
Roosevelt Dam in Arizona. Hydrostatic pressure, due to the weight of a standing fluid, can cause
enormous forces and moments on large-scale structures such as a dam. Hydrostatic fluid analy-
sis is the subject of the present chapter. (Courtesy of Dr. E.R. Degginger/Color-Pic Inc.)
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2.1 Pressure and Pressure
Gradient

Motivation. Many fluid problems do not involve motion. They concern the pressure
distribution in a static fluid and its effect on solid surfaces and on floating and sub-
merged bodies.

When the fluid velocity is zero, denoted as the hydrostatic condition, the pressure
variation is due only to the weight of the fluid. Assuming a known fluid in a given
gravity field, the pressure may easily be calculated by integration. Important applica-
tions in this chapter are (1) pressure distribution in the atmosphere and the oceans, (2)
the design of manometer pressure instruments, (3) forces on submerged flat and curved
surfaces, (4) buoyancy on a submerged body, and (5) the behavior of floating bodies.
The last two result in Archimedes’ principles.

If the fluid is moving in rigid-body motion, such as a tank of liquid which has been
spinning for a long time, the pressure also can be easily calculated, because the fluid
is free of shear stress. We apply this idea here to simple rigid-body accelerations in
Sec. 2.9. Pressure measurement instruments are discussed in Sec. 2.10. As a matter of
fact, pressure also can be easily analyzed in arbitrary (nonrigid-body) motions V(x, y,
z, t), but we defer that subject to Chap. 4.

In Fig. 1.1 we saw that a fluid at rest cannot support shear stress and thus Mohr’s cir-
cle reduces to a point. In other words, the normal stress on any plane through a fluid
element at rest is equal to a unique value called the fluid pressure p, taken positive for
compression by common convention. This is such an important concept that we shall
review it with another approach.

Figure 2.1 shows a small wedge of fluid at rest of size �x by �z by �s and depth b
into the paper. There is no shear by definition, but we postulate that the pressures px, pz,
and pn may be different on each face. The weight of the element also may be important.
Summation of forces must equal zero (no acceleration) in both the x and z directions.

� Fx � 0 � pxb �z � pnb �s sin �
(2.1)

� Fz � 0 � pzb �x � pnb �s cos � � �12� �b �x �z
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Fig. 2.1 Equilibrium of a small
wedge of fluid at rest.

Pressure Force on a Fluid
Element

but the geometry of the wedge is such that

�s sin � � �z �s cos � � �x (2.2)

Substitution into Eq. (2.1) and rearrangement give

px � pn pz � pn 	 �12�� �z (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free, con-
dition: (1) There is no pressure change in the horizontal direction, and (2) there is a
vertical change in pressure proportional to the density, gravity, and depth change. We
shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,’’ �z → 0 and Eqs. (2.3) become

px � pz � pn � p (2.4)

Since � is arbitrary, we conclude that the pressure p at a point in a static fluid is inde-
pendent of orientation.

What about the pressure at a point in a moving fluid? If there are strain rates in a
moving fluid, there will be viscous stresses, both shear and normal in general (Sec.
4.3). In that case (Chap. 4) the pressure is defined as the average of the three normal
stresses 
ii on the element

p � � �13�(
xx 	 
yy 	 
zz) (2.5)

The minus sign occurs because a compression stress is considered to be negative
whereas p is positive. Equation (2.5) is subtle and rarely needed since the great ma-
jority of viscous flows have negligible viscous normal stresses (Chap. 4).

Pressure (or any other stress, for that matter) causes no net force on a fluid element
unless it varies spatially.1 To see this, consider the pressure acting on the two x faces
in Fig. 2.2. Let the pressure vary arbitrarily

p � p(x, y, z, t) (2.6)
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Fig. 2.2 Net x force on an element
due to pressure variation.

2.2 Equilibrium of a Fluid
Element

The net force in the x direction on the element in Fig. 2.2 is given by

dFx � p dy dz � �p 	 �
�

�

p
x
� dx� dy dz � ��

�

�

p
x
� dx dy dz (2.7)

In like manner the net force dFy involves ��p/�y, and the net force dFz concerns
��p/�z. The total net-force vector on the element due to pressure is

dFpress � ��i �
�

�

p
x
� � j �

�

�

p
y
� � k �

�

�

p
z
�� dx dy dz (2.8)

We recognize the term in parentheses as the negative vector gradient of p. Denoting f
as the net force per unit element volume, we rewrite Eq. (2.8) as

fpress � �∇p (2.9)

Thus it is not the pressure but the pressure gradient causing a net force which must be
balanced by gravity or acceleration or some other effect in the fluid.

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on
the entire mass of the element. Here we consider only the gravity force, or weight of
the element

dFgrav � �g dx dy dz
(2.10)

or fgrav � �g

In general, there may also be a surface force due to the gradient, if any, of the vis-
cous stresses. For completeness, we write this term here without derivation and con-
sider it more thoroughly in Chap. 4. For an incompressible fluid with constant viscos-
ity, the net viscous force is

fVS � 
��
�

�

2

x
V
2� 	 �

�

�

2

y
V
2� 	 �

�

�

2

z
V
2�� � 
∇2V (2.11)

where VS stands for viscous stresses and 
 is the coefficient of viscosity from Chap.
1. Note that the term g in Eq. (2.10) denotes the acceleration of gravity, a vector act-
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dx
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ing toward the center of the earth. On earth the average magnitude of g is 32.174 ft/s2 �
9.807 m/s2.

The total vector resultant of these three forces—pressure, gravity, and viscous
stress—must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

�a � � f � fpress 	 fgrav 	 fvisc � �∇p 	 �g 	 
∇2V (2.12)

This is one form of the differential momentum equation for a fluid element, and it is
studied further in Chap. 4. Vector addition is implied by Eq. (2.12): The acceleration
reflects the local balance of forces and is not necessarily parallel to the local-velocity
vector, which reflects the direction of motion at that instant.

This chapter is concerned with cases where the velocity and acceleration are known,
leaving one to solve for the pressure variation in the fluid. Later chapters will take up
the more general problem where pressure, velocity, and acceleration are all unknown.
Rewrite Eq. (2.12) as

∇p � �(g � a) 	 
∇2V � B(x, y, z, t) (2.13)

where B is a short notation for the vector sum on the right-hand side. If V and a �
dV/dt are known functions of space and time and the density and viscosity are known,
we can solve Eq. (2.13) for p(x, y, z, t) by direct integration. By components, Eq. (2.13)
is equivalent to three simultaneous first-order differential equations

�
�

�

p
x
� � Bx(x, y, z, t) �

�

�

p
y
� � By(x, y, z, t) �

�

�

p
z
� � Bz(x, y, z, t) (2.14)

Since the right-hand sides are known functions, they can be integrated systematically
to obtain the distribution p(x, y, z, t) except for an unknown function of time, which
remains because we have no relation for �p/�t. This extra function is found from a con-
dition of known time variation p0(t) at some point (x0, y0, z0). If the flow is steady (in-
dependent of time), the unknown function is a constant and is found from knowledge
of a single known pressure p0 at a point (x0, y0, z0). If this sounds complicated, it is
not; we shall illustrate with many examples. Finding the pressure distribution from a
known velocity distribution is one of the easiest problems in fluid mechanics, which
is why we put it in Chap. 2.

Examining Eq. (2.13), we can single out at least four special cases:

1. Flow at rest or at constant velocity: The acceleration and viscous terms vanish
identically, and p depends only upon gravity and density. This is the hydrostatic
condition. See Sec. 2.3.

2. Rigid-body translation and rotation: The viscous term vanishes identically,
and p depends only upon the term �(g � a). See Sec. 2.9.

3. Irrotational motion (� � V � 0): The viscous term vanishes identically, and
an exact integral called Bernoulli’s equation can be found for the pressure distri-
bution. See Sec. 4.9.

4. Arbitrary viscous motion: Nothing helpful happens, no general rules apply, but
still the integration is quite straightforward. See Sec. 6.4.

Let us consider cases 1 and 2 here.
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Fig. 2.3 Illustration of absolute,
gage, and vacuum pressure read-
ings.

Gage Pressure and Vacuum
Pressure: Relative Terms

2.3 Hydrostatic Pressure
Distributions

Before embarking on examples, we should note that engineers are apt to specify pres-
sures as (1) the absolute or total magnitude or (2) the value relative to the local am-
bient atmosphere. The second case occurs because many pressure instruments are of
differential type and record, not an absolute magnitude, but the difference between the
fluid pressure and the atmosphere. The measured pressure may be either higher or lower
than the local atmosphere, and each case is given a name:

1. p � pa Gage pressure: p(gage) � p � pa

2. p � pa Vacuum pressure: p(vacuum) � pa � p

This is a convenient shorthand, and one later adds (or subtracts) atmospheric pressure
to determine the absolute fluid pressure.

A typical situation is shown in Fig. 2.3. The local atmosphere is at, say, 90,000 Pa,
which might reflect a storm condition in a sea-level location or normal conditions at
an altitude of 1000 m. Thus, on this day, pa � 90,000 Pa absolute � 0 Pa gage � 0 Pa
vacuum. Suppose gage 1 in a laboratory reads p1 � 120,000 Pa absolute. This value
may be reported as a gage pressure, p1 � 120,000 � 90,000 � 30,000 Pa gage. (One
must also record the atmospheric pressure in the laboratory, since pa changes gradu-
ally.) Suppose gage 2 reads p2 � 50,000 Pa absolute. Locally, this is a vacuum pres-
sure and might be reported as p2 � 90,000 � 50,000 � 40,000 Pa vacuum. Occasion-
ally, in the Problems section, we will specify gage or vacuum pressure to keep you
alert to this common engineering practice.

If the fluid is at rest or at constant velocity, a � 0 and ∇2V � 0. Equation (2.13) for
the pressure distribution reduces to

∇p � �g (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.

Recall from vector analysis that the vector ∇p expresses the magnitude and direc-
tion of the maximum spatial rate of increase of the scalar property p. As a result, ∇p
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Fig. 2.4 Hydrostatic-pressure distri-
bution. Points a, b, c, and d are at
equal depths in water and therefore
have identical pressures. Points A,
B, and C are also at equal depths in
water and have identical pressures
higher than a, b, c, and d. Point D
has a different pressure from A, B,
and C because it is not connected
to them by a water path.

is perpendicular everywhere to surfaces of constant p. Thus Eq. (2.15) states that a fluid
in hydrostatic equilibrium will align its constant-pressure surfaces everywhere normal
to the local-gravity vector. The maximum pressure increase will be in the direction of
gravity, i.e., “down.’’ If the fluid is a liquid, its free surface, being at atmospheric pres-
sure, will be normal to local gravity, or “horizontal.’’ You probably knew all this be-
fore, but Eq. (2.15) is the proof of it.

In our customary coordinate system z is “up.’’Thus the local-gravity vector for small-
scale problems is

g � �gk (2.16)

where g is the magnitude of local gravity, for example, 9.807 m/s2. For these coordi-
nates Eq. (2.15) has the components

�
�

�

p
x
� � 0 �

�

�

p
y
� � 0 �

�

�

p
z
� � ��g � �� (2.17)

the first two of which tell us that p is independent of x and y. Hence �p/�z can be re-
placed by the total derivative dp/dz, and the hydrostatic condition reduces to

�
d
d
p
z
� � ��

or p2 � p1 � ��2

1
� dz (2.18)

Equation (2.18) is the solution to the hydrostatic problem. The integration requires an
assumption about the density and gravity distribution. Gases and liquids are usually
treated differently.

We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with vertical
distance and is independent of the shape of the container. The pressure is the same
at all points on a given horizontal plane in the fluid. The pressure increases with
depth in the fluid.

An illustration of this is shown in Fig. 2.4. The free surface of the container is atmos-
pheric and forms a horizontal plane. Points a, b, c, and d are at equal depth in a horizon-
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Effect of Variable Gravity

Hydrostatic Pressure in Liquids

tal plane and are interconnected by the same fluid, water; therefore all points have the
same pressure. The same is true of points A, B, and C on the bottom, which all have the
same higher pressure than at a, b, c, and d. However, point D, although at the same depth
as A, B, and C, has a different pressure because it lies beneath a different fluid, mercury.

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

g � g0� �
2

(2.19)

where r0 is the planet radius and g0 is the surface value of g. For earth, r0 � 3960
statute mi � 6400 km. In typical engineering problems the deviation from r0 extends
from the deepest ocean, about 11 km, to the atmospheric height of supersonic transport
operation, about 20 km. This gives a maximum variation in g of (6400/6420)2, or 0.6
percent. We therefore neglect the variation of g in most problems.

Liquids are so nearly incompressible that we can neglect their density variation in hy-
drostatics. In Example 1.7 we saw that water density increases only 4.6 percent at the
deepest part of the ocean. Its effect on hydrostatics would be about half of this, or 2.3
percent. Thus we assume constant density in liquid hydrostatic calculations, for which
Eq. (2.18) integrates to

Liquids: p2 � p1 � ��(z2 � z1) (2.20)

or z1 � z2 � �
p
�
2� � �

p
�
1�

We use the first form in most problems. The quantity � is called the specific weight of
the fluid, with dimensions of weight per unit volume; some values are tabulated in
Table 2.1. The quantity p/� is a length called the pressure head of the fluid.

