
Chapter - Five

Virtual Memory

Outline
• Introduction
• Virtual memory
• Page fault handling
• Virtual memory basic policy
• Page replacement algorithms

Chapter objectives

• To describe the benefits of virtual memory
system

• To explain the concepts of demand paging,
page-replacement algorithms, and allocation of
page frames.

Introduction
• So far, we separated the programmer’s view of memory

from that of the operating system using a mapping
mechanism.

• We have also seen protection and sharing of memory
between processes.

• we also assumed that a user program had to be loaded
completely into the memory before it could run.

• Problem : Waste of memory, because a program only
needs a small amount of memory at any given time.

• Solution : Virtual memory; a program can run with only
some of its virtual address space in main memory.

Principles of operation
• The basic idea with virtual memory is to create an illusion

of memory that is as large as a disk (in gigabytes) and as
fast as memory (in nanoseconds).

• The key principle is locality of reference; a running
program only needs access to a portion of its virtual
address space at a given time.

• With virtual memory, a logical (virtual) address translates
to:
– Main memory (small but fast), or
– Paging device (large but slow), or
– None (not allocated, not used, free.)

5

A virtual view

Background
• Virtual memory – separation of user logical

memory from physical memory.
– Only part of the program needs to be in memory for

execution.
– Logical address space (program) can therefore be much

larger than physical address space.
– Allows address spaces to be shared by several

processes.
– Allows to share files easily and to implement shared

memory.
– Allows for more efficient process creation

Virtual memory can be implemented via:
– Demand paging
– Demand segmentation

Background…
• In many cases, the entire program is not

needed, for example:
– Programs often have codes to handle unusual error

conditions. This code may not be executed.
– Arrays, lists, and tables are often allocated more

memory than they actually need.
• An array may be declared 100 by 100, but you may use only

10 by 10
– Certain options and features of a program may be

used rarely.

• Even in those cases where the entire program is
needed, it may not all be needed at the same
time.

Virtual Memory That is Larger Than Physical Memory

• The ability to execute a
program that is only partially
in memory would have many
benefits.
– A program would no longer be

constrained by the amount of
physical memory that is
available.

– Since each user program could
take less physical memory,
more programs could run at
the same time, which increases
CPU utilization and system
throughput

– Less I/O would be needed to
load or swap each user
program into memory.

Demand Paging
• Bring a page into memory only when it is

needed.
• Pages that are never accessed are thus never

loaded into physical memory.
– Less I/O needed
– Less memory needed
– Faster response
– More users

• Page is needed  reference to it
– invalid reference  abort
– not-in-memory  bring to memory

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1  in-memory, 0  not-in-memory)
• Initially valid–invalid but is set to 0 on all entries.
• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page
table entry is 0  page fault.

1
1
1
1
0

0
0



Frame # valid-invalid bit

page table

Page Table When Some Pages Are Not in Main Memory

Page Fault
• If there is ever a reference to a page, first reference will

trap to OS  page fault
• OS looks at another table to decide:

– Invalid reference  abort.
– Just not in memory.

• Get empty frame.
• Swap page into frame.
• Reset tables, validation bit = 1.
• Restart instruction: Least Recently Used

– block move

– auto increment/decrement location

Steps in Handling a Page Fault

Virtual memory…
• Virtual memory system can be implemented as an

extension of paged or segmented memory management
or sometimes as a combination of both.

• In this scheme, the operating system has the ability to
execute a program which is only partially loaded in
memory.

Missing pages
• What happens when an executing program references an

address that is not in main memory?
• Here, both hardware (H/W) and software (S/W) cooperate

and solve the problem:

16

Missing pages…
• The page table is extended with an extra bit,

present. Initially, all the present bits are cleared
(H/W and S/W).

• While doing the address translation, the MMU
checks to see if this bit is set.

• Access to a page whose present bit is not set causes
a special hardware trap, called page fault (H/W).

• When a page fault occurs the operating system:
– brings the page into memory,
– sets the corresponding present bit, and
– restarts the execution of the instruction (S/W).

• Most likely, the page carrying the address will be on
the paging device,

17

Page fault handling—by words
• When a page fault occurs, the system:
marks the current process as blocked (waiting for a

page),
 finds an empty frame or make a frame empty in main

memory,
determines the location of the requested page on

paging device,
performs an I/O operation to fetch the page to main

memory
triggers a “ page fetched’’ event (e.g., special form of

I/O completion interrupt) to wake up the process.

Page fault handling—by picture

Basic policies
• The operating system must make several

decisions:

– Allocation — how much real memory to allocate to
each (ready) program?

– Fetching — when to bring the pages into main
memory?

– Placement — where in the memory the fetched page
should be loaded?

– Replacement — what page should be removed from
main memory?

Allocation Policy
• In general, the allocation policy deals with

conflicting requirements:
– The fewer the frames allocated for a program, the

higher the page fault rate.
– The fewer the frames allocated for a program, the

more programs can reside in memory; thus,
decreasing the need of swapping.

– Allocating additional frames to a program beyond a
certain number results in little or only moderate gain
in performance.

– The number of allocated pages (also known as
resident set size) can be fixed or can be variable
during the execution of a program.

Fetch Policy
• Demand paging

– Start a program with no pages loaded; wait until it references a
page; then load the page (this is the most common approach
used in paging systems).

• Request paging
– Similar to overlays, let the user identify which pages are needed

(not practical, leads to over estimation and also user may not
know what to ask for.)

• Pre-paging
– Start with one or a few pages pre-loaded. As pages are

referenced, bring in other (not yet referenced) pages too.

• Opposite to fetching, the cleaning policy deals with
determining when a modified (dirty) page should be
written back to the paging device.

Placement Policy
• This policy usually follows the rules about paging and

segmentation discussed earlier.

