Computer Architecture & Organization

Chapter 11

Cache Memory

Key Characteristics of Computer Memory

Systems

Location
Internial (e.2. provessor registers, cache,
Main Mmemaory)
External (e.g. optical Jdisks, magnetic disks,
Lupes)
Capacity
MNumber of words
MNumber of bytes
L'mit of Transfer
Word
Blovk
Access Method
Sequential
Direct
Random
Associative

Performance
AcCuess ime
Cyule time
Transfer rate
Fhysical Type
Semiconductor
Magnetiv
Orptical
Magneto-optical
Phvsical Characteristics
Volatile/nonvolitile
Erasable/nonerasable
Organization
Memory modules

Table 4.1 Key Characteristics of Computer Memory Systems

Characteristics of Memory Systems

Location
* Refers to whether memory is internal and external to the computer
* Internal memory is often equated with main memory
* Processor requires its own local memory, in the form of registers
e Cache is another form of internal memory

. Externﬂl memory consists of peripheral storage devices that are accessible to the processor via I/0
controllers

Capacity

 Memory is typically expressed in terms of bytes

Addressable units
* |In some systems, the addressable unit is the word. However, many systems allow addressing at the byte
level. In any case, the relationship between the length in bits A of an address and the number N of
addressable units is 24 = N.

Unit of transfer

* For internal memory the unit of transfer is equal to the number of electrical lines into and out of the
memory module. The unit of transfer need not equal a word or an addressable unit. For external
memory, data are often transferred in much larger units than a word, and these are referred to as

blocks

Method of Accessing Units of Data

Sequential : -
gccess Direct access Random access Associative
4 N 4 N 4 N 4 N
Each addressable location in . .
. A word is retrieved based on
| Memory is organized into | Involves a shared read-write - memory has a unique, 3 portion of its contents
units of data called records mechanism physically wired-in P her than its add
addressing mechanism rather than its address
_ J _ J _ J _ _/
4 I 4 I 4 I

4 . .
The time to access a given Each location has its own
Individual blocks or records

. L addressing mechanism and
Access must be made in a . location is independent of . o
— — have a unique address based — — retrieval time is constant

specific linear sequence . . the sequence of prior . .
P 9 on physical location 9 . P independent of location or
accesses and is constant .
prior access patterns

- J - J - J - J
e N ~ N ~ N ~ N
Any location can be selected E.o Cache memories ma
— Access time is variable — Access time is variable — atrandom and directly -~ =& . y
employ associative access
addressed and accessed
- J - J - J - J
% E.g. Tape units .
g 1ap J E q. Disk uni E.g. Main memory and some
.g. Disk units cache systems are random

access

Capacity and Performance:

Capacity and performance are the two most important
characteristics of memory

Three performance parameters are used:

Memory cycle time

Access time (latency) . o Transfer rate
® Access time plus any additional time

e For random-access memory it is required before second access can The rate at which data can be
the time it takes to perform a commence _ transferred into or out of a
read or write operation * Additional time may be required for memory unit

o F q transients to die out on signal lines or . F d it
or non-random-access memaory to regenerate data if they are read or random-access memaory It IS

it is the time it takes to position destructively equal to 1/(cycle time)
the read-write mechanism at the e Concerned with the system bus, not
desired location the processor

Memory

The most common forms are:
* Semiconductor memory
* Magnetic surface memory
* Optical
* Magneto-optical

Several physical characteristics of data storage are important:
* Volatile memory
* Information decays naturally or is lost when electrical power is switched off
Nonvolatile memory
* Once recorded, information remains without deterioration until deliberately changed
* No electrical power is needed to retain information
Magnetic-surface memories
* Are nonvolatile
Semiconductor memory
* May be either volatile or nonvolatile
Nonerasable memory
* Cannot be altered, except by destroying the storage unit
* Semiconductor memory of this type is known as read-only memory (ROM)

For random-access memory the organization is a key design issue
* Organization refers to the physical arrangement of bits to form words

Memory Hierarchy

* Design constraints on a computer’s memory can be
summed up by three questions:

 How much, how fast, how expensive

* There is a trade-off among capacity, access time, and
cost
* Faster access time, greater cost per bit
» Greater capacity, smaller cost per bit
* Greater capacity, slower access time

* The way out of the memory dilemma is not to rely on
a single memory component or technology, but to
employ a memory hierarchy

Memory Hierarchy - Diagram

A typical hierarchy is illustrated in
Figure 4.1. As one goes down the
hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access of
the memory by the processor

