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Preface

This is a short book. It aims to get across the essential elements of dynamics
that are used in modern treatments of the subject. More significantly, it aims
to do this through the means of examples. Some of these examples are purely
algebraic. But many others consider economic models: both microeconomic
and macroeconomic. Macroeconomics is replete with dynamic models — some
simple and others quite complex. But this is not true of microeconomics.
Microeconomics is still very largely static, with the exception of the cobweb
model. In this book we have considered the dynamics of demand and supply
and the dynamics of the firm. In terms of the firm we deal only with advertis-
ing, diffusion models and the dynamic theory of oligopoly. The macroeco-
nomic models we consider follow the traditional development of the subject
matter. The Keynesian fixed-price model is considered first, followed by the
IS-LM model. But we also consider the Dornbusch model of the open
economy. This model in particular allows us to show how rational expecta-
tions enter model construction. It also illustrates the concept of a saddle-point
solution to a dynamic model. Other topics of importance are also dealt with
such as inflation and unemployment and the fiscal criteria of the Maastricht
Treaty. The final chapter (chapter 10) provides an introduction to modern
ideas of bifurcation and chaos.

Every student now has access to a spreadsheet. In many colleges and uni-
versities, students are trained in the use of the spreadsheet. Often, however,
this is for setting out economic data and graphing it. Occasionally a regression
equation is undertaken. Rarely is a simple dynamic model set up and investi-
gated. This is what this book is about. I have deliberately set a constraint on
the material covered that it must be capable of being investigated on a spread-
sheet and that no additional technical software needs to be invoked. This is
not as limiting as it may first appear. It may be thought that this restricts our
investigation only to discrete models. This is not in fact true. By utilising
Euler’s approximation, we can investigate quite readily continuous dynamic
models. In this book we shall invoke Euler’s approximation frequently.

There is a second reason for limiting myself to spreadsheets. Economics, like
many subjects, can be more fully appreciated by setting out a problem and
manipulating it experimentally. Experimentation is at the heart of this book.
But such experimentation is based only on the reader setting up the model
themselves on their computer. I have found that students like setting models
up from scratch. When they get things wrong they must check their model
specification relative to the theory. So they read the theory with a more focused
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Preface

mind. They have a reason for getting it right! This is quite a different approach
from having a complete model all ready set up. There is a value in such models,
but for learning model construction, and for appreciating the properties of a
model, there is no better substitute than setting it up from scratch. Of course,
there is a cost to this. The models must be relatively simple. I feel this is a cost
worth bearing. Complex models may take account of more variables and more
interrelationships in the economic system under investigation, but sometimes
knowing why a result is the way it is becomes obscured. All one can say is that
it is the output of the model. Furthermore, it is not clear what the model
assumes unless you were involved in its construction. Listing these assump-
tions is dry and a turn-off, and such models are best considered by postgrad-
uates and researchers. This book is aimed specifically at undergraduates. It is
assumed that the reader will actually set up the model on a spreadsheet and
then experiment with it.

Throughout, we have kept things simple. Even some advanced concepts are
illustrated by means of simple examples. In doing this special emphasis has
been placed on graphically illustrating dynamics. This is where the spreadsheet
has been extensively used. Computing large amounts of data points (some-
times 2,000) allows some complex trajectories to be illustrated in the X-Y
plane. Seeing how these graphs change when parameter values are altered or
when the initial condition is altered is very interactive.

This book is aimed at undergraduates who are pursuing economics either
as a single honours subject or as a joint degree. It presupposes familiarity with
first-year economics and for some topics a second- or third-year level. It also
presupposes a basic familiarity with Excel or an equivalent spreadsheet. It is
intended as an accompaniment to all basic economics courses, but it is espe-
cially useful to courses in quantitative economics.

Web site

The book, as mentioned, is deliberately short. It provides the essentials. The
real learning comes from setting up the models and graphing and/or solving
them yourself. There are generally five exercises at the end of each chapter, an
additional ten exercises per chapter can be found on the web site for students
and a further ten exercises for tutors —around 250 in all! The web site includes
solutions to all exercises. The fact that part of the book is in hard copy and
part on the web simply takes advantage of modern technology in providing
students with a learning environment.

Material for the student
At the end of each chapter there are generally five problems, with brief solu-
tions contained at the end of the book. The Cambridge University Press web
site has available:

(1) Detailed solutions to all end-of-chapter problems.
(2) An additional ten exercises per chapter and their detailed solutions.

This material can be downloaded from the web site. It is also possible to down-
load the Windows Excel files used to produce the answers.
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Material for the tutor
The following material is available to tutors from the Cambridge University
web site:

(1) Microsoft Windows Excel files for all problems contained in this
book.

(2) Detailed solutions to all end-of-chapter problems.

(3) Ten additional exercises per chapter and their detailed solutions —
also available to students.

4) A further ten exercises and their detailed solutions — available only to
tutors.

All this material can be downloaded from the web site.
The author welcomes comments on this book and the material on the web
site. He can be contacted by e-mail on <ron.shone(@stir.ac.uk>.

Ronald Shone
22 June 2000



Chapter 1
Introduction

In this chapter we shall introduce some basic concepts of dynamics. In order
to illustrate these we shall consider just one example. This example is a simple
linear model. Why such a linear equation explains what is of interest we shall
not consider here. Our main aim is to define and elaborate on dynamic
concepts that we shall use throughout this book. Our second aim is to show
how such a model can be set up on a spreadsheet and then investigated
interactively.

1.1 Definitions and concepts

Dynamics is concerned with how things change over time. The passage of time
is a crucial element in any dynamic process. Whether a variable remains the
same value at two points in time or whether it is different is not the essential
issue, what matters is that time has elapsed between the value of the variable on
the first occasion and the value it takes on the second. Time cannot be reversed.

In dynamics we must specify the point in time for any given variable. If we
are concerned about national income, price or profits we need to specify the
level of income at a point in time, the price at a point in time and profits at
some point in time. As time moves on the value these variables take may
change. We will specify time in this book by referring to periods: period 0,
usually referring to the initial point in time, then period 1, period 2, and so on.
Consequently we shall denote this =0, 1, 2, etc. If our variable of interest is
price, say, which we denote as p, then p(0) refers to the price at time period 0,
the present, p(1) the price at time period 1, p(2) the price at time period 2, and
so on. Unfortunately, referring to price in this way allows us to refer only to
future prices. Sometimes we wish to talk about what the price was in the pre-
vious period, or the price two periods ago. In order to do this we sometimes
say that p(t) 1s the price in period ¢, the price now, p(¢+ 1) the price in the next
period, and p(¢+ 2) the price two periods from now. Doing this then allows us
to refer to price in the previous period, p(z— 1), and the price two periods in
the past, p(1—2), etc. Which we use depends on what we are discussing, but
the context should make it quite clear. If our model is continuous, then p(¢) is
a continuous function of time. There is a price for each instant of time. We con-
sider continuous models in section 1.9.

How a variable changes over time depends on what determines that vari-
able. What determines a variable is formulated by means of models. In other
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words, a model is an explanation of how the variable comes about: how it takes
on the value that it does, how it is related to other variables, and how it changes
over time. A model that refers to no passage of time is called a static model.
Elementary economics has many static models. The model of demand and
supply, which determines the equilibrium price, is a typical static model.
Equilibrium price is determined by the equality between what is demanded
and what is supplied: where the demand curve intersects the supply curve. If
demand rises, and the demand curve shifts to the right, then equilibrium price
will rise. When we compare one equilibrium with another we are concerned
with comparative statics. We are simply comparing the two or more equilib-
rium points. How the variable got to the new equilibrium is not really consid-
ered. To do this would require some dynamic process to be specified. Usually
in the theory of demand and supply the movement is assumed to be instanta-
neous. Or, put another way, that adjustment all happens in the same time
period, so that it is unnecessary to specify time. On the other hand, if we wish
to specify the time path of a variable between one equilibrium point and
another, then we must set out a dynamic model which explicitly explains the
movement of the variable over time. In other words, a dynamic model must
involve time explicitly.

Notice here that the model comes from the subject. It comes from our
understanding of how the world works. The world is a complex place and we
simplify by forming a model. The model sets out the relationships between the
crucial elements of the system we are interested in. Models involve abstrac-
tions and simplifications. An economic model will concentrate on the economic
aspects of a system while a sociological model would concentrate on the social
aspects of the same system. In this book we are concerned only with economic
models. The subject matter of economics is usually divided into microeconom-
1cs and macroeconomics. Microeconomics is concerned with individual units,
such as choices made by individuals, profits made by firms, decisions about
supplying labour at different wage rates, and so on. Macroeconomics is con-
cerned with aggregate variables at the economy level such as unemployment,
national income and the general price level. A large part of studying econom-
ics is coming to an understanding of microeconomic models and macroeco-
nomic models. In elementary courses in economics these models are usually
static models. Time does not enter them explicitly and attention is usually
directed towards the determination of equilibrium conditions.

An equilibrium of a model is where the system settles down and, once there,
there is no reason for the system to move. It is often thought of in mechanical
terms as a balance of forces. In demand and supply, for example, demand rep-
resents one force and supply another. When demand equals supply then the
forces are in balance and the system is in equilibrium. The price that estab-
lishes this balance of force is then referred to as the equilibrium price. Much
attention in economics is paid to what determines the equilibrium of a model
and how that equilibrium changes when some feature of the system changes.
But most elementary textbooks stop at this point. But consider for a moment.
To establish that a system has an equilibrium just establishes whether an equi-
librium exists or not. It cannot guarantee that the system will ever achieve that
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equilibrium. When attention is directed at the attainment or not of the equi-
librium we are dealing with its stability or instability. We refer to this simply
as the condition of stability of the equilibrium. But to consider the stability of
an equilibrium we need to know what happens to the variable over time. If a
variable over time tends towards the equilibrium value, then we say it is stable.
If a variable moves away from the equilibrium value then we say it is unstable.
(We shall explain this more formally later in the book.) Notice that it is the
stability of the equilibrium which we are referring to. Furthermore, any dis-
cussion of stability must involve the passage of time explicitly, and so stability
1s a dynamic consideration of the model. To illustrate this in simple terms take
a bowl and (gently) drop an egg down the side. The egg will slip down the side,
rise up the other, and steadily come to rest at the bottom of the bowl. The
movements around the base get smaller and smaller over time. The base of the
bowl represents a stable equilibrium. We know it is an equilibrium because the
egg stops moving, and will remain there until it is disturbed. Furthermore, if
gently moved a little from the base, it will soon return there. Now place the egg
carefully on a bowl placed upside down. If placed carefully, then the egg will
remain in that position. It is equilibrium. There is a balance of forces. But
move the egg just a little and it will topple down the side of the bowl. It does
not matter which direction it is moved, once moved the egg will move away
from the top of the bowl. In other words, the top of the bowl is an unstable
equilibrium. In this book we shall be considering in some detail the stability
of equilibrium points. In this example the movement of the egg was either
towards the equilibrium or away from it. But in some systems we shall be con-
sidering it is possible for a variable to move around the equilibrium, neither
moving towards it nor away from it! Such systems exhibit oscillatory
behaviour.

Here we have introduced the reader to only some of the concepts that we
will be dealing with. It will be necessary to formalise them more carefully. We
shall do this in terms of the economic models we shall consider.

1.2 Dynamic models

Consider the following equation, which we shall assume for the moment
comes from some theory of economics explaining the variable x.

x(t+1)=3+3x(7)

Since the variable x at time 7+ 1 is related to the same variable in the previous
period we call such models recursive. This is true even if more than one time
period in the past is involved in the relationship. This recursive model is also
linear, since the equation itself is a linear equation. In more complex models
nonlinear equations can arise, but they are still recursive if they are related to
the same variable in early periods. If the relationship is for just one previous
period, then we have a first-order recursive equation; if it is for two periods, then
we have a second-order recursive equation, and so on.

Now in itself this is not sufficient to specify the time path of the variable x.
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We need to know its starting value. For the moment let this be x(0)=10.
Obviously, if this is the case then x(1)=3+ %(10) =8 and x(2)=3+ %(8) =17.
The sequence of x(¢) generated over time is then 10, 8, 7, 6.5, 6.25 ... We can
learn quite a bit from this equation. First, the change in the sequence is getting
smaller and appears to be getting close to some number. If the series was
extended for many more periods it would indicate that the series is getting
closer and closer to the number 6. Is this a coincidence? No, it is not. The
number 6 is the equilibrium of this system. Can we establish this? Yes, we can.
If the system is in equilibrium it is at rest and so the value the variable x takes
in each period is the same. Let us call this x*. Then it follows that
x(t—1)=x(t)=x",and so x*=3 + %x* or x*= 6. Mathematicians often call eq-
uilibrium points fixed points and we shall use the two terms interchangeably.
But we can say much more. From the solution we have just derived it is clear
that there is only one fixed point to this system: one equilibrium.

It is very useful to display first-order recursive systems of this type on a
diagram that highlights many features we shall be discussing. On the horizon-
tal axis we measure x(7) and on the vertical axis we measure x(z+ 1). Next we
draw a 45°-line. Along such a line we have the condition that x(z+ 1) = x(¢).
This means that any such equilibrium point, any fixed point of the system,
must lie somewhere on this line. Next we draw the equation 3 +%x(l). This is
just a straight line with intercept 3 and slope % For this exercise we assume a
continuous relationship. The situation is shown in figure 1.1. It is quite clear
from this figure that the line 3 +%x(t) cuts the 45°-line at the value 6, which
satisfies the condition

x(t+1)=x(t)=x"=6

It is also quite clear from figure 1.1 that this line can cut the 45°-line in only
one place. This means that the equilibrium point, the fixed point of the system,
1s unique.

Given the starting value of x(0) =10, the next value is found from a point
on the line, namely x(1)=3+ %x(O) =3+ %(10) = 8. At this stage the value of
x(1) 1s read on the vertical axis. But if we move horizontally across to the 45°-
line, then we can establish this same value on the horizontal axis. Given this
value of x(1) on the horizontal axis, then x(2) is simply read off from the
equation once again, namely x(2)=3+ %x(l) =3+ %(8) =7. Continuing to
perform this operation will take the system to the equilibrium point x*= 6. The
line pattern that emerges is referred to as a cobweb. We shall consider these in
more detail in chapter 2.

It would appear on the face of it that the fixed point x*= 6 is a stable fixed
point, in the sense that the sequence starting at x(0) = 10 converges on it. But
we must establish that this is true for other starting values. This may have been
an exception! Suppose we take a starting value below the equilibrium point,
say x(0)= 3. If we do this, the sequence that arises is 3, 4.5, 5.25, 5.625 ... So
once again we note that the sequence appears to be converging on the fixed
point of the system. This is also shown in figure 1.1. It is very easy to establish
that no matter what the starting value for the variable x, the system will over
time converge on the fixed point x*= 6. Not only is this fixed point stable, but
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x(t+1)

x(t+1)=x(?)

3+(1/2)x(t)

) | x0)

3 T_ 8 10 x(1)

also it is said to be globally stable. The word ‘global’ indicates that it does not
matter what value of x is taken as a starting value, whether near to the fixed
point or far away from the fixed point, the system will always converge on the
fixed point.

To reiterate, we have established that the system has an equilibrium point (a
fixed point), that there is only one such equilibrium point and that this fixed
point is globally stable. This is a lot of information.

1.3 Deterministic dynamical models

We can use the model we have just outlined to clarify more clearly what we
mean by a ‘dynamic model’. In doing this, however, let us generalise the initial
point. Let this be denoted x(0) = x,, then the system can be written

x(t+1)=3+13x(1) x(0)=x,

This is a deterministic dynamical model (or deterministic dynamical system).
It is a dynamic system because it deals with the value of the variable x over
time. Given x(0) = x,,, then we can trace out the whole series of value of x(¢),
for all time periods ¢ from period 0 onwards. Notice that the series is crucially
dependent on the initial condition. A different initial condition, as in our
example above, will lead to quite a different series of numbers, although they
will in this instance converge on the same fixed point. Why have we referred to
it as ‘deterministic’? It is deterministic because given the same initial value, the
sequence of numbers is always the same. The initial condition and the specifi-
cation of the recursive equation determine the sequence. There is no random
element entering the series. Even if we calculate the sequence on a computer

Figure 1.1

(1.2)
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(1.3)

the numbers will be identical for the same starting value. It does not matter
which software we use or which chip is contained in the computer. The whole
system is deterministic.

Let us generalise the model. Suppose

x(t+1)=a+bx(t) x(0)=x,

This is still a deterministic dynamical system. However, to establish the
sequence of x(7) over time we need to know the values of @ and b, which are
referred to as the parameters of the system. Parameters are constants of the
system and typically capture the structure of the problem under investigation.
They are therefore sometimes called structural parameters. We now have the
three ingredients that are necessary to specify a deterministic dynamical
system. They are:

(1) the initial condition, namely x(0) = x,
(2) the values of the parameters, here the values of ¢ and b
3) the sequence of values over time of the variable x.

As we shall see later, the fact that the system is deterministic does not mean
that it may not appear like a random series. It simply means that given the
initial condition and the same values for the parameters, then the sequence of
values that are generated will always be the same no matter what they look like.

1.4 Dynamical systems on a spreadsheet

We shall frequently be displaying dynamical systems on a spreadsheet and so
we shall use our present model to illustrate how this is done. Spreadsheets are
ideal mediums for investigating recursive systems, and a great deal of dynamic
investigation can easily be undertaken with their help. Using spreadsheets
avoids the necessity of establishing complex formulas for solution paths. Of
course the more one understands about such solution methods, the more one
can appreciate the nature of the dynamic system under investigation. For indi-
viduals wishing to know such solution methods they will find these in my
Economic Dynamics (Shone, 1997).

From the very outset we want to set up the model in general terms so we can
undertake some analysis. This may involve changing the initial value and/or
changing the value of one or more of the parameters. The situation is shown
in figure 1.2. At the top of the spreadsheet we have the values of the two
parameters « and b. The values themselves are in cells C2 and C3, respectively.
When using spreadsheets it is essential to understand from the very outset that
cells can have absolute addresses or relative addresses. An absolute address is
distinguished from a relative address by having the $-sign precede the row and
column designation: C3 is a relative address while $C$3 is an absolute address.
The importance of this distinction will become clear in a moment.

In the first column we place our time periods, t=0, 1, 2, etc. It is not neces-
sary to type in these values, and it would be tedious to do so if you wanted to
investigate the dynamics of a model over 500 time periods or even 2000! Most
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C$2+$CS$3*B6
SCS2+5CS Initial value $C$2/(1-8C$3)

software packages have a ‘Fill’ command. You simply specify the initial value
(here 0) and then block down and request a fill with the incremental value
included, here an increment of 1. That is all that is necessary. It is useful to
include the time periods because it then becomes easier to graph the series x(z).
Since the row headings take place along row 5, the time periods are in cells A6,
A7, etc. Next we place in cell B6 the initial value. In this example we insert the
value 10.

At this stage it is essential to distinguish the absolute and relative address.
Since the parameter values will always be the same, we need to refer to the
absolute value in cell C2 and C3, i.e. the parameter a has the value in cell $C$2
while the parameter b has the value in cell $C$3. We now need to write a
formula in cell B7. A comparison between the algebraic formula and the
spreadsheet formula is useful here. These are for the value x(1)

= a+ bx(0)
=$CS$2 + $C$3*B6

Notice that B6 is a relative address, it simply refers to the previous value of x,
which in this instance is the initial value 10. Also notice that it is necessary
when specifying formulas in a spreadsheet to indicate a multiplication by the
‘star’ symbol. Once this formula is entered it is replaced by the value it takes,
in this example the value 8.

The power of the spreadsheet really comes into play at this point. Consider
for a moment what we would do if we wished to calculate the value of x(2).

Figure 1.2
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(1.4)

This value is positioned in cell BS. Again comparing the algebraic specifica-
tion and the spreadsheet will help clarify what is going on

= a+bx(1)
=$C$2 + $C$3*B7

Because the parameter values have absolute addresses, their values do not
change. However, B7 is a relative address and refers to the cell immediately
above. That in turn has already been calculated. But the spreadsheet formula
in cell B8 is almost identical to the formula in cell B7, the only difference is the
value which x takes, which is always the value in the cell immediately above. If
you copy the formula in cell B7 to the clipboard and paste it down for as many
periods as you are considering, the computations are immediately carried out,
with the value of x changing in the formula each time to be the value of x in
the cell immediately above. This can be done because the cell involves a rela-
tive address (along with some absolute addresses) and this relative address
keeps changing. Absolute addresses do not change. So you can paste down 13,
488 times or even 1,998 times with one click.

We have laboured this point here because it is the feature we shall be using
throughout. It also indicates that when dealing with dynamic systems on a
spreadsheet it is useful to set out the parameter values and then refer to their
absolute addresses and ensure formulas are entered and changed to include the
appropriate absolute and relative addresses. They need to be changed since all
formulas are entered with only relative addresses.

The spreadsheet involves one other computed value, namely the fixed point
of the system. Since

x"=a+ bx*

then
a

T1-b

*

X

In the spreadsheet we label the fixed point as ‘xstar =’ and its value is placed
in cell E2 where this value is

—$C$2/(1—$C$3)

Consequently any change to the parameter values is immediately reflected in
a change to the equilibrium value.

Note

It is always useful to check that you have entered formulas in the main
body of the computations. This can easily be accomplished. Copy the
equilibrium value to the cell containing the value for x(0), cell B6. If
your formula is correctly entered then every entry in column B should
be the same equilibrium value!

One final thing to do is to graph the series of x(¢) against time, z. This is
simply a X-Y plot with time on the horizontal axis and the variable x on the
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vertical axis. Here we assume you are familiar with your spreadsheet’s graph-
ing facility. Typically spreadsheets allow you either to place a graph on its own
sheet, or as a graphic item on the sheet where the calculations are being done.
This latter position is very useful when you wish to experiment with your
model because then you can see immediately the impact of changing some
element of the model. Placing it on its own sheet is useful if you wish to have
a printout of the graph. We shall experiment with the model in section 1.5. To
insert the graph, block cells A6:B21 and invoke the chart wizard. Choose the
X-Y plot and choose the option with the points joined. The wizard automat-
ically knows that the first column (cells A6:A21) is the values on the x-axis. We
have also included a title and labels for the two axes. We also have turned the
y-axis label through 90°. Figure 1.2 shows the resulting time path of x(7). In
order to see the dynamics of the path more clearly, we have suppressed the
points and joined the points up with a continuous line. The plot readily reveals
the stability of the equilibrium, with the path of x(7) starting at the value 10
and tending to the equilibrium value of 6.

1.5 Experimentation

It 1s now time to experiment with the model in order to investigate the char-
acteristics of its dynamics. We shall leave this up to the reader, and here just
indicate what you should expect to observe.

1.5.1 Changing initial conditions

We stated above that this model was globally stable; that no matter what the
initial value was, the system would always converge on the equilibrium value,
(1.4). Verity this. Try for example x(0)=3, 0, 7, —2 and 25. No matter what
value is chosen, the system will always converge on the value 6. Of course,
sometimes it takes a long time to do this. If the initial value were 100, for
example, then it takes a much longer time to reach the equilibrium value than
if the initial value were 10.

1.5.2 Changing the parameter a

Raising (lowering) the value of the parameter a raises (lowers) the equilib-
rium value. This readily follows from the formula for the equilibrium value,
but it is readily verified on the spreadsheet. It is also apparent from figure 1.1.
A rise in the parameter « is a rise in the intercept in the formula a + bx(z),
and this will intersect the 45°-line further up. A fall in the parameter a will
do the opposite. Such a change alters only the equilibrium value, the value
of the fixed point. It has no bearing on the stability properties of that fixed
point. The system remains convergent. Verify these statements by changing
the value of the parameter ¢ and choose again the same initial values for the
variable x.
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(1.5)

1.5.3 Changing the parameter b

Retain the initial value of x(0) = 10 but now let »=1.5. Not only does the equi-
librium become negative, with value — 6, but also the system diverges away
from the equilibrium value. The variable x(7) just grows and grows. Let b =— %
The equilibrium value falls from 6 to 2. Furthermore, the values that x take
oscillate above and below this value, but converge on it. If b=— 1.5, the system
still oscillates, but the oscillations diverge away from the equilibrium value,
which is now 1.2. Finally take » = — 1. Equilibrium becomes 1.5 and the system
oscillates either side of this value indefinitely, with values — 7 and 10, and the
system neither moves towards the equilibrium or away from it.

It is apparent from these experimentations that changing the value of the
parameter b can have drastic consequences on the dynamics of this system, far
more dramatic an impact than occurs when the parameter a is altered.

Carry out some more experimentation with changes in the value of the
parameter b. What you should conclude is the following:

(1) A value of 0 <bH <1 leads to the system converging on the equilibrium
value.

(2) A value of b =1 leads to no fixed point. (What does this imply about
the graph of x(7+ 1) against x(7)?)

(3) A value of —1<bh <0 leads to the system oscillating, but converging
on the equilibrium value.

4) A value of b=—1 leads to oscillations between two values, neither
moving toward nor away from the equilibrium value.

(%) A value of h<—1 leads to oscillations which diverge further and

further from the equilibrium value.

All these statements are true regardless of the initial value taken by the system
(other than the equilibrium value).

What began as a very simple linear model has led to a whole diversity of
dynamic behaviour. It clearly illustrates that simply demonstrating that a
model has an equilibrium point is not sufficient. It is vital to establish whether
the system will converge or not converge on this equilibrium. It is essential to
investigate the dynamics of the model.

1.6 Difference equations
The recursive system we have been analysing, represented here as (1.5)
x(t+1)=3+1x(1)

can be expressed in a different way which is often very revealing about its
dynamics. If we subtract from both sides the same value, then we have not
changed the characteristics of the system at all. In particular, the equilibrium
value is unchanged and the stability/instability of the system is unchanged.
Suppose, then, that we subtract from both sides the value x(¢), then we have

xX(t+ 1) = x(2) = Ax(t + 1) =3 +3x(2) = x(£) =3+ (3 — 1)x(2)
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Ax(t+1)

lope=—1/2
/ S

fixed point

x(1)

Ax(t+1)=3—(1/2)x(?)

or
Ax(t+1)=3—1x(t)

This relationship is referred to as a difference equation because it expresses the
difference Ax(z+ 1) = x(z+ 1) — x(¢) as a function of x(¢). It is also a first-order
difference equation because we are considering only the first difference. The
system is shown in figure 1.3, where we place x(¢) on the horizontal axis and
Ax(t+ 1) on the vertical axis. Of particular note is that the intercept is the value
3 and the slope of the line is —%.

Let us establish that the properties of the system are the same. Consider first
the equilibrium value, the fixed point of the system. In equilibrium we know
that x(z+1)=x(¢)=x". Then it follows that Ax(z+1)=x(t+1)—x(¢)=0.
Given this situation, then 0=3— %x* or x*=6. We have therefore verified
that the equilibrium value is unchanged. In terms of figure 1.3, the equilibrium
1s where the equation 3 —%x(t) cuts the horizontal axis, because at this point
Ax(t+1)=0.

Now consider the stability or otherwise of the equilibrium point. Take the
typical initial value we have been using of x(0) =10 This value lies above the
equilibrium value of 6, and so Ax(z + 1) is negative. If Ax(7+1) <0 then x(¢+1)
<x(#) and so x(¢) is falling over time. In fact this will continue to be so until
the fixed point is reached. If, on the other hand, we take x(0) = 3, then Ax(¢+1)
>0 and so x(¢+1)>x(z), and hence x(¢) is rising over time. Again, this will
continue to be so until the fixed point is reached. Once again, therefore, we
have demonstrated that the fixed point is 6 and that it is stable. Even more, no
matter what value of x(0) we take, the system will converge on the equilibrium.
The equilibrium is unique and globally stable. The characteristic to take note
of here is that the line that passes through the equilibrium in figure 1.3 is neg-
atively sloped and cuts the x-axis at only one point.

Consider next the situation where » =1.5. In this case

X(t+ 1) = x(0)= Ax(t+ 1) =3+ L5x(1) = x(1) =3+ (1.5 — 1)x(?)

Figure 1.3
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(1.7)

(1.8)

(1.9)

or
Ax(t+1)=3+0.5x(¢)
Is the equilibrium unchanged? No, it changes since

0=34+0.5x"
x'=—6

Also the line 3 + 0.5x(¢) is positively sloped. At x(0)=10 Ax(¢+1)>0 and so
x(2) 1s rising. The system is moving further away (in the positive direction)
from the equilibrium value. A value of x(7) less than — 6 will readily reveal that
Ax(t+1)<0 and so x(¢) is falling, and the system moves further away (in the
negative direction) from the equilibrium point. A linear system with a posi-
tively sloped difference equation, therefore, exhibits an unstable fixed point.
To summarise, for linear difference equations of the first order, if the differ-
ence equation has a nonzero slope, then a unique fixed point exists where
the difference equation cuts the horizontal axis. If the difference equation is
negatively sloped, then the fixed point of the system is unique and globally
stable. If the linear difference equation is positively sloped, then the fixed point
of the system is unique and globally unstable. We have demonstrated all this
in previous sections. If » =1 the slope is zero and no fixed point is defined. All
we have done here 1s to show the same characteristics in a different way. It may
not at this point seem obvious why we would do this. It is worth doing only if
it gives some additional insight. It gives some, but admittedly not very much.
Why we have laboured this approach, however, is that when we turn to two
variables, it 1s much more revealing. We shall see this in later chapters.

1.7 Attractors and repellors

We noted that in our example if —1<bh<1 then the system is stable and the
sequence of points converges on the fixed point. It converges either directly if
b is positive or in smaller and smaller oscillations if b is negative. If a trajec-
tory (a sequence of points) approaches the fixed point as time increases, then
the fixed point is said to be an attractor. On the other hand, if the sequence of
points moves away from the fixed point, then the fixed point is said to be a
repellor.

We can illustrate these concepts by means of the phase line. In constructing
the phase line we make use of the difference equation representation of our
recursive model. Our model is

x(t+1)=3+3x(1) x(0)=10
and the difference equation version of it is
Ax(t+1)=3—-3x(t) x(0)=10

This is shown in the upper part of figure 1.4. The fixed point, denoted x*, is
where the line 3 —%x(t) cuts the horizontal axis, which is at the value 6. The
phase line simply denotes the variable x(¢), and on this line is marked any fixed
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Ax(t+1)

1.5

x(1)

x(t+1)=3—(1/2)x(¢)

Phase line

— e X))
x=6

points (here we have only one), and arrows indicating the path of x(¢) over
time. To the left of x*, Ax(¢) is positive, and so x(#) is rising over time. The
arrows are therefore shown pointing to the right. Similarly, when the initial
point is to the right of x*, Ax(¢) is negative and so x(¢) is falling over time. The
arrows are therefore shown pointing to the left. The phase line thus illustrates
that the fixed point is attracting the system from any position on either side.
We have already established that this is the only fixed point and that it is glob-
ally stable. Hence, for any initial value not equal to the equilibrium, the system
will be attracted to the fixed point.
Consider next the recursive model

x(t+1)=3+1.5x(r) x(0)=10
with the difference equation version
Ax(t+1)=3+3x(t) x(0)=10

The equilibrium point is x*=—6, and the relationship 3 +%x(t) 1s positively
sloped. The situation is shown in figure 1.5. Once again we place the phase line
in the diagram below. For any initial point to the right of —6, then Ax(z+1)is
positive, and so x(¢) is rising over time. The arrows are therefore shown point-
ing to the right and the system is moving away from the fixed point. Similarly,
when the initial point is to the left of x*, Ax(¢) is negative and so x(¢) is falling
over time. The arrows are therefore shown pointing to the left and once again
the system is moving away from the fixed point. The phase line thus illustrates
that the fixed point is repelling the system for any initial value not equal to the
equilibrium value.

Figure 1.4

(1.10)

(1.11)
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Figure 1.5

(1.12)

Ax(t+1) Ax(t+1)=3+(1/2)x(?)
8

10/{;‘_56 ”””””” 050 Y x(0)
1 -2

Phase line ¥ ( t)

Fixed points that are attracting indicate stability while fixed points that
repel indicate instability. But a fixed point can be neither of these, even in
simple linear models. We noted this above when b was equal to minus unity.
The system oscillated between two values: one above the equilibrium and one
below the equilibrium. The system neither moved towards the fixed point nor
away from it. In this case we observe a periodic cycle, and in this example the
period is 2.1

1.8 Nonlinear dynamical systems

Although a considerable amount of analysis has taken place concerning linear
models, it must always be kept in mind that in general the world is nonlinear,
and it is necessary to model the topic of interest with nonlinear equations.
Nonlinear models lead to far more diverse behaviour. They can lead to more
than one equilibrium point, they can lead to a system exhibiting both stabil-
ity or instability in different neighbourhoods and they can lead to cyclical
behaviour of orders greater than two.

Our intention in this section is to present some introductory remarks about
nonlinear systems and to introduce some new concepts. A fuller treatment will
occur in later sections of this book. Although nonlinear systems are more
complex and lead to more diverse behaviour, they can still be investigated in a
fairly easy fashion with the aid of a spreadsheet.

Consider the following nonlinear recursive model

x(t+1)=c+ax*(t) x(0)=x,
As earlier, the equilibrium of the system is found by setting x(¢ + 1) = x(¢) = x*,
then

I Period cycles are explained more fully in chapter 10.
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x*=c+ax™?
ax?—x"+c¢=0

with solutions

., 1+VI1-—-4dac
=——_———an

X
! 2a

1—V1—-4dac

dx= 2a

We immediately see from (1.13) that there are rwo fixed points to this system.
Second, the fixed points are real valued only if 1 —4ac=0. But if there are two
fixed points to the system, then any consideration of stability or instability
cannot be global; it must be in relation to a particular fixed point. When there
is more than one fixed point we refer to local stability and local instability. The
word ‘local’ indicates that we are considering stability only in a (small) neigh-
bourhood of the fixed point.
Consider the following nonlinear recursive system

x(t+1)=2—-3x21) x(0)=x,

which leads to equilibrium points x; =—1+V5=1.23607 and x;=—1-V/5
=—3.23607 (see box 1).

Box 1 Solving quadratic equations with a spreadsheet

We shall be solving quadratic equations frequently in this book and so
it will be useful to set the solutions up on a spreadsheet. Let any qua-
dratic equation be written in the form

ax?2+bx+c¢=0

then we know that the solutions are given by

.= — b+ Vb*—4dac . —b— Vb*>—4dac
! 2a 2 2a

Now set up a spreadsheet with the parameters @, b and ¢, as shown
below. Let their values be placed in cells F3, F4 and F5. (To the left we
insert the formulas as a reminder.) Then in cells F7 and F8 place the
results, 1.e.

F7 =(-b+Vb* —4ac)l2a

— (— SF$4+ SQRT($F$4"2 — 4*SFS3*$F$5))/(2*$F$3)
F8 = (— b—Vb*— 4ac)/2a

= (— $F$4 — SQRT($F$4"2 — 4*$FS3*$F$5))/(2*$F$3)

Save this spreadsheet. It can now be used to solve any quadratic of the
form ax2+bx+c¢=0

(1.13)

(1.14)
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A, E Z O E F =
1 | Quadratic
2
3 axithxte=0 a= 1
4 . b=| -2
5 —bhtfb —dac o= -3
_x =
§ 2a
i S ®1 = 3
x = = -
g 2a
10 —h =~ —dac
11 Xq =
12 2a
13

The cobweb representation of this nonlinear system is shown in figure 1.6,
where we have the curve 2 — %xz(t) and the 45°-line denoting x(z + 1) = x(z).

In order to investigate what is happening in the neighbourhood of the fixed
points let us set this problem up on a spreadsheet in just the same manner as
our linear example, as shown in figure 1.7. Once again we set this up in general
terms, placing the parameters ¢ and ¢ above the data we are deriving. Also
included are the formulas for the two fixed points of the system. These are
entered in cells E2 and E3 with the instructions

(1+ SORT(1 — 4*$C$2*$C$3))/(2*S C$3)
(1— SQRT(1 — 4*$C$2*$C$3))/(2*$ C$3)

We next place the initial value in cell B6, which is here equal to 1.25.
In considering what to place in cell B7, consider the algebraic representa-
tion and the spreadsheet representation of the problem

=2-323(0)
=$C$2+$C3*B6"2

Notice that cell C3 includes the minus sign and that we specify powers in
spreadsheets by using the ‘caret’ symbol. Although the system we are investi-
gating is more complex, there is fundamentally no difference in the way we set
it up on the spreadsheet. We can now copy cell B7 to the clipboard and then
copy down for as many periods as we wish. To verify we have done all this cor-
rectly, copy one of the equilibrium values and place it in cell B6 for the initial
value. If all is OK, then all values should be 1.23607 (or approximately so
depending on the decimal places you have specified for your results). Having
performed this test satisfactorily, replace x(0) by 1.25 once again and then
experimentation can begin.

1.8.1 A change in the initial value

Let us consider first the lower equilibrium point, x; =—3.23607 and an initial
value of x(0) =—3.5. Given this initial value, the system declines very rapidly,
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x(t+1)=x(?)

-3 7> -1 1 5 2 3 x(1)

x(t+1)=2-(1/2)x(f)

moving further in the negative direction. What about a value slightly larger
than — 3.2? Consider the value x(0) = — 3.1. The system certainly moves away
from the fixed point, but then begins to oscillate between the values 0 and 2.
For the moment we shall not concern ourselves with the oscillatory behaviour,
and we shall take up this point later. All we are establishing here is that for
initial values a little larger than —3.23607 the system moves away from it,
which it certainly does. Hence, the fixed point x; =—3.23607 is locally unsta-
ble.

What about the fixed point x5=1.23607? Consider first a value 0.9. Very
soon the system settles into an oscillatory behaviour, oscillating once again
between 0 and 2. Consider an initial point above x5=1.23607, say 1.5. The
system once again converges on the oscillation between 0 and 2. What if we
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Figure 1.8 Ax(t+1)
Ax(t+1)=2—(1/2)x*()—x(t),
1
-2 -1
=-3.2
-1
-2
Phase line
—o—> > > > @—— x(t)
x*Z X 1

(1.15)

choose values even closer to the fixed point? Consider values 1.2 and 1.25,
respectively. With initial value 1.2 the system once again settles down to the
cycle 0 and 2 by about period 25. With initial point 1.25 the system settles
down to the same cycle by about period 30. The fixed point x5=1.23607 1s
neither an attractor nor a repellor.

In order to see what is taking place let us consider the difference equation
version of the model. This is

Ax(t+1)=2—3x2H)— x(f) x(0)=x,
In equilibrium Ax(7+ 1) =0 and so

2—%x*2—x*20
or x2+2x*—4=0

with solutions

xi=—1+V5 xi=—1-V5

The same equilibrium points have once again been established. The phase
diagram representation of the problem is drawn in figure 1.8. The curve rep-
resents the equation 2 — %xz(t) — x(¢). Here we are treating the curve as contin-
uous. This is important. To the left of x5=—3.23607 Ax(z+1)<0, which
indicates that x() is falling, so the system is moving even further in the nega-
tive direction. Slightly to the right of x;=—3.23607 then Ax(z + 1)>0 and so
x(?) 1s rising, i.e. moving away from the fixed point. From this perspective the
fixed point x; =—3.23607 is locally unstable and is a repellor.

Now turn to the larger of the fixed points, x; =1.23607. Slightly to the left
of this fixed point, in its neighbourhood, Ax(¢+1)>0 and so x(¢) is rising.
Slightly to the right of the fixed point, Ax(¢+ 1)<0 and so x(¢) is falling. In
terms of this continuous representation it appears that the fixed point
x; =1.23607 1s locally stable and is an attractor. But this seems in contradic-
tion to our spreadsheet investigation — at least for the higher fixed point! Why
is this?
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Ax(t+1) Ax(+1)=x"(t)—x"(t)—x(1)+1

| Phase line
> > > > o—> > xt)

What has been illustrated here is that the properties of continuous models
are not necessarily the same for their discrete counterpart. In fact, for many
discrete nonlinear models oscillatory behaviour arises. We shall see why in
later chapters. For the present all we wish to do is point out that if you are
interested in continuous models, then the difference representation of the
model with its accompanying phase line is sufficient to establish fixed points
and their local stability or instability. If, however, the model is in discrete time,
then it should be investigated on a spreadsheet to establish whether some of
the fixed points exhibit oscillations.

Let us take one further example to illustrate these points. Consider the non-
linear recursive model

x(t+1)=x31—x%()+1 x(0)=x,
The difference form of the model is
Ax(t+1)=x31)—x2(t) —x(1)+1 x(0)=x,
In equilibrium Ax(z+ 1) =0 and so we have

XP=x2—=x"+1=0
or (x*—1)2(1+x")=0

Since the difference equation is to the power three, then there are three solu-
tions to this equation. These are

* __ * *

The reason why two fixed points are the same is clearly shown in figure 1.9,
which plots the equation x3(¢) — x2(¢) — x(¢) + 1 and shows the phase line below.

Consider first the continuous form of the model as shown in figure 1.9. To
the left of x*=—1 Ax(¢+ 1)<0 and so x(¢) is falling. To the right of x*=—1
Ax(t+1)>0 and so x() is rising. The fixed point x*=—1 is locally unstable
and is a repellor. Now consider the fixed point x* =1. To the left of this point
Ax(t+1)>0and so x(¢) is rising. To the right of x* =1 Ax(z + 1) >0 and so x(¢)

Figure 1.9

(1.16)

(1.17)
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(1.18)

(1.19)

is still rising. The unusual nature of the fixed point x* =1 is shown by the phase
line with its arrows. The arrows are moving towards the fixed point x*=1 and
then away from it to the right. It is as if the system is being ‘shunted along’.
For this reason, the fixed point x* =1 is referred to as a shunt.

Does the discrete form of the model reveal these properties? In setting up
the model on a spreadsheet simply enter the initial value for the variable x, and
then in the cell immediately below the initial value, type in the formula —
moving the cursor to the cell above when placing in the variable x. Then copy
this cell to the clipboard and paste down for as many periods as you wish.
Doing this reveals the following. A value to the left of —1, say —1.2, leads the
system ever more in the negative direction. A value just above —1, say —0.9,
leads the system towards the upper fixed point x* =1. Taking a value just to
the left of the upper fixed point, say 0.5, leads the system to the fixed point
x*=1. Taking a value just above this fixed point, say 1.1, soon leads the system
into ever-higher values. Once again we have verified the same properties for
this specific model. In particular, we have illustrated that the lower fixed point
is a repellor, and is locally unstable, while the upper fixed point (strictly two)
is a shunt. In this particular example, therefore, there is no disparity in the con-
clusions drawn between the continuous form of the model and the discrete
form.

1.9 Continuous models

In section 1.8 we talked about continuous models but used a discrete represen-
tation of them. We need to be more precise about continuous models and how
to represent them. This is the purpose of this section. In section 1.10 we shall
consider a spreadsheet representation of continuous models using Euler’s
approximation. This will be found especially useful when we consider systems
of equations in chapter 4 and later.

If a variable x varies continuously with time, ¢, then x(#) is a continuous var-
1able. If we know, say from theory, that the change in x(¢) over time, denoted
dx(1)ldt, 1s

dx(t)

dr

then we have a first-order differential equation. If # does not enter explicitly as
a separate variable, then the differential equation is said to be an autonomous

differential equation.2
By way of example, suppose

dx(t)
dt

S x(0)]

=4-2x(1)

2 This is the mathematicians’ use of the word ‘autonomous’. They mean independent of time.
When an economist refers to a variable being autonomous they mean being independent of
income.
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then this i1s a first-order differential equation. dx(¢)/dt simply denotes the
change in x(7) over time, and 4 — 2x(¢) gives the formula for this change. Since
time does not enter explicitly in this equation then it is autonomous. A non-
autonomous equation would be something like

dx(1)

—==4-2x(t)+2t

" (1)

where ¢ enters explicitly. In this book we shall consider only autonomous
differential equations as defined here. Since x is always assumed to be a func-
tion of ¢, then we can drop the time designation and write (1.19) more suc-
cinctly as

dx

—=4-2x

dt
A convention used in mathematics, and one we shall use too, is to denote dx/dt
by the dot-symbol, i.e. x. This now means that (1.21) can be written as

x=4-2x

The fixed point, the equilibrium point, of this model is where x is unchang-
ing, which means where x = 0. This gives the fixed point

0=4-2x"
x*=2
Furthermore, this fixed point is globally stable. We establish this in exactly the

same way as we did with our discrete models. The situation is shown in figure
1.10.

