
Chapter - Four

Memory Management

1

Outline
• Overview of processors and memory
• Memory management definition
• Binding of Instructions and Data to Memory
• Executable code
• Simple memory management schemes
• Swapping
• Logical vs. Physical Address Space
• Memory protection with dynamic relocation (MMU)
• Contiguous memory allocation
• Segmentation
• Paging
• Segmentation with paging
• Memory caching 2

Memory Management
• The CPU fetches instructions and data of a

program from memory;
• Therefore, both the program and its data must reside

in the main memory (RAM and ROM).
• Modern multiprogramming systems are capable of

storing more than one program, together with the
data they access, in the main memory.

• A fundamental task of the memory management
component of an operating system is to ensure safe
execution of programs by providing:
– Sharing of memory
– Memory protection

3

General-purpose processors
• Programmable device used in a

variety of applications
– Also known as “microprocessor”

• Features
– Program memory
– General data path with large

register file and general ALU
• User benefits

– Low time-to-market and costs
– High flexibility

• “Pentium” the most well-known,
but there are hundreds of others

4

5

Basic Architecture

• It has Control unit
and datapath
– Note similarity to

single-purpose
processor

• Key differences
– Datapath is general
– Control unit doesn’t

store the algorithm –
the algorithm is
“programmed” into
the memory

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

6

Datapath Operations
• Load

– Read memory
location into
register

• ALU operation
– Input certain

registers through
ALU, store back in
register

• Store
– Write register to

memory location

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

7

Control Unit
• Control unit: configures the

datapath operations
– Sequence of desired operations

(“instructions”) stored in memory
– “program”

• Instruction cycle – broken into
several sub-operations, each one
clock cycle, e.g.:

– Fetch: Get next instruction into
IR

– Decode: Determine what the
instruction means

– Fetch operands: Move data from
memory to datapath register

– Execute: Move data through the
ALU

– Store results: Write data from
register to memory

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1

8

Control Unit Sub-Operations

• Fetch
– Get next

instruction into IR

– PC: program
counter, always
points to next
instruction

– IR: holds the
fetched
instruction

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

9

Control Unit Sub-Operations

• Decode
– Determine

what the
instruction
means

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

Control Unit Sub-Operations

• Fetch operands
– Move data

from memory
to datapath
register

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

11

Control Unit Sub-Operations

• Execute
– Move data

through the
ALU

– This particular
instruction
does nothing
during this sub-
operation

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

12

Control Unit Sub-Operations

• Store results
– Write data from

register to
memory

– This particular
instruction does
nothing during
this sub-operation

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1100 load R0, M[500]

10

13

Instruction Cycles

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1

PC=100

10

Fetch
ops

Exec. Store
results

clk

Fetch

load R0, M[500]

Decode

100

14

Instruction Cycles

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1
10

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101

inc R1, R0

Fetch Fetch
ops

+1

11

Exec. Store
results

clk

101

Decode

15

Instruction Cycles

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

load R0, M[500] 500
501

100
inc R1, R0101

store M[501], R1102

R0 R1
1110

PC=100
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=101
Fetch Decode Fetch

ops
Exec. Store

results
clk

PC=102

store M[501], R1

Fetch Fetch
ops

Exec.

11

Store
results

clk

Decode

102

16

Architectural Considerations

• N-bit processor
– N-bit ALU,

registers, buses,
memory data
interface

– Embedded: 8-bit,
16-bit, 32-bit
common

– Desktop/servers:
32-bit, even 64

• PC size determines
address space

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

17

Architectural Considerations
• Clock frequency
• Inverse of clock

period
• Must be longer than

longest register to
register delay in entire
processor

• Memory access is
often the longest

• E.g clock cycle 10
nanoseconds =
1/10x10-9 Hz =100 MHz

Processor
Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

18

Two Memory Architectures

Processor

Program
memory

Data
memory

Processor

Memory
(program and data)

Harvard Princeton

• Princeton
– Fewer memory

wires

• Harvard
– Simultaneous

program and
data memory
access

Memory Management…
Issues in sharing memory
Transparency
• Several processes may co-exist, unaware of each other, in

the main memory and run regardless of the number and
location of processes.

