CHAPTER TWO

Thermodynamic Properties of Fluids

Learning Objectives

- Develop from the first and second laws the fundamental property relations which underlie the mathematical structure of thermodynamics
- Derive equations which allow calculation of enthalpy and entropy values from PVT and heatcapacity data.
- Develop generalized correlations which provide estimates of property values in the absence of complete experimental information.

Property Relations for Homogeneous Phases

■ The 1st law of thermodynamics for a simple compressible system that undergoes an internally reversible process of n moles is:

$$d(nU)_{rev} = \delta Q_{rev} + \delta W_{rev}$$
 2.1

The incremental heat interaction δQ_{rev} is related directly to the entropy change through the formal definition of entropy:(**Entropy**, the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.)

$$dS = \left(\frac{\delta Q}{T}\right)_{rev} \qquad or \qquad \delta Q_{rev} = Td(nS) \qquad 2.2$$

For a simple compressible system, the only reversible work mode is compression and/or expansion, that is:

$$\delta W_{rev} = -Pd(nV)$$
 2.3

• Substituting these expressions for δQ_{rev} and δW_{rev} into the 1st - law statement yields:

$$d(nU) = Td(nS) - Pd(nV)$$
2. 4(a)

Rearranging Eq. (2.4a)

$$Td(nS) = d(nU) + Pd(nV)$$
2. 4(b)

- This equation contains only properties of the system.
- Properties depend on state alone, and not on the kind of process that leads to the state.
- Thus Eq. (2.4) applies to any process in a system of **constant** mass that results in a differential change from **one equilibrium** state to another.
- The only requirements are that the system be closed and that the change occurs between equilibrium states.

- All of the primary thermodynamic properties: P, V, T, U, and S are included in Eq. (2.4).
- Additionally two properties, also defined for convenience, are:
- i. Gibbs free energy or Gibbs function, G: is a composite property involving enthalpy and entropy and is defined as: G = H TS2. 5

ii. Helmholtz Free Energy or Helmholtz Function, A: is also a property, defined similarly to the Gibbs free energy, with the internal energy replacing the enthalpy, that is,

A = U - TS

2.6

• The **enthalpy** was defined by the equation for **n moles** is:

$$nH = nU + P(nV) 2.7$$

Differentiating Eq. (2.7) gives:

$$d(nH) = d(nU) + Pd(nV) + (nV)dP$$

• When d(nU) is **replaced** by Eq. (2.4(a)), this reduces to:

$$d(nH) = Td(nS) + (nV)dP$$
2.8

• Similarly, **Differentiating Helmholtz Function**, Eq. (2.6):

$$d(nA) = d(nU) - Td(nS) - (nS)dT$$

■ Eliminating d(nU) by Eq. (2.4(a)) gives:

$$d(nA) = -Pd(nV) - (nS)dT$$
2.9

In the same fusion, differentiating the Gibbs function, Eq. (2.5) d(nG) = d(nH) - Td(nS) - (nS)dT

2.10

• Eliminating d(nH) by Eq. (2.8) gives:

$$d(nG) = (nV)dP - (nS)dT$$

- All the above equations are written for the entire mass of any closed system.
- The immediate application of these equations is to **one mole** (**or to a unit mass**) **of a homogeneous fluid of constant composition**.
- For this case, they simplify to:

$$dU = TdS - PdV$$

$$dH = TdS + VdP$$

$$2. 12$$

$$dA = -PdV - SdT$$

$$2. 13$$

$$dG = VdP - SdT$$

$$2. 14$$

✓ These fundamental property relations; Eqs. (2.11) through Eq. (2.14) are general equations for a homogeneous fluid of constant composition.

- Another set of equations follows from Eqs. (2.11) through Eq. (2.14) by application of the criterion of **exactness** for a differential expression.
- If F = F(x, y), then the total differential of F is defined as:

$$dF = \left(\frac{\partial F}{\partial x}\right)_{y} dx + \left(\frac{\partial F}{\partial y}\right)_{x} dy \quad \text{or} \quad dF = Mdx + Ndy \qquad 2.15$$
Where: $M = \left(\frac{\partial F}{\partial x}\right)_{y} \quad \text{and} \quad N = \left(\frac{\partial F}{\partial y}\right)_{y}$