Figure 1.10

(1.20)

(1.21)

(1.22)
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(1.23)

(1.24)

(1.25)

(1.26)

The model has only one fixed point, namely x*=2. The relationship
between the change in x, denoted X, and the variable x is shown in the upper
diagram in figure 1.10. Given x(0) for period 0, the initial period, where we
assume x(0) <2, then x>0 and so x is rising. For any initial point above x* =2,
then X <0 and so x is falling. This is true no matter what value of x we take on
the real line (other than the equilibrium point itself). Hence, x* =2 is an attrac-
tor and is globally stable.

If the model includes the initial condition, then

x=f(x) x(0)=x,

and (1.23) is referred to as the initial value problem. If f{x) is linear and nega-
tively sloped, then there is a unique fixed point which is globally stable. If f{x)
is linear and positively sloped, then there is a unique fixed point which is glo-
bally unstable. If f{x) is nonlinear and more than one equilibrium exists, then
we can refer only to local stability or instability in just the same way as we did
with the discrete models earlier in this chapter.

Return to the example of the shunt. In its continuous form, we have the
model

65;=x=x3—x2—x+ 1 x(0)=x,

where x is a continuous function of time. The model is the same as that shown
in figure 1.9 with the one exception that we place x on the vertical axis and not
Ax(t+1). All the remaining dynamics is the same.

1.10 Continuous differential equations on a spreadsheet

Return to the simple example of section 1.9, with the initial condition x(0) =1
Xx=4-2x x(0)=1

Now this is a simple differential equation and there are known techniques for
solving it.? We are not concerned about that here, and we shall simply state
that the solution is

x(t)y=2—e 2 or x(t)=2—exp(—21)

Of course if we did know this we could plot the path of x(7) for some length of
time. This is illustrated in figure 1.11. The solution curve x(¢) goes through the
point x(0) =1, which is our initial condition, and shown by point P. Now let
an interval of time pass, which we shall denote by Az. If we did know the solu-
tion curve, then at a value of t=0.01, 1.e. Ar=0.01, the value of x would be

2—e7200D=1.0198

This is shown by point Q. But suppose we do not know the solution curve. Can
we find an approximate value for point Q? Yes, we can. The change in x over

3 See Shone (1997, ch.2).
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time is the slope of the solution curve at any particular point. Consequently,
the slope of the solution curve when 1=0 is 4 —2(1) =2, since x(0)=1. Then
the value Q is approximated by x(1), and shown by the point R. But then
x(1) — x(0)
/ tP=—"——""
slope a A7
x(1) — x(0)
0=t
FROI="
x(1)=x(0) +f [x(0)]Ar
In our example,
x(1)=1+(4-2(1))(0.01)=1.02
which is not a bad approximation. In fact, we can always improve on the
approximation by taking smaller intervals of time. More generally, our
approximation is
x(t+1)=x(t) +f [x(2)]At (1.27)

which is Euler’s approximation to a differential equation. This approximation
can be used for any linear or nonlinear single-variable differential equation.4

1.10.1 Solution path on a spreadsheet

The advantage of the Euler approximation is that it applies to any linear or
nonlinear differential equation even if we cannot explicitly solve the model.
Furthermore, it is in such a form that it can readily be set out on a spreadsheet.
Before we begin, notice the importance of the initial condition. This sets the
solution path to pass through this point and only one such solution path can
go through the initial condition for autonomous differential equations — and
these are the only types of differential equations we shall be dealing with. This
gives us the value of x at time period 0. We label the time periods 0, 1, 2, ... and
the value for the variable, x by x(0), x(1), x(2), etc. The elapse of time, however,

4 We shall see in chapter 4 how it can be adapted for two-variable models.
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Figure 1.12

is only 0.01 between any two periods. The spreadsheet representation of our
example is shown in figure 1.12.

In cell D3 we have the label ‘dt =" to represent the symbol Az, and set this
value equal to 0.01 in cell E3. In cell B6 we place our initial value, x(0)=1.
Given this value, and the interval of time, we can calculate x(1) in cell B7 as
follows

=x(0) +/ [x(0)]A¢
— B6+ (4 —2* B6)*$ES3

This is then copied to the clipboard and pasted down. Here we have =0, 1,
... 20. To see how good the approximation is we have also included the com-
putations for the true solution curve in column C, i.e. (1.26). Again we place
the initial condition in cell C6. Cell C7 then has the formula

=2 —exp(—2¢)
=2—EXP(—2*AT*$ES$3)

Notice that time 7 is given by A7*$E$3. This cell is then copied to the clip-
board and pasted down. Given the small interval of time we have chosen, 0.01,
there is virtually no noticeable difference between the true values and our
approximation, which is very reassuring.> We shall utilise this approximation
for two-variable models in chapter 4 and later.

5 There are other superior approximations available that are given in books on differential equa-
tions.



Introduction

25

1.11 Conclusion

In this chapter we have defined dynamic models, particularly deterministic
dynamic models. It is not sufficient to demonstrate that a model has an equi-
librium, a fixed point, it is also important to establish whether the fixed point
is stable or not. By means of some simple examples we highlighted the con-
cepts of global stability and global instability, attractors and repellors and
periodic cycles.

Discrete dynamic models are recursive and can be represented in a number
of ways. In this chapter we represented such systems as cobwebs, as a differ-
ence equation model and in a spreadsheet. The spreadsheet representation of
a dynamical model allows a considerable amount of experimentation to be
undertaken. The difference equation representation allows us to introduce the
concept of the phase line. We next considered two nonlinear dynamical
models, highlighting the more complex and more diverse behaviour to which
they can give rise. Finally, we outlined continuous dynamic models of one var-
iable, showing how the solution paths of such differential equations can be set
up on a spreadsheet.

Exercises

(1) Establish the fixed points of the following discrete systems and show
the path of the system from the given initial condition

() x(t+1)=5-02x() x(0)=2
(i) x(z+1)=—2+3x(t) x(0)=0.5
(iif) x(t+1)=3+xg) x(0)=1

(2) Establish whether the systems in qu.1 are globally stable or globally
unstable.

3) Represent a phase line for the periodic solution to the linear equation
x(t+1)=3—x(1) x(0)=1

4) Establish the fixed points of the following nonlinear discrete systems
and establish their stability/instability properties
(1) x(t+1)=3+x2(t)—5x(¢)
(i)  x(z+1)=x3(¢)+2x%(t)—2

(Note: x3+2x2—x—2=(x—1)(x2+3x+2), or plot the function
xX3+2x2—x—2for —3<x<3)
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(%) Establish the fixed points of the following continuous models and
their stability/instability properties

(1) x=5-2x
(1) x=x2+x-—5

(i) x=x3+2x2—x—2



Chapter 2
Demand and supply dynamics

2.1 Beyond the textbook

The first market studied in economics is that of demand and supply. With
demand indicated by a downward sloping demand curve and supply repre-
sented by an upward sloping supply curve, then equilibrium in this market is
where demand equals supply. But elementary textbooks tend to be rather
unclear on what happens when the market is not in equilibrium. One typical
story is that at a price below the equilibrium, where there is excess demand,
price rises. This continues until the market is cleared. Where price is above the
equilibrium, where there is a situation of excess supply, price falls. This con-
tinues until the market is cleared. This story is even less clear on what is hap-
pening to the quantity traded during this adjustment process. Consider for a
moment a price that is below the equilibrium price. Here there is a situation of
excess demand. It is this excess demand that puts pressure on price to rise. One
assumption we can make is to assume that price rises by a proportion of the
excess demand. Let us make all this clear with a simple linear demand and
supply model.
Let

qd(1) =20 —4p(1)
qs(1)=5+2p(1)

Equilibrium in this model i1s where demand is equal to supply. So we can estab-
lish immediately that

20—4p*=5+2p"
p=2.5
g =10

where p* and ¢* denote equilibrium price and quantity, respectively. Turning
to the dynamics, we have argued that price adjusts proportionally to the excess
demand. More formally we can write this

Ap(t+ 1) =p(t+1) = p(t)=alqd(t) — qs(t)) a>0

What this equation clearly reveals is that when there is excess demand price
rises by a proportion a of this excess demand. Price will continue to rise so
long as there is excess demand. Similarly, if there 1s excess supply, or a nega-
tive excess demand, then price will fall, and will continue to fall until equi-
librium is attained. The parameter a denotes the speed of adjustment, and the

27




28

An Introduction to Economic Dynamics

(2.3)

(2.4)

(2.5)

higher this value the faster the market approaches equilibrium and vice
versa.

But what is traded at these nonequilibrium prices? Take a price below the
equilibrium price, say a price of 2. At this price the quantity demanded is 12
and the quantity supplied is 9. But only one quantity can be traded on the
market at any particular price. What quantity do we choose? This depends on
what we assume about quantities traded. If no stocks exist in this market,
then no matter what the level of demand is, sales cannot exceed what is sup-
plied, and so only a quantity of 9 will be traded. On the other hand, if price
1s above the equilibrium, say a price of 4, then the quantity demanded is 4 and
the quantity supplied is 13. Firms cannot force people to buy what they do
not want. They can of course entice them to do so by altering the price, but
for any given price, such as p=4, the quantity traded must be what is
demanded, namely 4. If we are assuming no stocks, as we presently are, then
the excess supply simply perishes. Of course, in some markets where goods
can be stored, such excess supply can become part of inventories. Then, when
there is excess demand, some (or all) of that excess demand can be met out of
stocks. In this case, however, the quantity traded can be anywhere between
the quantity supplied and the quantity demanded depending on the level of
stocks available and how much of these stocks will be released to satisfy the
excess demand. But such a model would need to set out clearly assumptions
about stock behaviour. Here we shall just pursue the model under the
assumption of no stocks.

With no stocks, we note from our discussion above that where there is excess
demand then it is the quantity supplied which is traded and when there is
excess supply it is the quantity demanded which is traded. In each instance it
is the ‘short side of the market’ which is traded. Let ¢(¢7) denote the quantity
traded at any particular price, then

q(t) = min(qd(1), gs(1))

It has been necessary to labour this point about the quantity traded, because
in the dynamics of demand and supply we are considering adjustment towards
the equilibrium and while this is taking place the market is out of equilibrium,
and we must establish at any particular price what quantity is traded.

To continue with our example, let @ =0.05 then our model is

qd(t) =20 —4p(1)

qs(t) =5+ 2p(2)
Ap(t+1)=0.05(gd(t) — gs(1))
q(1) = min(qd(?), gs(1))

Given this model then we can express the price in period 7+ 1 in terms of the
price in period ¢ as follows

p(t+1)—p(t)=0.05(20 — 4p(¢) — 5 —2p(1))
or

p(t+1)=p(r)+0.05(15— 6p(2))
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Starting from any initial price we can establish (a) the quantity demanded and
supplied, (b) the rise in price and hence the price in the next period and (c¢) the
quantity traded. For instance, if the initial price is 5, then the quantity
demanded and supplied are ¢d(0)=20—4(5)=0 and ¢s(0)=5+2(5)=15,
respectively, while the quantity traded is ¢(0) = min(0,15) = 0. All this is shown
in figure 2.1 where p(0) = 5. In cell C9 we place the value of @, and in cells E9
and E10 the equilibrium price and quantity as a reminder. In cells A13 to A28
we place our time periods — utilising the fill command in doing so. In cell B13
we place the initial price of p(0) =35. In cell B14 we write the formula

= p(0) +a(15—6p(0))
= B13+$C$9%(15— 6*B13)

This is then copied to the clipboard and pasted down in cells B15:B28. The
quantity demanded in cell C13 is simply

=20 —4p(0)
=20—4*BI3

while the quantity supplied in cell D13 is simply

=5+ 2p(0)
—5+2*BI3

Finally, in cell E13 we place the quantity traded, which is

= min(qd(t),qs(t))
= MIN(C13,D13)

Cells C13 to E13 are then copied to the clipboard and pasted down into cells
C14:E28.

Figure 2.1
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(2.6)

The inserted graph is not only a multiple X-Y graph but also is produced
using noncontiguous cells in the spreadsheet. We will often be using this pro-
cedure in this book and so we shall explain it in detail here. First, what is the
meaning of ‘noncontiguous cells’? If I simply wanted to plot the price, then all
I would do is block cells A13:B28. Columns A and B are next to each other:
they are contiguous. What I wish to do, however, is plot the price series
(column B) against time (column A) and the quantity traded (column E)
against time (column A). Clearly, column A is common and represents the
values on the x-axis. The procedure in Microsoft Excel is to block cells A13 to
B28, then holding the control key down move the cursor to cell E13 and, while
retaining hold of the control key, block down cells E13 to E28. What you will
observe is a dotted rectangle shown around each of the blocks. The pro-
gramme automatically chooses column A as the x-axis data. With the data
now identified, invoke the chart wizard, choose the X-Y option and choose the
points joined up. During the wizard, I included a title and labels for the axes
and moved the legend to the bottom (since the default is on the right-hand
side). Once the graph was inserted on the page, I realigned the vertical axis
label, turning it through 90°. The inserted graph displays the path of prices and
quantities traded over time. What is revealed here is that the price adjusts
downwards towards its equilibrium value of 2.5 and the quantity traded rises
upwards towards the equilibrium value of 10.

Given the spreadsheet representation of the model it is possible to experi-
ment with different initial prices and changes in the speed of adjustment. For
example, a starting price of unity leads to a rise in price towards its equilib-
rium value, and a rise in the quantity traded towards its equilibrium quantity.
In fact, no matter what the initial price is, the market will always tend to its
equilibrium price and quantity. This market is globally stable.

We can establish this also by considering the difference version of the model,
as in chapter 1. We have

Ap(t+1)=0.05(15— 6p(z)) = 0.75 — 0.3 p(z)

This is shown in the upper part of figure 2.2. The phase line is shown in the
lower part of this figure. The difference equation is negatively sloped. The
equation 0.75 — 0.3p(¢) cuts the horizontal axis at the value 2.5, which denotes
the equilibrium price. Any price to the left of this value results in Ap(z+1)>0
and so p(t) is rising over time. If the price is above the equilibrium value then
Ap(t+ 1)< 0 and the price is falling. The fixed point p* =2.5 is globally stable
and is an attractor. Since the price tends to equilibrium over time then it must
be the case that the quantity traded tends to the equilibrium quantity over
time.

2.1.1 Different adjustment speeds

The value taken by the parameter a has no bearing on the equilibrium price
and quantity. This follows immediately from the fact that in equilibrium
Ap(t+1)=0. Where it is of major importance is the speed with which the
market approaches the equilibrium. Return to an initial price of p(0) =5, but
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Ap(t+1)=0.75-0.3p(t)

Phase line

> > "/ < <

now increase the size of the parameter a to 0.1. The inserted graph immedi-
ately alters to reflect this, and it is clearly seen that the equilibrium is
approached much faster. This is a general result in this model. A rise in the
parameter « increases the speed of adjustment and equilibrium is approached
much sooner.

Two alternative diagrammatic representations of increasing the speed of
adjustment are illustrated in figure 2.3. Figure 2.3(a) shows the cobweb version
of the model, (2.5), while figure 2.3(b) shows the difference equation represen-
tation of the model, (2.6). Figure 2.3(a) illustrates more dramatically what is
shown in figure 2.2. However, figure 2.3(b) can be a simpler way to demon-
strate this phenomenon. It is clear from figure 2.3(b) that a higher value for
the parameter a increases the absolute value of the slope. Therefore, if price is
to the left of the equilibrium, not only do we know that the price will rise, but
we can see quite clearly that with a higher value for the parameter a the price
in the next period is higher than for a smaller value of this parameter. Or, just
as simply, there is a greater change in the price. If on the other hand, price is
above the equilibrium price, then it is the case that price will fall, and will fall
faster the higher the value of a. Of course, the faster price adjusts to its equi-
librium the faster the quantity traded will approach the equilibrium quantity.

2.2 The linear cobweb model*

The cobweb model of demand and supply arose from the consideration of
agricultural markets, although the analysis applies to other markets as well.
The basic idea is that farmers determine how much to supply in the present
period, period ¢, based on what they expect the price to be in period ¢. This is
because they have to sow seeds earlier and how much they sow depends on

I Cobweb models are discussed only in discrete time. We avoid, therefore, any use of the differ-
ence equation formulation of the model, which we have been using for continuous models. Their
application gives quite different answers to the dynamics! (See Shone, 1997, chs. 2, 3 and 7).

Figure 2.2
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Figure 2.3
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what price they think they can get on the market. The simplest assumption of
all about expected price is that it is the same as it was in the previous period.
Consider then the following simple linear model of demand and supply

qd(t) =20 —4p(1)
qs(t) =2+ 2.5p«(1)
pa)=pt—1)
q(1) = qd(t) = qs(?)

The first and second equations specify demand and supply, respectively, the
third equation indicates the assumption made about how expectations are
formed and the final equation gives the equilibrium condition.

We wish to set system (2.7) up on a spreadsheet. We intend to do this in
general terms so that we can consider a variety of models of the same struc-
ture but with different parameter values. We therefore consider the more
general model as

qd(ty=a—bp(t) a,b>0
gs(t)y=c+dp«(t) c,d>0
p()=p(t—1)

q(1) = qd(1) = qs(1)
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Let us pursue this general model for a moment. First we can replace the expected
price in the second equation by the price in the previous period. Next, since in
equilibrium demand is equal to supply, we can equate these two. The result is

a—bp(ty=c+dp(t—1)
or

a—c (d
)= el t—1 2.9

p)=" ( b )p( ) (2.9)
If the system is in equilibrium then p(z) = p(t — 1) = ... = p*, leading to an equi-
librium price and quantity of

a—c , ad+bc (2.10)

P =i a 17 h1a

The spreadsheet results are illustrated in figure 2.4. Alongside the parameter
values we supply the equilibrium price and quantity, with spreadsheet formu-
las, respectively

= ($E$3 — SES5)/(SES4 + SES6)
= (SES3*SES6 + SES4*SESS)/(SES4 + SES6)

The initial price is given in cell B11 and then in cell B12 we specify the fol-
lowing formula for p(1) (we give here both its algebraic form and the form in
the spreadsheet)

— d
= =- (b)p(())

b
= (SES3 —SES5)/SES4 — (SES6/SES4)*B11

This price 1s then copied to the clipboard and then pasted down for as many
periods as you wish to consider, here we have the series going down as far as
period 20. The quantities traded are given in column C. These are taken from
the supply curve. Hence, cell C12 has the formula

=c+dp(t—1)
=8$ESS5 +SES6*B11

Again we copy this to the clipboard and then paste down. Finally, we block
all the data, here cells A11 to C31 denoting 21 periods of data, and then click
on the graphics button to create the inserted chart shown in figure 2.4 — after
some manipulation of the graph! Figure 2.4 shows that price and quantity
oscillate, but converge on the equilibrium price and quantity.

Asin chapter 1, we can represent this model (2.7) in its cobweb form, as shown
in figure 2.5. This places p(¢) on the vertical axis and p(¢ — 1) on the horizontal
axis. Two lines are drawn: one for the equation 4.5 — 0.625p(¢ — 1) and the other
representing a 45°-line. It is clear from the web (which is why such diagrams are
called cobwebs) that the path of price and quantity converges on the equilibrium.?

2 Notice that this cobweb representation of the model is a little different from the economic text-
book representation, which has the web forming around the demand and supply curves. See
for example Beardshaw ez al. (1998).
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Figure 2.4

Figure 2.5

p(t) 4 p(t)=p(t-1)

p(1)=4.5-0.625p(1—1)

]
T = p-D)

2.3 Experimentation

It is now time to experiment with this model. Since we have set the linear
model up in the most general terms in our spreadsheet, we can change the
parameters and see the results. In each case you should draw both the cobweb
version of the model, and the path of price and quantity. It will be assumed
here that the reader will do these exercises, and we shall simply highlight some
features of importance.

Consider a rise in the parameter d from 2.5 to 6, all else remaining constant
— including the initial price. The spreadsheet readily reveals that the system
still oscillates but it is now unstable and both price and quantity diverge from
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the equilibrium. In noting why this happens in comparison to the early version
of the model of (2.7), notice that before we had d/b=—0.625 (less than the
slope of the 45°-line in absolute terms) while in the present case we have
dlb=—1.5 (greater than the slope of the 45°-line in absolute terms). The
crucial consideration, therefore, in considering the stability/instability of the
fixed point is to consider the ratio d/b. If this is less than unity in absolute
terms, then the system is oscillatory but convergent. If the ratio is greater than
unity in absolute terms, then the system is oscillatory but divergent. The values
of the parameters a and ¢ have no bearing on the stability/instability of the
fixed point. They simple change the equilibrium values. Experiment with
different values of the parameters a and ¢ and show that if the system is con-
vergent (divergent) with the given values of the parameters b and d, then the
systems will remain so even after the change in either a or c.

Return to the cobweb representation of the model. It appears that the
pattern of the web depends very much on the (absolute) slope d/b relative to
unity. What happens if the slope of the demand curve is identical to the slope
of the supply curve, so that d/b=1? Try this first on the spreadsheet, let b =2
and d=2, with a and ¢ remaining the same. Start again with an initial price of
p(0)="7. Equilibrium price and quantity become p*=4.5 and ¢* =11. But now
both price and quantity oscillate between two values. The price oscillates
between 7 and 2 while quantity oscillates between 6 and 16. This repeated
oscillation would always arise in the present model when the slope of the
demand curve is equal to the slope of the supply curve. But is it a coincidence
that one of the two prices is the same as our initial price? Experiment with
different initial prices, some above the equilibrium price and some below. It is
readily revealed that it is always the case that one of the two prices is the initial
price of the system.

2.4 Different expectations

The supply curve had the quantity supplied dependent on the expected price.
In our earlier discussion we made the simplifying assumption that the
expected price in period ¢ was equal to the price in the previous period. This
is only one possible specification of the formation of expectations. Another
possibility is to take account of the trend in prices and adjust the previous
expectation accordingly. In other words, if the previous expectation was too
low, then raise the present expectation by some margin of the error. This is an
adaptive expectation formulation. More specifically we can assume that

p)y=p(t—1)—Ape(t—1)—p(t—1)) 0=A=1

Writing it in this way clearly illustrates that we are adjusting the previous
expectation by a fraction of the forecast error. If the previous price turned out
to be lower than expected, so that pe(t—1)—p(¢—1)<<0, then the previous
expected price is raised by a fraction A of this difference. If the previous price
turned out to be higher than the expected price, so that p¢(t —1) —p(t —1)>0,
then the previous expected price is lowered by a fraction A of this difference.

2.11)
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(2.12)

(2.13)

Of particular note is the situation where A=1. In this case p«(t)=p(t— 1),
which is the assumption we made above in terms of model (2.8). This can be
thought of then as a special case of the present model.

Return to our example but now with this new specification for the forma-
tion of expectations. The model is

qd(t) =20 —4p(1)

qs(t) =2+ 2.5pe(¢)
p@O)=pt—1)—Ap«(t—1D)—pt—1) 0=ar=I
q(1) = qd(t) = gs(1)

Although a little more involved, it is still a straightforward linear model. First
let us establish whether this new formulation of expectations formation
changes the equilibrium of the model. Before we can do this, however, we must
eliminate any unknown variables. We cannot have a model involving expected
prices, since these are nonobservable. Our previous version, in which the
expected price in period 7 is equal to the price in the previous period, simply
and easily replaced an unknown expected price with a price that was known.
We must therefore eliminate all expected prices, both present and past
expected prices.

To do this we note that we can re-arrange the expectations equation (2.11)
into

p()=>0=pt—D+ap(t—1)

This way of expressing the expected price indicates that it is a weighted average
of the previous expected price and the previous actual price. Next we can re-
arrange the supply curve to express the expected price, and then substitute
demand into supply since this is the equilibrium condition. Thus

gs(t)—2 20—4p(r) —2
2.5 2.5

pet) = =7.2—1.6p(1)

If this is true for period 7 then in period # — 1 we must have the condition
pe(t—1)=72—1.6p(t—1)

Substituting this into (2.13) gives
p)=(1—A1)(72—1.6p(t—1))+ Ap(t—1)

and we now have an expression for the unknown expected price in period 7 in
terms of price in the previous period and the parameter A.
Equating demand and supply we have

20— 4p(£)=2+2.5[(1 — A)(7.2— 1.6p(t — 1))+ Ap(t— 1)]
or
PO =450+ (1— 1.6250)p(t— 1)

Setting p(¢) = p(t — 1) = p* readily establishes that p*=2.76923 and is indepen-
dent of the parameter A. We can verify this by setting up the model on a
spreadsheet. Here we shall concentrate solely on the price variable and con-
sider different values for A. The model is illustrated in figure 2.6.
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If A=0.5 the model rapidly converges on the equilibrium. The oscillatory
behaviour we observed earlier seems to have disappeared! Confirm this by
taking initial values below and above the equilibrium. If we take a smaller
value of A then the convergence is still gradual but takes longer to reach the
equilibrium. Now consider a value of A=0.8: the oscillations return.
Furthermore, the oscillations are greater the higher the value of A. Of course,
when A =1, we are back to the previous model. Can we establish the value of
A at which oscillations begin? Yes, we can. Once the coefficient of p(r—1)
becomes negative then oscillations will occur. This is approximately 0.62.
Confirm this by taking values for A just above 0.62 and values just below.

2.5 The Goodwin model of expectations

Of course there are many different types of assumptions we can make about
the formulation of expectations. We shall consider just one more because it
leads to our first example of a second-order recursive equation. In this formu-
lation, we are attempting to take the trend in price changes into account. We
therefore postulate the following (Goodwin, 1947)

p@)=pt=1)+rp(t—1)=pt—2))

Notice first that the expected price is expressed purely in terms of known
prices in the past, along with the parameter r. If » =0, then we have our orig-
inal specification of expectations formation. If >0 then price is expected to
move in the same direction as in the past. On the other hand, if »<0, then
price is expected to reverse itself. The extent of the price movements is
accordingly very dependent and very sensitive to the value of the parameter
r.

Figure 2.6

(2.14)
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Figure 2.7

(2.15)

(2.16)

Let us use our existing model given in (2.12) to consider the difference in
price behaviour under the present assumption about expected prices. Our
model is

qd(t) =20 —4p(1)

qs(t)=2+2.5p(t)
p()=pt—1)+r(p(t—1)—p(t—=2))
q(1) = qd(t) = qs(1)

Substitute the expectations equation into the supply curve and then equate
demand and supply. Doing this gives

20— 4p(H)=2+2.5(p(t — 1)+ r(p(t — 1) — p(t — 2)))
or
(1) =4.5—0.625(1 + )p(t — 1)+ 0.625rp(t — 2)

This is a second-order recursive equation.

The first consideration is whether the respecification of expectations forma-
tion leads to a different equilibrium condition. Setting p(t)=p(t—1)=
p(t—2)=p*and solving for p* readily reveals that the equilibrium is unaltered.

Now set this model up on a spreadsheet in just the same way as the previ-
ous one, as shown in figure 2.7. Again we concentrate only on the price beha-
viour. The only essential difference is that two initial conditions have to be
given, p(0) and p(1). Cell B9 has the formula (here expressed both algebrai-
cally and as entered on a spreadsheet)

= 4.5—0.625(1 + r)p(1) + 0.625rp(0)
=4.5—0.625%(1 + $C$3)* B8 +0.625*$C$3*B7

In figure 2.7 we have set the value of r to be 0.5 and the initial prices in period 0
and period 1 to be unity. The result is a divergent oscillatory price path. Now
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leave the values of p(0)=1 and p(1) =1, and change the value of the parame-
ter r. Experiment with the following values: r=—3, —0.1, 0.1, 1. What you will
find is a whole variety of paths. A far richer set of solution paths is now pos-
sible.

2.6 Nonlinear cobwebs

One of the advantages of using a spreadsheet is that even more complex non-
linear models can often be investigated in more or less the same manner as the
linear model. In doing this we shall return to our simple specification of expec-
tations and assume that the expected price suppliers have is equal to the price
in the previous period. Consider the model

qd(t)=4—13p(1)
qs(t) = (p)X(1)
p()=p(t—1)
q(t) = qd(t) = qs(1)

The model contains two fixed points, one at —4 and another at unity. Since
price cannot be negative we shall consider only the model in the location of
the upper fixed point, p* =1. One way to establish the fixed points is to con-
sider the recursive nature of the model. Substituting the expectations forma-
tion into the supply curve and then equating demand and supply readily gives
the recursive equation

p()=@4/3)—(13)p(r—1)

which is a first-order nonlinear recursive equation. Setting p(¢) =p(t—1)=p"
leads to a quadratic with solutions —4 and 1.

Now set this recursive equation up on a spreadsheet. Set the initial price at
p(0)=1.5, as shown in figure 2.8. There are no unknown parameters in this
model, and so cell B6 has the following entry

= (4/3) — (1/3)* B5”2

which is then copied to the clipboard and pasted down for as many periods as
you wish —here we have just #=0to15. The fact that we have a nonlinear model
in no way changes the structure of the way we set up the spreadsheet. All it
does is result in a more complex equation in cell B6. It is quite clear from the
inserted graph that the system oscillates but settles down at the equilibrium
value.

Now look at the problem in terms of the cobweb formulation, as shown in
figure 2.9. We place p(t — 1) on the horizontal axis and p(#) on the vertical axis.
We draw in two relationships, one the equation we have just derived, namely
(4/3) — (1/3)p*(t — 1) and the other just the 45°-line. Since prices must be posi-
tive, we do this only for the positive quadrant, and so only the one fixed point
1s shown, p* = 1. Starting at the price p(0) =1.5, the web spins in towards the
fixed point. This fixed point is locally stable and an attractor. This statement,
however, holds only for a small neighbourhood of the fixed point.

(2.17)

(2.18)
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Figure 2.8

Figure 2.9

(2.19)

p@) p(O=p(t-1)
1.5
1
0 P(O=(413)~(13)p"(+—1)
0.5 1 1.5 2 -
k pt-1)

One must be very careful with nonlinear systems because they can exhibit
far more complex behaviour. For instance, set the initial price to p(0)=4 on
the spreadsheet, then the system immediately shoots down to the negative
fixed point and stays there! For initial values ‘close to’ unity, however, the
system oscillates but converges on the equilibrium price of unity.?> However,
with nonlinear systems, double-period oscillations can be more in evidence.

2.7 Ceilings and floors

An important nonlinearity that can arise in markets is that of price ceilings
and price floors (Waugh, 1964). Consider the following simple linear model

qd(1) =42 —4p(1)
qs(t) =2+ 6p«(1)
p(=pt—1)
q(1) = qd(1) = qs(1)
3 It should be noted that if fip)=(4/3)—(1/3)p% then f'(p*=1)=2(—1/3)(1)=—2/3.
Consequently the slope of the curve at the fixed point is —2/3, which in absolute terms is less

then unity. We showed earlier for the linear model that when the absolute value of the slope for
the equation was less than unity we had a stable fixed point.
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p()
p(t—1)<8/3

6
pO=flp(=1)]= {10—(3/2)p(t—1) p(t—1)>8/3

R — : S (-1
) 3 N 7D

This leads to the following recursive equation

p(O=10—G2)p(z—1)

Letting p(t) = p(t — 1) =p"* leads to p* =4 and ¢*=26. Since the coefficient of
p(t—1) is greater than unity in absolute value, then this model has an unsta-
ble equilibrium. Use the spreadsheet for figure 2.4 to verify this.

Now suppose a price ceiling of pU=06 is imposed and so the price in any
period cannot exceed this value. The situation is clarified in the cobweb
diagram shown in figure 2.10. The lowest value that p(¢ — 1) can take is 8/3. At
this value the price in period ¢ is 10 — (3/2)(8/3) = 6. Any lower price in period
t—1 will lead to a price in period ¢ exceeding the ceiling price of pUV=6. Our
recursive equation now takes the form

B a6 p(t—1)<8/3
PO=1Tpl 1)]_{10—(3/2);9(;— ) p(t—1)=8/3

The heavy line in figure 2.10 shows the relationship f[p(¢ — 1)]. This kinked
relationship is nonlinear and is also not continuous at the point p(z — 1) =8/3.

How can we set up this model on a spreadsheet? This is quite straightfor-
ward and is shown in figure 2.11. Place the value of the ceiling in cell E11, here
we have a price of 6. We do this so we can change this value and see the result.
Next the formula is going to be placed in cell B14, the initial value already
having been put in cell B13, which we have assumed is 3.8. If we entered the
formula 10 — (3/2)* B13 in cell B14, then we would obtain the price in period 1.
If we copied this down, the price would rise and fall. But we know that what-
ever the price in period ¢ — 1, the price in period ¢ cannot exceed the ceiling
price, here 6 contained in cell E11. Hence the formula we actually enter in cell
Bl4is

= MIN(10 — (3/2)*B13,8ES11)

and it is this which is copied down.

Figure 2.11 shows that the price initially explodes but once the ceiling price
is reached, a two-period cycle emerges. Is the feature of an emerging two-cycle
typical? It is. Change the value of the ceiling and you will note that once again
a two-cycle emerges. Furthermore, the upper price of the two-cycle is always
the ceiling price.

Figure 2.10

(2.20)

(2.21)
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Figure 2.11

(2.22)

(2.23)

(2.24)

Price floors can also arise. A typical example is in the labour market where
the government imposes a minimum wage. Assume the same model holds for
the labour market so that the model is

Ld(t)=42—4w(?)
Ls(t)=2+ 6we(?)
we(t)=w(t—1)
L(t)= Ld(t)= Ls(¢)

Carrying out the same manipulation as above, we derive the recursive equa-
tion

w(t)=10—(3/2)w(z— 1)

Since the model is the same, we have w* =4 and L* =26, and this model has an
unstable equilibrium and so without government intervention there will arise
an explosive cobweb.

With a wage floor of wF=2, the highest value w(z — 1) can take is (16/3). At
this value, the wage in period 7 is 10 — (3/2)(16/3) =2. At any higher wage in
period ¢ — 1 the wage in period ¢ will fall below the minimum wage imposed by
the government. Our recursive equation now takes the form

o [10=GRw—1) w(t—1)<(16/3)
() =/t 1)]_{2 w(t—1)=(16/3)

The model is illustrated in figure 2.12 and takes the same pattern as figure
2.11. The only differences are that in cell E11 we have the value of the wage
floor, which is set by the government at 2; and in cell B14 we have the formula

— MAX(10— (3/2)*B13,SE$11)
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which is copied down. Notice once again that a two-period cycle results after
an explosive period, and that the lower wage for the cycle is the minimum wage
set by the government.

2.8 Cobwebs in interrelated markets

It is sometimes the case, especially in agricultural markets, that two or more
markets are interrelated. An early example was the corn-hog market. Corn is
grown in part for the feed of hogs. So although the hog market does not
directly affect the corn market, it is the case that the corn market will influence
the hog market. This is a typical model which applies to animal-feed interac-
tion. Furthermore, these agricultural markets have the same problem we dis-
cussed above about expected prices. Farmers supply in both markets
according to the expected price. In the corn market farmers supply in time
period ¢ according to the expected price in the corn market in time period 7. In
the hog market, farmers supply hogs in time period ¢ according to what they
expect the price of hogs to be in time period ¢ and what they expect the price
of corn to be in time period ¢. To simplify our expectations, we assume in all
cases that the expected price is the price in the previous period. We can illus-
trate the model in terms of the following example

Corn market Hog market
de(t) =24 — 5p<(t) dh(t) =20 — 5ph(t)
s(t)y=—4+2p«(t—1) si(t)=2.5+2.5pM(t—1)—2p(t—1)

4“(1) = do(1) = 50) ¢(0) = di(D) = (1)

Figure 2.12



44 An Introduction to Economic Dynamics

where
dc=demand for corn d"=demand for hogs
s¢=supply of corn sh=supply of hogs
pc=price of corn p"=price of hogs

Equating demand and supply in both markets, we can derive two recursive

equations. Consider first the corn market
24 = 5p(t)y=—4+2p«(t—1)
p(t)=5.6—04p«(t—1)

Next consider the hog market
20— 5p(t)=2.5+2.5p(t—1)—2p(t—1)
p(t)=3.5—-0.5p"(t—1)+0.4p(t — 1)

Our two recursive equations are therefore
p(t)=5.6—04p«(t—1)

(2.25) p()=3.5—-0.5p"(t—1)+0.4p(t—1)

For both markets to be in equilibrium at the same time we must have

p()=pt—1)=p; and pht)=pht—1)=pj,
which leads to two equations in two unknowns

p:=5.6—0.4p:
p,=3.5—0.5p,+0.4p;

with solutions
p.=4 and p;=34

But are the two interrelated markets stable or not?

The way we go about answering this question by means of a spreadsheet is
illustrated in figure 2.13. Since we have two interrelated markets we must
specify two initial conditions: one for each market. In figure 2.13 the initial
conditions are p<(0) =2 and p(0) =1, which are placed in cells B10 and C10,
respectively. In cell B11 we write the formula for the first recursive equation.
As we have done throughout this chapter we indicate here both its algebraic
form and the form as written in the spreadsheet. Cell B11, therefore, has the
formula

=5.6—0.4p(t— 1)
—5.6—0.4*B10

Next we enter the formula for the recursive equation for the hog market. In
cell C11 we have

=3.5—0.50(t— 1)+ 0.4p(t— 1)
=3.5—0.5*C10 + 0.4*B10

Notice in particular that both initial prices are required for the hog market.
Now we simply copy both cells B11 and C11 to the clipboard and paste down.
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The paste down will paste prices for both the corn market and the hog market
simultaneously. Since we wish to know whether both markets simultaneously
come into equilibrium, we need to graph the corn price and hog price on the
one diagram. Blocking the data in cells B10 to C25 (which then includes 15
periods in addition to the initial period) and clicking the graphics button
allows a construction of the inserted chart, as shown in figure 2.13.

With initial prices p<(0) =2 and p”(0) =1 it is clear the market soon stabilises
at the equilibrium values. Experiment with a whole variety of prices in both
markets, some below the equilibrium and some above. It will be verified that no
matter what prices are chosen, the system will be attracted to the fixed point.

We shall return to this market again in chapter 4 when we consider trajec-
tories in more detail. What we wish to illustrate here is how to set up a model
involving two variables that are interrelated. What figure 2.13 illustrates is that
it is fundamentally the same as a single variable; the only difference is that we
require two initial conditions and deal with both markets on the spreadsheet
at the same time. It is even possible to have nonlinear relationships in both
markets. The procedure to follow would still be the same. What we have here
1s a very powerful technique for analysing two markets simultaneously. We
shall consider many more as the book progresses.

Exercises

(1) Given the model

qd(t) =100 —2p(1)
gs(t)=—20+3p(1)
Ap(t+1)=0.1(qd(2) — gs(2))
q(1) = min(qd(?), gs())

Figure 2.13
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2)

€)

(4)

)

(1)  Establish the equilibrium price and quantity.

(1) Use a spreadsheet to plot p(¢) and ¢(z), given p(0) = 10. Do these
values tend to their equilibrium values?

(1i1) Raise the speed of adjustment to 0.2. What do you observe?

Set up the following cobweb model on a spreadsheet for =0 to 10
qd(r) =18 —3p(1)

gs(t)=—10+4pe(t)

pe)=p(t—1)

q(t) = qd(r) = qs(1)

(1)  What is the equilibrium price and quantity?

(i) Given p(0) =3, does the market tend to equilibrium?

Set up the following adaptive expectations model on a spreadsheet

qd(t) =100 —2p(1)

gs(t)=—20+3p(1)

pA)=p(t—1) = Apt—1) = p(t—1))

q(1) = qd(1) = qs(1)

(1) IfA=0.5, what is the equilibrium price and quantity? Are these
values the same as those in qu. 1(1)?

(1) If p(0)=10, does this system converge on the equilibrium
values?

(i) Does the system show the same pattern if A =0.8?

For the Goodwin model in section 2.5, set p(0)=2 and p(1)=2. If
r=0.5, does the system still exhibit a divergent oscillatory price path?
Is this true for r=—3, —0.1, 0.1 and 1?

Given the following nonlinear cobweb model
qd(t) =24 — 5p(t)

qs(1)=—4+2(p)X1)

pe)=pt—1)

q(1) = qd(t) = g5(1)

(1)  Establish the recursive equation for p().

(i) What are the fixed points for this recursive equation and are
they all economically meaningful?

(1) If p(0) =2.6, establish whether the fixed point in the neighbour-
hood of this initial value is locally stable or not.
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(6)

Given the cobweb model

qd(1) =18 = 3p(1)
gs(t)=—10+4p<(¢)
p)=p(t—1)
q(t) = qd(t) = qs(1)

(1)  Establish the recursive equation for p(z).

(1)) If a ceiling price of pU=35 is set, establish the new recursive
equation for p(?).

(ii1)  Set up this model on a spreadsheet and establish that the ceiling
leads to a two-cycle solution with the upper value on price equal
to the ceiling price.
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(3.1)

(3.2)

3.1 The Keynesian-cross diagram

The first model a student of macroeconomics is introduced to is the Keynesian
model of income determination — sometimes called the Keynesian-cross
diagram. In simple terms the model is

C=a+bY
E=C+I+G
Y=F

where C=consumption expenditure, ¥ =national income, E = total expendi-
ture, / =investment expenditure and G = government expenditure. Investment
and government spending are treated as exogenous variables. The constant «
denotes autonomous consumption and the parameter b denotes the marginal
propensity to consume. Consumption is substituted into the second equation
and then total expenditure is equated with total income to solve for national
income

E=a+bY+I+G
Y=a+bY+I+G

_at+I+G

1-b

The model is represented in figure 3.1.

Analysis proceeds by allowing some element to change. A rise in investment,
for example from I, to I,, raises the expenditure line up parallel to itself,
leading to a higher level of equilibrium income, Y, as against Y,. The rise in
equilibrium income is established to be

*

, at+l+G Y*_a+IZ+G

: 1—b 2 1-b
a+L,+G a+1,+G I,—1 Al
AY=Y;—-Y'= 2 — 1 =2 i
20 1-b 1-b 1-b 1-b
and so the multiplier, denoted k, is
_AY_ 1
Al 1-b

Usually the diagram is accompanied by a brief description of how the
economy gets from equilibrium point E, to equilibrium point E,. This goes
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Y=F

E,=(a+1,+G)+bY

E =(a+1,+G)+bY

along the following lines. The initial rise in investment, A/, raises the expendi-
ture line up by exactly this amount. This is the vertical distance between the
two lines at the income level Y. At the existing level of income and higher level
of expenditure, there is excess demand in the economy and so stocks begin to
fall. Note that in this model the price level is being held constant. In order to
replenish stocks, supply (in the next period) is raised. Output is raised by exist-
ing labour or more labour is taken on to produce it (which makes sense only
if we assume the economy is not fully employed). National income accordingly
rises. In the next round (notice here the implied dynamics), expenditure is still
above income, but less than it was before. Accordingly, stocks are still running
down. As stock levels are replenished, income rises. This process will continue
until the new equilibrium level of income is reached, namely Y,. Had invest-
ment fallen, the adjustment story is put in reverse. At the existing initial level
of income, expenditure falls short of income and so stocks are rising. With the
rise in inventories, retailers put in for fewer orders (in the next period). Output,
and hence income, falls. This process will continue until the newer lower level
of income is reached. The same story is often used to explain adjustment to
the equilibrium when the economy is out of equilibrium.

As with demand and supply, some textbooks assume adjustment is instan-
taneous, in which case adjustment immediately (or in the same time period)
adjusts from one equilibrium to the next. In other words, the model is a static
model. If all adjustment takes place in the same time period, then explicitly
denoting variables in time is irrelevant. But if, as we have done above, given a
story about stock adjustments in the next period, then there is a definite
dynamic process being referred to, which needs spelling out. Part of the
purpose of this chapter, therefore, is to reconsider some basic Keynesian
income-determination models and clearly lay out the dynamics of such models
in simple terms, using a spreadsheet to clarify the time path of the variables.

