

PART SIX: THE CONTROL UNIT

CHAPTER 19

CONTROL UNIT OPERATION

19.1 MICRO-OPERATIONS... 3	

The Fetch Cycle .. 5	

The Indirect Cycle... 8	

The Interrupt Cycle ... 9	

The Execute Cycle... 9	

The Instruction Cycle... 12	

19.2 CONTROL OF THE PROCESSOR ... 13	

Functional Requirements.. 13	

Control Signals ... 16	

A Control Signals Example ... 19	

Internal Processor Organization .. 23	

The Intel 8085.. 24	

19.3 HARDWIRED IMPLEMENTATION .. 30	

Control Unit Inputs ... 30	

Control Unit Logic ... 33	

19.4 RECOMMENDED READING.. 35	

19.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 35	

Key Terms ... 35	

Review Questions ... 36	

Problems ... 36	

KEY POINTS

♦ The execution of an instruction involves the execution of a sequence of

substeps, generally called cycles. For example, an execution may consist
of fetch, indirect, execute, and interrupt cycles. Each cycle is in turn made
up of a sequence of more fundamental operations, called micro-
operations. A single micro-operation generally involves a transfer between
registers, a transfer between a register and an external bus, or a simple
ALU operation.

♦ The control unit of a processor performs two tasks: (1) It causes the
processor to step through a series of micro-operations in the proper
sequence, based on the program being executed, and (2) it generates the
control signals that cause each micro-operation to be executed.

♦ The control signals generated by the control unit cause the opening and
closing of logic gates, resulting in the transfer of data to and from
registers and the operation of the ALU.

♦ One technique for implementing a control unit is referred to as hardwired
implementation, in which the control unit is a combinatorial circuit. Its
input logic signals, governed by the current machine instruction, are
transferred into a set of output control signals.

In Chapter 12, we pointed out that a machine instruction set goes a long

way toward defining the processor. If we know the machine instruction set,

including an understanding of the effect of each opcode and an

understanding of the addressing modes, and if we know the set of user-

visible registers, then we know the functions that the processor must

perform. This is not the complete picture. We must know the external

interfaces, usually through a bus, and how interrupts are handled. With this

line of reasoning, the following list of those things needed to specify the

function of a processor emerges:

 1. Operations (opcodes)

 2. Addressing modes

 3. Registers

 4. I/O module interface

 5. Memory module interface

 6. Interrupts

This list, though general, is rather complete. Items 1 through 3 are defined

by the instruction set. Items 4 and 5 are typically defined by specifying the

system bus. Item 6 is defined partially by the system bus and partially by

the type of support the processor offers to the operating system.

 This list of six items might be termed the functional requirements for a

processor. They determine what a processor must do. This is what occupied

us in Parts Two and Four. Now, we turn to the question of how these

functions are performed or, more specifically, how the various elements of

the processor are controlled to provide these functions. Thus, we turn to a

discussion of the control unit, which controls the operation of the processor.

19.1 MICRO-OPERATIONS

We have seen that the operation of a computer, in executing a program,

consists of a sequence of instruction cycles, with one machine instruction per

cycle. Of course, we must remember that this sequence of instruction cycles

is not necessarily the same as the written sequence of instructions that

make up the program, because of the existence of branching instructions.

What we are referring to here is the execution time sequence of instructions.

 We have further seen that each instruction cycle is made up of a

number of smaller units. One subdivision that we found convenient is fetch,

indirect, execute, and interrupt, with only fetch and execute cycles always

occurring.

 To design a control unit, however, we need to break down the

description further. In our discussion of pipelining in Chapter 14, we began

to see that a further decomposition is possible. In fact, we will see that each

Program Execution

Instruction Cycle Instruction CycleInstruction Cycle

Indirect Execute InterruptFetch

µOP µOP µOP

Figure 19.1 Constituent Elements of a Program Execution

µOPµOP

of the smaller cycles involves a series of steps, each of which involves the

processor registers. We will refer to these steps as micro-operations. The

prefix micro refers to the fact that each step is very simple and accomplishes

very little. Figure 19.1 depicts the relationship among the various concepts

we have been discussing. To summarize, the execution of a program

consists of the sequential execution of instructions. Each instruction is

executed during an instruction cycle made up of shorter subcycles (e.g.,

fetch, indirect, execute, interrupt). The execution of each subcycle involves

one or more shorter operations, that is, micro-operations.

 Micro-operations are the functional, or atomic, operations of a

processor. In this section, we will examine micro-operations to gain an

understanding of how the events of any instruction cycle can be described as

a sequence of such micro-operations. A simple example will be used. In the

remainder of this chapter, we then show how the concept of micro-

operations serves as a guide to the design of the control unit.

The Fetch Cycle

We begin by looking at the fetch cycle, which occurs at the beginning of

each instruction cycle and causes an instruction to be fetched from memory.

