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Internal Flow - Empirical Correlations

Hydrodynamic Considerations

When considering external flow, it is necessary to ask only whether the flow is laminar or turbulent.
However, for an internal flow we must also be concerned with the existence of entrance and fully
developed regions.

Flow Conditions:

Inviscid flow region Boundary layer region
— ur, x) ’7
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Where Up, is the mean fluid velocity over the cross section and D is the diameter.

Critical Reynod’s number to the onset of turbulence is:

Rep,. ~ 2300

Laminar Flow

For laminar flow (Rep < 2300), the hydrodynamic entry length may be obtained from an expression
of the form:

Xid b .
(ﬁ)]am = (0.05 RE'D

This expression is based on the presumption that fluid enters the tube from a rounded converging
nozzle and is hence characterized by a nearly uniform velocity profile at the entrance (Figure 1).

Turbulent Flow

Although there is no satisfactory general expression for the entry length in turbulent flow, we know
that it is approximately independent of Reynolds number and that, as a first approximation:

Xed, i
100=|— =60
(D )mrb
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For the purposes of this text, we shall assume fully developed turbulent flow for: (x/D) > 10.

The Mean Velocity
For steady, incompressible flow in a tube of uniform cross-sectional area,

_Japur 0 dA. 2mp ([
pAc p’i‘Tf'g 0

uﬂ]

u(r, yrdr= %f ! u(r, x)rdr
r;Jo

The Velocity Profile in the Fully Developed Region

The form of the velocity profile may readily be determined for the laminar flow of an
incompressible, constant property fluid in the fully developed region of a circular tube.

=3 (@)1~

The Pressure Gradient and Velocity Gradient in the Fully Developed Region

The engineer is frequently interested in the pressure drop needed to sustain an internal flow because
this parameter determines pump or fan power requirements.

Friction factor (f) for Fully Developed Laminar Flow:

_ 64
RED

f

Friction factor (f) for Fully Developed Turbulent Flow:

For fully developed turbulent flow, the analysis is much more complicated; and we must ultimately
rely on experimental results.

Friction factors for a wide Reynolds number range are presented in the Moody diagram of Figure
8.3. In addition to depending on the Reynolds number, the friction factor is a function of the tube
surface condition. It is a minimum for smooth surfaces and increases with increasing surface
roughness, e. Correlations that reasonably approximate the smooth surface condition are of the
form:

f=0.316Rep Re, <2 % 10!

f=0.184Rep' Rep,=2 % 10"

Alternatively, a single correlation that encompasses a large Reynolds number range has been
developed by Petukhov and is of the form:

f=1(0.790 In Re, — 1.64)? 3000 < Re, <5 x 10°
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The Pressure Drop (AP)

Reynolds number, Rep=

v

f.aufn

2D

Pe
Ap= —J‘ dp=
Py

% Uy,
J.r] dx = ng (% — x)

The Pump or Fan Power Requirement

P=(ApV

Y may, inturn, be expressed as

Where the volumetric flow rate for an

incompressible fluid.

V= iulp

Thermal Considerations

The shape of the fully developed temperature profile T(r,x) differs according to whether a uniform
surface temperature or heat flux is maintained. For both surface conditions, however, the amount by
which fluid temperatures exceed the entrance temperature increases with increasing X.

For laminar flow the thermal entry length may be expressed as:

Xed, ¢

——| =0.05RepPr
Note: ( D )Iam

if Pr >1, the hydrodynamic boundary layer develops more rapidly than the thermal boundary layer
(Xsa.n < Xd1), While the inverse is true for Pr < 1. For extremely large Prandtl number fluids, such as
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oils (Pr > 100), Xzgp is very much smaller than X¢ and it is reasonable to assume a fully developed
velocity profile throughout the thermal entry region.

In contrast, for turbulent flow, conditions are nearly independent of Prandtl number, and to a first
approximation, we shall assume (X¢q+/D) = 10.

The Mean Temperature

Just as the absence of a free stream velocity requires use of a mean velocity to describe an internal
flow, the absence of a fixed free stream temperature necessitates using a mean (or bulk)
temperature.

T, = %J’ “uTrdr
pell

u,

Newton’s Law of Cooling

g = WT,— T,)

Where h is the local convection heat transfer coefficient. However, there is an essential difference
between Ty, and T. Whereas T is constant in the flow direction, T,, must vary in this direction. That
is, dT/dx is never zero if heat transfer is occurring. The value of T, increases with x if heat
transfer is from the surface to the fluid (Ts > Tp); it decreases with x if the opposite is true (Ts <

Tm).

