Chapter - Five

Virtual Memory

Outline

 Introduction

 Virtual memory

e Page fault handling

 Virtual memory basic policy
e Page replacement algorithms

Chapter objectives

* To describe the benefits of virtual memory
system

e To explain the concepts of demand paging,

page-replacement algorithms, and allocation of
page frames.

Introduction

So far, we separated the programmer’s view of memory
from that of the operating system using a mapping
mechanism.

We have also seen protection and sharing of memory
between processes.

we also assumed that a user program had to be loaded
completely into the memory before it could run.

Problem : Waste of memory, because a program only
needs a small amount of memory at any given time.

Solution : Virtual memory; a program can run with only
some of its virtual address space in main memory.

Principles of operation

* The basic idea with virtual memory is to create an illusion
of memory that is as large as a disk (in gigabytes) and as
fast as memory (in nanoseconds).

 The key principle is locality of reference; a running
program only needs access to a portion of its virtual
address space at a given time.

« With virtual memory, a logical (virtual) address translates
to:

— Main memory (small but fast), or
— Paging device (large but slow), or
— None (not allocated, not used, free.)

A virtual view

Main Memory (physical)

/s LA
'/l// AP IITIII LIS AT IS5

\ <

Fnee

/‘

-

d e s
" LAt 7 %
77 4 WALIAS
. 27 YL AT
P e
Virtual Address Space A
A
vy,
YL

(logical) Z v

Paging Device Backing Storage

Background
* Virtual memory — separation of user logical
memory from physical memory.

— Only part of the program needs to be in memory for
execution.

— Logical address space (program) can therefore be much
larger than physical address space.

— Allows address spaces to be shared by several
processes.

— Allows to share files easily and to implement shared
memory.

— Allows for more efficient process creation
Virtual memory can be implemented via:

— Demand paging

— Demand segmentation

Background...

* In many cases, the entire program is not
needed, for example:

— Programs often have codes to handle unusual error
conditions. This code may not be executed.

— Arrays, lists, and tables are often allocated more
memory than they actually need.

« An array may be declared 100 by 100, but you may use only
10 by 10

— Certain options and features of a program may be
used rarely.

 Even in those cases where the entire program Is
needed, it may not all be needed at the same
time.

Virtual Memory That is Larger Than Physical Memory

 The abllity to execute a
program that is only partially
In memory would have many
benefits.

— A program would no longer be \

constrained by the amount of
physical memory that is
available.

— Since each user program could
take less physical memory,
more programs could run at i
the same time, which increases

page n physical

CPU utilization and system memory

virtual

throughput ence)

— Less 1I/0 would be needed to
load or swap each user
program into memory.

Demand Paging

e Bring a page into memory only when it is
needed.

e Pages that are never accessed are thus never
loaded into physical memory.

— Less 1/0 needed

— Less memory needed
— Faster response

— More users

e Page Is needed = reference to It
— Invalid reference = abort
— not-in-memory = bring to memory

Transfer of a Paged Memory to Contiguous Disk Space

swap out o] 1[J 2[] 8[]:
program L
b 1 501 o0 700

8[] o[J1o[J11[]

12[]13[]14[] 15|:||
pmgBram . 16[] 17;| 18;] 1QQ|

20[]21[J22[]23[|

main
memory

Valid-Invalid Bit

« With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

Initially valid—invalid but is set to O on all entries.
« Example of a page table snapshot.

Frame # valid-invalid bit

page table

* During address translation, if valid—invalid bit in page
table entry is 0 = page fault.

Page Table When Some Pages Are Not in Main Memory

valid—invalid
frame :/’”

N
of 4

v

6

i
v
i
i
v
i

H i
page table

logical
memory

physical memory

Page Fault

If there is ever a reference to a page, first reference will
trap to OS = page fault

OS looks at another table to decide:
— Invalid reference = abort.

— Just not in memory.

Get empty frame.

Swap page into frame.

Reset tables, validation bit = 1.

Restart instruction: Least Recently Used

— block move)

— auto increment/decrement location

Steps In Handling a Page Fault

page is on
backing store

operating
system

O

reference

restart page table
instruction

|
free frame -

(&) @

reset page bring in
table missing page

physical
memory

Virtual memory...

Virtual memory system can be implemented as an
extension of paged or segmented memory management
or sometimes as a combination of both.

In this scheme, the operating system has the ability to
execute a program which is only partially loaded in
memory.

Missing pages
What happens when an executing program references an
address that is not in main memory?

Here, both hardware (H/W) and software (S/W) cooperate
and solve the problem:

Missing pages...

The page table is extended with an extra bit,
present. Initially, all the present bits are cleared
(H/W and S/W).

While doing the address translation, the MMU
checks to see If this bit is set.

Access to a page whose present bit is not set causes
a special hardware trap, called page fault (H/W).
When a page fault occurs the operating system:

— brings the page into memory,

— sets the corresponding present bit, and

— restarts the execution of the instruction (S/W).