Safety (or protection)
• Processes must not corrupt each other (nor the OS!)
Efficiency
• CPU utilization must be preserved and memory must be

fairly allocated.
Relocation
• Ability of a program to run in different memory locations. 19

Storage allocation

• Information stored in main memory can be
classified in a variety of ways:
- Program (code) and data (variables, constants)
- Read-only (code, constants) and read-write (variables)
- Address (e.g., pointers) or data (other variables);

• The OS, compiler, linker, loader and run-time
libraries all cooperate to manage this information.

20

Memory Management: Definitions
• Relocatable - Means that the program image can reside

anywhere in physical memory.

• Binding - Programs need real memory in which to reside.
When is the location of that real memory determined?
– This is called mapping logical to physical addresses.
– This binding can be done at compile or run time.

• Compiler - If it’s known where the program will reside,
then absolute code is generated. Otherwise compiler
produces relocatable code.

• Load - Binds relocatable to physical address.
• Execution - The code can be moved around during

execution.
21

Creating an executable code
• Before a program can be executed by the CPU, it

must go through several steps:
– Compiling (translating) - generates re-locatable

object code.
– Linking - combines the object code into a

single self-sufficient executable code.
– Loading - copies the executable code into

memory.
– Execution - dynamic memory allocation.

22

Creating an
executable code

Preprocessor

Compiler

Program/source code

C or C++ program with
macro substitutions
and file inclusions

Assembler
Assembly code

Linker

Relocatable object module

Executable code

Other relocatable
object modules or
library modules

Loader

Absolute machine code

Execution

code

data

Work space

Main memory
23

Compiler

Literal
table

Symbol
table

Error
handler

Scanner

Parser

Source code

Tokens

Semantic
analyzer

Syntax tree

Annotated
tree

Intermediate code
generator

Intermediate code
optimizer

Intermediate
code

Intermediate
code

Target code
generator

Target
code

Target code
optimizer

Target
code

24

Functions of a linker
 Linker collects and puts together all the required

pieces to form the executable code.

 Issues:
• Relocation
Where to put pieces.

• Cross-reference
where to find pieces.

• Re-organization
new memory layout.

25

Functions of a loader
 A loader places the executable code in main memory

starting at a pre-determined location (base or start
address).

 This can be done in several ways, depending on
hardware architecture:
 Absolute loading: always loads programs into a

designated memory location.
 Relocatable loading: allows loading programs in

different memory locations.
 Dynamic (run-time) loading: loads functions when first

called (if ever).

26

Binding of Instructions and Data to Memory
• Address binding of instructions and data to memory

addresses can happen at three different stages.

– Compile time: If memory location known a priori,
absolute code can be generated, other wise relocatable

– Load time: Compiler must generate relocatable code if
memory location is not known at compile time.

– Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another.

– Need hardware support for address maps (e.g., base and
limit registers).

27

Multistep Processing of a User Program

28

Simple management schemes
 An important task of a memory management

system is to bring (load) programs into main
memory for execution.

 The following contiguous memory allocation
techniques were commonly employed by earlier
operating systems :

• Direct placement
• Overlays
• Partitioning

29

Direct placement
 Memory allocation is trivial.No

special relocation is needed,
 because the user programs are

always loaded (one at a time)
into the same memory location
(absolute loading).

 The linker produces the same
loading address for every user
program.

 Examples: Early batch monitors,
MS-DOS

OS(drivers, buffers)

unused
User program

Operating system
0

max

user

30

Overlays
 A program was

organized (by the
user) into a tree-like
structure of object
modules, called
overlays.