Note:

e Hence in the thermally fully developed flow of a fluid with constant properties, the local
convection coefficient is a constant, independent of x.

e In the entrance region, where h varies with x, as shown in Figure. Because the thermal
boundary layer thickness is zero at the tube entrance, the convection coefficient is extremely
large at x = 0. However, h decays rapidly as the thermal boundary layer develops, until the
constant value associated with fully developed conditions is reached

h

FIGURE 8.5

Axial variation of the convection heat transfer

0 X
0 X, ¢ coefficient for flow in a tube.

Fully Developed Conditions

One might legitimately question whether fully developed thermal conditions can ever be reached.
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The situation is certainly different from the hydrodynamic case, for which (6u/dx) = 0 in the fully
developed region. In contrast, if there is heat transfer, (dT/dx), as well as (6 T/6x) at any radius r,
is not zero. Accordingly, the temperature profile T(r) is continuously changing with x, and it would
seem that a fully developed condition could never be reached. This apparent contradiction may
be reconciled by working with a dimensionless form of the temperature.

Requirement:

Although the temperature profile T(r) continues to change with X, the relative shape of the profile
no longer changes and the flow is said to be thermally fully developed. The requirement for such a

condition is formally stated as:
9| LW -Trny| _ 0
X Ts()ij - Tm(X) fd, ¢

The condition given by the equation above is eventually reached in a tube for which there is either a
uniform surface heat flux (q’’ is constant) or a uniform surface temperature (T is constant).
Note that it is impossible to simultaneously impose the conditions of constant surface heat flux and
constant surface temperature. If q” is constant, Ts must vary with x; conversely, if T is constant,
q’’ must vary with x.

Case — Uniform Surface Heat Flux

Since both h and q’” are constant in the fully developed region, it follows from Equation:

OX |, dx

r

gs = constant

fd, ¢
Hence the axial temperature gradient is independent of the radial location.

Case — Constant Surface Temperature

ﬂ — (T.s_ :n dTm
X |, (T,—T,) dx

T, = constant

fd.¢

In which case, the value of dT/dx depends on the radial coordinate.

The Enerqgy Balance

Because the flow in a tube is completely enclosed, an energy balance may be applied to determine
how the mean temperature Tm(x) varies with position along the tube and how the total convection
heat transfer gcony IS related to the difference in temperatures at the tube inlet and outlet.

Geonv = ﬁicp{ Tm.o - Tmi)
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quOIlV = I.I]Cp[(Tl'll + dTlIl) il 7;11]

dql:onv o q.;’P dx
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FiIGURE 8.6 Control volume for internal flow in a tube.

dx I:T.'CP Ihcp s

The solution to Equation 8.37 for Tm(x) depends on the surface thermal condition. Recall that the
two special cases of interest are constant surface heat flux and constant surface temperature.

Case — Constant Surface Heat Flux

'!?comr = q.:(P ’ L)

ﬂ'P "
T,(0 = T,;+ " x g, = constant
mc,

< Entrance region | Fully developed reg@

g, = constant
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Case — Constant Surface Temperature

LetAT=Ts-Tn
dl,, _dAT) _ p
P pra mCPbAT
ATG ?.rs_ Tma_ Pl .
AT T Tm,,-_exp(_rh—q,b) T, = constant

Had we integrated from the tube inlet to some axial position x within the
would have obtained the similar, but more general, result that

I - T,® = exp (—P—Xﬁ) T, = constant

I— T, mnc,

T

=l

T, = constant

I

(b)

ooy = PAAT,,  T,= constant (8.43)

where A, is the tube surface area (A; = P- L) and AT, is the log mean temperature
difference,

AT,— AT,
AI; — [4) I

=0 AT/AT) (8.44)
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It is readily shown that the results of this section may still be used if Ts is replaced by T (the free
stream temperature of the external fluid) and h (avg.) is replaced by (the average overall heat
transfer coefficient). For such cases, it follows that:

AT, T.— T, _ UA;
AT, T.—-T, exp mc,
and
qg=UA,AT,,

Laminar Flow in Circular Tubes: Thermal Analysis and Convection
Correlations

The Fully Developed Region:

Nup= h—f= 4.36 ¢, = constant

Hence in a circular tube characterized by uniform surface heat flux and laminar, fully developed
conditions, the Nusselt number is a constant, independent of Rep, Pr, and axial location.

The thermal conductivity should be evaluated at Tp,.

Nup = 3.66 T. = constant

The thermal conductivity should be evaluated at Ty,

The Entry Region:

20 100
=== Thermal entry length Combined entry length [2]
Combined entry length 60 o Pr=0.7
(Pr=0.7) O Pr=2

A Pr=5

10

Constant surface

heat flux 20

Equation 8.57

)

= . 4.36 iz 10
3.66
Constant surface
temperature 4 Equation 8.56 3.66
2
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For the constant surface temperature condition, it is desirable to know the average convection
coefficient, presents a correlation attributed to Hausen, which is of the form:

0.0668(D/L) Re, Pr
1 + 0.04[(D/I) Rep, Prl™®

EID = 3.66 +

thermal entrance length
or
combined entrance length with Pr=5

Because this result is for the thermal entry length problem, it is applicable to all situations where the
velocity profile is already fully developed.

