Chapter - Six

File System

Outline

Introduction

-lle system concepts and definition
-lle attributes

-lle access methods

-lle operation, organization
Directories

-ile allocation

-lle permission

Introduction

e Secondary storage Is the non-volatile repository
for (both user and system) data and programs.

e As (integral or separate) part of an operating
system, the file system manages this information
on secondary storage.

» Uses of secondary storage include:

— storing various forms of programs (source, object,
and executable) and

— temporary storage of virtual memory pages (paging
device or swap space).

Introduction...

* Generally there are three essential requirements for
long term information storage:

1. It must be possible to store a very large amount of
information.

2. The information must survive the termination of the
process using it.

3. Multiple processes must be able to access the
Information concurrently.

* The solution to all these problems is to store
Information on disks and other external media in
units called Files.

File systems

» A file system provides a mapping between the
logical and physical views of a file, through a set of
services and an interface.

o Simply put, the file system hides all the device-
specific aspects of file manipulation from users.

* The basic services of a file system include:
— keeping track of files (knowing location),

— 1/0 support, especially the transmission mechanism to
and from main memory,

— management of secondary storage,
— sharing of 1/0 devices,

— providing protection mechanisms for information held
on the system.

File concept

~lles are managed by operating system.

How they are structured, named, accessed, used,
protected, and implemented are major topics In
operating system.

As a whole that part of the operating system dealing
with files known as file system.

A file i1Is a named collection of related information,
usually as a sequence of bytes, with two views:

— Logical (programmer’s) view, as the users see It.

— Physical (operating system) view, as it actually resides
on secondary storage.

File concept...

 What is the difference between a file and a data
structure in memory? Basically,

— files are intended to be non-volatile; hence In
principle, they are long lasting,

— files are intended to be moved around (i.e., copied
from one place to another),

— accessed by different programs and users, and so on.

File Attributes

Name — only information kept in human-readable form
Type — needed for systems that support different types
Location — pointer to file location on device

Size — current file size

Protection — controls who can do reading, writing,
executing

Time, date, and user identification — data for
protection, security, and usage monitoring

Information about files are kept in the directory
structure, which is maintained on the disk

File attributes

e Each file Is associated with a collection of
Information, known as attributes:

— NAME, owner, creator

— type (e.g., source, data, binary)

— location (e.g., I-node or disk address)

— organization (e.g., sequential, indexed, random)
— access permissions

— time and date (creation, modification, and last
accessed)

— Size
— variety of other (e.g., maintenance) information.

File access methods

» The information stored in a file can be accessed
In a variety of methods:

— Sequential: in order, one record after another.

- Direct (random): In any order, skipping the
previous records.

- Keyed: In any order, but with particular
value(s); e.d., hash table or dictionary.

— TLB lookup Is one example of a keyed search.

File Operations

Create

Write

Read

file seek — reposition within file
Delete

Truncate

Open(F;) — search the directory structure on disk for
entry F;, and move the content of entry to memory

Close (F;) — move the content of entry F, iIn memory to
directory structure on disk

Addressing levels

There are three basic mapping levels (abstractions)
from a logical to physical view of a file (contents):

File relative:

— <filename, offset> form is used at the higher levels,
where the file system is viewed as a collection of files.

Volume (partition) relative:

— device-independent part of a file system use

— <sector, offset> (e.g., a partition is viewed as an
array of sectors.)

Drive relative:

— at the lowest level, <cylinder, head, sector> (also
known as <track, platter, sector>) is used.

File Types — Name, Extension

file type usual extension function
executable exe, com, bin read to run machine-
or none language program
object obj, o compiled, machine language,
not linked
source code c, cc, java, pas, source code in various
asm, a languages
batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents
word processor | wp, tex, rrf, various word-processor
doc formats
library lib, a, so, dll, libraries of routines for
mpeg, mov, rm programmers
print or view arc, zip, tar ASCII or binary file in a
format for printing or
viewing
archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage
multimedia mpeg, mov, rm binary file containing
audio or A/V information

File Organization

e One of the key elements of a file system is the
way the files are organized.

* File organization is the “logical structuring” as
well as the access method(s) of files.