 The root overlay was
always loaded into the
memory,

 whereas the sub trees
were (re-loaded as
needed by simply
overlaying existing
code.)

0.0

1.0 2.0 3.0

1.1 1.2 2.1 2.2 2.3 2.3 2.3

1.1

1.0

0.0

OS

2.1

2.0

0.0

OS

Memory snapshot

Overlay tree

31

Partitioning
 A simple method to accommodate several programs in

memory at the same time (to support
multiprogramming) is partitioning.

 In this scheme, the memory is divided into a number of
contiguous regions, called partitions.

 Two forms of memory partitioning, depending on when
and how partitions are created (and modified), are
possible:

• Static partitioning
• Dynamic partitioning

 These techniques were used by the IBM OS/360
operating system:
 MFT (Multiprogramming with Fixed Number of Tasks) and
 MVT (Multiprogramming with Variable Number of Tasks.)

32

Partitioning…
Static partitioning
 Main memory is divided into

fixed number of (fixed size)
partitions during system
generation or start-up.

 Programs are queued to run
in the smallest available
partition.

 An executable prepared to
run in one partition may not
be able to run in another,
without being re-linked.

 This technique uses
absolute loading.

Small jobs

Average jobs

Larger jobs

Operating
System

500 k

100 k

10 k

Main memory

33

Partitioning…
Dynamic partitioning
• Any number of programs

can be loaded to memory
as long as there is room
for each.

• When a program is loaded
(relocatable loading), it
is allocated memory in
exact amount as it needs.

• Also, the addresses in the
program are fixed after
loaded, so it cannot move.

 The operating system
keeps track of each
partition (their size and
locations in the memory.)

A

OS

B

A

OS

B

OS

K

OS

Partition allocation at different times

Main memory

34

Swapping
 The basic idea of swapping is to treat main memory

as a ‘‘pre-emptable’’ resource.
 A high-speed swapping device is used as the backing

storage of the pre-empted processes.

Operating
system

Swap-in

Swap-out

Swapping device

Memory

35

Swapping…
 A process can be swapped temporarily out of memory to

a backing store, and then brought back into memory for
continued execution.

 Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms.
 lower-priority process is swapped out so higher-priority process

can be loaded and executed.

 UNIX, Linux, and Windows.

36

Schematic View of Swapping

37

Swapping…
 Swapping is a medium term scheduling discipline

Processes on
disk

Processes in
memory

Process
running

Swap-in

Swap-out

dispatch

Suspend

SWAPPER DISPACHER

 Swapping brings flexibility even to systems with
fixed partitions, because:
 “ if needed, the operating system can always make

room for high-priority jobs, no matter what!’“

38

Swapping…
 Swapping is a medium-term scheduling method.
 The responsibilities of a swapper include:
• Selection of processes to swap out
 criteria: suspended/blocked state, low priority, time

spent in memory
• Selection of processes to swap in
 criteria: time spent on swapping device, priority

• Allocation and management of swap space on a
swapping device.

 Swap space can be:
 system wide
 dedicated

39

Logical vs. Physical Address Space
 The concept of a logical address space that is bound to a

separate physical address space is central to proper
memory management.
 Logical address – generated by the CPU; also referred

to as virtual address.
 Physical address – address seen by the memory unit.

 Logical and physical addresses are the same in compile-
time and load-time address-binding schemes;

 logical (virtual) and physical addresses differ in
execution-time address-binding scheme.

40

Memory Protection
 The other fundamental task of a memory management

system is to protect programs sharing the memory from
each other.

 This protection also covers the operating system itself.

 Memory protection can be provided at either of the two
levels:

 Hardware:
 address translation

 Software:
 language dependent: strong typing
 language independent: software fault isolation

41

Dynamic relocation
 With dynamic relocation, each program-generated

address (logical address) is translated to hardware
address (physical address) at runtime for every
reference, by a hardware device known as the
memory management unit (MMU).