For lakes and oceans, the coordinate system is usually chosen as in Fig. 2.5, with
z � 0 at the free surface, where p equals the surface atmospheric pressure pa. When

r0�
r

2.3 Hydrostatic Pressure Distributions 65

Table 2.1 Specific Weight of Some
Common Fluids Specific weight �

at 68°F � 20°C

Fluid lbf/ft3 N/m3

Air (at 1 atm) 000.0752 000,011.8
Ethyl alcohol 049.2 007,733 
SAE 30 oil 055.5 008,720 
Water 062.4 009,790 
Seawater 064.0 010,050 
Glycerin 078.7 012,360 
Carbon tetrachloride 099.1 015,570 
Mercury 846 133,100 



Fig. 2.5 Hydrostatic-pressure distri-
bution in oceans and atmospheres.

The Mercury Barometer

we introduce the reference value (p1, z1) � (pa, 0), Eq. (2.20) becomes, for p at any
(negative) depth z,

Lakes and oceans: p � pa � �z (2.21) 

where � is the average specific weight of the lake or ocean. As we shall see, Eq. (2.21)
holds in the atmosphere also with an accuracy of 2 percent for heights z up to 1000 m.

EXAMPLE 2.1

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of 60
m, and the mean atmospheric pressure is 91 kPa. Estimate the absolute pressure in kPa at this
maximum depth.

Solution

From Table 2.1, take � � 9790 N/m3. With pa � 91 kPa and z � �60 m, Eq. (2.21) predicts that
the pressure at this depth will be

p � 91 kN/m2 � (9790 N/m3)(�60 m) �
1
1
00

k
0
N
N

�

� 91 kPa 	 587 kN/m2 � 678 kPa Ans.

By omitting pa we could state the result as p � 587 kPa (gage).

The simplest practical application of the hydrostatic formula (2.20) is the barometer
(Fig. 2.6), which measures atmospheric pressure. A tube is filled with mercury and in-
verted while submerged in a reservoir. This causes a near vacuum in the closed upper
end because mercury has an extremely small vapor pressure at room temperatures (0.16
Pa at 20°C). Since atmospheric pressure forces a mercury column to rise a distance h
into the tube, the upper mercury surface is at zero pressure.
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Fig. 2.6 A barometer measures local absolute atmospheric pressure: (a) the height of a mercury column is pro-
portional to patm; (b) a modern portable barometer, with digital readout, uses the resonating silicon element of
Fig. 2.28c. (Courtesy of Paul Lupke, Druck Inc.)

Hydrostatic Pressure in Gases

From Fig. 2.6, Eq. (2.20) applies with p1 � 0 at z1 � h and p2 � pa at z2 � 0:

pa � 0 � ��M(0 � h)

or h � (2.22) 

At sea-level standard, with pa � 101,350 Pa and �M � 133,100 N/m3 from Table 2.1,
the barometric height is h � 101,350/133,100 � 0.761 m or 761 mm. In the United
States the weather service reports this as an atmospheric “pressure’’ of 29.96 inHg
(inches of mercury). Mercury is used because it is the heaviest common liquid. A wa-
ter barometer would be 34 ft high.

Gases are compressible, with density nearly proportional to pressure. Thus density must
be considered as a variable in Eq. (2.18) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p � �RT in Eq.
(2.18)

� ��g � � g
p

�
RT

dp
�
dz

pa�
�M
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Separate the variables and integrate between points 1 and 2:

�2

1
� ln � � �2

1
(2.23) 

The integral over z requires an assumption about the temperature variation T(z). One
common approximation is the isothermal atmosphere, where T � T0:

p2 � p1 exp�� � (2.24) 

The quantity in brackets is dimensionless. (Think that over; it must be dimensionless,
right?) Equation (2.24) is a fair approximation for earth, but actually the earth’s mean
atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

T � T0 � Bz (2.25) 

Here T0 is sea-level temperature (absolute) and B is the lapse rate, both of which vary
somewhat from day to day. By international agreement [1] the following standard val-
ues are assumed to apply from 0 to 36,000 ft:

T0 � 518.69°R � 288.16 K � 15°C

B � 0.003566°R/ft � 0.00650 K/m (2.26) 

This lower portion of the atmosphere is called the troposphere. Introducing Eq. (2.25)
into (2.23) and integrating, we obtain the more accurate relation

p � pa�1 � �
g/(RB)

where �
R
g
B
� � 5.26 (air) (2.27) 

in the troposphere, with z � 0 at sea level. The exponent g/(RB) is dimensionless (again
it must be) and has the standard value of 5.26 for air, with R � 287 m2/(s2 � K).

The U.S. standard atmosphere [1] is sketched in Fig. 2.7. The pressure is seen to be
nearly zero at z � 30 km. For tabulated properties see Table A.6.

EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, us-
ing (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature
of 15°C. Is the isothermal approximation adequate?

Solution

Use absolute temperature in the exact formula, Eq. (2.27):

p � pa�1 � �
5.26

� (101,350 Pa)(0.8872)5.26

� 101,350(0.52388) � 54,000 Pa Ans. (a)

This is the standard-pressure result given at z � 5000 m in Table A.6.

(0.00650 K/m)(5000 m)
���

288.16 K

Bz
�
T0

g(z2 � z1)
��

RT0

dz
�
T

g
�
R

p2�
p1

dp
�
p
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Is the Linear Formula Adequate
for Gases?

If the atmosphere were isothermal at 288.16 K, Eq. (2.24) would apply:

p � pa exp���
R
g
T
z
�� � (101,350 Pa) exp	� 


� (101,350 Pa) exp( � 0.5929) � 60,100 Pa Ans. (b)

This is 11 percent higher than the exact result. The isothermal formula is inaccurate in the tro-
posphere.

The linear approximation from Eq. (2.20) or (2.21), �p � � �z, is satisfactory for liq-
uids, which are nearly incompressible. It may be used even over great depths in the
ocean. For gases, which are highly compressible, it is valid only over moderate changes
in altitude.

The error involved in using the linear approximation (2.21) can be evaluated by ex-
panding the exact formula (2.27) into a series

�1 � �
n

� 1 � n 	 � �
2

� ��� (2.28)

where n � g/(RB). Introducing these first three terms of the series into Eq. (2.27) and
rearranging, we obtain

p � pa � �az�1 � 	 ���� (2.29) 
Bz
�
T0

n � 1
�

2

Bz
�
T0

n(n � 1)
�

2!
Bz
�
T0

Bz
�
T0

(9.807 m/s2)(5000 m)
���
[287 m2/(s2 � K)](288.16 K)
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Fig. 2.7 Temperature and pressure
distribution in the U.S. standard at-
mosphere. (From Ref. 1.)

60

50

40

30

20

10

0

60

50

40

30

20

10

0– 60 – 40 – 20  0 +20

20.1 km

11.0 km

–5
6.

5°
C

Troposphere

Eq. (2.26)

15°C

Temperature, °C Pressure, kPa

40 80 120

A
lti

tu
de

 z
, k

m

A
lti

tu
de

 z
, k

m 1.20 kPa

Eq. (2.27)

101.33 kPa

Eq. (2.24)

Part (b)



2.4 Application to Manometry

A Memory Device: Up Versus
Down

Fig. 2.8 Evaluating pressure
changes through a column of multi-
ple fluids.

Thus the error in using the linear formula (2.21) is small if the second term in paren-
theses in (2.29) is small compared with unity. This is true if

z � � 20,800 m (2.30) 

We thus expect errors of less than 5 percent if z or �z is less than 1000 m.

From the hydrostatic formula (2.20), a change in elevation z2 � z1 of a liquid is equiv-
alent to a change in pressure (p2 � p1)/�. Thus a static column of one or more liquids
or gases can be used to measure pressure differences between two points. Such a de-
vice is called a manometer. If multiple fluids are used, we must change the density in
the formula as we move from one fluid to another. Figure 2.8 illustrates the use of the
formula with a column of multiple fluids. The pressure change through each fluid is
calculated separately. If we wish to know the total change p5 � p1, we add the suc-
cessive changes p2 � p1, p3 � p2, p4 � p3, and p5 � p4. The intermediate values of p
cancel, and we have, for the example of Fig. 2.8,

p5 � p1 � � �0(z2 � z1) � �w(z3 � z2) � �G(z4 � z3) � �M(z5 � z4) (2.31)

No additional simplification is possible on the right-hand side because of the dif-
ferent densities. Notice that we have placed the fluids in order from the lightest 
on top to the heaviest at bottom. This is the only stable configuration. If we attempt
to layer them in any other manner, the fluids will overturn and seek the stable
arrangement.

The basic hydrostatic relation, Eq. (2.20), is mathematically correct but vexing to en-
gineers, because it combines two negative signs to have the pressure increase down-
ward. When calculating hydrostatic pressure changes, engineers work instinctively by
simply having the pressure increase downward and decrease upward. Thus they use the
following mnemonic, or memory, device, first suggested to the writer by Professor John

2T0�
(n � 1)B
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Known pressure p1

Oil,   o ρ

Water,   w ρ
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p5 – p4 = –   M g(z5 – z4) ρ 
Sum =  p5 – p1 



Fig. 2.9 Simple open manometer
for measuring pA relative to atmos-
pheric pressure.

Foss of Michigan State University:

pdown � pup 	 ��z (2.32)

Thus, without worrying too much about which point is “z1” and which is “z2”, the for-
mula simply increases or decreases the pressure according to whether one is moving
down or up. For example, Eq. (2.31) could be rewritten in the following “multiple in-
crease” mode:

p5 � p1 	 �0z1 � z2 	 �wz2 � z3 	 �Gz3 � z4 	 �Mz4 � z5

That is, keep adding on pressure increments as you move down through the layered
fluid. A different application is a manometer, which involves both “up” and “down”
calculations.

Figure 2.9 shows a simple open manometer for measuring pA in a closed chamber
relative to atmospheric pressure pa, in other words, measuring the gage pressure. The
chamber fluid �1 is combined with a second fluid �2, perhaps for two reasons: (1) to
protect the environment from a corrosive chamber fluid or (2) because a heavier fluid
�2 will keep z2 small and the open tube can be shorter. One can, of course, apply the
basic hydrostatic formula (2.20). Or, more simply, one can begin at A, apply Eq. (2.32)
“down” to z1, jump across fluid 2 (see Fig. 2.9) to the same pressure p1, and then use
Eq. (2.32) “up” to level z2:

pA 	 �1zA � z1 � �2z1 � z2 � p2 � patm (2.33)

The physical reason that we can “jump across” at section 1 in that a continuous length
of the same fluid connects these two equal elevations. The hydrostatic relation (2.20)
requires this equality as a form of Pascal’s law:

Any two points at the same elevation in a continuous mass of the same static fluid
will be at the same pressure.

This idea of jumping across to equal pressures facilitates multiple-fluid problems.

EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical ap-
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Fig. 2.10 A complicated multiple-
fluid manometer to relate pA to pB.
This system is not especially prac-
tical but makes a good homework
or examination problem.

plication is to measure pressure change across a flow device, as shown. Derive a formula for the
pressure difference pa � pb in terms of the system parameters in Fig. E2.3.

Solution

Using our “up-down” concept as in Eq. (2.32), start at (a), evaluate pressure changes around the
U-tube, and end up at (b):

pa 	 �1gL 	 �1gh � �2gh � �1gL � pb

or pa � pb � (�2 � �1)gh Ans.

The measurement only includes h, the manometer reading. Terms involving L drop out. Note the
appearance of the difference in densities between manometer fluid and working fluid. It is a com-
mon student error to fail to subtract out the working fluid density �1—a serious error if both
fluids are liquids and less disastrous numerically if fluid 1 is a gas. Academically, of course,
such an error is always considered serious by fluid mechanics instructors.

Although Ex. 2.3, because of its popularity in engineering experiments, is some-
times considered to be the “manometer formula,” it is best not to memorize it but
rather to adapt Eq. (2.20) or (2.32) to each new multiple-fluid hydrostatics problem.
For example, Fig. 2.10 illustrates a multiple-fluid manometer problem for finding the
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E2.4

difference in pressure between two chambers A and B. We repeatedly apply Eq. (2.20),
jumping across at equal pressures when we come to a continuous mass of the same
fluid. Thus, in Fig. 2.10, we compute four pressure differences while making three jumps:

pA � pB � (pA � p1) 	 (p1 � p2) 	 (p2 � p3) 	 (p3 � pB) 

� ��1(zA � z1) � �2(z1 � z2) � �3(z2 � z3) � �4(z3 � zB) (2.34) 

The intermediate pressures p1,2,3 cancel. It looks complicated, but really it is merely
sequential. One starts at A, goes down to 1, jumps across, goes up to 2, jumps across,
goes down to 3, jumps across, and finally goes up to B.

EXAMPLE 2.4

Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87
kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See Fig. E2.4.

2.4 Application to Manometry 73

A

Water
flow

5 cm

4 cm

Mercury

SAE 30 oil Gage B

6 cm

11 cm

Solution

First list the specific weights from Table 2.1 or Table A.3:

�water � 9790 N/m3 �mercury � 133,100 N/m3 �oil � 8720 N/m3

Now proceed from A to B, calculating the pressure change in each fluid and adding:

pA � �W(�z)W � �M(�z)M � �O(�z)O � pB

or pA � (9790 N/m3)(� 0.05 m) � (133,100 N/m3)(0.07 m) � (8720 N/m3)(0.06 m)

� pA 	 489.5 Pa � 9317 Pa � 523.2 Pa � pB � 87,000 Pa 

where we replace N/m2 by its short name, Pa. The value �zM � 0.07 m is the net elevation
change in the mercury (11 cm � 4 cm). Solving for the pressure at point A, we obtain

pA � 96,351 Pa � 96.4 kPa Ans.

The intermediate six-figure result of 96,351 Pa is utterly fatuous, since the measurements
cannot be made that accurately.



