and should be designed to avoid division by zero while calculating the error estimates.
Finally, the algorithm requires initial guesses for r and s (rr and ss in the code). If no
prior knowledge of the roots exist, they can be set to zero in the calling program.
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(a) Bairstow Algorithm

SUB Bairstow (a,nn,es,rr,ss,maxit,re,im,ier)
DIMENSION b(nn), c(nn)
r=rr; s =S8 n=1nn

jer = 0; eal = 1; ea? = 1

Do
IF n< 3 0R iter = maxit EXIT
iter = 0
Do
iter = iter + 1
b(n) = a(n)
bn—1) =a(n— 1) + r * b(n)
c(n) = b(n)

cn—1) =bn—1) + r *c(n)
D0i=n-2,0 —1
b(i) = a(i) +r *b(i+ 1)+ s *b(i+ 2)
c(i) =b(i) + r*c(i+ 1)+ s *c(i+2)
END DO
det = c(2) * c(2) — ¢c(3) * c(1)
IF det # 0 THEN
dr = (=b(1) * c(2) + b(0) * c(3))/det
ds = (=b(0) * c(2) + b(1) * c(1))/det
r=r+dr
S =35+ ds
IF r+0 THEN eal
IF s#0 THEN ea?
ELSE
r=r+1
s=5s+1
iter = 0
END IF
IfF eal = es AND ea? = es OR iter = maxit EXIT
END DO
CALL Quadroot(r,s,rl,il,r2,i2)
re(n) = rl
imn) = 71
re(n — 1) = r2
imn — 1) = 12
n=n-2
D0 i=20,n
a(i) = bl(i + 2)
END DO
END DO

ABS(dr/r) * 100
ABS(ds/s) * 100

FIGURE 7.5

(a) Algorithm for implementing Bairstow's method, along with (b) an algorithm to determine the roots of a quadratic.

IF iter < maxit THEN
IF n = 2 THEN

r= —a(l)/a(2)

s = —a(0)/a(2)

CALL Quadroot(r,s,rl,il,r2,i2)

re(n) = rl
imn) = il
re(n — 1) = r2
imn — 1) = 12

ELSE
re(n)
im(n)
END IF
ELSE
jer = 1
END IF

END Bairstow

(b) Roots of Quadratic Algorithm

SUB Quadroot(r,s,rl,il,r2,i2)

—a(0)/a(1)
0

disc=r"*"2+4%*s
IF disc > 0 THEN

rl = (r + SQRT(disc))/2
r2 = (r — SQRT(disc))/2

il = SORT(ABS(disc))/2

i1=20

i2=20
ELSE

rl = r/2

r2 = rl

2= -7l
END IF

END QuadRoot
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7.6 OTHER METHODS
Other methods are available to locate the roots of polynomials. The Jenkins-Traub method
is commonly used in software libraries. It is fairly complicated, and a good starting point
to understanding it is found in Ralston and Rabinowitz (1978).
Laguerre’s method, which approximates both real and complex roots and has cubic
convergence, is among the best approaches. A complete discussion can be found in
Householder (1970). In addition, Press et al. (2007) present a nice algorithm to imple-
ment the method.
7.7 ROOT LOCATION WITH SOFTWARE PACKAGES
Software packages have great capabilities for locating roots. In this section, we will give
you a taste of some of the more useful ones.
7.7.1 Excel
A spreadsheet like Excel can be used to locate a root by trial and error. For example,
if you want to find a root of
flx) = x — cosx
first, you can enter a value for x in a cell. Then set up another cell for f(x) that would
obtain its value for x from the first cell. You can then vary the x cell until the f(x) cell
approaches zero. This process can be further enhanced by using Excel’s plotting capa-
bilities to obtain a good initial guess (Fig. 7.6).
Although Excel does facilitate a trial-and-error approach, it also has two standard
tools that can be employed for root location: Goal Seek and Solver. Both these tools can
be employed to systematically adjust the initial guesses. Goal Seek is expressly used to
drive an equation to a value (in our case, zero) by varying a single parameter.
FIGURE 7.6 (
B11 - =A11-COS{A11

A spreadsheet set up to — - ﬁl' ()
defermine the root of | A A g | ¢ | o | E | F | ® | H
fix) = x — cos x by trial and | 1 |values for plot: 3 -
error. The plot is used to obfain e () |
a good initial guess. Y 0 3 2 |

4 0.5 -0.37758 -

|53 1 0.459698 U

L5 15 1.429263 i

| 7| 2 2416147 0

8

_____ _ q G

| 8 |valuesfor trial-and-error:

10 x fix gy

|11 0.739085| -3.26-11 B

£
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EXAMPLE 7.4

EXAMPLE 7.5

Using Excel’s Goal Seek Tool to Locate a Single Root

Problem Statement.  Employ Goal Seek to determine the root of the transcendental function

flx) = x — cosx

Solution.  As in Fig. 7.6, the key to solving a single equation with Excel is creating a cell to
hold the value of the function in question and then making the value dependent on another cell.
Once this is done, the selection Goal Seek is chosen from the What-If Analysis button on your
Data ribbon. At this point a dialogue box will be displayed, asking you to set a cell to a value by
changing another cell. For the example, suppose that as in Fig. 7.6 your guess is entered in cell
All and your function result in cell B11. The Goal Seek dialogue box would be filled out as

Goal Seek

Set cell:

To walue: |I:I |

By chanaging cell: |$.ﬁ.$11

L Ok ][ Cancel J

When the OK button is selected, a message box displays the results,

Goal Seek Status

Goal Sesking with Cell B11 Sten
found a solution,

Targek value: 0 Pause

Current value: -3.1516E-11

The cells on the spreadsheet would also be modified to the new values (as shown in Fig. 7.6).