CPU MMU Memory

Program
(logical or
virtual)
address

Hardware
(physical
or real)
address

Address Translation

42

Two views of memory
 Dynamic relocation leads to two different views

of main memory, called address spaces.

0

SC

0

SB

0

SA Operating
system

PA starts

PA ends

PB starts

PB ends

PC starts

PC ends

Physical view
(physical address space)

Logical view
(logical address space)

43

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical
address.

 In MMU scheme, the value in the relocation
register is added to every address generated
by a user process at the time it is sent to
memory.

 The user program deals with logical
addresses; it never sees the real physical
addresses.

44

Dynamic relocation using a relocation/base register

45

Contiguous Allocation
Main memory is divided into two partitions:
 Resident operating system, usually held in low memory

with interrupt vector.
 User processes then held in high memory.

 Single-partition allocation
 Relocation-register scheme used to protect user

processes from each other, and from changing
operating-system code and data.

 Relocation register contains value of smallest physical
address;

 Limit register contains range of logical addresses – each
logical address must be less than the limit register.

46

Hardware Support for Relocation and Limit Registers
for memory protection discussed before

47

Contiguous Allocation (Cont.)
 Multiple-partition allocation
 Hole – block of available memory; holes of various size

are scattered throughout memory.
When a process arrives, it is allocated memory from a

hole large enough to accommodate it.
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5
process 9

process 2

process 9

process 10

Main Memory 48

Dynamic Storage-Allocation Problem

 How to satisfy a request of size n from a list of
free holes.
 First-fit: Allocate the first hole that is big enough.
 Best-fit: Allocate the smallest hole that is big enough;

must search entire list, unless ordered by size.
Produces the smallest leftover hole.

Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

 First-fit and best-fit better than worst-fit in terms of
speed and storage utilization.

49

Fragmentation
 Fragmentation refers to the unused memory that the

management system cannot allocate.

 Internal fragmentation
o Waste of memory within a partition, caused by the

difference between the size of a partition and the process
loaded.

o Severe in static (fixed) partitioning schemes.

 External fragmentation
 Waste of memory between partitions, caused by scattered

non-contiguous free space.
 Severe in dynamic (variable size) partitioning schemes.
 Compaction is a technique that is used to overcome external

fragmentation.
50

Gentle reminder: Base and bounds relocation

 Each program is loaded
into a contiguous region
of memory.

 This region appears to
be ‘ ‘private’ ’ and the
bounds register limits the
range of the logical
address of each
program.

 Hardware
implementation is cheap
and efficient:
 2 registers plus an adder

and a comparator.

Logical Address

Registers
bounds
base

>

+

Physical Address

Fault!

51

Segmentation
 The most important problem with base-and-bounds

relocation is that there is only one segment for each
process.

 Segmentation is a memory management scheme that
supports user’s view of memory.

 A segment is a region of contiguous memory.

 Segmentation generalizes the base-and-bounds
technique by allowing each process to be split over
several segments.
 A segment table holds the base and bounds of each segment.
 Although the segments may be scattered in memory, each

segment is mapped to a contiguous region.
 Additional fields (Read/Write and Shared) in the segment

table adds protection and sharing capabilities to segments.
52

Segmentation…

 A program is a collection of segments.
 A segment is a logical unit such as:

main program,
procedure,
function,
method,
object,
local variables, global variables,
common block,
stack,
symbol table, arrays

53

Segmentation Architecture
 Logical address consists of a two tuple:

<segment-number, offset>,
 Segment table – maps two-dimensional physical

addresses; each table entry has:
 base – contains the starting physical address where

the segments reside in memory.
 limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the
segment table’s location in memory.

 Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR.

54

User’s View of a Program

55

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

56

Segmentation Hardware

57

Example of Segmentation

58

Relocation with segmentation

Segment # Offset

Base Bounds R/W S
0X1000 0X0120 0 1

0X3000 0X0340 0 0

0X0000 0X0FFF 1 0

0X2000 0X0F00 0 1

0X4000 0X0520 1 0

Seg#
0

1

2

3

4

>

+

Physical Address

Logical Address

Fault!