ﬁc'i-"l_‘
W,
fﬂ% oo
o <
-f:‘,- ™ -ﬁ\d;":
@E
0, <&
& A
%y, LSO
7% a,# 5\525‘},"5-*\\
@ O g
1‘:\" 1\,“.'\'
“g\‘!ﬂ a%
A o
#\- ; . \'.!t?m
Y f ‘.L'\\
Se&#&% HU'#‘

Figure 4.1 The Memory Hierarchy

Cache and Main Memory

If the word the processors is looking for is not
in the cache, a block of main memory is read
into the cache. Because of the phenomenon of
locality of reference, when a block of data is
fetched into the cache to satisfy a single
memory reference, it is likely that there will
be future references to that same memory
location or to other words in the block.

Figure 4.3b depicts the use of multiple levels
of cache. The L2 cache is slower and typically
larger than the L1 cache, and the L3 cache is
slower and typically larger than the L2 cache.

Block Transfer
Word Transfer r__}_{_\
CPU Cache Main Memory
Fast Slow
(a) Single cache
CPU > Level 1 Level 2 Level3 |F—» Main
(L1) cache (L.2) cache (L3) cache | & Memory
Fastest Fast
Less Slow
fast

(b) Three-level cache organization

Figure 4.3 Cache and Main Memory

Cache/Main Memory Structure e

Line Memory
Number Tag Block address
0 0
|]
2 2 Block
™ 3 (K words)
.
T I (S ——
C-1
Block Length
(K Words) -
{a) Cache e
.
Block M - 1
2"
Word
Lengih

by Main memory
Figure 4.4 Cache/Main-Memory Structure

Cache Read Operation

Figure 4.5 illustrates the read operation.
The processor generates the read address
(RA) of a word to be read. If the word is
contained in the cache, it is delivered to the
processor. Otherwise, the block containing
that word is loaded into the cache, and the
word is delivered to the processor.

Receive address
RA from CPU

15 hlock
containing RA
in cache?

No Access main
¥ memory for block
containing RA

Feteh RA waord Alloeate eache
and deliver line for main

to CPU memory block

Load main
memory block
into cache line

Deliver RA word
to CPU

k

{ DONE ' ¥

Figure 4.5 Cache Read Operation

Typical Cache Organization

When a cache hit occurs, the data and address
buffers are disabled and communication is only
between processor and cache, with no system bus
traffic. When a cache miss occurs, the desired
address is loaded onto the system bus and the data
are returned through the data buffer to both the
cache and the processor.

Processor

Figure 4.6 Typical Cache Organization

Address o >
Address
1 buffer
. Conitrol . Cache) Control S
F
Data
buffer
4 ¥ - :}] —
Data

System Bus

Elements of Cache Design

Although there are a large number of cache
Implementations, there are a few basic design
elements that serve to classify and differentiate
cache architectures. Table 4.2 lists key elements.

L=

loxa: i

AAIT

Cache Addresses
Logical
Physical
Cache Size
Mapping Function
Direct
Associative
Set associative
Replacement Algorithm
Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

Random

Write Policy
Write through
Write back

Line Size

Number of Caches
Single or two level

Unified or split

Table 4.2 Elements of Cache Design

AAIT
Cache Addresses

* Virtual memory

* Facility that allows programs to address memory from a logical point of
view, without regard to the amount of main memory physically available

* When used, the address fields of machine instructions contain virtual
addresses

* For reads to and writes from main memory, a hardware memory
management unit (MMU) translates each virtual address into a physical
address in main memory