The Solver tool is more sophisticated than Goal Seek in that (1) it can vary several
cells simultaneously and (2) along with driving a target cell to a value, it can minimize
and maximize its value. The next example illustrates how it can be used to solve a system
of nonlinear equations.

Using Excel’s Solver for a Nonlinear System
Problem Statement. Recall that in Sec. 6.6 we obtained the solution of the following
set of simultaneous equations,

u(x,y) =x>+xy—10=10

v(x,y) =y +3x° = 57=0
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Note that a correct pair of roots is x = 2 and y = 3. Use Solver to determine the roots
using initial guesses of x = 1 and y = 3.5.

Solution.  As shown below, two cells (B1 and B2) can be created to hold the guesses for x and
y. The function values themselves, u(x, y) and v(x, y) can then be entered into two other cells
(B3 and B4). As can be seen, the initial guesses result in function values that are far from zero.

B6 v (o fe | =B3n2+Ba%2
B2 emal c |
ERE | 1
2y 3.5
| 3 |ufxy) _ =5.5|
4 vxy) -16.75

3
_B |5um ofsquaresl 310.8125!
7

Next, another cell can be created that contains a single value reflecting how close both
functions are to zero. One way to do this is to sum the squares of the function values. This
is done and the result entered in cell B6. If both functions are at zero, this function should
also be at zero. Further, using the squared functions avoids the possibility that both func-
tions could have the same nonzero value, but with opposite signs. For this case, the target
cell (B6) would be zero, but the roots would be incorrect.

Once the spreadsheet is created, the selection Solver is chosen from the Data ribbon."
At this point a dialogue box will be displayed, querying you for pertinent information.
The pertinent cells of the Solver dialogue box would be filled out as

Solver Parameters

Set Target Cel: Solve
EqualTo:  OMax OMin  @ualeot [0 | Close

By Changing Cells:

| $E$ 14632 GLUEss

Subject ko the Conskrainks: Options
Add

I I Ed

Reset all

Help

"Note that you may have to install Solver by choosing Office, Excel Options, Add-Ins. Select Excel Add-Ins
from the Manage drop-down box at the bottom of the Excel options menu and click Go. Then, check the
Solver box. The Solver then should be installed and a button to access it should appear on your Data ribbon.
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When the OK button is selected, a dialogue box will open with a report on the success
of the operation. For the present case, the Solver obtains the correct solution:

| A e c | b ]
| | 2.00003
y | 2.999984
juix, y) | 0.000176
[vix, ) | 0.000202

Sum of squaresl ?.19E—OE_|

|-J|m‘M|h!w|N|H

It should be noted that the Solver can fail. Its success depends on (1) the condition
of the system of equations and/or (2) the quality of the initial guesses. Thus, the suc-
cessful outcome of the previous example is not guaranteed. Despite this, we have found
Solver useful enough to make it a feasible option for quickly obtaining roots in a wide
range of engineering applications.

7.7.2 MATLAB

As summarized in Table 7.1, MATLAB software is capable of locating roots of single
algebraic and transcendental equations. It is superb at manipulating and locating the roots
of polynomials.

The fzero function is designed to locate one root of a single function. A simplified
representation of its syntax is

fzero(f,x,, options)

where £ is the function you are analyzing, X, is the initial guess, and options are the
optimization parameters (these are changed using the function optimset). If options
are omitted, default values are employed. Note that one or two guesses can be employed.
If two guesses are employed, they are assumed to bracket a root. The following example
illustrates how fzero can be used.

TABLE 7.1 Common functions in MATLAB related to root
location and polynomial manipulation.

Function Description

fzero Root of single function.

roots Find polynomial roofs.

poly Construct polynomial with specified roots.
polyval Evaluate polynomial.

polyvalm Evaluate polynomial with matrix argument.
residue PartiaHraction expansion (residues).
polyder Differentiate polynomial.

conv Multiply polynomials.

deconv Divide polynomidls.




196

ROOTS OF POLYNOMIALS

EXAMPLE 7.6

Using MATLAB for Root Location
Problem Statement. Use the MATLAB function f£zero to find the roots of
flx) =x"" =1

within the interval x;, = 0 and x, = 4. Obviously two roots occur at —1 and 1. Recall
that in Example 5.6, we used the false-position method with initial guesses of 0 and 1.3
to determine the positive root.