For purposes of discussion, we assume the organization depicted in Figure

14.6 (Data Flow, Fetch Cycle). Four registers are involved:

• Memory address register (MAR): Is connected to the address lines of

the system bus. It specifies the address in memory for a read or write

operation.

• Memory buffer register (MBR): Is connected to the data lines of the

system bus. It contains the value to be stored in memory or the last

value read from memory.

• Program counter (PC): Holds the address of the next instruction to be

fetched.

• Instruction register (IR): Holds the last instruction fetched.

 Let us look at the sequence of events for the fetch cycle from the point

of view of its effect on the processor registers. An example appears in Figure

19.2. At the beginning of the fetch cycle, the address of the next instruction

to be executed is in the program counter (PC); in this case, the address is

1100100. The first step is to move that address to the memory address

register (MAR) because this is the only register connected to the address

lines of the system bus. The second step is to bring in the instruction. The

desired address (in the MAR) is placed on the address bus, the control unit

issues a READ command on the control bus, and the result appears on the

data bus and is copied into the memory buffer register (MBR). We also need

MAR MAR 0000000001100100

MBR MBR
PC 0000000001100100 PC 0000000001100100

IR IR

AC AC

 (a) Beginning (before t1) (b) After first step

MAR 0000000001100100 MAR 0000000001100100

MBR 0001000000100000 MBR 0001000000100000

PC 0000000001100101 PC 0000000001100101

IR IR 0001000000100000

AC AC

 (c) After second step (d) After third Step

Figure 19.2 Sequence of Events, Fetch Cycle

to increment the PC by the instruction length to get ready for the next

instruction. Because these two actions (read word from memory, increment

PC) do not interfere with each other, we can do them simultaneously to save

time. The third step is to move the contents of the MBR to the instruction

register (IR). This frees up the MBR for use during a possible indirect cycle.

 Thus, the simple fetch cycle actually consists of three steps and four

micro-operations. Each micro-operation involves the movement of data into

or out of a register. So long as these movements do not interfere with one

another, several of them can take place during one step, saving time.

Symbolically, we can write this sequence of events as follows:

 t1: MAR ← (PC)
 t2: MBR ← Memory
 PC ← (PC) + I
 t3: IR ← (MBR)

where I is the instruction length. We need to make several comments about

this sequence. We assume that a clock is available for timing purposes and

that it emits regularly spaced clock pulses. Each clock pulse defines a time

unit. Thus, all time units are of equal duration. Each micro-operation can be

performed within the time of a single time unit. The notation (t1, t2, t3)

represents successive time units. In words, we have

• First time unit: Move contents of PC to MAR.

• Second time unit: Move contents of memory location specified by MAR

to MBR. Increment by I the contents of the PC.

• Third time unit: Move contents of MBR to IR.

Note that the second and third micro-operations both take place during the

second time unit. The third micro-operation could have been grouped with

the fourth without affecting the fetch operation:

 t1: MAR ← (PC)
 t2: MBR ← Memory
 t3: PC ← (PC) + I
 IR ← (MBR)

The groupings of micro-operations must follow two simple rules:

 1. The proper sequence of events must be followed. Thus (MAR ← (PC))

must precede (MBR ← Memory) because the memory read operation

makes use of the address in the MAR.

 2. Conflicts must be avoided. One should not attempt to read to and

write from the same register in one time unit, because the results

would be unpredictable. For example, the micro-operations (MBR

← Memory) and (IR ← MBR) should not occur during the same time

unit.

 A final point worth noting is that one of the micro-operations involves an

addition. To avoid duplication of circuitry, this addition could be performed

by the ALU. The use of the ALU may involve additional micro-operations,

depending on the functionality of the ALU and the organization of the

processor. We defer a discussion of this point until later in this chapter.

 It is useful to compare events described in this and the following

subsections to Figure 3.5 (Example of Program Execution). Whereas micro-

operations are ignored in that figure, this discussion shows the micro-

operations needed to perform the subcycles of the instruction cycle.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands.

Continuing our simple example, let us assume a one-address instruction

format, with direct and indirect addressing allowed. If the instruction

specifies an indirect address, then an indirect cycle must precede the

execute cycle. The data flow differs somewhat from that indicated in Figure

14.7 (Data Flow, Indirect Cycle) and includes the following micro-operations:

 t1: MAR ← (IR(Address))
 t2: MBR ← Memory
 t3: IR(Address) ← (MBR(Address))

 The address field of the instruction is transferred to the MAR. This is

then used to fetch the address of the operand. Finally, the address field of

the IR is updated from the MBR, so that it now contains a direct rather than

an indirect address.