Logical and Physical

Logical address Physical address

» MMU .
C a C h e S Processor l Main
Cache memory
€ i Data >

ia) Logical Cache

Logical address Physical address

» MMU

=
Processor l Main
Cache memory

> Data i >

i{b) Physical Cache

Figure 4.7 Logical and Physical Caches

Y ear of

Processor Type . L1 Cache,, L2 cache L3 Cache
Introduction
IBM 360085 Muamframe | sl 16t 32 kKB — —
PDP-11570 Mincomputer [| kKB — —
VAX 1178 Mimcomputer [T 16 kB — —
IBA M5 Mamframe [T 6 kB — —
1B AL AR Mamframe [U85 1248 to 256 kB — —
Intel BiE6 PC | Hy E kB — —
Fentium PC | beis & kBE/E KB N6 to 512 KB —
PowerPC 6Lk PC R R 31 kB — —
PowerPC 620 PC | UEky A2 kB/A2 KB — —
PowerPC G4 PCiserver | e s kB/A2 kB 256 KB | MB I MB
IBAL 5590 Crby Mamframe | et 256 kB i MB —
Pentium 4 PCiserver M) B kB/E kKB 256 KB —
High-end
IBM 5P server! M) 64 kB/A2 KB i MB —
suUpercomputer
CRAY MTA | Supercomputer 2000 k kB 2MB —
ltanmm Pl server M 16 kB/1& kKB 46 KB 4 MB
[tanium 2 PC/server 2002 321 kH 256 KB f MB
E,[Hfr;“tﬂq ”:mt;“' 2003 64 kB 1.9 MB 36 ME
CEAY XI3-1 Supercomputer Mg o4 kE6A4 kB IMB —
EJ[Hi?Ia P PClserver 2007 64 kB/64 kB 4 MB 32 MB
IBMN =110 Mumndtrame e fd KB/ 12E KB i MB Z4-48 MB
Jut-:_] L:un: 1/ W orkstaton/ W11 b x 37 KB/32 KB | 5 MH 17 ME
EE 9i) Server
LHM : 24 MB LA
zEnterprise "":1‘::;“‘“ 2011 Hﬁ:’iﬁ”“ 24 x 1.5 MB 192 MK
I - L4

Table 4.3

Cache Sizes of
Some
Processors

@ Two values separated by
a slash refer to instruction
and data caches.

b Both caches are
instruction only; no data
caches.

AAIT

Mapping Function

* Because there are fewer cache lines than main memory blocks, an
algorithm is needed for mapping main memory blocks into cache lines

* Three techniques can be used:

e The simplest technique

e Maps each block of main
memory into only one
possible cache line

® Permits each main memory block
to be loaded into any line of the
cache

e The cache control logic interprets
a memory address simply as a
Tag and a Word field

e To determine whether a block is
in the cache, the cache control
logic must simultaneously
examine every line’s Tag for a
match

Set Associative

e A compromise that exhibits
the strengths of both the
direct and associative
approaches while reducing
their disadvantages

Example 4.2 For all three cases, the example includes the following elements:

® The cache can hold 64 Kbytes.

* Data are transferred between main memory and the cache in blocks of 4 bytes each.
This means that the cache is organized as lines of 4 bytes each.

®* The main memory consists of 16 Mbytes, with each byte directly addressable by
a _ bit address (2°* = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

Solution:

* Data are transferred between main memory and the cache in blocks of 4 bytes each.
This means that the cache is organized as 16K = 2! lines of 4 bytes each.

®* The main memory consists of 16 Mbytes, with each byte directly addressable by
a 24-bit address (2°* = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

Direct Mapping

The mapping is expressed as
| = j modulo m
where
I = cache line number
J = main memory block number
m = number of lines in the cache

Figure 4.8a shows the mapping for the first m
blocks of main memory. Each block of main
memory maps into one unique line of the
cache. The next m blocks of main memory map
into the cache in the same fashion; that is, block
B,, of main memory maps into line L, of cache,
block g,.; maps into line L, and so on.

BI'I

YYY¥YY

YYY¥YY

=1

First m blocks of
main memory
{equal to size of cache)

(a) Direct mapping

cache memory

m lines

L'II. 1 '

i = length of block 1 bits
t = length of tag in bits

b

€ >
[

T
L] L] L]

| L L L]
L] L L

one block of
main memory

cache memory

(b) Associative mapping

Figure 4.8 Mapping From Main Memory to Cache:

Direct and Associative

Direct Mapping Cache Organization

The mapping function is easily .
Implemented using the main
memory address.

Figure 4.9 illustrates the general
mechanism.

W
e
Cache
Memory Address Tug Driata
| Tug | Line | word |
Ly
.l?.-"' .l'f.-"' 11;.-"'
I L
.
T I .
I
W L
Compare % - > F
— (hit in cache) I .
1 if match .
0 if no mateh |
-
L

0 if match
I if no mateh

{miss in cache)

ni—1

Main Memory

WO

Wl

W2

W3

Wi|

Widj+1)

Figure 4.9 Direct-Mapping Cache Organization

Widj+2)

Widi+3)

Example 4.2a Figure 4.10 shows our example system using direct mapping.> In the
example, m = 16K = 2" and i = j modulo 2'*. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, ..., FFO000
1 000004, 010004, ..., FF0004
e = 00FFFC, O1FFFC, ..., FFFFFC

Note that no two blocks that map into the same line number have the same tag num-
ber. Thus, blocks with starting addresses 000000, 010000, ..., FFO000 have tag numbers 00,
01, ..., FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is
presented with a 24-bit address. The 14-bit line number is used as an index into the cache
to access a particular line. If the 8-bit tag number matches the tag number currently stored
in that line, then the 2-bit word number is used to select one of the 4 bytes in that line.
Otherwise, the 22-bit tag-plus-line field is used to fetch a block from main memory. The
actual address that is used for the fetch is the 22-bit tag-plus-line concatenated with two
0 bits, so that 4 bytes are fetched starting on a block boundary.