Fig. 2.11 Hydrostatic force and
center of pressure on an arbitrary
plane surface of area A inclined at
an angle � below the free surface.

In making these manometer calculations we have neglected the capillary-height
changes due to surface tension, which were discussed in Example 1.9. These effects
cancel if there is a fluid interface, or meniscus, on both sides of the U-tube, as in Fig.
2.9. Otherwise, as in the right-hand U-tube of Fig. 2.10, a capillary correction can be
made or the effect can be made negligible by using large-bore ( � 1 cm) tubes.

A common problem in the design of structures which interact with fluids is the com-
putation of the hydrostatic force on a plane surface. If we neglect density changes in
the fluid, Eq. (2.20) applies and the pressure on any submerged surface varies linearly
with depth. For a plane surface, the linear stress distribution is exactly analogous to
combined bending and compression of a beam in strength-of-materials theory. The hy-
drostatic problem thus reduces to simple formulas involving the centroid and moments
of inertia of the plate cross-sectional area.

Figure 2.11 shows a plane panel of arbitrary shape completely submerged in a liq-
uid. The panel plane makes an arbitrary angle � with the horizontal free surface, so
that the depth varies over the panel surface. If h is the depth to any element area dA
of the plate, from Eq. (2.20) the pressure there is p � pa 	 �h.

To derive formulas involving the plate shape, establish an xy coordinate system in
the plane of the plate with the origin at its centroid, plus a dummy coordinate � down
from the surface in the plane of the plate. Then the total hydrostatic force on one side
of the plate is given by

F � �p dA � �(pa 	 �h) dA � paA 	 � �h dA (2.35) 

The remaining integral is evaluated by noticing from Fig. 2.11 that h � � sin � and,
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by definition, the centroidal slant distance from the surface to the plate is

�CG � �
A
1

� �� dA (2.36) 

Therefore, since � is constant along the plate, Eq. (2.35) becomes

F � paA 	 � sin � �� dA � paA 	 � sin � �CGA (2.37)

Finally, unravel this by noticing that �CG sin � � hCG, the depth straight down from
the surface to the plate centroid. Thus

F � paA 	 �hCGA � (pa 	 �hCG)A � pCGA (2.38)

The force on one side of any plane submerged surface in a uniform fluid equals the
pressure at the plate centroid times the plate area, independent of the shape of the plate
or the angle � at which it is slanted.

Equation (2.38) can be visualized physically in Fig. 2.12 as the resultant of a lin-
ear stress distribution over the plate area. This simulates combined compression and
bending of a beam of the same cross section. It follows that the “bending’’ portion of
the stress causes no force if its “neutral axis’’ passes through the plate centroid of area.
Thus the remaining “compression’’ part must equal the centroid stress times the plate
area. This is the result of Eq. (2.38).

However, to balance the bending-moment portion of the stress, the resultant force
F does not act through the centroid but below it toward the high-pressure side. Its line
of action passes through the center of pressure CP of the plate, as sketched in Fig. 2.11.
To find the coordinates (xCP, yCP), we sum moments of the elemental force p dA about
the centroid and equate to the moment of the resultant F. To compute yCP, we equate

FyCP � �yp dA � �y(pa 	 �� sin �) dA � � sin � �y� dA (2.39)

The term � pay dA vanishes by definition of centroidal axes. Introducing � � �CG � y,
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Fig. 2.12 The hydrostatic-pressure
force on a plane surface is equal,
regardless of its shape, to the resul-
tant of the three-dimensional linear
pressure distribution on that surface
F � pCGA.
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CG



we obtain

FyCP � � sin ���CG �y dA � �y2 dA� � � � sin � Ixx (2.40)

where again � y dA � 0 and Ixx is the area moment of inertia of the plate area about its
centroidal x axis, computed in the plane of the plate. Substituting for F gives the result

yCP � �� sin � �
pC

Ix

G

x

A
� (2.41)

The negative sign in Eq. (2.41) shows that yCP is below the centroid at a deeper level
and, unlike F, depends upon angle �. If we move the plate deeper, yCP approaches the
centroid because every term in Eq. (2.41) remains constant except pCG, which increases.

The determination of xCP is exactly similar:

FxCP � �xp dA � �x[pa 	 �(�CG � y) sin �] dA

� �� sin � �xy dA � �� sin � Ixy (2.42)

where Ixy is the product of inertia of the plate, again computed in the plane of the
plate. Substituting for F gives

xCP � �� sin � (2.43)

For positive Ixy, xCP is negative because the dominant pressure force acts in the third,
or lower left, quadrant of the panel. If Ixy � 0, usually implying symmetry, xCP � 0
and the center of pressure lies directly below the centroid on the y axis.

Ixy�
pCGA
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Part (a)

Part (b)

In most cases the ambient pressure pa is neglected because it acts on both sides of the
plate; e.g., the other side of the plate is inside a ship or on the dry side of a gate or dam.
In this case pCG � �hCG, and the center of pressure becomes independent of specific weight

F � �hCGA yCP � ��
Ix

h
x

C

s

G

in
A

�
� xCP � ��

Ix

h
y

C

s

G

in
A

�
� (2.44)

Figure 2.13 gives the area and moments of inertia of several common cross sections
for use with these formulas.

EXAMPLE 2.5

The gate in Fig. E2.5a is 5 ft wide, is hinged at point B, and rests against a smooth wall at point
A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal force P exerted
by the wall at point A, and (c) the reactions at the hinge B.
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Gage-Pressure Formulas

15 ft

Wall 

6 ft

8 ft

θ

Gate

Hinge

B

A

Seawater:
64 lbf/ft3

pa

pa

Solution

By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or at eleva-
tion 3 ft above point B. The depth hCG is thus 15 � 3 � 12 ft. The gate area is 5(10) � 50 ft2. Ne-
glect pa as acting on both sides of the gate. From Eq. (2.38) the hydrostatic force on the gate is

F � pCGA � �hCGA � (64 lbf/ft3)(12 ft)(50 ft2) � 38,400 lbf Ans. (a)

First we must find the center of pressure of F. A free-body diagram of the gate is shown in Fig.
E2.5b. The gate is a rectangle, hence

Ixy � 0 and Ixx � �
b
1
L
2

3

� � �
(5 ft)

1
(1
2
0 ft)3

� � 417 ft4

The distance l from the CG to the CP is given by Eq. (2.44) since pa is neglected.

l � �yCP � 	 �
Ix

h
x

C

s

G

in
A

�
� � � 0.417 ft 

(417 ft4)(�1
6
0�) 

��
(12 ft)(50 ft2)

E2.5a 



The distance from point B to force F is thus 10 � l � 5 � 4.583 ft. Summing moments coun-
terclockwise about B gives

PL sin � � F(5 � l) � P(6 ft) � (38,400 lbf)(4.583 ft) � 0

or                                          P � 29,300 lbf Ans. (b)

With F and P known, the reactions Bx and Bz are found by summing forces on the gate

� Fx � 0 � Bx 	 F sin � � P � Bx 	 38,400(0.6) � 29,300

or                                                 Bx � 6300 lbf

� Fz � 0 � Bz � F cos � � Bz � 38,400(0.8)

or Bz � 30,700 lbf Ans. (c)

This example should have reviewed your knowledge of statics.

EXAMPLE 2.6

A tank of oil has a right-triangular panel near the bottom, as in Fig. E2.6. Omitting pa, find the
(a) hydrostatic force and (b) CP on the panel.
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2.6 Hydrostatic Forces on
Curved Surfaces

Fig. 2.14 Computation of hydro-
static force on a curved surface:
(a) submerged curved surface; (b)
free-body diagram of fluid above
the curved surface.

Solution

The triangle has properties given in Fig. 2.13c. The centroid is one-third up (4 m) and one-third
over (2 m) from the lower left corner, as shown. The area is

�12�(6 m)(12 m) � 36 m2

The moments of inertia are

Ixx � �
b
3
L
6

3

� � � 288 m4

and Ixy � �
b(b �

72
2s)L2

� � � �72 m4

The depth to the centroid is hCG � 5 	 4 � 9 m; thus the hydrostatic force from Eq. (2.44) is

F � �ghCGA � (800 kg/m3)(9.807 m/s2)(9 m)(36 m2)

� 2.54 � 106 (kg � m)/s2 � 2.54 � 106 N � 2.54 MN Ans. (a)

The CP position is given by Eqs. (2.44):

yCP � ��
Ix

h
x

C

s

G

in
A

�
� � � � �0.444 m

xCP � ��
Ix

h
y

C

s

G

in
A

�
� � � � 	0.111 m Ans. (b)

The resultant force F � 2.54 MN acts through this point, which is down and to the right of the
centroid, as shown in Fig. E2.6.

The resultant pressure force on a curved surface is most easily computed by separat-
ing it into horizontal and vertical components. Consider the arbitrary curved surface
sketched in Fig. 2.14a. The incremental pressure forces, being normal to the local area
element, vary in direction along the surface and thus cannot be added numerically. We

(�72 m4)(sin 30°)
��

(9 m)(36 m2)

(288 m4)(sin 30°)
��

(9 m)(36 m2)

(6 m)[6 m � 2(6 m)](12 m)2

���
72

(6 m)(12 m)3

��
36
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could sum the separate three components of these elemental pressure forces, but it turns
out that we need not perform a laborious three-way integration.

Figure 2.14b shows a free-body diagram of the column of fluid contained in the ver-
tical projection above the curved surface. The desired forces FH and FV are exerted by
the surface on the fluid column. Other forces are shown due to fluid weight and hori-
zontal pressure on the vertical sides of this column. The column of fluid must be in
static equilibrium. On the upper part of the column bcde, the horizontal components
F1 exactly balance and are not relevant to the discussion. On the lower, irregular por-
tion of fluid abc adjoining the surface, summation of horizontal forces shows that the
desired force FH due to the curved surface is exactly equal to the force FH on the ver-
tical left side of the fluid column. This left-side force can be computed by the plane-
surface formula, Eq. (2.38), based on a vertical projection of the area of the curved
surface. This is a general rule and simplifies the analysis:

The horizontal component of force on a curved surface equals the force on the plane
area formed by the projection of the curved surface onto a vertical plane normal to
the component.

If there are two horizontal components, both can be computed by this scheme.
Summation of vertical forces on the fluid free body then shows that

FV � W1 	 W2 	 Wair (2.45) 

We can state this in words as our second general rule:

The vertical component of pressure force on a curved surface equals in magnitude
and direction the weight of the entire column of fluid, both liquid and atmosphere,
above the curved surface.

Thus the calculation of FV involves little more than finding centers of mass of a col-
umn of fluid—perhaps a little integration if the lower portion abc has a particularly
vexing shape.

EXAMPLE 2.7

A dam has a parabolic shape z/z0 � (x/x0)2 as shown in Fig. E2.7a, with x0 � 10 ft and z0 � 24
ft. The fluid is water, � � 62.4 lbf/ft3, and atmospheric pressure may be omitted. Compute the
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E2.7b 

forces FH and FV on the dam and the position CP where they act. The width of the dam is 
50 ft.

Solution

The vertical projection of this curved surface is a rectangle 24 ft high and 50 ft wide, with its
centroid halfway down, or hCG � 12 ft. The force FH is thus

FH � �hCGAproj � (62.4 lbf/ft3)(12 ft)(24 ft)(50 ft)

� 899,000 lbf � 899 � 103 lbf Ans.

The line of action of FH is below the centroid by an amount

yCP � ��
h
Ix

C

x

G

s
A
in

pro

�

j
� � � � �4 ft 

Thus FH is 12 	 4 � 16 ft, or two-thirds, down from the free surface or 8 ft from the bottom,
as might have been evident by inspection of the triangular pressure distribution.

The vertical component FV equals the weight of the parabolic portion of fluid above the
curved surface. The geometric properties of a parabola are shown in Fig. E2.7b. The weight of
this amount of water is

FV � � (�23�x0z0b) � (62.4 lbf/ft3)(�23�)(10 ft)(24 ft)(50 ft)

� 499,000 lbf � 499 � 103 lbf Ans.

�1
1
2�(50 ft)(24 ft)3(sin 90°)
���

(12 ft)(24 ft)(50 ft)
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3z0
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2x0z0

3
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0 3x0

8

x0 = 10 ft

Parabola

FV

This acts downward on the surface at a distance 3x0/8 � 3.75 ft over from the origin of coordi-
nates. Note that the vertical distance 3z0/5 in Fig. E2.7b is irrelevant.

The total resultant force acting on the dam is

F � (F2
H 	 F2

V)1/2 � [(499)2 	 (899)2]1/2 � 1028 � 103 lbf 

As seen in Fig. E2.7c, this force acts down and to the right at an angle of 29° � tan�1 �48
9
9

9
9�. The

force F passes through the point (x, z) � (3.75 ft, 8 ft). If we move down along the 29° line un-
til we strike the dam, we find an equivalent center of pressure on the dam at

xCP � 5.43 ft zCP � 7.07 ft Ans.

This definition of CP is rather artificial, but this is an unavoidable complication of dealing with
a curved surface.



E2.7c 

2.7 Hydrostatic Forces in
Layered Fluids

The formulas for plane and curved surfaces in Secs. 2.5 and 2.6 are valid only for a
fluid of uniform density. If the fluid is layered with different densities, as in Fig. 2.15,
a single formula cannot solve the problem because the slope of the linear pressure dis-
tribution changes between layers. However, the formulas apply separately to each layer,
and thus the appropriate remedy is to compute and sum the separate layer forces and
moments.