Taking the partial derivative of M with respect to y and of N with respect to x yields:

$$\left(\frac{\partial M}{\partial y}\right)_{x} = \frac{\partial^{2} F}{\partial y \partial x} \qquad \text{and} \qquad \left(\frac{\partial N}{\partial x}\right)_{y} = \frac{\partial^{2} F}{\partial x \partial y}$$

- The order of differentiation is immaterial for properties since they are continuous point functions and have exact differentials.
- Therefore, the two relations above are identical:

$$\left(\frac{\partial M}{\partial y}\right)_{y} = \left(\frac{\partial N}{\partial x}\right)_{y}$$
 2.16

- This is an important relation for partial derivatives, and it is used in calculus to test whether a differential dF is **exact or inexact.**
- In thermodynamics, this relation forms the basis for the development of the **Maxwell relations**
- Since U, H, A, and G are properties and thus have exact differentials.
- \blacksquare Applying Eq. (2.16) to each of them, we obtain:

$$\begin{pmatrix} \frac{\partial T}{\partial V} \rangle_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V} \\
\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P} \\
\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T} \\
\left(\frac{\partial V}{\partial T}\right)_{R} = -\left(\frac{\partial S}{\partial P}\right)_{T} \\
2.17$$

$$2.18$$

$$2.19$$

- The Eqs (2.17) through Eq. (2.20) are called the Maxwell relations.
- They are **extremely valuable** in thermodynamics because they provide a means of **determining the change in entropy**, which **cannot be measured directly**, by simply measuring the changes in properties P, V, and T.
- Note that the Maxwell relations given above are limited to simple compressible systems.
- We develop here only a few expressions useful for evaluation of thermodynamic properties from experimental data.
- Their derivation requires application of Eqs. (2.11), (2.12), (2.19), and (2.20).

Enthalpy and Entropy as Functions of T and P

- The most useful property relations for the **enthalpy** and **entropy** of a homogeneous phase result when these properties are **expressed as functions of T and P.**
- What we need to know is how **H** and **S** vary with temperature and pressure; Consider first the temperature derivatives.

$$\left(\frac{\partial H}{\partial T}\right)_{n} = C_{P} \tag{2.21}$$

- Equation (2.21) defines the heat capacity at constant pressure:
- Another expression for this quantity is obtained by division of Eq. (2.12) by dT and restriction of the result to constant P:

$$\left(\frac{\partial H}{\partial T}\right)_{n} = T\left(\frac{\partial S}{\partial T}\right)_{n}$$
 2.22

■ Combination of Eq. (2.22) with Eq. (2.21) gives:

$$\left(\frac{\partial S}{\partial T}\right)_{n} = \frac{C_{P}}{T}$$
 2.23

■ The pressure derivative of the entropy results directly from Eq. (2.20):

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{T}$$
2.24

■ The corresponding derivative for the enthalpy is found by division of Eq. (2.12) by dP and restriction to constant T:

$$\left(\frac{\partial H}{\partial P}\right)_{T} = T\left(\frac{\partial S}{\partial P}\right)_{T} + V$$

 \blacksquare As a result of Eq. (2.24) to the above equation becomes:

$$\left(\frac{\partial H}{\partial P}\right)_{T} = V - T \left(\frac{\partial V}{\partial T}\right)_{T}$$
2.25

■ The functional relations chosen here for H and S are:

$$\mathbf{H} = \mathbf{H}(\mathbf{T}, \mathbf{P})$$

and

$$S = S(T, P)$$

Whence;

$$dH = \left(\frac{\partial H}{\partial T}\right)_{P} dT + \left(\frac{\partial H}{\partial P}\right)_{T} dP \quad and \quad dS = \left(\frac{\partial S}{\partial T}\right)_{P} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP$$

■ The partial derivatives in these two equations are given by the following equations and (2.23) through (2.25):

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_p \right] dP$$

2.26

$$dS = C_{P} \frac{dT}{T} - \left(\frac{\partial V}{\partial T}\right)_{p} dP$$

2.27

■ These are general equations relating the properties of homogeneous fluids of constant composition to temperature and pressure

Internal Energy as a Function of P

■ The **pressure dependence** of the internal energy is obtained by differentiation of the equation:

$$\mathbf{U} = \mathbf{H} - \mathbf{P}\mathbf{V}$$

$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{P}}\right)_{\mathbf{T}} = \left(\frac{\partial \mathbf{H}}{\partial \mathbf{P}}\right)_{\mathbf{T}} - \mathbf{P}\left(\frac{\partial \mathbf{V}}{\partial \mathbf{P}}\right)_{\mathbf{T}} - \mathbf{V}$$