Most likely, the page carrying the address will be on
the paging device,

Page fault handling—by words

 When a page fault occurs, the system:
v'marks the current process as blocked (waiting for a
page),
v finds an empty frame or make a frame empty in main
memory,

v’ determines the location of the requested page on
paging device,

v performs an 1/0 operation to fetch the page to main
memory

v triggers a “ page fetched” event (e.g., special form of
/0 completion interrupt) to wake up the process.

Page fault handling—by picture

/\./

Program’s

2

\‘\\\\'.\\\\\“{
NN
ARATIACRANAR =
pl DN 0
MATRA LA -

Reference

Restart

execution

AR RN AN

SRR

R AN
Q\\Q}\‘x¢.\'\‘\i‘ DN

Main
Memory

N A
BN s /(\Addms\
i . invalid

Operating \ Segmentation
syStem fault

——

7 .
Find anempty | iiiiiisns
frame and bring in 25700800
the missing page Pagi
ing
Device
Logical page i (p,)
resides in frame j (f;)
In {

P, resides

Basic policies

 The operating system must make several
decisions:

— Allocation — how much real memory to allocate to
each (ready) program?

— Fetching — when to bring the pages into main
memory?

— Placement — where in the memory the fetched page
should be loaded?

— Replacement — what page should be removed from
main memory?

Allocation Policy

* In general, the allocation policy deals with
conflicting requirements:

— The fewer the frames allocated for a program, the
higher the page fault rate.

— The fewer the frames allocated for a program, the
more programs can reside in memory; thus,
decreasing the need of swapping.

— Allocating additional frames to a program beyond a
certain number results in little or only moderate gain
In performance.

— The number of allocated pages (also known as
resident set size) can be fixed or can be variable
during the execution of a program.

Fetch Policy

Demand paging

— Start a program with no pages loaded; wait until it references a
page; then load the page (this is the most common approach
used in paging systems).

Request paging

— Similar to overlays, let the user identify which pages are needed
(not practical, leads to over estimation and also user may not
know what to ask for.)

Pre-paging

— Start with one or a few pages pre-loaded. As pages are
referenced, bring in other (not yet referenced) pages too.

Opposite to fetching, the cleaning policy deals with
determining when a modified (dirty) page should be
written back to the paging device.

Placement Policy

This policy usually follows the rules about paging and
segmentation discussed earlier.

Given the matching sizes of a page and a frame,
placement with paging is straightforward.

Segmentation requires more careful placement,
especially when not combined with paging.

Placement in pure segmentation is an important issue
and must consider “free” memory management policies.

With the recent developments in non-uniform memory
access (NUMA) distributed memory multiprocessor
systems, placement becomes a major concern.

What happens if there is no free frame?

e Page replacement — find some page In
memory, but not really in use, swap It out.

— algorithm

— performance — want an algorithm which will
result in minimum number of page faults.

e Same page may be brought into memory
several times.

Performance of Demand Paging

e For most computer systems, memory access time
ranges from 10 to 200 nanoseconds

e Page Fault Rate 0 <p <1.0
— 1If p = 0 no page faults
— If p = 1, every reference is a fault

» Effective Access Time (EAT)

EAT = (1 — p) X memory access
+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Demand Paging Example

« Memory access time = 1 microsecond

 50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out.

e Swap Page Time = 10 msec = 10,000 msec
EAT =(1-p)x 1+ p (15000)
1 + 15000P (In msec)

Process Creation

 Virtual memory allows other benefits during
process creation:

- Copy-on-Write

- Memory-Mapped Files

Copy-on-Write

Copy-on-Write (COW) allows both parent and
child processes to initially share the same pages
INn memory.

If either process modifies a shared page, only
then iIs the page copied.

COW allows more efficient process creation as
only modified pages are copied.

All unmodified pages can be shared by the
parent and child processes.

Free pages are allocated from a pool of zeroed-
out pages.

Replacement Policy

 The most studied area of the memory
management is the replacement policy or victim
selection to satisfy a page fault:

— FIFO—the frames are treated as a circular list; the
oldest (longest resident) page is replaced.

— LRU—the frame whose contents have not been used
for the longest time is replaced.

— OPT—the page that will not be referenced again for
the longest time is replaced (prediction of the future;
purely theoretical, but useful for comparison.)

— Random—a frame is selected at random.

Page Replacement

* Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement.

e Use modify (dirty) bit to reduce overhead of
page transfers — only modified pages are written
to disk.

* Page replacement completes separation between
logical memory and physical memory

— large virtual memory can be provided on a smaller
physical memory.

Need For Page Replacement

valid—invalid
bit monitor

frame \ /

3 |v
4 v
B |V

logical memory page table
for user 1 for user 1

valid—invalid E
frame bit _

\ ,Z physical
6 v memaory

i
2| v
E 7| v

D

logical memory page table
for user 2 for user 2

Basic Page Replacement

1. Find the location of the desired page on disk.

2. FInd a free frame:

- If there is a free frame, use It.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process.