 The IR is now in the same state as if indirect addressing had not been

used, and it is ready for the execute cycle. We skip that cycle for a moment,

to consider the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether

any enabled interrupts have occurred. If so, the interrupt cycle occurs. The

nature of this cycle varies greatly from one machine to another. We present

a very simple sequence of events, as illustrated in Figure 14.8 (Data Flow,

Indirect Cycle). We have

 t1: MBR ← (PC)
 t2: MAR ← Save_Address
 PC ← Routine_Address
 t3: Memory ← (MBR)

 In the first step, the contents of the PC are transferred to the MBR, so

that they can be saved for return from the interrupt. Then the MAR is loaded

with the address at which the contents of the PC are to be saved, and the PC

is loaded with the address of the start of the interrupt-processing routine.

These two actions may each be a single micro-operation. However, because

most processors provide multiple types and/or levels of interrupts, it may

take one or more additional micro-operations to obtain the Save_Address

and the Routine_Address before they can be transferred to the MAR and PC,

respectively. In any case, once this is done, the final step is to store the

MBR, which contains the old value of the PC, into memory. The processor is

now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable. Each

involves a small, fixed sequence of micro-operations and, in each case, the

same micro-operations are repeated each time around.

 This is not true of the execute cycle. Because of the variety opcodes,

there are a number of different sequences of micro-operations that can

occur. The control unit examines the opcode and generates a sequence of

micro-operations based on the value of the opcode. This is referred to as

instruction decoding.

 Let us consider several hypothetical examples.

 First, consider an add instruction:

 ADD R1, X

which adds the contents of the location X to register R1. The following

sequence of micro-operations might occur:

 t1: MAR ← (IR(address))
 t2: MBR ← Memory
 t3: R1 ← (R1) + (MBR)

 We begin with the IR containing the ADD instruction. In the first step,

the address portion of the IR is loaded into the MAR. Then the referenced

memory location is read. Finally, the contents of R1 and MBR are added by

the ALU. Again, this is a simplified example. Additional micro-operations may

be required to extract the register reference from the IR and perhaps to

stage the ALU inputs or outputs in some intermediate registers.

 Let us look at two more complex examples. A common instruction is

increment and skip if zero:

 ISZ X

The content of location X is incremented by 1. If the result is 0, the next

instruction is skipped. A possible sequence of micro-operations is

 t1: MAR ← (IR(address))
 t2: MBR ← Memory
 t3: MBR ← (MBR) + 1
 t4: Memory ← (MBR)
 If ((MBR) = 0) then (PC ← (PC) + I)

 The new feature introduced here is the conditional action. The PC is

incremented if (MBR) = 0. This test and action can be implemented as one

micro-operation. Note also that this micro-operation can be performed

during the same time unit during which the updated value in MBR is stored

back to memory.

 Finally, consider a subroutine call instruction. As an example, consider a

branch-and-save-address instruction:

 BSA X

The address of the instruction that follows the BSA instruction is saved in

location X, and execution continues at location X + I. The saved address will

later be used for return. This is a straightforward technique for supporting

subroutine calls. The following micro-operations suffice:

 t1: MAR ← (IR(address))
 MBR ← (PC)
 t2: PC ← (IR(address))
 Memory ← (MBR)
 t3: PC ← (PC) + I

 The address in the PC at the start of the instruction is the address of the

next instruction in sequence. This is saved at the address designated in the

ICC = 00

ICC = 00ICC = 11

ICC = 10

ICC = 10 ICC = 01

ICC?

Setup
interrupt Opcode Read

address
Fetch

intstruction

Indirect
addressing?

Interrupt
for enabled
interrupt?

11 (interrupt) 00 (fetch)

Figure 19.3 Flowchart for Instruction Cycle

10 (execute) 01 indirect

Execute
instruction

Yes No

No Yes

IR. The latter address is also incremented to provide the address of the

instruction for the next instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed

into a sequence of elementary micro-operations. In our example, there is

one sequence each for the fetch, indirect, and interrupt cycles, and, for the

execute cycle, there is one sequence of micro-operations for each opcode.

 To complete the picture, we need to tie sequences of micro-operations

together, and this is done in Figure 19.3. We assume a new 2-bit register

called the instruction cycle code (ICC). The ICC designates the state of the

processor in terms of which portion of the cycle it is in:

 00: Fetch

 01: Indirect

 10: Execute

 11: Interrupt

 At the end of each of the four cycles, the ICC is set appropriately. The

indirect cycle is always followed by the execute cycle. The interrupt cycle is

always followed by the fetch cycle (see Figure 14.4, The Instruction Cycle).

For both the fetch and execute cycles, the next cycle depends on the state of

the system.

 Thus, the flowchart of Figure 19.3 defines the complete sequence of

micro-operations, depending only on the instruction sequence and the

interrupt pattern. Of course, this is a simplified example. The flowchart for

an actual processor would be more complex. In any case, we have reached

the point in our discussion in which the operation of the processor is defined

as the performance of a sequence of micro-operations. We can now consider

how the control unit causes this sequence to occur.