Solution.  Using the same initial conditions as in Example 5.6, we can use MATLAB
to determine the positive root as in

>> x0=[0 1.3];
>> x=fzero(@(x) x*10-1,x0)

X =
1

In a similar fashion, we can use initial guesses of —1.3 and O to determine the negative
1oot,

>> x0=[—1.3 0];
>> x=fzero(@(x) x*10-1,x0)

-1

We can also employ a single guess. An interesting case would be to use an initial
guess of 0,

>> x0=0;
>> x=fzero(@(x) x*10-1,x0)

-1

Thus, for this guess, the underlying algorithm happens to home in on the negative root.
The use of optimset can be illustrated by using it to display the actual iterations
as the solution progresses:

>> x0=0;
>> option=optimset ('DISP','ITER');
>> x=fzero(e(x) x*10-1,x0,option)

Func-count x f (x) Procedure

1 0 -1 initial

2 -0.0282843 -1 search

3 0.0282843 -1 search

4 -0.04 -1 search

L]

L]
21 0.64 -0.988471 search

22 -0.905097 -0.631065 search
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23 0.905097 -0.631065 search
24 -1.28 10.8059 search

Looking for a zero in the interval [-1.28, 0.9051]

25 0.784528 -0.911674 interpolation
26 -0.247736 -0.999999 bisection

27 -0.763868 -0.932363 bisection

28 -1.02193 0.242305 bisection

29 -0.968701 -0.27239 interpolation
30 -0.996873 -0.0308299 interpolation
31 -0.999702 -0.00297526 interpolation
32 -1 5.53132e-006 interpolation
33 -1 -7.41965e-009 interpolation
34 -1 -1.88738e-014 interpolation
35 -1 0 interpolation

Zero found in the interval: [-1.28, 0.9051].

x =
-1

These results illustrate the strategy used by fzero when it is provided with a
single guess. First, it searches in the vicinity of the guess until it detects a sign change.
Then it uses a combination of bisection and interpolation to home in on the root. The
interpolation involves both the secant method and inverse quadratic interpolation (recall
Sec. 7.4). It should be noted that the fzero algorithm has more to it than this basic
description might imply. You can consult Press et al. (2007) for additional details.

Using MATLAB to Manipulate and Determine the Roots of Polynomials

Problem Statement. Explore how MATLAB can be employed to manipulate and de-
termine the roots of polynomials. Use the following equation from Example 7.3,

fo(x) = x° — 3.5x* + 2.75x° + 2.125x* — 3.875x + 1.25 (E7.7.1)
which has three real roots: 0.5, —1.0, and 2, and one pair of complex roots: 1 = 0.5i.

Solution.  Polynomials are entered into MATLAB by storing the coefficients as a vector.
For example, at the MATLAB prompt (=) typing and entering the follow line stores
the coefficients in the vector a,

>> a=[1 -3.5 2.75 2.125 -3.875 1.25];

We can then proceed to manipulate the polynomial. For example, we can evaluate it at
x = 1 by typing

>> polyval(a,l)
with the result 1(1)° — 3.5(1)* + 2.75(1)° + 2.125(1)* — 3.875(1) + 1.25 = —0.25,

ans =
-0.2500
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We can evaluate the derivative f'(x) = 5x* — 14x° + 8.25x* + 4.25x — 3.875 by

>> polyder (a)

ans =

5.0000 -14.0000 8.2500 4.2500 -3.8750

Next, let us create a quadratic polynomial that has roots corresponding to two of the original
roots of Eq. (E7.7.1): 0.5 and —1. This quadratic is (x — 0.5)(x + 1) = X+ 05x — 05
and can be entered into MATLAB as the vector b,

>> b=[1 0.5 -0.5];
We can divide this polynomial into the original polynomial by

>> [d,e] =deconv(a,b)

with the result being a quotient (a third-order polynomial d) and a remainder (e),

d
.0000 -4.0000 5.2500 =-2.5000

=

e
0 0 0 0 0 0

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

>> roots(d)

with the expected result that the remaining roots of the original polynomial (E7.7.1) are found,

ans =
2.0000
1.0000 + 0.50001
1.0000 - 0.50001

We can now multiply d by b to come up with the original polynomial,

>> conv(d, b)
ans =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

Finally, we can determine all the roots of the original polynomial by

>> r=roots(a)

r =
-1.0000

.0000

.0000 + 0.50001

.0000 - 0.50001

.5000

orRrRNR
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7.7.3 Mathcad

Mathcad has a numeric mode function called root that can be used to solve an equation of a
single variable. The method requires that you supply a function f(x) and either an initial guess
or a bracket. When a single guess value is used, root uses the Secant and Miiller methods. In
the case where two guesses that bracket a root are supplied, it uses a combination of the
Ridder method (a variation of false position) and Brent’s method. It iterates until the magnitude
of f{x) at the proposed root is less than the predefined value of TOL. The Mathcad imple-
mentation has similar advantages and disadvantages as conventional root location methods
such as issues concerning the quality of the initial guess and the rate of convergence.

Mathcad can find all the real or complex roots of polynomials with polyroots. This nu-
meric or symbolic mode function is based on the Laguerre method. This function does not
require initial guesses, and all the roots are returned at the same time.