Figure 3.1
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(3.3)

(3.4)

(3.5)

(3.6)

3.2 Some simple dynamics

We begin by reconsidering the model in a simple dynamic context. We shall
assume that consumption expenditure in period ¢ is related to income in the
same period, Y(¢), and we retain the assumption that investment expenditure
and government expenditure are exogenous. Total expenditure at time ¢, E(?),
is defined as the sum of all expenditures in time period ¢. Finally, we assume
that income adjusts by a proportion A of the excess demand, where excess
demand is E(¢) — Y(¢). Our dynamic model is then

C(H=a+bY(¥)
Et=Ct)+I+G
AY(t+1)=AE(@)—Y() A>0

First notice that in equilibrium we have A Y(z+1) =0 and so E(¢) = Y(¢) for all
t, which is the same as our equilibrium condition in section 3.1. Substituting
the first equation into the second, and the second into the third leads to the
following difference equation

AY(t+1)=Na+b Y1)+ I+ G—Y(#)] = Ma+1+G) — X1—b) Y(¢)

But does this dynamic model have the same equilibrium as our static model of
section 3.1? It would be unfortunate to set up a dynamic model with different
properties to its static counterpart. In equilibrium we know that AY(z+1)=
0, and so

0=Aa+I+G)—A(1-b)Y"

or

*

_at+I+G

C1-b

which is the same as our result for the static model. Notice that the value of A
has no bearing on the equilibrium condition!

In order to see the adustment process in operation, and in order to set this
up on a spreadsheet, we need to express the difference equation as a recursive
equation. To do this all we need to do is add to Y(z) both sides of (3.4). Doing
this results in the recursive equation

Y(t+1)=Ma+I+G)+[1—A(1 —b)] Y(?)

We have not changed the equilibrium condition, which is easily verified by
setting Y(¢+1)=Y(¢)=Y" and solving for Y".

We are now in a position to see the dynamics of this model in three different
variants, which are illustrated in figure 3.2. The top diagram is the recursive
equation and is the cobweb representation of the dynamic model (see chapter
1). Basically this is the version of section 3.1, where A = 1. The second diagram
represents the difference equation version of the model. Notice in particular
that the line has a negative slope if <1 and that it passes through the hori-
zontal axis at the equilibrium level of income. The third diagram represents
the phase line of the dynamic model, which is derived from the diagram above
1t.
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Y(t+1)
Y(t++1)=Y()

Y(r+ D)=Ma+I+G)+[1-M(1-b)]Y(2)

Y(0) Y Y(?)

AY(D)

AY(+1)=Ma+1+G)-A(1=b)Y (1)

Y(0) Y Y(2)

——— ¥()
Y(0) Y

Take any initial value for income, denoted Y(0), which would be measured
on the horizontal axis. Let this be below the equilibrium level. In this case
E(0)— Y(0)>0, and so income in period 1 is a proportion A of this difference.
Since A >0, then income in period 1 is higher than it was in period 0. This same
information is shown in the middle diagram. At income level Y(0), AY(z+1)
>( and so income must be rising. Finally, this information is shown by the
arrows on the phase line pointing to the right in the third diagram in figure
3.2. In all instances, the economy is experiencing a rise in income and is
moving towards the equilibrium level of income. Choosing an initial level of
income above the equilibrium would indicate E£(0) — Y(0) <0, and so income
falling; AY(z+ 1) <0, and so income falling; and the arrows on the phase line
pointing to the left.

Let us verify all this using a simple numerical example, which will also be
set up on a spreadsheet to allow experimentation. This is shown in figure 3.3.

Figure 3.2
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On the spreadsheet we shall set up the model in general terms and place the
values of @, b, A, I and G in cells, so that they can be changed. This will become
clear as we proceed with the example. The model we intend to consider is

C(H)=110+0.75 Y(¢)
Et)=Ct)+I+G
=200 G=100
AY(t+1)=E(0) - Y(0)

where we have assumed the adjustment coefficient A = 1. The equilibrium level
of income is readily found to be 1640. This too is given on the spreadsheet in
cell H4. Cell H4 has the formula

=(a+I1+G)/(1—b)
=($F$3 +$F$5+$SF$6)/(1 —S$F$4)

We have set the initial level of income Y(0) = 1000 which is below the equilib-
rium level. Since income satisfies the recursive equation (3.6), we derive the
whole series for income by first writing the following formula in cell B15

=Ma+ I+ G)+ (1= A(1 — b)) Y(0)
=SFS7* (SFS$3+SF$5+ $FS$6) + (1 —SFST* (1 — $F$4))* Bl4

This is then copied to the clipboard and pasted down for as many periods as
you wish. In our spreadsheet we have =0 . . . 30. The spreadsheet contains
many more computations, however. We have in columns C, D and E the com-
putations for consumption, total expenditure and excess demand. The follow-
ing summarises the entries for cells C14, D14 and E14

Cell C14 Cell D14 Cell E14
(1) E(t) E(t)— Y(1)
=$F$3+$F$4*Bl4 = C14+S$F$5+$F3$6 = D14— Bl4

Having derived these values, making sure that you have clearly identified abso-
lute and relative addresses, copy cells C14, D14 and E14 to the clipboard and
then paste down. You will now have all the same computations as shown in
figure 3.3.

It is now time to experiment with the model.

3.3 Experimentation: 1

Take values close to and further away from the equilibrium, such as Y(0)=
1600, 500, 1700, and 2000. It is readily verified that the equilibrium value of
1640 1s approached in all cases — even if it is not attained for some time! Now
set the initial value to be the equilibrium value. All values in any given column
become constant. Certainly all the values in column B should be equal to the
equilibrium level of income. If this is not the case, then you have made a
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mistake on entering the formula. This is also true for any other column. This
1s always a good check to make after you have entered all the formulas. Now
raise the level of investment by 20 to 220. Equilibrium income changes to 1720,
and the time path of income moves from 1640 to the new equilibrium level.
Return investment to the same level and raise government spending by 20 to
the value of 120. The new equilibrium level of income is once again equal to
1720 and the time path of income is the same as it was for the rise in invest-
ment by the same amount. In fact, this is also true of a rise in autonomous
consumption by 20. Verify this statement. What we have verified here is that
for any rise in autonomous expenditure (a) equilibrium income rises by the
same amount, and (b) the time path of a// variables is the same.

Next consider changing the value of A. This coefficient indicates the speed
with which income adjusts to the difference between total expenditure and
income. The higher the value of A, the sooner the economy will reach its new
equilibrium. You can verify this for yourself by increasing the value of A. Try
values such as 1.5, 2 and even 5. Reduce the value of A below unity and verify
that income takes much longer to reach its new equilibrium value. What we
conclude with this experiment is that although the value of A has no bearing
on the actual equilibrium value, it is most important in determining how long
it takes the economy to reach this equilibrium.

A most important parameter to consider is that of the marginal propensity
to consume, parameter b. Raise the value of b to 0.8. The first thing that should
be noted is that the equilibrium value of income rises. This should not be sur-
prising. A rise in the marginal propensity to consume increases the slope of
the expenditure function, and this then cuts the 45°-line at a higher level of
income. The implication can be seen in terms of figure 3.2. In the top diagram,
the cobweb version of the model, the expenditure line, as just indicated, pivots

Figure 3.3



54

An Introduction to Economic Dynamics

(3.8)

upwards. At the initial level of income we now have excess demand, which puts
pressure on income to rise. This will continue until the new level of Y*=2050
is reached. In the middle diagram this change pivots the difference equation
on the vertical axis upward. So once again, at the initial level of income, A Y(7)
1s now positive, and so income is rising. This will continue until the new higher
level of income is reached. The new equilibrium is shown on the phase line
further to the right, and so the rightward arrows will continue to move along
the phase line.

What happens when =17 The first notable difference is that the equilib-
rium level of income has ‘#DIV/0!" This is because equilibrium income
involves division by (1—5), and so when b =1 this term is zero, and so the equi-
librium value of income is undefined. In terms of the cobweb version of the
model, the top diagram in figure 3.2, the total expenditure line is parallel to
the 45°-line, and so they never intersect! In fact, aggregate expenditure is
always above income by exactly the same amount, as shown in column E of
your spreadsheet. Economic theory argues that b 1s generally less than unity.
The word ‘generally’ is important. There are some occasions, usually short-
run occasions, when the marginal propensity to consume exceeds unity. What
happens to the dynamics if this were the case? Let »=1.1. In this instance the
equilibrium level of income becomes negative! But, more importantly, from
the starting value of Y(0)=1000 income grows rapidly and continuously.
Aggregate expenditure forever outstrips national income, so putting pressure
on income to rise. Of course, in real life this would soon come to an end as
there would arise a situation of full employment and pressure would soon be
put on prices to rise. But this takes us well beyond the present model.

The conclusion we come to is that if »<1, which 1s most often the case, then
this model exhibits global stability and the fixed point, the equilibrium point,
is attracting.

3.4 The dynamic multiplier

In section 3.1 we defined the income multiplier with respect to a change in
investment by

_AY

k=——
Al

1.e. (3.2). In the model presented in figure 3.3 the multiplier is 4. This simply
tells us that if investment rises by 20, as we established in section 3.3, then the
rise in equilibrium income is 4 X 20 = 80 and so equilibrium income rises from
1640 to 1720. This we also established in section 3.3.

Of course, this result is after a// adjustment has taken place. But such adjust-
ment can take quite some time. Suppose we define a period multiplier (or
dynamic multiplier) in the following way

_AY() _ Y() - Y]
Al Al

k(1)
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where Y7 denotes the initial equilibrium level of income. This multiplier is
shown in figure 3.4.

We have distinguished two different levels of investment, labelled 7, and 1,,
respectively, and two equilibrium levels of income, Y*, and Y™,. Y7, is the initial
level of income. This initial level is placed in cell B14. In cell B15 we enter the
formula

=Ma+ I+ G)+[1 — A(1 — b)] Y(0)
=$F$8* (SF$3+S$FS$6+SF$7)+ (1 —SF$8* (1 —$F$4))* Bl4

Notice that the only relative address is for income. This is then copied to the
clipboard and pasted down. In cell C14 we enter the formula

_Y-1,
12_11

— (B14—S$HS$4)/(SFS6 —$F$5)

This too is copied to the clipboard and then pasted down. Finally, we identify
and block cells A14:A44,C14:C44 click the chart button and insert the chart,
which is then suitably changed. As can be seen from figure 3.4, the period mul-
tiplier tends to 4 in the limit.

One important conclusion we draw, however, from figure 3.4 is that the mul-
tiplier of 4 is really too large if we are considering a short period —say 2 to 5
years. (Recall the length of a Parliament is only 5 years!) For this period the
multiplier is more realistically thought of in the region of 1.75 to 2.5. It is also
possible to experiment with this spreadsheet to see what happens to the period
multiplier when various autonomous variables and/or parameters change, as
well as the speed of adjustment, A. We leave this as an exercise for the reader.

Figure 3.4
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(3.10)

3.5 A dynamic model with taxes

There is really little point in considering a model with government spending
without including taxes as well. In this section we add direct taxes to the
model. In doing this we now need to distinguish between national income and
disposable income, where the latter is income /less direct tax. Let Y denote
income and Yd denote disposable income. Since we are reserving the symbol ¢
for time, we need to define taxes suitably. We shall use the combined symbol
Tx for total taxes, i.e. total tax receipts, and tx for the marginal rate of tax. In
particular we define

Yd(t)=Y(t)— Tx(1)
Tx(t)=Tx,+tx.Y(?)

where Tx 1s the level of autonomous taxes, tx the marginal rate of tax and
tx. Y(t) induced taxes. In general terms our model is now

C(t)y=a+bYd(r)

Yd(t)=Y(t)— Tx(t)
Tx(t)=Tx,+tx.Y(t)
Et)=C(t)+I+G
AY(t+1)=AE(D)—-Y(@) A>0

Once again we are treating investment and government spending as exogenous
— which is why we have not given them a time dimension. Once we have deter-
mined the level of income Y(7) for any time period ¢, then we have determined
the level of taxes from the equation for 7'x(¢). Given Y(¢) and Tx(¢), then we
have determined Yd(7), which in turn is used to derive C(¢). Once this is deter-
mined, we can derive E(t), which along with Y(7), allows us to determine
Y(¢+1). The starting point in all of this is clearly to determine the level of
income for each time period z. But this is done in just the same way as we did
in section 3.2. Before we see this on a spreadsheet, however, let us first con-
sider the change in equilibrium income.

Substitute the tax equation into the equation for disposable income; substi-
tute this result into the consumption function, which in turn is substituted into
the total expenditure function. Thus

Yd(t) =Y(t) — [Tx,+ tx.Y()] = — Tx, + (1 —tx) Y(¢)
Ct)y=a+b[—Txy+(1—tx)Y(1)]=(a—b.Tx,)+b(1—tx) Y(¥)
E(ty=(a—b.Txy) +b(1—tx)Y(t) + I+ G
=(a—b.Tx,+ 1+ G)+b(1—tx)Y(2)
We now substitute this result into the income adjustment equation

AY(t+1)=A(a—b.Tx,+ 1+ G)+b(1 —tx)Y(1)— Y(1)]
=Ma—b.Tx,+ 1+ G)—A[1—b(1 —1x)]Y(¢)
Notice that this difference equation is identical to our earlier one, (3.4) if

Tx,=0and tx=0. Adding to both sides Y(¢) turns this into a recursive equa-
tion

Y(t+ 1) =Aa—b.Tx,+ I+ G)+[1 — A(1 = b(1 — tx))] ¥(2)
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Given an initial level of income Y(0) and values for all the exogenous variables
and parameters, allows us to solve for income level Y(1), etc. Before we do this,
however, we have still yet to determine the equilibrium level of income. This is
achieved by setting A Y(¢+ 1) =0 and solving for income

0=Aa—b.Tx,+ I+ G)— A[1 —b(1 — tx)] Y

Y*
1—b(1 — tx)

This is compatible with our earlier result, (3.5), as can be verified by setting
Tx,=0and tx=0. Also notice that once again the parameter A has no bearing
on the value that the equilibrium level of income takes.

We set up this much richer model on a spreadsheet, as shown in figure 3.5.
The numerical model we are using is

C(H)=110+0.75Yd(r)

Yd(t) = Y(t) — Tx(¢)

Tx(t)=—80+0.2Y(¢)

I1=200 G=300

Et)=CH)+I1+G

AY(t+1)=0.8(E(t) — Y(?))
The spreadsheet uses the general model and utilises the values as set out at the
top of the spreadsheet. As before, we include the equilibrium level of income,
whose value is placed in cell 14. This is given by the formula

_a—bTxy+1+G

1 -b(1-1x)

=($G$2 —$G$3*$G34 + $GS$6 +$GST)/(1 —$G$3* (1 — $G$5))

which includes only absolute addresses, and has a value 1675. (The value of Y*
in the spreadsheet is different because this has 7 set at the level 250.)

The model is basically the same as before. So here we shall simply sum-
marise some of the important cell entries (do take note, however, of absolute
and relative addresses)

B15 | initial equilibrium

B16 |SGS8*(5GS$2 — $G$3*$GS4 +$G$6+$GST)+
(1—$G$8* (1 —$GS3* (1 —$G$5)))*B15

C15 |$GS$4+SG$5*B15

D15 |B15—Cl5

E15 |$GS$2+$G$3*D15

F15 |EI5+$GS$6+$G$7
G15 | $GS$8*(F15—BI15)

H15 | $G$7—Cl15

(3.11)
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Figure 3.5

Once these have been entered then B16 can be copied to the clipboard and
pasted down. Cells C15 to H15 can be copied to the clipboard and pasted
down in one operation! Finally, the inserted chart can be created from cells
A15:B45. Column G, which has the heading ‘DY(¢)’ stands for AY(¢) and
column H has BD(¢) denoting the budget deficit, which is defined as

BD(t)=G— Tx(¢)

3.6 Experimentation: 2

We can obviously do similar experiments as we did above, and the reader
should try these. The same conclusions generally hold. More specifically, for
stability in this model we require that

b(1 —tx)<1

This ensures that the aggregate expenditure line is less steep than the 45°-line,
or that the difference equation is negatively sloped. If this is true, then the equi-
librium is unique and globally stable.

What we wish to do here is investigate some features about tax behaviour.
First set the initial income at the equilibrium level, namely Y(0)=1675. Now
raise the marginal rate of tax, zx, from 0.2 to 0.3. First equilibrium income falls
to 1410.5. This should not be surprising; a rise in the marginal rate of tax
reduces the slope of the expenditure line, which pivots downwards (the inter-
cept is unaltered by this policy change). As a result it intersects the 45°-line at
a lower level of income. In this model tax receipts rise. Why is this? Over time
income is falling, but zx has risen, which is more than enough to compensate
for the fall in income. Hence the government’s budget deficit has gone from a
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deficit of 45 to almost a surplus of the same order. (Note that a surplus occurs
if BD(¢) is negative, indicating tax receipts exceed government spending.)

Return the marginal rate of tax to 0.2 and consider a fall in autonomous
taxes, say from —80 to —100. It is clearly seen that this leads to a rise in equilib-
rium income to 1712.5. A fall in autonomous tax is a shift up in the aggregate
expenditure function, since — b. T'’x, rises, which shifts up parallel to itself. Tax
receipts fall and the rise in income is not sufficient to compensate for the fall
in autonomous taxes, so the budget deficit worsens.

For the next experiment, set £x =0 (we intend to consider a model with only
autonomous taxes here) and return autonomous taxes to —80. Equilibrium
income is then 2680. Set this value for initial income. For this experiment we
wish to increase government spending by 50 and increase autonomous taxes
by 50 to finance it. On the face of it, it might be thought that this has no impact
on the economy — after all, the government are taking an extra 50 and spend-
ing it. But let us see whether or not this is so. Change the value for G to 350
and autonomous taxes to —30. Equilibrium income rises rather than remains
constant. It eventually rises to the level 2730. But notice that this is exactly 50
above its original equilibrium level. This is not a coincidence! Note, however,
from the dynamic path of income that it takes over ten periods before this is
true. What we have illustrated here is the famous balanced budget multiplier.
Taking each impact separately for this ‘restricted model” we have

dYy 1

R;_l—b or dYG—k.dG

dY —b

——= Y, = —b.k.dT:
dTx, 1-b or dY, b.k.dTx,

But the total change in income is dY =d Y+ dY and furthermore, dG=dTx,.
So

dY=dY +dY,;=(1 —b)kdG=dG

a
dG | ag=arx

The first line tells us that the change in income is equal to the change in gov-
ernment spending (which is equal to the change in total tax receipts). In our
example, this is 50. The second equation tells us that the multiplier for a bal-
anced budget change, i.e. a change in government spending matched by an
equal change in total tax receipts, is unity.! We have emphasised here that it
must be total tax receipts that match the change in government spending. If
the marginal rate of tax was not zero, then raising government spending by 50
and reducing autonomous taxes by 50 would not lead to the change in total
tax receipts being matched by the change in government spending. This is
because we know from our previous analysis that income will rise, but this in
turn will lead to a rise in induced taxes (the component zx. Y(#)), and so taxes

I This is not quite true. It is true only for a closed economy. In an open economy the multiplier
is less than unity, but still positive.
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Figure 3.6

(3.12)

AY(r+1)

Y, Y, Y(¢)

A

ise in tx

will in fact be in excess of the government spending. This is a more involved
exercise, which 1s why we set the marginal rate of tax to be zero.

3.6.1 Stabilising influence of taxes

Taxes can have a stabilising influence on the economy. We have just seen that
a rise in the marginal rate of tax reduces the equilibrium level of income.
Furthermore a rise in the marginal rate of tax will reduce the autonomous
expenditure multiplier. This multiplier in the present model is given by

1

T p——

then
xTo0—t0)d—>1-b1-tx) Tkl

But these comments concentrate only on the equilibrium conditions. Equally
importantly, the influence on income on each round is reduced. This is shown
more clearly in the difference equation form of the model, shown in figure 3.6.
The rise in the marginal rate of tax pivots the difference line in towards the
origin. Not only does this reduce the equilibrium level of income, but for any
Y(0) below the equilibrium, the change income is now smaller.

3.7 The multiplier—accelerator model

One of the few dynamic models considered in elementary textbooks of eco-
nomics is that of the multiplier—accelerator model. There are two main
differences from our earlier discussion. First, consumption is assumed to
depend on the level of lagged income. Second, investment, far from being
exogenous, 1s treated as endogenous and depends on the difference between
income in the previous period and what it was two periods ago.2 More expli-
citly, we assume

2 Samuelson (1939), who first outlined this model, related investment to the difference in con-
sumption in the previous period and consumption two periods ago.
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Ct)y=a+bY(t—1)
IH)=v(Y(t—1)—Y(t—2)) v>0

Here we are reverting to our simpler model with no taxes. The second equa-
tion is clearly the new element in this model. The idea is that if firms notice
that income is rising, they have positive expectations and this leads them to
invest more. If income is falling over time, then they invest less. The parame-
ter v is referred to as the accelerator coefficient. Our full model is then

C(H)=a+bY(t—1)
0 =v(Y(t—1)— Y(t—2))
E()=Ct)+ 1)+ G

Y(0) = E(1)

Notice that we have also simplified the equilibrium condition. We assume that
in equilibrium income in period ¢ is equal to expenditure in that same period.

Substituting C(7) and (¢) into the expenditure equation, and then substitut-
ing this into the equilibrium condition, we derive the second-order recursive
equation

Y(O)=(a+G)+(b+v)Y(t—1)—vY(t—2)
Does this change our static equilibrium level of income? Set
Y(O)=Yt—1)=Yt—-2)=Y"
then
Y'=(@a+G+bB+vY —vY*
_at G
1-b

and so there is no change to the equilibrium level of income. What is the
difference of making investment depend on the path of income? The variety of
paths that income can take depends on the combinations of the parameters b
and v (Shone, 1997, pp. 94-7). The following table gives just some examples

Y*

Parameter values Pattern

b=0.8, v=0.1 Damped and nonoscillatory
b=0.8, v=0.75 Damped and oscillatory
b=0.8, v=0.3 Explosive and nonoscillatory
b=0.75, v=1.5 Explosive and oscillatory

Let us set up the model on a spreadsheet to verify these values and the
pattern expected. The model we shall use is the following

C(H)=50+bY(t—1)
1) =w(Y(t—1)—Y(t—2))

G=100
E()=Ct)+ 1)+ G
Y(1) = E(1)

Substituting we readily derive the following recursive equation

(3.13)

(3.14)

(3.15)
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Y(&) =150+ (b +v) Y(t— 1) —vY¥(t—2)

First derive the equilibrium value of nation income by setting Y(¢) =Y " for all
t. Then

Y =150+ +v) Y —vY"

. 150
-
and so the equilibrium level of income is independent of the parameter v.
However, the path that income takes to this equilibrium is dependent on this
parameter.
The model is shown in figure 3.7. The parameter values of interest are
placed in cells F3 and F4 for b and v respectively. Equilibrium income is in cell
F6 and has the formula

_ 150
1—b
— 150/(1 —$F$3)

In order to derive the series for income in this model we require two initial
values: one for income in period 0 and the other for income in period 1. We
set these both at the value 700, which we know is below the equilibrium
value of 750. In cells C13 and D14 we enter the following formulas, respec-
tively

C13 D14
=50+ $F$3*B12 =$F$4*(B13—B12)

Copy each separately to the clipboard and then paste down.

Changing the values of » and v as set out in this table readily verifies the
expected pattern indicated. In particular, figure 3.7 shows the pattern for the
values b =0.8 and v=0.75, with income damped but oscillatory. Of course, if
income is oscillatory, then so is consumption and investment that depend on
the level of income. These oscillations also are damped.

We could incorporate this multiplier—-accelerator model in the model with
tax, with consumption depending on lagged disposable income. Using our
earlier model, this would imply that tax in the previous period was

Tx(t—1)=Tx,+txY(t—1)
with disposable income and consumption

Yd(t—1)=Y(t— 1) — Tx(t— 1) = — Ty + (1 — tx) Y(t — 1)
C(t)=a+bYd(t—1)=a—bTx,+b(1 —tx) Y(t — 1)

Investment would be endogenous, and taking the accelerator form

() =v(Y(t—1)— Y(t—2))
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The remainder of the model is basically the same. We leave this as an exercise
for the reader. What we would expect with the parameters »=0.8 and v=0.75
1s taxes oscillating and the budget deficit oscillating. It is even possible, of
course, that if v were in the region of 1.5 the system would become explosive.

3.8 Introduction of net exports

So far we have considered only a closed economy, i.e. an economy that does
not engage in international trade. But most economies engage in international
trade and they have a large impact on the domestic economy. Since income in
macroeconomic models usually denotes gross domestic product, for an open
economy exports must be added to the total expenditure on goods and ser-
vices since these are produced domestically even though they are consumed
overseas. On the other hand, C+ 17+ G includes expenditure on imported
goods that were not produced domestically, and therefore do not belong to
gross domestic product. We must therefore subtract imports. Our definition of
total expenditure, equal to gross domestic product, is therefore

E(t)=C(t) + I(t) + G(1) + X(1) — M(¢)
=C(¢t)+ I(r) + G(r) + NX(¢)

where X(7) denotes exports of goods and services, M(¢) the import of goods
and services and NX(¢) = X(#) — M(¢) denoting net exports. Let us return to the
assumption that investment is exogenous and set at the level /; and government
spending is exogenous and set at the level G. Now we make further assump-
tions about imports and exports. We assume exports are exogenous and set at
the level X and imports are related to income according to

Figure 3.7
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Figure 3.8

(3.16)

(3.17)

(3.18)

M=M,+mY(?)

where M|, denotes autonomous imports and m is the marginal propensity to
import. Our model is now

C(ty=a+bYd(t)

Yd(t)=Y(t) — Tx(t)
Tx(t)=Tx,+tx. Y(¢)
M(t)y=M,+mY(¢)

NX(t)=X— M(?)

Et)y=C(t)+ I+ G+ NX(1)
AY(t+1D)=ME@)—Y()) A>0

Doing the same substitutions as we have done throughout, we can derive the
following difference equation

AY(t+1)=Ma—bTxy+ b(1 — tx) Y(£) + I+ G+ X — M, — m Y(£)— Y(1))
=Ma—bTxy+I+ G+X—My)— A[1 —b(1 — tx) +m] Y(z)

Adding Y(¢) to both sides turns this difference equation into a recursive equa-
tion

Y(t+1)=ANa—bTxy+ I+ G+X—My)+[1 — X1 — b(1 — tx) +m)] Y(¢)

Although this looks rather daunting, it is a simple linear first-order recursive
equation that can readily be set up on a spreadsheet in just the same way as we
have done with earlier models. The model and the data computations are
shown in figure 3.8.

The first task is to establish the equilibrium condition. This is done by
setting A Y(z+1) =0 and solving for Y*. This is readily found to be



Simple Keynesian dynamics 65
0=AMa—bTxy+I+G+X—My)—A1-b(1—tx)+m]Y"
Y*:a—bTx0+I+ G+X—M,

1=5b(1—tx)+m
Once again we observe that the adjustment coefficient A has no bearing on the
equilibrium level of income. What now affects equilibrium income are exoge-
nous exports, autonomous imports and the marginal propensity to import.
The numerical version of the model set out in figure 3.8 is

C(1)=110+0.75Yd(¢)

Yd(t) = Y(t) — Tx(¢)

Tx(t)=—-80+0.2Y(¢r)

I1=300 G=200 X=400

M(t)=10+0.2Y(7)

Et)=C(t)+I1+G+X—M(1)

AY(t+1)=0.8(E(t) — Y(2)) (3.19)

Equilibrium income is defined in cell IS5, with the formula
_a—bTxy+1+G+X— M,
1 —b(1—tx)+m

=(3G$2 — $G$3*$GS4 +$GS7 + $GSS + $GS9 — $G$10)/
(1—-$G3$3*(1 —$G$5) +$G$6)

which has the value 1766.667; and the autonomous expenditure muliplier, &,
1s defined in cell I7 with the formula

1
1-b(1—tx)+m
=1/(1 —$G$3*(1 —$G$5) + $GS$6)

which has a value 1.667. Cell B17 sets initial income at the level 1000, which
we know is below the equilibrium level of income. The remaining cells in which
formulas are entered are as follows

B18 | SGS11%(SGS$2 —$G$3*$G$4 +3$GS$7 +$G$8 +$G$9 — $G$10)
+(1—-$GS11%(1 —$G3$3*(1 —$G$5) + $G$6))*B17

Cl1l7 | $G%4+8GS5*B17

D17 | B17-C17

E17 | $G$2+8$GS3*D17

F17 | $G$10+3$G$6*B17

G17 | $G$9-F17

H17 | E17+$GS$7+$GS$8 +$GS$9-F17
117 | H17-B17
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Now copy B18 to the clipboard and then paste down. Having done this, copy
cells C17 to 117 to the clipboard and paste down in one operation. This will
conclude all the computations for this model.

Notice that this model is stable if the slope of the difference equation is neg-
ative, 1.e. if

1—b(1—tx)+m<1
or
b(1 — tx) —m>0

This is not automatically guaranteed. The higher the marginal rate of tax
and/or the higher the marginal propensity to import, the more likely this con-
dition is violated and the slope becomes positive. If this should happen then
the system becomes unstable. One could argue, therefore, that openness has a
destabilising influence on economies. Also note that along with early models,
the fixed point is either globally stable or globally unstable. With a one-period
lag, no oscillations can occur.
Experimentation can now begin.

3.9 Experimentation: 3

First check that the formulas have been entered correctly. This can be done as
usual by placing in cell B17 the equilibrium level of income (the value in cell
I5). All values for each column should then display constant values for each
time period, namely the equilibrium values for each variable. Now raise
government spending by 50 to 250 and plot the resulting paths for income,
consumption and net exports — showing that income steadily rises to its new
equilibrium level (here 1850), as does consumption, and that net exports
declines to its new lower equilibrium level. Of course, this last result arises
because the rise in income raises the level of imports over time. With exports
exogenous and constant, then net exports will decline.

Return all variables to those shown in figure 3.8 and set initial income at the
equilibrium level of 1766.667. Now suppose domestic residents have a sudden
liking for imported goods, resulting in a rise in the marginal propensity to
import. What is the result of this? Suppose m rises from 0.2 to 0.25. From the
spreadsheet we immediately see that equilibrium income falls to 1630.8 and
the multiplier falls to 1.54. Income gradually falls to its new lower equilibrium
level, as does consumption, while net exports gradually rise to their new equi-
librium level.

Return all variables and parameters to their original levels. Raise exports by
50 to the new level of 450. It is readily seen that this has the same impact on
equilibrium income and consumption as did the 50 rise in government spend-
ing. The impact on net exports is not the same, however. The rise in imports
arising from the rise in income is partly offset by the rise in exports. One might
wonder whether the rise in exports that stimulated the growth in income could
be more than swamped by the rise in imports, so worsening the net export posi-
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tion. Let the increase in exports be denoted AX, and the autonomous expen-
diture multiplier denoted as usual by k, then
AY

—=k or AY=kAX
AX

Turning to the change in net exports, we have

ANX=AX—AM=AX—mAY
—AX —mkAX =(1—mk)AX

and so long as mk <1, then net exports will improve. In our numerical model
we have mk =(0.2)(1.667) =0.3334. Not only does net exports improve, but by
less than the increase in exports. But what the spreadsheet reveals, however, is
that this improvement is spread out over a reasonably long time period.

Many more experiments can be carried out with this model. We did not
include budgetary computations in the table in figure 3.8, but this could easily
be done. It is then possible to consider policy changes that will improve the
government budget and see what implications this will have on net exports.
One important aspect revealed by our model so far is that whenever some
domestic policy is undertaken, such as a change in investment, there will
always be an impact on net exports, and this impact will be spread out over
relatively long intervals of time. The converse is also true: policies that are
implemented to deal with balance of payments deficits will have implications
for the domestic economy and for government budgets.

Exercises

(1) Use the spreadsheet used to express model (3.7) to analyse the follow-
ing model

C(1)=200+0.8 (1)
E=Ct)+I+G

I=150 G=250
AY(t+1)=0.5(E(t) — Y(1))

(1)  Establish the equilibrium level of Y and C.

(i) Plot the path of Y(7) and C(¢) given Y(0)=2000; and establish
that these approach your results in part (i).

(ii1) Is the equilibrium income attained if Y(0)=4000?

(2) Use the model in qu. 1 to verify the following propositions. Take Y(0)
=3000

(1) A rise in autonomous consumption spending or a rise in invest-
ment or a rise in government spending by 50 leads to the same
impact on equilibrium income and to identical adjustment
paths for Y(7).
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)

(4)

)

(6)

(i) For a rise in investment of 50, and a lower value for A of 0.4,
there is no difference in the equilibrium value of income, but
income takes longer to reach this new equilibrium.

Use the model in qu. 1 with 7, =150. Set initial income at the equilib-
rium level. Derive the dynamic multiplier k(¢) as defined by (3.8) for
a rise in investment of 50. Comment on your result.

Use the spreadsheet used to express model (3.9) to analyse the follow-
ing model

C(1)=200+0.8 Yd(r)
Yd(t)=Y(t)— Tx(t)
Tx(t)=10+0.25Y(¢)
I1=250 G=500
E=Clt)y+I+G
AY(t+1)=0.5(E(t) — Y(1))

(1)  Establish the equilibrium level of C, Y, Yd and Tx.

(1)) Let ¥Y(0)=1500 and plot the path of Yd(¢) and Y(z) on the same
graph.

(ii1) Plot the path of the budget deficit, BD(t).

Use the model of section 3.7 on the multiplier—-accelerator. Let b=0.7
and v=1.5 and let Y(0)=300. Derive the level of income, Y(¢), con-
sumption, C(¢), and investment, /(). Form the series C(¢) — C* and
I(t) — I', where C* and I"* denote equilibrium consumption and invest-
ment, respectively. Plot these deviations on the same graph and hence
show that in this instance, consumption is the most volatile compo-
nent of national income.

Use the model of section 3.8 embodied in model (3.17) and (3.19). Set
initial income at its equilibrium level of 1766.667. Let government
spending rise from G=200 to G=300. Plot the resulting dynamic
path of net exports, NX(7). Comment on your results.

11:29 pm, 6/4/05



Chapter 4

Constructing trajectories in the phase plane

4.1 Trajectories and fixed points

In chapter 2 we considered two interrelated markets, the corn market that was
animal feed for the hog market, and so it was necessary to consider these
markets simultaneously. There are many such markets in economics, both in
microeconomics and macroeconomics. Because they are so pervasive we need
to set up a relatively simple framework in which to consider their dynamics.
Asin chapter 1, we shall here be general and simply refer to a market for x and
a market for y, where these markets are interrelated. In other words, in order
to solve for an equilibrium in market x we need to know not only the value of
x but also the value for y; and to determined the equilibrium for market y we
need to know not only the value of y but also the value for x.

We also mentioned in chapter 1 that we can specify models either in discrete
time or in continuous time, but that sometimes these give different dynamics
—even if the comparative statics appears the same. This is especially true when
dealing with two or more relationships. We shall consider in this book models
with only two fundamental dynamic relationships. It is much easier to estab-
lish the time path of models of two markets if we set the model up in terms of
continuous time. Of course, if the model is naturally a discrete time model, as
in the case of the corn—hog markets with one-period supply lags, then we must
also consider the dynamics of two markets which involve discrete time. In this
chapter we shall cover both types — with some warnings about considering the
same model from the two perspectives.

By way of example, and we shall pursue this example in some detalil,
suppose

dx(t
10 =" 92500
dt

o dy(D)

§0) =" 7 =330+ ()
or, more simply

X=9-2x—y

y=3—-y+x

where it is assumed that all variables are related to time. This system of equations
indicates how both x and y change over time. It indicates that the change in x not
only depends on the level of x but also on the level of y. Similarly, how y changes
over time depends not only on the value of y but also on the value of x.
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Figure 4.1

Yy

(x(n).y(0)

7 (x(0),5(0))

X

The first thing we note about this model is that time does not occur as a sep-
arate variable. If we had, for example

¥() =9 — 2x(1) — p(£) + 21

then it would. When time does not occur as a separate variable in an equation
we say that such an equation is autonomous.! If this is true for all equations
in the system (in the model), then we say that the system (or model) is auton-
omous. All economic models we shall be dealing with in this book are auton-
omous in the sense just described. Second, we cannot know the value of x at
time ¢ without knowing the value of y at time 7, and vice versa. This means that
we must consider x(¢) and y(¢) at time ¢ simultaneously. To do this geometri-
cally we place the variable x on the horizontal axis and the variable y on the
vertical axis. This (x,y)-space now refers to the phase plane. It is the two-
dimensional counterpart to the phase line we outlined in chapter 1. The
system moves in the phase plane starting at time 0. The point (x(0), (0)) is
referred to as the initial point. The path of the system over time plots the curve
{x(2), y(t)} as t varies continuously and is referred to as the trajectory of the
system, sometimes called the orbit. One such trajectory is shown in figure 4.1.
With autonomous systems, given an initial point, there is only one trajectory
that passes through this initial point.

It is important to realise that the trajectory does not refer to either of the
two equations necessarily, and most usually does not. It denotes the time path
of x and y. This will become clear in a moment.

Return to the example. Does this simultaneous system have an equilibrium
point, a fixed point? In our single-variable models, we defined a fixed point as
the condition where x(7) = x" for all ¢. In the present system, we require that

I This is the mathematicians’ use of the word autonomous. They mean independent of time.
When economists talk about a variable being autonomous they mean being independent of
income.
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x(t)=x" and y(r)=y* forall¢
When this is true X =0 and y =0. Substituting these conditions, we have
0=9—-2x"—y"
0=3—y"+x"
with solutions (see box 2)
x*=2 and y*=5

Of course, all that this establishes is that a fixed point, an equilibrium point,
exists. It in no way guarantees that the system starting at some initial point
(x(0), ¥(0)), will tend towards it or even reach it. To establish this feature, we
must look at the system’s dynamics.

Box 2 Solving two linear simultaneous equations with a
spreadsheet

In this and later chapters we will be solving many linear simultaneous
equations involving two variables. Rather than do each one separately,
it is useful to set up the solution on a spreadsheet. To do this, however,
we need to specify the equations in the same common format. Let the
two equations be written as follows

a;x+a,y=day
byx+b,y=0b,
Then set up a spreadsheet as follows. Place the equations and their solu-

tions just under the title on the left. These are the equations above and
the solution equations

*

_aby—aby | aby—ah,

a,b, — ab, a,b, — ayb,
Then in cells D3:D5 and D7:D9 place the name of the parameters and
in cells E3:E5 and E7:E9 their values. Then in cells D11 and D12 place

the descriptors ‘x*="and ‘y*="and in cells E11 and E12 place the for-
mulas for the solution values, i.e.

E1l  =(ash,—ab3)l(a\by, — ayb))

= (SESS*SES8 — SES4*SES9)/(SES3*SESE — SES4*SEST)
E12  =(a\by—ab)/(a\b,—ayb,)

= (SES3*SES9 — SESS*SEST)/(SES3*SESE — SES4*SEST)

Save the spreadsheet. It can now be used to solve any set of two linear
simultaneous equations.

We now show such a spreadsheet for solving the equilibrium for
model (4.2).




72 An Introduction to Economic Dynamics

(4.4)

A B C D E F

1 Solving simultaneous equations

2

3 GQx+a, ¥ = a, al = 2
: brtby=b T
6

7 L @b, — ayb, b1 - 1
: shmah| 2T ]
10

11 = @by —ashy K: - .
E a b, — ayhy Y = >

4.2 lsoclines and vector forces: continuous models

If we concentrate just on the market for x we know that this market is in equi-
librium when x = 0. If we impose this condition, then there will exist a rela-
tionship between x and y that guarantees that the market for x is in
equilibrium. Notice that we are not in any way saying that the market for y is
in equilibrium, only that the market for x is in equilibrium. Furthermore, in
specifying this relationship we are not concerned with time, we are merely con-
cerned with the condition for equilibrium to be satisfied in the market for x,
and the relationship between x and y for this to be so. The relationship is found
by solving

0=9—-2x—y
y=9—-2x

This relationship is referred to as an isocline, or simply as an equilibrium con-
dition. To make it clear that it is the isocline for market x we write

y=9—-2x x=0

We can derive the isocline for market y in just the same way. This, too,
denotes the relationship between x and y for which market y is in equilibrium
and so satisfying the condition, y =0. Hence

0=3—-y+x
y=3+x

and the isocline for market y is denoted
y=3+x p=0

We can now summarise what we have done so far. We have derived a rela-
tionship between x and y, an isocline for market x, which denotes all combi-
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y=0(y=3+x)

x=0(y=9-2x)

1 2 3 4
X = X

nations of x and y which preserves equilibrium in market x. We have derived
a similar isocline for market y, which also denotes combinations of x and y for
which market y is in equilibrium. We can now draw these isoclines in the (x,))-
plane as shown in figure 4.2, which is referred to as the phase plane. If the two
isoclines intersect then both markets can be in equilibrium at the same time,
in which case an equilibrium for the system (model) exists. This will generally
be the case — it will not be the case only if the two isoclines are parallel. It is
quite clear from our derivation of the isoclines that they will intersect at the
values x*=2 and y*=5.

But we now have much, much more information contained in figure 4.2.
Along any isocline we know that that particular market is in equilibrium. If
we are not on the line, either above it or below it (or to the left or right of the
line) then we know that that market cannot be in equilibrium and there will be
forces in play moving the system in some direction. The same is true for the
other isocline. This, too, divides the diagram into areas above and below (to
the left and to the right). We therefore have four quadrants, which are marked
in figure 4.3 as I-1V, and we have four representative points a, b, ¢ and d in each
of the four quadrants, respectively.

Consider just the market for x and consider the situation when X >0. When
this is true we have

9—-2x—y>0
y<9-—2x

This means that when the system is below the x-isocline, x is rising. This is
shown by the horizontal arrows emanating from points ¢ and d and pointing
to the right. Clearly when x <0 we are at a point above the x-isocline, and here
x 1s falling. This is shown by horizontal arrows emanating from points ¢ and
b and pointing to the left. Turning next to market y, if y >0 then

3—y+x>0
y<3+x

This means that when the system is below the y-isocline, y is rising. This is
shown by the vertical arrows emanating from points b and ¢ and pointing
upward. Similarly, when y <0 we are at a point above the y-isocline, and here

Figure 4.2
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Figure 4.3

(4.5)

(4.6)

y

y=0(y=3+x)

x=0(y=9-2x)

1 2 3 4
X

v is falling. This is shown by the vertical arrows emanating from points ¢ and
d and pointing downward. These vector forces show the force acting on the
system in the x-direction and y-direction, respectively. The system in any
quadrant will be somewhere between these extreme forces, as indicated by the
central arrow emanating from the four points «, b, ¢ and d. At this stage the
vector forces indicate a counterclockwise movement of the system in the phase
plane. In other words, the trajectory of the system starting at some initial point
will traverse the phase space in a counterclockwise movement. At this stage,
however, we do not know whether the trajectory will tend towards the equilib-
rium point or away from it. In fact, qualitatively, this is all we can say. We can
say a fixed point exists and that trajectories in the phase plane will be counter-
clockwise. But this is a lot of information. To go further, we need to establish
some actual trajectories.

4.3 Constructing continuous trajectories with a
spreadsheet

In chapter 1 we discussed Euler’s approximation to a differential equation and
showed how we could use this to construct a solution curve to the differential
equation. But the model we are discussing

£ =" =920~
d
50 ="0=3- 0+ x(0

is just a set of two differential equations, each equation relating the change in
a variable to both x and y. Let us write the system as

X=f(xy)=9-2x—y
y=gxy)=3-y+tx
Given x(0) and y(0), then

J(x(0),»(0)) =9 = 2x(0) — »(0)
g(x(0),y(0)) =3 = y(0) + x(0)
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and we can approximate x(1) and y(1) in just the same way as we did in chapter
1. In other words

x(1) =x(0) +£((0),»(0))Az
y(1)=x(0) +g(x(0,y(0))Az

where At is the time interval used for the approximation. Suppose we wish to
consider the trajectory starting from the point (x(0), y(0)) =(2,2). Then

x(1)=2+(9—4—2)(0.05)=2.15
(1) =2+(3 —2+2)(0.05)=2.15

while

x(2)=2.15+(9 —2(2.15)— 2.15)(0.05) = 2.2775
1(2)=2.15+(3—2.15+2.15)(0.05) = 2.3

and we can continue with such calculations. Of course, this is easier to do on
a spreadsheet, and we illustrate just such computations in terms of figure 4.4.
The use of the spreadsheet is here particularly convenient since we have com-
puted periods 0 to 200 to plot the trajectory with time interval Az=0.05.

In cells B8 and C8 we have the initial values for x and y. In cells B9 and C9
we have the following formulas

Cell B9 Cell C9

=x(0) +/(x(0),y(0))Ar =y(0) +g(x(0),(0))Ar

= B8+ (9—2*B8 — C8)*$F3$3 =C8+(3— C8+ BY)*$F$3

Figure 4.4
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(4.7)

(4.9)

These are then copied to the clipboard and pasted down for as many periods
as you wish to consider. Finally, we block cells B8:C208 and click the chart
button to insert the chart denoting the phase plane and the trajectory we have
just computed. The counterclockwise movement is quite evident. What is also
quite evident is that the trajectory tends towards the equilibrium point, the
fixed point of the system.