19.2 CONTROL OF THE PROCESSOR

Functional Requirements

As a result of our analysis in the preceding section, we have decomposed the

behavior or functioning of the processor into elementary operations, called

micro-operations. By reducing the operation of the processor to its most

fundamental level, we are able to define exactly what it is that the control

unit must cause to happen. Thus, we can define the functional requirements

for the control unit: those functions that the control unit must perform. A

definition of these functional requirements is the basis for the design and

implementation of the control unit.

 With the information at hand, the following three-step process leads to

a characterization of the control unit:

 1. Define the basic elements of the processor.

 2. Describe the micro-operations that the processor performs.

 3. Determine the functions that the control unit must perform to cause

the micro-operations to be performed.

 We have already performed steps 1 and 2. Let us summarize the

results. First, the basic functional elements of the processor are the

following:

• ALU

• Registers

• Internal data paths

• External data paths

• Control unit

 Some thought should convince you that this is a complete list. The ALU

is the functional essence of the computer. Registers are used to store data

internal to the processor. Some registers contain status information needed

to manage instruction sequencing (e.g., a program status word). Others

contain data that go to or come from the ALU, memory, and I/O modules.

Internal data paths are used to move data between registers and between

register and ALU. External data paths link registers to memory and I/O

modules, often by means of a system bus. The control unit causes

operations to happen within the processor.

 The execution of a program consists of operations involving these

processor elements. As we have seen, these operations consist of a

sequence of micro-operations. Upon review of Section 19.1, the reader

should see that all micro-operations fall into one of the following categories:

• Transfer data from one register to another.

• Transfer data from a register to an external interface (e.g., system

bus).

• Transfer data from an external interface to a register.

• Perform an arithmetic or logic operation, using registers for input and

output.

All of the micro-operations needed to perform one instruction cycle,

including all of the micro-operations to execute every instruction in the

instruction set, fall into one of these categories.

 We can now be somewhat more explicit about the way in which the

control unit functions. The control unit performs two basic tasks:

• Sequencing: The control unit causes the processor to step through a

series of micro-operations in the proper sequence, based on the

program being executed.

• Execution: The control unit causes each micro-operation to be

performed.

 The preceding is a functional description of what the control unit does.

The key to how the control unit operates is the use of control signals.

Control
Unit

Figure 19.4 Block Diagram of the Control Unit

Instruction register

Flags

Clock

Control signals
within CPU

Control signals
from control bus

Control signals
to control bus

Co
nt

ro
l b

us

Control Signals

We have defined the elements that make up the processor (ALU, registers,

data paths) and the micro-operations that are performed. For the control

unit to perform its function, it must have inputs that allow it to determine

the state of the system and outputs that allow it to control the behavior of

the system. These are the external specifications of the control unit.

Internally, the control unit must have the logic required to perform its

sequencing and execution functions. We defer a discussion of the internal

operation of the control unit to Section 19.3 and Chapter 20. The remainder

of this section is concerned with the interaction between the control unit and

the other elements of the processor.

 Figure 19.4 is a general model of the control unit, showing all of its

inputs and outputs. The inputs are

• Clock: This is how the control unit “keeps time.” The control unit causes

one micro-operation (or a set of simultaneous micro-operations) to be

performed for each clock pulse. This is sometimes referred to as the

processor cycle time, or the clock cycle time.

• Instruction register: The opcode and addressing mode of the current

instruction are used to determine which micro-operations to perform

during the execute cycle.

• Flags: These are needed by the control unit to determine the status of

the processor and the outcome of previous ALU operations. For

example, for the increment-and-skip-if-zero (ISZ) instruction, the

control unit will increment the PC if the zero flag is set.

• Control signals from control bus: The control bus portion of the

system bus provides signals to the control unit.

The outputs are as follows:

• Control signals within the processor: These are two types: those

that cause data to be moved from one register to another, and those

that activate specific ALU functions.

• Control signals to control bus: These are also of two types: control

signals to memory, and control signals to the I/O modules.

 Three types of control signals are used: those that activate an ALU

function, those that activate a data path, and those that are signals on the

external system bus or other external interface. All of these signals are

ultimately applied directly as binary inputs to individual logic gates.

 Let us consider again the fetch cycle to see how the control unit

maintains control. The control unit keeps track of where it is in the

instruction cycle. At a given point, it knows that the fetch cycle is to be

performed next. The first step is to transfer the contents of the PC to the

MAR. The control unit does this by activating the control signal that opens

the gates between the bits of the PC and the bits of the MAR. The next step

is to read a word from memory into the MBR and increment the PC. The

control unit does this by sending the following control signals

simultaneously:

• A control signal that opens gates, allowing the contents of the MAR onto

the address bus

• A memory read control signal on the control bus

• A control signal that opens the gates, allowing the contents of the data

bus to be stored in the MBR

• Control signals to logic that add 1 to the contents of the PC and store

the result back to the PC

Following this, the control unit sends a control signal that opens gates

between the MBR and the IR.