59

Segmentation…
 When a process is created, a pointer to an empty segment

table is inserted into the process control block.
 Table entries are filled as new segments are allocated for the

process.

 The segments are returned to the free segment pool when
the process terminates.

 Segmentation, as well as the base and bounds approach,
causes external fragmentation and requires memory
compaction.

 An advantage of the approach is that only a segment,
instead of a whole process, may be swapped to make room
for the (new) process.

60

Paging
 Paging is a memory-management scheme that permits

the physical address space of a process to be
noncontigious.

 Divide physical memory into fixed-sized blocks called
frames (size is power of 2, between 512 bytes and 16
mbytes per page).

 Divide logical memory into blocks of same size called
pages.

 Keep track of all free frames.
 To run a program of size n pages, need to find n free

frames and load program.
 Set up a page table to translate logical to physical

addresses.
 Problem: Internal fragmentation.

61

Paging…
 Physical memory is divided into a number of fixed size

blocks, called frames.
 The logical memory is also divided into chunks of the

same size, called pages.
 The size of frame/page is determined by the hardware

and typically is some value between 512 bytes (VAX)
and 16 megabytes (MIPS 10000)!

 A page table maps the base address of pages for each
frame in the main memory.

 The major goals of paging are:
 to make memory allocation and swapping easier and
 to reduce fragmentation.
 Paging also allows allocation of non-contiguous memory (i.e.,

pages need not be adjacent.) 62

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page
table which contains base address of each page in
physical memory.

 Page offset (d) – combined with base address to
define the physical memory address that is sent to
the memory unit.

63

Address Translation Architecture (HW)
using paging

64

Paging Example

65

Paging example for a 32-byte memory with four bytes pages

66

Relocation with paging

Page # Page offset

Logical Address

Page Table

Page table entry (PTE)

Base address

1

2

3

4

5

Frame # Frame offset

Physical Address
67

Paging - an example
Logical address

space

0
1

2

3

4

5

Page # - 2 Page offset -300

Page Table
8

3
1

6

0

0
1

2

3

4

0
1

2

3

4

5

6

7

Physical MemoryFrame #-1 Offset-300

Logical address

Physical address 68

Paging…
 Paging itself is a form of dynamic relocation.
 Every logical address is bound by the paging HW to

some physical address.
 Using paging is similar to using a table of base

(relocation) registers, one for each frame of memory.

 When using paging scheme, there is no external
fragmentation.

 Any free frame can be allocated to a process that
needs it.

 However, we may have some internal fragmentation.

69

Free Frames

Before allocation After allocation

70

Implementation of Page Table
 Page table is kept in main memory.
 Page-table base register (PTBR) points to the page

table.
 Page-table length register (PRLR) indicates size of the

page table.
 In this scheme every data/instruction access requires

two memory accesses.
 One for the page table and
 one for the data/instruction.

 The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

71

Associative memory
 Problem: Both paging and segmentation schemes

introduce extra memory references to access
translation tables.

 Solution? Translation buffers.
 Based on the notion of locality (at a given time a

Process is only using a few pages or segments), a
very fast but small associative (content
addressable) memory is used to store a few of the
translation table entries.

 This memory is known as a translation look-aside
buffer or TLB

72

Associative Memory…
 Associative memory – parallel search

Address translation (A´, A´´)
 If A´ is in associative register, get frame # out.
 Otherwise get frame # from page table in memory

Page # Frame #

73

Paging Hardware With TLB

74

Effective Access Time
 Associative Lookup =  time unit
 Assume memory cycle time is 1 microsecond
 Hit ratio – percentage of times that a page

number is found in the associative registers;
ration related to number of associative
registers.