4.4 1soclines and vector forces: discrete models

In chapter 2 we considered two interrelated markets: the corn market and the
hog market, in which there was a one-period lag on the supply side in both
markets. We established the following two recursive equations

p()=5.6—04p«(t—1)
pt)=3.5—=0.5p(t—1)+0.4p(t—1)

Let us generalise this model slightly and let x =p< and y =p”, and consider the
model in terms of a difference equation. Then

Ax(t)=x(t)—x(t—1)=5.6—1.4x(t—1)
Ay(t)=y(t)—y(t—1)=3.5—1.5p(t —1)+0.4x(t — 1)

First we verify that the model has a fixed point, an equilibrium point. This is
where Ax(1) =0 and Ay(t) =0, giving the fixed point

0=5.6—1.4x"
0=3.5—-1.5y"+0.4x"
x*=4 and y*=34

which is the result we established in chapter 2.

But now consider this problem in terms of isoclines and vector forces. If we
consider just equilibrium in market x, then we have the isocline Ax(?)=0,
which is vertical at the value x =4. Of course, the reason why this isocline is
vertical is because market x in this example is independent of market y.
Turning to market y, this market is in equilibrium when Ay(¢)=0 and this
occurs when

0=3.5—1.5p+0.4x
$=2.333+0.267x

Our two isoclines are therefore

x=4 Ax()=0
y=2.333+0.267x Ay(t)=0

It is easy to verify that these intersect at the fixed point (x*,)*)=(4,3.4). The
situation is shown in figure 4.5.

The isoclines divide the phase space into four quadrants, which we have
labelled I-1V. Now consider just market x and consider the situation when
Ax(7)>0. When this is true we have

56—1.4x>0
x<4
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Av=(x=4)
Vs I | Il
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4
. A (=0(y=2.333+0.26Tx)
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W

c

A 6
x =4 X
Accordingly, to the left of the x-isocline variable x is rising while to the right
of the x-isocline the variable x is falling. This information is shown by right-
pointing arrows emanating from points ¢ and d and left-pointing arrows ema-
nating from points b and c. Turning next to the market for y, if Ay(#) >0 then

3.5—1.5p+0.4x>0
$<2.333+0.267x

and so below the y-isocline the variable y is rising while above it the variable y
is falling. This information is shown by the upward arrows emanating from
points ¢ and d and the downward arrows emanating from points ¢ and b. In
general the system in any quadrant will move somewhere between these two
extremes, as shown by the central arrows in each quadrant.

It 1s immediately noticed from these vector forces that the system in all
quadrants is directing it towards the fixed point, towards the equilibrium. We
established that in chapter 2. We shall do so once again for this general system
to illustrate solving such discrete models on a spreadsheet.

4.5 Constructing discrete trajectories with a spreadsheet

The procedure for constructing discrete trajectories on a spreadsheet is a little
easier. First we convert the difference equations to recursive equations by
adding x(¢ — 1) to both sides of the first equation in (4.8) and to y(z —1) the
second equation. This gives us the simultaneous recursive model

x(1)=5.6—-0.4x(t—1)
y(@)=3.5-05y(t—1)+0.4x(t—1)

The construction of the trajectory is shown in figure 4.6. Cells C7 and E7
contain the equilibrium values and cells B10 and C10 contain the initial values
for x and y, here 2 and 1, respectively — a point in quadrant IV. Cells B11 and
C11 have formulas

Cell B11 Cell C11

=5.6—0.4x(t— 1) =3.5—0.50(t— 1)+0.4x(t— 1)

=5.6—0.4*B10 =3.5-0.5*C10+0.4*B10

Figure 4.5

(4.10)
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Figure 4.6

In this particular model we only have relative addresses. Cells B11 and C11 are
then copied to the clipboard and pasted down. We have pasted down up to
t =15. Finally, we insert the chart by blocking cells B10:C25 and clicking the
chart button. The sequence of points

1(x(0).5(0)), (x(1).y(1))), (x(2).(2)), -}

makes up the discrete trajectory of the system. We plot this in the phase
plane as shown in figure 4.6, where we have joined up the points to form a
‘continuous-looking’ trajectory.

Taking a point in any of the four quadrants will readily reveal that the
system always converges on the equilibrium. The fixed point is globally stable
and is an attractor. The reader should verify this by taking a variety of initial
points in all the four quadrants.

4.6 A cautionary note

On the face of it there appears only a little difference between the continuous
terms
dx(ty ()
a dt
and the discrete difference terms

Ax(t+1)=x(t+1)—x(t) and Ay(t+1)=y(t+1)—y(?)

Both sets indicate the change in x and y over time. But it should never be
assumed that simply converting a continuous model to a discrete model gives
the same dynamic results. It is true that the isoclines are identical and the
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vector forces appear to give the same information. But consider the following
discrete counterpart to our continuous example we discussed above in terms

of (4.6)

Ax(t+1)=9—2x(t) — y(?)
Ay(t+1)=3—p(t) + x(¢)

The discrete trajectory from this model is set out in figure 4.7 along identical
lines as we set up the model in figure 4.6. It is clear, however, that this system
is cyclical, forming a three-cycle around the fixed point. The trajectory in
figure 4.4, which illustrated a trajectory from the continuous model, has the
trajectory tending towards the fixed point.

What we conclude from this brief note is that vector forces should be con-
fined to continuous models in general.

4.7 A variety of trajectories

There is quite a diversity of trajectories that can occur in a two-dimensional
phase space, some of which are sufficiently common to have names attached
to them. In this section we shall consider some of these. Not only will they
show a diversity of paths, but they also will help reinforce the isocline and
vector forces’ diagrammatic treatment that can be so useful when considering
dynamic systems. In this section we consider only continuous models.

Let us begin with the simplest case of all. Suppose

X=x

y=y
It immediately follows that the isoclines are the two axes, and the equilibrium
point is the origin. In effect, these two markets are independent of one another.

Figure 4.7

(4.11)

(4.12)
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Figure 4.8

(4.13)

x=0

Even so, let us continue to identify the vector forces in the four quadrants
shown in figure 4.8. If x>0 then x>0 and x is rising, and vice versa. So to the
right of the vertical axis, x is rising and to the left of this axis x is falling. This
1s shown by the right- and left-pointing arrows, respectively. Similarly, if y>0
then y>0 and y is rising, and vice versa. So above the horizontal axis, y is
rising and below the horizontal axis y is falling. This is shown by the up- and
down-pointing arrows, respectively. In this example the origin is a repellor and
the system is unstable.

This pattern is verified by the spreadsheet shown in figure 4.9. What this
shows is that the trajectory starting at point (0.5,0.5) moves outward along a
straight line. This is true for any point in the positive quadrant, as we have
already indicated in figure 4.8. Experiment by taking a number of points in the
positive quadrant. Now take points in the south-west quadrant, say point
(—0.5,—0.5). It will immediately be seen that the trajectory remains a straight
line, but now moving further away from the fixed point. Similar results follow
when taking points in the other quadrants. What we have here is an unstable
star. It is unstable because all trajectories move away from the fixed point.
Taking a whole range of trajectories forms outgoing lines from the fixed point,
making a diagram looking like a star, hence the name.

Consider next the following continuous model

X=—2x+y

y=x=2
Again we set this continuous model up on a spreadsheet as illustrated in figure
4.10 in just the same way as we have done earlier. The initial point for the tra-

jectory shown is (x(0), y(0)) =(2,6). The only fixed point is the origin. The two
isoclines are
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y=2x x=0
y=>1712)x y=0

All trajectories, no matter where the initial point is (other than the origin) will
be drawn to the fixed point. This figure illustrates a stable proper node. It
should be noted that any such trajectory for this problem remains in the quad-
rant in which the initial point is located.

As another illustration, consider the model

X=—4x—y
y=x—2

which is illustrated in figure 4.11. Once again, the only fixed point is the origin.
Taking an initial point (x(0), y(0))=(2,2). This is an example of a stable
improper node. The approach to the fixed point seems to lie along a line that
is negatively sloped. To see this, take an initial point (—2,— 2). The negatively
sloped line can be identified by taking an initial point (—2,2) and another
(2,—2). It will be noted that the trajectories are straight lines directed towards
the origin.

The next example illustrates a spiral, with fixed point at the origin. The
model is

X=—x+4y

y=—d4x—y
and is illustrated in figure 4.12. Although this model is fairly similar to the pre-
vious one, the trajectories are quite different — taking a spiralling motion to
the fixed point. In figure 4.12 our initial point is once again (x(0), y(0)) =(2,2).
But taking any initial point different from the origin will have a trajectory
drawn to the origin in a clockwise motion. The reader is encouraged to try

Figure 4.9

(4.14)

(4.15)
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Figure 4.10

Figure 4.11

initial points (—2,2), (—2,—3), (—2.,4). All trajectories are clockwise spirals to
the origin. What we have here is a spiral, with a clockwise motion.
An explosive spiral will arise with the following model

X=x+4y
(4.16) y=—4x+y
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Figure 4.12

Figure 4.13

and the reader is encouraged to set this up in exactly the same way as the pre-
vious one. Take a point very close to the origin, say (0.5,0.5), and what will
emerge is a clockwise spiral away from the origin. Also try the initial point
(—0.5,—0.5), the same explosive clockwise spiral emerges.

Our final example illustrates a centre, and is shown in figure 4.13. Consider
the model

X=x+2y
y=—5x—y (4.17)
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(4.18)

(4.19)

Set this model up in exactly the same way as earlier models, with two differ-
ences. Let the time interval taken be very small, with a value around 0.0075
and plot for between 1000 and 2000 periods. The plot illustrated has 1100
periods. The trajectory forms a closed curve. In this example, the trajectory
moves in a clockwise direction. It was necessary to take a very small time
interval, since this is strictly a continuous model, and it is a centre for the
continuous model only. By taking a very small time interval, and using over
1000 periods, we can obtain a reasonable approximation of the closed trajec-
tory.?
Had we been considering the model

X=2x—15y
y=x=2y
with the same small time interval and over 1000 periods, then we would

observe once again a closed curve, but the trajectory would now take a
counterclockwise motion from the initial point.

4.8 Limit cycles

In systems (4.17) and (4.18) of section 4.7, we considered a closed-curve tra-
jectory. It did not matter what the initial value was, a closed curve passing
through this value would result. A different situation can arise where the tra-
jectory converges on a closed curve, and once on it remains on it. An example
will help to clarify this. The example we shall discuss is referred to as the Van
der Pol equations, which are

x=f(xy)=y
y=gxpy)=um(l—=x?)y—x

Note that given the initial values (x(0), »(0)), then

x(1) =x(0) +7((0).1(0)Az = x(0) + y(0)Az
y(1)=p(0) +g(x(0).y(0)Ar = y(0) + [u(1 — x(0)2)y(0) — x(0)]Ar

The first thing we note about these equations is that they are nonlinear. But
setting the problem up on a spreadsheet, using the Euler approximation, is
fundamentally no different from setting up a linear model. The model is
shown in figure 4.14.

In cell F3 we place the value for the parameter u, denoting this ‘mu’ and set
equal to unity. In cell F4 we have the time interval, which we have set at 0.05.
In cells B9 and C9 we have the initial values for x and y, respectively, which we
have set at (x(0), y(0)) =(2,4) in the phase space. We used the fill command to
set the number of periods equal to 1000. Cells B10 and C10 have the follow-
ing formulas entered

2 Taking a time interval of 0.05 will lead to an explosive spiral.
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Cell B10 Cell C10
= x(0) +/(x(0),y(0))Az = y(0) + g(x(0),1(0))Az
— B9+ C9*$F$4 = €9+ ($F$3*(1 — B9*2)*C9— B9)*$ F$4

which are then copied to the clipboard and pasted down up to period 1000.
Finally, we block cells B9:C1009 and use the chart button to create the inserted
chart. The chart shown in figure 4.14 has been annotated as before.

Figure 4.14 has the initial point outside the limit cycle that clearly emerges.
But for a true limit cycle, then for points inside the same should also be true:
that is, the trajectory should move outward until it blends into the limit cycle.
To see if this is true, choose now an initial point close to the origin, say
(0.5,0.5). It will be established that this is indeed the case.

In our investigation of the Van der Pol equations we set the value of the
parameter w to unity. Of course this need not be the only value for this param-
eter. You may wish to try a few values — both above and below unity. But we
shall return to this set of equations and a discussion of the parameter w in
chapter 10.

4.9 Lorenz curves and strange attractors

It is already apparent that trajectories in the two-dimensional phase space can
become very varied. An even stranger trajectory has been given much atten-
tion, and we shall present here a simple means of analysing the Lorenz curves.
We introduce this to show that we can just as readily use our spreadsheet to

Figure 4.14
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(4.20)

set up a three-equation model. The Lorenz curves, named after their origina-
tor, can be expressed

X=o(y—x)
y=rx—y—xz
Z=xy—bz

where x, y and z are variables dependent on time, and o, r and b are parame-
ters. The model is set out in figure 4.15 in a slightly different way from the way
we have done it so far. In cells G3 to G6 we have the values of the three param-
eters and the interval set for time. Specifically, we have o=10, r=28, h=28/3
and Az=0.01. In cells A11 to A2011 we have numbered the 2000 time periods
that we shall use for plotting purposes. It is necessary to have a small time
interval and many time periods to see exactly what is happening in this model.
In columns B, C and D we set out the computations for dx/dt, dyl/dt and dz/dt,
while in columns E, F and G we have the computations for x, y and z. Cells
E1ll, F11 and G11 contain our initial values for each of the three variables. In
this example, our initial point is (x(0), (0), z(0)) =(5,0,0). Cells B11, C11 and
D11 are simply the equations above. Thus

B11 = $G$3*(F11—E11)
C11 —$GS4*E11—F11—E11*G11
D11 = E11*F11-$G$5*G11

Next we compute cells E12, F12 and G12 as follows

E12 =FE11+ B11*3G$6
F12 =F11+ C11*3$G$6
G12 = G111+ D11*$GS6

Now copy cells B11, C11 and D11 to the clipboard and paste in B12, C12 and
D12. Now that all computations are complete for cells B12 to G12, these are
copied to the clipboard and pasted down for up to period 2000. This com-
pletes all the computations for this model.

It 1s now time to plot the trajectories. Spreadsheets do not allow three-
dimensional plots but we can obtain some idea of the system’s behaviour by
plotting trajectories in three different phase planes, namely plane-(x,z), plane-
(x,») and plane-(3,z). The three resulting charts are shown in figure 4.16. It is
difficult to draw trajectories in more than two dimensions, and so it can be
difficult to understand the complex phenomena that can, and do, occur in such
systems. Although the trajectories in figure 4.16 appear to cross over each
other, this does not occur in the three-dimensional space. What the graphs in
figure 4.16 show is a set of two-dimensional projections of the three-
dimensional trajectory. Changing the values of the parameters leads to some
very different patterns, but the general nature of the attracting points tend to
remain. We shall return to this model again in chapter 10 when we discuss
chaos theory.
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3 -2.455 1085118 14.83616  4.03568 27901 0172187
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1839236 106.7127 2297198 4097467 5936703 0.507549
272244 1089.7186) 28.02008 428138 7.00383 0.737268
3547381 114 7676 34 17581 4 553634 8101016 1.017469
4340319 121.5141 4177142 4908373 9.248691 1.359227

B i} " (S . Vo [N " O W [ "
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20 9 51.21428 1298.6304 | 51.16352 5342404 1046383 1.776941
21 10 59.05589 1387686 B2.7474 5854547 11.76014 2288577
22 11 67.02716 1485209 7696283 6445106 1314782 2.916051
23 120 75176540 158 3725 94 20107 7115378 14633030 3 63568

4.10 Conclusion

In this chapter we considered just two interrelated markets in which the equa-
tions were autonomous. This emphasis is justified because the majority of
dynamic models encountered in economics are of this type. Given this
assumption of autonomous equations, a system involving two variables x and
y moves through the (x,y)-plane over time starting from some initial point.
This is called a trajectory, and for autonomous systems there is only one tra-
jectory through any given initial point.

The more complex the equations describing a system, the more difficult it is
to obtain trajectories. Two methods were outlined in this chapter. The first was
purely qualitative and involves establishing vector forces. The first step is to
derive an isocline for each variable (often each market). This is where there is
no change in the variable, and therefore denotes the relationship between y
and x for which each market is in equilibrium. In continuous models we have
x =0 and y =0 denoting the two isoclines, while for discrete models, we have
Ax(t+1)=0 and Ay(z+1)=0. If these isoclines are different, then we can
identify four quadrants, and the forces that exist in each quadrant. Such vector
forces give some useful qualitative information on the nature of the trajecto-
ries of the system. The second procedure was to use Euler’s approximation.
For any given initial condition, and taking small increments in time, it is pos-
sible to plot the solution path. The smaller the time interval, the better the
plot. This procedure applies only to continuous systems. For discrete models,

Figure 4.15
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the difference equations specifying the systems dynamics are readily converted
to recursive equations. These can be immediately plotted with the help of a
spreadsheet. Using these two procedures, we considered a number of dynamic
systems — both discrete and continuous. We finished by considering some
special dynamic systems: namely, limit cycles and Lorenz curves.

(1)

2)

)

(4)

Exercises

Construct diagrams showing isoclines and vector forces for the fol-
lowing systems

1 x=3x
L1
y=2y

(1) x=x—-3y
y=—2x+y

(1)  Use a spreadsheet and Euler’s approximation to construct the
trajectory for the following system. Use 0.05 for the time
interval and =0 to 200

X=—3x+y
y=x—3y
(x(0),»(0)) = (2,10)

(i)  Verify that this trajectory is consistent with the vector forces

(1)  Use a spreadsheet and Euler’s approximation to construct the
trajectory for the following system. Use 0.05 for the time
interval and =0 to 200

X=2x+3y
y=3x+2y
(x(0),»(0)) = (1,0)

(i)  Verify that this trajectory is consistent with the vector forces.

(i) Show that the trajectory for the system through the point
(1,—1) is different.

(1)  Establish the trajectory of the following discrete system

x(t+ 1) =—8—x(6) + 1(¢)
Y(t+1)=4—0.3x(¢) + 0.9y(7)
(x(0),y(0)) = (2,8)

(1)  What is the equilibrium value of the system and does the tra-
jectory converge on this equilibrium?
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(ii1) Plot the path of x(¢) and y(z) for =0 to 20. What do you
observe?

&) (1)  Establish the trajectory of the following discrete system

x(t+1)=—2+0.25x(t) + 0.4y(¢)
y(+1)=10—2x(¢) +0.5)(¢)
(x(0),(0)) =(2.5,15)

(1) What is the fixed point of the system and does the trajectory
converge on this value?

(ii1) Plot x(¢) and y(z) for =0 to 20. What do you observe?



Chapter 5
IS-LM dynamics

5.1 The static model

Let us first outline briefly the static version of the IS-LM model. The model
comprises a set of equations that denote behavioural relationships for expen-
ditures, along with an equilibrium condition. These together comprise the
goods market. An important difference in this version of the model from the
one we discussed in chapter 3 is that investment is considered inversely related
to the rate of interest. This is important in a number of respects, as we shall
see. As in chapter 3, we have consumers’ expenditure related to disposable
income, which is defined as income /less direct taxes. We assume a closed
economy and so total expenditure is the sum of consumers’ expenditure,
investment expenditure and government expenditure. We treat government
expenditure as the only exogenous variable in this model. The equilibrium
condition for the goods market is that income is equal to total expenditure.
The goods market equations are set out algebraically in the upper section of
table 5.1.

The terms a, Tx, and I, denote autonomous expenditures; the parameter b
denotes the marginal propensity to consume and zx denotes the marginal rate
of tax. The equation Y= C+ 1+ G denotes the equilibrium condition in the
goods market.

Carrying out substitutions, we arrive at the following condition for goods
market equilibrium

Y=(a—bTx,+1,+G)+b(1—tx)Y—hr

(a—bTxy+1,+G) 1—-5b(1—tx)Y
T h - h

This is just a linear equation that we can write more simply as

(a—bTx,+1,+ G) 1 —b(1—tx)
= , A] =
h h
Generally this will have a positive intercept and a negative slope when drawn
in (Y,r)-space, with Y on the horizontal axis and r on the vertical axis.
Now consider the money market. The money supply is assumed exogenous,
and set at M. Substituting this into the equilibrium condition we have

4

My+kY—ur=M
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Table 5.1 Goods market equations
Goods market Definitions
C=a+bYd 0=bH=1 C = consumers’ expenditure
Yd=Y—-Tx Yd = disposable income
Ix=Tx,+txY O=tx=1 Tx = total taxes
I=1,—hr h>0 r = interest rate
Y=C+I+G I = investment expenditure
G = government expenditure
Money market Definitions
Md=M,+kY—ur k>0,u>0 Md = demand for money
Ms=M
Md= Ms Ms = supply of money
or
M,—M kY
(5.3) r=—"0—+—
u u
This is just a linear equation that we can write more simply as
r=B,+B,Y
(5.4) By=——,B,=—
u u
This will have a positive slope when drawn in (Y,r)-space, because of our
assumptions about the sign of the parameters k and u. The intercept can be
positive, zero or negative.
Of course, what we have now is two equations
(5.5) r=B,+BY

in two unknowns, which are Y and r. The situation is shown graphically in
figure 5.1. The goods market equilibrium is labelled IS and the money market
equilibrium is labelled LM.! All-round equilibrium is therefore where the two
lines intersect, which is at point E in figure 5.1, leading to equilibrium levels
Y*and r.

Let us consider a numerical example, which we shall use in the early part of
this chapter

C=110+0.75Yd

Yd=Y—-Tx
Tx=-80+0.2Y
I1=320—4r

I These designations for goods market equilibrium and money market equilibrium are histori-
cal. In a simple model with no trade and no government, equilibrium in the goods market can
be shown to satisfy the condition that investment is equal to saving, /=S. The money market
refers to the demand for money as the liquidity preference and so equilibrium in the money
market is where liquidity preference, denoted L, is equal to the money supply, denoted M.
Hence LM denotes money market equilibrium.
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r* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Y Y
G=330
Y=C+I+G
Md=20+0.25Y—10r
Ms=470
Md= Ms

Carrying out the same substitutions as we described above, we arrive at the
following two equations

IS curve: r=205-0.1Y
LM curve: r=—45+4+0.025Y

and solving we obtain the equilibrium values (Y, r*) =(2000, 5).

All this is the standard IS-LM model found in most elementary or interme-
diate macroeconomics textbooks. Analysis proceeds by changing various
items in the model. Here we shall just consider two since our real interest is in
the dynamics. A rise in government spending raises the intercept A4, and so
shifts the IS curve to the right. In figure 5.2 this is shown by the shift in the IS
curve from IS, to IS,. Similarly, a rise in the money supply reduces the inter-
cept B, (see (5.4)) and so shifts the LM curve down (or to the right). This
results in equilibrium point E,. In each case there is a rise in the level of
national income; but for a fiscal expansion there is a rise in the rate of interest
and in the case of a monetary expansion there is a fall in the rate of interest.
For example, using the numerical example, a rise in government spending to
350 raises equilibrium income to 2040 and the interest rate to 6. A rise in the
money supply from 470 to 500 leads to a higher equilibrium level of income
of 2024 and to a fall in the interest rate to 2.6

All this is a comparative static argument. We simply begin with the equilib-
rium point E,, then undertake either a fiscal expansion or a monetary expan-
sion and the economy moves to point E, or E,, respectively. But how do we
know that the economy actually does move from one equilibrium to the other?
To establish this requires a dynamic process to be specified. Even if the

Figure 5.1

(5.7)
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Figure 5.2

economy does move to the new equilibrium, what trajectory does it take to get
there? This, too, is a dynamic consideration.

5.2 Instantaneous money market adjustment

As a way into the dynamics of the IS-LM model let us consider first an extreme
case in which the money market adjusts immediately and the goods market
takes time, i.e. 1s sluggish in its adjustment. This is not too unreasonable.
Interest rates can adjust quickly as information spreads around the market.
On the other hand, for the goods market to adjust, firms have to take on more
labour, and output needs to be raised. This takes time. If the money market
adjusts immediately, then the money market is always in equilibrium. Because
the goods market is sluggish, this is not necessarily the case in this market.
Geometrically, this means that the economy at any moment of time is always
on the LM curve (since this denotes money market equilibrium) but not nec-
essarily on the IS curve.

Under this assumption let us consider the trajectory of the economy in each
of the two expansions mentioned in section 5.1. Take first the goods market
expansion. We already know that this shifts the IS curve to the right. In the
first round national income will rise by the rise in government spending. We
know from our discussion in chapter 3 that this is only the beginning of the
adjustment process. As income rises by this amount, this will raise the demand
for money, and with a constant money supply the rate of interest will rise. On
round number two, consumption rises because of the rise in income. This
further increases income but by less than before (recall that the marginal pro-
pensity to consume lies between zero and one). Once again this will raise inter-
est rates, but by not as much as in the first round. Income continues to rise by
smaller and smaller amounts until the new equilibrium level of income is
reached. Interest rates adjust by smaller and smaller amounts until the new
equilibrium level of interest rate is reached. Geometrically, the economy is
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(b)

Y

moving along the LM curve as shown in figure 5.3(a). The economy’s trajec-
tory is the path from E; to E, along the LM curve, shown by the arrows.
Now consider a monetary expansion. The economy’s trajectory is quite
different. We know this shifts the LM curve down (to the right), to LM, shown
in figure 5.3(b). The rise in the money supply, with the demand for money con-
stant, leads to an immediate fall in the rate of interest. The fall is shown by
point A in figure 5.3(b). Point A must be immediately below E; since this
change can virtually happen overnight, while income has not yet had a chance
to change. Also note that point A is off the IS curve. But this fall in the rate of
interest stimulates investment, and with a rise in investment income begins to
increase. However, as income increases so does the demand for money. This
puts pressure on the rate of interest to rise. As it rises, the money market
remains in equilibrium. The economy now traverses a path along the new LM
curve from point A to point E,. For a monetary expansion, therefore, the
economy’s trajectory is the path E,— 4 — E,, as shown by the arrows in figure
5.3(b). Notice, too, that although after the initial fall in interest rates they
begin to rise, the rise never completely swamps the initial fall, so overall there
is a fall in the equilibrium rate of interest. What we also observe here is the
phenomenon of overshooting. The interest rate initially goes in the direction it

Figure 5.3
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(5.8)

(5.9)

(5.10)

(5.11)

will eventually go: that is, it falls. But the initial fall is too large, going beyond
the eventual equilibrium value, and so has to rise for part of the period. This
1s important. An economist predicting the impact of monetary expansion on
interest rates would predict a fall if considering only the comparative statics,
but would predict an initial dramatic fall followed by a rise when considering
the dynamics!

Let us use the numerical example to illustrate the dynamics implied by an
instantaneous adjustment in the money market and a sluggish adjustment in
the goods market. We do this by assuming a lag in consumption, i.e. consump-
tion in time ¢ depends on disposable income in time #— 1. Because of instanta-
neous adjustment in the money market, all variables in the money market are
at time 7. Our model is then

C(t)y=110+0.75Yd(t —1)
Yd(t)= Y(t) — Tx(1)
Tx(t)=—80+0.2Y(r)

1(1) =320 —4r(z)

G =330

Y()=Ct)+1I(H)+ G
Md(t)=20+0.25Y(¢) — 10r(z)
Ms(t)=470

Md(t) = Ms(1)

Lagging disposable income 1 period and substituting this into the consump-
tion function, and then substituting this along with investment and govern-
ment spending into the goods market equilibrium condition, we obtain an
expression for the IS curve

Y(£) =820+ 0.6 Y(t — 1) — 4r(t)

Substituting the demand and supply for money into the money market equi-
librium we obtain an expression for the LM curve

r(t) = —45+0.025 Y(z)

Notice that it is only the goods market that involves any lagged terms. This is
picking up the sluggishness in the goods market. The fact that the money
market clears in time period ¢ indicates instantaneous adjustment in this
market. We can now substitute the expression for the rate of interest derived
in the money market, (5.10), into the goods market equation, (5.9), and solve
for income in time period . We obtain the following recursive equation

Y(£) =909.0909 +0.54545 Y(t — 1)

We can first check this by setting Y(z)=Y(¢—1)=Y" and solving for Y*.
Doing so gives a value for Y™ of 2000. Substituting this for income in the
money market allows us to solve for the equilibrium interest rate, which is 5.
Both these results are the same as before.

Before we set this up on a spreadsheet we need to take account of the
increase in the money supply. We are considering a rise in the money supply
from 470 to 500. This affects directly only the money market. In the money
market we now have
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500 =20 +0.25 ¥(£) — 10r(z)
r(t) = —48 +0.025 Y(7)

The goods market remains unchanged with
Y(£)=820+0.6Y(t—1) —4r(2)
Substituting the previous result for 7(¢) into this expression, we arrive at

Y(£) =820 +0.6 Y(t — 1) — 4(— 48+0.025 ¥(7))
Y(£)=920+0.54545Y(t — 1)

We are now in a position to set up our spreadsheet.

The spreadsheet is illustrated in figure 5.4. We have inserted at the top of
the spreadsheet the dynamic representation of the goods market and the
money market as a reminder. In cell B7 we have the initial level of income.
Here we set it equal to 2000, the equilibrium level of income. In cell C7 we
have

— —4540.025Y(7)
= —4540.025* B7

In cell B8 we retain income at level 2000 since the money supply affects the
money market only in this period, i.e. we assume the change in the money
supply takes place in period 1. In cell C8 we place the new expression for the
LM curve

— —48+0.025Y(?)
— —48+0.025* BS

The impact from the money market now makes itself felt in the goods market.
So in cell B9 we place our revised formula for Y(7), i.e.

=920+0.54545Y(r — 1)
=920+ 0.54545* B8

For C9 we simply copy C8 and paste in C9. Cells B9 and C9 are now copied
to the clipboard and pasted down.

With all the computations now complete, we can block cells B7:C27 and
invoke the chart wizard. This allows us to insert the chart with the trajectory
in the (Y,r)-space. What is clearly shown by the inserted chart is just the tra-
jectory we outlined above. The interest rate drops immediately from 5 to 2 and
then over time rises to the eventual equilibrium value of 2.6 while income rises
to 2024. It is also clear from the inserted chart that the trajectory follows the
new LM curve. This must be so, since in each period the money market always
clears. It is income that adjusts slowly. As income adjusts, this alters consump-
tion, taxes and the demand for money. The demand for money alters the inter-
est rate, which in turn alters the level of investment. In fact, the resulting rise
in interest rates curbs the rise in investment resulting from the initial fall in the
interest rate. The eventual result, however, is a fall in the equilibrium rate of
interest and a rise in the level of equilibrium income.

The reader should undertake a number of experiments with this model, such
as:
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Figure 5.4

(5.12)

(5.13)

(1) A rise in G from 330 to 350
(i1) A fall in tx from 0.2 to 0.175
(111) A rise in b from 0.75 to 0.8

(iv) A fall in k (a rise in the income velocity of money) from 0.25 to 0.3

(V) A fall in u (a fall in the interest sensitivity of money demand) to 7 (or
even zero)

(vi) A fall in £ (a fall in the interest sensitivity of investment) from 4 to 2

(or even zero).

5.3 A continuous model

We shall now consider a continuous model and also allow differential adjust-
ments in both the money market and the goods market, neither of which is
instantaneous. However, we shall assume in line with our previous analysis
that the money market is quicker to adjust than the goods market. In setting
out this continuous model we identify these adjustment coefficients in terms
of two adjustment equations. In the goods market we assume that income rises
over time if there is excess demand and falls if there is excess supply. More
specifically

Y(O) = a(E() - Y()) a>0

where E(f)= C(t) + I(t) + G. In the money market we assume that the interest
rate rises if there is excess demand in this market and falls if there is excess
supply. More specifically

#(t)=B(Md— Ms) B>a>0
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In general terms our full model is then

C(ty=a+bYd(1)

Yd(t)= Y(t) — Tx(2)

Tx(t)=Tx,+txY(?)

I(t)=1,—hr(?)

EH=Clt)y+I(H+G

Y(H)=a(E(t)— Y(t)) a>0

Md(t)= M+ kY(t) —ur(t)

Ms(t)y=M

()= B(Md(t) — Ms(t)) B>0 (5.14)
Notice that this is consistent with our earlier analysis. In equilibrium Y(¢) =0,
which implies Y(¢) = C(¢) + I(¢) + G; and #(t) =0, which implies Md(t) = Ms(¢)
= M. Furthermore, the adjustment coefficients « and B have no bearing on
these equilibrium values.

What we now wish to show is that we can set up this model in (Y,7)-phase
space and show that the IS and LM curves are no more than isoclines. More
importantly, we can then consider the four quadrants and the vector forces in
those quadrants. Although the algebra is a little tedious, it takes the same form
as we have done already, so we shall simply give the results here. They are
derived by substituting all the relationships in each of the adjustment equa-
tions in turn. They are

IS: Y(t)=a(a—bTxy+1,+ G)— a(1 —b(1— tx)) Y(t) — ahr(f)
LM: i#(t)=B(M,— M)+ BkY(t)— Bur(t) (5.15)

It immediately follows from these equations that the IS curve is the isocline
Y =0 and the LM curve is the isocline #=0. These are appropriately labelled
in figure 5.5. For the moment, we shall assume that (1 —b(1—1x))>0 or b(1—
tx)<1. This means that the IS curve is negatively sloped. We are assuming k
and u are positive, so the LM curve is positively sloped.

Let us now turn to the four quadrants and consider the vector forces.
Consider first the goods market. If ¥(z)>0 then Y(¢) is rising. This will be so
when

ala—bTxy+1,+ G)— a(l —b(1 —tx)) Y(¢) — ahr(t) >0

(a—bTxy,+1,+ G) (1 —=>b(1—1tx)Y(¢)
h h
Given our assumptions about the negatively sloped IS curve, then this refers
to points below the IS curve. Hence, for points below the IS curve there is pres-
sure for income to rise. It also follows that above the IS curve there is pressure
for income to fall. These forces are indicated by the right and left arrows below
and above the IS curve, respectively.
Now turn to the money market. If () >0 then r(¢) is rising and

B(M,— M) + Bk (1) — Bur(1)>0

My~ M | kY()
u

r(t)<

r(r) <
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Figure 5.5

Figure 5.6

.
LM (7=0)
X
IS (Y=0)
Y
r

‘IS, (Y=0)

IS, (Y=0)

Y

So below the LM curve there is pressure on interest rates to rise, while above
the LM curve there is pressure on interest rates to fall. These forces are shown
by the up and down arrows below and above the LM curve, respectively.

The dynamics is more clearly illustrated by considering some change, such
as a rise in government spending. This is shown in figure 5.6. The initial equi-
librium 1s E;, and the new equilibrium 1s E;,. When the rise in government
spending occurs, point E is no longer an equilibrium point of the system. This
is now E,. The vector forces shown in figure 5.6 are with respect to the new
equilibrium E, and not the initial equilibrium E,,. Under the assumption of
instantaneous adjustment in the money market, the economy traverses the tra-
jectory marked T, which lies along the LM curve. This is a counterclockwise
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movement. But if we relax the assumption of instantaneous adjustment in the
money market, it is possible for the economy to traverse paths T, and T;. What
determines the trajectory of the economy in such circumstances? We investi-
gate this by considering another numerical example, and set the problem up
on a spreadsheet using the Euler approximation for continuous models that
we outlined in chapter 4.

5.4 Continuous IS-LM on a spreadsheet

Return to the two differential equations representing the IS curve and the LM
curve

IS: Y(£)=fY,r)=ala—bTx,+1,+ G)— a(l —b(1— tx)) Y(£) — ahr(t)
LM: #(t)=g(Y,r)=B(M,— M)+ Bk Y(t) — Bur(t) (5.16)

Then given (Y(0),7(0)) we compute Y(1) and r(1) as follows

Y(1)=Y(0) +/(¥(0),r(0))Ar
r(1)=r(0) +g(¥(0),r(0))Az

To see this in operation, consider the following numerical model, where we
have included values for the adjustment coefficients. In particular, we have
assumed a«=0.05 and B=0.8, which satisfies the condition that 3> a>0

C(t)=15+0.75Yd(1)

Yd(t) = Y(¢) — Tx(t)

Tx(1)=0.25Y(?)

I(1)=10—1.525r(¢)

G=25

EO=Cy+I(t)+G

Y(1) =0.05(E(t) — Y(1))

Md(t)=0.25Y(t) — 0.5r(¢)

Ms(t)=8

(1) = 0.8(Md(t) — Ms(t)) (5.17)

The equilibrium of this system, the fixed point, is (Y™, r*) = (62, 15). The two
differential equations, leaving « and B unspecified, are

Y=AY,r)=50a—0.4375aY —1.525ar
F=g(Y,r)=—8B+0.258Y—0.58r (5.18)

The fixed points are readily verified by setting ¥Y=0 and #=0.

5.4.1 Monetary expansion

The example is set out in figure 5.7. First we set our time period from 0 to 1500
in column A. In cells G3, G4 and G5 we place the values of @ and B and the
value for the time interval. Next we place our initial equilibrium values in cells
B8 and C8, namely 62 for Y and 15 for r. Since we are about to consider a rise
in the money supply from 8 to 12 we need to re-specify the second differential
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Figure 5.7
equation to take account of this. The new equation has —128 rather than —88.
The equations, then, which we shall use for computing the new values of Y and
r are
Y=£AY,r)=50a—0.4375aY —1.525ar
(5.19) i=g(Y,r)=—128+0.258Y—0.58r

which are shown on the spreadsheet. These lead to the new equilibrium point
(Y*, r)=(72.1667, 12.0833). We accordingly enter the following in cells B9
and C9

B9 =Y(0)+£(Y(0),r(0))Az

= B8 +(50*$G$3 —0.4375*§G$3* B8 —1.525*$ G$3* C8)*$ GS5
C9 =r(0) +g(Y(0),r(0))Az

=(C8+(—12*§G%4 +0.25*§G$4* B8 — 0.5*$ G$4* C8)*$ GS5

These are then copied to the clipboard and pasted down. The data in cells
B8:C1508 is then used to create the chart with the chart wizard. The resulting
trajectory is shown in the inserted chart. Not only does it show a counterclock-
wise movement, but also it shows the typical overshooting of the interest rate
that we eluded to above. What we do not observe is any spiralling motion.

In section 5.3 we had instantaneous movement of the system with regard to
the money market. This means that the parameter B is infinite. Increase the
size of B 1in the spreadsheet and see the result. Try 1.5, 5, 10 and 20. What you
will observe is that the trajectory gets closer to our extreme of figure 5.3(b).
Think of it in a different way, the greater the adjustment in the money market
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the more the trajectory is pulled towards the LM curve. Now leave the value
of Bat 0.8 and reduce the size of the parameter . As you do so, a similar result
occurs: namely, the trajectory gets closer to that of figure 5.3(b). What matters
is the differential in the speeds of adjustment.

With B at 0.8 increase the value of «, first to 0.1 and then to 0.5. This still
satisfies the condition 8> a>0, but considers the result of the goods market
being less sluggish. When a=0.1 the system still exhibits a counterclockwise
movement directly towards the fixed point. Now, however, it does not follow the
LM curve so directly. In fact it is further away from the LM curve. Whena=10.5
the system exhibits a counterclockwise spiral to the fixed point. When a spiral
occurs, both markets overshoot their equilibrium values. What this exercise
illustrates, however, is that the goods market needs to be quick to adjust to dis-
equilibrium states for a spiral path to occur. The conclusion we draw from this
analysis is that overshooting of interest rates is inevitable, but overshooting of
national income is highly unlikely to be observed within this particular model.
National income will just steadily rise to its new equilibrium level.

5.4.2 Fiscal expansion

Next let us consider a fiscal expansion. The analysis is very much the same so
we shall be brief. Suppose government spending rises from 25 to 37 (a rise of
12), then our differential equations (5.18) take the form

Y=£(Y,r)=62a—0.4375aY —1.525ar
r=g(Y,r)=—8B+0.258Y—0.58r

with equilibrium values (Y™, r*)=(72, 20). The model is illustrated in figure
5.8.

Figure 5.8

(5.20)
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(5.21)

Other than the inserted equations, the only difference is cells B9 and C9.
These now have formulas

B9 =Y(0)+f(Y(0),r(0))Az
= B8 +(62*$G3$3 —0.4375*§G$3* B8—1.525*$ G$3* C8)*$ G $5

C9 =r(0) +g(Y(0),r(0))Az
=(C8+(—8*§G34 +0.25*§G$4* B8 — 0.5*$G$4* C8)*$ G $5

The resulting chart is shown in figure 5.8, which shows a gradual counter-
clockwise movement to the new equilibrium. Income and interest rates rise
steadily (but rather slowly in this example) to the new equilibrium. In the case
of a fiscal expansion there is no overshooting.

A spiral counterclockwise path can occur if the goods market is quick to
adjust — even if still less quick than the money market. Set the value of « to
0.5 and a spiral counterclockwise path will result. But such a path is highly
unlikely within this particular model. What we observe in capitalist econo-
mies is a speedily adjusting money market and a slow adjusting goods
market.

5.4.3 Combined fiscal and monetary policy

Of course, economies will have combined fiscal and monetary policy and the
trajectory of the economy in such circumstances can be quite varied. Here we
shall consider just one example, leaving other scenarios to be considered by
the reader in terms of the exercises.

We shall consider a fiscal and monetary expansion. We know that each sep-
arately raises the level of equilibrium income, so we certainly know such a
combined policy will raise the level of national income. However, the result on
the equilibrium interest rate is less certain. A fiscal expansion raises the rate of
interest while a monetary expansion lowers it.

Let us simply use our previous expansions. We shall let the money supply
rise from 8 to 12 and government spending rise from 25 to 37. Our resulting
differential equations are then

Y=AYr)=62a—0.4375aY — 1.525ar
F=g(Yr)=—128+0.258Y—0.58r

The new equilibrium of the system is (Y™, r*)=(82.0667, 17.0833), and the
result is shown in figure 5.9.
Again the only real difference is in cells B9 and C9

B9 =Y(0) +/(Y(0),r(0))Az

= B8+ (62*§G$3 —0.4375*§G$3* B8 — 1.525*§ G$3* CR)*$ G$5
C9 =r(0)+g(Y(0),r(0))Az

=C8+(—12*§G%4 +0.25*$ G34* B8 — 0.5*$ G$4* C8)*$ G$5
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These new equations and the low adjustment coefficient in the goods market
and the relatively high coefficient in the money market lead the system in the
usual counterclockwise direction, with marked overshooting of the interest
rate. The only time a spiral path is likely is if the adjustment in the goods
market is high, which is not likely.

5.5 A discrete version of the IS-LM model

One may consider that a continuous form of the IS-LM model is not quite
appropriate when modelling an economy, and that a discrete model is more
appropriate. Such a model may take the following form

C(t)y=a+bYd(1)

Yd(t) = Y(t) — Tx(¢)
Tx(t)=Tx,+txY(?)
I(ty=1,—hr(t)
Et)=Ct)+I(t)+G
AY(t+1)=a(E(t)— Y(1))
Md(t)y=M,+kY(t) —ur(t)
Ms(ty=M
Ar(t+1)=B(Md(t) — Ms(t))

Substituting leads to the following difference equations

IS: AY(t+1)=ala—bTx,+1,+ G) — a1l —b(1—1x)) Y(¢) — athr ()
LM: Ar(t+1)=B(M,— M)+ BkY(t)— Bur(t)

Figure 5.9

(5.22)

(5.23)
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Figure 5.10
We can, as with the continuous model, show this in the ( ¥,r)-phase space with
isoclines AY(¢t+1)=0 and Ar(z+1)=0. These, of course, lead to the same
equilibrium (fixed point) as in the continuous model. Furthermore, the vector
forces are the same as those shown in figure 5.5. What path the trajectory
follows, however, needs to be established.
We can establish the trajectories by considering the recursive form of the
model. These are
IS: Y(t+1)=ala—bTx,+1,+G)—[a(l —b(1—1x))— 1] Y(¢) — ahr(t)
(5.24) LM: r(t+1)=B(M,— M)+ BkY(t)+(1— Bu)r(t)
Let us pursue this with our numerical example. Once again we leave « and 3
unspecified
IS: Y(t+1)=50a—(0.4375a—1)Y(¢) —1.525ar(¢)
(5.25) LM: r(t+1)=—8B+0.25BY(¢) +(1 —0.5B)r(¢)

Setting Y(¢+1)= Y(¢r)=Y"and r(z + 1) =r(¢)=r" we establish the same equilib-
rium values of Y*=62 and r*=15.