• Then by Eq. (2.25):

■ Substitute Eq. (2.25) to the above equations:

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} - P\left(\frac{\partial V}{\partial P}\right)_{T}$$
2. 28

The Ideal-Gas State

- The coefficients of dT and dP in **Eqs.** (2.26) and (2.27) are evaluated from heat-capacity and PVT data.
- The ideal-gas state provides an example of PVT behavior:

$$PV^{ig} = RT \qquad \left(\frac{\partial V^{ig}}{\partial T}\right)_{p} = \frac{R}{P}$$

■ Where: superscript "ig" denotes an ideal-gas value.

$$dH^{ig} = C_P^{ig} dT$$
 2.29
$$dS^{ig} = C_P^{ig} \frac{dT}{T} - R \frac{dP}{P}$$
 2.30

Alternative Forms for Liquids

• Eq (2.23) through (2.26) are expressed in an alternative form by elimination of $\left(\frac{\partial V}{\partial T}\right)_P$ in favor of the volume expansivity β by Eq. (1.3) and of $\left(\frac{\partial V}{\partial P}\right)_T$ in favor of the isothermal compressibility κ by Eq. (1.4):

$$\begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix}_{T} = -\beta V \qquad 2.31 \qquad \beta \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P} \\
\begin{pmatrix} \frac{\partial H}{\partial P} \end{pmatrix}_{T} = (1 - \beta T) V \qquad 2.32 \\
\begin{pmatrix} \frac{\partial U}{\partial P} \end{pmatrix}_{T} = (\kappa P - \beta T) V \qquad 2.33$$

- The above general equations, incorporating β and κ are usually applied only to liquids.
- However, for liquids not near the critical point, the volume itself is small, as are β and κ.

Alternative Forms for Liquids

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p} \qquad 2.24$$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = V - T\left(\frac{\partial V}{\partial T}\right)_{p} \qquad 2.25$$

$$\left(\frac{\partial U}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} - P\left(\frac{\partial V}{\partial P}\right)_{T} \qquad 2.28$$

- Thus at most conditions pressure has little effect on the properties of liquids;
 - ✓ Which is the special case of an incompressible fluid.
- When $\left(\frac{\partial V}{\partial T}\right)_P$ is replaced in Eqs. (2.26) and (2.27) in favor of the volume expansivity, they become:

$$dH = C_P dT + (1 - \beta T)VdP$$

$$dS = C_P \frac{dT}{T} - \beta VdP$$
2.34

• Since β and κ are weak functions of pressure for liquids, they are usually assumed constant at appropriate average values for integration of the final terms of Eqs. (2.34) and (2.35).

Internal Energy and Entropy as Functions of T and V

- Temperature and volume often serve as more convenient independent variables than do temperature and pressure.
- The most useful property relations are then for **internal energy** and **entropy.**
- Required here are the derivatives $(\frac{\partial U}{\partial T})_V$, $(\frac{\partial U}{\partial V})_T$, $(\frac{\partial S}{\partial T})_V$ and $(\frac{\partial S}{\partial V})_T$.
- The first two of these is directly from Eq. (2.11): (dU = TdS PdV)

$$\left(\frac{\partial U}{\partial T}\right)_{V} = T \left(\frac{\partial S}{\partial T}\right)_{V} \qquad \left(\frac{\partial U}{\partial V}\right)_{T} = T \left(\frac{\partial S}{\partial V}\right)_{T} - P$$

• Eq. (2.36) defines the heat capacity at constant volume:

$$\left(\frac{\partial U}{\partial T}\right)_{V} = C_{V}$$
 2.36

• With Eq. (2.36); the left side of the above equation becomes:

$$\left(\frac{\partial S}{\partial T}\right)_{V} = \frac{C_V}{T}$$

With Eq. (2.19); the right side of the above eq becomes: $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{U} - P$$
 2.38

■ The chosen functional relations here are:

$$\mathbf{U} = \mathbf{U}(\mathbf{T}, \mathbf{V})$$

$$\mathbf{S} = \mathbf{S}(\mathbf{T}, \mathbf{V})$$

Whence;

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \quad \text{and} \quad dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$

■ The partial derivatives in these two equations are given by Eqs. (2.36), (2.37), (2.38), and (2.19):