Consider the slanted plane surface immersed in a two-layer fluid in Fig. 2.15. The
slope of the pressure distribution becomes steeper as we move down into the denser
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Part (a)

E2.8

second layer. The total force on the plate does not equal the pressure at the centroid
times the plate area, but the plate portion in each layer does satisfy the formula, so that
we can sum forces to find the total:

F � � Fi � � pCGi
Ai (2.46)

Similarly, the centroid of the plate portion in each layer can be used to locate the cen-
ter of pressure on that portion

yCPi
� ��

�ig

p

s

C

in

Gi

�

A
i

i

Ixxi� xCPi
� ��

�ig

p

s

C

in

Gi

�

A
i

i

Ixyi� (2.47)

These formulas locate the center of pressure of that particular Fi with respect to the
centroid of that particular portion of plate in the layer, not with respect to the centroid
of the entire plate. The center of pressure of the total force F � � Fi can then be found
by summing moments about some convenient point such as the surface. The follow-
ing example will illustrate.

EXAMPLE 2.8

A tank 20 ft deep and 7 ft wide is layered with 8 ft of oil, 6 ft of water, and 4 ft of mercury.
Compute (a) the total hydrostatic force and (b) the resultant center of pressure of the fluid on
the right-hand side of the tank.

Solution

Divide the end panel into three parts as sketched in Fig. E2.8, and find the hydrostatic pressure
at the centroid of each part, using the relation (2.38) in steps as in Fig. E2.8:
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pa = 0
z = 0

4 ft

11 ft

16 ft

7 ft

8 ft

6 ft

Water (62.4)

Oil: 55.0 lbf/ft 3

(1)

(2)

4 ft

Mercury (846)

(3)

PCG1
� (55.0 lbf/ft3)(4 ft) � 220 lbf/ft2

pCG2
� (55.0)(8) 	 62.4(3) � 627 lbf/ft2

pCG3
� (55.0)(8) 	 62.4(6) 	 846(2) � 2506 lbf/ft2



2.8 Buoyancy and Stability

These pressures are then multiplied by the respective panel areas to find the force on each portion:

F1 � pCG1
A1 � (220 lbf/ft2)(8 ft)(7 ft) � 12,300 lbf 

F2 � pCG2
A2 � 627(6)(7) � 26,300 lbf

F3 � pCG3
A3 � 2506(4)(7) � 70,200 lbf

F � � Fi � 108,800 lbf Ans. (a)

Equations (2.47) can be used to locate the CP of each force Fi, noting that � � 90° and sin � �
1 for all parts. The moments of inertia are Ixx1

� (7 ft)(8 ft)3/12 � 298.7 ft4, Ixx2
� 7(6)3/12 �

126.0 ft4, and Ixx3
� 7(4)3/12 � 37.3 ft4. The centers of pressure are thus at

yCP1
� ��

�1

F

gI

1

xx
1� � � � �1.33 ft 

yCP2
� ��

62
2
.4
6
(
,
1
3
2
0
6
0
.0)

� � �0.30 ft yCP3
� � � �0.45 ft 

This locates zCP1
� �4 � 1.33 � �5.33 ft, zCP2

� �11 � 0.30 � �11.30 ft, and zCP3
�

�16 � 0.45 � �16.45 ft. Summing moments about the surface then gives

� FizCPi
� FzCP

or 12,300(�5.33) 	 26,300(�11.30) 	 70,200(�16.45) � 108,800zCP

or zCP � � � �13.95 ft Ans. (b)

The center of pressure of the total resultant force on the right side of the tank lies 13.95 ft be-
low the surface.

The same principles used to compute hydrostatic forces on surfaces can be applied to
the net pressure force on a completely submerged or floating body. The results are the
two laws of buoyancy discovered by Archimedes in the third century B.C.:

1. A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces.

2. A floating body displaces its own weight in the fluid in which it floats.

These two laws are easily derived by referring to Fig. 2.16. In Fig. 2.16a, the body
lies between an upper curved surface 1 and a lower curved surface 2. From Eq. (2.45)
for vertical force, the body experiences a net upward force

FB � FV(2) � FV (1)

� (fluid weight above 2) � (fluid weight above 1)

� weight of fluid equivalent to body volume (2.48)

Alternatively, from Fig. 2.16b, we can sum the vertical forces on elemental vertical
slices through the immersed body:

FB � �
body

(p2 � p1) dAH � �� �(z2 � z1) dAH � (�)(body volume) (2.49)

1,518,000
��
108,800

846(37.3)
��

70,200

(55.0 lbf/ft3)(298.7 ft4)
���

12,300 lbf

84 Chapter 2 Pressure Distribution in a Fluid

Part (b)



These are identical results and equivalent to law 1 above.
Equation (2.49) assumes that the fluid has uniform specific weight. The line of ac-

tion of the buoyant force passes through the center of volume of the displaced body;
i.e., its center of mass is computed as if it had uniform density. This point through
which FB acts is called the center of buoyancy, commonly labeled B or CB on a draw-
ing. Of course, the point B may or may not correspond to the actual center of mass of
the body’s own material, which may have variable density.

Equation (2.49) can be generalized to a layered fluid (LF) by summing the weights
of each layer of density �i displaced by the immersed body:

(FB)LF � � �ig(displaced volume)i (2.50)

Each displaced layer would have its own center of volume, and one would have to sum
moments of the incremental buoyant forces to find the center of buoyancy of the im-
mersed body.

Since liquids are relatively heavy, we are conscious of their buoyant forces, but gases
also exert buoyancy on any body immersed in them. For example, human beings have
an average specific weight of about 60 lbf/ft3. We may record the weight of a person 
as 180 lbf and thus estimate the person’s total volume as 3.0 ft3. However, in so doing
we are neglecting the buoyant force of the air surrounding the person. At standard con-
ditions, the specific weight of air is 0.0763 lbf/ft3; hence the buoyant force is approxi-
mately 0.23 lbf. If measured in vacuo, the person would weigh about 0.23 lbf more. 
For balloons and blimps the buoyant force of air, instead of being negligible, is the 
controlling factor in the design. Also, many flow phenomena, e.g., natural convection 
of heat and vertical mixing in the ocean, are strongly dependent upon seemingly small
buoyant forces.

Floating bodies are a special case; only a portion of the body is submerged, with
the remainder poking up out of the free surface. This is illustrated in Fig. 2.17, where
the shaded portion is the displaced volume. Equation (2.49) is modified to apply to this
smaller volume

FB � (�)(displaced volume) � floating-body weight (2.51)
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Surface
1

Surface
2

FV (1) Horizontal
elemental
area dAH

z1 – z2

p1

p2

 (a)

FV (2)

 (b)

Fig. 2.16 Two different approaches
to the buoyant force on an arbitrary
immersed body: (a) forces on up-
per and lower curved surfaces; (b)
summation of elemental vertical-
pressure forces.
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Not only does the buoyant force equal the body weight, but also they are collinear
since there can be no net moments for static equilibrium. Equation (2.51) is the math-
ematical equivalent of Archimedes’ law 2, previously stated.

EXAMPLE 2.9

A block of concrete weighs 100 lbf in air and “weighs’’ only 60 lbf when immersed in fresh wa-
ter (62.4 lbf/ft3). What is the average specific weight of the block?

Solution

A free-body diagram of the submerged block (see Fig. E2.9) shows a balance between the ap-
parent weight, the buoyant force, and the actual weight

� Fz � 0 � 60 	 FB � 100 

or FB � 40 lbf � (62.4 lbf/ft3)(block volume, ft3) 

Solving gives the volume of the block as 40/62.4 � 0.641 ft3. Therefore the specific weight of
the block is

�block � �
0
1
.6
0
4
0
1
lb
ft
f
3� � 156 lbf/ft3 Ans.

Occasionally, a body will have exactly the right weight and volume for its ratio to
equal the specific weight of the fluid. If so, the body will be neutrally buoyant and will
remain at rest at any point where it is immersed in the fluid. Small neutrally buoyant
particles are sometimes used in flow visualization, and a neutrally buoyant body called
a Swallow float [2] is used to track oceanographic currents. A submarine can achieve
positive, neutral, or negative buoyancy by pumping water in or out of its ballast tanks.

A floating body as in Fig. 2.17 may not approve of the position in which it is floating.
If so, it will overturn at the first opportunity and is said to be statically unstable, like
a pencil balanced upon its point. The least disturbance will cause it to seek another
equilibrium position which is stable. Engineers must design to avoid floating instabil-

86 Chapter 2 Pressure Distribution in a Fluid

FB

W = 100 lbf

60 lbf

Stability

Fig. 2.17 Static equilibrium of a
floating body.
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(Displaced volume) × ( γ of fluid) = body weight

Neglect the displaced air up here.



Stability Related to Waterline
Area

ity. The only way to tell for sure whether a floating position is stable is to “disturb’’
the body a slight amount mathematically and see whether it develops a restoring mo-
ment which will return it to its original position. If so, it is stable; if not, unstable. Such
calculations for arbitrary floating bodies have been honed to a fine art by naval archi-
tects [3], but we can at least outline the basic principle of the static-stability calcula-
tion. Figure 2.18 illustrates the computation for the usual case of a symmetric floating
body. The steps are as follows:

1. The basic floating position is calculated from Eq. (2.51). The body’s center of
mass G and center of buoyancy B are computed.

2. The body is tilted a small angle ��, and a new waterline is established for the
body to float at this angle. The new position B� of the center of buoyancy is cal-
culated. A vertical line drawn upward from B� intersects the line of symmetry at
a point M, called the metacenter, which is independent of �� for small angles.

3. If point M is above G, that is, if the metacentric height M�G� is positive, a restor-
ing moment is present and the original position is stable. If M is below G (nega-
tive M�G�, the body is unstable and will overturn if disturbed. Stability increases
with increasing M�G�.

Thus the metacentric height is a property of the cross section for the given weight, and
its value gives an indication of the stability of the body. For a body of varying cross
section and draft, such as a ship, the computation of the metacenter can be very in-
volved.

Naval architects [3] have developed the general stability concepts from Fig. 2.18 into
a simple computation involving the area moment of inertia of the waterline area about
the axis of tilt. The derivation assumes that the body has a smooth shape variation (no
discontinuities) near the waterline and is derived from Fig. 2.19.

The y-axis of the body is assumed to be a line of symmetry. Tilting the body a small
angle � then submerges small wedge Obd and uncovers an equal wedge cOa, as shown.
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Fig. 2.18 Calculation of the meta-
center M of the floating body
shown in (a). Tilt the body a small
angle ��. Either (b) B� moves far
out (point M above G denotes sta-
bility); or (c) B� moves slightly
(point M below G denotes instabil-
ity).
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cOdea Obd cOa Obd cOa

Obd cOa waterline 

x� υabOde � �x dυ � �x dυ � �x dυ � 0 � �x (L dA) � �x (L dA)

The new position B� of the center of buoyancy is calculated as the centroid of the sub-
merged portion aObde of the body:

y

c

a

e

d x
x

b

M

O

B

�

�

�

dA = x tan � dx

Tilted floating body

�

�

Variable-width
L(x) into paper

Original
waterline 
area

��

B�Fig. 2.19 A floating body tilted
through a small angle �. The move-
ment x� of the center of buoyancy B
is related to the waterline area mo-
ment of inertia.

� 0 � �x L (x tan � dx) � �xL (�x tan � dx) � tan � �x2 dAwaterline � IO tan �

where IO is the area moment of inertia of the waterline footprint of the body about its
tilt axis O. The first integral vanishes because of the symmetry of the original sub-
merged portion cOdea. The remaining two “wedge” integrals combine into IO when
we notice that L dx equals an element of waterline area. Thus we determine the de-
sired distance from M to B:

� M�B� � � M�G� � G�B� or M�G� � �
υ
I

s

O

ub
� � G�B� (2.52)

The engineer would determine the distance from G to B from the basic shape and
design of the floating body and then make the calculation of IO and the submerged
volume υsub. If the metacentric height MG is positive, the body is stable for small
disturbances. Note that if G�B� is negative, that is, B is above G, the body is always
stable.

EXAMPLE 2.10

A barge has a uniform rectangular cross section of width 2L and vertical draft of height H, as
in Fig. E2.10. Determine (a) the metacentric height for a small tilt angle and (b) the range of
ratio L/H for which the barge is statically stable if G is exactly at the waterline as shown.

IO��υsubmerged

x��



Solution

If the barge has length b into the paper, the waterline area, relative to tilt axis O, has a base b
and a height 2L; therefore, IO � b(2L)3/12. Meanwhile, υsub � 2LbH. Equation (2.52) predicts

M�G� � �υ
I

s

O

ub
� � G�B� � � �

H
2

� � �
3
L
H

2

� � �
H
2

� Ans. (a)

The barge can thus be stable only if

L2 � 3H2/2 or 2L � 2.45H Ans. (b)

The wider the barge relative to its draft, the more stable it is. Lowering G would help also.

Even an expert will have difficulty determining the floating stability of a buoyant
body of irregular shape. Such bodies may have two or more stable positions. For ex-
ample, a ship may float the way we like it, so that we can sit upon the deck, or it may
float upside down (capsized). An interesting mathematical approach to floating stabil-
ity is given in Ref. 11. The author of this reference points out that even simple shapes,
e.g., a cube of uniform density, may have a great many stable floating orientations, not
necessarily symmetric. Homogeneous circular cylinders can float with the axis of sym-
metry tilted from the vertical.

Floating instability occurs in nature. Living fish generally swim with their plane
of symmetry vertical. After death, this position is unstable and they float with their
flat sides up. Giant icebergs may overturn after becoming unstable when their shapes
change due to underwater melting. Iceberg overturning is a dramatic, rarely seen
event.