Now let the money supply rise from 8 to 12. The situation is shown in Figure
5.10. The new equilibrium point, as before, is (Y™, ) =(72.1667, 12.0833) and
the trajectory is virtually the same as we established in figure 5.6. Increasing
the money market adjustment coefficient moves the trajectory towards the LM
curve as in the continuous model. However, we did make the point in chapter
4 that the discrete model can sometimes give rise to unusual behaviour pat-
terns that are not shown in the continuous counterpart. Raise the parameter
B to 2 and the trajectory moves close to that in figure 5.3(b). But raising the
value of B to 3 begins to introduce cyclical behaviour in the earlier period,
which then settles down to a movement along the LM curve. A rise in 8 to 4
leads to even more cyclical movement!



IS-LM dynamics

107

A fiscal expansion shows a similar general movement to the new equilib-
rium without any overshooting — unless the adjustment coefficient in the
goods market is particularly large. The reader can undertake all the same
policy adjustments as we did before and establish similar results. We suggest
some of these in the exercises.

5.6 Interest rate ceiling

Let us use the present numerical model to consider the trajectory of an
economy experiencing a fiscal expansion and a ceiling imposed on interest
rates. We again use the discrete model and raise government spending from 25
to 37. We have already established that this raises equilibrium income to 72
and interest rates to 20 with no market restrictions. But suppose a ceiling of
17.5 1s placed on the rate of interest. We include the ceiling in the spreadsheet
in cell HS, as shown in figure 5.11. The only other change is to cell C9, which
now reads

CO9 | = MIN(—8B+0.258Y(r)+(1—0.58)r(1),17.5)
— MIN(—8SHS$4 +0.258 H$4* BS + (1 —0.5*$ H$4)* C8, SHSS)

Cells B9 and C9 are then copied to the clipboard and pasted down. The
inserted graph clearly shows the trajectory rising at first, and once the ceiling
is reached moving horizontally. In fact, with a ceiling of 17.5 on the rate of
interest, the new equilibrium is at income level

AY(t+1)=0=62a—0.4375aY"* —1.525(17.5)
Y*=80.7143

which is not reached on this diagram.

Figure 5.11
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5.7 Conclusion

In this chapter we have reconsidered the traditional closed economy IS-LM
model but highlighted adjustment behaviour. The trajectory of the economy
from one equilibrium to the next was very dependent on the assumptions
about adjustment behaviour in the goods market and the money market. Of
special importance was our asymmetric assumption: that the money market is
quick to adjust (sometimes instantaneously), while the goods market takes
time. We concentrated on the traditional slopes for the IS and LM curves.
Having shown these represent isoclines, the four quadrants and their vector
forces suggest a counterclockwise adjustment on the part of the economy. The
precise nature of this counterclockwise movement, and the possibility and
extent of overshooting, is dependent on the relative difference between the
adjustment coefficients.

A typical observation of dynamic adjustments is overshooting of interest
rates. This possibility is far less likely in income, given the models of this
chapter. Any overshooting of income would require a high degree of adjust-
ment in the goods market.

It must be emphasised that these dynamic adjustments are for a closed
economy. An open economy can exhibit quite different adjustment paths.

Exercises

(1) Set up model (5.8) on a spreadsheet and assume instantaneous money
market adjustment and sluggish goods market adjustment. Establish
the new equilibrium and plot the trajectory of the economy in (Y, r)-
space starting from the initial equilibrium for each of the following.
Treat each one separately and assume the change takes place in period
1

(1) Fall in G from 330 to 250.
(1) Fall in Ms from 470 to 400.

(2) Set up a vector force diagram for model (5.14) and illustrate possible
trajectories for the economy in (Y,r)-space for each of the following
(1) A fall in government spending.
(i) A fall in the money supply.

(3) Use model (5.17) to establish the new equilibrium and to construct
trajectories for the following events
(1) A fall in the money supply from 8 to 5.

(i) A fall in business expectations resulting in a fall in autonomous
investment from 10 to 5.
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(4)

)

(ii1) A rise in savings at all levels of income, resulting in a fall in
autonomous consumption from 15 to 12.

Set up model (5.22) using the parameter values in model (5.17). What
are the new equilibrium and the trajectory of the economy for the fol-
lowing events

(1) A rise in autonomous taxes from 0 to 10?
(i) A fall in the money supply from 8 to 5?
Set up model (5.22) using the parameter values in model (5.17),

except let 8=3. What is the new equilibrium and the trajectory of the
economy for the following events

(1) Afallin G from 25 to 22?
(i) A fall in M from 8§ to 5?
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(6.1)

(6.2)

(6.3)

(6.4)

6.1 The Phillips curve

Most discussions of inflation begin with the Phillips curve, and we shall be no
exception. We shall, however, concentrate on those aspects that are important
for the dynamics of inflation and unemployment. There are basically two spec-
ifications for the Phillips curve: the basic one relating inflation to unemploy-
ment, and the expectations-augmented Phillips curve, which relates inflation
to unemployment and expected inflation. In general terms these are

7=f(u)

m=f(u)+

where 7=inflation, 7¢=expected inflation and ¥ =unemployment. For the
moment, we shall assume a simple inverse relationship between inflation and
unemployment, i.e. we assume

T=a,—au day a,>0

It is not our intention here to present a full discussion of the Phillips curve,
and we simply state that the natural level of unemployment, u,, is the value of
unemployment which satisfies the condition f(u,) =0 and 7¢=. Given our
linear Phillips curve, then u, satisfies the condition
_%

u,= 4
The situation is illustrated in figure 6.1, where we have drawn an expectations-
augmented Phillips curve. Of course, to draw such a Phillips curve we must
assume that expected inflation is given, which we shall do for the moment.

In more recent treatments of the Phillips curve it has been convenient to
specify the relationship between inflation and the level of real income. This is
because we need to include the Phillips curve into a broader model of the
macroeconomy. This takes the form

Tm=a(y—y,)tm™ a>0

where y 1s real income and y, 1s the natural level of income associated with u,,.
But underlying this relationship are two reaction functions, which are worth
spelling out. The first is a slightly reformulated Phillips curve that relates infla-
tion to the unemployment gap, i.e.

T==yWu—u)+m >0
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T Figure 6.1
LRPC
n=f(u)+n'=a,~a,u+n’
SPC
u=aja, u
The second is Okun’s law, which relates the unemployment gap to the income
gap, i.e.
u—u,==yy=-y) %»=>0 (6.5)

Substituting (6.5) into (6.4) gives

T=YY,(—y,) T 7
T=a(y—y,)tm™ a>0

which is our (6.3). The reason for labouring this point is that the coefficient «
is seen to be composed of the product of two reaction coefficients, vy, and v,.
For a given expected rate of inflation we have a positive relationship between
ar and y, the slope of which is (a/yn) (see figure 6.2, p. 116).

Note that when 7= 7¢ then y =y,, and so when this occurs we have a verti-
cal long-run aggregate supply curve at the natural level of real income.

6.2 A simple macroeconomic model of inflation

When modelling inflation within the context of a macroeconomic model, it is
customary to set the model out as being linear in the logarithms, with the
exception of inflation and interest rates, which are both percentages. We shall
denote all real variables with lower-case letters. The model we are considering
is set out in table 6.1.

Some remarks about this model are in order. First, the consumption func-
tion is similar to the one we have been using throughout this book; the only
difference 1s that we are dealing with real consumers’ expenditure. Investment
is inversely related to the interest rate, but the interest rate relevant to invest-
ment decisions is the real expected rate of interest, r— 7. We retain the
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Table 6.1 Macroeconomic model of inflation

Goods market Definitions of variables
c=a+b(l1—1tx)y y =real income
i=1iy— h(r— ) ¢ =real consumption
y=ct+itg i =real investment

g =real government spending
¢ =expected inflation

Money market

md=ky—ur r =nominal interest rate
ms=m-—p md = real money demand
md=ms ms =real money supply

m =nominal money stock
p =price level

equilibrium condition, but now in real terms, as real income equalling the sum
of real expenditures. Turning to the money market, the money demand equa-
tion is written as usual, except we are interpreting it as real money demand
that is positively related to real income and negatively related to the nominal
interest rate. The only unusual equation is the supply of real-money balances.
But recall that the logarithm of the ratio of two numbers is the subtraction of
the logarithms (see box 3), so

M
ms=ln<P)=lnM—lnP=m—p

Box 3 Logarithms

Rules

In this box we highlight some properties of logarithms that we employ
in this book. Let log,(x) denote the logarithm of x to base b. If b is 10,
then we have a common logarithm. In computer spreadsheets this has the
designation LOGI10(x). If b is the exponential value e, then we have
natural logarithms. In computer spreadsheets this has the designation
LN(x). There are three useful rules for logarithms:

Rule 1 (Product rule)
log,(xy) = log,(x) +log,(y)

Rule 2 (Quotient rule)
X
lOgb(y) =log,(x)—log,(y)
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Rule 3 (Power rule)
log,(x*) = klog,(x)
Two special cases will be used in this book

Case I: log,b=1 e.g. In(e)=1
Case 2: log,1=0 e.g. In(1)=0

Application 1 (Demand for money)
Let the demand for money be expressed

Md
e

Taking natural logarithms, then

In (]\;id) = In( Yke—ur)

InMd—InP=kInY—ur

This last line uses the fact that In(e) = 1. In modelling it is common to
let lower-case letters denote the (natural) logarithm of variables. Thus,
our demand for money equation can be expressed

md—p=ky—ur
or
md=p+ky—ur

Application 2 (Purchasing power parity or PPP)
Define the real exchange rate as

P

R=—=
SP

where S'is the spot exchange rate: defined as domestic currency units per
unit of foreign currency. P and P* are the price level at home and abroad,
respectively. If purchasing power parity holds, the law of one price, then

P=SP* or R=1
Taking natural logarithms, then
InP=InS+ InP*
or in terms of lower-case letters
p=stp"

If P* is constant and normalised at the value of unity, then In P*=0,
and purchasing power parity (PPP) implies p =s.
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Differentiation of logarithms and percentages

In this subsection we take only natural logarithms. Let y =In(x), then

dy din(x) 1
dx dx X
Consider now its approximation
Ay Aln(x) 1
Ax Ax X
Then
A
Ay =Aln(x)="—"
X

We can therefore interpret the change in the logarithm of a variable,
Aln(x), to be approximately the percentage change in that variable, Ax/x.

Application 1 (Inflation)
Let P denote the price level. Then

AlnP = E
P

But AP/P is inflation, often denoted 7, and so
AlnP=1

Application 2 (Inflation in discrete time)

Let P(¢) denote the price level at time 7, then

P(t+1)—P() AP(t+1)
P PO

m(t+1)=

But we can express this in the form

API()I(;)_I) =AlnP(t+1)

Using lower-case letters, define
p(t+1)=InP(+1), p(t)=InP(r)

Then

AInP(t+1)=InP(t+ 1) —InP(¢)
=p(t+1)—p(1)

Hence, inflation can be expressed

m(t+1)=p(t+1)—p()

We shall use this result frequently in our modelling of inflation.
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Now substitute and simplify, with the results
_(atiy+ g+ (hu)(m—p)+hnt
1 —b(1 — tx) + (hklu)

._ky' = (m=p)
u

*

r

Our main concern here is with equilibrium income, and we can simplify this
to a straightforward linear equation of the form

y=by+bm—p)+bym b >0,0,>0

This represents the aggregate demand curve in the macroeconomic model of
aggregate demand and aggregate supply. What we have done algebraically is
solved for different intersection points of the IS-LM curves for different price
levels. The resulting plot of price against real income is the aggregate demand
curve. Notice especially that the nominal money stock is constant and so is the
expected rate of inflation. Since it is traditional in economics to place price on
the vertical axis and real income on the horizontal axis, it is useful to respec-
ify this equation as an equation of p against y. Thus

_bytbm (1Y (b
RV SAV)

p=cy—cyten
where

byt bm 1 b,
o= b, Cz—bla 03—[)1

The model is illustrated in terms of aggregate demand and the long-run
aggregate supply in figure 6.2. Because this is a demand and supply model we
must assume that all inflation rates are zero, i.e. w= 7¢ =0, since how else in
equilibrium could the price remain constant! If this is the case, as we pointed
out at the end of section 6.1, this results in a vertical long-run Phillips curve at
the natural level of income, which in turn implies a vertical long-run aggregate
supply curve at y=y,. Price is in equilibrium at level p* and income is at its
natural level.

6.3 The dynamics of the simple model

To see this model in operation, let expected inflation be zero. We do not make
this assumption about actual inflation, because in the short run actual infla-
tion can deviate from its expected value. Only in the long run will actual infla-
tion equal expected inflation. So we need to show that the long-run result of
this model satisfies this condition. Our numerical example is the following

y()=9+0.2(m— p(1))
m(t+1)=pt+1)—p()=1.200(t) = »,)
m=35,y,=6
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Figure 6.2

LRAS(t=n=0)

p=c—cy +c,T

AD

Note that inflation is defined as the difference in prices, since price is in loga-
rithms (see box 3). Substituting we obtain the following recursive equation for
the price level

pt+1D)=p)+1.2(0(t) —6)=p(t) + 1.2(9+ 0.2(5 — p(1)) — 6)
p(t+1)=4.8+0.76p(1)

which is linear. First we solve for the equilibrium price by setting p(1+1)=
p(t)=p*, which leads to an equilibrium price of p* =20. But is this fixed point
stable?

We can answer this in a variety of ways. First we can set up the recursive
equation in the form of a cobweb diagram and establish whether there is con-
vergence to equilibrium. We show that this is indeed the case for an initial price
of p(0) =10 in terms of figure 6.3. The price column in the spreadsheet shown
in figure 6.4 also shows this. Turning to the spreadsheet, we have placed the
values of the money stock and the natural level of income in cells G3 and G4,
respectively. In cell B10 we place the initial price level, namely 10. Cell C10 has
the formula

=9+0.2(m— p(0))
=9+ 0.2*($G$3 — B10)

while B11 has the formula

—4.8+0.76p(0)
=4.8+0.76*B10

C10 is copied to the clipboard and pasted into C11. Then B11 along with C11
1s copied to the clipboard and pasted down, here to period 20. Finally, we used
the chart wizard to construct the trajectory in the (y,p)-space. Notice in par-
ticular that this trajectory follows the path of the aggregate demand curve.
Also notice from the spreadsheet that inflation falls continually until it reaches
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(r+1) Figure 6.3
P 0 p(t+1)=p(?)

25 P(t+1)=4.8+0.76p(t)
20
15

10

5 10 15 20 25 30

p(0)

Figure 6.4

zero, which is identical to the expected rate of inflation. Only with actual and
expected inflation at zero will the price level remain in equilibrium at the value
p*=20.

This simple model illustrates a shortcoming of using the aggregate demand —
aggregate supply model to discuss inflation. The model is an income—price
determination model under the assumption of zero inflation! This is the only
long-run acceptable solution to this model.

6.4 Dynamic model with positive inflation

Our previous model had the only acceptable solution as a zero rate of infla-
tion (actual and expected). The problem is basically that the model is a com-
parative static model of price and income determination that has had a
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(6.9)

(6.10)

(6.11)

(6.12)

dynamic element added to it. In section 6.2 we developed the aggregate
demand curve in terms of (6.7), here we include the time variable for clarity

y(t+1)=by+b,(m(t)—p(t))+bym(t+ 1)

Note that income in the next period is dependent on real-money balances in
the previous period (m(7) — p(¢)) and expected inflation in the next period. In
period ¢ we therefore have

W) =by+by(m(t—1) —p(t— 1)) + bym()
Subtracting this from (6.9) we obtain

Y+ D) =y)=Ay(r+1)
=b,(m(1) —m(t — 1)) = b,(p(1) = p(t = 1)) + by(me(z + 1) — 7(1))

Because we are considering the model in logarithms, we note

m(t) —m(t — 1) = A =the growth in the money supply

p(t)— p(t—1)=m(¢) = inflation
(¢t + 1) — m¢(¢) = Ame(¢t + 1) = acceleration in the rate of expected
inflation

Therefore
Ay(t+1)=b,(A— (1)) + b,Ame(t + 1)

which is an expression for the demand-pressure curve.
Our model amounts to the following set of equations

Ap(t+ 1) =b,(A— m(t) + bAme(t+1) b;>0,5,>0
m(1) = a(y(t) —y,) + m(1) a>0
Am(t+1)= B(w(t) — w(1)) B>0

This model is composed of a demand-pressure curve, a Phillips curve and an
expression for changing expectations. We shall pursue this model with a
numerical example. The model is illustrated in figure 6.5.

Let A=15 and y,= 15 with the numerical model

Ay(t+1)=10(15— m(¢)) + 0.5A (¢t + 1)
(1) =0.2(y(¢) — 15) + (1)
Ame(t+ 1) = 1.5(m(t) — m(t))

Re-arranging the Phillips curve and substituting into the changing expecta-
tions formula, we have

(1) — m(t) = 0.2(»(1) — 15)
Ame(t+ 1)=1.5(0.2)(1(£) — 15) = 0.3((r) — 15)

This is our first fundamental equation. We now substitute this into the
demand-pressure curve

Ay(t+ 1)=10(15 — 7(2)) + 0.5(0.3)(»(1) — 15)
=150 — 107(£) + 0.15(£) — 2.25

Finally we substitute the Phillips curve into this expression
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Ay(t+1)=150—10[0.2(y(¢) — 15) + 7()] + 0.15y(¢) — 2.25

=177.75—1.85y(t) — 107<(¢)
which gives us our second fundamental equation.

To summarise, we have two difference equations

Ay(t+1)=177.75—1.85y(¢) — 107(¢)

Ame(t+1)=0.3(p(z) — 15) (6.13)
which can be solved for y and 7¢. Note that we are not solving for inflation,
but rather for expected inflation. Once we have solved for expected inflation
and income, we can solve for actual inflation from the Phillips curve, the
second equation in (6.12).

Let us first establish any fixed points of the system. This is where

Ay(t+1)=0and Ame(t+1)=0, so we have

0=177.75-1.85y"— 107"

0=0.30"—195)
which gives the fixed point (y*,7¢"). The situation is illustrated in figure 6.6.
The fixed point is where the two isoclines Ay(z + 1) =0 and A#<(¢ + 1) = 0 inter-
sect. The isocline A7<(t + 1) = 0 is clearly vertical at the natural level of income,
y*=y,=15. The isocline Ay(¢ + 1) =0 results in the equation

m=17.775—0.185y (6.14)

as shown in figure 6.6.

Turn now to the vector forces in the four quadrants of figure 6.6. If
Ame(t+1)>0then y > 15 and so to the right of the A7<(¢ + 1) = 0 isocline 7¢ is
rising, and to the left, #¢ is falling. These are shown by the up and down
arrows, respectively. If Ay(z+1)>0 then 7<<17.775—0.185y and so below
the Ay(z+ 1) =0 isocline y is rising while above y is falling, these are shown by
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T'=A \
Ay(t+1)=0
15 y
Figure 6.7

the right and left arrows, respectively. What we have established is an anti-
clockwise movement. Whether this movement is directly towards the fixed
point or spiralling we need to investigate further. We do this by means of the
spreadsheet as shown in figure 6.7.

We enter the initial values for income and expected inflation, which are both
12. These are placed in cells B9 and C9, respectively. We next need to enter for-
mulas in cell D9, for actual inflation, and cells B10, C10 and D10 to obtain
values in period 1. These are
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D9 | =0.2(3(0)— 15) + m(0)
=0.2%(B9—15) + (9

B10 | =y(0)+ 177.75— 1.85y(0) — 107¢(0)
— B9+ 177.75— 1.85* B9 — 10*(C9

C10 | =m(0)+0.3(»(0) — 15)
= (9 +0.3%(B9 — 15)

D10 | =0.2(»(1)— 15)+ m<(1)
=0.2%(B10— 15)+ C10

Cells B10, C10 and D10 are then copied to the clipboard and pasted down.
Finally we use the chart wizard to construct the trajectory of the economy in
(3, )-space. It is quite clear from the resulting trajectory that although the
economy does have an anticlockwise movement, it is spiralling away from the
fixed point. Even if we plot the trajectory in (y, 7)-space, we still have an explo-
sive anticlockwise spiral. The reader should verify this for himself or herself.

As another possibility, set up the following numerical model in exactly the
same way

Ap(t+1)=10(15 — 7(£)) + 0.5A (¢ + 1)
(t) = 0.2()(£) — 150) + 7¢(z)
Aze(t + 1) = 0.8(m() — m(£))

Let y(0) =100 and 7<(0) = 10, then what you should find is that this system has
an anticlockwise spiral movement that converges on the fixed point (y*, 7*) =
(150,15).

6.4.1 Experimentation

In order to undertake experimentation with this model it is useful to set it out
on a spreadsheet in general terms. Although this involves a little bit of alge-
braic substitution, it is well worth it for the insight it provides about the
model’s dynamics. Our model is

(1) Ay(t+1)=b,(A—m(t)) + b,Ame(t+1) b;>0,b5,>0

2) (1) =a(y()=y,)t () a>0

3) Ame(r+1) = B(m(1) — m(1)) B>0

Follow through the same substitutions as the numerical example. From (2) we
have

(1) — m(1) = a(y(t) — y,)
Substituting this into (3) and substituting this result into (1) gives

Ay(t+ 1) = by(A = (1)) + b,Ba(y(1) = y,)
= (Aby = byBay,) — by m(t) + byBay(1)

Now substitute (2) into this

(6.15)
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(6.16)

Ay(t+ 1) = (Ab; = byBay,) — bi[a(y(2) = y,) + ()] + b, Bay(?)
=(Aby = byBay,+bay,) = (bya—byBa)y(t) — bym(1)

So our two difference equations are

Ay(t+1)=(Ab, = byBay, + bay,) — (bya = b,Ba)y(1) — by m(t)
Am(1) = Ba(y(1) — y,)

In equilibrium

0=(Ab, —byBay,+ biay,) = (bya = byBa)y(1) — bym(1)
0= Ba(y(®) -y,

From this it immediately follows that y* =y, and
bym=(Ab, = b,Bay,+ byay,) = (ba— byBa)y

Ab, — b,Bay, + biayp, (bla - sz“)
me = —
b, b,

To check this result against our earlier numerical model, set
A=15, y, =15 b=10, b,=0.5 «=0.2, B=03

This results in y* =15 and 7¢*=15.
In order to set this out on a spreadsheet for experimentation, let

Ap(t+1)=Ay— Ay(1) = A,m(1)

Ay=(Aby — byBay,+bay,)
A, = (bja—b,Ba)

A,=b,
Am(t)= B,((1) ~ »,)
B, =Ba

All these values are placed in the spreadsheet shown in figure 6.8. The param-
eter values are placed in cells H3 to H8 and the derived parameters 4, 4, and
A, are placed in cells H10, HI11 and H12. The derived parameter B, is placed
in cell J10. In cell J4 we place the equilibrium value y*, which is cell HS for y,,
while cell J5 has the formula

= ((SH$7*$HS$3 — $H$4*$HS6*SHS5*SH$S + SHS3*SHS5*SH$S)/
$H$3) — (FHS$3*$HS$S5 — SHI4*$HS6*$SHS$5)*SHF8)/SHS3

for 7¢*. We now have everything in place to undertake experimentation.

First check the formulas have been entered correctly. Place the equilibrium
values as the initial values for y and 7. If the formulas are correct, all figures
in columns B, C and D should all read 15. Next check the second example we
gave above in which we changed the natural level of income to 150 and the
parameter B to 0.8. Let y(0) =100 and 7¢(0) = 10. What you should find is an
anticlockwise spiral to the fixed point (y*, 7*) = (150,15). Next retain this same
example, but change the value of 8 from 0.8 to 0.3; what you should observe
1s a zigzag path converging on the same fixed point.

You should experiment with this model, changing some of the parameter
values, especially the adjustment coefficient in the Phillips curve and the two
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coefficients in the demand-pressure curve. Additional values for the parameter
B should also be tried. In carrying out these experiments another consideration
to bear in mind is that the parameter « is itself the product of two parameters.
One denotes the reaction coefficient of inflation to the unemployment gap,
(6.4); the second is the reaction coefficient relating the unemployment gap to
the income gap, i.e. from Okun’s law, (6.5). A rise in « can occur for either of
these reasons.

6.5 A change in the money supply

We shall now use the second model of section 6.4, (6.15). Set the initial income
and expected (equal to actual) inflation at 150 and 15, respectively. All values
in column B should be 150 and all values in columns C and D should be 15.
Now increase the growth in the money supply from 15 to 20. The result is an
anticlockwise spiral of the economy converging on the new equilibrium of
(y*, m*)=(150,15). The immediate impact is a rise in real-money balances. In
the short run income rises above the natural level and inflation rises, which
reduces real-money balances. The result is a converging anticlockwise spiral,
with income and expected (also actual) inflation overshooting their long-run
values.

Now reduce the money supply to 10. The result is an anticlockwise spiral
converging on the new equilibrium (y*, 7¢*) = (150,10). Show that in the first
numerical model of section 6.4, (6.12), which had the explosive spiral, that this
explosion still remains after a rise in monetary growth or a fall in monetary
growth.

Return to (6.15) and begin again with the initial values being 150 and 15 for
income and expected inflation, respectively. Now set the expectation’s coeffi-
cient to 0.3. Let monetary growth fall from 15 to 10. What you will find is a
zigzag path converging on the fixed point (y*, 7¢*) = (150,10). This is shown in

Figure 6.8
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Figure 6.9

figure 6.9. A similar-looking path results if monetary growth is increased. You
should verify this.

The conclusion one draws from this analysis is that a change in the growth
of the money supply has no bearing on the convergent/divergent properties of
the system, all it does is alter the equilibrium value (the fixed point). What
matters for convergence are the various adjustment coefficients of the system.

6.6 A change in the natural level of unemployment

Suppose governments have implemented policies that are successful in raising
the natural level of income, i.e. successful in reducing the natural rate of unem-
ployment. Start with the model with parameter values

A=15, y,=15, b,=10, b,=0.5, a=02, B=1.5

which was our original model. Set the initial values for income and inflation
expectations both to 15. Now consider a rise in the natural level of income to
20. The fixed point moves to (y*, 7¢*) = (15,20), but the system never reaches
this because it is explosive in just the same way it was earlier. The same is true
for a fall in the natural level of income — a rise in the natural level of unem-
ployment.

In the second numerical model we considered, (6.15), in which the system
was convergent, the rise in the natural level of income from 150 to 180 leads
to an anticlockwise spiral path from the initial equilibrium until the new fixed
point of (y*, 7*) = (180,15) is reached. This stability is retained even when the
natural level of income falls — the natural level of unemployment rises.

If an economy has experienced a rise in the natural rate of unemployment,
which many European countries have experienced in the 1980s and 1990s, then
policies need to be directed towards two distinct aspects of the macroeconomy.
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First, there need to be policies for reducing the natural rate of unemployment,
which often means directing attention to policies towards the long-term unem-
ployed and to the mis-match in skills, etc. But there also need to be policies
directed towards the adjustment coefficients, since it is these which will change
the speed and type of adjustment the economy is experiencing. It is most likely
that the policies directed towards the former are different from those directed
towards the latter.

6.7 Continuous model

Consider now a continuous version of our original model. This takes the form

$=10(15— )+ 0.57¢
7=0.2(y— 15)+ 7
re=1.5(m— 7)

This leads to the same (continuous-form) isoclines

y=15 4re=0
m=17.775—0.185y »=0

and fixed point (y*,7¢*) = (15,15). These results, along with the vector forces,
have already been illustrated in figure 6.6. The only difference is that now the
isoclines are for 7r¢ = 0 and y = 0, and the variables are all continuous functions
of time. Carrying out substitutions to those we did earlier, we can establish the
following two differential equations

y=f(y,m)=177.75—1.85y — 107
e=g(y,m)=—4.5+0.3y

Although the qualitative properties are the same, we should observe an anti-
clockwise movement around the equilibrium. However, do we observe similar
trajectories? Interestingly, the answer is, no! To see this, let us construct the
model on a spreadsheet, as shown in figure 6.10. Cell G3 contains the time
difference we shall use for Euler’s approximation. Cells B8 and C8 have the
initial values of 12. Cell D8 can then be computed from the formula

= 0.2(y(0)— 15) + ¢
=0.2%(BS — 15) + C8

Cells B9, C9 and D9 are computed as follows

B9 = »(0) +f(»(0),7(0))*A¢

— B8+ (177.75— 1.85* B8 — 10*C8)*$ GS3
CO9 | =m(0)+ g(3(0),m(0))*At

— (8 +(—4.5+0.3*B8)*$GS3
D9 | =0.2(x(1)—15) + 7<(1)

= 0.2%(B9— 15)+ (9

(6.17)

(6.18)



126  An Introduction to Economic Dynamics
Figure 6.10
Cells B9, C9 and D9 are then copied to the clipboard and pasted down. Here
we paste down to period 1000. Finally, we block the cells for the data in
columns B and C to construct the inserted graph. What we immediately see is
an anticlockwise convergence to the fixed point. This is in marked contrast to
the anticlockwise divergence of the discrete model. This acts as a warning not
to attribute the properties of one to the other without investigation.
Since the present model is basically similar to the discrete form, we can gen-
eralise the model as
y=b(A—m+by7we b;>0,b,>0
T=a(y—y,)tm™ a>0
(6.19) e=B(m—m) B>0

which leads to the two differential equations
y=A4y—Ay—A,m
= Bl(y - yn)

where

Ay=(Ab,—b,Bay,+b,ay,)

A, = (bya—b,Ba)
A,=b,
B, =B«

We start by setting this up on the spreadsheet with exactly the same values as
we have in the numerical example for figure 6.10, i.e. (6.17). To check that all
formulas have been entered correctly, set the initial values equal to 15 for both
income and expected inflation, and then all the figures in all three columns
should be 15.

Now reduce the money supply growth from 15 to 10. The result is shown in
figure 6.11. The fixed point moves to (y*, 7¢*) = (15,10) and we observe an anti-
clockwise movement to the new fixed point.
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As we have indicated throughout, although the model solves for expected
inflation, we can compute actual inflation from the Phillips curve. What is the
difference between the path of 7(¢) and the path of 7¢(¢)? In figure 6.12 we plot
these paths that arise from a monetary growth contraction from 15 to 10. The
figure also shows the path of income. What the lower diagram illustrates is not
only the damped cyclical nature of actual and expected inflation, but that
actual inflation is initially below expected inflation. This is because actual
income initially falls short of the natural level of income and so dampens infla-
tion, as shown in the upper diagram. When, however, income is above the
natural level then actual inflation is above expected inflation, and so pushes up
actual inflation.

6.8 Conclusion

In this chapter we introduced the Phillips curve in both its original form and
in its augmented form — augmented for expected inflation. The typical aggre-
gate demand and a vertical aggregate supply model determine only equilib-
rium prices and income. In this model, inflation in the long run must be zero.
Such a model is sometimes used at the elementary level to discuss issues about
inflation, but it is an unsuitable model for this purpose. As we have shown,
inflation occurs only over the adjustment period. We then turned to a model
that solves for income and a positive rate of inflation. This model is first set up
generally with an explanation of the economy’s vector forces. However, the
model is in terms of income and expected inflation. There is no difficulty,
however, deriving actual inflation once expected inflation is determined. This
model is set out in both its discrete form and in continuous form. It is then
used to establish the dynamic implications of a change in monetary growth
and in the natural level of income (or the natural rate of unemployment). The

Figure 6.11
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Figure 6.12
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chapter also illustrated that discrete and continuous time models of the same
structure can lead to quite different trajectories.

Exercises

(1) Consider the following model in which expected inflation is zero

y()=12+0.2(m — p(1))
p(t+1)—p)=1.50)~y,)
m=10 y,=8

(1)  What is the fixed point of this model and is it stable?
(1) If p(0)=15, plot the inflation rate for =1 to 20.

(2) Consider the following two models
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Model A Model B

y(t)=9+0.2(m— p(t)) Y(t)=9+0.2(m— p(1))
pt+1)—p()=12(0()—y,) pt+1)—p()=1.50()~y,)
m=5 y,=6 p0)=10 m=5 y,=6 p0)=10

()

(4)

)

(1)  What are the recursive equations for each model and what is
their fixed point?

(i) Compare the adjustment of prices in each model.

Consider the following model

Ay(t+ 1) =10(20 — (¢)) + 0.75Ame(t + 1)

(1) = 0.5(y(t) — 15) + m<(t)
Aze(t + 1) = 2(m(t) — 7(2))

(1) Derive the two fundamental difference equations for this
model.

(1)  What is the fixed point of the model?
(i1) Derive the two isoclines and the vector forces.

(iv) Set up the model on a spreadsheet, and construct the trajectory
of the economy in (y,7¢)-space starting from the initial point
(15,15) for t=0to 9 only.

Consider the following model

Ap(t+ 1) = 5(10 — () + 0.25A me(¢ + 1)

(1) = 0.25(y(¢) — 60) + 7(¢)
Ame(t+1)=0.5(m(t) — (1))

(i)  What is the equilibrium for this model?

(i) Plot on the same diagram income against expected and actual
inflation for =0 to 40 starting from point (3(0),7¢(0))=
(40,15).

(i) Now set the initial values at their equilibrium level. Derive the
trajectory of the economy for a fall in the growth of the money
supply from 10 to 5.

Use the model in qu. 4, and set the initial values at their equilibrium
level. What are the implications of a fall in the natural level of income
(a rise in the natural rate of unemployment) from 60 to 50?
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(7.1)

7.1 Introduction

In this chapter we shall consider just some dynamic aspects of the theory of
the firm. Surprisingly, little work has been done on dynamic aspects of firm
behaviour. There has been some work on advertising, a dynamic consideration
of diffusion of new products and a little more on the dynamics of oligopoly.
We shall consider all three in this chapter.

7.2 Monopoly and advertising

Consider a monopolist who produces a single product that sells at a price p. It
might be thought that a monopolist does not need to advertise since it is the
sole supplier of a product. But even a monopolist needs to inform the public
of its product. Furthermore, if the product is a consumer durable, then its sales
will decline. Suppose we denote sales by s(7), so that we are assuming sales are
a continuous function of time. Furthermore, initial sales are s(0)=s,. We
assume that with no advertising sales decline at a constant rate r, which is pro-
portional to the sales at that time. In other words, we have an initial value
problem of the form

ds(t)

0l =—rs(t) s(0)=s, r>0
or

_ds

sziz—rs s(0)=s, r>0

To see what the path of sales looks like, we need to solve this equation.
Solution methods are available for this (see Shone, 1997, ch.2), but here we
shall use a spreadsheet to derive the path of sales. As in earlier chapters, we
use Euler’s approximation to do this. The model is set up in terms of figure 7.1.

First we insert in cells A8 to A1008 the periods for 7 using the Fill command.
In cells F3 and F4 we place the values of r and At, respectively, where we use
the label ‘dt’ for Az. In this example we are assuming that sales decline at a con-
stant rate of 5% continuously. In addition, we are using a value of Az =0.05 for
our time interval. The initial value of sales is placed in cell BS, and we assume
this is 100. Next, in cell B9, we place the formula for s(1), i.e.
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=5(0) —rs(0)At
= B8 —S$F$3*B8*$FS4

which is then copied to the clipboard and pasted down in cells B10 to B1008.
Finally, we block cells A1:B1008 and activate the chart wizard. Using the X-Y
chart, we create the chart that is shown in figure 7.1, after some suitable anno-
tations. What we immediately see is that sales decline in a curvilinear fashion
towards zero.

We know that it must be zero. Why? Consider the fixed point of this system.
For a fixed point we know that § =0, which is true only for s* =0. Furthermore,
since the differential has a negative slope, as we are assuming r is positive, then
the system is globally stable. Note that since sales cannot be negative then we
are considering only stability properties in the positive quadrant. No matter
what the initial value of sales, they will over time decline to zero. The origin is
an attractor of the system.

Now that we have established the time path of sales without advertising, we
can consider the situation the company might face if it engages in some form
of advertising. Of course, we must make some assumptions about the impact
of advertising on this dynamic system. We make the following assumptions:

(1) Advertising leads to an increase in sales directly proportional to the
rate of advertising.

(2) The increase in sales affected by advertising arises from the propor-
tion of the market that has not already purchased the product.

3) The market has a maximum absorption m per period before the firm

must lower its price.

Figure 7.1
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If m is the maximum absorption per period, then in any period ¢, m —s(¢)
denotes the part of the market which has not yet purchased the product, and
so the proportion of the market which is not yet purchasing the product is
m— s(t
(7.2) )
m
Next let @ denote the constant rate of advertising in thousands of pounds, and
v the proportion of sales improved by such advertising. If, then, sales rise
directly in proportion to the rate of advertising, and this increase in turn can
arise only from the proportion of the market that has not already purchased
the product, then this increase is given by
m— st
(7.3) ya( ( )>
m
Since this offsets the decline generally taking place, then in any period sales
will be changing by the amount
ds(¢ m— s(t
ds() =—rs(t)+ ya <( )>
dt m
or, more simply
) m-—s va
(7.4) s=—rs+ya =—|r+—|stvya
m m
First we need to establish the steady-state solution of our new model. Once
again this 1s found by setting s =0. Doing this we readily establish that
a
0=—<r +y>s*+ ya
m
or
am
(7.5) = Y
rm—+ ya
Not only is this no longer zero, but it is also a function of the amount of adver-
tising. As the firm spends more on advertising, equilibrium sales rise. The rise,
however, cannot be indefinite. As advertising expenditure increases
indefinitely, sales cannot exceed the maximum absorptive capacity. This is
readily established. First divide the numerator and the denominator by +va,
and then take the limit as advertising expenditure rises indefinitely, 1.e.
m
(7.6) )
im | rm =m
a2 | — 4]
va

Return to our example shown in figure 7.1. We continue to let sales decline
by a rate of 5% continuously, with initial sales at 100,000. The maximum
absorption per period is 500,000. Now the firm engages in advertising at a rate
of a, which we shall assume raises sales by a proportion 0.2. This means
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Figure 7.2
0.2a

s=—10.05+——]s+0.2 7.7

N ( 500 )s a (7.7)
resulting in a steady state of

oo 0.2a

0.05 + 0.0004a

Suppose the firm has an advertising rate of £10,000 then s*=37.037 and (7.7)
takes the form

s=—10.05 +i +2=2-0.054

s . 500)° .054s
The result is shown in figure 7.2. As we would expect, advertising curbs the
decline in sales — in fact, preventing it from falling below 37,037.

7.3 Advertising model: discrete version
It could be considered that firms do not make decisions in continuous time
and that a discrete model captures real-life decisions much more accurately.
Consider, then, the model in section 7.2 in discrete time. We can be brief
because we have explained the various ideas above. We assume that the change
in sales over the period declines by a percentage r. Thus

As(t+1)=s(t+1)—s(t)=—rs(t) (7.8)
As a recursive equation this results in

s(t+1)=(1-r)s(2) (7.9)
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Advertising is undertaken at a rate of a per period that raises sales by y on the
proportion of the market that is not yet purchasing the product. This is no
more than (7.3), but now considered in discrete time. Consequently, the
change in sales over the period is
—s(7
(7.10) As(t+1)=—rs(t) + ya (m S )>
m
or
(7.11) s(t+1)=(1—r—w)s(t)+ya
m

Does the discrete model have the same fixed point as the continuous model?

For a steady-state solution we have s(¢+ 1) =s(z) = s" and so
s*=(1 —r—w>s*+ya
m
i yam
gf=—"—
rm+ ya
which is the same as (7.5) above.

Return to the recursive equation (7.11) but now allow advertising to be
different in the different periods, let the rate be denoted a(¢). Here we assume
that advertising takes place from period 1 onwards. Then we can solve for the
path of sales using the formula

a(t+1
(7.12) s(l+1)=<1—r—w>s(t)+ya(t+1)
m

which is very easy to set up on a spreadsheet. The reader is encouraged to do
this for the problem we had above in which advertising in each period was
constant with a(z) =2 for all z. Here, however, we shall consider a slightly
different problem. Suppose a monopolist has initial sales of 5 but faces
declining sales at a rate of 1% per period, where maximum absorption per
period is 20, and y=0.6. The monopolist decides on a constant amount for
advertising over the next five years, and that this amount is spread evenly
over this period. Let the total advertising budget, denoted A4, be £10,000,
amounting to

A £10,000

a(t)=—

=£2,000
T 5 ’

in each of the next five years, and zero thereafter. The problem is set out in the
spreadsheet shown in figure 7.3. This information is given in column C in cells
C8 to CI18, where we consider only up to time 7=10. Notice, that when
a(t+1) =0, (7.12) reduces to (7.9). The problem is shown in figure 7.3, with
sales declining at a rate of 1% per period, given in cell G3; sales being offset by
0.6 of the proportion of the market that is not yet purchasing the product,
given in cell G4; and the maximum absorption is 20, given in cell G5. In cell
B8 we place the initial sales, set at 5. In cell B9 we insert the formula
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=<1 — r—ya(o)>s(0)+ya(1)

m

=(1—-8G$3 —($G$4* C8/$GS$5))* B8+ $GH4* C9

This is then copied to the clipboard and pasted down. Finally, we insert the
graph as shown in figure 7.3.

For the first five years advertising leads to increased sales that offsets the
natural decline. Once advertising stops, however, the natural decline begins to
take effect.

7.4 Diffusion models

In recent years we have seen the widespread use of desktop computers, and
more recently the increased use of the mobile phone. The process by which
such innovations are communicated through society and the rate at which they
are taken up is called diffusion. Innovations need not be products. They can
just as easily be an idea or some contagious disease. Although a variety of
models have been discussed in the literature the time path of the diffusion
process most typically takes the form of the S-shaped (sigmoid) curve. The
general nature of such a curve is shown in figure 7.4, where we have included
some aspects of the curve. Considering the mobile phone, we would expect
only a few adoptions in the early stages, possibly business people. The adop-
tion begins to accelerate, diffusing to the public at large and even to young-
sters. But then it begins to tail off as saturation of the market becomes closer.
At the upper limit the market is saturated. Hence the S-shape that is depicted
in figure 7.4.

Figure 7.3
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Figure 7.4

(7.13)

(7.14)

Cumulative
number

saturation

inflexion point

time period of
maximum penetration

f 4

Although this is a verbal description of the diffusion process, and suggests
an S-shaped mathematical formulation of the process, it supplies no exact
information about the functional form — in particular, the slope, which indi-
cates the speed of the diffusion, or the asymptote, which indicates the level of
saturation. Furthermore, such diffusion processes may differ between prod-
ucts.

Let us begin by trying to describe the process in more algebraic terms. Here
we shall consider a discrete modelling process. Let N(¢) denote the cumulative
number of adopters at time ¢. Suppose there are m potential number of adopt-
ers, then at time ¢, there are m — N(¢) unadopted users. Furthermore let g(7)
denote the coefficient of diffusion. It is possible to think of g(z) as the prob-
ability of adoption at time ¢, and so g(¢)(m — N(?)) is the expected number of
adopters at time 7. Then the increase in adoption is given by

AN(t+ 1) = N(t+ 1) — N(2) = g(£)(m — N(£))

Turning to g(¢), the probability of adoption, this will depend on how many
have already adopted the good. The more individuals already having a mobile
phone makes it more attractive for another individual who does not have one
to purchase one. In other cases, adoption has nothing to do with how many
individuals already have a phone. We capture all this in simple terms by assum-
ing

g(t)y=a+bN(t) a>0,b>0

Of course, (7.14) is only one possible specification of g(¢). Our diffusion model
now amounts to
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Figure 7.5
AN(t+1)=(a+bN(t))(m— N(1)) (7.15)
Equation (7.15) is clearly a nonlinear difference equation. This equation
involves three parameters: @, b and m. It is possible to eliminate one of these
by considering the cumulative number of users as a fraction of the potential
number. Thus, we define F(¢) = N(t)/m, which means AF(¢+1)=AN(t+ 1)/m,
so if we divide (7.15) throughout by m, we obtain
AF(t+1)=(a+bF(t))(1— F(1)) (7.16)
and it is this equation we shall analyse. To do this, however, we shall consider
it in the form of a recursive equation, which is
F(t+1)=F(t)+(a+bF(t))(1— F(1)) (7.17)
7.4.1 An example
Consider the diffusion model
F(t+1)=F)+(0.003+0.01F(2))(1 = F(2)) (7.18)

Our first task is to establish what this looks like. This model is shown in figure
7.5. Parameters a, b and m are placed in cells G3, G4 and G35, respectively. The
model covers 500 time periods, with the initial level of cumulative adopters set
at zero, which is placed in cell B6. Cell B7 has the formula

= F(0) + (a+ bF0))*(1 — F(0))
= B6+ ($G$3 + $G$4* B6)*(1 — B6)
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(7.19)

This is then copied to the clipboard and pasted down. Finally cells A6:B506
is blocked and then the chart wizard is activated to create the chart shown in
figure 7.5.