The following equations are therefore, the general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume.

$$dU = C_V dT + \left[T \left(\frac{\partial P}{\partial T} \right)_V - P \right] dV$$

$$dS = C_V \frac{dT}{T} + \left(\frac{\partial P}{\partial T} \right) dV$$
2.39

■ Equation (1.5) applied to a change of state at constant volume becomes: and the alternative forms of eq (2.39 & 2.40) are:

$$\frac{dV}{V} = \beta \, dT - \kappa \, dP \iff \left(\frac{\partial P}{\partial T}\right)_{V} = \frac{\beta}{\kappa}$$

$$dU = C_V dT + \left(\frac{\beta}{\kappa}T - P\right) dV \qquad 2.41$$

$$dS = C_V \frac{dT}{T} + \frac{\beta}{\kappa} dV \qquad 2.42$$

The Gibbs Energy as a Generating Function

- The fundamental property relations for homogenous fluids of constant composition given by Eqs. (2.11) through (2.14) show that each of the thermodynamic properties U, H, A, and G is functionally related to a special pair of variables.
- In particular:

$$dG = VdP - SdT$$

- Expresses the functional relation: G = G(P, T)
- Thus the special or **canonical** (variables confirm to a general rule that is both **simple and clear**) variables for the Gibbs energy are **temperature and pressure**.

2.14

Since these variables can be directly measured and controlled, the Gibbs energy is a thermodynamic property of great potential utility.

The Gibbs Energy as a Generating Function

■ An alternative form of Eq. (2.14), a fundamental property relation, follows from the **mathematical identity:**

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}dG - \frac{G}{RT^2}dT$$

■ Substitution for dG by Eq. (2.14) and for G=H-TS gives, after algebraic reduction:

$$d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \frac{H}{RT^2}dT$$
2.43

- The advantage of this equation is that:
 - ✓ All terms are dimensionless;
 - ✓ Moreover, in contrast to Eq. (2.14), the **enthalpy** rather than the **entropy** appears on the right side.

- Eqs such as Eqs. (2.14) and (2.43) are too general for direct practical application, but they are readily applied in **restricted** form.
- Thus, from Eq. (2.43),

$$\frac{V}{RT} = \left[\frac{\partial (G/RT)}{\partial P}\right]_{T}$$

$$\frac{H}{RT} = -T \left[\frac{\partial (G/RT)}{\partial T}\right]_{R}$$
2.44

■ When G/RT is known as a **function of T and P**, V/RT and H/RT follow by simple differentiation.

- The remaining properties are given by defining equations.
- In particular,

$$\frac{S}{R} = \frac{H}{RT} - \frac{G}{RT}$$
 and $\frac{U}{RT} = \frac{H}{RT} - \frac{PV}{RT}$

- Thus, when we know how G/RT (or G) is related to its canonical variables, T and P, i.e., when we are given G/RT = g(T, P), we can evaluate all other thermodynamic properties by simple mathematical operations.
 - ✓ The Gibbs energy when given as a function of T and P therefore serves as a generating function for the other thermodynamic properties, and implicitly represents complete property information.

■ The partial derivatives in these two equations are given by Eqs. (2.36), (2.37), (2.38), and (2.19):

$$dU = C_V dT + \left(\frac{\beta}{\kappa}T - P\right) dV$$
 2.41
$$dS = \frac{C_V}{T} dT + \frac{\beta}{\kappa} dV$$
 2.42

Example

 Determine the enthalpy and enropy changes of liquid water for a change of state from 1bar and 298.15K to 1000bar and 323.15K.
 The following data for water are available.

298.15(25) 1 75.305 18.071 2.56×10^{-6} 298.15(25) 1000 18.012 3.66×10^{-6} 323.15(50) 1 75.314 18.234 4.58×10^{-6} 323.15(50) 1000 18.174 5.68×10^{-6}	7/K (t/°C)	P/bar. C _P /kJ kmol ⁻¹ K ⁻¹ W10 ⁻¹ m³ kmol ⁻¹ β/ K ⁻¹
323.15(50) 1 75.314 18.234 458 × 10 °	298.15(25)	1 75.305 18.071 256×10^{-6}
将大型 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 14 (14) 1	298.15(25)	1000 18.012 366 × 10 ⁻⁶
323 15(50) 1000 18 174 568 x 10 °	323.15(50)	
· 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	323.15(50)	1000 18.174 568×10^{-6}