Figure 2.20 shows a typical North Atlantic iceberg formed by calving from a Green-
land glacier which protruded into the ocean. The exposed surface is rough, indicating
that it has undergone further calving. Icebergs are frozen fresh, bubbly, glacial water
of average density 900 kg/m3. Thus, when an iceberg is floating in seawater, whose
average density is 1025 kg/m3, approximately 900/1025, or seven-eighths, of its vol-
ume lies below the water.

In rigid-body motion, all particles are in combined translation and rotation, and there
is no relative motion between particles. With no relative motion, there are no strains

8bL3/12
�

2LbH
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or strain rates, so that the viscous term 
∇2V in Eq. (2.13) vanishes, leaving a balance
between pressure, gravity, and particle acceleration

∇p � �(g � a) (2.53) 

The pressure gradient acts in the direction g � a, and lines of constant pressure (in-
cluding the free surface, if any) are perpendicular to this direction. The general case
of combined translation and rotation of a rigid body is discussed in Chap. 3, Fig. 3.12.
If the center of rotation is at point O and the translational velocity is V0 at this point,
the velocity of an arbitrary point P on the body is given by2

V � V0 	 � � r0

where � is the angular-velocity vector and r0 is the position of point P. Differentiat-
ing, we obtain the most general form of the acceleration of a rigid body:

a � 	 � � (� � r0) 	 � r0 (2.54) 

Looking at the right-hand side, we see that the first term is the translational accel-
eration; the second term is the centripetal acceleration, whose direction is from point

d�
�
dt

dV0�
dt
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Fig. 2.20 A North Atlantic iceberg
formed by calving from a Green-
land glacier. These, and their even
larger Antarctic sisters, are the
largest floating bodies in the world.
Note the evidence of further calv-
ing fractures on the front surface.
(Courtesy of S/oren Thalund, Green-
land tourism a/s Iiulissat, Green-
land.)

2 For a more detailed derivation of rigid-body motion, see Ref. 4, Sec. 2.7.



P perpendicular toward the axis of rotation; and the third term is the linear accelera-
tion due to changes in the angular velocity. It is rare for all three of these terms to ap-
ply to any one fluid flow. In fact, fluids can rarely move in rigid-body motion unless
restrained by confining walls for a long time. For example, suppose a tank of water
is in a car which starts a constant acceleration. The water in the tank would begin to
slosh about, and that sloshing would damp out very slowly until finally the particles
of water would be in approximately rigid-body acceleration. This would take so long
that the car would have reached hypersonic speeds. Nevertheless, we can at least dis-
cuss the pressure distribution in a tank of rigidly accelerating water. The following is
an example where the water in the tank will reach uniform acceleration rapidly.

EXAMPLE 2.11

A tank of water 1 m deep is in free fall under gravity with negligible drag. Compute the pres-
sure at the bottom of the tank if pa � 101 kPa.

Solution

Being unsupported in this condition, the water particles tend to fall downward as a rigid hunk
of fluid. In free fall with no drag, the downward acceleration is a � g. Thus Eq. (2.53) for this
situation gives ∇p � �(g � g) � 0. The pressure in the water is thus constant everywhere and
equal to the atmospheric pressure 101 kPa. In other words, the walls are doing no service in sus-
taining the pressure distribution which would normally exist.

In this general case of uniform rigid-body acceleration, Eq. (2.53) applies, a having
the same magnitude and direction for all particles. With reference to Fig. 2.21, the par-
allelogram sum of g and �a gives the direction of the pressure gradient or greatest rate
of increase of p. The surfaces of constant pressure must be perpendicular to this and
are thus tilted at a downward angle � such that

� � tan�1�
g 	

ax

az
� (2.55) 
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Fig. 2.21 Tilting of constant-
pressure surfaces in a tank of 
liquid in rigid-body acceleration.



One of these tilted lines is the free surface, which is found by the requirement that the
fluid retain its volume unless it spills out. The rate of increase of pressure in the di-
rection g � a is greater than in ordinary hydrostatics and is given by

� �G where G � [a2
x 	 (g 	 az)

2]1/2 (2.56) 

These results are independent of the size or shape of the container as long as the
fluid is continuously connected throughout the container.

EXAMPLE 2.12

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s2. The mug
is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest. (a) Assuming rigid-
body acceleration of the coffee, determine whether it will spill out of the mug. (b) Calculate the
gage pressure in the corner at point A if the density of coffee is 1010 kg/m3.

Solution

The free surface tilts at the angle � given by Eq. (2.55) regardless of the shape of the mug. With
az � 0 and standard gravity,

� � tan�1 �
a
g
x� � tan�1 �

9
7
.
.
8
0
1

� � 35.5°

If the mug is symmetric about its central axis, the volume of coffee is conserved if the tilted sur-
face intersects the original rest surface exactly at the centerline, as shown in Fig. E2.12. 

dp
�
ds
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Part (a)

Part (b)

3 cm

ax = 7 m/s2

A

∆z

3 cm

7 cm

θ

E2.12

Thus the deflection at the left side of the mug is

z � (3 cm)(tan �) � 2.14 cm Ans. (a)

This is less than the 3-cm clearance available, so the coffee will not spill unless it was sloshed
during the start-up of acceleration.

When at rest, the gage pressure at point A is given by Eq. (2.20):

pA � �g(zsurf � zA) � (1010 kg/m3)(9.81 m/s2)(0.07 m) � 694 N/m2 � 694 Pa 



During acceleration, Eq. (2.56) applies, with G � [(7.0)2 	 (9.81)2]1/2 � 12.05 m/s2. The dis-
tance ∆s down the normal from the tilted surface to point A is

�s � (7.0 	 2.14)(cos �) � 7.44 cm 

Thus the pressure at point A becomes

pA � �G �s � 1010(12.05)(0.0744) � 906 Pa Ans. (b)

which is an increase of 31 percent over the pressure when at rest.

As a second special case, consider rotation of the fluid about the z axis without any
translation, as sketched in Fig. 2.22. We assume that the container has been rotating
long enough at constant � for the fluid to have attained rigid-body rotation. The fluid
acceleration will then be the centripetal term in Eq. (2.54). In the coordinates of Fig.
2.22, the angular-velocity and position vectors are given by

� � k� r0 � irr (2.57) 

Then the acceleration is given by

� � (� � r0) � �r�2ir (2.58) 

as marked in the figure, and Eq. (2.53) for the force balance becomes

∇p � ir 	 k � �(g � a) � �(�gk 	 r�2ir) (2.59) 

Equating like components, we find the pressure field by solving two first-order partial
differential equations

� �r�2 � �� (2.60) 

This is our first specific example of the generalized three-dimensional problem de-
scribed by Eqs. (2.14) for more than one independent variable. The right-hand sides of

�p
�
�z

�p
�
�r

�p
�
�z

�p
�
�r
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loid constant-pressure surfaces in a
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exponential curve.
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(2.60) are known functions of r and z. One can proceed as follows: Integrate the first
equation “partially,’’ i.e., holding z constant, with respect to r. The result is

p � �12��r2�2 	 f(z) (2.61) 

where the “constant’’ of integration is actually a function f(z).† Now differentiate this
with respect to z and compare with the second relation of (2.60):

� 0 	 f�(z) � ��

or f(z) � ��z 	 C (2.62a)

where C is a constant. Thus Eq. (2.61) now becomes

p � const � �z 	 �12��r2�2 (2.62b) 

This is the pressure distribution in the fluid. The value of C is found by specifying the
pressure at one point. If p � p0 at (r, z) � (0, 0), then C � p0. The final desired dis-
tribution is

p � p0 � �z 	 �12��r2�2 (2.63)

The pressure is linear in z and parabolic in r. If we wish to plot a constant-pressure
surface, say, p � p1, Eq. (2.63) becomes

z � 	 � a 	 br2 (2.64) 

Thus the surfaces are paraboloids of revolution, concave upward, with their minimum
point on the axis of rotation. Some examples are sketched in Fig. 2.22.

As in the previous example of linear acceleration, the position of the free surface is
found by conserving the volume of fluid. For a noncircular container with the axis of
rotation off-center, as in Fig. 2.22, a lot of laborious mensuration is required, and a
single problem will take you all weekend. However, the calculation is easy for a cylin-
der rotating about its central axis, as in Fig. 2.23. Since the volume of a paraboloid is

r2�2

�
2g

p0 � p1�
�

�p
�
�z
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Fig. 2.23 Determining the free-
surface position for rotation of a
cylinder of fluid about its central
axis.

†This is because f(z) vanishes when differentiated with respect to r. If you don’t see this, you should
review your calculus.



one-half the base area times its height, the still-water level is exactly halfway between
the high and low points of the free surface. The center of the fluid drops an amount
h/2 � �2R2/(4g), and the edges rise an equal amount.

EXAMPLE 2.13

The coffee cup in Example 2.12 is removed from the drag racer, placed on a turntable, and ro-
tated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity which
will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point A for this
condition.

Solution

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal the
distance h/2 in Fig. 2.23. Thus

�
h
2

� � 0.03 m � �
�

4

2

g
R2

� �

Solving, we obtain

�2 � 1308 or � � 36.2 rad/s � 345 r/min Ans. (a)

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bottom
of the free-surface depression, as shown in Fig. E2.13. The gage pressure here is p0 � 0, and
point A is at (r, z) � (3 cm, �4 cm). Equation (2.63) can then be evaluated

pA � 0 � (1010 kg/m3)(9.81 m/s2)(�0.04 m) 

	 �12�(1010 kg/m3)(0.03 m)2(1308 rad2/s2)

� 396 N/m2 	 594 N/m2 � 990 Pa Ans. (b)

This is about 43 percent greater than the still-water pressure pA � 694 Pa.

Here, as in the linear-acceleration case, it should be emphasized that the paraboloid
pressure distribution (2.63) sets up in any fluid under rigid-body rotation, regardless
of the shape or size of the container. The container may even be closed and filled with
fluid. It is only necessary that the fluid be continuously interconnected throughout the
container. The following example will illustrate a peculiar case in which one can vi-
sualize an imaginary free surface extending outside the walls of the container.

EXAMPLE 2.14

A U-tube with a radius of 10 in and containing mercury to a height of 30 in is rotated about its
center at 180 r/min until a rigid-body mode is achieved. The diameter of the tubing is negligi-
ble. Atmospheric pressure is 2116 lbf/ft2. Find the pressure at point A in the rotating condition.
See Fig. E2.14.

�2(0.03 m)2

��
4(9.81 m/s2)
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Solution

Convert the angular velocity to radians per second:

� � (180 r/min) � 18.85 rad/s

From Table 2.1 we find for mercury that � � 846 lbf/ft3 and hence � � 846/32.2 � 26.3 slugs/ft3.
At this high rotation rate, the free surface will slant upward at a fierce angle [about 84°; check
this from Eq. (2.64)], but the tubing is so thin that the free surface will remain at approximately
the same 30-in height, point B. Placing our origin of coordinates at this height, we can calcu-
late the constant C in Eq. (2.62b) from the condition pB � 2116 lbf/ft2 at (r, z) � (10 in, 0):

pB � 2116 lbf/ft2 � C � 0 	 �12�(26.3 slugs/ft3)(�11
0
2� ft)2(18.85 rad/s)2

or C � 2116 � 3245 � �1129 lbf/ft2

We then obtain pA by evaluating Eq. (2.63) at (r, z) � (0, �30 in):

pA � �1129 � (846 lbf/ft3)(��31
0
2� ft) � �1129 	 2115 � 986 lbf/ft2 Ans. 

This is less than atmospheric pressure, and we can see why if we follow the free-surface pa-
raboloid down from point B along the dashed line in the figure. It will cross the horizontal por-
tion of the U-tube (where p will be atmospheric) and fall below point A. From Fig. 2.23 the ac-
tual drop from point B will be

h � �
�

2

2

g
R2

� � � 3.83 ft � 46 in 

Thus pA is about 16 inHg below atmospheric pressure, or about �11
6
2�(846) � 1128 lbf/ft2 below

pa � 2116 lbf/ft2, which checks with the answer above. When the tube is at rest,

pA � 2116 � 846(��31
0
2�) � 4231 lbf/ft2

Hence rotation has reduced the pressure at point A by 77 percent. Further rotation can reduce
pA to near-zero pressure, and cavitation can occur.

An interesting by-product of this analysis for rigid-body rotation is that the lines
everywhere parallel to the pressure gradient form a family of curved surfaces, as
sketched in Fig. 2.22. They are everywhere orthogonal to the constant-pressure sur-
faces, and hence their slope is the negative inverse of the slope computed from Eq.
(2.64):


GL

� � � �

where GL stands for gradient line

or � � (2.65) 
g

�
r�2

dz
�
dr

1
�
r�2/g

1
��
(dz/dr)p�const

dz
�
dr

(18.85)2(�11
0
2�)2

��
2(32.2)

2� rad/r
�
60 s/min

z

Ω

r

Imaginary
free surface

10 in

30 in

0

A

B

E2.14
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Separating the variables and integrating, we find the equation of the pressure-gradient
surfaces

r � C1 exp�� � (2.66) 

Notice that this result and Eq. (2.64) are independent of the density of the fluid. In the
absence of friction and Coriolis effects, Eq. (2.66) defines the lines along which the ap-
parent net gravitational field would act on a particle. Depending upon its density, a small
particle or bubble would tend to rise or fall in the fluid along these exponential lines,
as demonstrated experimentally in Ref. 5. Also, buoyant streamers would align them-
selves with these exponential lines, thus avoiding any stress other than pure tension. Fig-
ure 2.24 shows the configuration of such streamers before and during rotation.