3In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9
for a basic refresher on number systems (decimal, binary, hexadecimal).

LS

Homework

Do example 4.2a again for
m=4K=212. Assuming the address
bit length (s+w) remains 24 and
Block size =4 byte:

a) Calculate starting Memory
Address of Block for each cache
line as shown in the example.

b) what will be bit size of Tag (s-r),
Line (r), word (w) fields of the

physical adrress?

c) Calculate number of
addressable units on the main
RAM, number of blocks in RAM
and number of lines in cache

Tay
(hex)

[
oo

(v
oo

16

FF
FF

FF
FF

Main memory wddress {binury)

- e, —

Direct Mapping Example

. "J}___' - _L.iuc_;-ﬂ_‘n"r'um_ Dhata
GO0 HH0a00000000000000000 [TI579248 f = = =1
000000000000000000000100: 1
1
I s !
L - .
1
___ 1
D00000001111:1111:11112000 1
0000000011112111:11112100 1
. : Line
. I Tiag Dratia Mumber
R - = = = OO T357324¢ | 0000
B00101100000000000000100: | 11235813 | = = = = = = = 4 16 | 11235813 | 0001
000101100011001110011100 | FEDCBASE == = = = = = = o 16 | FEDCBAYE | ocET
.............. . == === FF | 11223344 | 3FFE
0001011011120121221112 100 L12345678)= = = = :' ===d4 96] 12345678 | 3rFF
: . ——p
. 1 & bits 32 hits
ATITAT T ooo0e o0 datoad 1 T
ALTTIT0000000080000100 - o-Kline cache
1
1
En T 1 - I
1
1
TS T I I 0005 | 11223344 | = = =
1113010 11010000101001100' L 24682468 MNote: Memory address values are
T in binary representation:
Ay B

I6-MByte muin memory

other values are in hexadecimal

Tug Line Wornd
Main memory address =
b L >4
& bits 14 bits 2 birs

Figure 4.10 Direct Mapping Example

The effect of direct. mapping is that blocks of main
memory are assigned to lines of the cache as follows:

Cache line

Main memory blocks assigned

0 O.m2m.,2° — m
] Ilm+1.2m+1,....2% —m + 1
m — 1 m—1.2m—1.3m —1.....2% — 1

AAIT

AAIT

Direct Mapping Summary

e Address length = (s + w) bits

e Number of addressable units = 25*W words or
bytes

* Block size = line size = 2% words or bytes
 Number of blocks in main memory = 25t*W/2W = 2s
* Number of lines in cache =m =21

* Size of tag = (s —r) bits

AAIT

Victim Cache

* Main disadvantage of the direct mapping is that there is a fixed cache
location for any given block. Thus, if a program happens to reference
words repeatedly from two different blocks that map into the same
cache line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

* Victim Cache is originally proposed as an approach to reduce the
conflict misses of direct mapped caches without affecting its fast
access time

* Victim cache is a fully associative cache, whose size is typically 4 to 16
cache lines, residing between a direct mapped L1 cache and the next
level of memory.

e

e i

AAIT

Fully Associative Cache Organization

Associative mapping overcomes
the disadvantage of direct
mapping by permitting each main
memory block to be loaded into
any line of the cache (Figure
4.8Db).

In this case, the cache control
logic interprets a memory address
simply as a Tag and a Word field.
The Tag field uniquely identifies
a block of main memory.

To determine whether a block is in
the cache, the cache control logic
must simultaneously examine
every line’s tag for a match.

F+u -
&

r__________)\-___'___\‘ Cache Main Memory
Memory Address Tap Draata

Wi }
| Tag I Word] I W1
W2 By
) Ly W3
o (% '
¥ []

Compire W 1
—/r‘/—} Widj+1)

[]
l ' Widj+3)
-

D - % |
—— W4
| Widj+1) B

(hit in cache)

1 if mutch I L l
0 if no match ” | | . I
E L'r.'l— | I ™ I

l o = o

{ if maich
| if mo mutch

{miss in cache)

Figure 4.11 Fully Associative Cache Organization

Muin memory uddress (binary)
.