 Hit ratio = 
 Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )
= 2 +  – 

75

Effective Access Time…
 The percentage of times that a particular page number is

found is called hit ratio.
Assumption:
 80 % hit ratio
 If it takes 20 nsec to search TLB, 100 nsec to access MM

 Then mapped-memory access takes 120 nsec when the page
number is in TLB.

 If we fail to find the page number in TLB (20 nsec),
 Then we must first access memory for the page table and frame

number (100 nsec) then access the desired byte in memory (100
nsec), for a total of 220 nsec.

 To find the EAT:
EAT= 0.80 x 120 + 0.20 x 220

= 140nsec
76

Effective Access Time…
 In this example, we suffer a 40% slow down in memory-

access time (from 100 - 140 nsec).

 For a 98% hit ratio, we have

EAT = 0.98 X 120 + 0.02 X 220
= 122 nsec

 This increased hit rate produces only 22 percent slow
down in access time.

77

Memory Protection
 Memory protection in a paged environment

implemented by associating protection bit with each
frame.

 These bit are kept in page table.
 One bit for read-only, read-write, execute-only.

 Valid-invalid bit attached to each entry in the page
table:
 “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page.

 “invalid” indicates that the page is not in the process’
logical address space.

78

Valid (v) or Invalid (i) Bit In A Page Table

79

Hardware support for paging

 There are different hardware implementations
of page tables to support paging.
 A set of dedicated registers, holding base

addresses of frames.
 In memory page table with a page table base

register (PTBR).
 Same as above with multi-level page tables.

80

Page Table Structure

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

81

Hierarchical Page Tables
 Most modern computer systems support a large logical

address space (232 -264).
 The page table itself becomes excessive.
 For example: system with 32-bit logical address space.
 If page size is 4KB (212), then page table = 232 / 212 = up

to 1 million entries.
 Assume that each entry = 4 bytes, each process may

need up to 4 MB of physical address space for the page
table alone.

 Solution
 Break up the logical address space into multiple page

tables.
 A simple technique is a two-level page table.

82

Two-Level Paging Example
 A logical address (on 32-bit machine with 4K page size) is divided into:
 a page number consisting of 20 bits.
 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further divided
into:
 a 10-bit page number.
 a 10-bit page offset.

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

p1 p2 d

10 10 12

83

Two-Level Page-Table Scheme

84

Address-Translation Scheme
 Address-translation scheme for a two-

level 32-bit paging architecture

85

Multi-level paging – an example

P1 P2

Page
number

Page
offset

Top level
Page Table

2nd level Page
Table

57

Frame
57

840

To
frames

.

.

840

1

3

86

One level paging – The PDP 11
 The larger PDP-11 models have 16-bit logical addresses and up to 4MB

of memory with page size of 8KB.
 There are two separate logical address spaces; one for instructions and

one for data.
 The two page tables have eight entries, each
 Each controlling one of the eight frames per process

87

Two level paging – The VAX
 The VAX is the successor of the PDP-11, with 32-bit

logical addresses.
 The VAX has 512 byte pages.

88

Other MMU architectures

 Some SPARC processors used by the Sun workstations
have a paging MMU with three-level page tables and 4KB
pages.

 Motorola 68030 processor uses on-chip MMU with
programmable multi-level (1-5) page tables and

 PowerPC processors support complex address translation
mechanisms and, based on the implementation, provide
280 (64-bit) and 252 (32-bit) byte long logical address
spaces.

 Intel Pentium processors support both segmented and
paged memory with 4KB pages.

89

Hashed Page Table
 A common approach for handling address space larger

than 32 bits is to use a hashed page table, with the
hash value being the virtual page number.

 Each entry in the hash table contains a linked list of
elements that hash to the same location (to handle
collision).

 Each element consists of three fields:
1. The virtual page number
2. The value of the mapped page frame
3. A pointer to the next element in the linked list.