« Common file organization schemes are:
— Sequential
— Indexed-sequential
— Indexed
— Direct (or hashed)

Access Methods

« Sequential Access

e Direct Access

read next

write next

reset

no read after last write
(rewrite)

read n

write n

position to n
read next
write next

rewrite n

n = relative block number

Sequential-access File

beginning

current position

end

<4 rewind mm

—= read or write ==

Simulation of Sequential Access on a Direct-access

File
sequential access implementation for direct access
reset cp = 0;
read next read cp;
cp = cp+i,;
write next write cp,
cp = cp+1,

Example of Index and Relative Files

logical record
last name number

Adams

Arthur

Asher

Smith

Smith, John

social-security

age

index file

relative file

Directories

A directory is a symbol table, which can be searched for
iInformation about the files.

Also, It is the fundamental way of organizing files.
Usually, a directory is itself a file.

A typical directory entry contains information
(attributes) about a file. Directory entries are added as
files are created, and are removed when files are
deleted.

Common directory structures are:

— Single-level (flat): shared by all users.
— Two-level: one level for each user.

— Tree: arbitrary (sub)-tree for each user.

Directory Structure

* A collection of nodes containing information about all
files

Directory @ O O O o

\\

Files
F4
F1| |F2 F 3

Fn

Both the directory structure and the files reside on
disk

A Typical File-system Organization

(directory i [directory)
artition A <
p files s
. > disk 1
(director <
irectory partition C < files A
partition B < :
files
» disk 3
_ o
. .J

Information in a Device Directory
Name
Type
Address
Current length
Maximum length
Date last accessed (for archival)
Date last updated (for dump)
Owner ID
Protection information (discuss later)

Operations Performed on Directory

Search for a file

Create a file

Delete a file

_ist a directory

Rename a file

Traverse the file system

Organize the Directory (Logically) to Obtain

» Efficiency — locating a file quickly

 Naming — convenient to users

— Two users can have same name for
different files

— The same file can have several
different names

e Grouping — logical grouping of files by
properties, (e.g., all Java programs, all
games, ...)

Single-Level Directory

* A single directory for all users
o Shared by all users.

e One directory containing all the files
(root directory).

directory cat bo test data mail cont hex | records

EETERERY

Naming problem

Grouping problem

Root directories

» Here the directory contains four files.

» Disadvantage:

— Different users may accidentally use the same names for
their files.

— Example: User A creates file name mailbox. Latter user B
creates file name mailbox. Then B’s file will overwrite A’s
file.

Two-level directory system

e To overcome the above problem, just give each
user a private directory.

e One level for each user.

/ Root directory

T N ——

A

B

SO0 T

C

«—— User directory

Files

Two-Level Directory...

o Separate directory for each user

master

file user1 | user2 | user3 | user4
directory
' \
user file = =
directory | cat bo a test a data a test x | data

il
bbb b

9999 99 99 99

e Path name

e Can have the same file name for different user
e Efficient searching

e No grouping capability

Tree (Hierarchical directory system)

o Arbitrary (sub)-tree for each user.
o It is used for large number of files.

 Each user can have as many directories as possible.

A_ ROOt dlreCtorleS

User directories

A

o

B

B

o

C

&

©

k

User files

Tree-Structured Directories...

o Efficient
searching

e Grouping
Capability
e Current directory
(working
directory)
— cd
/spell/mail/pro
9
— type list

root spell bin | programs
stat | mail dist find | count | hex |reorder e mail
prog copy reorder | list find hex | count
J g
list Obj speﬂ all last | first

Q u Lé

Tree-Structured Directories (Cont)

Absolute or relative path name
Creating a new file is done Iin current directory
Delete a file

rm <file-name>
Creating a new subdirectory is done in current directory
mkdir <dir-name=>

Example: if in current directory /mail

mkdir count

mail

prog | copy | prt |[exp| count

Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

 Have shared subdirectories and
files

e Two different names (aliasing)

o If dict deletes list = dangling
pointer

Solutions:

— Backpointers, so we can delete
all pointers
Variable size records a problem

— Backpointers using a daisy
chain organization

— Entry-hold-count solution

root’ dict ‘ spell \

all w | count

N\

count

words

I‘\ _ /!

|

—» ist

tade

74

;

;

- \] [/ \] (R
b AN 4 \)

'

General Graph Directory

 How do we guarantee
no cycles?

— Allow only links to file
not subdirectories

— Garbage collection

— Every time a new link
Is added use a cycle
detection algorithm to
determine whether it is
OK

root

‘aw“tc‘jiml

x

text | mail

count

book

6 ¢

book | mail |unhex| hyp

Directory operation

Create- a directory Is created.
Delete- a directory is deleted.
Opendir- directories can be read.
Closedir- directory can be closed.

Readdir- this call returns the next entry in an

open directory.