Associative Mapping S E— AAIT

000000 T00GBO000000000080060000 [TIETIZAET - = = »
000001 000000000000:000000000100: [
L]
Example I
Ll
L]
Ll
Ll
Ll
Example 4.2b Figure 4.12 shows our example using associative mapping. A main mem- X Line
ory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be stored ' % 11?23“344 ";’“ﬁt:l’
- - - - T Ll 1= =
with the 32-bit block of data for each line in the cache. Note that it is the leftmost (most = =r = r - {058cE7 | FEDCBASE [0001
significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal address | gsaczs ';_-'mi;il'1_'-,|';|"j|';|'1i;ix';,'lﬁ'i'J;gjl.b'li'iii;il.b'ljrij"ﬁ]j[jiﬂ'J T Lo
16339C has the 22-bit tag 058CET7. This is easily seen in binary notation: 0ssces A00101L000LIDOLIIO0NLL00 | FEDCEASE | -! A T
- - - ’ I'H'l-‘ b ! !
§ i ' ' 100] 1 ==& =4=o3FFFFD| 33333333 | 3
memory address 0001 0110 0011 0011 1001 1100 (binary) ST FEE] FEFEFET P R
1 6 3 3 0 C (hex) : - -+ - Wrrree] 29682468 | yrrF
- ' Ly ——be >
. . 22bits 32 bits
tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary) + Lo l;‘m_ C }"
i i h me Ciache
0 5 8 C & 7 hex Lo
(hex) B
~ . N . | i i
I i i
IFEFFD A0 50 0 7 7 43333333 b = i I
Jreree T1EITINL ?*i___}_]%i__}_ﬂ_ﬁ___ 11223348 f-=-t=a
3FFFFF llLlulllLl.llj-Ll—.l Ll.l.ll':":' FLER2A68E b = = =] HD[F. :'viLmEII} .H.'iJ'iJFL_H ‘.rH.lLlE‘:'- ure
¢ B m b‘llf'lﬂ.l':r' TCF‘F{‘&CIHIHIIDD.)
372 hits ather values are in hexadecimal
16 MByte Main Memaory
Tag Word
Main Memory Address =
+ Ay
27 bits 2 bits

Figure 4.12 Associative Mapping Example

AAIT

Assoclative Mapping Summary

* Address length = (s + w) bits

 Number of addressable units = 25*"W words or bytes
* Block size = line size = 2% words or bytes

* Number of blocks in main memory = 25+W/2w = 25

* Number of lines in cache = undetermined

 Size of tag = s bits

Cons and prones:
» With associative mapping, there is flexibility as to which block to replace when a new block is read into
the cache. Replacement algorithms, discussed later in this section, are designed to maximize the hit ratio.

» The principal disadvantage of associative mapping is the complex circuitry required to examine the tags of
all cache lines in parallel.

Set Associative Mapping

 Compromise that exhibits the strengths of both the direct and
associative approaches while reducing their disadvantages

e Cache consists of a number of sets
e Each set contains a number of lines
* A given block maps to any line in a given set

e e.g. 2 lines per set
* 2 way associative mapping
* A given block can be in one of 2 lines in only one set

& lines

Mapping From Main Memory :
to Cache:

First v blocks of
main memory
(equal to number of sets)

¥
L

k-Way Set Associative

g

Figure 4.13a
» For the first v blocks of main memory , with Cache memary - set -
set-associative mapping, each word maps into (a) » associative-mapped caches

all the cache lines in a specific set out of v sets,

so that main memory block B, maps into set 0, \
and so on. B 7 — \ Ly

 Thus, the set-associative cache can be : e
physically implemented as n associative caches. ’ ; o 3

Figure 4.13a - —_— / L,
 [tis also possible to implement the set- it mry \ Cache memary oy | / Cache memory - vay &

- - B . {equal to number of sets)
associative cache as k direct-mapping caches.

N\

v lines

(b} k direct-mapped caches

Figure 4.13 Mapping From Main Memory to Cache:
k-way Set Associative

k—Way Set Associative
Cache Qrganization

Figure 4.14 illustrates the cache
control logic.

With fully associative mapping, the
tag in a memory address is quite
large and must be compared to the
tag of every line in the cache.

With k-way set-associative mapping,
the tag in a memory address is much
smaller and is only compared to the k
tags within a single set.

The d set bits specify one of v = 24
sets.