Mathcad contains a numeric mode function called Find that can be used to solve up to
50 simultaneous nonlinear algebraic equations. The Find function chooses an appropriate
method from a group of available methods, depending on whether the problem is linear or
nonlinear, and other attributes. Acceptable values for the solution may be unconstrained or
constrained to fall within specified limits. If Find fails to locate a solution that satisfies the
equations and constraints, it returns the error message “did not find solution.” However, Mathcad
also contains a similar function called Minerr. This function gives solution results that mini-
mize the errors in the constraints even when exact solutions cannot be found. Thus, the prob-
lem of solving for the roots of nonlinear equations is closely related to both optimization and
nonlinear least squares. These areas and Minerr are covered in detail in Parts Four and Five.

Figure 7.7 shows a typical Mathcad worksheet. The menus at the top provide quick
access to common arithmetic operators and functions, various two- and three-dimensional

FIGURE 7.7
Mathcad screen to find the root
of a single equation.

M Mathcad

M) File Edt View Insert Format Tools Symbolics Window Help

SOLVING AN EQUATION WITH A SINGLE UNKNOWN

Enter a function f(x):

fi{x}) =x— cos(x) 10

Enter a given value for x;
x =1

Solve for the root:

f(z) 0 r4
soln = root (f{x) ,x) =

soln = 0.739083

-10
—-10 0 10
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plot types, and the environment to create subprograms. Equations, text, data, or graphs
can be placed anywhere on the screen. You can use a variety of fonts, colors, and styles
to construct worksheets with almost any design and format that pleases you. Consult the
summary of the Mathcad User’s manual in Appendix C or the full manual available from
MathSoft. Note that in all our Mathcad examples, we have tried to fit the entire Mathcad
session onto a single screen. You should realize that the graph would have to be placed
below the commands to work properly.

Let’s start with an example that solves for the root of f(x) = x — cos x. The first
step is to enter the function. This is done by typing f(x): which is automatically converted
to f(x):= by Mathcad. The := is called the definition symbol. Next an initial guess is
input in a similar manner using the definition symbol. Now, soln is defined as root(f(x), x),
which invokes the secant method with a starting value of 1.0. Iteration is continued until
f(x) evaluated at the proposed root is less than TOL. The value of TOL is set from the
Math/Options pull down menu. Finally the value of soln is displayed using a normal
equal sign (=). The number of significant figures is set from the Format/Number pull
down menu. The text labels and equation definitions can be placed anywhere on the
screen in a number of different fonts, styles, sizes, and colors. The graph can be placed
anywhere on the worksheet by clicking to the desired location. This places a red cross
hair at that location. Then use the Insert/Graph/X-Y Plot pull down menu to place an
empty plot on the worksheet with place-holders for the expressions to be graphed and
for the ranges of the x and y axes. Simply type f(z) in the placeholder on the y axis and
—10 and 10 for the z-axis range. Mathcad does all the rest to produce the graph shown
in Fig. 7.7. Once the graph has been created you can use the Format/Graph/X-Y Plot
pull down menu to vary the type of graph; change the color, type, and weight of the
trace of the function; and add titles, labels and other features.

Figure 7.8 shows how Mathcad can be used to find the roots of a polynomial using
the polyroots function. First, p(x) and v are input using the := definition symbol. Note
that v is a vector that contains the coefficients of the polynomial starting with zero-order
term and ending in this case with the third-order term. Next, r is defined (using :=) as
polyroots(v), which invokes the Laguerre method. The roots contained in r are displayed
as r’ using a normal equal sign (=). Next, a plot is constructed in a manner similar to the
above, except that now two range variables, x and j, are used to define the range of the x
axis and the location of the roots. The range variable for x is constructed by typing x and
then “:” (which appears as :=) and then —4, and then “,” and then —3.99, and then “;”
(which is transformed into .. by Mathcad), and finally 4. This creates a vector of values of
x ranging from —4 to 4 with an increment of 0.01 for the x axis with corresponding values
for p(x) on the y axis. The j range variable is used to create three values for r and p(r) that
are plotted as individual small circles. Note that again, in our effort to fit the entire Mathcad
session onto a single screen, we have placed the graph above the commands. You should
realize that the graph would have to be below the commands to work properly.

The last example shows the solution of a system of nonlinear equations using a
Mathcad Solve Block (Fig. 7.9). The process begins with using the definition symbol to
create initial guesses for x and y. The word Given then alerts Mathcad that what follows
is a system of equations. Then comes the equations and inequalities (not used here). Note
that for this application Mathcad requires the use of a symbolic equal sign typed as
[Ctrl]= or < and > to separate the left and right sides of an equation. Now, the variable
vec is defined as Find (x,y) and the value of vec is shown using an equal sign.
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FIGURE 7.8 ;i
Mathcad screen fo solve for - =
roots Of polynomiol. m File Edit VYiew Insert Format Tools SVITMCS Window I'Hp
FINDING THE ROOT OF A POLYNOMIAL
Input a polynomial: 40
pE) =x’—10x+2
Input vector of coefficients,
beginning with the constant term: p(x) /\
2 - 0
_|-10 piry)
V P 0 0 o
1
: —40
Determine the roots: -5 0 5
r = polyroots(v) X, 1
r’ =(-3.257897 0.20081 3.057087)
Create a plot:
x:=-4,-399.4
j=0,1.2
FIGURE 7.9 :
Mathcad screen to solve a = =
system of nonlinear equations. File Edit View Insert Format Tools Symbolics Window Help