Page Replacement

J valid—invalid bit

change
to invalid

®

reset page
table for
new page

page table

physical

swap out
victim

(0

swap
desired
page in

Page Replacement Algorithms

 Want lowest page-fault rate.

e Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on
that string.

 In all our examples, the reference string Is
1,2,3,4,1,2,5,1, 2,3, 4,5.

Graph of Page Faults Versus The Number of Frames

[2]
=
=3
©
—
Q
(o)
@©
joF
——
o
e
Q
0
=
-
=

number of frames

First-In-First-Out (FIFO) Algorithm

 The frames are treated as a circular list; the
oldest (longest resident) page Is replaced.

 The OS maintains a list of all pages currently In
memory, with:

— the page at the head of the list the oldest one and
— the page at the tail the most recent arrival.

 On a page fault, the page at the head is
removed and the new page added to the tall of
the list.

First-In-First-Out (FIFO) Algorithm...
Reference string: 1, 2,3,4,1,2,5,1, 2,3,4,5
3 frames (3 pages can be in memory at a time per process)

11| 4
2 12| 1 9 page faults
3 |3 2
4 frames
1 |1 5
2 12 |1 10 page faults
3|3 2
4 |4 |3

FIFO Replacement — Belady’s Anomaly
— more frames = less page faults

FIFO Page Replacement

reference string

7 0 1 2

1

page frames

FIFO lllustrating Belady’s Anamoly

72}
=
-
)
——
)
(@)]
@
o
—
o
S
)
o]
£
-}
c

3 4

number of frames

Optimal Algorithm

» Replace page that will not be used for longest period of
time.

e 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

1] 4

2 6 page faults
3

4 | 5

« How do you know this?
» Used for measuring how well your algorithm performs.

Optimal Page Replacement

reference string
7 0 1 2

7

1

page frames

The Second Chance Page Replacement
algorithm

* A simple modification to FIFO that avoids the problem
of throwing out a heavily used page is to inspect the R
bit of the oldest page.

-If R->0, then the page Is both old and unused, so it Is
replaced immediately.

- If R>1,

— the bit is cleared,
— the page is put onto the end of the list of pages, and

— its load time is updated as though it had just arrived in
memory. Then the search continues.

e The operation of this algorithm is called second
chance.

42

Page loaded first Most recently loaded page

» Suppose a page fault occurs at time 20. Oldest page is A=>,
Check for R bit.

 If A has the R bit cleared, it is evicted from memory.

 If R bit setto 1, A is put onto the end of the list and its “load
time” is reset to the current time (20). R is also cleared.

3 7 3 12 14 15 18 20

B G D E F G H A

/

A is treated as a newly loaded page

Least Recently Used (LRU) Algorithm
 Reference string: 1, 2,3,4,1,2,5,1,2,3,4,5

115

2

3|5 4

413

e Counter implementation

— Every page entry has a counter; every time page Is
referenced through this entry, copy the clock into the
counter.

— When a page needs to be changed, look at the
counters to determine which are to change.

LRU Page Replacement

reference string
7 0 1

page frames

LRU Algorithm (Cont.)

o Stack implementation — keep a stack of
page numbers in a double link form:
— Page referenced:

e move it to the top
* requires 6 pointers to be changed

— No search for replacement

Use Of A Stack to Record The Most Recent Page References

reference string

4 7 0 7

stack before a stack after b

LRU Approximation Algorithms

e Reference bit
— With each page associate a bit, initially = 0
— When page is referenced bit set to 1.

— Replace the one which is O (if one exists). We do not
know the order, however.

e Second chance
— Need reference bit.
— Clock replacement.

— If page to be replaced (in clock order) has reference bit
= 1. then:
 set reference bit O.
 leave page in memory.
 replace next page (in clock order), subject to same rules.

Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits bits

0

v

_/

circular queue of pages circular queue of pages

(a) (b)

Counting Algorithms

« Keep a counter of the number of references that
have been made to each page.

e LFU Algorithm: replaces page with smallest
count.

 MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used.

Allocation of Frames

e Each process needs minimum number of
pages.

 Example: IBM 370 — 6 pages to handle SS
MOVE Instruction:
— Instruction Is 6 bytes, might span 2 pages.
— 2 pages to handle from.
— 2 pages to handle to.

 Two major allocation schemes.
— fixed allocation
— priority allocation

Fixed Allocation

e Equal allocation — e.g., if 100 frames and 5 processes,
give each 20 pages.

e Proportional allocation — Allocate according to the size of
Process.
— s; =Size of process p;
—S=3s;
—m =total number of frames

—a; = allocation for p; _Si
i = Pi = S xm
m = 64
Si :10
Sz :127
o 10
17137

a2 :£X64z59
137

x64 ~5

Priority Allocation

e Use a proportional allocation scheme using
priorities rather than size.

 If process P, generates a page fault,
— select for replacement one of its frames.

— select for replacement a frame from a process
with lower priority number.

Global vs. Local Allocation

e Global replacement — process selects a
replacement frame from the set of all frames;
one process can take a frame from another.

* Local replacement — each process selects from
only its own set of allocated frames.