File allocation

The file system allocates disk space, when a file is
created.

With many files residing on the same disk, the main
problem is how to allocate space for them.

File allocation scheme has impact on the efficient use
of disk space and file access time.

Common file allocation techniques are:

— Contiguous
— Chained (linked)
— Indexed

All these techniques allocate disk space on a per block
(smallest addressable disk units) basis.

Contiguous allocation

Allocate disk space like
paged, segmented
memory.

Keep a free list of
unused disk space.

Advantages

— Easy access, both
sequential and random

— Simple

— Few seeks | Directory
Disadvantages name | start| len.
— External fragmentation a.out 00| 3

— May not known the file h"‘1~;t ;g 15;
Size in advance report.tex

Contiguous Allocation of Disk Space

directory

file start length

count

OD 1|:| 2D SD count 0 2

f tr 14 3
Os0edD| | s 2 4
8] o[]1o[]11[] f 2 °
12[]13[]14[|t1r5|:|
16[_]17[]18[]19[]

mail

20[J21[]22[]23[]
24[25]26[]27[]

list

28[] 29[]30[]31[]
v

Chained (linked) allocation

Space allocation is similar

to page frame allocation. >\

Mark allocated blocks as i@ o]

In-use. ‘

Advantages:]] 343 a '

— no external fragmentation 14 % o] 1] g |

— files can grow easily afzif 2 (] 2] 2] 2]

Disadvantages 2] 2 2] 2] 2{] \

— Lots of seeking 33 J24 34 J=¢ | ,]

— Random access difficult P . —— Directory /
name stargy§ len.

Example a.out 01 3

— MSDOS (FAT) file system i

Linked Allocation...

directory

° EaCh flle iS a file start end
linked list of disk jeep 9 25
blocks:

* blocks may be
scattered
anywhere on the
disk. 16[1] 17]18[] 19[]

20[]21[J22[]23[]
24[] 25[-126[] 27[_]
28[]29[]30[]31[]

block = pointer

File-Allocation Table

* File-allocation
table (FAT) —
disk-space
allocation used
by MS-DOS and
0S/2.

directory entry

| test [...

[217 |}—

name

start block

no. of disk blocks -1

end-of-file

Indexed Allocation

 Brings all pointers together into the index block.
e Logical view.

index table

Indexed allocation...

Allocate an array of pointers
during file creation.

Fill the array as new disk
blocks are assigned.

Advantages
— Small internal fragmentation

— Easy sequential and direct
access

Disadvantages
— Lots of seeks if the file is big

— Maximum file size is limited to
the size of the block

Example
— Unix file system

Directory

name

inadex

a.out

hwil.c
report.tex

37

Example of Indexed Allocation

directory

index block
19

28[_]29[]30[]31[]

File Permissions

 Read, write, and execute privileges
e In Windows:

— Change permission on the Security tab on a file’s
Properties dialog box

— Allow indicates grant;
— Deny indicates revoke

* In UNIX/Linux

— Three permission settings:

e owner; group to which owner belongs; all other users
— Each setting consist of rwx

e 1 for reading, w for writing, and x for executing
— CHMOD command used to change file permissions

File Permissions

read \ write / execute

| _ .
LT iwlx i WX Irw X

AL A J
& b 4 Y

File type Owner Group Other

* One can easily view the permissions for a file by invoking a long
format listing using the command Is -I.

 For instance, If the user Abe creates an executable file named
test, the output of the command Is -| test would look like this:

rwxrwxr-x Abe student Sep 26 12:25 test.|

Access Permissions

« This listing Iindicates that the file is readable, writable,
and executable by the user who owns the file (user
Abe)

e as well as the group owning the file (which is a group
named student).

 The file I1s also readable and executable, but not
writable by other users.

rwxrwxr-x Abe student Sep 26 12:25 test.|

Access Permission of File/Directory
The ownership of the file or directory can be changed
using the command
— chown <owner> <file/directory nane>

The group of the file or directory can be changed using
the command

— chgrp <group> <file/directory nane>

The permissions of the file can be changed using chmod
command

— chnod -R ### <filenane or directory>

-R i1s optional and when used with directories will traverse
all the sub-directories of the target directory changing ALL
the permissions to ###.

Access Permission of File/Directory

The #'s can be:

0 = Nothing

1 = Execute

2 = Write

3 = Execute & Write (2 + 1)

4 = Read

5 = Execute & Read (4 + 1)

6 = Read & Write (4 + 2)

/ = Execute & Read & Write (4 + 2 + 1)