SOLVING A NONLINEAR SYSTEM OF EQUATIONS

Enter guesses for the n unknowns:

x=1
y=3.5
Given

Enter the n equations:

¥ +xy-10=0 [Note: Use the symbolic equal sign [Ctrl=
y+3xy-57=0 for equations within the Solve Block]

Solve the system:
vec = Find(x, y)

Solution:

-3
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PROBLEMS

7.1 Divide a polynomial f(x) = x* — 7.5x* + 14.5x* + 3x — 20
by the monomial factor x — 2. Is x = 2 a root?

7.2 Divide a polynomial f(x) = x° — 5x* + x> — 6x> — 7x + 10 by
the monomial factor x — 2.

7.3 Use Miiller’s method to determine the positive real root of

@ f)=x"+x*—4x—4

(b) f(x) = x* — 0.5x% + 4x — 2

7.4 Use Miiller’s method or MATLAB to determine the real and
complex roots of

@ f)=x-x*+2x—-2

(b) fx) = 2x* + 62> + 8

© fy=x*—2+6x—2x+5

7.5 Use Bairstow’s method to determine the roots of

@) f(x) = =2+ 6.2x — 4x* + 0.7x°

(b) f(x) =9.34 — 21.97x + 16.3x> — 3.704x°

© fy=x*—2+6x>—2x+5

7.6 Develop a program to implement Miiller’s method. Test it by
duplicating Example 7.2.

7.7 Use the program developed in Prob. 7.6 to determine the real
roots of Prob. 7.4a. Construct a graph (by hand or with a software
package) to develop suitable starting guesses.

7.8 Develop a program to implement Bairstow’s method. Test it by
duplicating Example 7.3.

7.9 Use the program developed in Prob. 7.8 to determine the roots
of the equations in Prob. 7.5.

7.10 Determine the real root of x> = 80 with Excel, MATLAB or
Mathcad.

7.11 The velocity of a falling parachutist is given by

m
v = L(l _ e*(f/m)t)
C

where g = 9.81 m/s”. For a parachutist with a drag coefficient ¢ =
15 kg/s, compute the mass m so that the velocity is v = 35 m/s at
t = 8 s. Use Excel, MATLAB or Mathcad to determine m.
7.12 Determine the roots of the simultaneous nonlinear equations
y=—-x+x+075
y + Sxy = X
Employ initial guesses of x = y = 1.2 and use the Solver tool from
Excel or a software package of your choice.
7.13 Determine the roots of the simultaneous nonlinear equations
=4+ =d'=5
X4y =16
Use a graphical approach to obtain your initial guesses. Determine

refined estimates with the Solver tool from Excel or a software
package of your choice.

7.14 Perform the identical MATLAB operations as those in
Example 7.7 or use a software package of your choice to find all the
roots of the polynomial

fx)=(x+2)(x+ 5 -6 —4x—8)

Note that the poly function can be used to convert the roots to a
polynomial.

7.15 Use MATLAB or Mathcad to determine the roots for the
equations in Prob. 7.5.

7.16 A two-dimensional circular cylinder is placed in a high-speed
uniform flow. Vortices shed from the cylinder at a constant
frequency, and pressure sensors on the rear surface of the cylinder
detect this frequency by calculating how often the pressure oscil-
lates. Given three data points, use Miiller’s method to find the time
where the pressure was zero.

Time

| 0.60 0.62 0.64
Pressure | 20 50 60

7.17 When trying to find the acidity of a solution of magne-
sium hydroxide in hydrochloric acid, we obtain the following
equation

A(x) = x>+ 3.5x2 — 40

where x is the hydronium ion concentration. Find the hydronium
ion concentration for a saturated solution (acidity equals zero)
using two different methods in MATLAB (for example, graphically
and the roots function).

7.18 Consider the following system with three unknowns a, u,
and v:

Ww—2v"=a

u+tv=2

@ —-2a—u=0

2

Solve for the real values of the unknowns using: (a) the Excel
Solver and (b) a symbolic manipulator software package.

7.19 In control systems analysis, transfer functions are developed
that mathematically relate the dynamics of a system’s input to its
output. A transfer function for a robotic positioning system is
given by

C(s) s° + 9s° + 265 + 24

G(s) = =
) N(s) s* + 155 + 775> + 1535 + 90

where G(s) = system gain, C(s) = system output, N(s) = system
input, and s = Laplace transform complex frequency. Use a
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numerical technique to find the roots of the numerator and denomi-
nator and factor these into the form

(s +a)(s + a)(s + az)
(s + b)(s + by)(s + b3)(s + by)

G(s) =

where a; and b; = the roots of the numerator and denominator,
respectively.

7.20 Develop an M-file function for bisection in a similar fashion
to Fig. 5.10. Test the function by duplicating the computations from
Examples 5.3 and 5.4.

7.21 Develop an M-file function for the false-position method. The
structure of your function should be similar to the bisection
algorithm outlined in Fig. 5.10. Test the program by duplicating
Example 5.5.