 This completes the fetch cycle except for one thing: The control unit

must decide whether to perform an indirect cycle or an execute cycle next.

To decide this, it examines the IR to see if an indirect memory reference is

made.

 The indirect and interrupt cycles work similarly. For the execute cycle,

the control unit begins by examining the opcode and, on the basis of that,

decides which sequence of micro-operations to perform for the execute

cycle.

M
B
R

M
A
R

PC

AC

Clock

IR

Control
unit

Control
signals

Flags

Figure 19.5 Data Paths and Control Signals

Control
signalsALU

C3

C2

C4
C10

C5

C8 C1

C0

C12

C13

C7
C6

C9

C11

A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple

example. Figure 19.5 illustrates the example. This is a simple processor with

a single accumulator (AC). The data paths between elements are indicated.

The control paths for signals emanating from the control unit are not shown,

but the terminations of control signals are labeled Ci and indicated by a

circle. The control unit receives inputs from the clock, the instruction

register, and flags. With each clock cycle, the control unit reads all of its

inputs and emits a set of control signals. Control signals go to three separate

destinations:

• Data paths: The control unit controls the internal flow of data. For

example, on instruction fetch, the contents of the memory buffer

register are transferred to the instruction register. For each path to be

controlled, there is a switch (indicated by a circle in the figure). A

control signal from the control unit temporarily opens the gate to let

data pass.

• ALU: The control unit controls the operation of the ALU by a set of

control signals. These signals activate various logic circuits and gates

within the ALU.

• System bus: The control unit sends control signals out onto the control

lines of the system bus (e.g., memory READ).

 The control unit must maintain knowledge of where it is in the

instruction cycle. Using this knowledge, and by reading all of its inputs, the

control unit emits a sequence of control signals that causes micro-operations

to occur. It uses the clock pulses to time the sequence of events, allowing

time between events for signal levels to stabilize. Table 19.1 indicates the

control signals that are needed for some of the micro-operation sequences

described earlier. For simplicity, the data and control paths for incrementing

the PC and for loading the fixed addresses into the PC and MAR are not

shown.

Table 19.1 Micro-operations and Control Signals

 Micro-operations Active Control
Signals

t1: MAR ← (PC) C2

t2: MBR ← Memory

 PC ← (PC) + 1
C5, CR Fetch:

t3: IR ← (MBR) C4

t1: MAR ← (IR(Address)) C8

t2: MBR ← Memory C5, CR Indirect:

t3: IR(Address) ← (MBR(Address)) C4

t1: MBR ← (PC) C1

t2: MAR ← Save-address

 PC ← Routine-address
 Interrupt:

t3: Memory ← (MBR) C12, CW

 CR = Read control signal to system bus.
 CW = Write control signal to system bus.

 It is worth pondering the minimal nature of the control unit. The control

unit is the engine that runs the entire computer. It does this based only on

knowing the instructions to be executed and the nature of the results of

arithmetic and logical operations (e.g., positive, overflow, etc.). It never

gets to see the data being processed or the actual results produced. And it

controls everything with a few control signals to points within the processor

and a few control signals to the system bus.

Control
unit

Figure 19.6 CPU with Internal Bus

Address
lines

Data
lines

ALU

IR

PC

MAR

MBR

AC

Y

Z

In
ter

na
l C

PU
 bu

s

Internal Processor Organization

Figure 19.5 indicates the use of a variety of data paths. The complexity of

this type of organization should be clear. More typically, some sort of

internal bus arrangement, as was suggested in Figure 14.2 (Internal

Structure of the CPU), will be used.

 Using an internal processor bus, Figure 19.5 can be rearranged as

shown in Figure 19.6. A single internal bus connects the ALU and all

processor registers. Gates and control signals are provided for movement of

data onto and off the bus from each register. Additional control signals

control data transfer to and from the system (external) bus and the

operation of the ALU.

 Two new registers, labeled Y and Z, have been added to the

organization. These are needed for the proper operation of the ALU. When

an operation involving two operands is performed, one can be obtained from

the internal bus, but the other must be obtained from another source. The

AC could be used for this purpose, but this limits the flexibility of the system

and would not work with a processor with multiple general-purpose

registers. Register Y provides temporary storage for the other input. The

ALU is a combinatorial circuit (see Chapter 11) with no internal storage.

Thus, when control signals activate an ALU function, the input to the ALU is

transformed to the output. Thus, the output of the ALU cannot be directly

connected to the bus, because this output would feed back to the input.