Consider the fixed points of this system. The fixed points are found by
setting AF(t+1)=0, so

0=(0.003+0.01F)(1—F)

where we have dropped the time dimension for simplicity. Clearly, there are
two values for F

Fi=1 and F;=-03

but in this model we are concerned only with positive F. But a useful feature
to know about this model is the value of F when the rate of diffusion is at its
greatest. Since the rate of diffusion is given by AF(z+ 1), then this is at its great-
est when the rate of change of this value is zero; in other words, penetration of
the market is then at its maximum rate. We need to differentiate (0.003 +
0.01F)(F— 1) with respect to F and set this value equal to zero, and then solve
for F. Differentiating

(0.003—0.01) +2(0.01)F =0
F=0.35

To establish the time when maximum penetration of the market is established
we need to find the value of ¢ for which F(7) =0.35. From the spreadsheet we
can establish that this is approximately period 93. There is a considerable lit-
erature on diffusion models, some of which are outlined in Mahajan and
Peterson (1985).

7.5 Static theory of oligopoly

The model we shall consider in this chapter has a very simple linear demand
curve and constant marginal costs. The model is as follows

p=9-0
0=q,%q,
TC,=3q,
TC,=3q,

Since our interest is with stability and the impact of increasing the number of
firms in the industry, or changing the specification of marginal cost, we assume
for simplicity that all firms are identical for any size n, where n represents the
number of firms in the industry. Since this model of duopoly is dealt with in
most intermediate microeconomic textbooks, we shall be brief.

Total revenue and profits for each firm are

Firm I TRy=pq;=0O—q,—q)q; ™= —q,—4,)9,— 34,
Firm 2 TR,=pq,=O—q,—=4:)0, ™= —q,—4,)9,— 3¢,
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q26

I

Cournot solution

4,

Since the conjectural variation is that firm 1 will maximise its profits under the
assumption that firm 2 holds its output constant, then we can differentiate the
profit function of firm 1 with respect to ¢,, holding ¢, constant. The same con-
jectural variation holds for firm 2, so it will maximise its profits under the
assumption that firm 1 will hold its output level constant, so here we
differentiate the profit function of firm 2 with respect to ¢,, holding ¢, con-
stant. Doing this we obtain

om

=6—2g,—q,=0
aq, 91— 49
a1,
—==0 —2q,=0
a4, 41— <4,

Solving we obtain the two reaction functions
Firm2 R, q2=3—%q1

The Cournot solution, then, is where the two reaction curves intersect, 1.e.
where (¢;, ¢,) =(2, 2). The situation is shown in figure 7.6.

Notice that the 1soprofit curves for firm 1 are at a maximum, for any given
level of output for firm 2, at the point on the rection curve for firm 1.
Furthermore, the preference direction is in the direction of the arrow on the
reaction curve. The highest level of profits for firm 1 is at point A, where it is
a monopolist. Similarly, the isoprofit curves for firm 2 are at a maximum, for
any given level of output for firm 1, at the point on the reaction curve for firm
2. Firm 2’s preference direction is in the direction of the arrow on its reaction
curve, and the highest level of profits it can reach is indicated by point B, where
firm 2 is a monopolist.

But how do we know whether from some arbitrary starting position the

Figure 7.6
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Cournot solution will be achieved? In other words, is the Cournot solution
stable? In order to answer this question we must set up the model in dynamic
terms. Only then can we answer this question. Whatever the answer happens
to be, the same question applies when we increase the number of firms in the
industry. As we do so, we must move away from the diagrammatic formula-
tion of the model and concentrate on its mathematical specification.

In section 7.6 we consider a discrete model with output adjusting com-
pletely and instantaneously. Our main concern is with the stability of oligop-
oly as the number of firms in the industry increases.

7.6 Discrete dynamic model with output adjusting
instantaneously

In the static model the assumption was that firm 1 would maximise its profits
under the assumption that firm 2 would hold its output level constant. A
similar condition applies also to firm 2. Here we assume that in time period ¢
its rivals will choose the same output level they chose in time period # — 1, and
choose its own output at time ¢ so as to maximise its profits at time . More
specifically, ¢,(¢) is chosen so as to maximise firm 1’s profits in time period ¢,
under the assumption that firm 2 has output in time period ¢ the same level it
was 1n time period ¢ — 1, so that ¢,(#) =¢,(t — 1). For firm 2, ¢,(#) 1s chosen so
as to maximise firm 2’s profits in time period ¢, under the assumption that firm
1 has output in time period ¢ the same level it was in time period # — 1, so that
q,(0)=q,(t = 1).

These dynamic specifications for each firm change the form of the total
revenue function, and hence the profit functions. Total costs are unaffected.
The profit function for each firm is

Firm 1 ()= —q,(t) = ¢,(t = D))g,(t) = 3¢,(?)
Firm2 () =9 —¢,(t= 1) = qx(0)g,(t) = 3q5(1)

Again, in the spirit of Cournot, each firm is maximising its profits under the
conjectural variation that the other firm is holding its output level constant.
Therefore

am() _ _ N
9q,(1) =6—2¢q,(1)—q,(t—1)=0
amy(1) B N _
=6 =D =20:0=0

which results in the following dynamic adjustments
G(0)=3 34,1 1)
4(0)=3=3¢,(t=1)

First we need to establish the Cournot solution for this model. This is where
q,(t)=q,(t—1)=¢q,and g,(t) = q,(t— 1) = ¢,. But inserting these values gives us
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the same reaction curves of section 7.5, which intersect at the value
(91, ) =(2,2).

We can now set out these two dynamic equations on a spreadsheet, supply
some initial values for each firm’s output, and see if the Cournot solution
results as time passes. This is done in figure 7.7

Cells B8 and C8 supply initial values for each firm’s output. Cells B9 and
C9 have the formulas

B9 | =3—3¢,0)
=3—(1/2)*C8

Co | =3-34,0)
=3—(1/2)* B8

These are then copied to the clipboard and pasted down for as many periods
as you wish, here we have up to period 15. Cells B8 to C23 are then blocked
and the chart wizard is initiated producing the inserted chart, as shown in
figure 7.7. As in earlier chapters, you should check you have entered the form-
ulas correctly by inserting in cells B8 and C8 the Cournot solution. Doing this
gives all entries the value of 2.

Figure 7.7 shows this convergence for initial value (¢,(0),¢,(0))=(5, 1) and
it is clear from the figure that it converges on the Cournot solution. Take the
following two starting values

(¢,(0),4,(0)) = (3, 0), ie. where firm 1 begins from a monopoly
position

(¢,(0),9,(0)) = (0, 3), ie. where firm 2 begins from a monopoly
position

Figure 7.7
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(7.20)

Once again the system converges on the Cournot solution. Finally consider
the point (¢,(0),4,(0)) = (0, 0), which can be thought of as the position where
both firms are deciding whether to enter the industry. Again the system con-
verges on the Cournot solution. What is illustrated here is the general result
that, for linear demand and constant marginal costs, Cournot duopoly is
dynamically stable.

7.7 Dynamic oligopoly with three firms

Most elementary textbooks stop with the duopoly case. But it leaves the reader
with the impression that such stability is quite general for oligopoly models. Is
this in fact true? In order to consider this issue, we continue with our example,
which assumes linear demand and constant marginal costs, and have three
identical firms. Our model is now

p=9-0
0=q,+4,+ ¢,
TC,=3q,
TC,=3q,
TCy=3q,

Profits are readily found to be
m=0—4¢— %~ 4)0:— 34,

m=09—q,—9,—93)9,— 3q,
=9~ 4, — ¢~ 43)95~ 3¢;

resulting in three reaction planes
R, %:3_%(6]2"'%)
R, Q2=3_%(CI1+%)
R; Q3=3_%(Q1+%)

which intersect at the unique value (q,, ¢,, g3) =(%, %, %), the static Cournot
solution for a three-firm oligopoly, given the present model.

Given exactly the same assumptions about dynamic behaviour as we out-
lined above, then the profit for each firm is

Firm 1 m(0)=(9 —q,(1) = q(1 = 1) = g5(t = 1))q,(t) = 34,(?)
Firm2  mmy(t)= (9 —q,(t = 1) = (1) = q5(t = 1))q,(2) — 3¢,(?)
Firm3 ()= —q,(t—1)—q,(t—1)— q;5(1))q5() — 3g5(1)

Again, in the spirit of Cournot, each firm is maximising its profits under the
conjectural variation that the other firms are holding their output levels con-
stant. Therefore

a(?)

3q,(1) =6—2q,()) —q,(t—=1)—q;(t—=1)=0
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aTr 2 — —1)=0
37 422((;))_6_%([_ =20 (0=at=D
am ] —1)—2¢,(1)=0
37 6133((;))_6_410_1) q,(t—1)—2¢5(1)

which result in the following dynamic adjustments
7()=3-3¢,t=1)=345(1— 1)
(=3 =3q,(t=1)=34,(1— 1)
(=3 =3q,(t=1) =34t 1)

What we have here is a simultaneous set of three recursive equations.

The dynamics of this model are shown in figure 7.8. Cells B9, C9 and D9
contain the initial values. Here we have initial values (3,0,0) in which firm 1 is
a monopolist. Cells B10, C10 and D10 have formulas

B1I0 | =3-3¢50)—3450)
=3—(1/2)*C9 —(1/2)*D9
C10 | =3-3¢,(0)—3¢50)

=3 —(1/2)*B9 — (1/2)* D9

D10 | =3-3¢,(0)~34,0)
=3—(1/2)*B9 — (1/2)*C9

These values are then copied to the clipboard and pasted down, here up to
period 15. Spreadsheet programmes cannot plot more than two variables.
Using the chart wizard, we plot three graphs: (1) firm 1 against firm 2; (2) firm
2 against firm 3; and (3) firm 1 against firm 3. The graphs appear to show no
obvious tendency towards the equilibrium. Firm 2 against firm 3 seems to
show a direct path, but the trajectory itself is certainly not to the Cournot solu-
tion.

The problem is more clearly shown by plotting the path of output for each
of the firms. Figure 7.9 provides the plot for all three firms. What is quite clear
from this figure is that each firm exhibits oscillations in their output after a
brief initial period. The Cournot solution is unstable. Is this result general? Try
the initial values (1, 2, 3). It is readily observed that the same oscillatory beha-
viour results. Figure 7.9 in fact illustrates the general result that for linear
demand with constant marginal costs, with three firms in the industry, the path
of output for each firm will eventually give rise to a constant oscillation over
time.

7.8 Partial-adjustment duopoly model

Return to the duopoly model with linear demand and constant marginal costs.
Still in keeping with the Cournot spirit of dynamic adjustment, we now turn
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Figure 7.8

Figure 7.9
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Firm 3

10
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to incomplete and noninstantaneous adjustment. In particular, we assume
that for each firm

Aq;()=q,()—q,(t =) =k((q1() —q,(t=1)) k>0

Aqy(1)= g () = (1 = 1) =ky(q5()) = qp(t = 1)) k>0 (7.21)
where ¢j(¢) and ¢5(7) are the desired output levels for each firm. What these
adjustment equations indicate is that each firm adjusts its previous period’s
output by a proportion of the discrepancy between its desired output level at
time ¢ and its output level in the previous period. Note also, however, that the
optimal value at time ¢ is adjusted according to the information at time 7 — 1.
Output at time ¢ can therefore be considered a two-step procedure.

The desired output level on the part of each firm is given by their reaction

function, so

Gi(n=3=3q,(1=1)

qx(0=3=2¢,(t=1) (7.22)
Substituting (7.22) into (7.21) and simplifying we have

¢(0) =3k, + (1 —kDay(t = D) =2 kygp(t 1)

4:(1) =3k, = 3y (1= 1) + (1 = ky)go(t = 1) (7.23)

which is a set of two recursive equations involving the partial adjustment
coefficients k, and k,.

Equations (7.23) are set out in the spreadsheet shown in figure 7.10. In cells
H3 and H4 we place the values of k, and k,. Here we assume that they have the
same value of 0.75. In cells B8 and C8 we have the initial values for the output
of firms 1 and 2. We have an initial position with firm 1 a monopolist. In cells
B9 and C9 we have the formulas

B9 | =3k, +(1—k)q,(0)—3 kyq,(0)

=3*$H$3 + (1 —$HS$3)*B8— (1/2)*$H$3* 8
CO | =3k, 1k, (0) + (1 —k;)g(0)

=3*$H$4 — (1/2)*$H$4* B8 + (1 — $H$4)* C8

These values are then copied to the clipboard and pasted down. Finally, cells
B8 to C28 are blocked and the chart wizard is initiated to produce the inserted
chart in figure 7.10. Given the present model and the values of k, and k, given
in the figure, the model exhibits stability, with output converging on the
Cournot solution. But is this always true?

7.8.1 Experimentation

First check the formulas by placing the Cournot solution as the initial condi-
tions. If all is correct, all entries in the table should have the value 2. Now
return the initial values to the situation with firm 1 being a monopolist, with
initial point (3,0). Consider the situation with firm 2 being the monopolist,
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Figure 7.10

with initial point (0,3). Once again the system converges on the equilibrium.
So far the results appear the same as our perfect adjustment. Return to the
initial situation with firm 1 the monopolist and now let k, =k,=4/3. The
system after some time begins to settle down to an oscillatory behaviour. This
is also true if the initial situation is with firm 2 being the monopolist. If firm 1
1s the monopolist and k, = k,= 1.5 then the system is oscillatory and explosive.
The same is true if firm 2 is initially the monopolist. Although the duopoly
model with complete and instantaneous adjustment is stable, the same cannot
be said of partial adjustment. In this instance, duopoly can exhibit stable,
oscillatory or explosive adjustment paths, depending on the size of the adjust-
ment coeflicients.

(1)

Exercises

Consider the discrete advertising model of section 7.3. A product has
present sales of 100,000 with sales declining at a rate of 2% per period.
The maximum absorption per period is 250,000. £10,000 is to be
spent on advertising over a five-year period or a ten-year period, in
each case at a uniform rate. It is known that advertising raises sales
by a proportion 0.25 of the advertising expenditure affecting the pro-
portion of the market not yet already purchasing the product.

(1)  Derive the two time profiles and plot them on the same graph.

(i) If the choice is based on total sales over ten years, which expen-
diture policy will be implemented?
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(2)

)

(4)

)

Consider the following diffusion model for a new product in which at
the moment no sales have taken place

(i)
(ii)

AF(t+1)=(0.005+0.02F(2))(1 — F(¢))
What are the fixed points of this system?

At what time will the maximum penetration of the market
occur?

Consider the following model of oligopoly in which total costs are

different
p=9-0
0=4q,*9,

TC,=3q,
TC,=1.5¢q,

(1)  What is the Cournot solution?

(i) Assume firm 1 chooses ¢,(¢) so as to maximise 7r,(¢), assuming
g,(1)=¢q,(t—1); and firm 2 chooses ¢,(f) to maximise (1),
assuming ¢q,(#)=¢,(t—1). What are the dynamic adjustment
equations?

(ii)) Assuming the initial values are where firm 1 is a monopolist,

does the system converge on the Cournot solution?

Consider the following Cournot model with identical quadratic total

costs

(i)
(ii)

(iif)

p=9-0

0=q,%q,

TC,=0.5¢g;

TC,=0.5¢3

What is the Cournot solution?

Firm 1 chooses ¢,(f) so as to maximise m(f), assuming
g,(1)=¢q,(t—1); and firm 2 chooses ¢,(f) to maximise (%),

assuming ¢q,(#)=g¢,(t —1). What are the dynamic adjustment
equations?

Assuming the initial values are where firm 2 is a monopolist,
does the system converge on the Cournot solution?

Consider the following three-firm oligopoly model

r=20-0
0=q,+4,%q;
TC,=2¢q,
TC,=2q,
TCy=2q,
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(1)
(ii)

(iif)

What is the Cournot solution?

Firm i chooses ¢(¢) to maximise m(7), assuming g(7) =gt —1)
for all j #i. What are the dynamic adjustment equations?

Show that no matter which firm is the monopolist in period 0,
the system moves to one of oscillations in which the Cournot
solution is never reached.



Chapter 8
Saddles and rational expectations

8.1 What are saddles?

In chapter 4 we discussed a variety of trajectories in the phase plane. But the
one trajectory we did not discuss was the one associated with a saddle-path
solution. Saddle-path solutions have entered economics in a major way. They
became most popular when rational expectations became a major specifica-
tion of expectations formation. In earlier chapters we have considered adap-
tive expectations. The simplest one of all was that individuals expected the
price in the current period to be equal to the price last period. Even the more
complex expectations that base current prices on the trend in prices are
backward-looking. In other words, the current expected price depends in some
way on past prices. Not only are they backward-looking, but they also take no
account of the modelling of the variable in question. Rational expectations
theory takes quite a different approach. For the moment we shall simply say
that in a rational expectations model, expected prices take account of all infor-
mation, including the model under investigation, and based on that informa-
tion attempts to minimise any errors. If successful in doing this, it is like having
perfect foresight. In this chapter we shall use the assumption of perfect fore-
sight as our means of analysing rational expectations.

Rational expectations modelling is more complex than the models we have
discussed so far. So in this chapter we shall do two things only. First we will
consider some simple examples so we can see how to derive saddle-point solu-
tions and investigate their stability/instability. Second, we shall see how these
concepts are applied to a model of the open economy in which prices and the
exchange rate are flexible.

First it will be useful to consider the features of a saddle — an actual saddle!
Figure 8.1 shows an idealised drawing of a saddle. The point of interest is the
centre of the saddle. What are the characteristics of this point? It is both a
maximum and a minimum simultaneously. When looked at from the point of
view of the long length of the saddle it reaches a minimum at this point. When
looked at from the narrow direction, it is a maximum. If we consider the saddle
from the point of view of stability, then, in the long direction, it has features
of stability. When looked at from the narrow direction, then it is unstable. It is
this characteristic of a saddle-point which is of interest here. In simple terms,
a saddle-point exhibits both stability and instability.

149
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Figure 8.1

Figure 8.2

(8.1)

8.2 Two examples

In this section we shall simply concentrate on exhibiting diagrammatically
saddle-point solutions in the phase plane so that we can get a feel for what they
are. In doing this we consider two interrelated markets represented by the var-
iables x and y. In these examples we shall assume continuous functions of time.

8.2.1 Example 1
Consider the following continuous dynamical system

xX=x+ty
y=4x+y

First consider the fixed point of the system. This is where x =0 and y =0. The
only values of x and y which satisfy these conditions is for x =0 and y =0. Now
turn to the two isoclines. When x =0 then y =— x. This isocline is shown in
figure 8.2. When X >0 then y>— x and so above the line x is rising. Similarly,
below the X = 0 isocline x is falling. We have a similar situation for the second
isocline. When y =0 then y =—4x. When y >0 then y >—4x and so above the
line y 1s rising. Similarly, below the y =0 isocline y is falling. All these vector
forces are illustrated in figure 8.2. What these vector forces reveal is that in
quadrants I and III the system appears to direct the solution path towards the
origin, while in quadrant I and IV the system is directed away from the origin



Saddles and rational expectations

151

— where the origin is the fixed point of the system. The diagram shows four
representative points: a, b, ¢ and d. The central arrows seem to indicate the
movements just alluded to.

We emphasised the word ‘seem’ because it is not obvious that the system if
starting from a point in quadrant I will actually stay in quadrant I. We note in
quadrant I that the system can be pulled in the positive direction towards
quadrant II, while heading towards the fixed point. In fact there is nothing
stopping the trajectory from passing from quadrant I into quadrant II. Once
in quadrant II then any trajectory will start moving away from the fixed point.
The situation is shown in figure 8.3, where our starting point is point e in quad-
rant I. Similarly, for a trajectory starting in quadrant III, such as point £, then
the system begins by getting pulled towards the fixed point, then passes into
quadrant IT and gets pushed away from the fixed point. However, not all points
in quadrant I get pulled into quadrant II. Depending on the initial point in
quadrant I, the force acting on it may be greater in the downward direction.
Take point / in quadrant I. Initially this moves towards the fixed point, the
origin, but soon gets pulled into quadrant IV, and once there is moved away
from the fixed point as shown by the trajectory emanating from point 4.
Similarly, the trajectory emanating from point g, which lies in quadrant III,
starts to get pulled towards the origin, but then enters quadrant IV and moves
away from the fixed point.

Let us establish these results by setting out the problem on a spreadsheet. In
doing this we once again use the Euler approximation for the continuous
system. We compute future values of x and y using the formulas

x(t+ 1) = x() +f(x(2),y(1))At

W+ 1) = p(2) + g(x(2),y(1))At
where

x=f(x,y)=x+y

y=gxy)=4x+y

Plotting such (x,y)-values from some initial point will give us a particular tra-
jectory.
The model is shown in figure 8.4. In cell E3 we place our time interval, which

Figure 8.3
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Figure 8.4

here we have at 0.01. Since this system can move rapidly away from the origin,
we have ¢ ranging only over 0 to 100, which are placed in cells A7 to A107. In
cells B7 and C7 we insert our initial points for x and y, respectively. The figure
illustrates point e from figure 8.3 with value (—2,4.5). Having specified our
initial point, then cells B8 and C8 have the formulas

B8 = x(0) + f(x(0), y(0))*At
= B7+ (B7+ CT)*SES3

C8 = (0) + g(x(0), y(0))*Az
=(C7+ (4*B7+ CT)*$ES$3

Having computed cells B8 and C8, we copy these to the clipboard and paste
down. This completes all our computations for constructing any trajectory in
the phase plane. Finally, we block cells B7 to C107 and invoke the chart
wizard, inserting the resulting chart as shown in figure 8.4. What we immedi-
ately see is the trajectory drawn in figure 8.3 emanating from point e. The tra-
jectory only briefly gets drawn towards the origin, but soon enters quadrant I1
and gets directed away from the fixed point very rapidly and very forcibly!

The reader should verify the typical trajectories shown in figure 8.3 using
the following initial values

point e (—2,4.5)
point f (2,—3)
point g (2,—4.5)
point & (—2,3)

Trying a number of others will reveal that the trajectories seem to head
towards a particular path in quadrants IT and III.
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In figure 8.3 we identified two special paths, which are labelled the stable
arm in sectors I and III and the unstable arm in sectors II and IV. Deriving
such arms is rather complex and a precise derivation is beyond the scope of
this book. We shall, however, provide a method without proof. The proof of
this technique can be obtained from my Economic Dynamics (Shone, 1997).
The specific part without proof is to claim that we can replace the time deriv-
atives with a product, i.e. X = Ax and y = Ay. If we do this, then

Ax=x+y
Ay=4x+y

Using the first equation of (8.4) to solve for y, and substituting this into the
second equation, we obtain

4x—(1—A)2x=0
A2—=2)1—-3=0
A+1DH(A=3)=0
Hence, the characteristic roots are r =—1 and s=3. These are referred to as

the characteristic roots of the system (also see box 4). Now return to the equa-
tions given in (8.4). If A=r =3, then, from the first equation we have

3x=x+y
y—2x=0

Box 4 Computing characteristic roots of two-equation
autonomous systems

Given the continuous dynamic system
X=a;x+a,y
y=bx+byy

or the discrete dynamic system

Ax(t+ 1)=a,x(t) + a,y(1)
Ay(t+1)=b,x(t) + b,y(t)
then it is possible to show that the resulting characteristic roots of the
system are
- (@, + by) = V(a, + by)* — 4a,by — azhy)
2
o= (a, +by) + V(@) + by)* — Haby — ah,)
2

Now set up a spreadsheet with parameters a,, a,, b, and b,. Let their
values be placed in cells C14, C15, C16 and C17, respectively. (Above we
insert the equation and formulas as a reminder.) Then in cells E14 and
E15 place the values of the characteristic roots, i.e.
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_ (a;+ b)) = V(a, + by)* — 4ayb, — arby)
2

El4

_($C$14+$C817) — V/(SCS14 + $CS17)° — 4(SCS14*$C$17 — $CS15*$CS16)
2

_ (a;+ b)) + V(a, + b))’ — 4a,b, — ayb))
2

E15

_ (BC314 +5C317) — V($C$14 + $C$17)? — 4($CS$14*$CS17 — $CF15*3C316)
2

Save the spreadsheet. We now show the resulting spreadsheet.

A B Z D E F
Solving roots of dynamical systems

X=axta,y

J=hxt+by

L (@t )= fa + 8, ~Mady — ah)
2

_lari)y Jla + 5, — Hab, —ayb)
2

al =
al =
b1 =
b2 =

ol r==e! = el ey el ==l . e o 3 RS o B I A S

R R S R

18

This spreadsheet can now be used to compute the characteristic roots of
any two (homogeneous) autonomous equation system.

In fact, this result occurs no matter which of the two equations we choose.
(Check that substituting 3 into the second equation results in the same rela-
tionship.) We know the system emanates to or from the fixed point, which is
here the origin, so if we arbitrarily set x =1, then from result (8.5) y has a value
2. Put more simply, we have an arm emanating from the fixed point with the
formula y=2x. This arm passes through quadrants II and IV, and we have
already shown that in these quadrants the system tends towards plus or minus
(*) infinity. Consequently the relationship y =2x denotes the unstable arm.
The analysis so far used the value of » = 3 for the parameter A. Suppose now
we take the other value which it can take, namely s =— 1. Doing this we follow
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exactly the same analysis. Letting A=s=—1 then from the first or second
equation of (8.4) we obtain

—x=x+y
y+2x=0

which gives us an arm with the formula y=—2x. This arm passes through
quadrants I and III, respectively. To summarise our results so far

Unstable arm y=2x Quadrants IT and IV
Stable arm y=—2x Quadrants I and III

It is now time to verify these results with the aid of our spreadsheet. If our
results are correct, then the trajectories should be straight lines either tending
away from the fixed point along the unstable arm, or towards the fixed point
along the stable arm. Consider the unstable arm first. If this does move away
from the origin, we need to take our initial point close to it. If x=0.5 then
y=1. So let the initial point in the spreadsheet be (0.5,1). The path is seen to
be a straight line moving away from the origin along the path given by y =2x.
Now take a point in quadrant I'V, say (—0.5,— 1). Once again the system moves
in a straight-line trajectory away from the fixed point towards infinity along
the line denoted by y = 2x.

Next take a point in quadrant I. If x=—2, then y =4 along the arm denoted
by the formula y=—2x. Taking such an initial point leads to a straight-line
trajectory towards the origin. The same is true for a point in quadrant I1I, such
as (2,—4). So we have indeed verified that the unstable arm has the formula
y=2x while the stable arm has the formula y=—2x, and that these conform
to the indicated markings in figure 8.3. These arms pass through the fixed
point, and so we refer to such a fixed point as a saddle-point solution. The
saddle-point solution exhibits both stability and instability simultaneously; it
has trajectories moving towards it and away from it. Another way to identify
that a model has a saddle-point solution is to show that the two characteristic
roots are real and have opposite signs. Both the present example and the next
in section 8.2.2 satisfy this condition. We shall utilise this feature of saddle-
point solutions frequently, especially in the exercises.

8.2.2 Example 2

Consider the dynamical system

X=3x—2y
y=2x—2y

We shall analyse this system in exactly the same way as we did with example
1. Since the analysis follows the same pattern we can be brief.
Setting x =0 and y = 0 readily gives the origin as the only fixed point of this

system. The four quadrants are determined from the two isoclines

3
—

y=x yp=0



156  An Introduction to Economic Dynamics

Figure 8.5
y=(3/2)x (x=0)
y=x (y=0)
N
X
unstable arm
III
and have trajectories shown in figure 8.5. (The reader should verify the vector
forces indicated in this diagram.)

The system moves quite differently from the example in section 8.2.2, but it
still has an unstable arm and a stable arm passing through the fixed point.
Once again we set up this model on a spreadsheet in order to investigate its
trajectories. The situation is shown in figure 8.6. Everything is fundamentally
the same as the previous example. The only item of note is that cells B8 and
C8 now have the formulas

B8 =x(0) +1(x(0), y(0))*Az
= B7+ (3*B7—2*C7)*$ES$3
C3 =(0) +g(x(0), »(0))*A¢
=C7+ (2*B7—2*CT)*$ES3
The reader should establish the trajectories shown in figure 8.5 by considering
the following initial points
2,6) 3.5 (=2,-6) (=3,-5)
Again set x = Ax and y = Ay. Then
Ax=3x—2y
(8.8) Ay=2x—2y

Using the value of y from the first equation of (8.8) and substituting this into
the second we obtain

Q2+M)[33 - N]x=2x
X—A—2=0
A+DH(A—2)=0

So Ahasvaluesr=—1and s=2. If A=r=—1 then

—x=3x—2y
y=2x

which gives us one arm. The second arm is derived by setting A =s=2
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2x=3x—2y
1
y=3X
Both arms are positively sloped. With the help of figure 8.5 we establish that
yZ%x 1s the unstable arm and y=2x is the stable arm. The reader should

verify this for various values of x and y. Note again that the characteristic
roots of the system are real and have opposite signs.

8.3 The Dornbusch model under perfect foresight

We have dealt little with the open economy in this book, but a major insight
into exchange rate behaviour is provided by a model set out by Dornbusch
(1976). There are many variants of this model (see Shone, 1997, ch.11), but
here we shall consider the one involving perfect foresight. This variant neatly
illustrates a saddle-point solution.

The model is set out stripped of any complications, like tax. The model is in
natural logarithms (see box 3, p. 112), which are denoted by lower-case letters.
So y=1InY, etc. The only nominal variable is the rate of interest. The model is
set out in table 8.1.

The first equation of the goods market is basically the expenditure function
(E=C+I+G+NX, where NX=net exports) written in logarithms. Net
exports are a function of the real exchange rate, which is the nominal exchange
rate adjusted for prices in both countries. It is useful to just clarify how the real
exchange rate enters the model. Let R denote the real exchange rate, then

R=PI(SP")

Figure 8.6
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Table 8.1 The Dornbusch model under perfect foresight

Goods market

e=cytgthis—p) 0<c<l,h>0 e =total expenditure
p=ale—y) a>0 g = government expenditure
s = spot exchange rate
p =domestic price level
p =inflation (since p =InP)
y=real income (exogenous)

Money market

md=p+ky—ur k>0,u>0 md=demand for money
ms=md=m r=domestic interest rate
md=ms ms = supply of money

m=money balances (exogenous)

International assets market

F =7+ ge r* =interest rate abroad

$e=8 s¢=change in expected spot rate
$=change in spot exchange rate

In other words, R is the ratio of the domestic price over the foreign price
expressed in domestic currency, and S is the exchange rate expressed as the
domestic price of foreign currency. Under the law of one price, P=SP* and
R =1, which is also the purchasing power parity (PPP) condition. This is sup-
posed to hold in the long run. Taking natural logarithms, then

InR=InP—InS—InP"

If R=1, then its logarithm is zero. If we hold foreign prices constant, which
we are doing, and set them equal to unity, then the logarithm of P* is also zero.

Hence
0=InP—1nS
O=p—s

or
s—p=0

A rise in s is a rise in foreign prices expressed in domestic currency, and so
home goods become more competitive. (Note that a rise in s is a depreciation
of the domestic currency; or, equivalently, an appreciation of the foreign cur-
rency.) Exports rise and imports fall, resulting in an improvement in net
exports. In other words, expenditure rises by an amount / when (s — p) rises.

The second equation in the goods market is our familiar continuous market
adjustment model: with one major difference. In this model income is held
constant at the natural level (the model is very monetarist). Hence, any excess
demand in the goods market forces prices up rather than change the level of
income. Certainly this would be the case in the long run.
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The money market 1s similar to the one we have used already. The variable
p enters the demand for money equation because we are considering real
money balances. (Note: If Md/P denotes real-money balances, then
In(Md/P)=InMd—InP=md—p.)

In the international asset market domestic interest rates diverge from
foreign interest rates by the amount of the expected depreciation/appreciation
of the currency. Implicit in this condition is the assumption of perfect capital
mobility. This can be seen more clearly if the exchange rate were fixed, and so
there would not expect to be any change in it, then $¢= 0. In this circumstance
domestic interest rates cannot diverge from those abroad. Under perfect fore-
sight, the expected change in the spot exchange rate is equal to the actual
change in the spot exchange rate.

The model basically establishes two relationships: a goods market equilib-
rium relationship and an asset market equilibrium relationship. Each relation-
ship is a function of p and s, and so the two relationships are sufficient to
determine p and s. This is the equilibrium, the fixed point, of the system. Let
us begin with the goods market equilibrium. This is quite straightforward.
Substituting the expenditure function into the price adjustment equation gives

p=aolcy+g+h(s—p)—yl
or
p=ofh(s—p)—(1—-c)y+g]

Goods market equilibrium occurs when prices are unchanging, i.e. when p =0,
and when this is true, we have

0=alh(s—p)—(1—c)y+g]

(I1-cy g
= —_ +—
P=S= h

But in the long run we have PPP, and so the real exchange rate is equal to unity
and this in turn implies p =s. If this is true, then the constant term in our pre-
vious result must be zero. Which means this goods market equilibrium line
passes through the origin with a slope of unity. This is shown in figure 8.7, and
marked GM.

If p>0 then
ali(s—p)— (1 —c)y+g]>0
ey (1m0 g

h h

So below the GM line prices are rising and above prices are falling. This
should not be surprising. When p >0 then expenditure exceeds income, and
income is constant. So prices are pushed up. Another way to view this is to
take a point on the GM line, say, point A, and then move horizontally to the
right to point B (which is, of course, below GM). As we pointed out earlier, a
rise in s is a depreciation of the domestic currency and this makes home goods

(8.9)
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Figure 8.7

(8.10)

(8.11)

P
GM (p =0)

Along this line
s=p and so
purchasing power
parity holds

more competitive, so raising net exports. The rise in expenditure resulting from
the rise in net exports leads expenditure to exceed the constant level of income,
which in turn puts pressure on prices to rise.

Now turn to the asset market. First we substitute the perfect foresight
assumption into the interest rate condition, and substitute this result into the
money market equilibrium condition

m=p+ky—u@ +5)

or
s'=<1>p+(l)(ky—m)—r*
u u
When §=0 then
O=p+ky—m—ur
or

p=m—ky+ur*
which is a constant. This isocline is therefore horizontal and marked FX (for
foreign exchange equilibrium)! in figure 8.8. When s =0 then
ptky—m—ur>0
p>m—ky+ur’
and so above the FX line s is rising, while below the FX line s is falling.

To summarise our model so far, we have derived two differential equations
in the form of (8.9) and (8.10), reproduced here slightly differently

p=ahs—ahp+(g—(1—c)y)

I Note that the FX line is not the asset market equilibrium line. This is, in fact, the stable arm of
the saddle-point.
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p Figure 8.8
p=m-ky+ur* FX(5=0)
S
(1 1
SZ()p+<)(ky—m)—r* (8.12)
u u

From these two equations we have two isoclines. The first denotes goods market
equilibrium and we have labelled this isocline GM. It is a 45°-line through the
origin. It also denotes the PPP condition. The second equation leads to asset
market equilibrium, and specifically denotes no change in the exchange rate.
This i1socline is a horizontal line, and denoted FX. Given the vector forces we
have already identified for each of the markets, then the combined vector forces
are those illustrated in figure 8.9, which identifies a saddle-point solution.

8.4 A numerical example

Consider the following numerical example

e=0.8y+4+0.1(s—p)

p=0.1(e—y)

md=p+0.5y—0.5r

md=ms =105

r=r"+se

se=g

y=20, r=10 (8.13)

We know that the GM line leads to s =p, and from (8.11) we have
p=m—ky+ur
=105-10.5(20)+0.5(10) =100
So we immediately have the fixed point of the system as? (5, p) = (100,100). The
differential equations of this system are

2 We identify fixed points, equilibrium points, with bars rather than asterisks so that there is no
confusion with variables abroad, which are identified with asterisks.
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Figure 8.9 )%
I GM (p=0)
lj ; II
VS .
/ \ FX (s =0)
v
III
S
p=—0.001p+0.001s
(8.14) s=2p—200

which clearly leads to the same fixed point when we set p =0 and s =0.
It is now time to set this example up on a spreadsheet, as shown in figure
8.10. In line with the system of (8.12) we consider the model in the form

p=A,ptA,s+ A4,
s=B,p+B,

and set out the ‘derived parameters’ in cells 12 to 16. Notice that the appropri-
ate signs are derived in the computations. In cells B9 and C9 we insert the
initial values for s and p, respectively. In cells B10 and C10 we insert the fol-
lowing formulas (note that we calculate s first, which requires the B-parame-
ters)

B10 | =s(0)+ (B,p(0)+ B,)At
— B9+ ($I$5*C9 + $156)*$GS7

C10 =p(0)+ (4,p(0) + A,5(0) + A;)At
= C9+ ($182*C9 + $1$3* B9 + §134)*$ G 7

B10 and C10 are then copied to the clipboard and pasted down. Here we have
periods up to #=200. Finally cells B9:C209 are blocked and the chart wizard
1s invoked to produce the chart shown in figure 8.10. (Check you have entered
the formulas correctly by placing the equilibrium values in cells B9 and C9.
Doing this should lead to all entries having the value of 100.)

Now try a variety of trajectories with initial points taken in each of the four
quadrants. Six typical points for (s,p) are
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Figure 8.10
Quadrant I~ (100,110) (50,100)
Quadrant I  (150,105)
Quadrant 111  (150,100) (95,80)
Quadrant IV (50,95)
All show the trajectories expected as indicated in figure 8.9.
We now need to establish the equations of the saddle-paths. In order to do
this in the present model we need to consider the system in terms of deviations
from the equilibrium. This eliminates the constant 200 in (8.14). Taking devi-
ations from equilibrium for the system given in (8.14) we have
p=—0.001(p —p)+0.001(s — 3)
s=2(p—p) (8.15)
Now set p = A(p — p) and s = A(s — §). Substituting these into (8.15) gives
Alp—p)=—0.001(p —p)+0.001(s — 3)
As—35)=2(p—p) (8.16)

Re-arranging the first equation and solving for s—3 and substituting this
result into the second equation gives

s—5=(1000A+ 1)(p — p)

A(1000A+ D(p—p)=2(p —p)
1000A2+A—2=0

Solving for A we obtain the two solutions 0.04422 and — 0.04522. (Note that
these are real and opposite in sign.)

Now substitute the first root into the second equation in (8.16) (since it does
not matter which one we choose, we have taken the simplest one). Then
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0.04422(s —5) = 2(p — p)
0.04422(s — 100) = 2(p — 100)
»=97.789 +0.0221s

We know from the vector forces in figure 8.9 that this represents the unstable
arm of the saddle-point solution. We derive the equation of the stable arm in
just the same way by substituting the second root. Thus

—0.04522(s — 5)=2(p — p)
—0.04522(s — 100) = 2(p — 100)
»=102.261 +0.0226s

To verify these results take the value of s to be 105. On the unstable arm we
have a value of p of 100.11. Setting the initial point at (s(0), p(0))=
(105,100.11) we do indeed get a straight line trajectory away from the fixed
point. Similarly, if we take s =120 then the value of p on the stable arm is
99.564, so our initial point is (s(0), p(0)) =(120,99.564). Taking this initial
point we immediately obtain from the spreadsheet a linear trajectory towards
the equilibrium. The stable arm is what Dornbusch calls the asset market equi-
librium line.

At the moment all we have done is set up the model and established that the
fixed point is a saddle-point solution. Furthermore, we have established the
path of various trajectories in the phase plane — all of which conform to those
indicated in figure 8.9. It is now time to consider some policy change.

8.5 Arrise in the money supply

We assume a rise in the money supply takes place in period 1. A rise in the
money supply has no bearing on the goods market equilibrium. So the GM
line remains the same. A rise the money supply shifts the FX line vertically up
by the change in the money supply. The situation is shown in figure 8.11. Let
us use our numerical example to consider this problem. Let the money supply
rise in period 1 by 5, to the new value of m =110, so the new fixed point of the
system is (105,105). Not only does the fixed point shift, but so do the two
saddle-paths. More importantly, the vector forces relative to the new equilib-
rium point now dictate the movement of the system over time. How then does
the system reach, if at all, the new equilibrium? What we certainly know is that
the initial equilibrium is below the FX line and on the goods market line. We
also know, however, that convergence on the new equilibrium will occur only
if the system immediately moves to the new stable arm — to asset market equi-
librium.

The roots of the system are unaffected by the change in the money supply,
and so these remain 0.04422 and —0.04522. We are interested only in the
stable arm, which is associated with root —0.04522. So the new equation of
the stable arm can be found from

—0.04522(s — 5) = 2(p — p)
—0.04522(s — 105) = 2(p — 105)
p=107.374—0.0226s
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EO

5 s, s S

It 1s now we invoke the reasoning of rational expectations with perfect fore-
sight. First we note that the exchange market can adjust extremely quickly,
here instantaneously. With perfect foresight, market participants will know
that the immediate impact is for the domestic currency to depreciate (a rise in
s) to the point on the new stable arm at the existing price level. The idealised
reasoning is illustrated in figure 8.11. The system will move immediately from
point E, to point C, where C is a point on the stable arm passing through the
new equilibrium point E,. We establish point C by solving

100=107.374 —0.0226s
s =326.283

Using the same spreadsheet shown in figure 8.10, change the money supply
to 110, and set the point for period 1 to (s(1), p(1))=(326.283,100), i.e. point
C. The situation is shown in figure 8.12. What is observed is exactly the trajec-
tory shown in figure 8.11, and marked as trajectory T,. The system will move
first to point C, and then to the new equilibrium at point E,. One of the most
important predictions of this model is the characteristic of overshooting of the
exchange rate. The exchange rate depreciates too far, rising initially to 326.283.
As the system moves along trajectory T,, the exchange rate appreciates (s
falls), eventually settling down at the value of 105. The resulting equilibrium
is still a depreciation, but it is nowhere near as large as we observe initially.

However, any lack of foresight (perfection!) on the part of market partici-
pants will send the system either to plus infinity or minus infinity. If, for
example, the system moved to point D, then it will eventually be pushed in a
downward direction. Try this for yourself with the revised spreadsheet. Set the
condition in period 1 at (s(1), p(1)) =(300,100), set the time interval to dt =0.1
and extend the period to about #=1500. What your spreadsheet will reveal is
the trajectory T, illustrated in figure 8.11. If the market overadjusted, moving

Figure 8.11
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Figure 8.12

to point F, then the system eventually moves towards plus infinity. Establish
this too by taking the condition in period 1 to be (s(1), p(1)) =(350,100). This
is the trajectory Tj illustrated in figure 8.11.

There is something unsatisfactory about this rational expectations model-
ling approach. The new equilibrium is reached for any disturbance only if the
system moves immediately and directly to the new stable saddle-path.
Anything short of this will send the system possibly towards the equilibrium
for some time, but then away from it in either the positive or the negative direc-
tion. Another way to view this is that the system instantaneously achieves asset
market equilibrium. This is a tall order for any economic system!

8.6 Announcement effects

One of the attractions of this model is being able to predict the likely conse-
quences on the economic system of announcing, in advance, a policy change.
One of the implications of rational expectations is the importance of policy
makers to be transparent about their policies and to announce policies in
advance. In the UK it became common, therefore, for the Chancellor of the
Exchequer to announce movements in monetary growth for the coming few
years. Consider, then, announcing a change in the money supply to take place
some time in the future. Market participants, having perfect foresight, will
know two things. They will know that in the long run the price level and the
exchange rate will rise (and by the same amount). Second they will know that
in the short run the domestic exchange rate will sharply depreciate, since it will
overshoot its long-run value. Given this knowledge, transactors will attempt
to move into real assets in order to preserve the value of their portfolio. They
will also move out of domestic assets and into foreign assets. Although ideally
this would take place just before the money supply is actually increased, in
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order to take advantage of the situation they would do it sooner. This line of
reasoning will continue until the most sensible reaction is to move some funds
immediately. This results in an immediate depreciation of the currency. In
terms of figure 8.13, this moves the economy to point F. Notice that prices have
not yet changed. The dynamics of the system is still governed by the initial
equilibrium point, E, because as yet the policy has not taken place. Hence, the
system will begin to diverge from point F towards the unstable arm, labelled
SP}. Under perfect foresight, however, the trajectory will coincide with the
stable arm of the saddle-point at the moment the policy change takes place,
denoted by point G. Once this happens the economy will move along this
stable arm, labelled SP2, until point E, is reached in the long run.