For the combined entry length, a suitable correlation for use at moderate Prandtl numbers, due to

Sieder and Tate
— Rep Pr\!3 m 0.14
N"D-I-SG(W) (F)

060=Pr=5

0.0044 < (5) <975

5

All properties appearing in in the above two equations, except ps, should be evaluated at the
average value of the mean temperature, T = (T mi + T mo)/2.

[ Convection Correlations: Turbulent Flow in Circular Tubes ]

From the Chilton—Colburn:

S gpno Vo ppan
2 8 Rep Pr
The Dittus—Boelter equation:
Nup = 0.023Re})’ Pr" (8.60)

where n = 0.4 for heating (7, > T,) and 0.3 for cooling (7, < T,). These equations
have been confirmed experimentally for the range of conditions

0.7= Pr=160
Re,= 10,000

%210
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Nup = 0.023Re}’ Pr’ (8.60)

where n = 0.4 for heating (7, > T,) and 0.3 for cooling (7; < T,). These equations
have been confirmed experimentally for the range of conditions

0.7 = Pr=160
Re;,= 10,000
L=10
The equations may be used for small to moderate temperature differences, T, — T,,

with all properties evaluated at 7,,. For flows characterized by large property varia-
tions, the following equation, due to Sieder and Tate [9], is recommended:

0.14
Nup = 0.027Rels P (}%) 8.61)

0.7 < Pr= 16,700
Re,= 10,000
L

5210

The above correlations are used to a good approximation for both the uniform surface temperature
and heat flux conditions.

For fully developed turbulent flow in smooth circular tubes with constant surface heat flux,
Skupinski et al. recommend a correlation of the form:

Nup, = 4.82 + 0.0185 P87 g, = constant (8.64)

3.6 X 10° = Re,, =< 9.05 X 10°
10* < Pep = 10*

Similarly, for constant surface temperature Seban and Shimazaki [22] recommend
the following correlation for Pe;, = 100:

Nuy, = 5.0 + 0.025 Pe? T. = constant (8.65)

[ Convection Correlations: Noncircular Tubes J
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Musselt number and friction factor for fully developed laminar flow in tubes of
various cross sections (D = 44./p, Re =V, Dylv, and Nu = hiD,/K)

alb Nusselt Number Friction Factor
Tube Geometry or@® | T,=Const. | g,= Const. f
Circle —_ 3.66 4.36 64.00/Re
Rectangle a'b
1 2.98 3.6l 56.92/Re
’ 2 3.39 4,12 62.20/Re
3 3.96 4.79 68.36/Re
IZl 4 4.44 5.33 72.92/Re
- & .14 6.05 T8.80/Re
f—a— 8 5.60 6.49 82.32/Re
o 7.54 8.24 96.00/Re
Ellipse a'b
1 3.66 4.36 6d.00/Re
2 3.74 4.56 67.28/Re
4 3.79 4. .88 72.96/Re
a 3.72 5.09 T6.60/Re
16 3.65 5.18 78.16/Re
Triangle _B
10° 1.61 2.45 50.80/Re
300 2.26 291 h2.28/Re
a0° 2.47 3.11 h3.32/Re
a0° 2.34 2.98 h2.60/Re
120" 2.00 2.68 h0.96/Re

Convection Correlations: Concentric Tube Annulus

Ficure #.11
The concentrie tube annulus.
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g = (T, - T,)
';'i: = ﬁu{Ts,.r:r - Tm]

Ny, = ILTD‘I’
= 22
the hydraulic diameter D, is
puDy _pD,— D) m,,
g, = — Voo Reo= 0, D) i

1 - (qi/q,)0;

TABLE 8.3 Influence coefficients for fully developed
laminar flow in a circular tube annulus with
uniform heat flux maintained at both surfaces

D/D, Nuy Nu,, 07 o,

0 —_ 4.364 % 0

0.05 17.81 4.792 2.18 0.0294
0.10 11.91 4.834 1.383 0.0562
0.20 8.499 4.833 0.905 0.1041
0.40 6.583 4.979 0.603 0.1823
0.60 5.912 5.099 0.473 0.2455
0.80 5.58 5.24 0.401 0.299
1.00 3.385 5.385 0.346 0.346

Used with permission from W. M. Kays and H. C. Perkins, in W. M. Rohsenow and
1. P. Harinett, Eds., Handbook of Heat Transfer, Chap. 7, McGraw-Hill, New York, 1972.

TABLE 8.2  Nusselt number for fully developed laminar
flow in a circular tnbe annulus with one surface insulated
and the other at constant temperature

Di/D, Nu; Nu, Commenis
0 —_ 3.66 See Equation 8.55
0.05 17.46 4.06
0.10 11.56 411
0.25 7.37 4.23
0.50 5.74 4.43
=1.00 4.86 4.86 See Table 8.1, bva— =

Used with permission from W. M. Kays and H. C. Perkins, in W. M. Rohsenow and J. P. Hartnett, Eds.,
Handbook of Heat Transfer, Chap. 7, McGraw-Hill, New York, 1972.