7.22 Develop an M-file function for the Newton-Raphson method
based on Fig. 6.4 and Sec. 6.2.3. Along with the initial guess, pass
the function and its derivative as arguments. Test it by duplicating
the computation from Example 6.3.

7.23 Develop an M-file function for the secant method based on
Fig. 6.4 and Sec. 6.3.2. Along with the two initial guesses, pass the
function as an argument. Test it by duplicating the computation
from Example 6.6.

7.24 Develop an M-file function for the modified secant method
based on Fig. 6.4 and Sec. 6.3.2. Along with the initial guess and
the perturbation fraction, pass the function as an argument. Test it
by duplicating the computation from Example 6.8.
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Case Studies:
Roots of Equations

The purpose of this chapter is to use the numerical procedures discussed in Chaps. 5, 6,
and 7 to solve actual engineering problems. Numerical techniques are important for
practical applications because engineers frequently encounter problems that cannot be
approached using analytical techniques. For example, simple mathematical models that
can be solved analytically may not be applicable when real problems are involved. Thus,
more complicated models must be employed. For these cases, it is appropriate to imple-
ment a numerical solution on a computer. In other situations, engineering design prob-
lems may require solutions for implicit variables in complicated equations.

The following case studies are typical of those that are routinely encountered during
upper-class courses and graduate studies. Furthermore, they are representative of prob-
lems you will address professionally. The problems are drawn from the four major
disciplines of engineering: chemical, civil, electrical, and mechanical. These applications
also serve to illustrate the trade-offs among the various numerical techniques.

The first application, taken from chemical engineering, provides an excellent example
of how root-location methods allow you to use realistic formulas in engineering practice.
In addition, it also demonstrates how the efficiency of the Newton-Raphson technique is
used to advantage when a large number of root-location computations is required.

The following engineering design problems are taken from civil, electrical, and mechan-
ical engineering. Section 8.2 uses bisection to determine changes in rainwater chemistry due
to increases in atmospheric carbon dioxide. Section 8.3 shows how the roots of transcendental
equations can be used in the design of an electrical circuit. Sections 8.2 and 8.3 also illustrate
how graphical methods provide insight into the root-location process. Finally, Sec. 8.4 uses a
variety of numerical methods to compute the friction factor for fluid flow in a pipe.

IDEAL AND NONIDEAL GAS LAWS
(CHEMICAL/BIO ENGINEERING)

Background. The ideal gas law is given by
pV = nRT (8.1)

where p is the absolute pressure, V is the volume, 7 is the number of moles, R is the
universal gas constant, and 7 is the absolute temperature. Although this equation is
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widely used by engineers and scientists, it is accurate over only a limited range of pres-
sure and temperature. Furthermore, Eq. (8.1) is more appropriate for some gases than
for others.

An alternative equation of state for gases is given by

(p + i)(u — b) =RT 8.2)
v

known as the van der Waals equation, where v = V/n is the molal volume and a and b
are empirical constants that depend on the particular gas.

A chemical engineering design project requires that you accurately estimate the molal
volume (v) of both carbon dioxide and oxygen for a number of different temperature and
pressure combinations so that appropriate containment vessels can be selected. It is also
of interest to examine how well each gas conforms to the ideal gas law by comparing the
molal volume as calculated by Eqs. (8.1) and (8.2). The following data are provided:

R = 0.082054 L atm/(mol K)

a =359 } carbon dioxide
b = 0.04267

a = 1.360 } oxygen

b = 0.03183

The design pressures of interest are 1, 10, and 100 atm for temperature combinations of
300, 500, and 700 K.

Solution.  Molal volumes for both gases are calculated using the ideal gas law, with n = 1.

For example, if p = 1 atm and 7 = 300 K,

V. RT L atm 300 K
v=—=

— = 0.082054
n p mol K 1 atm

= 24.6162 L/mol

These calculations are repeated for all temperature and pressure combinations and
presented in Table 8.1.

TABLE 8.1 Computations of molal volume.

Molal Volume Molal Volume
Molal Volume (van der Waals) (van der Waals)

Temperature, Pressure, (ldeal Gas Law), Carbon Dioxide, Oxygen,
K atm L/mol L/mol L/mol
300 1 24.6162 24.5126 24.5928
10 2.4616 2.3545 2.4384

100 0.2462 0.0795 0.2264

500 1 41.0270 40.9821 41.0259
10 4.1027 4.0578 4.1016

100 0.4103 0.3663 0.4116

700 1 57.4378 57.4179 57.4460
10 5.7438 5.7242 57521

100 0.5744 0.5575 0.5842
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The computation of molal volume from the van der Waals equation can be accom-
plished using any of the numerical methods for finding roots of equations discussed in
Chaps. 5, 6, and 7, with

fw) = <p + 32>(v — b) — RT 83)

In this case, the derivative of f(v) is easy to determine and the Newton-Raphson method is
convenient and efficient to implement. The derivative of f(v) with respect to v is given by
a 2ab

o) = p— & 4 8.4
f'w)=p 2T (8.4)

The Newton-Raphson method is described by Eq. (6.6):

_ fv)
f(vy)

which can be used to estimate the root. For example, using the initial guess of 24.6162,
the molal volume of carbon dioxide at 300 K and 1 atm is computed as 24.5126 L/mol.
This result was obtained after just two iterations and has an g, of less than 0.001 percent.