Pressure is a derived property. It is the force per unit area as related to fluid molecu-
lar bombardment of a surface. Thus most pressure instruments only infer the pressure
by calibration with a primary device such as a deadweight piston tester. There are many
such instruments, both for a static fluid and a moving stream. The instrumentation texts
in Refs. 7 to 10, 12, and 13 list over 20 designs for pressure measurement instruments.
These instruments may be grouped into four categories:

1. Gravity-based: barometer, manometer, deadweight piston.

2. Elastic deformation: bourdon tube (metal and quartz), diaphragm, bellows,
strain-gage, optical beam displacement.

3. Gas behavior: gas compression (McLeod gage), thermal conductance (Pirani gage),
molecular impact (Knudsen gage), ionization, thermal conductivity, air piston.

4. Electric output: resistance (Bridgman wire gage), diffused strain gage, capacita-
tive, piezoelectric, magnetic inductance, magnetic reluctance, linear variable dif-
ferential transformer (LVDT), resonant frequency.

The gas-behavior gages are mostly special-purpose instruments used for certain scien-
tific experiments. The deadweight tester is the instrument used most often for calibra-
tions; for example, it is used by the U.S. National Institute for Standards and Tech-
nology (NIST). The barometer is described in Fig. 2.6.

The manometer, analyzed in Sec. 2.4, is a simple and inexpensive hydrostatic-
principle device with no moving parts except the liquid column itself. Manometer mea-
surements must not disturb the flow. The best way to do this is to take the measure-
ment through a static hole in the wall of the flow, as illustrated for the two instruments
in Fig. 2.25. The hole should be normal to the wall, and burrs should be avoided. If
the hole is small enough (typically 1-mm diameter), there will be no flow into the mea-
suring tube once the pressure has adjusted to a steady value. Thus the flow is almost
undisturbed. An oscillating flow pressure, however, can cause a large error due to pos-
sible dynamic response of the tubing. Other devices of smaller dimensions are used for
dynamic-pressure measurements. Note that the manometers in Fig. 2.25 are arranged
to measure the absolute pressures p1 and p2. If the pressure difference p1 � p2 is de-

�2z
�

g
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Fig. 2.24 Experimental demonstra-
tion with buoyant streamers of the
fluid force field in rigid-body rota-
tion: (top) fluid at rest (streamers
hang vertically upward); (bottom)
rigid-body rotation (streamers are
aligned with the direction of maxi-
mum pressure gradient). (From Ref.
5, courtesy of R. Ian Fletcher.)



Fig. 2.25 Two types of accurate
manometers for precise measure-
ments: (a) tilted tube with eye-
piece; (b) micrometer pointer with
ammeter detector.

sired, a significant error is incurred by subtracting two independent measurements, and
it would be far better to connect both ends of one instrument to the two static holes p1

and p2 so that one manometer reads the difference directly. In category 2, elastic-
deformation instruments, a popular, inexpensive, and reliable device is the bourdon
tube, sketched in Fig. 2.26. When pressurized internally, a curved tube with flattened
cross section will deflect outward. The deflection can be measured by a linkage at-
tached to a calibrated dial pointer, as shown. Or the deflection can be used to drive
electric-output sensors, such as a variable transformer. Similarly, a membrane or dia-
phragm will deflect under pressure and can either be sensed directly or used to drive
another sensor.
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Flow Flow

p2p1

(a) (b)

Fig. 2.26 Schematic of a bourdon-
tube device for mechanical mea-
surement of high pressures.

Bourdon
tube

Pointer for
dial gage

Section AA

A

A

Linkage

High  pressure

Flattened tube deflects
outward under pressure



Fig. 2.27 The fused-quartz, force-
balanced bourdon tube is the most
accurate pressure sensor used in
commercial applications today.
(Courtesy of Ruska Instrument 
Corporation, Houston, TX.) 
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An interesting variation of Fig. 2.26 is the fused-quartz, forced-balanced bourdon
tube, shown in Fig. 2.27, whose deflection is sensed optically and returned to a zero
reference state by a magnetic element whose output is proportional to the fluid pres-
sure. The fused-quartz, forced-balanced bourdon tube is reported to be one of the most
accurate pressure sensors ever devised, with uncertainty of the order of �0.003 per-
cent.

The last category, electric-output sensors, is extremely important in engineering
because the data can be stored on computers and freely manipulated, plotted, and an-
alyzed. Three examples are shown in Fig. 2.28, the first being the capacitive sensor
in Fig. 2.28a. The differential pressure deflects the silicon diaphragm and changes
the capacitancce of the liquid in the cavity. Note that the cavity has spherical end
caps to prevent overpressure damage. In the second type, Fig. 2.28b, strain gages and
other sensors are diffused or etched onto a chip which is stressed by the applied pres-
sure. Finally, in Fig. 2.28c, a micromachined silicon sensor is arranged to deform
under pressure such that its natural vibration frequency is proportional to the pres-
sure. An oscillator excites the element’s resonant frequency and converts it into ap-
propriate pressure units. For further information on pressure sensors, see Refs. 7 to
10, 12, and 13.

This chapter has been devoted entirely to the computation of pressure distributions and
the resulting forces and moments in a static fluid or a fluid with a known velocity field.
All hydrostatic (Secs. 2.3 to 2.8) and rigid-body (Sec. 2.9) problems are solved in this
manner and are classic cases which every student should understand. In arbitrary vis-
cous flows, both pressure and velocity are unknowns and are solved together as a sys-
tem of equations in the chapters which follow.

Summary



Seal diaphragm

Filling liquid
Sensing diaphragm

Cover flange

Low-pressure sideHigh-pressure side

(a)

Fig. 2.28 Pressure sensors with
electric output: (a) a silicon dia-
phragm whose deflection changes
the cavity capacitance (Courtesy of
Johnson-Yokogawa Inc.); (b) a sili-
con strain gage which is stressed
by applied pressure; (c) a microma-
chined silicon element which res-
onates at a frequency proportional
to applied pressure. [(b) and (c)
are courtesy of Druck, Inc., Fair-
field, CT.]
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Strain gages
Diffused into integrated
silicon chip

Wire bonding
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connections from
chip to body plug

Etched cavity
Micromachined
silicon sensor

Temperature sensor 
On-chip diode for 
optimum temperature
performance

(c) 
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Problems

Most of the problems herein are fairly straightforward. More
difficult or open-ended assignments are indicated with an as-
terisk, as in Prob. 2.8. Problems labeled with an EES icon (for
example, Prob. 2.62), will benefit from the use of the Engi-
neering Equation Solver (EES), while problems labeled with a
disk icon may require the use of a computer. The standard end-
of-chapter problems 2.1 to 2.158 (categorized in the problem
list below) are followed by word problems W2.1 to W2.8, fun-
damentals of engineering exam problems FE2.1 to FE2.10, com-
prehensive problems C2.1 to C2.4, and design projects D2.1 and
D2.2.

Problem Distribution

Section Topic Problems

2.1, 2.2 Stresses; pressure gradient; gage pressure 2.1–2.6
2.3 Hydrostatic pressure; barometers 2.7–2.23
2.3 The atmosphere 2.24–2.29
2.4 Manometers; multiple fluids 2.30–2.47
2.5 Forces on plane surfaces 2.48–2.81
2.6 Forces on curved surfaces 2.82–2.100
2.7 Forces in layered fluids 2.101–2.102
2.8 Buoyancy; Archimedes’ principles 2.103–2.126
2.8 Stability of floating bodies 2.127–2.136
2.9 Uniform acceleration 2.137–2.151
2.9 Rigid-body rotation 2.152–2.158
2.10 Pressure measurements None

P2.1 For the two-dimensional stress field shown in Fig. P2.1 it
is found that


xx � 3000 lbf/ft2 
yy � 2000 lbf/ft2 
xy � 500 lbf/ft2

Find the shear and normal stresses (in lbf/ft2) acting on
plane AA cutting through the element at a 30° angle as
shown.
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P2.2 For the two-dimensional stress field shown in Fig. P2.1
suppose that


xx � 2000 lbf/ft2 
yy � 3000 lbf/ft2 
n(AA) � 2500 lbf/ft2

Compute (a) the shear stress 
xy and (b) the shear stress
on plane AA.

P2.3 Derive Eq. (2.18) by using the differential element in Fig.
2.2 with z “up,’’ no fluid motion, and pressure varying only
in the z direction.

P2.4 In a certain two-dimensional fluid flow pattern the lines
of constant pressure, or isobars, are defined by the ex-
pression P0 � Bz 	 Cx2 � constant, where B and C are
constants and p0 is the (constant) pressure at the origin,
(x, z) � (0, 0). Find an expression x � f (z) for the family
of lines which are everywhere parallel to the local pres-
sure gradient V�p.

P2.5 Atlanta, Georgia, has an average altitude of 1100 ft. On a
standard day (Table A.6), pressure gage A in a laboratory
experiment reads 93 kPa and gage B reads 105 kPa. Ex-
press these readings in gage pressure or vacuum pressure
(Pa), whichever is appropriate.

P2.6 Any pressure reading can be expressed as a length or head,
h � p/�g. What is standard sea-level pressure expressed in
(a) ft of ethylene glycol, (b) in Hg, (c) m of water, and (d)
mm of methanol? Assume all fluids are at 20°C.

P2.7 The deepest known point in the ocean is 11,034 m in the
Mariana Trench in the Pacific. At this depth the specific
weight of seawater is approximately 10,520 N/m3. At the
surface, � � 10,050 N/m3. Estimate the absolute pressure
at this depth, in atm.

P2.8 Dry adiabatic lapse rate (DALR) is defined as the nega-
tive value of atmospheric temperature gradient, dT/dz,
when temperature and pressure vary in an isentropic fash-
ion. Assuming air is an ideal gas, DALR � �dT/dz when
T � T0(p/p0)a, where exponent a � (k � 1)/k, k � cp/cv is
the ratio of specific heats, and T0 and p0 are the tempera-
ture and pressure at sea level, respectively. (a) Assuming
that hydrostatic conditions exist in the atmosphere, show
that the dry adiabatic lapse rate is constant and is given by
DALR � g(k� 1)/(kR), where R is the ideal gas constant
for air. (b) Calculate the numerical value of DALR for air
in units of °C/km.

*P2.9 For a liquid, integrate the hydrostatic relation, Eq. (2.18),
by assuming that the isentropic bulk modulus, B �
�(�p/��)s, is constant—see Eq. (9.18). Find an expression
for p(z) and apply the Mariana Trench data as in Prob. 2.7,
using Bseawater from Table A.3.

P2.10 A closed tank contains 1.5 m of SAE 30 oil, 1 m of wa-
ter, 20 cm of mercury, and an air space on top, all at 20°C.
The absolute pressure at the bottom of the tank is 60 kPa.
What is the pressure in the air space?

30°

A

A
σxx

σxy

σyx

σyy

σxx

σyy

σyx

σxy

=

=

P2.1



P2.16 A closed inverted cone, 100 cm high with diameter 60 cm
at the top, is filled with air at 20°C and 1 atm. Water at
20°C is introduced at the bottom (the vertex) to compress
the air isothermally until a gage at the top of the cone reads
30 kPa (gage). Estimate (a) the amount of water needed
(cm3) and (b) the resulting absolute pressure at the bottom
of the cone (kPa).

P2.11 In Fig. P2.11, pressure gage A reads 1.5 kPa (gage). The
fluids are at 20°C. Determine the elevations z, in meters,
of the liquid levels in the open piezometer tubes B and C.
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P2.12 In Fig. P2.12 the tank contains water and immiscible oil
at 20°C. What is h in cm if the density of the oil is 898
kg/m3?

1 m

1.5 m

2 m

z= 0

Gasoline

Glycerin

A

B C

Air

P2.11 

6 cm

12 cm

h

8 cm

Oil

Water

P2.12 

P2.13 In Fig. P2.13 the 20°C water and gasoline surfaces are
open to the atmosphere and at the same elevation. What is
the height h of the third liquid in the right leg?

P2.14 The closed tank in Fig. P2.14 is at 20°C. If the pressure
at point A is 95 kPa absolute, what is the absolute pres-
sure at point B in kPa? What percent error do you make
by neglecting the specific weight of the air?

P2.15 The air-oil-water system in Fig. P2.15 is at 20°C. Know-
ing that gage A reads 15 lbf/in2 absolute and gage B reads
1.25 lbf/in2 less than gage C, compute (a) the specific
weight of the oil in lbf/ft3 and (b) the actual reading of
gage C in lbf/in2 absolute.

1.5 m

1 m
h

Water
Gasoline

Liquid, SG = 1.60

P2.13 

A

Air

B
Air

4 m

2 m

2 m

4 m

Water

P2.14 

Air

Oil

Water

1 ft

1 ft

2 ft

2 ft

A

B

C

15 lbf/in2 abs

P2.15



P2.19 The U-tube in Fig. P2.19 has a 1-cm ID and contains mer-
cury as shown. If 20 cm3 of water is poured into the right-
hand leg, what will the free-surface height in each leg be
after the sloshing has died down?

P2.20 The hydraulic jack in Fig. P2.20 is filled with oil at 56
lbf/ft3. Neglecting the weight of the two pistons, what force
F on the handle is required to support the 2000-lbf weight
for this design?

P2.21 At 20°C gage A reads 350 kPa absolute. What is the height
h of the water in cm? What should gage B read in kPa ab-
solute? See Fig. P2.21.