Let us establish such a path with our numerical example. The computations
are set out in figure 8.14. The parameter values are given at the top of the sheet.
The only difference here is that we distinguish two money supplies, labelled m1
and m2, and set in cells F3 and F4, respectively. This in turn leads to two
derived parameters for B,, labelled B21 and B22, and set in cells HS and H6,
respectively. Also we have set the time interval to dt=0.1 and the number of
periods to 1000. We are assuming the immediate response takes place in period
1, so point F is given by (s(1), p(1)) =(120,100), which is to the left of point C,
which has coordinates (s(1), p(1)) =(326.283,100).

Since we shall be doing quite a lot of copying and pasting, we shall set out
all the formulas here for ease of reference. The change takes place in period 1,
which is row 10 of the spreadsheet, and so a number of the formulas come into
operation only in row 11, as indicated in the table overleaf.

Figure 8.13
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Figure 8.14

B10 120
C10 100
D10 326.283
E10 100

F10 | 107.374 — 0.0226*B10

G10 | F10 — C10

H10 | IF(G10>0.01,B10,D10)

110 | IF(G10>0.01,C10,E10)

B1l | B10+(SH$4*C10+$HS5)*$FS6

Cll | Cl10+(SHS1*C10+$HS2*B10+ SHS3) *$F$6

D11 | D10+ (SHS4*E10+$HS$6) *SF$6

Ell E10+ ($SHS$1*D10+$SHS$2*E10+ $HS$3) *$F$6

Concentrate first on columns B and C. In cells B9 and C9 we have the origi-
nal equilibrium values of s and p. In cells B10 and C10 we have the coordinates
for point F. The trajectory the economy takes from this point is determined by
the system’s dynamics relative to the initial equilibrium point. The money
supply is still 105, given in cell F3, and so the relevant B2-parameter is that
given in cell HS. We then employ the Euler approximation to obtain the values
in cells B11 and C11. These are then copied to the clipboard and pasted down.
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We now place in cells D10 and E10 the values of s and p for point C. From
point C, the trajectory the economy follows is with reference to the new equi-
librium, and so we need to use money supply m2, given in cell F4, and the
derived B2-parameter, given in cell H6. Having set these values, we once again
employ Euler’s approximation to obtain the values in cells D11 and E11. We
already know from our earlier analysis that these observations will simply lie
along the stable arm of the saddle-point associated with equilibrium E,.
Having derived cells D11 and El1, these are copied to the clipboard and
pasted down.

Our problem now is to establish exactly the point when the trajectory fol-
lowed by the economy in terms of columns B and C will hit the saddle-path.
Once it hits this, then the economy will follow the trajectory given in terms of
columns D and E. In order to establish this point we compute in column F the
value of p, which is associated with the value of s given in column B. In other
words, we utilise the formula

p=107.374—0.0226s

which is the stable arm of the new saddle-point solution. (This we obtained in
section 8.5.) Why do this? We need to establish exactly when the price on the
trajectory emanating from F is exactly equal to the price emanating from C.
Itis not sensible to request the computer to find the exact match, because there
never may be because of rounding. So we do this indirectly by considering the
difference between column F and column C. When this difference is close to
zero we have a match. So cell G10 simply computes the difference between F10
and C10. This is copied to the clipboard and pasted down. We now have the
difference as our reference. As we have just said, there is little point requesting
a condition on this difference to be zero. So we take a value of 0.01. If the
difference is less than this then we can say that the price is the same. However,
we consider here a statement in terms of a value greater than 0.01. Cell H10
therefore has the formula

IF(G10>0.01,B10,D10)

Exactly what does this mean? This is a conditional statement. It is read as
follows: ‘If the value in cell G10 is greater than 0.01, then enter the value in
cell B10, else enter the value in D10.” Similarly, cell I10 has the formula

IF(G10>0.01,C10,E10)

which reads: ‘If the value in cell G10 is greater than 0.01, then enter the value
in cell C10, else enter the value in E10.” Having computed cells H10 and 110
these are copied to the clipboard and pasted down. The computations in
columns H and I are exactly what we want. If the difference is greater than 0.01
then the economy is still on the trajectory emanating from point F, which are
columns B and C. Once the difference is zero (less than 0.01), we want to plot
the economy’s trajectory as the stable arm through point E,, but this is the tra-
jectory defined by columns D and E. If you have set up your spreadsheet
exactly as shown in figure 8.14, then you will observe the switch-over taking
place at period 560.
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Figure 8.15

Announcement effects

106 -
105 -
104
103 -
102 4
101 4
100 -

99 T T T T 1
0 50 100 150 200 250

Having completed the computations, all that needs to be done now is to
create a chart from the figures in columns H and I. Blocking cells H9:11009
and invoking the chart wizard creates the economy’s trajectory in the presence
of announcements. We have placed this on sheet 2, and it is illustrated in figure
8.15. This 1s the path (E,—» F— G—E)) in figure 8.13.

There are a number of issues that can be considered with the aid of this
spreadsheet, most especially a change in the announcement period. But we
shall leave such considerations as exercises.

8.7 Discrete systems exhibiting saddle solutions

We discussed discrete systems of linear autonomous equations in chapter 4. In
general these take the form

Ax(t+1)=a,x(t) + ay(t) + a4

Ay(t+1)=b,x(¢) + b,y(t) + b,
If a;=b,=0, then we have a linear set of homogeneous autonomous equations.
To illustrate the system’s behaviour consider the following example

Ax(t+1)=x(t) + 2y(1)

Ty(t
Ap(r+ 1) =3x(7) +y2()
The fixed point of the system, which requires Ax(z+1)=Ay(z+1)=0 to be

satisfied, is clearly the origin. The isoclines are given by

y=(—12)x Ax(t+1)=0
y=(—6/T)x Ay(t+1)=0

The situation is illustrated in figure 8.16.
If Ax(¢z+ 1)>0 then x(¢) is rising, which occurs when

x+2y>0
y>—(172)x
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Figure 8.16

Ax(++1)=0 (y=—(1/2)x)

~ y=—3/4)x
Ay(t+1)=0 (y=—(6/7)x)

This occurs above the Ax(t+ 1) =0 isocline. Hence, the arrows above this iso-
cline point to the right while those below point to the left.
Similarly, if Ay(¢z + 1) =0, then y(¢) is rising, which occurs when

3x+(7/2)y>0
y>—(6/7)x

This occurs above the Ay(¢+1)=0 isocline. Hence, above this isocline the
arrows point upwards, and below the same isocline they point downwards.
The vector forces shown in figure 8.16 suggest a saddle-point solution. But we
need to be more specific.

Again we shall state without proof that we can investigate the stability of
such systems by noting the following. Let

Ax(t+1)= Ax(1)

Ay(t+1)= ()
then

Ax(t) = x(t) + 2y(2)

Ay(t)=3x(t) + 7)/2(1)

Using the first equation we have

(A — Dx(2)
="
Substituting this into the second equation we have
AA — 1)x(¢ TA— D)x(t
A= DO _y ), T~ Dxt)

or
202=91—-5=0

with characteristic roots r =— 0.5 and s = 5. (Note that these results could have
been obtained using box 4 above on solving the roots of autonomous equa-
tion systems.)
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The first thing we note is that the roots have opposite signs. This was a
requirement in the continuous model for a saddle-point solution. But we
require an additional condition in the present discrete case. We require the neg-
ative root to have an absolute value less than unity, i.e. || <1, which is true for
the present model. We shall refer to the root whose absolute value is less than
unity as the stable root.

We can derive the stable arm by using the stable root. Thus

—0.5x=x+2y
y=—3/4)x

It is useful to set this model up on a spreadsheet to verify the saddle-point.
This is left as an exercise. If a point satisfying y =— (3/4)x 1s chosen, then the
system moves towards the origin along the stable arm.

Exercises

(1) For the system
X=x+2y
y=3x-+y
(i)  Establish the fixed point.

(i) Derive the equations for the two isoclines and establish the
vector of forces.

(i) Derive the equation for the stable and unstable arms.

(iv) Take a point on the stable arm for x =2, and show on a spread-
sheet that the trajectory does indeed move towards the origin
along the arm. Plot the trajectory from point (2,— 2), and show
that this trajectory moves away from the stable arm.

(2) For the system

X=x+3y
y=>5x+3y

(1)  What is the fixed point of the system?

(1)) Set Xx=Ax and y=Ay. What are the equations for the two arms
of the saddle-point? Which is the stable arm and which the
unstable arm?

(i) Use a spreadsheet to plot the trajectory of the system starting
at the point (3,— 2.9). Include on the same diagram a plot of the
two arms, and so verify that the trajectory approaches, but does
not cross, the unstable arm.
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)

(4)

)

Verify that the following two systems have saddle-point solutions at
the origin

(1) x=2x+y
y=3x

(i) xXx=x+4y
y=4x—"Ty

Plot trajectories for initial point (—2,5).

For the system
Xx=x+y+1
y=2x—y+5

(1)  Find the fixed point.

(1) Transform the system into deviations from the fixed point.
What are the characteristic roots of this transformed system?

(i) Derive the equations for the stable and unstable arms.

(iv) Set the model up on a spreadsheet and plot, on the same graph,
the following trajectories:

(a) The trajectory from initial point (— 2,4).

(b) The unstable arm passing through the point at which x =2.

Consider the following Dornbusch model under perfect foresight

e=0.75y+2.5+0.02(s— p)
P=02(e—y)
md=p+0.75y—0.2r
md=ms =155

r=r"+se

se=g

y=10, r'=12.5
(1)  What is the equilibrium exchange rate and price of this system?
(1)  Set up the system on a spreadsheet.

(1) Let the money supply fall from 155 to 152 in period 1. Plot the
trajectory of the economy.
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9.1 Budgetary concepts

When the Maastricht Treaty first imposed fiscal conditions on Europe they
were little understood. Elementary and intermediate textbooks in macroeco-
nomics were, in large part, inadequate to consider the issues. Part of the reason
for this was because they involved dynamics. Since dynamics were almost com-
pletely absent from their analysis, the reader had no foundation on which to
discuss the issues sensibly. We have in this book supplied these foundations,
and so it is possible, even at an elementary level, to consider the fiscal criteria
of the Maastricht Treaty and its implications for Europe. These are important
issues and so we shall consider the analysis in detail. In order to do this ade-
quately, however, we do need to consider issues of government deficit
financing. But these should be within the grasp of any undergraduate who has
done an intermediate course in macroeconomics. As in previous chapters, we
shall be concentrating on setting the problems up on a spreadsheet and then
experimenting with them. The chapter does, however involve a little more alge-
braic manipulation than in other chapters. But the benefit derived in under-
standing the fiscal criteria of the Maastricht Treaty make it more than
justified.

Our starting point is the budget deficit, which we shall denote BD. In setting
out the dynamics of the budget deficit we need to be clear at all times between
stocks and flows. A stock is a variable that is at a point in time. The amount of
high-powered money (notes and coins) in the economy on 31 December 2000
is a stock. The amount of government debt at the end of the year is also a
stock. National income, on the other hand, is a flow. It is the value of goods
and services produced by an economy over some time period, say one year.
Government spending on goods and services is also a flow. A flow requires a
time interval to be specified. This distinction between stocks and flows is so
important that we have set out the main variables we shall be discussing in
figure 9.1. We highlight whether they are a stock, occurring at the end of
period ¢t — 1 and/or the end of period #; or a flow, in which case they occur over
the interval of time 7. The diagram considers three time intervals: #—1, ¢ and
t+1; two end-of-period points in time, the end of period 7 —1 and the end of
period #; and just one time interval, namely time period t. Figure 9.1 also
includes a brief definition of most of the variables we shall be using in this
chapter.

The budget deficit over time period ¢, BD(t), comprises the excess of govern-
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’7 AB(t)=B(t)—-B(t—-1 )—¢

B(t-1) B(1)

g end of I end of ¢
—1 I/r—l t / +1

i FAMO(I):MO(t)—MO(I—IW i

MO(t-1) ( BD() MO(1)
G(1)
-« ¢ ]_VT(I)
i(1)
y(=1) L y(D)
P(+-1) g() —\ P(0)
| — 1163

G Government spending
NT  Net taxes

i Nominal interest rate

r Real interest rate (= i-T)
Y Nominal GDP

y Real GDP ( = Y/P)

P Price level

MO  Money base

B Bonds (debt)

BD  Budget deficit

T Inflation

8 Growth of real income

ment spending on goods and services, G(¢), less taxes net of transfers, N7(¢),
plus the interest payments on outstanding debt. The outstanding debt is a
stock, and occurs at the end of period 7 — 1, which we designate B(¢ — 1), and
denotes the value of government bonds at the end of time period 7—1.
However, the payment on that debt depends on the rate of interest, which is a
flow. Let i(#) denote the nominal interest rate over time period z. In fact, for our
analysis we shall be assuming the rate of interest is constant, so we shall simply
denote it by i. Given this rate of interest, then the interest payment on out-
standing debt over period ¢ is given by iB(¢). Another distinction of impor-
tance in this chapter is variables denominated in real terms as against those in
nominal terms. At the moment we are considering all variables in nominal
terms. Our (nominal) budget deficit is then

BD(f)= G(t)— NT(t) +iB(t — 1)

The budget deficit, therefore, is government spending inclusive of interest pay-
ments Jess taxes net of transfers. This term is sometimes called the official
deficit because it is in nominal terms and does not take account of inflation.

Figure 9.1
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(9.2)

(9.3)

(9.4)

Over any time interval ¢, the budget deficit, BD(¢), must be financed. It can
be financed in only two ways: either by printing more money or by borrowing.
Let MO0 denote money base (or high-powered money), which is basically notes
and coins issued by the Central Bank. The money base is a stock. Let
MO(¢t — 1) denote the money base at the end of period t—1 and MO0(¢) the
money base at the end of period 7. Then AMO(¢) = MO(t) — MO(t—1) is the
amount of money created over period 7 to help finance the deficit. Of course,
the other source of funds for the government is to borrow from the public. If
B(t) is the amount of bonds outstanding at the end of period 7, and B(t—1) is
the amount of bonds outstanding at the end of period ¢—1, then
AB(t)= B(t) — B(t— 1) is the amount of new debt created over time period ¢
which has been created to help finance the deficit. Considering the budget
deficit from the point of view of financing it, then we have the important
budget constraint

G(t)— NT() +iB(t — 1) = AMO(1) + AB(?)

which simply says the budget deficit must be financed either from printing
more money or from borrowing from the public. A pure money-financed
budget deficit means

G(t)— NT(t)+iB(t—1)=AMO(z)
while a pure bond-financed budget deficit means
G(t)— NT(t)+iB(t—1)=AB(¢)

At this stage, we need to make one further distinction. The interest payment
on outstanding debt can be considered to have arisen from borrowings made
by all past governments, those presently in power and those in power over
earlier periods. Such a payment is not necessarily the result of present policies.
On the other hand, the excess of government spending on goods and services
over net taxes is a result of present policies. To highlight this feature
G(t) — NT(z) is called the primary deficit (or primary surplus if net taxes is in
excess of government spending).

9.2 Budget dynamics with no inflation and no monetary
financing

We begin our analysis with a very simple case first. We shall assume no money
financing of the budget deficit so AMO0(¢) =0, and we shall assume no inflation
so all variables are both nominal and real. In this instance we do not need to
consider the price level explicitly at all, which we shall do in a later section.
From (9.4) we have

AB(t)=G(t)— NT(¢t)+iB(t—1)
B(t)=G(t)—NT(t)+(1 +i)B(t—1)

Since national income (gross domestic product or GDP), denoted Y(?), is
different in different periods, and also different for different countries, then it
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is much more usual to consider the situation relative to GDP in period .
Dividing our previous result throughout by Y(¢), we have

B(t) _G() NT(1) , (1+)B(i—1)

Y&) Y(@) Y@ Y(1)
_G() NT() L Yt—1)B(—1)
Yoo v YT v ve—y)
or
b(1) = (g(£) — nt(1)) + (1 + i) ( Y(;(_Z)l))b(z 1
where
B B(—1 G NTH
BO="yior B D= s0= G ="

Notice that in deriving (9.5) we needed to be careful about our time periods.
Now let GDP grow over time by a constant amount. Let the growth of income
be denoted g, then

Y-y
5T vu-1

Ye—-1_ 1
Y() l+g,

1.€.

Substituting this result into (9.5) leads to the result

1+
1+g,)b(t_1)

b(1) = (g(t) — nt(1)) +<
Y

We could leave (9.6) as it is, but it will be much more convenient, especially

later when we consider inflation and monetary financing, to use an approxi-

mation for the coefficient of h(z —1). In fact, we shall be using four approxi-

mations in this chapter. Since we shall be using these approximations

frequently throughout this chapter, let us take a minor digression (see box 5).

Box 5 Approximations

Consider any three variables x, y and z that are quite small. Since our
variables will be percentages, then these will be something like 0.05 (for
5%). They therefore satisfy this condition of being quite small. If this is
the case, then we can state here (without proof) that

. X
M 1+x_x

1+x

(11) =l+x—y

I+y

(9.6)
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(9.7)

(9.8)

(9.9)

X

W

(iv) I +x 1+
W) —————=Il+x—y—z

(1+y)(1+2) Y
The figure below shows these approximations set up on a spreadsheet,
illustrating how close the true value and the approximate value are to
one another if x=0.01, y=0.02 and z=0.03. It is observed that the

approximations are quite good.

Return now to our dynamics. It will be noted that (9.6) involves the ratio in
approximation (ii). So we can re-write this equation in the simpler form

b(t)=(g(t) —nu(0)) —(1+i—g)b(t—1)
=(g(t) —nu(1)) — (g, —i— Dbt —1)

Equation (9.7) is our first fundamental recursive equation. It is a recursive
equation in terms of the variable b, i.e. the debt ratio. Considering (9.7) in its
difference form, we have

Ab(1) = (g(1) —nt(1)) — (g, — Dbt —1)

Notice first the fixed point of this system. This satisfies Ab(¢) =0 or
_ 8= ni(0)
g i
which can be positive or negative depending on whether there is a primary

deficit or surplus, and whether GDP is growing faster than the nominal rate
of interest or not. It can even be undefined if g, =1.

b*
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Ab(l‘) Figure 9.2
Ab=(g(t)—ni(1))—(g,~1)b(1—1)
g(1)—nu(t)
b b(1)
R R - Phase line
—— > >
Ab(t)
SO INQb=(8()-ni(1)—~(g,~)b(i—1)
b b(t)
Pihase line

Y

-
- < <

Y

S@

Let us concentrate on the more usual situation of a primary deficit. Then
two situations are shown in figure 9.2, one in which income growth is less than
the nominal rate of interest (g,<i), and a second in which income growth is
greater than the nominal rate of interest (g,>1i). In the first instance the
difference equation has a positive slope and a negative fixed point; in the
second instance it has a negative slope and a positive fixed point. What is clear
from figure 9.2, especially from the phase lines included in the diagram, is that
the first has an unstable fixed point while the second has a stable fixed point.

The unstable situation is serious, and not untypical of European countries
in the 1990s. If an economy begins with some outstanding debt/GDP ratio that
is positive, a primary deficit/GDP ratio that is constant, a constant nominal
interest and constant growth of income, then the economy’s debt will continue
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to rise over time. Although many of these variables will not be constant over
time, it does highlight the issue. Considering the unstable situation more care-
fully, it would appear that this is typical of a country with high inflation in
which nominal interest rates are also high and one in which growth of GDP is
low. Such an economy could find itself in a vicious circle of bond financing of
the government budget and an ever-increasing debt. Stability requires a bring-
ing down of the inflation rate and increasing the economy’s growth of GDP.
But we have yet to model inflation explicitly.

9.3 A numerical example

Consider a simple example. Suppose the primary deficit as a percentage of
GDP is 1.2%, or 0.012, and that the difference between the nominal interest
rate and the growth of GDP is 2%, or 0.02, i.e. we have a low-growth economy.
Furthermore, we assume these will remain constant over the following
periods. With an initial debt/GDP ratio of 50%, or 0.5, then there will be a con-
tinual growth of debt/GDP as shown in figure 9.3. In cells D3 and D4 we place
the primary deficit as a percentage of GDP and the nominal interest rate less
GDP growth, respectively. In cell B7 we have the initial debt/GDP ratio of
50%. In cell B8 we place the formula

BS = (g(0) — n1(0)) + (1 +i—g,)h(0)
—$D$3 + (1 +$D$4)* BT

In cells F3, F4 and F5 we place the equilibrium debt ratio, the debt ratio that
the government wish to stabilise around, denoted bs, and the primary budget
deficit which will stabilise the debt ratio at the chosen level, denoted PBDs.
Finally, we block cells A7:B17 to create the inserted chart that plots the path
of the debt/GDP ratio over time. It can be seen from figure 9.3 that by period
10 the situation is one in which the debt/GDP ratio is just under 75%! If left
unchecked, it could even exceed 100%.
The equilibrium (fixed point) in this example is

_g(H)—ne(x) 0.012
g, —i —0.02

b* —0.6
or —60%. This implies that in equilibrium this economy is a creditor. But it is
not in equilibrium. The initial debt ratio is 50%, and as can be seen in figure
9.3, this will continue to grow over time.

Suppose we wish to stabilise the debt ratio at the initial value of 50%. What
would need to be the primary deficit/surplus that would do this? If the debt
ratio is to be stabilised at 50%, then Ab(¢) needs to be zero for »=0.5. Hence

0 =(g(¢) —n(z)) +0.02(0.5)
g(t) —nt(t)=—0.01

In other words, there needs to be a primary budget surplus relative to GDP of
1%. Put another way, the economy needs to implement a major deflationary
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package and turn the country’s primary budget deficit ratio into a primary
budget surplus ratio of almost the same magnitude!

Before we consider any more numerical examples, we need to make the sit-
uation more realistic. It is now time to include money financing along with
bond financing of the budget deficit, and we need to allow for inflation.

9.4 Budget dynamics with inflation and money plus bond
financing

Our analysis is very much the same as in section 9.3, there are simply more
terms to consider. We begin with the budget constraint in terms of (9.2), which
we reproduce here

G(1)— NT(t) +iB(t — 1) = AMO(1) + AB(?)

Next we make a distinction between real income at time ¢, y(¢), and nominal
income at time ¢, namely P(¢)y(¢), where P(t) is the price level at time . In terms
of our analysis of section 9.3, Y(7) = P(¢)y(¢). We now divide (9.10) by P(2)y(¢),
giving
G(t)  NI() N iB(t—1) AMO(1) N AB(1)
P)y(ry  POy()  P)y()  P)y(1)  P)y(1)
It is important when carrying out this to keep the time periods clearly
specified. First we rearrange this result
B(t) ( G(r)  NT(@) )_ AMO(2) N (1+)Bt—1)
P(y() \P(y(t) Py Py(r) P(1)y(1)

B(1) :< G NT(t))_
Py() \P@)y@) Py

Figure 9.3

(9.10)
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( AMO(1) )( MO(1) )(MO([— 1))
MO(t — D))\ P()y(t))\  MO(z)

(1+) (P(t— Dy(t — 1))( B(t—1) )
P(0)y(1) P(r—1y(r—1)
We now make the following definitions
__B@® L BT
O by "V TR a1y
_ GO _ NT(@)
SO papy " Py
A= AMO(2) _ MO(2)

“Mmo—1y " Py

Where we have assumed that A and m are both constant. Using these defini-
tions we have

MO(t — 1))] N

b<z>=[(g<z)—m(z>)—m( MO0

P(t—1y(r—1)
P(0)y(1)
Given the definitions for inflation, real income growth and monetary growth

PO —Pe—1)  yO)—yit—1) /\:MO(z)—MO(z—l)

MO="p—1 85T =1 MO(i— 1)

(9.11) (1+0( )bU—D

then

Pe—1) 1 ye—-1)_ 1  MOt—1) 1
Py 147  pr l+g’ MOy 1+

Substituting these into (9.11), we obtain

m] + Ut b(t—1)
(1+m(1+g,)

Using approximations (i) and (iii) in box 5 (p. 177), we can simplify this expres-

sion to

b =Lt —nio) (2

b(t) =[(g(t) —nt(1)) —Am]+ (1 +i—m—g )b(t—1)

which is a recursive equation. We can do one final substitution. Let the real
interest rate be defined, r =i —r then our recursive equation becomes

(9.12) b(t) =[(g() —nt(1)) — Am] + (1 +r—g )bt —1)

and the difference equation associated with this is

Ab(1) =[(g(1) —nt(1)) — Am] +(r—g )b(1 — 1)
(9.13) =[(g(1) —nu(1)) —Am] — (g, —r)b(t —1)
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b(t)=a(t);(1+r—g},)b(t—1) Figure 9.4
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Sometimes it will be convenient for diagrammatic purposes to consider the
term in square brackets as a single entity; this is because it will represent the
intercept. We then define

a(t)=(g(t) —nt(t)) — Am (9.14)
The fixed point of system (9.13) is
_(g(0)— ne(t) — Am
g =T
The recursive equation can be illustrated with a cobweb diagram, figure 9.4(a);
the difference equation shows the dynamics of b over time, figure 9.4(b); and

b*
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finally the phase line, figure 9.4(c), shows the movement of b over time. In
drawing figure 9.4 we have assumed the intercept, given by (9.14), is positive
and so is the slope r — g, so the slope 1 +r—g, exceeds unity.

There are, however, four possible cases, which we can summarise as follows

Case A Primary deficit, high growth Stable, b* >0
Case B Primary surplus, high growth Stable, b* <0
Case C Primary deficit, low growth Unstable, b* <0
Case D Primary surplus, low growth Unstable, b*>0

and which are illustrated in figure 9.5

In terms of the situations illustrated in figure 9.5, what appears to have hap-
pened for a number of European countries is that they have changed from case
A in the 1960s into case C by the 1990s. Since for most European countries Am
is generally very small, we shall ignore this for the moment. Considering the
situation for France, Germany and the UK over the 1960s and 1990s we have
figures in the order of (all figures in percentages)

g(t) = ni(1) (2,~7)
1960s 1990s 1960s 1990s
France —0.8 1.8 4.07 —4.62
Germany 5.6 0.2 0.13 -1.42
UK 1.2 2.1 0.07 -3.79

For these three countries by the 1990s there was a primary deficit as a percent-
age of GDP and there was low growth relative to the real rate of interest. All
three countries typified the situation in case C of figure 9.5. The situation was
unstable, and given that all three countries have a positive debt/GDP ratio,
then this will grow over time unless something is done.

9.5 Some numerical examples

Consider the case of the UK, first in the 1960s and then in the 1990s. We
assume that in both periods Am =0. In the 1960s, the primary deficit as a per-
centage of GDP is 1.2%, or 0.012 and the growth of real income /ess the real
rate of interest as a percentage of GDP is 0.07% or 0.0007. The equilibrium
debt ratio is

_g—nu(n) _ 0.012

b =
g,—r  0.0007

=17.14
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Ab

(g—nt—\m)
Ab()=[(g(t)-nt(t))~Am]—(g,~r)b(t-1)
o

Ab
Ab(D)=[(g(t)—ni(t))~Am]—(g,~r)b(t-1)

Figure 9.5

Case A

primary deficit (>gnt)
high growth (g,>r)

b government debtor
b stable

Case B

primary surplus (g<nt)
high growth (g >r)

b government creditor
b stable

Ab(H)=[(g()—nt(t))-Am]—(g,~1)b(t—1)

Ab ;o

Ab

Ab0)=[(g(t)—n(1))~hm]—(g,~)b(t-1)

N\

(g—nt—Am)

Case C

primary deficit (>gnt)
low growth (g ,<r)

b government creditor
b unstable

Case D

primary surplus (g<nt)
low growth (g,<r)

b government debtor
b’ unstable
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Figure 9.6

or 1714%. Although a large debt ratio for the equilibrium, the situation is
stable. However, with such a large positive debt ratio, if the initial debt ratio is
50%, or 0.5, debt will still grow over time, as shown in figure 9.6.

By the 1990s, the primary deficit as a percentage of GDP had risen to 2.1%,
or 0.021 and the growth of real income /ess the real rate of interest as a per-
centage of GDP had decreased markedly to —3.79% or —0.0379. The equilib-
rium debt ratio is

:g(t) — nt(t) _ 0.021 — 0554
g, —r —0.0379

b*

or —55.4%, which is a dramatic turn-around. The situation is unstable. Once
again if the initial debt ratio were 50%, then by period 10 the debt ratio would
be almost 100%0!

If the government wished to stabilise the debt ratio at 50%, then what would
it need to do about its budget deficit? To answer this question, once again we
need to set Ab(¢) to zero at the level »=0.5. Thus

0=1(g(t) —nt(¢)) +0.0379(0.5)
g(t)—nt(t)=-0.019

1.e. a primary surplus/GDP ratio of 1.9%. But what if the government were
prepared to let money grow at 0.5% of GDP, what would the surplus/deficit be
in this instance? First we note that Am =0.005, and so

0=1(g(t) —nt(¢)) —0.005 +0.0379(0.5)
g(t)—nt(t)=—-0.014

In other words, the government can pursue a smaller primary surplus/GDP
ratio, 1.4% as against 1.9%, so long as it is prepared to finance some of this
deficit from creating high-powered money. Of course, such a policy will prob-
ably fuel future inflation.
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The UK is not alone in this problem of explosive debt in the 1990s. France
and Germany are just two other countries of Europe showing this typical
explosive pattern. Just as for the UK, each country would need to run a budget
surplus in order to stabilise the debt at, say, 50%. If we assume no monetary
financing of the debt, France in particular would need to convert its 1.8%
primary deficit/GDP ratio into a primary surplus/GDP ratio of the order of
2.3%, as illustrated in figure 9.7.

The spreadsheet illustrated in figure 9.7 is quite straightforward. The figures
for the primary deficit/surplus as a percentage of GDP and the growth of real
GDP /ess the real interest rate are as given above. It is to be noted that all
figures are in percentages. In cell D2 we supply the desired deficit ratio as a
percentage and in cell D3 we supply the increase in high-powered money rel-
ative to nominal income, again as a percentage. The equilibrium debt ratio for
France 1s placed in cell D7, and is simply B7*100/C7 as a percentage figure.
This is then copied to the clipboard and pasted into cells D8 and D9. Cells D7
to D9 are then copied to the clipboard and pasted into cells H7 to H9. The
primary budget deficit/surplus figures that arise from stabilising the debt ratio
to the figure in cell D2 need to be carefully constructed. They need to take
account of the fact that all figures are in percentages. The entry for cell E7 is
therefore

E7 =Am+(g,—r)bs
=(($D$3/100) +(D7/100)*($D3$2/100))*100

where again the figure is supplied in percentage form. This is then copied to
the clipboard and pasted into cells E8 and E9. Finally, cells E7 to E9 are
copied to the clipboard and pasted into cells 17 to 19. This completes all the
computations of figure 9.7. In figure 9.7 we have no money financing of the
budget deficit, but it is easy to incorporate any amount of money financing.
We leave this as an exercise.

We now have all the necessary analysis to discuss the budget criteria of the
Maastricht Treaty.

Figure 9.7
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(9.15)

(9.16)

9.6 Budget criteria of the Maastricht Treaty

The Maastricht Treaty imposed two fiscal constraints on member states:

(1) Government debt must not exceed 60% of GDP.
(2) The government budget deficit must not exceed 3% of GDP.

In terms of our modelling the first is quite straightforward. It implies that
b=0.6. The second is not so straightforward. From (9.4), if we divide through-
out by nominal income, P(7)y(¢), then we have

AB(1) _ G(r)  NT(@) +iB(t—1)
P(y(r)  P()y()  Py(r)  P()y(1)

In other words, if the government budget deficit is not to exceed 3%, then this
means that

AB() _
P(y(t)

But

AB() _ G()  NT() N iB(t—1) (P(t—l)y(t—l))
P(Oy(r)  P(Oy()  POy() P@—Dyr—1) P(1)y(1)

P(t— 1)yt — 1))
P()y(1)

=(g(t) —nt(t)) +ib(t— 1)(

But we already know that

Pi—1) 1 ye—-1_ 1
Py 1+7 yn l+g,

SO

AB(1) ib(t—1
= (g() () + )
P()y(7) (I+m1+g)
Using approximation (iii) in box 5 (p. 177), we have that the coefficient of
b(t—1) is simply i. Hence
AB(1)
P(0)y(1)

which must be less than or equal to 3%.
In considering the dynamics of the Maastricht Treaty, therefore, we have
two crucial equations and their constraints

Ab(1)=(g(1) —nt(t) — (g, —Nb(t—1) b(1)=0.6
AB(f)
P()y(2)

where we have assumed no monetisation of the debt. The situation is more
clearly revealed in terms of figure 9.8. We are here assuming instability with a

=(g(t) —nt(t)) +ib(t—1)

=(g(t) —nt(1)) +ib(t—1)=0.03
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Ab,AB/Py

60%
AB
Py

/ Ab
0.03 // 3%

Constraint set imposed
g—nt | by the Maastricht
fiscal criteria

0.6 b

situation of a primary deficit as a percent of GDP and low growth. Since
r—g,=i—m—g, then the slope of the first equation will always be less than the
slope of the second equation in (9.16). Furthermore, both lines emanate from
the same value, the value of the primary deficit as a percent of GDP. The 60%
criterion places an upper limit on the value along the horizontal axis of figure
9.8, while the 3% criterion places a limit along the vertical axis. In order to
satisfy both constraints, therefore, an economy must lie within the rectangle
formed by these two constraints.

Given the instability shown in figure 9.8, which we have already indicated is
illustrative of the 1990s, then sooner or later either one or both of the criteria
will be violated. Let us see the situation over time by considering two simple
examples.

9.6.1 Example 1

First take the UK around the mid-1990s. We have the following information.
The primary deficit as a percentage of GDP is 4.3%; nominal interest rates are
7.8%; inflation is 2.5%; and GDP is growing at a rate of 4%. Debt/GDP is ini-
tially 50%. The situation is shown in figure 9.9. The first observation is that at
the initial debt/GDP ratio of 50%, the budget deficit/GDP ratio of no greater
than 3% is violated in a major way. The budget deficit/GDP ratio stands at
8.2% since

AB(1)
P(0)y(2)

However the initial debt ratio is below 60%. Using a spreadsheet similar to
figure 9.9, we find that the 60% is reached by period 2, by which time the
budget deficit/GDP ratio has risen to 8.6%.

— (g(t) —nt(£)) +ib(t—1)=0.043 +0.078(0.5) = 0.082

Figure 9.8
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Figure 9.9

Suppose we ask the following qustion. ‘What would have to be the size of
the budget deficit/surplus as a percentage of GDP in order to stabilise the debt
at the initial 50%? We can answer this question simply by rearranging (9.13)
after setting Ab(z)=0and b=0.5, i.e.

0= (g(2) —ni(1)) +(0.013)(0.5)
(g(2) —ni(2)) =—0.0065

In other words, a primary deficit/GDP of 4.3% needs to be turned into a
primary surplus of just over 0.5%. If no corrective action is taken, and the
debt/GDP ratio rises to 60% by period 2, then the corrective action on the part
of the budget to stabilise the debt at this level would need to be

0= (g(?) —nt(1)) +(0.013)(0.6)
(g(t) —nt(1))=—0.0078

which is a larger surplus. Given the instability inherent in the economy, this
result is quite general. The longer the delay to stabilise the budget the larger
the adjustment has to be.

But there is another consideration worth noting. Even if the debt/GDP ratio
were stabilised at 50% by means of a major deflation of the economy, the sit-
uation is still unstable! The debt ratio will continue to rise and yet further
deflation will be necessary. This is not a reassuring prospect.

9.6.2 Example 2

Consider the following hypothetical situation. A country has a primary
deficit/GDP of 0.5%; nominal interest rates are 7% with inflation at 2%; GDP
is growing at a respectable 3.5%; and the initial debt/GDP ratio is 0.32. The
initial budget deficit/GDP ratio is
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AB(1)
P(0)y(2)

or 2.74%. This means both criteria of the Maastricht Treaty are satisfied. The
situation is still, however, unstable. The debt ratio line has a slope 0f 0.015, and
so the debt/GDP ratio will inevitably rise over time. Which of the Maastricht
criteria will be violated first? It should not be surprising that it is the budget
deficit/GDP ratio of 3% that will be violated first. Even at the initial debt ratio
of 32%, the budget deficit/GDP ratio is already close to 3% at 2.74%. This is
because of the high nominal interest rate as much as anything. If the economy
carries on the same path, then it will hit the upper limit on the budget
deficit/GDP ratio of 3% in period 5. On the other hand, it will take up to
period 24 before the 60% limit on the debt/GDP ratio is hit. For this economy,
the more serious problem is to do with the budget deficit/GDP ratio.
If it took immediate action to stabilise the debt/GDP ratio at 0.32, then

0= (g(r) —nt(£)) +(0.015)(0.32)
(g(¢) —nt(1)) =—0.0048

— (g(£) —nt(1)) + ib(t—1) =0.005 +0.07(0.32) = 0.0274

and so it would need to convert its primary deficit into a primary surplus of
almost the same magnitude.

Of course we have been assuming in these examples that the real interest rate
and the growth of real output remains constant, which is highly unlikely. The
model as it stands, however, cannot endogenise these variables.

9.7 Some final observations on the Maastricht Treaty

In the above analysis we have noted that in order to satisfy the deficit ratio of
the Maastricht Treaty a number of countries will need to convert a primary
deficit/GDP ratio into a primary surplus/GDP ratio. This will require very
deflationary policies on the part of many countries. But we ignored in our
analysis monetary financing of the budget deficit. Any monetary financing of
the budget deficit will reduce the size of the intercept on the vertical axis and
so reduce the need for part of the deflationary package. But such monetary
financing of the budget deficit is not considered prudent. Furthermore, this
will require an increase in monetary growth that could fuel inflation. The rise
in inflation in turn could raise the nominal rate of interest. The Maastricht
Treaty therefore imposed two additional constraints: one on inflation and the
other on nominal interest rates. These are:

(1) Inflation must be less than the average inflation rate of the lowest
three countries of the EU, plus 1.5%.
(2) Nominal interest rates must be less than the average interest rates of

the three countries referred to under (1) plus 2%.

Since money financing raises inflation, this is curbed by the first of these two
additional criteria. The second curbs both the use of money financing, since a
rise in inflation raises nominal interest rates, but also reduces the degree of
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bond financing because this, too, will raise the interest payment on the debt.
What all this means is that there is even greater pressure on countries to adjust
the primary deficit/GDP ratio.

An unstable situation could be converted to a stable situation if the growth
in real income is raised relative to the real rate of interest. If this were to be
achieved without raising inflation in the process, then economies will need to
consider supply-side policies. These, however, take a long time to implement,
and an even longer time to have an impact on growth. In the meantime the two
main fiscal criteria set out in the Maastricht Treaty will be violated.

It has been very tempting for individual member states to satisfy the crite-
ria by one-off events and a process of ‘creative accounting.’ These include such
policies as telephone payments (as in France and Denmark), privatising
government-owned businesses (Austria) and changes in the provision of
pension funds (Portugal). Germany even tried to revalue its gold reserves. But
most of these are one-off events. They cannot be sustained over periods of
time. It is necessary, therefore, for member states to find ways to stabilise their
budget dynamics.

Exercises

(1) A country has no inflation, is growing at 2.5% and has a nominal
interest of 4%. It is presently running a budget deficit as a proportion
of GDP of 6%.

(1)  What is the expression for b(¢) in terms of b(¢t —1)?

(1) What is the equilibrium debt/income ratio? Is this country a
creditor or debtor in equilibrium?

(ii1) If the initial debt/income ratio is 30%, will this rise or fall over
time?

(iv) Draw Ab against b and the phase line for this model.

(2) For the economy in the numerical example in section 9.3, where
b(0) =50%
(1) At what time period does the debt/income ratio equal 100%?

(i) If the nominal interest rate is higher so i—g, =2.5%, at what
time period does the debt/income ratio equal 100%?

(ii1) If the primary deficit/GDP is lower at 1%, at what time period
does the debt/income ratio equal 100%?

3) A country is growing at 3% and has a debt/GDP ratio of 50%.
Assuming no money financing, what is the primary budget
deficit/surplus that keeps the debt/income ratio constant when
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(4)

()

(1)  The real interest rate is 2%?

(1)) The real interest rate is 5%?

A country has 2% inflation, is growing at 2.5% and has a nominal
interest rate of 6% and a debt/income ratio of 40%. It presently has a
budget deficit as a percentage of GDP of 3% and involves no money
financing. This budget deficit exists for periods 0 to 5 and is then
reduced to 1% for the next five years. Plot the debt/income ratio for
t=0to 10.

Consider the numerical example in section 9.3.

(i)  Suppose the debt/income ratio was to be stabilised at b =55%.
What is the level of the primary deficit/surplus to GDP that will
achieve this?

(i) What is the primary deficit/surplus to GDP that will stabilise
the debt/income ratio at 60%?

(i) What do you conclude about a country’s adjustment to its
primary budget deficit/surplus if it waits until it reaches the
debt/income ratio limit set under the Maastricht Treaty?
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(10.1)

10.1 Introduction

One of the most recent advances in Mathematics has been the subject of chaos
theory. One might recall in the Spielberg film, Jurassic Park, the mathemati-
cian trying to explain chaos with a drop of water over the back of the hand of
one of the other scientists. The second drop, when dropped as close to the first
as possible, would still very soon move off the hand in a different direction.
This is a very useful account of the way dynamic systems can become drasti-
cally different from some very small change in the initial condition. What is
important about this is that even if the system is deterministic it can still give
the impression of being chaotic. Chaos does not require something to have a
random nature. If something is purely random, then it is impossible to predict.
A deterministic system, on the other hand, is completely predictable. However,
if the system is very sensitive to the initial conditions, and moves quite differ-
ently for different initial conditions — even if these are extremely close together
— then to all intents and purposes the system becomes unpredictable.

One may wonder why scientists have only just discovered such chaos. Part
of the reason is that these chaotic systems occur only in the presence of non-
linearity, and scientists have only recently turned their attention to nonlinear
systems. Even very simple nonlinear deterministic systems can exhibit chaos.
In this chapter we shall consider just some of these. But it is worth recalling
what a deterministic system is all about, and it may well be worth re-reading
section 1.3. In highlighting the features of such a system, consider the logistic
equation in the standard form

x(t+1D)=Ax(t)(1—x(1)) 0=Ar=4

This equation is concerned with just one variable, x, which moves over time
and one parameter, A. We can generalise and think of the equation as simply
f(x,A). Now in order to know the sequence of values for x, we need to know
the initial condition, i.e. the value of x when ¢ =0, which we write x(0). We also
need to know the value of the parameter A. Once we have the initial condition
and the value of the parameter A, we know everything about this series and
can generate it quite readily on a spreadsheet. No matter what the series looks
like, it will always be the same if the initial condition is the same and the value
of the parameter is the same. In other words, given the same values, the series
will be identical on different computers using different software packages, on
a hand-held calculator, etc. It is in this sense that the system is deterministic.
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Let us set this problem up on a spreadsheet, which is quite straightforward,
and shown in figure 10.1. In cell D2 we place the value of A, and in cell BS we
place the initial condition, the initial value of x. Cell B6 simply has the formula

= Ax(0)(1 — x(0))
= $DS$2*B5*(1 — BS)

which is then copied to the clipboard and pasted down. Here we have 7 running
from 0 to 20. Finally, we block cells A5:B25 and generate the inserted graph.
With x(0)=0.5 and A= 1.5 the series tends to a steady-state value of 0.3333.
There appears nothing chaotic about this series. Now change the value of A to
3.82, and lo the series is quite different! It exhibits peaks and troughs up to just
beyond period 10, then settles down up to about period 17, and then for no
apparent reason starts to cycle again. You may want to extend the series way
beyond period 20, to, say, period 100, and see what the series looks like over
this more extended range. What is clear, however, is that although the system
is quite deterministic, it is far from predictable when A =3.82, and seems to be
quite chaotic.