Similar computations for all combinations of pressure and temperature for both gases
are presented in Table 8.1. It is seen that the results for the ideal gas law differ from
those for the van der Waals equation for both gases, depending on specific values for p
and 7. Furthermore, because some of these results are significantly different, your design
of the containment vessels would be quite different, depending on which equation of
state was used.

In this case, a complicated equation of state was examined using the Newton-Raphson
method. The results varied significantly from the ideal gas law for several cases. From
a practical standpoint, the Newton-Raphson method was appropriate for this application
because f(v) was easy to calculate. Thus, the rapid convergence properties of the
Newton-Raphson method could be exploited.

In addition to demonstrating its power for a single computation, the present design
problem also illustrates how the Newton-Raphson method is especially attractive when
numerous computations are required. Because of the speed of digital computers, the
efficiency of various numerical methods for most roots of equations is indistinguishable
for a single computation. Even a 1-s difference between the crude bisection approach
and the efficient Newton-Raphson does not amount to a significant time loss when only
one computation is performed. However, suppose that millions of root evaluations are
required to solve a problem. In this case, the efficiency of the method could be a decid-
ing factor in the choice of a technique.

For example, suppose that you are called upon to design an automatic computerized
control system for a chemical production process. This system requires accurate estimates
of molal volumes on an essentially continuous basis to properly manufacture the final
product. Gauges are installed that provide instantaneous readings of pressure and tempera-
ture. Evaluations of v must be obtained for a variety of gases that are used in the process.

For such an application, bracketing methods such as bisection or false position would
probably be too time-consuming. In addition, the two initial guesses that are required for

Vi1 — V;
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8.2

these approaches may also interject a critical delay in the procedure. This shortcoming
is relevant to the secant method, which also needs two initial estimates.

In contrast, the Newton-Raphson method requires only one guess for the root. The
ideal gas law could be employed to obtain this guess at the initiation of the process.
Then, assuming that the time frame is short enough so that pressure and temperature do
not vary wildly between computations, the previous root solution would provide a good
guess for the next application. Thus, the close guess that is often a prerequisite for con-
vergence of the Newton-Raphson method would automatically be available. All the above
considerations would greatly favor the Newton-Raphson technique for such problems.

GREENHOUSE GASES AND RAINWATER
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background.  Civil engineering is a broad field that includes such diverse areas as structural,
geotechnical, transportation, water-resources, and environmental engineering. The last area has
traditionally dealt with pollution control. However, in recent years, environmental engineers
(as well as chemical engineers) have addressed broader problems such as climate change.

It is well documented that the atmospheric levels of several greenhouse gases have
been increasing over the past 50 years. For example, Fig. 8.1 shows data for the partial
pressure of carbon dioxide (CO,) collected at Mauna Loa, Hawaii, from 1958 through
2003. The trend in the data can be nicely fit with a quadratic polynomial (in Part Five, we
will learn how to determine such polynomials),

Peo, = 0.011825(1 — 1980.5)% + 1.356975(¢ — 1980.5) + 339

where pco, = the partial pressure of CO, in the atmosphere [ppm]. The data indicate that
levels have increased over 19% during the period from 315 to 376 ppm.

FIGURE 8.1
Average annual partial pressures of atmospheric carbon dioxide (ppm) measured af Mauna Log,
Hawaii.
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Aside from global warming, greenhouse gases can also influence atmospheric chemistry.
One question that we can address is how the carbon dioxide trend is affecting the pH of
rainwater. Outside of urban and industrial areas, it is well documented that carbon dioxide is
the primary determinant of the pH of the rain. pH is the measure of the activity of hydrogen
ions and, therefore, its acidity. For dilute aqueous solutions, it can be computed as

pH = —log;o[H"] (8.5)

where [H'] is the molar concentration of hydrogen ions.
The following five nonlinear system of equations govern the chemistry of rainwater,

¢ [H'][HCO; ]

K, =10 (8.6)

! KHPCO2

_ [H'][CO3 7]

" [HCO;] @7

K, = [H"][OH] (8.8)
K

cr = ZSEOZ + [HCO; ] + [CO37] (8.9)
0 = [HCO5] + 2[CO3 1+ [OH ] — [H"] (8.10)

where Ky = Henry’s constant, and K, K,, and K,, are equilibrium coefficients. The five
unknowns in this system of five nonlinear equations are c; = total inorganic carbon,
[HCO; | = bicarbonate, [CO§_] = carbonate, [H'] = hydrogen ion, and [OH | =
hydroxyl ion. Notice how the partial pressure of CO, shows up in Egs. (8.6) and (8.9).

Use these equations to compute the pH of rainwater given that Ky = 10~ ',
K, =10 K, = 107" and K,, = 10~ "*. Compare the results in 1958 when the Pco,
was 315 and in 2003 when it was 375 ppm. When selecting a numerical method for your

computation, consider the following:

¢ You know with certainty that the pH of rain in pristine areas always falls between
2 and 12.

e You also know that your measurement devices can only measure pH to two places of
decimal precision.