Register Z provides temporary output storage. With this arrangement, an

operation to add a value from memory to the AC would have the following

steps:

 t1: MAR ← (IR(address))
 t2: MBR ← Memory
 t3: Y ← (MBR)
 t4: Z ← (AC) + (Y)
 t5: AC ← (Z)

8-bit internal data bus

Interrupt control Serial I/O
control

INTR

ClkOut

Power
supply

+5V
GND

X1
X2

HLDA Reset outALE S0 S1
Ready

INTA

Hold Reset in

RST 6.5 TRAP
RST 5.5 RST 7.5 SID SOD

(8)
Accumulator

(8)
temp. reg. (8)

flags
(8)

instruction
register

instruction
decoder

and
machine

cycle
encoding

ALU

(8)
B reg.

(8)
C reg.

(8)
D reg.

(8)
E reg.

(8)
H reg.

(8)
L reg.

(16)
stack pointer

(16)
program counter

(8)
address buffer

(8)
address buffer

AD7 – AD0
address/data bus

A15 – A8
address bus

incrementer/ (16)
decrementer
address latch

register
array

RD WR IO/M

Clk
Gen Control Status

Timing and control

Figure 19.7 Intel 8085 CPU Block Diagram

DMA Reset

 Other organizations are possible, but, in general, some sort of internal

bus or set of internal buses is used. The use of common data paths simplifies

the interconnection layout and the control of the processor. Another practical

reason for the use of an internal bus is to save space.

The Intel 8085

To illustrate some of the concepts introduced thus far in this chapter, let us

consider the Intel 8085. Its organization is shown in Figure 19.7. Several

key components that may not be self-explanatory are:

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

2417
2318
2219
2120

X1
X2

Reset out
SOD
SID

Trap
RST 7.5
RST 6.5
RST 5.5

INTR
INTA

AD0
AD1
AD2
AD3
AD4

Vcc
HOLD
HLDA
CLK (out)
Reset in
Ready
IO/M
S1
Vpp
RD
WR
S0
A15
A14
A13
A12

AD5 A11
AD6 A10
AD7 A9
Vss

Figure 19.8 Intel 8085 Pin Configuration

A8

• Incrementer/decrementer address latch: Logic that can add 1 to or

subtract 1 from the contents of the stack pointer or program counter.

This saves time by avoiding the use of the ALU for this purpose.

• Interrupt control: This module handles multiple levels of interrupt

signals.

• Serial I/O control: This module interfaces to devices that

communicate 1 bit at a time.

 Table 19.2 describes the external signals into and out of the 8085.

These are linked to the external system bus. These signals are the interface

between the 8085 processor and the rest of the system (Figure 19.8).

 The control unit is identified as having two components labeled (1)

instruction decoder and machine cycle encoding and (2) timing and control.

A discussion of the first component is deferred until the next section. The

essence of the control unit is the timing and control module. This module

includes a clock and accepts as inputs the current instruction and some

external control signals. Its output consists of control signals to the other

components of the processor plus control signals to the external system bus.

Table 19.2 Intel 8085 External Signals

Address and Data Signals

High Address (A15–A8)
 The high-order 8 bits of a 16-bit address.
Address/Data (AD7–AD0)
 The lower-order 8 bits of a 16-bit address or 8 bits of data. This multiplexing saves on pins.
Serial Input Data (SID)
 A single-bit input to accommodate devices that transmit serially (one bit at a time).
Serial Output Data (SOD)
 A single-bit output to accommodate devices that receive serially.

Timing and Control Signals
CLK (OUT)
 The system clock. The CLK signal goes to peripheral chips and synchronizes their timing.
X1, X2
 These signals come from an external crystal or other device to drive the internal clock

generator.
Address Latch Enabled (ALE)
 Occurs during the first clock state of a machine cycle and causes peripheral chips to store the

address lines. This allows the address module (e.g., memory, I/O) to recognize that it is being
addressed.

Status (S0, S1)
 Control signals used to indicate whether a read or write operation is taking place.
IO/M
 Used to enable either I/O or memory modules for read and write operations.
Read Control (RD)
 Indicates that the selected memory or I/O module is to be read and that the data bus is

available for data transfer.
Write Control (WR)
 Indicates that data on the data bus is to be written into the selected memory or I/O location.

Memory and I/O Initiated Symbols

Hold
 Requests the CPU to relinquish control and use of the external system bus. The CPU will complete

execution of the instruction presently in the IR and then enter a hold state, during which no signals are
inserted by the CPU to the control, address, or data buses. During the hold state, the bus may be used
for DMA operations.

Hold Acknowledge (HOLDA)
 This control unit output signal acknowledges the HOLD signal and indicates that the bus is now

available.
READY
 Used to synchronize the CPU with slower memory or I/O devices. When an addressed device asserts

READY, the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise, the CPU
enters a wait state until the device is ready.

Interrupt-Related Signals
TRAP
 Restart Interrupts (RST 7.5, 6.5, 5.5)
Interrupt Request (INTR)
 These five lines are used by an external device to interrupt the CPU. The CPU will not honor the

request if it is in the hold state or if the interrupt is disabled. An interrupt is honored only at the
completion of an instruction. The interrupts are in descending order of priority.