90

Hashed Page Table

91

Inverted Page Table
 Each process has an associated page table.
 One entry for each real page of memory.
 Entry consists of the virtual address of the page stored in

that real memory location, with information about the
process that owns that page.

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

 Use hash table to limit the search to one — or at most a
few — page-table entries.

92

Inverted Page Table Architecture…

93

Inverted page table…
 The inverted page table has one entry for each memory frame.
 Adv: independent of size of address space; small table(s).
 Hashing is used to speedup table search.
 Here the inverted page table is system-wide, since the PID is shown.
 The Inverted Page Table can also be one per process.

94

Segmentation with Paging – MULTICS

 The MULTICS system solved problems of
external fragmentation and lengthy search
times by paging the segments.

 Solution differs from pure segmentation in
that the segment-table entry contains not the
base address of the segment, but rather the
base address of a page table for this
segment.

95

MULTICS Address Translation Scheme

96

Segmentation with Paging

97

Memory catching
 Similar to storing memory addresses

in TLBs,
 frequently used data in main

memory can also be stored in fast
buffers, called cache memory, or
simply cache.

 memory access occurs as follows:

2n-1

for each memory reference
if data is not in cache <miss>
if cache is full

remove some data (make space)
if read access

issue memory read
place data in cache
return data

else <hit>
if read access

return data
else
update data in cache & memory 98

Cache terminology
 Cache hit: item is in the cache.
 Cache miss: item is not in the cache; must do a full

operation.
 Categories of cache miss:

 Compulsory : the first reference will always miss.
 Capacity : non-compulsory misses because of limited cache size

 Effective access time:
EAT= P(hit) * cost of hit + P(miss)* cost of miss
P(miss) = 1- P(hit)

99

Issues in cache design
 Although there are many different cache designs, all share

a few common design elements:
 Cache size — how big is the cache?

 The cache only contains a copy of portions of main memory. The
larger the cache the slower it is. Common sizes vary between 4KB
and 4MB.

 Mapping function — how to map main memory blocks
into cache lines?
 Common schemes are: direct, fully associative, and set

associative. (see later)

 Replacement algorithm — which line will be evicted if
the cache lines are full and a new block of memory is
needed.

• A replacement algorithm, such as LRU, FIFO, LFU, or Random
is needed only for associative mapping (Why?) 100

Issues in cache design…
 Write policy—What if CPU modifies a (cached) location?

 This design issue deals with store operations to cached memory
locations.

 Two basic approaches are:
 write through - modify the original memory location as well

as the cached data and
 Write back (update the memory location only when the

cache line is evicted.)

 Block (or line) size—how many words can each line
hold?
 Studies have shown that a cache line width of 4 to8 addressable
 units (bytes or words) provide close to optimal number of hits.

101

Issues in cache design…
Number of caches—how many levels? Unified

or split cache for data and instructions?
 Studies have shown that a second level cache

improves performance.
 Pentium and Power PC processors each have

onchip level-1 (L1) split caches.
 Pentium Pro processors have onchip level-2 (L2)

cache, as well.

102

103

Cache Memory…

Memory access may be
slow

 Cache is small but fast
memory close to
processor
 Holds copy of part of

memory
 Hits and misses

Processor

Memory

Cache

Fast/expensive technology,
usually on the same chip

Slower/cheaper technology,
usually on a different chip

Mapping function
 Since there are more main memory blocks (Blocki for

i=0 to n) than cache lines (Linej for j=0 to m, and n >>
m), an algorithm is needed for mapping main memory
blocks to cache lines.

 Direct mapping—maps each block of memory into only
one possible cache line.
 Blocki maps to Linej, where i = j modulo m.

 Associative mapping—maps any memory block to any
line of the cache.

 Set associative mapping—cache lines are grouped into sets
and a memory block can be mapped to any line of a cache
set.
 Blocki maps to Setj where i=j modulo v and v is the

number of sets with k lines each.
104

Set associative cache organization

105