P2.18 The system in Fig. P2.18 is at 20°C. If atmospheric pres-
sure is 101.33 kPa and the pressure at the bottom of the
tank is 242 kPa, what is the specific gravity of fluid X?

P2.17 The system in Fig. P2.17 is at 20°C. If the pressure at point
A is 1900 lbf/ft2, determine the pressures at points B, C,
and D in lbf/ft2.
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Air Air

Air

Water

A

B

C
2 ft

D

4 ft

3 ft

2 ft

5 ft

P2.17 

0.5 m

SAE 30 oil

Water

Fluid X

1 m

2 m

3 m

Mercury

P2.18 

Mercury

10 cm10 cm

10 cmP2.19

Oil

3-in diameter

1 in 15 in

1-in diameter

F

2000
lbf

Mercury80 cm

A B

h?

Air: 180 kPa abs

Water

P2.20

P2.21

P2.22 The fuel gage for a gasoline tank in a car reads propor-
tional to the bottom gage pressure as in Fig. P2.22. If the
tank is 30 cm deep and accidentally contains 2 cm of wa-
ter plus gasoline, how many centimeters of air remain at
the top when the gage erroneously reads “full’’?

P2.23 In Fig. P2.23 both fluids are at 20°C. If surface tension ef-
fects are negligible, what is the density of the oil, in kg/m3?

P2.24 In Prob. 1.2 we made a crude integration of the density
distribution �(z) in Table A.6 and estimated the mass of
the earth’s atmosphere to be m � 6 E18 kg. Can this re-



mental observations. (b) Find an expression for the pres-
sure at points 1 and 2 in Fig. P2.27b. Note that the glass
is now inverted, so the original top rim of the glass is at
the bottom of the picture, and the original bottom of the
glass is at the top of the picture. The weight of the card
can be neglected.
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sult be used to estimate sea-level pressure on the earth?
Conversely, can the actual sea-level pressure of 101.35 kPa
be used to make a more accurate estimate of the atmos-
pheric mass?

P2.25 Venus has a mass of 4.90 E24 kg and a radius of 6050 km.
Its atmosphere is 96 percent CO2, but let us assume it to
be 100 percent. Its surface temperature averages 730 K,
decreasing to 250 K at an altitude of 70 km. The average
surface pressure is 9.1 MPa. Estimate the atmospheric
pressure of Venus at an altitude of 5 km.

P2.26 Investigate the effect of doubling the lapse rate on atmos-
pheric pressure. Compare the standard atmosphere (Table
A.6) with a lapse rate twice as high, B2 � 0.0130 K/m.
Find the altitude at which the pressure deviation is (a) 1
percent and (b) 5 percent. What do you conclude?

P2.27 Conduct an experiment to illustrate atmospheric pressure.
Note: Do this over a sink or you may get wet! Find a drink-
ing glass with a very smooth, uniform rim at the top. Fill
the glass nearly full with water. Place a smooth, light, flat
plate on top of the glass such that the entire rim of the
glass is covered. A glossy postcard works best. A small in-
dex card or one flap of a greeting card will also work. See
Fig. P2.27a.
(a) Hold the card against the rim of the glass and turn the
glass upside down. Slowly release pressure on the card.
Does the water fall out of the glass? Record your experi-

Gasoline
SG = 0.68

30 cm

Water

h?

2 cm

Air

pgage

Vent

P2.22

8 cm
6 cm

Water

Oil

10 cm

P2.23

Card Top of glass

Bottom of glass

Card Original top of glass

Original bottom of glass

1 �

2 �

P2.27a

P2.27b

(c) Estimate the theoretical maximum glass height such
that this experiment could still work, i.e., such that the wa-
ter would not fall out of the glass.

P2.28 Earth’s atmospheric conditions vary somewhat. On a cer-
tain day the sea-level temperature is 45°F and the sea-level
pressure is 28.9 inHg. An airplane overhead registers an
air temperature of 23°F and a pressure of 12 lbf/in2. Esti-
mate the plane’s altitude, in feet.

P2.29 Under some conditions the atmosphere is adiabatic, p �
(const)(�k), where k is the specific heat ratio. Show that,
for an adiabatic atmosphere, the pressure variation is 
given by

p � p0�1 � �
k/(k�1)

Compare this formula for air at z � 5000 m with the stan-
dard atmosphere in Table A.6.

P2.30 In Fig. P2.30 fluid 1 is oil (SG � 0.87) and fluid 2 is glyc-
erin at 20°C. If pa � 98 kPa, determine the absolute pres-
sure at point A.

(k � 1)gz
��

kRT0

*



P2.34 Sometimes manometer dimensions have a significant ef-
fect. In Fig. P2.34 containers (a) and (b) are cylindrical and
conditions are such that pa � pb. Derive a formula for the
pressure difference pa � pb when the oil-water interface on
the right rises a distance �h � h, for (a) d � D and (b) d �
0.15D. What is the percent change in the value of �p?

P2.31 In Fig. P2.31 all fluids are at 20°C. Determine the pres-
sure difference (Pa) between points A and B.
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P2.33 In Fig. P2.33 the pressure at point A is 25 lbf/in2. All flu-
ids are at 20°C. What is the air pressure in the closed cham-
ber B, in Pa?

P2.30

P2.31

P2.32

P2.33

P2.34

ρ1

ρ2

pa

A

10 cm

32 cm

P2.35 Water flows upward in a pipe slanted at 30°, as in Fig.
P2.35. The mercury manometer reads h � 12 cm. Both flu-
ids are at 20°C. What is the pressure difference p1 � p2 in
the pipe?

P2.36 In Fig. P2.36 both the tank and the tube are open to the
atmosphere. If L � 2.13 m, what is the angle of tilt � of
the tube?

P2.37 The inclined manometer in Fig. P2.37 contains Meriam
red manometer oil, SG � 0.827. Assume that the reservoir

20 cm

40 cm

8 cm

9 cm

14 cm

A
B

Kerosine

Air

WaterMercury

Benzene

18 cm

H

35 cm

Mercury

Water

Meriam
red oil,

SG = 0.827

A

B

A
4 cm

3 cm

6 cm

8 cm

5 cm

3 cm

Air

Liquid, SG = 1.45

B

Water

SAE 30 oil

(a)

(b)

d

L  

h

D D

Water

SAE 30 oil
H

P2.32 For the inverted manometer of Fig. P2.32, all fluids are at
20°C. If pB � pA � 97 kPa, what must the height H be 
in cm?

*



with manometer fluid �m. One side of the manometer is open
to the air, while the other is connected to new tubing which
extends to pressure measurement location 1, some height H
higher in elevation than the surface of the manometer liquid.
For consistency, let �a be the density of the air in the room,
�t be the density of the gas inside the tube, �m be the den-
sity of the manometer liquid, and h be the height difference
between the two sides of the manometer. See Fig. P2.38.
(a) Find an expression for the gage pressure at the mea-
surement point. Note: When calculating gage pressure, use
the local atmospheric pressure at the elevation of the mea-
surement point. You may assume that h � H; i.e., assume
the gas in the entire left side of the manometer is of den-
sity �t. (b) Write an expression for the error caused by as-
suming that the gas inside the tubing has the same density
as that of the surrounding air. (c) How much error (in Pa)
is caused by ignoring this density difference for the fol-
lowing conditions: �m � 860 kg/m3, �a � 1.20 kg/m3,
�t � 1.50 kg/m3, H � 1.32 m, and h � 0.58 cm? (d) Can
you think of a simple way to avoid this error?

is very large. If the inclined arm is fitted with graduations
1 in apart, what should the angle � be if each graduation
corresponds to 1 lbf/ft2 gage pressure for pA?
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P2.38 An interesting article appeared in the AIAA Journal (vol. 30,
no. 1, January 1992, pp. 279–280). The authors explain that
the air inside fresh plastic tubing can be up to 25 percent
more dense than that of the surroundings, due to outgassing
or other contaminants introduced at the time of manufacture.
Most researchers, however, assume that the tubing is filled
with room air at standard air density, which can lead to sig-
nificant errors when using this kind of tubing to measure
pressures. To illustrate this, consider a U-tube manometer

h

(1)

(2)

30�

2 mP2.35

P2.39 An 8-cm-diameter piston compresses manometer oil into
an inclined 7-mm-diameter tube, as shown in Fig. P2.39.
When a weight W is added to the top of the piston, the oil
rises an additional distance of 10 cm up the tube, as shown.
How large is the weight, in N?

P2.40 A pump slowly introduces mercury into the bottom of the
closed tank in Fig. P2.40. At the instant shown, the air
pressure pB � 80 kPa. The pump stops when the air pres-
sure rises to 110 kPa. All fluids remain at 20°C. What will
be the manometer reading h at that time, in cm, if it is con-
nected to standard sea-level ambient air patm?

50 cm

50 cm

Oil
SG = 0.8

Water
SG = 1.0

L

�

P2.36

1 in

Reservoir

θ D = 
5

16
inpA

P2.37

h

H

1

U-tube 
manometer �m

�t 
(tubing gas)

�a  (air)

pa at location 1p1 

P2.38



P2.44 Water flows downward in a pipe at 45°, as shown in Fig.
P2.44. The pressure drop p1 � p2 is partly due to gravity
and partly due to friction. The mercury manometer reads
a 6-in height difference. What is the total pressure drop
p1 � p2 in lbf/in2? What is the pressure drop due to fric-
tion only between 1 and 2 in lbf/in2? Does the manome-
ter reading correspond only to friction drop? Why?
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P2.41 The system in Fig. P2.41 is at 20°C. Compute the pres-
sure at point A in lbf/ft2 absolute.

D = 8 cm

d = 7 mm

Meriam red
oil, SG = 0.827

10 cm

15˚

Piston

W

8 cm

9 cm

Air:  pB

Water

Mercury

Pump

patm

h

2 cm

Hg10 cm

P2.39

P2.40

Water

Water

5 in

10 in
6 in

Mercury

A

Oil, SG = 0.85
pa = 14.7 lbf/in2

P2.41

h1

pA

1

pB

1

h

2

h1

ρ ρ

ρ

P2.42

 5 ft

Flow

1

2

45˚

6 in

Mercury

Water

P2.44

P2.42 Very small pressure differences pA � pB can be measured
accurately by the two-fluid differential manometer in Fig.
P2.42. Density �2 is only slightly larger than that of the
upper fluid �1. Derive an expression for the proportional-
ity between h and pA � pB if the reservoirs are very large.

*P2.43 A mercury manometer, similar to Fig. P2.35, records h �
1.2, 4.9, and 11.0 mm when the water velocities in the pipe
are V � 1.0, 2.0, and 3.0 m/s, respectively. Determine if
these data can be correlated in the form p1 � p2 � Cf�V2,
where Cf is dimensionless.

P2.45 In Fig. P2.45, determine the gage pressure at point A in
Pa. Is it higher or lower than atmospheric?

P2.46 In Fig. P2.46 both ends of the manometer are open to the
atmosphere. Estimate the specific gravity of fluid X.

P2.47 The cylindrical tank in Fig. P2.47 is being filled with wa-
ter at 20°C by a pump developing an exit pressure of 175
kPa. At the instant shown, the air pressure is 110 kPa and
H � 35 cm. The pump stops when it can no longer raise
the water pressure. For isothermal air compression, esti-
mate H at that time.

P2.48 Conduct the following experiment to illustrate air pres-
sure. Find a thin wooden ruler (approximately 1 ft in

EES
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45 cm

30 cm

15 cm

40 cm

patm
Air

Oil,
SG = 0.85

Water Mercury

A

a karate chop on the portion of the ruler sticking out over
the edge of the desk. Record your results. (c) Explain
your results.

P2.49 A water tank has a circular panel in its vertical wall. The
panel has a radius of 50 cm, and its center is 2 m below
the surface. Neglecting atmospheric pressure, determine
the water force on the panel and its line of action.

P2.50 A vat filled with oil (SG � 0.85) is 7 m long and 3 m deep
and has a trapezoidal cross section 2 m wide at the bot-
tom and 4 m wide at the top. Compute (a) the weight of
oil in the vat, (b) the force on the vat bottom, and (c) the
force on the trapezoidal end panel.

P2.51 Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into the
paper. Neglecting atmospheric pressure, compute the force
F on the gate and its center-of-pressure position X.

*P2.52 Suppose that the tank in Fig. P2.51 is filled with liquid X,
not oil. Gate AB is 0.8 m wide into the paper. Suppose that
liquid X causes a force F on gate AB and that the moment
of this force about point B is 26,500 N � m. What is the
specific gravity of liquid X?

P2.45

7 cm

4 cm

6 cm

9 cm

5 cm

12 cm

SAE 30 oil

Water

Fluid X

10 cm

75 cm

H

50 cm

Air
20˚ C

Water
Pump

Newspaper

Ruler

Desk

P2.46

P2.48

P2.47

length) or a thin wooden paint stirrer. Place it on the edge
of a desk or table with a little less than half of it hang-
ing over the edge lengthwise. Get two full-size sheets of
newspaper; open them up and place them on top of the
ruler, covering only the portion of the ruler resting on the
desk as illustrated in Fig. P2.48. (a) Estimate the total
force on top of the newspaper due to air pressure in the
room. (b) Careful! To avoid potential injury, make sure
nobody is standing directly in front of the desk. Perform



P2.53 Panel ABC in the slanted side of a water tank is an isosce-
les triangle with the vertex at A and the base BC � 2 m,
as in Fig. P2.53. Find the water force on the panel and its
line of action.
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8 m

6 m

1.2 m

F
40°

X
1 m

A

B

4 m

Oil,
SG = 0.82

P2.51

P2.54 If, instead of water, the tank in Fig. P2.53 is filled with liq-
uid X, the liquid force on panel ABC is found to be 115 kN.
What is the density of liquid X? The line of action is found
to be the same as in Prob. 2.53. Why?