• Given the matching sizes of a page and a frame,
placement with paging is straightforward.

• Segmentation requires more careful placement,
especially when not combined with paging.

• Placement in pure segmentation is an important issue
and must consider “free” memory management policies.

• With the recent developments in non-uniform memory
access (NUMA) distributed memory multiprocessor
systems, placement becomes a major concern.

What happens if there is no free frame?

• Page replacement – find some page in
memory, but not really in use, swap it out.
– algorithm
– performance – want an algorithm which will

result in minimum number of page faults.

• Same page may be brought into memory
several times.

Performance of Demand Paging
• For most computer systems, memory access time

ranges from 10 to 200 nanoseconds
• Page Fault Rate 0  p  1.0

– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ [swap page out]
+ swap page in
+ restart overhead)

Demand Paging Example
• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced
has been modified and therefore needs to be
swapped out.

• Swap Page Time = 10 msec = 10,000 msec
EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Process Creation

• Virtual memory allows other benefits during
process creation:

- Copy-on-Write

- Memory-Mapped Files

Copy-on-Write
• Copy-on-Write (COW) allows both parent and

child processes to initially share the same pages
in memory.

• If either process modifies a shared page, only
then is the page copied.

• COW allows more efficient process creation as
only modified pages are copied.

• All unmodified pages can be shared by the
parent and child processes.

• Free pages are allocated from a pool of zeroed-
out pages.

Replacement Policy
• The most studied area of the memory

management is the replacement policy or victim
selection to satisfy a page fault:
– FIFO—the frames are treated as a circular list; the

oldest (longest resident) page is replaced.

– LRU—the frame whose contents have not been used
for the longest time is replaced.

– OPT—the page that will not be referenced again for
the longest time is replaced (prediction of the future;
purely theoretical, but useful for comparison.)

– Random—a frame is selected at random.

Page Replacement
• Prevent over-allocation of memory by modifying

page-fault service routine to include page
replacement.

• Use modify (dirty) bit to reduce overhead of
page transfers – only modified pages are written
to disk.

• Page replacement completes separation between
logical memory and physical memory
– large virtual memory can be provided on a smaller

physical memory.

Need For Page Replacement

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free
frame. Update the page and frame tables.

4. Restart the process.

Page Replacement

Page Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on
that string.

• In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Graph of Page Faults Versus The Number of Frames

First-In-First-Out (FIFO) Algorithm

• The frames are treated as a circular list; the
oldest (longest resident) page is replaced.

• The OS maintains a list of all pages currently in
memory, with:
– the page at the head of the list the oldest one and
– the page at the tail the most recent arrival.

• On a page fault, the page at the head is
removed and the new page added to the tail of
the list.

First-In-First-Out (FIFO) Algorithm…
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 frames (3 pages can be in memory at a time per process)

• 4 frames

• FIFO Replacement – Belady’s Anomaly
– more frames  less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

FIFO Page Replacement

FIFO Illustrating Belady’s Anamoly

Optimal Algorithm
• Replace page that will not be used for longest period of

time.
• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?
• Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

Optimal Page Replacement

The Second Chance Page Replacement
algorithm

• A simple modification to FIFO that avoids the problem
of throwing out a heavily used page is to inspect the R
bit of the oldest page.

-If R0, then the page is both old and unused, so it is
replaced immediately.

- If R1,
– the bit is cleared,
– the page is put onto the end of the list of pages, and
– its load time is updated as though it had just arrived in

memory. Then the search continues.
• The operation of this algorithm is called second

chance.
42

 Suppose a page fault occurs at time 20. Oldest page is A=>,
Check for R bit.

• If A has the R bit cleared, it is evicted from memory.
• If R bit set to 1, A is put onto the end of the list and its “load

time” is reset to the current time (20). R is also cleared.

43

Least Recently Used (LRU) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation
– Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter.

– When a page needs to be changed, look at the
counters to determine which are to change.

1

2

3

5

4

4 3

5

LRU Page Replacement

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of
page numbers in a double link form:
– Page referenced:

• move it to the top
• requires 6 pointers to be changed

– No search for replacement

Use Of A Stack to Record The Most Recent Page References

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially = 0
– When page is referenced bit set to 1.
– Replace the one which is 0 (if one exists). We do not

know the order, however.
• Second chance

– Need reference bit.
– Clock replacement.
– If page to be replaced (in clock order) has reference bit

= 1. then:
• set reference bit 0.
• leave page in memory.
• replace next page (in clock order), subject to same rules.

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

• Keep a counter of the number of references that
have been made to each page.

• LFU Algorithm: replaces page with smallest
count.

• MFU Algorithm: based on the argument that the
page with the smallest count was probably just
brought in and has yet to be used.

Allocation of Frames
• Each process needs minimum number of

pages.
• Example: IBM 370 – 6 pages to handle SS

MOVE instruction:
– instruction is 6 bytes, might span 2 pages.
– 2 pages to handle from.
– 2 pages to handle to.

• Two major allocation schemes.
– fixed allocation
– priority allocation

Fixed Allocation
• Equal allocation – e.g., if 100 frames and 5 processes,

give each 20 pages.
• Proportional allocation – Allocate according to the size of

process.

m
S
spa

m
sS

ps

i
ii

i

ii








forallocation

framesofnumbertotal

processofsize

5964
137
127

564
137
10
127
10
64

2

1

2










a

a

s
s
m

i

Priority Allocation

• Use a proportional allocation scheme using
priorities rather than size.

• If process Pi generates a page fault,
– select for replacement one of its frames.
– select for replacement a frame from a process

with lower priority number.

Global vs. Local Allocation

• Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another.

• Local replacement – each process selects from
only its own set of allocated frames.