Interrupt Acknowledge
 Acknowledges an interrupt.

CPU Initialization
RESET IN
 Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.
RESET OUT
 Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Voltage and Ground
VCC
 +5-volt power supply
VSS
 Electrical ground

 The timing of processor operations is synchronized by the clock and

controlled by the control unit with control signals. Each instruction cycle is

divided into from one to five machine cycles; each machine cycle is in turn

divided into from three to five states. Each state lasts one clock cycle.

During a state, the processor performs one or a set of simultaneous micro-

operations as determined by the control signals.

 The number of machine cycles is fixed for a given instruction but varies

from one instruction to another. Machine cycles are defined to be equivalent

to bus accesses. Thus, the number of machine cycles for an instruction

depends on the number of times the processor must communicate with

external devices. For example, if an instruction consists of two 8-bit

portions, then two machine cycles are required to fetch the instruction. If

that instruction involves a 1-byte memory or I/O operation, then a third

machine cycle is required for execution.

 Figure 19.9 gives an example of 8085 timing, showing the value of

external control signals. Of course, at the same time, the control unit

Figure 19.9 Timing Diagram for Intel 8085 OUT Instruction

T1

A15 – A8

M1
OUT Byte

M2 M3

PC out

T2

PC+1 PC

T3

PCH PCH IO PORT

3-MHz
CLK

ALE

T4

X

T1

PC out

T2 T3 T1

WZ out

T2 T3

PC+1 PC byte Z,W A PortINSTR IR

AD7 – AD0 INSTR INSTR INSTR INSTR ACCUMPCH

RD

WR

IO/M

Instruction fetch Memory read Output write

generates internal control signals that control internal data transfers. The

diagram shows the instruction cycle for an OUT instruction. Three machine

cycles (M1, M2, M3) are needed. During the first, the OUT instruction is

fetched. The second machine cycle fetches the second half of the instruction,

which contains the number of the I/O device selected for output. During the

third cycle, the contents of the AC are written out to the selected device over

the data bus.

 The Address Latch Enabled (ALE) pulse signals the start of each

machine cycle from the control unit. The ALE pulse alerts external circuits.

During timing state T1 of machine cycle M1, the control unit sets the IO/M

signal to indicate that this is a memory operation. Also, the control unit

causes the contents of the PC to be placed on the address bus (A15 through

A8) and the address/data bus (AD7 through AD0). With the falling edge of

the ALE pulse, the other modules on the bus store the address.

 During timing state T2, the addressed memory module places the

contents of the addressed memory location on the address/data bus. The

control unit sets the Read Control (RD) signal to indicate a read, but it waits

until T3 to copy the data from the bus. This gives the memory module time

to put the data on the bus and for the signal levels to stabilize. The final

state, T4, is a bus idle state during which the processor decodes the

instruction. The remaining machine cycles proceed in a similar fashion.

19.3 HARDWIRED IMPLEMENTATION

We have discussed the control unit in terms of its inputs, output, and

functions. We now turn to the topic of control unit implementation. A wide

variety of techniques have been used. Most of these fall into one of two

categories:

• Hardwired implementation

• Microprogrammed implementation

 In a hardwired implementation, the control unit is essentially a state

machine circuit. Its input logic signals are transformed into a set of output

logic signals, which are the control signals. This approach is examined in this

section. Microprogrammed implementation is the subject of Chapter 20.

Control Unit Inputs

Figure 19.4 depicts the control unit as we have so far discussed it. The key

inputs are the instruction register, the clock, flags, and control bus signals.

In the case of the flags and control bus signals, each individual bit typically

has some meaning (e.g., overflow). The other two inputs, however, are not

directly useful to the control unit.

 First consider the instruction register. The control unit makes use of the

opcode and will perform different actions (issue a different combination of

control signals) for different instructions. To simplify the control unit logic,

there should be a unique logic input for each opcode. This function can be

performed by a decoder, which takes an encoded input and produces a

single output. In general, a decoder will have n binary inputs and 2n binary

outputs. Each of the 2n different input patterns will activate a single unique

output. Table 19.3 is an example for n = 4. The decoder for a control unit

will typically have to be more complex than that, to account for variable-

length opcodes. An example of the digital logic used to implement a decoder

is presented in Chapter 11.

Table 19.3 A Decoder With Four Inputs and Sixteen Outputs

I1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

I2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

I3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

I4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

O4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

O5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

O6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
O7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

O8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

O9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

O10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
O12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

O13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

O14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

O15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 The clock portion of the control unit issues a repetitive sequence of

pulses. This is useful for measuring the duration of micro-operations.

Essentially, the period of the clock pulses must be long enough to allow the

propagation of signals along data paths and through processor circuitry.