Solution.  There are a variety of ways to solve this nonlinear system of five equations.
One way is to eliminate unknowns by combining them to produce a single function that
only depends on [H']. To do this, first solve Egs. (8.6) and (8.7) for

_ K,
HCO; ]| = ——K, 8.11
[ 3 ] 10°[H] HDco, (8.11)
_ K>[HCO; |
Co3 1=—"—"— 8.12
[ 3 ] [H+] ( )
Substitute Eq. (8.11) into (8.12)
. KK,
[CO5 ] = Kupco, (8.13)

106[H+]2
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8.3

Equations (8.11) and (8.13) can be substituted along with Eq. (8.8) into Eq. (8.10) to give

K, K>K;

0=—""K +2——K, +
106[H+] HPco, 106[H+]2 HPco,

Kw +
[H] [H"] (8.14)
Although it might not be apparent, this result is a third-order polynomial in [H*]. Thus,
its root can be used to compute the pH of the rainwater.

Now we must decide which numerical method to employ to obtain the solution.
There are two reasons why bisection would be a good choice. First, the fact that the pH
always falls within the range from 2 to 12 provides us with two good initial guesses.
Second, because the pH can only be measured to two decimal places of precision, we
will be satisfied with an absolute error of E,; = 0.005. Remember that given an initial
bracket and the desired relative error, we can compute the number of iterations a priori.
Using Eq. (5.5), the result is n = 1og,(10)/0.005 = 10.9658. Thus, eleven iterations of
bisection will produce the desired precision.

If this is done, the result for 1958 will be a pH of 5.6279 with a relative error of
0.0868%. We can be confident that the rounded result of 5.63 is correct to two decimal
places. This can be verified by performing another run with more iterations. For example,
if we perform 35 iterations, a result of 5.6304 is obtained with an approximate relative
error of £, = 5.17 X 10°%. The same calculation can be repeated for the 2003 condi-
tions to give pH = 5.59 with ¢, = 0.0874%.

Interestingly, these results indicate that the 19% rise in atmospheric CO, levels has
produced only a 0.67% drop in pH. Although this is certainly true, remember that the
pH represents a logarithmic scale as defined by Eq. (8.5). Consequently, a unit drop in
pH represents a 10-fold increase in hydrogen ion. The concentration can be computed
as [H] = 107P" and the resulting percent change can be calculated as 9.1%. Therefore,
the hydrogen ion concentration has increased about 9%.

There is quite a lot of controversy related to the true significance of the greenhouse gas
trends. However, regardless of the ultimate implications, it is quite sobering to realize that
something as large as our atmosphere has changed so much over a relatively short time
period. This case study illustrates how numerical methods can be employed to analyze and
interpret such trends. Over the coming years, engineers and scientists can hopefully use such
tools to gain increased understanding and help rationalize the debate over their ramifications.

DESIGN OF AN ELECTRIC CIRCUIT
(ELECTRICAL ENGINEERING)

Background. Electrical engineers often use Kirchhoff’s laws to study the steady-state
(not time-varying) behavior of electric circuits. Such steady-state behavior will be exam-
ined in Sec. 12.3. Another important problem involves circuits that are transient in nature
where sudden temporal changes take place. Such a situation occurs following the closing
of the switch in Fig. 8.2. In this case, there will be a period of adjustment following the
closing of the switch as a new steady state is reached. The length of this adjustment
period is closely related to the storage properties of the capacitor and the inductor. Energy
storage may oscillate between these two elements during a transient period. However,
resistance in the circuit will dissipate the magnitude of the oscillations.
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FIGURE 8.2

An electric circuit. When the
switch is closed, the current will
undergo a series of oscillations
until a new steady sfafe is
reached.

N\ A
Switch “ ;
Battery — V, ~|» Capacitor %Inductor
+ +
A
Resistor

The flow of current through the resistor causes a voltage drop (V) given by

VR = iR
where i = the current and R = the resistance of the resistor. When R and i have units
of ohms and amperes, respectively, Vi has units of volts.

Similarly, an inductor resists changes in current, such that the voltage drop V; across
it is

Vi, =L—

F

where L = the inductance. When L and i have units of henrys and amperes, respectively,

V; has units of volts and ¢ has units of seconds.
The voltage drop across the capacitor (V) depends on the charge (¢) on it:

Ve= (8.15)
where C = the capacitance. When the charge is expressed in units of coulombs, the unit
of C is the farad.

Kirchhoff’s second law states that the algebraic sum of voltage drops around a closed
circuit is zero. After the switch is closed we have

di q
L—+Ri+—==0 8.16
dt e (810
However, the current is related to the charge according to
dgq
| = — 8.17
T ®1
Therefore,
d*q dg 1
L— +R—+—¢g=0 8.18
dr’ ar ¢ ®19)

This is a second-order linear ordinary differential equation that can be solved using the
methods of calculus. This solution is given by

1 R

2
q(t) = qOeRt/QL)COS{ E _ <2L) l‘] (8.19)
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FIGURE 8.3

The charge on a capacitor as a
function of time following the
closing of the switch in

Fig. 8.2.

where att = 0, ¢ = g9 = V,,C, and V,, = the voltage from the charging battery. Equation