(\i_,—\f
Memory Address Tag Driata

Su

Cache
Tuy Set Word
(] o] | 5
s=if] o 11{_J I F
[]
.
vl I— Fi_i
]
r L] F
'R []
T -
Compure 2] Fiu
1 ;
L4
(hit in cache) l— Fag_j
1 i match
01 no miatch
0 if mutch I_ - =
if mo match =
(miss in vache)

Set 0

Set 1

Figure 4.14 k-Way Set Associative Cache Organization

s+

'

loxa: i

AAIT

Main Memory

E'if'

By

AAIT

Set Assoclative Mapping Summary

Address length = (s + w) bits

Number of addressable units = 25*W words or bytes

Block size = line size = 2% words or bytes

Number of blocks in main memory = 25tW/2w=2s

Number of lines in set = k

Number of sets = v = 24

Number of lines in cache = m=kv = k * 24

Size of cache = k * 24w words or bytes
 Size of tag = (s — d) bits

Tag
{hex)

ooo
ooao

oo

p2C
p2c

n2C

p2c

1FF
1FF

1FF
1FF

Muain memory wddress (binary)

.

—

T‘u 1 - SI..[+“I.'I|.'IJ

gooogododod I}i}l:lﬂﬂ I}I}':I{I{I |}|}|:|
A00000.0000000000:000 00100

Drata

DO0TAI106011001110011100

7

000101100111111131111100

77777777 |
11235813

-

FEDCBAYE

=" “

12345678
L]
-
L3

00000000000
10 00:000 00100

32 bits

16 MBvte Muin Memory

Muin Memory Address =

Tug Set Word
“+ b+ 4
9 bits 13 bits 2 bits
Figure 4.15 Two-Way Set Associative
Tu Driataa Wumhber Tag Cratia '
TR TIETIIE 0004 [BEC[TTTITIIT -
g2c| 11235813 | 0001
. [-, 1 & . --- LD :;i [
sael eenennos | oo Note: Memory address values are
- A P A in binury representation;
17F| 11223344 | 17rE other values are in hexadecimal
B2C) 12345678 | 1FFF |1FF| 24682468 |= 4
9 bits 32 bits 9 bits 32 bits "
16 Kline Cache :

Example 4.2¢ Figure 4.15 shows our example using set-associative mapping with two
lines in each set, referred to as two-way set-associative. The 13-bit set number identi-
fies a unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 2'3 This determines the mapping of blocks into lines. Thus, blocks
000000, 008000, ..., FF8000 of main memory map into cache set 0. Any of those blocks can
be loaded into either of the two lines in the set. Note that no two blocks that map into the
same cache set have the same tag number. For a read operation, the 13-bit set number is
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.

Varying Associativity Over Cache Size

1.0 -
0.9 4 . I I
0.5 -
0.7 4
2 |
g 061 .
£ 054
0.4 -
0.3 -
0.2 -
0.1 -
D"“ 1 1) I L I L] 1 1 1 I
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M
Cache size (bytes)
direct
2-way
m d-way
B E-way
m H-way

Figure 4.16 Varying Associativity over Cache Size

Replacement Algorithms

* Once the cache has been filled, when a new block is brought into the
cache, one of the existing blocks must be replaced

* For direct mapping there is only one possible line for any particular
block and no choice is possible

* For the associative and set-associative techniques a replacement
algorithm is needed

* To achieve high speed, an algorithm must be implemented in
hardware

CAAIT

ne four most common replacement
algorithms are:

* Least recently used (LRU)
* Most effective
* Replace that block in the set that has been in the cache longest with no reference to it

* Because of its simplicity of implementation, LRU is the most popular replacement
algorithm

* First-in-first-out (FIFO)
* Replace that block in the set that has been in the cache longest
* Easily implemented as a round-robin or circular buffer technique

Least frequently used (LFU)
* Replace that block in the set that has experienced the fewest references
* Could be implemented by associating a counter with each line

e Random
* Atechnique not based on usage, it picks a line at random from among the candidate lines

» Simulation studies have shown that random replacement provides only slightly inferior
performance to an algorithm based on usage

Werite Policy

4 N 4 N
When a block that is resident in the
: There are two problems to contend
cache is to be replaced there are)
: with:
two cases to consider:
_ J o J

4)
If the old block in the cache has not been
altered then it may be overwritten with a new
block without first writing out the old block

" More than one device may have access to |

main memory (when an 1I/O module uses

DMA and modify RAM =» cache word is
invalid and the vice versa)