However, as we have seen, the control unit emits different control signals at

different time units within a single instruction cycle. Thus, we would like a

counter as input to the control unit, with a different control signal being used

Instruction register

Decoder

Control
Unit

Figure 19.10 Control Unit with Decoded Inputs

Flags
Timing

generator

Tn

Clock
T2

T1

I0 I1 Ik

C0 C1 Cm

for T1, T2, and so forth. At the end of an instruction cycle, the control unit

must feed back to the counter to reinitialize it at T1.

 With these two refinements, the control unit can be depicted as in

Figure 19.10.

Control Unit Logic

To define the hardwired implementation of a control unit, all that remains is

to discuss the internal logic of the control unit that produces output control

signals as a function of its input signals.

 Essentially, what must be done is, for each control signal, to derive a

Boolean expression of that signal as a function of the inputs. This is best

explained by example. Let us consider again our simple example illustrated

in Figure 19.5. We saw in Table 19.1 the micro-operation sequences and

control signals needed to control three of the four phases of the instruction

cycle.

 Let us consider a single control signal, C5. This signal causes data to be

read from the external data bus into the MBR. We can see that it is used

twice in Table 19.1. Let us define two new control signals, P and Q, that

have the following interpretation:

 PQ = 00 Fetch Cycle

 PQ = 01 Indirect Cycle

 PQ = 10 Execute Cycle

 PQ = 11 Interrupt Cycle

Then the following Boolean expression defines C5:

 C5 = P •Q • T2 + P •Q• T2

That is, the control signal C5 will be asserted during the second time unit of

both the fetch and indirect cycles.

 This expression is not complete. C5 is also needed during the execute

cycle. For our simple example, let us assume that there are only three

instructions that read from memory: LDA, ADD, and AND. Now we can

define C5 as

 C5 = P •Q • T2 + P •Q• T2 + P •Q • LDA +ADD + AND()• T2

This same process could be repeated for every control signal generated by

the processor. The result would be a set of Boolean equations that define the

behavior of the control unit and hence of the processor.

 To tie everything together, the control unit must control the state of the

instruction cycle. As was mentioned, at the end of each subcycle (fetch,

indirect, execute, interrupt), the control unit issues a signal that causes the

timing generator to reinitialize and issue T1. The control unit must also set

the appropriate values of P and Q to define the next subcycle to be

performed.

 The reader should be able to appreciate that in a modern complex

processor, the number of Boolean equations needed to define the control

unit is very large. The task of implementing a combinatorial circuit that

satisfies all of these equations becomes extremely difficult. The result is that

a far simpler approach, known as microprogramming, is usually used. This is

the subject of the next chapter.

19.4 RECOMMENDED READING

A number of textbooks treat the basic principles of control unit function; two

particularly clear treatments are in [FARH04] and [MANO08].

FARH04 Farhat, H. Digital Design and Computer Organization. Boca Raton,

FL: CRC Press, 2004.

MANO08 Mano, M. Logic and Computer Design Fundamentals. Upper Saddle

River, NJ: Prentice Hall, 2008.

19.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

control bus
control path

control signal
control unit

hardwired
implementation
microoperations

Review Questions

19.1 Explain the distinction between the written sequence and the time

sequence of an instruction.

19.2 What is the relationship between instructions and micro-operations?

19.3 What is the overall function of a processor's control unit?

19.4 Outline a three-step process that leads to a characterization of the

control unit.

19.5 What basic tasks does a control unit perform?

19.6 Provide a typical list of the inputs and outputs of a control unit.

19.7 List three types of control signals.

19.8 Briefly explain what is meant by a hardwired implementation of a

control unit.

Problems

19.1 Your ALU can add its two input registers, and it can logically

complement the bits of either input register, but it cannot subtract.
Numbers are to be stored in two’s complement representation. List the
micro-operations your control unit must perform to cause a
subtraction.

19.2 Show the micro-operations and control signals in the same fashion as

Table 19.1 for the processor in Figure 19.5 for the following
instructions:

• Load Accumulator
• Store Accumulator
• Add to Accumulator
• AND to Accumulator

• Jump
• Jump if AC = 0
• Complement Accumulator

19.3 Assume that propagation delay along the bus and through the ALU of

Figure 19.6 are 20 and 100 ns, respectively. The time required for a
register to copy data from the bus is 10 ns. What is the time that must
be allowed for

 a. transferring data from one register to another?
 b. incrementing the program counter?

19.4 Write the sequence of micro-operations required for the bus structure

of Figure 19.6 to add a number to the AC when the number is
 a. an immediate operand
 b. a direct-address operand
 c. an indirect-address operand

19.5 A stack is implemented as shown in Figure 19.11 (see Appendix O for

a discussion of stack.). Show the sequence of micro-operations for
 a. popping
 b. pushing the stack

Block
reserved
for stack

Main
memoryProcessor

registers

Free

Stack
limit

Stack
pointer

Stack
base

In use

De
sce

nd
ing

 ad
dr

ess
es

Figure 19.11 Typical Stack Organization (full/descending)