We shall return to this equation in detail later. Here all that is being demon-
strated is that such a simple nonlinear equation can exhibit rather chaotic beha-
viour. We now need to investigate why this is so. To do this, we first discuss the
topic of bifurcation. It is this concept that is at the heart of chaotic behaviour.
Armed with this concept, we can discuss chaos theory in more concrete terms.

10.2 Defining bifurcations

In this section we shall consider a simple nonlinear equation of a single vari-
able and a single parameter. This example is adapted from Sandefur (1990).
The equation we want to investigate is

Figure 10.1
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(10.2) x(t+ 1) = f(x(2)) = 1.5x()(1 — x(£))— A
First let us define the term ‘bifurcation’. Bifurcation theory is the study of
points in a system at which the qualitative behaviour of the system changes as
the value of a parameter is changed. We know that a fixed point of this system
satisfies the condition
(10.3) X =1.5x"(1—x")—A
or solving
15x*2—=5x*+10A=0
, 1EVI1-—24)
(10.4) X =—"
6
What we immediately discover from this result is that the equilibrium value of
x depends on the precise value of the parameter A. Furthermore, the stability
properties of the equilibrium point will also depend on the precise value of this
parameter. For instance, if 1 — 241 <0, i.e. A>1/24, then no equilibrium exists.
If 1 —=241>0, i.e. A<1/24, then two equilibria exist, namely
, 1=V1-240 | 1+V1-24A
(10.5) Xj=—————, Xj=—————

6 ’ 6
At the value A = 1/24 the characteristics of the system change. In other words,
either side of this value the characteristics of the system are quite different.
These points are called bifurcation points.

This particular bifurcation point is illustrated in the spreadsheet shown in
figure 10.2. This spreadsheet calculates and plots the equilibrium values as the
value of A changes. The function and the formulas used are shown at the top
of the spreadsheet. Consider first column A. In cell A10 we have placed the
initial value of A, namely unity. We now use the fill command. But this is the
first time we have used it with a negative value, which is still allowed. Our step
value is set at —0.02, which is quite small but we wish to have a ‘clean’ plot.
The termination point is set at —1.00. In cells B10 and C10 we have the for-
mulas

BI0 | =(1-V1-24A)6
=(1 - SQRT(1 - 24*410))/6
Ccl0 | =(1+V1-24x)/6
=(1+ SQRT(1 —24*410))/6

These formulas are then copied to the clipboard and pasted down. The first
thing we note is the entry #NUM ! in cells B10 to C57. Once A =1/24=0.0417,
then we have real values. In terms of the spreadsheet, this occurs at the value
0.04 and beyond. Notice that we do have two different values for A=0.04
because this is not equal to the value of 1/24. Finally, we block cells A10:C110
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and produce the inserted graph. Notice that this is a multiple X-Y plot with
the value on the x-axis remaining the same, which is simply the value of A. The
spreadsheet simply plots the value zero when it encounters the expression
#NUM!, which is fine. What we clearly observe from the chart is the bifurca-
tion that takes place around A =0.04 (and occurs at the value 0.0417, to four
decimal places).

Turning now to the stability of the fixed points, we recall that stability must
be defined locally when there is more than one fixed point. Also, the stability
of a fixed point is determined by the first derivative of f(x = x*) given in (10.2),
where the derivative is with respect to the variable x and x* is replaced by the
particular fixed point under consideration. Of course, the fixed point itself
depends on the value of A.

The first derivative is

f'(x)=1.5-3x"
Substituting the equilibrium values given in (10.5), we have for the lower fixed
point, xj

f'(x])=1.5-3x]=

15_3(1—\/1—24/\

6 >:1+0.5 1—=241>0 forA<l1/24

Since the first derivative is positive around the fixed point x7, then this fixed
point is unstable or repelling.
Next consider the stability of x;

F1()=1.5-3x;=

15_3(1+\/1—24)\

6 >:1—O.5 1 —24)1 fora<1/24

Figure 10.2

(10.6)

(10.7)
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However, this represents stability only if —1<f"(x5) <1, i.e.

—1<1-05V1-24r<1
—0.625<1<0.0417

This system is stable or attracting, therefore, only for values of A lying in the
range —0.625<A<0.0417.

The third and final situation is where A =1/24=0.0417. In this case the two
fixed points have the same value, namely 1/6. Furthermore

Frx=1/6)=1

and so the stability of the fixed point is inconclusive or semistable. The value
x*=1/6 is the bifurcation value for this problem.

We can combine all this information about the equilibrium points and their
attraction or repelling on a diagram which has the parameter A on the hori-
zontal axis, and the equilibrium point x* on the vertical axis. Such a diagram
is called a bifurcation diagram, and such a diagram is shown in figure 10.3 for
the present problem. It is to be noted that this is a stylised version of the
diagram we constructed in the spreadsheet shown in figure 10.2. The vertical
arrows show the stability properties of the equilibria. Inside the curved area!
the arrows point up while outside this area they point down. If —0.625<
A<0.0417 then there are two equilibrium points, the greater one of which is
stable and the lower one unstable.

We have used this example to show what a bifurcation point looks like. But
we can be a little more precise. We shall continue to use this example, however,
to illustrate the additional concepts. Let N, denote the number of equilibrium
values of a system when the parameter is equal to A, then if for any interval
(Ay—&,Ay+ &) N,is not constant, A, is called a bifurcation point and the system
is said to undergo a bifurcation as A passes through A,. For the example we
have been discussing, we have

1, for A=1/24

2, for A<1/24
N,=
0, for A>1/24

and so A =1/24 is a bifurcation.

10.3 Saddle-node bifurcation

The type of bifurcations encountered in dynamic systems is often named
according to the type of graph that they exhibit, e.g. saddle-node bifurcation
and pitchfork bifurcation, to name just two. The example we discussed in
section 10.2 1s a saddle-node bifurcation. It is called this because at the value
A, the fixed points of the system form a U-shaped curve, which is open at one
end. In this example it is open to the left. In this section we shall consider an
alternative example, which is based on a continuous model.

I The curve relating x and A in fact forms a parabola, with formula (6x* —1)2=1—24A.
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Figure 10.3
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Let
X(1)=f(x(1)) = A — x%(1) (10.8)
First we need to establish the fixed points of the system. We certainly know
there is more than one because we have a quadratic in terms of the variable x.
For equilibrium we have
0=A—x"
=V (10.9)

If A<0, then, no equilibrium exists. For A>0 there are two fixed points, one
for +\/A and another for — V/A. This can be set up on a spreadsheet in exactly
the same way as the previous example. The formulas entered are simply the
negative and positive square root of the entry in column A, which gives the
values of A.

In order to consider the stability conditions for the continuous system we
need to consider f'(x") in the neighbourhood of the fixed point. If f'(x*)<0
then x* is locally stable; and if f'(x*) >0, then x" is locally unstable. Since

SI(x)=—2x"
then
D=1 (= VA)=+2VA>0for A>0

(10.10)
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Figure 10.4

(10.11)

(10.12)

(10.13)

and so xj =—"V A 1s unstable. On the other hand
1165 =f"(+VA)==2Vr<0 for A>0

and so x* =+ VA is stable. At A =0 the two fixed points coincide and the fixed
point is stable from above. The situation is shown in figure 10.4.
Summarising in the neighbourhood of the point A=0

2, for A>0
N,=11,forA=0
0, for A<O

and so A =0 is once again a saddle-node bifurcation.

10.4 A transcritical bifurcation and a pitchfork bifurcation

10.4.1 A transcritical bifurcation

Consider the following continuous nonlinear dynamical system
X(t)=f(x(1))=Ax —x2=x(A—x)

The fixed points are clearly
x;j=0and x;=A

Obviously, the two fixed points become identical if A =0. Summarising in the
neighbourhood of A =0, we have

2, for A>0
N,=41,forA=0
0, for A<O

and so A =0 is a bifurcation value.
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Figure 10.5

This too is extremely easy to set up on a spreadsheet, as shown in figure 10.5.
Column A has the values of A, column B has the value of x}, which is simply
zero, and column C has the value of x3, which is A. The value of A should be
taken over a positive and negative range, say — 1 <A <1.

Turning to the stability properties, we have

f'(x*)z/\—zx* (10.14)
and

.. | >0 for A>0 hence unstable
AU /\{<O for A <0 hence stable

For the second fixed point, we have

<0 for A>0 hence stable
>( for A<<0 hence unstable

ro==1

Another way to view this is to consider x] =0 being represented by the hori-
zontal axis in figure 10.5, and x; = A being represented by the 45°-line. The two
branches intersect at the origin and there takes place an exchange of stability.
This is called a transcritical bifurcation. The characteristic feature of this bifur-
cation point is that the fixed points of the system lie on two intersecting curves,
neither of which bends back on themselves (unlike the saddle-node bifurca-
tion).

10.4.2 Pitchfork bifurcation

Consider the following continuous nonlinear dynamical system
X(1) = f(x(1)) = Ax(1) — x3(1) = x(£)(A — x*(1)) (10.15)
This system has three critical points.

x'=0, x;=+VA xi=—VA (10.16)
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Figure 10.6

where the second and third fixed points are defined only for positive A.
Summarising in the neighbourhood of A =0, we have

1 for A=0

(10-17) N":{Zs for A>0

and so A =0 is a bifurcation value.
Since
(10.18) f'(x",A)=A—3x"
then at each fixed point we have

e | <O for A<<0 hence stable
J0= /\{>0 for A>0 hence unstable
f’(+ \f)t) =—2A <0 for A>0 hence stable
f’(— \f,\) =—2A <0 for A>0 hence stable

The characteristic feature of this bifurcation is that at the origin we have a
U-shaped curve, which is here open to the right, and another along the hori-
zontal axis that crosses the vertex of the U. It forms the shape of a pitchfork,
as shown in figure 10.6, and is therefore called a pitchfork bifurcation.

10.5 The logistic equation, periodic-doubling bifurcations
and chaos

Return to the logistic equation, which we are considering in its discrete form
(10.19) x(t+1)=f(x(®)=Ax()(1 —x(z)) 0=A=4

Why A ranges over zero to four we shall explain later. First, establish the equi-
librium points where x(z + 1) = x(¢) = x* for all . Then
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X =Ax*(1—x%)
AXZ2+(1—=2)x"=0
X AX*+(1—=A)]=0
1.e. we have the two fixed points
. ., A1
x1=0, x;= T (10.20)

To investigate the stability of these solutions we need to employ a linear
approximation around the fixed point. This is given by

x(1+ D) =f(x") + 1/ (x")(x(1) — x7)
But if x* is an equilibrium point, then

—1
fip=0and f(5) ="

Furthermore
f(x)=A—2Ax"

and so
Afor x*=0
"(x*) = A—1
S 2—Aforx* =——

Consider x] =0 first. If 0 <A <1 then the system in the neighbourhood of this
fixed point is stable. Now consider x5 = (A — 1)/A, then

x(t+1)=x"+2—A)(x(r) — x%)
oru(t+1)=(2— Mu(?)

where u(z+1)=x(t+1)—x* and u(¢) = x(¢) — x*. So the system in the neigh-
bourhood of this fixed point is stable if

12-A|<1
—1<2-A<1
1<A<3

So the system is stable around the second fixed point for 1 <A <3.

What we observe is that for 0=A <1 the only fixed point is x; =0 and this
is locally stable. The point x7 =0 is an attractor. For 1 <A <3 we have an equi-
librium solution x5 = (A — 1)/A, which varies with A. The situation is shown in
figure 10.7. At A=1, where the two solution curves intersect, there is an
exchange of stability from one equilibrium solution to the other.

Of course, A is not restricted to a range below 3. The question is: What
happens to the solution values as A is allowed to increase beyond 3? This is not
straightforward to answer at the elementary level. We can, however, get some
idea of the problem by considering the conditions for equilibrium more care-
fully. Given f(x)= Ax(1 — x) then fixed points are established by finding the
value a that satisfies a = f(a). We did this above, where we used x* rather than

(10.21)
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Figure 10.7

a. If a two-cycle occurs then this satisfies the condition that a =f( f(a)). In the
first case we can find the value of a by finding where f(a) cuts the 45°-line.
Similarly, we can find the values of the two-cycle, if it exists, where f( f(a)) cuts
the 45°-line. Of course, the situation will be different for different values of A.

Let us set all this up on a spreadsheet. The computations are going to be
placed on sheet 1 of the spreadsheet and the diagrams (since there will be more
than one) will be placed on sheet 2. Figure 10.8 shows the computations sheet.
In cells G2 to G5 we place four different values for A, namely 0.8, 2.5, 3.0 and
3.4. In cells A9:A29 we place the different values of x, which range between 0
and 1. We have here used a step size of 0.05. In column B we place the values
of x(z+ 1) that occur along the 45°-line, which are no more than the values
given in cells A9:A29. We therefore copy cells A9:A29 and place them into
cells B9:B29. In cell C9 we enter the following formula

=1 x(0)(1 — x(0))
— $G$2* A9*(1 — A9)

This is then copied to the clipboard and pasted down. Next we consider cell
D9 which has the formula

=/(x(0)(1 = x(0)))
=$GS$2*C9*(1 — C9)

Notice here that we write out the formula again, but use the values already
computed in cell C9, which itself uses the formula. Doing this means that the
value in cell D9 is f( f(x(0))). This is then copied to the clipboard and pasted
down. To construct the first of our diagrams, we block cells A9:D29 invoke the
X-Y plot, which plots multiple graphs on the same x-axis (column A) and
insert this on sheet 2. The result is shown in figure 10.9(a).

To derive columns E and F, we simply copy cells C9 and D9 and paste them
into cells E9 and F9, respectively. Then we change the cell for the value of the



A little bit of chaos

205

Figure 10.9(a) Figure 10.9(b)

1.00 - 1.00 -

0.80 | 0.80 |

0.60 | 0.60 P -

x(t+1) x(t+1) rd

0.40 | 0404 /

020 020/

0.00 L ‘ R 0.00 ‘ ‘ ‘ !

000 020 040 060 080 1.00 000 020 040 060 080 1.00
x(t) x(t)
Xt )=x{) ... f(x) (f(x)) x(O=x(t+1) ... (%) o F(F(X))
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Figure 10.8

Figure 10.9
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parameter to $G$3 and ensure that the value of x is that in cell A9. The change
to cell D9 is more straightforward. All we need to do is change the parameter
designation to $G$3. The cell will already denote the value of x to be that in
cell E9. To summarise these we have

E9 = A,x(0)(1 — x(0))
= $G$3*A49*(1 — A9)

F9 = f(A,x(0)(1 = x(0)))
=$G$3*E9*(1 — E9)

These are then copied to the clipboard and pasted down. In constructing the
second diagram, however, we need to block non-contiguous cells. Block
A9:B29 along with E9:F29 and invoke the chart wizard. Choose the X-Y
chart. This will automatically assume the values in column A; denote the
values on the x-axis and the other three columns will form three series to be
plotted. The result, after some manipulation, is shown in figure 10.9(b).

Exactly the same procedure is followed to derive figures 10.9(c) and 10.9(d).
We have now completed all the computations and the diagrams. It is now time
to see what is happening.

From figure 10.9(a) we see that for a value of A=0.8 the only solution is
x7 =0 since this is the only value at which f(x) cuts the 45°-line. In fact this is
true for any value of A lying between zero and unity. The reader should change
the value of A, in this range in the spreadsheet to verify this. You will also verify
that f( f(x)) lies below the 45°-line. This means that no two-cycles occur for
this range of A. Hence, any initial value of x ‘close to’ zero will be attracted to
the fixed point xj=0. Also notice from (10.21) that /"(x])=0.8 <1, and so
x1=0 1s locally stable. Turning to figure 10.9(b), with A=2.5, we have

A—1 25-1_
A 2.5

Furthermore, from (10.21) we have /' (x] =0.6) =2 —2.5=—0.5, and since the
absolute value of this is between 0 and 1, then x]=0.6 is stable. Also notice in
figure 10.9(b) that f( f(x)) cuts the 45°-line only once, and this is at the same
value of x]=0.6. So once again no two-cycles occur. In fact, as we demon-
strated above, there is only a single positive value when A ranges over the inter-
val 1 <A<3. The reader should verify this by changing the value of A, in the
spreadsheet within this range. The situation begins to change when A =3. The
change is highlighted in terms of figures 10.9(c) and 10.9(d). In figure 10.9(c)
we have the situation in which A =3 precisely. In this case the f( f(x)) curve is
tangential to the 45°-line at the fixed point. The value of the fixed point is
L, A—1 3—-1 2
TN T 3 T3
Furthermore, from (10.21) we have f/"(x]=3)=2—3=—1 and so x]=2/3 is
semistable. Once A goes beyond the value of 3, then the curve f( f(x)) cuts the
45°-line in three places. It is also clear from figure 10.9(d) that the curve f(x)

0.6

X =
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Table 10.1. Patterns for the logistic

equation

Description Value of A
Exchange of stability 1

Fixed point becomes unstable 3
(2-cycles appear)

2-cycle becomes unstable 3.44949
(4-cycles appear)

4-cycles becomes unstable 3.54409

(8-cycles appear)
Upper limit value on 2-cycles 3.57

(chaos begins)

First odd-cycle appears 3.6786
Cycles with period 3 appears 3.8284
Chaotic regions ends 4

cuts the curve f( f(x)) on the 45°-line and that this is the central value of the
three intersection points. This value is given by

A—1 34-1

Y 34 =0.70588

X =

This is in fact unstable.? It is not easy to establish the intersection points pre-
cisely without some additional software. But it is apparent from the diagram
that the lower value is approximately 0.45 and the upper value is approxi-
mately 0.84. These approximations can be verified from the data in the spread-
sheet. At the value of x=0.45 (row 18) the entry in cell J18 is also 0.45. For
the upper value see rows 25 and 26 of the spreadsheet. In fact the values are
x5=0.451963 and x3;=0.842154 and it can be established that both these
values are stable (see Shone, 1997, ch.6). However, once A =3.449 the two-
cycle itself becomes unstable.

What one finds is that the two-cycle becomes unstable and bifurcates itself
into a four-cycle. This in turn bifurcates into an eight-cycle, and so on. In addi-
tion, there are also odd-numbered cycles. As A approaches approximately 3.65
there are no regular cycles at all and the whole picture is one of chaos. Table
10.1 summarises the patterns that have been found for the logistic equation.

10.6 Sensitivity to initial conditions and unusual patterns

We point out in table 10.1 that the two-cycle ends at the value of A equalling
approximately 3.57. We also pointed out right at the beginning of this chapter
that a major difficulty encountered with chaotic systems is that they are very
sensitive to initial conditions. This situation is illustrated in figure 10.10. Here

2 This can be established by taking the derivative of f( f(x)) with respect to x, and then replac-
ing x by the value 0.70588. The result is a value of 1.96 and since this is greater than unity, then
the fixed point is unstable.
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Figure 10.10

(10.22)

we have set the value of A equal to 3.65 and have plotted the logistic equation
for two different initial values, namely x(0)=0.1 and x(0)=0.105 which are
pretty close together. The initial value for the second series we place first in cell
E2, this is so we can change this value. The only other cells of any significance
are

B5 | 0.1

B6 | 3.65*B5*(1—B5)
C5 | $ES2

C6 | 3.65%C5*(1—C5)

We have then generated the two series and plotted x(¢) against z.

These starting values are very close to one another. The series themselves
are close for about the first ten periods but then begin to diverge and very soon
there is little comparison between them. The reader may wish to try the situ-
ation where the second series has the initial condition 0.1005, which is even
closer still.

But another characteristic arises in the case of a series entering the chaotic
region for its parameter value. Consider the following logistic equation

x(t+1)=3.94x(t)(1 —x(¢)) x(0)=0.99

Although this series is chaotic, it does not appear purely random, and in par-
ticular exhibits sudden changes. As shown in figure 10.11, the series suddenly
changes from showing oscillations to one that is almost horizontal, which it
does for about ten periods, and then just as suddenly, and for no obvious
reason, begins to oscillate once again. Recall that this system is deterministic.
It is not like saying on three throws of a dice it is always a possibility that a six
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will come up each time.3 This is because on the next three throws of the dice it
is extremely unlikely this will happen (but there is always a small probability
that it will). On the other hand, plotting this series will always give this change
of behaviour around period 33 and always lead to a sudden change around
period 43. This system is deterministic and not random. It just gives the
impression of a random series. Even more, this series too is very sensitive to
initial conditions. Change the initial value to 0.9905, which is very close to that
in figure 10.11 and you will find a totally different pattern emerges — even for
such a small change!

10.7 Van der Pol equations and a Hopf bifurcation

We introduced the Van der Pol equations in chapter 4 (section 4.8) when we
discussed limit cycles. These equations involve two variables, x and y, each a
function of time, and one parameter, denoted w. The two equations are

X(1) = (1)

Y(1) = (1 = x2(0)y(1) — x(7)
or dropping the time variable for ease

X=y

y=ml-x)y—x

System (10.23) has only one unknown parameter, w. We showed in chapter 4
how to use Euler’s approximation to construct the series {x(#),y(¢)}, which we
did in terms of figure 4.14. In this figure we set the value of w to unity. What

3 This occurs with a probability of (1/6).

Figure 10.11

(10.23)
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Figure 10.12

we are now concerned about is what the system looks like as we change the
value of w.

First let us establish the fixed point(s) of the system. We do this by setting
x=0and y=0. Thus

0=y
0=l —x2)y—x

From the first result we immediately have that y* is equal to zero, and using
this value in the second result, we immediately have that x* is equal to zero.
The fixed point of the system is therefore P =(0,0). This is the only fixed point
of the system, and it is independent of the value of u.

The system is set up in figure 10.12, which reproduces figure 4.14 with some
minor modifications. In this figure we have set the value of wto — 1.5, and set
the initial values of x and y both at 0.5, i.e. close to zero, the fixed point of the
system. Recall that we are using Euler’s approximation and the dynamics of
the system is in relation to the neighbourhood of the fixed point (0,0). This
system is too complex to investigate in mathematical terms, but we can do
some experimentation with our spreadsheet, shown in figure 10.12, to verify
some properties of the system as we change the value of .

10.7.1 Experimentation

Throughout we shall leave the initial values at 0.5, respectively, for x and y.
Now set the value of w to less than — 2, say —2.5. From the inserted graph it
will be observed that the system moves clockwise and directly to the fixed
point. This result holds for any value of w less than or equal to —2. Point
P =(0,0) is here referred to as a stable node. Now take a value of u a little
higher than — 2, say — 1.5 (the value we have in the spreadsheet illustrated in
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figure 10.12), then the system moves in a clockwise but spiral fashion to the
fixed point. The spiral is even more marked if you set the value of u to —0.5.
This spiral path occurs for all values of w in the range —2<u<<0. For u=0
the system has a centre, but this is just revealed by our approximation. Notice
that the path of the system is still clockwise. For 0 < u <2 the system exhibits
an unstable focus but, as can be seen from the spreadsheet, tends to a limit
cycle. It is unstable in the sense that it moves away from the fixed point
P =(0,0), in a clockwise direction; at the same time, however, it converges on
a limit cycle. In fact, this feature of the limit cycle occurs for positive values of
® up to about 8, and then the system becomes totally unstable. Try a few
values, suchas u=1.5, 2, 2.5, 3,5, 7.5 and 8.

If we concentrate on the equilibrium values for x and y, say x* and »*, then
for <0, x*=0 and y* =0 and the system moves along the u-axis. At w=0 the
system changes dramatically taking on the shape of a circle at this value. Then,
as w continues in the positive direction the system takes on a limit cycle in the
x-y plane for any particular positive value of u, the shape of which is no longer
a circle —up to about the value of u =8. All of these are schematically illustrated
in figure 10.13, which also shows the direction of movement of the system by
means of arrows. It can be seen from the diagram that the system changes dra-
matically as the value of u passes through zero. Hence the system exhibits a
bifurcation at the value w=0. This is an example of a Hopf bifurcation.

10.8 Lorenz equations again

In section 4.9 of chapter 4 we outlined the Lorenz equations and how to plot
them using Euler’s approximation. The results are shown in figures 4.15 and
4.16. The Lorenz equations are

Figure 10.13
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rigure 1014

A B C B E F € H

1 |Lorenz curve

2 dx

3 —=o{y—x) o= 10

4 at = 30

5 . R = 2666667

3] It dt = 0.01

7 dz

g o xy— bz

g

10 t dx/dt dy/dt dz/dt X ¥ z

11 0 0.0000 92500  -1.0833 0.5000 0.5000 0.5000

12 1 0.9240 91629  -1.0082 0.5000 0.5925 04892

13 2 1.7488 92569 -0.9292 0.5093 0.6841 04731

14 3 24998 95106  -0.8437 0.5267 07767 0.4693

15 4 2.2007 99083 -0.7493 0.5517 0.87138 0.4614

16 5 387150 104380  -0.6436 0.5837 0.9709 045329

17 5] 4 52820 11.0953 -0.5238 0.6225 1.0753 04474

18 T 51849 11.8733  -0.3871 06677 1.1862 04422
g

8538 127714 -D.2288 0.7196 1.3050 0.4383
20 g 65455 13.7005 -D.0479 0.7781 1.4327 0.4360
21 10 72700 14.9336 0.1635 0.8436 1.5706 0.4355
22 11 8.0364 16.2051 0.4101 0.9163 1.7189 0.4372
23 12 8.8533 17.6111 0.6988 0.9866 1.8820 0.4413

X=o(y—x)

Y=rx—y—Xxz
(10.24) Z=xy—bz

In this section, however, we intend to consider the system as the parameter r
varies. We shall set the value of the other two parameters at o= 10 and b =8/3.
In this instance we have the system
x=10(y — x)
y=rx—y—xz
(10.25) z=xy—(8/3)z

The model is set out in terms of figure 10.14, which duplicates figure 4.15 with
some minor changes.

Our first task is to establish any fixed points. To do this we set x=0, y=0
and z= 0. From the first equation this gives the value of x and y as being equal.
We can then express the second and third equation as

O=rx—x—xz=x(r—1-2)

0=x2—(8/3)z

From the first of these equations this implies either x=0orz=r—1. I[f x=0
theny=0andz=0.1fz=r— 1 then x=+V/(8/3)(r — 1) or x=—V/(8/3)(r — 1).
We therefore have three possible fixed points

Pl = (09030)
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Py=(—=V@3)r—1),=V@3)r—1),r—1)
Py=(+V@3)r—1),+V@3)r—1),r—1)

The first fixed point, the origin, holds for all values of r. The second and third
fixed points exist in the real space only if r=1.

Before continuing, let us use the spreadsheet outlined in figure 10.14 to
investigate what is happening around the value r=1. Take a value of r=0.5
and the initial point P(0)=(1,1,1). Then it can be observed from the various
plots that the system is attracted to the first fixed point P, =(0,0,0). Taking
more values below unity shows the same behaviour of the system. Now take
r=1, the system is still behaving about the same. Now take a value just above
1, say 1.5, then the curves start to show loops. The system has gone through a
fundamental change at the value r =1, which indicates that this is a bifurca-
tion value. In fact, for r>1, the two other fixed points come into existence.

Now experiment with different values of r. Let r take on the values 5, 10, 15,
20 and 25. With a value of 5 it will be noted that the system cycles around the
positive fixed point P;. This is also true for the value 10. At the value of 15,
however, something rather strange 1s taking place. Both fixed points P, and P,
take centre stage and the system appears to move between them! It can be noted
too that the system appears to be attracted more by the negative fixed point. At
r=20 the system is getting a little more attracted by the positive fixed point;
and even more so when r=25. These fixed points have been called strange
attractors. The system gets even more chaotic when r increases above about 40.

It will be observed in this chapter all these systems that exhibit chaotic beha-
viour and have various types of bifurcations are nonlinear systems.
Economists are only now beginning to take nonlinear economic systems more
seriously. This is because of the power of computers. As we have seen in this
chapter, even spreadsheets allow us to investigate some of the properties of
these complex systems.

Exercises

(1) Consider the following function
x(t+1)=2x(t) = 2x%(t) — A
(i)  What are the fixed points?
(i) What is the bifurcation value of A?

(111) What type of bifurcation does this function have?

(2) Consider the following quadratic (Berry, 1996, p.117)
x(t+1)=x%t)—1
(1)  What are the fixed points?

(i) What are the values of the attracting two-cycle?

(10.26)
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)

(4)

©)

Plot the following function for =0 to 50

x(t+1)=3.67x(¢)(1 — x(¢))

for the initial values

(i x(0)=0.2

(i)  x(0)=0.2001

Is this function sensitive to initial conditions?

In each of the following let x(0)=0.01, x(0)=0.0105 and ¢ from 0 to
50.

(i)  Show that

x(t+1)=2.5x(t)(1 — x(¢))

is not sensitive to initial conditions.

(i) Show that

x(t+1)=3.62x(¢)(1 — x(2))

is sensitive to initial conditions.

Plot the Van der Pol equation from the initial point (x(0),(0)) =

(0.5,0.5) for the following values of u. Take dt =0.01 and ¢ from 0 to
1500

i) p=-1
(i) wn=0
(i) p=1

What do you conclude?



Brief answers to selected exercises

Note:
ey

2)

A complete set of answers to all exercises can be found on the
Cambridge University Press web site.

There are an additional ten exercises per chapter and their solu-
tions available on the Cambridge University Press web site.

(1)
(2)

)
(4)

()

(1)

2)

Chapter 1
(1) x=4.167, (i) x=1, (iii)) x=6

1)
(i1)
(iif)

Ax(t+1)=5—1.2x(¢), globally stable.
Ax(t+1)=—2+2x(t), globally unstable.
Ax(t+1)=3 —1x(¢), globally stable.

Two-cycle cobweb with values 1 and 2.

(1)
(ii)

0))
(i)
(iif)

x,; =0.5505, x,=5.4495. Both points unstable.

x,; =—2, locally unstable; x,=— 1, locally stable; x;=1, locally
unstable.

x =2.5, globally stable.

x, =—2.7913, locally stable; x,=1.7913, locally unstable.

x,; =—2, locally unstable; x,=— 1, locally stable; x;=1, locally
unstable.

Chapter 2

(1)
(i)
(iif)
@)
(i1)

p =24, ¢g°=52
Yes.

Equilibrium achieved sooner.

215
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3) 1 p'=24, g =52 Yes.
(1) Yes.

(i) No. Two-cycle results.

(4) r=0.5, divergent oscillations.
r=—13, divergent oscillations.
r=—20.1, convergent oscillations.
r=0.1, convergent oscillations.

r=0.5, divergent oscillations.

®) 1 p=56—-04p2(t—1)

(1) p71=2.6943, p5=-—5.1949 Only first economically meaning-

ful.

(ii1) Locally unstable.

28 (4
(6) (1) p(t)=4—<3>p(t); p'=4, ¢ =6

5 p(t—1)<3.25
i) p(n= 248_(‘3‘>p([_1) plt—1)=3.25

Chapter 3
(1) (i) Y*=3000, C*=2600

(ii1) Not attained in finite time period.

3) k=5

@) () Y*=2355 C*=2084, Tx*=598.75, Yd*=1756.25

(iii) Initial BD =115, new BD=—98.75
(5)  NX*=236.667 and falls to 3.333.

Chapter 4
4) (1) x"=6.4, y"=20.8 Yes,in zigzag fashion.

(ii1) System oscillatory but convergent.

(%) (i) x"=2.553, »p*=9.787 Yes, very slowly in a cyclical manner.

(i) Convergent oscillations.
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(1)

)

(4)

()

(1)
)

)

(4)

)

(1)

(2)

Chapter 5
(1) New equilibrium Y*=1,900, r*=2.5
(i)) New equilibrium Y*=1,944, r*=10.6

(1) New equilibrium Y*=54.375, r*=17.1875
(i)) New equilibrium Y*=57.833, r*=12.917
(i) New equilibrium Y*=59.5, r*=13.75

(1) New equilibrium Y*=55.75, r*=11.875
(i) New equilibrium Y*=54.375, r*=17.1875

(1) and (i1) no change in equilibrium values.

Chapter 6
1 p=30, y=y,=8 Yes.

(1) Model A: p(t+1)=4.8+0.76p(t)
Model B:  p(t+1)=6+0.7p(t)
Both models have p* =20

(1) Model B converges sooner.

(1)  Ap(t+1)=263.75—4.25y(¢t) — 107(?)
Ae(t)=y(t)— 15
(i) y*=15 #=20
(ii1) 7re-isocline vertical at 15; y-isocline is 7¢=26.375 —0.425y

(iv) Counterclockwise and divergent.

(i =60, 7 =10
(1) New equilibrium y* =60, 7*=35

New equilibrium y*=50, 7*=10 Counterclockwise and conver-
gent.

Chapter 7

(i) Cumulative sales under five years is 117.465; under ten years is
122.067. Choice: five-year sales plan.

() Fi=1, F;=—025
(i) 56
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€)

(4)

)

(1)

2)

)

(4)

i) ¢,=15 ¢=3

(i) q(0=3—3q,t—1)
0(1)=3.75—3q,(t— 1)

(ii1) Yes.

. 9 9
(1) ql - 45 q2 - 4

(i) q(=3-3g—1)
g0 =3—3¢,(t—1)
(1) Yes.

P BN
ql 29 q2 23 q3 2

() ¢,()=9-3qt—1)—3q:(t—1)
G =9—=3q,(t— 1) = 3¢5t — 1)
g()=9—34,(t— 1) —3¢5(t— 1)

Chapter 8
(1)  Origin.

|
(i) y=—x (=0

y=-3x (=0
(ii1) Stable arm y=—1.22475x; unstable arm y =1.22475x

(1)  Origin.

.. 5
(i) r=-—2,5=6 Stable arm y=— x; unstable arm y = gx

(1) Fixed-point origin; r=—1, s = 3 hence saddle-point.

(i) Fixed-point origin; r=—8.65685, s=2.65685 hence saddle-
point.

1 x'=-2, y'=1

(i) r=-—1.73205, s=1.73205

(1) Stable arm y=—4.4641 —2.73205x;
unstable arm y =2.4641 +0.73205x
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(5) (1 §=150, p=150
(1) Dynamic equations:

p=—0.004(p — p) +0.004(s — 5)

§=5(p—p)

Stable arm: p=154.303065 — 0.0286871s through p =150
Unstable arm: p=151.217—0.0286871s through p =147

Chapter 9

(1) (1)  b(1)=0.064+1.015b(¢+ 1)
(1) b*=-—4 Creditor.
(ii1) Rise.
(2) (1) t=19.
(i1) r=21
(3) (1) g—nt=0.05.
(i) g—nt=-0.01

5) () g—nt=—0011
(i) g — nt=—0.012

(ii1) Waiting leads to larger adjustment.

Chapter 10
: . 1=VI-8A
O @ x=
1
5=t
(i) A=
(ii1) Saddle-node bifurcation.
. . 1xV5
@ @ x=
(i) -—-1,0
3) Yes.
(5) (i) m=-—1, converges in clockwise motion.

(i) =0, limit cycle, clockwise motion.

(ii1)) wp=1, limit cycle, clockwise motion.
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adjustment, 49
coefficient, 65, 98, 124-5, 146
dynamic, 140, 143
instantaneous, 94, 96, 101, 140
interest rate, 94
money market, 94, 102
noninstantaneous, 145
partial, 143-5
paths, 146
speed of, 27, 30-1, 55, 103, 125
adopters, 136-7
adoption, 136
probability of, 136
advertising, 130-5
advertising model, discrete 1334
aggregate demand curve, 115-16, 118
aggregate expenditure, 54
aggregate supply, long run, 115
announcement effects, 166, 170
approximation, 177-8
2-variable models, 24
asset market, 1601
equilibrium, 164-5
attracting points, 86
attractor, 12, 18, 203
strange, 85-6, 213
autonomous consumption/expenditure, 53
autonomous expenditure multiplier, 60,
65-7
autonomous imports, 64—5

balanced budget multiplier, 59
bifurcation, 195-8
diagram, 198
Hopf, 209, 211
periodic-doubling, 202
pitchfork, 198, 200-1
point, 196, 198
saddle node, 198, 200
theory, 196
transcritical, 2001
value, 198
bonds, 176
budget
deficit, 58, 174
deficit/GDP ratio, 189-91
primary deficit, 176, 178, 186, 191
primary surplus, 176, 178, 191
pure money-financed deficit, 176, 181
pure bond-financed deficit, 1767, 181
surplus, 59

budget dynamics, 176, 181
budgetary computations, 67

capitalist economies, 104
ceilings, 40-1, 47, 107
centre, 83
chaos theory, 194-212
chaotic systems, 194
characteristic roots

see roots
closed economy, 63
cobweb, 4, 16, 39, 46, 116

explosive, 42

linear, 34

nonlinear, 39-40
comparative statics, 2
conjectural variation, 13940, 142
consumption, 52, 60, 62
continuous models, 18
convergence/divergence, 35, 124,

anticlockwise, 126
corn market, 43-5
Cournot duopoly, 142
Cournot solution, 13945
creative accounting, 192
currency

appreciation, 159

depreciation, 159, 167

domestic, 158

foreign, 158
curve

demand, 27, 35, 138

demand-pressure, 118

IS-LM, 99

isoprofit, 139

Lorenz, 85-9, 212

reaction, 139-41

sigmoid, 135

solution, 22

supply, 27, 33, 35
cycles

2-cycle, 41, 204, 206-7

3-cycle, 79

4-cycle, 207

8-cycle, 207

odd, 207
cyclical behaviour, 106

debt ratio, 180, 184, 186, 190
demand and supply model, 27, 44
demand pressure curve, 123
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Index

deterministic system, 194
difference equations, 10

continuous, 79

discrete, 78

first-order, 11

linear, 12

sloped, 12
differentiation

logarithms and percentages, 114
diffusion process, 136

speed of, 136
Dornbusch model, 157

perfect foresight, 157-64
duopoly, 138-9, 141, 146
dynamic oligopoly, 142-6
dynamical systems, 50, 115, 117

deterministic, 5, 6

nonlinear, 14

parameters of, 6

equation
autonomous differential, 20
continuous differential, 22
difference, 50
first-order differential, 20
first-order linear recursive, 64
first-order nonlinear recursive, 39
fundamental recursive, 178
homogeneous autonomous, 170
Lorenz, 211
linear autonomous, 170
logistic, 202, 207
money demand, 112
non-autonomous, 21
nonlinear difference, 137
quadratic, 15
recursive, 50, 143
second-order recursive, 38
simultaneous, 71
single-variable, 23
Van der Pol, 84-5
equilibrium
income, 48
price, 2
second-order recursive, 37, 38
stability of, 3
equilibrium relationship
asset market, 159
goods market, 159

Euler approximation, 20, 23-4, 84, 101, 130,

151, 21011
excess demand, 28, 52
excess supply, 28
exchange rate
behaviour, 157
spot, 159
exchange market, 165
expectations
adaptive, 35
formation, 36, 38
price, 36
see also Goodwin model of expectations
expectations-augmented Phillips curve
see Phillips curve

expenditure
consumption, 48
government, 48
investment, 48
total, 48, 52
expenditure function, 53
expenditure line, 53
exports, 63, 65-7

firm
dynamics of, 130
theory, 130
fiscal dynamics, 174
fiscal policy
expansion, 93, 1034, 107
fiscal and monetary policy, combined,
104-5
fixed point, 69
stability, 197
floors, 401
flows, 174

goods market, 91-2, 94, 157-8, 161
Goodwin model of expectations, 37-8, 46
Government

bonds, 175

debt, 181

deficit financing, 174

spending, 100
gross domestic product (GDP), 63, 176
growth, 180, 184

high-powered money, 176, 1867
hog market, 43-5

imports, 63, 65-7
income, 126
damped, 62
disposable, 56, 62
equilibrium level of, 48, 52-3, 56-7, 61-2,
65,115
lagged, 60
national, 48-9
natural level of, 124
oscillatory, 62
path, 127
inflation, 117, 186
actual, 127
expected, 126-7
logarithm, 114
macroeconomic model of, 111
initial conditions, 9, 207
initial value, change in 16
initial value problem, 22, 130
interest rate, 97
ceiling, 107
international asset market, 159
interrelated markets, 43-5, 69, 150
investment, 60-2, 91, 95
IS-LM model
continuous version, 101
discrete version, 105-7
static version, 91-3
isoclines, 72-7, 125, 150, 161
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Keynesian-cross diagram, 48
limit cycle, 84-5
logarithms, 112-14, 157
power rule, 113
product rule, 112
quotient rule, 112
logistic curve
2-cycle
Lorenz curves, 85-9, 212
Lorenz equations, 211

Maastricht Treaty, 174-5, 191-2
dynamics of, 188
fiscal criteria of, 174, 188
macroeconomy, 124
marginal cost, 138
marginal propensity
consume, 48, 53-4, 91
import, 64-5
market penetration, 138
market saturation, 135
maximum absorptive capacity, 130
Microsoft Excel, 30
model
autonomous, 70
cobweb version, 31
comparative static, 117

continuous, 18, 20, 77-4, 98-101, 125

continuous market adjustment, 158

demand and supply, 32

difference equation version, 31

diffusion, 135-8

discrete dynamic, 140

discrete nonlinear, 19

dynamic, 2-3, 50, 117, 150, 155

dynamic three-firm oligopoly, 142-3

economic, 2

equilibrium of, 2

income-price determination, 117

IS-LM, 101

Keynesian, 48-9

linear cobweb, 31

macroeconomic, 2

microeconomic, 2

multiplier—accelerator, 60-2

nonlinear, 39

partial-adjustment duopoly, 143

recursive, 3, 19, 39

static, 2, 49

three-equation, 86

two-equation autonomous, 1534
monetary policy

expansion, 93, 95, 98, 101-3, 106, 1234

money demand, 113
money market, 91-2, 94, 159
money supply

change in, 123

rise in, 166
monopoly, 130, 142
multiplier, 54-5
national income, 48-9

official deficit, 175
Okun’s law, 111, 123

oligopoly, 130
stability of, 140
static theory of, 138
three-firm, 1424
open economy, 6364, 157
orbit, 70
see also trajectory
oscillatory behaviour, 3, 19, 37, 143, 146
output level, 140
overshooting, 95, 102-3
exchange rate, 165

path, 38-9
income, 126
time, 49
zigzag, 122-3
see also trajectory
perfect foresight, 149, 157-9, 167
see also Dornbusch model
periodic cycle, 14
phase line, 12, 13, 50
phase plane, 69-70, 73-4, 149-50, 152
phase space, 76
two-dimensional, 79
phase diagram
Phillips curve, 110, 118-19, 127
expectations-augmented, 110
linear, 110
plots
three-dimensional, 86
policy changes, 67
PPP
see purchasing power parity
preference direction, 139
prices, 27
actual, 36
domestic, 158
expected, 36
foreign, 158
price ceiling/floor, 40-2
price path
divergent oscillatory 38
profit function, 140
purchasing power parity (PPP), 113, 158

quadratic, 39, 199

rational expectations, 149
with perfect foresight, 165
modelling approach, 166

reaction plane, 142

real-money balances, 123

recursive equations, 3

repellor, 12, 18

roots
characteristic, 1534
stable, 172

saddle path, 149, 163
saddle point solutions, 149-50, 155, 157, 161,
169
discrete systems, 170
stable arm, 153, 155
unstable arm, 153-5, 164
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sales, 130-3 tax
saturation, 136 autonomous, 59
shunt, 20, 22 behaviour, 58
solution path, 23 induced, 59
spiral, marginal rate of, 56, 60, 91
clockwise, 82-3 total receipts, 56
explosive, 82-3 taxes, 56
explosive anticlockwise, 121 time, 1, 69-70
path, 103-5 continuous, 69
spreadsheet, 6, 7, 8, 20, 22-3 discrete, 69
addresses, absolute/relative, 6, 7, 8 total revenue function, 140
experimentation, 122 trajectory, 69-70, 79, 106
‘Fill’ command, 7, 130 continuous, 74-6
graphing, 9, 30 discrete, 77-8
noncontiguous cells, 30 three-dimensional, 86
stability/instability, 3, 149 see also orbit
exchange of, 202-3
global, 5, 66 unemployment
local, 15 natural rate of, 124
stable node, 81, 210 unstable star, 80
steady-state solution, 134 unusual patterns, 207
stocks, 49, 174, 176
strange attractor Van der Pol equations, 84-5, 209-10
see attractor vector forces, 72-7, 125, 150

structural parameters, 6
supply-side policies, 192 wage ceiling/floor, 42