- J - J
4 N 4)
. . A more complex problem occurs when
If at least one write operation has been multiple processors are attached to the same
performed on a word in that line of the cache bus and each processor has its own local
then main memory must be updated by cache - if a word is altered in one cache it
writing the line of cache out to the block of could conceivably invalidate a word in other
memory before bringing in the new block caches

N) - J

Write Through

e Wri

te through
Simplest technique

* All write operations are made to main
memory as well as to the cache

* The main disadvantage of this

e Wri

technique is that it

generates

substantial memory traffic and may

create a bottleneck

te back
Minimizes memory

writes

Updates are made only in the cache
Portions of main memory are invalid

and hence accesses by I/O modules can

be allowed only thr

This makes for com
potential bottlenec

ough the cache
Elex circuitry and a

-~

R i

AAIT

If more than one device (typically a processor) has a separate
cache but share main memory, a new problem is introduced. If
data in one cache are altered, even if a write-through policy is
used, the other caches may contain invalid data. A system that
prevents this problem is said to maintain cache coherency:

« Bus watching with write through: Each cache controller
monitors the address lines to detect write operations to
memory by other bus masters. If another master writes to a
location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry.

« Hardware transparency: Additional hardware is used to
ensure that all updates to main memory via cache are
reflected in all caches.

* Non-cacheable memory: Only a portion of main memory is
shared by more than one processor, and this is designated as
non-cacheable.

Line Size

When a block of
data is retrieved and
placed in the cache
not only the desired
word but also some
number of adjacent
words are retrieved

As the block
size increases
more useful
data are
brought into
the cache
N 4
As the block
size increases
the hit ratio
will at first
increase
because of the
principle of
locality

The hit ratio will
begin to decrease as
the block becomes
bigger and the
probability of using
the newly fetched
information becomes
less than the
probability of reusing
the information that
has to be replaced

AAIT

Two specific effects
come into play:

e Larger blocks reduce the
number of blocks that fit
into a cache

* As a block becomes larger
each additional word is
farther from the requested
word

A size of from 8 to 64 bytes
seems reasonably close to
optimum. For HPC systems,
64- and 128-byte cache line
sizes are most frequently used.

. AAIT
Multilevel Caches

* As logic density has increased it has become possible to have a cache on the
same chip as the processor

* The on-chip cache reduces the processor’s external bus activity and speeds
up execution time and increases overall system performance

 When the requested instruction or data is found in the on-chip cache, the bus access is
eliminated

. gn-chipi cache accesses will complete appreciably faster than would even zero-wait state
us cycles

* During this period the bus is free to support other transfers

* Two-level cache:
* Internal cache designated as level 1 (L1)
e External cache designated as level 2 (L2)

* Potential savings due to the use of an L2 cache depends on the hit rates in
both the L1 and L2 caches

* The use of multilevel caches complicates all of the design issues related to
caches, including size, replacement algorithm, and write policy

Hit Ratio (L1 & L2) For 8 Kbyte and 16 Kbyte L1

0.98—

The need for the L2 cache to be larger than the 0.96
L1 cache to affect performance makes sense. If 0.94—
the L2 cache has the same line size and
capacity as the L1 cache, its contents will more 0927
or less mirror those of the L1 cache. 0.90—

"'§ 0.88—
With the increasing availability of on-chip area, =
most contemporary microprocessors have 086
moved the L2 cache onto the processor chip 0.84—
and added an L3 cache accessible over the 0.82
external bus.
More recently, most microprocessors have 080
incorporated an on-chip L3 cache. In either 0.78 — T T T T T T T
case, there appears to be a performance Ik 2k 4k 8k 16k 32k 64k 128k 256k 512k IM 2M

advantage to adding the third level. Further,
large systems now incorporate 3 on-chip cache
levels and a fourth level of cache shared across
multiple chips

L2 Cache size (bytes)

Figure 4.17 Total Hit Ratio (L1 and L2) for 8 Kbyte and 16 Kbyte L1

CAAIT

AAIT

Unified Versus Split Caches

* Has become common to split cache:
* One dedicated to instructions
* One dedicated to data
* Both exist at the same level, typically as two L1 caches

e Advantages of unified cache:

* Higher hit rate
* Balances load of instruction and data fetches automatically
* Only one cache needs to be designed and implemented

* Trend is toward split caches at the L1 and unified caches for higher levels

e Advantages of split cache:

* Eliminates cache contention between instruction fetch/decode unit and execution
unit
* Important in pipelining

Processor on Which

Problem Solution Feature First Appears
External memory slower than the system | Add external cache using faster 386

bus. memory technology.

Increased processor speed results in Move external cache on-chip, 486

external bus becoming a bottleneck for operating at the same speed as the

cache access. processor.

Internal cache is rather small, due to Add external L2 cache using faster 486

limited space on chip. technology than main memory.

Contention occurs when both the Create separate data and instruc- Pentium

Instruction Prefetcher and the Execution
Unit simultaneously require access to
the cache. In that case. the Prefetcher is
stalled while the Execution Unit’s data
access takes place.

tion caches.

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Create separate back-side bus that
runs at higher speed than the main
(front-side) external bus. The BSB
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the proces-
sor chip.

Pentium 11

Some applications deal with massive
databases and must have rapid access
to large amounts of data. The on-chip
caches are too small.

Add external L3 cache.

Pentium I11

Move L3 cache on-chip.

Pentium 4

Table 4.4 Intel Cache Evolution

Pentium 4
Cache

Pentium 4 Block Diagram

» Fetch/decode unit: Fetches program
Instructions from L2, decodes and stores
the results in the L1 instruction cache.

ssemBus e Qut-of-order execution logic: Schedules

Out-of-order | L Hsrheion | e Instruction | execution of the decoded micro-
execution cache (12K uops) fetch/decode . . .
logic unit o b operations subject to data dependencies
bits’] and resource availability. As time
l L S permits, this unit schedules speculative
execution of micro-operations that may
I ister fil FP regi fil - -
T) — ”‘f““ — T F] N e) — r | be required in the future.
I « Execution units: These units executes
Load Store Simple Simple Complex FP/ FP micro_operations’ fetching the required
address address integer integer integer MMX mave
unit unit ALU ALU ALU unit unit L2 cache data from the L1 data cache and
(512 KB - . - .
l l l ' temporarily storing results in registers.
yy * Memory subsystem: This unit includes
L1 data cache (16 KB) «—F— the L2 and L3 caches and the system bus,
bits which is used to access main memory

when the L1 and L2 caches have a cache
miss and to access the system 1/O

Figure 4.18 Pentium 4 Block Diagram resources.

Pentium 4 Cache Operating Modes

The L1 data cache is controlled by two bits in one of the control registers, labeled the CD (cache disable) and
NW (not write-through) bits.

There are two Pentium 4 instructions that can be used to control the data cache:
« INVD: invalidates (flushes) the internal cache memory and signals the external cache to invalidate.

« WABINVD writes back and invalidates internal cache and then writes back and invalidates external cache.
Both the L2 and L3 caches are eight-way set-associative with a line size of 128 bytes.

Control Bits Operating Mode
CD NW Cache Fills Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Note: CD = 0: NW = 1 1s an invalid combination.

Table 4.5 Pentium 4 Cache Operating Modes

ARM Cache Features

AAIT

Write
Cache Cache Size Cache Line Buffer Size

Core Type (kB) Size (words) | Associativity | Location (words)
ARM720T Unified 8 4 4-way Logical 8
ARMO920T Split 16/16 D/1 8 64-way Logical 16
ARMOY926EI]-S Split 4-128/4-128 D/1 8 4-way Logical 16
ARMI022E Split 16/16 D/1 8 64-way Logical 16
ARMI026E]-S Split 4-128/4-128 D/1 8 4-way Logical 3
Intel Split 16/16 D/1 4 32-way Logical 32
StrongARM

Intel Xscale Split 32/32 D/1 8 32-way Logical 32
ARMI136-JF-S Split 4-64/4-64 D/1 3 4-way Physical 32

Table 4.6 ARM Cache Features

ARM Cache and Write Buffer Organization

An interesting feature of the ARM
architecture is the use of a small first-in-
first-out (FIFO) write buffer to enhance
memory write performance.

When the processor performs a write to
a bufferable area, the data are placed in
the write buffer at processor clock speed
and the processor continues execution.
A write occurs when data in the cache
are written back to main memory

virtual
address

Address
Translation

physical address

AEM Core

Y

R15

K0

Level 1 Level 2
Cache(s) ” » Cache
Write
buffer

Main
Memory

Figure 4.19 ARM Cache and Write Buffer Organization

Summary

Chapter 4

e Characteristics of

Memory Systems

Location
Capacity
Unit of transfer

* Memory Hierarchy
e How much?
* How fast?
* How expensive?

* Cache memory
principles

Cache Memory

Elements of cache design
Cache addresses
Cache size
Mapping function
Replacement algorithms
Write policy
Line size
Number of caches

Pentium 4 cache
organization

ARM cache organization

CAAIT

William Stallings |
Computer Organization
and Architecture

oth Edition