P2.55 Gate AB in Fig. P2.55 is 5 ft wide into the paper, hinged
at A, and restrained by a stop at B. The water is at 20°C.
Compute (a) the force on stop B and (b) the reactions at
A if the water depth h � 9.5 ft.

P2.56 In Fig. P2.55, gate AB is 5 ft wide into the paper, and stop
B will break if the water force on it equals 9200 lbf. For
what water depth h is this condition reached?

P2.57 In Fig. P2.55, gate AB is 5 ft wide into the paper. Suppose
that the fluid is liquid X, not water. Hinge A breaks when
its reaction is 7800 lbf, and the liquid depth is h � 13 ft.
What is the specific gravity of liquid X?

P2.58 In Fig. P2.58, the cover gate AB closes a circular opening
80 cm in diameter. The gate is held closed by a 200-kg
mass as shown. Assume standard gravity at 20°C. At what
water level h will the gate be dislodged? Neglect the weight
of the gate.

Water

B, C 3 m 

4 m 

A 

pa

Water
pa

4 ft

B

A

h

P2.53

P2.55

Water

30 cm

3 m

m

200 kg

h

B A

P2.58

P2.59

�

B

h

Hinge

A 

P 

L

*P2.59 Gate AB has length L, width b into the paper, is hinged at
B, and has negligible weight. The liquid level h remains
at the top of the gate for any angle �. Find an analytic ex-
pression for the force P, perpendicular to AB, required to
keep the gate in equilibrium in Fig. P2.59.

*P2.60 Find the net hydrostatic force per unit width on the rec-
tangular gate AB in Fig. P2.60 and its line of action.

*P2.61 Gate AB in Fig. P2.61 is a homogeneous mass of 180 kg,
1.2 m wide into the paper, hinged at A, and resting on a
smooth bottom at B. All fluids are at 20°C. For what wa-
ter depth h will the force at point B be zero?



P2.63 The tank in Fig. P2.63 has a 4-cm-diameter plug at the
bottom on the right. All fluids are at 20°C. The plug will
pop out if the hydrostatic force on it is 25 N. For this con-
dition, what will be the reading h on the mercury manome-
ter on the left side?

P2.62 Gate AB in Fig. P2.62 is 15 ft long and 8 ft wide into the
paper and is hinged at B with a stop at A. The water is at
20°C. The gate is 1-in-thick steel, SG � 7.85. Compute
the water level h for which the gate will start to fall.
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Water

Glycerin

A

B

1.8 m

1.2 m

2 m

2 m

P2.60

*P2.64 Gate ABC in Fig. P2.64 has a fixed hinge line at B and is
2 m wide into the paper. The gate will open at A to release
water if the water depth is high enough. Compute the depth
h for which the gate will begin to open.

*P2.65 Gate AB in Fig. P2.65 is semicircular, hinged at B, and
held by a horizontal force P at A. What force P is required
for equilibrium?

P2.66 Dam ABC in Fig. P2.66 is 30 m wide into the paper and
made of concrete (SG � 2.4). Find the hydrostatic force
on surface AB and its moment about C. Assuming no seep-
age of water under the dam, could this force tip the dam
over? How does your argument change if there is seepage
under the dam?

Water

B

A

Glycerin

1 m

h

2 m

60°

P2.61

Water

h

B

15 ft

60˚

10,000 lb

Pulley

A

P2.62

h

50°

2 cm

H

Water

Plug,
D = 4 cm

Mercury

P2.63

EES

Water at 20°C

A 20 cm B

C

1m

h

P2.64



**P2.67 Generalize Prob. 2.66 as follows. Denote length AB as H,
length BC as L, and angle ABC as �. Let the dam mater-
ial have specific gravity SG. The width of the dam is b.
Assume no seepage of water under the dam. Find an an-
alytic relation between SG and the critical angle �c for
which the dam will just tip over to the right. Use your re-
lation to compute �c for the special case SG � 2.4 (con-
crete).

P2.68 Isosceles triangle gate AB in Fig. P2.68 is hinged at A and
weighs 1500 N. What horizontal force P is required at point
B for equilibrium?

**P2.69 The water tank in Fig. P2.69 is pressurized, as shown by
the mercury-manometer reading. Determine the hydrosta-
tic force per unit depth on gate AB.

P2.70 Calculate the force and center of pressure on one side of
the vertical triangular panel ABC in Fig. P2.70. Neglect
patm.

**P2.71 In Fig. P2.71 gate AB is 3 m wide into the paper and is
connected by a rod and pulley to a concrete sphere (SG �
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P
A

B

5 m

Water

3 m Gate:
Side view

60  m

C��
��

A

B

Water 20˚C
80  m

Dam

P2.65

P2.66

A

P

3 m

Gate

50˚ B

1 mOil, SG = 0.83

2 m

P2.68

1 m

5 m

2 m

Water,
20˚C

Hg, 20˚C

A

B

80 cm

P2.69

C

Water

4 ft
B

A
2 ft

6 ft

P2.70



***P2.74 In “soft’’ liquids (low bulk modulus �), it may be neces-
sary to account for liquid compressibility in hydrostatic
calculations. An approximate density relation would be

dp � �
�
�

� d� � a2 d� or p � p0 	 a2(� � �0) 

where a is the speed of sound and (p0, �0) are the condi-
tions at the liquid surface z � 0. Use this approximation
to show that the density variation with depth in a soft liq-
uid is � � �0e�gz/a2

where g is the acceleration of gravity
and z is positive upward. Then consider a vertical wall of
width b, extending from the surface (z � 0) down to depth
z � � h. Find an analytic expression for the hydrostatic
force F on this wall, and compare it with the incompress-
ible result F � �0gh2b/2. Would the center of pressure be
below the incompressible position z � � 2h/3?

*P2.75 Gate AB in Fig. P2.75 is hinged at A, has width b into the
paper, and makes smooth contact at B. The gate has den-
sity �s and uniform thickness t. For what gate density �s,
expressed as a function of (h, t, �, �), will the gate just be-
gin to lift off the bottom? Why is your answer indepen-
dent of gate length L and width b?

2.40). What diameter of the sphere is just sufficient to keep
the gate closed?
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P2.72 The V-shaped container in Fig. P2.72 is hinged at A and
held together by cable BC at the top. If cable spacing is 
1 m into the paper, what is the cable tension?

P2.73 Gate AB is 5 ft wide into the paper and opens to let fresh
water out when the ocean tide is dropping. The hinge at A
is 2 ft above the freshwater level. At what ocean level h
will the gate first open? Neglect the gate weight.

A

4 m

B

Concrete
sphere, SG = 2.4

��8 m

6 m

Water

Cable

A

3 m

1 m
B

C

110˚

Water

P2.71

P2.72

**P2.76 Consider the angled gate ABC in Fig. P2.76, hinged at C
and of width b into the paper. Derive an analytic formula
for the horizontal force P required at the top for equilib-
rium, as a function of the angle �.

P2.77 The circular gate ABC in Fig. P2.77 has a 1-m radius and
is hinged at B. Compute the force P just sufficient to keep
the gate from opening when h � 8 m. Neglect atmospheric
pressure.

P2.78 Repeat Prob. 2.77 to derive an analytic expression for P
as a function of h. Is there anything unusual about your
solution?

P2.79 Gate ABC in Fig. P2.79 is 1 m square and is hinged at B.
It will open automatically when the water level h becomes
high enough. Determine the lowest height for which the

A

B

h

Stop

10 ft

Tide
range

Seawater, SG = 1.025

P2.73

A

L

t

h

�

�

B
P2.75
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gate will open. Neglect atmospheric pressure. Is this result
independent of the liquid density?

P2.80 For the closed tank in Fig. P2.80, all fluids are at 20°C, and
the airspace is pressurized. It is found that the net outward
hydrostatic force on the 30-by 40-cm panel at the bottom of
the water layer is 8450 N. Estimate (a) the pressure in the
airspace and (b) the reading h on the mercury manometer.

Water

A

B

C

1m

h

1m

P

pa

pa

P2.77

P2.81 Gate AB in Fig. P2.81 is 7 ft into the paper and weighs
3000 lbf when submerged. It is hinged at B and rests
against a smooth wall at A. Determine the water level h at
the left which will just cause the gate to open.

Water

A

B
C

h

60 cm

40 cm

P2.79

P2.82 The dam in Fig. P2.82 is a quarter circle 50 m wide into
the paper. Determine the horizontal and vertical compo-
nents of the hydrostatic force against the dam and the point
CP where the resultant strikes the dam.

P2.83 Gate AB in Fig. P2.83 is a quarter circle 10 ft wide into
the paper and hinged at B. Find the force F just sufficient
to keep the gate from opening. The gate is uniform and
weighs 3000 lbf.

P2.84 Determine (a) the total hydrostatic force on the curved sur-
face AB in Fig. P2.84 and (b) its line of action. Neglect at-
mospheric pressure, and let the surface have unit width.

Water

Water

4 ft

6 ft

8 ft

A

h

B

Air

SAE 30 oil

Water

60 cm

20 cm

80 cm

Panel, 30 cm high, 40 cm wide

Mercury

2 m

1 atm

h

P2.80

P2.81

h

��
��
��

Specific weight γ
θ
θ

P

B

A

C

P2.76

*

*
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P2.85 Compute the horizontal and vertical components of the hy-
drostatic force on the quarter-circle panel at the bottom of
the water tank in Fig. P2.85.

Water

20 m

���
���
���20 m

CP

pa
 = 0

P2.82

Water

A

B

F

r = 8 ft

A

B

Water at 20° C

1 m

x

z

z = x3

P2.87 The bottle of champagne (SG � 0.96) in Fig. P2.87 is un-
der pressure, as shown by the mercury-manometer read-
ing. Compute the net force on the 2-in-radius hemispher-
ical end cap at the bottom of the bottle.

P2.88 Gate ABC is a circular arc, sometimes called a Tainter gate,
which can be raised and lowered by pivoting about point
O. See Fig. P2.88. For the position shown, determine (a)
the hydrostatic force of the water on the gate and (b) its
line of action. Does the force pass through point O?

P2.83

P2.84

Water

6 m

2 m

5 m

2 m

P2.85

Water10 ft

2 ftP2.86

P2.86 Compute the horizontal and vertical components of the hy-
drostatic force on the hemispherical bulge at the bottom
of the tank in Fig. P2.86.

4 in
2 in

6 in

Mercuryr = 2 inP2.87

Water

B

C

O

R = 6 m

6 m

6 m

A

P2.88

*



P2.91 The hemispherical dome in Fig. P2.91 weighs 30 kN and
is filled with water and attached to the floor by six equally
spaced bolts. What is the force in each bolt required to
hold down the dome?

P2.92 A 4-m-diameter water tank consists of two half cylinders,
each weighing 4.5 kN/m, bolted together as shown in Fig.
P2.92. If the support of the end caps is neglected, deter-
mine the force induced in each bolt.

*P2.93 In Fig. P2.93, a one-quadrant spherical shell of radius R
is submerged in liquid of specific gravity � and depth 
h � R. Find an analytic expression for the resultant hydro-
static force, and its line of action, on the shell surface.

P2.89 The tank in Fig. P2.89 contains benzene and is pressur-
ized to 200 kPa (gage) in the air gap. Determine the ver-
tical hydrostatic force on circular-arc section AB and its
line of action.
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P2.90 A 1-ft-diameter hole in the bottom of the tank in Fig. P2.90
is closed by a conical 45° plug. Neglecting the weight of
the plug, compute the force F required to keep the plug in
the hole.

60 cm

60 cm

p = 200 kPa

Benzene
at 20�C

A

B

30 cm

P2.89

Air :

Water

45˚
cone

F

1 ft

p = 3 lbf/in2  gage

3 ft

1 ft

P2.90

P2.94 The 4-ft-diameter log (SG � 0.80) in Fig. P2.94 is 8 ft
long into the paper and dams water as shown. Compute
the net vertical and horizontal reactions at point C.

Water

4 m

3cm

Six
bolts

2 m

P2.91

2 m

2 m

Water

Bolt spacing 25 cm

P2.92

z

, γ

R

R

x

z
R

h

ρ

P2.93



wall at A. Compute the reaction forces at points A
and B.

***P2.95 The uniform body A in Fig. P2.95 has width b into the pa-
per and is in static equilibrium when pivoted about hinge
O. What is the specific gravity of this body if (a) h � 0
and (b) h � R?
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P2.96 The tank in Fig. P2.96 is 3 m wide into the paper. Ne-
glecting atmospheric pressure, compute the hydrostatic (a)
horizontal force, (b) vertical force, and (c) resultant force
on quarter-circle panel BC.

2ft
Log

2ft

Water

C

Water

P2.94

P2.98 Gate ABC in Fig. P2.98 is a quarter circle 8 ft wide into
the paper. Compute the horizontal and vertical hydrostatic
forces on the gate and the line of action of the resultant
force.

A

R

R

h

O

Water

P2.95

P2.99 A 2-ft-diameter sphere weighing 400 lbf closes a 1-ft-di-
ameter hole in the bottom of the tank in Fig. P2.99. Com-
pute the force F required to dislodge the sphere from the
hole.

4 m

4 m

6 m
Water

C

B

A

P2.96

P2.97 Gate AB in Fig. P2.97 is a three-eighths circle, 3 m wide
into the paper, hinged at B, and resting against a smooth

4 m

Seawater, 10,050  N/m3

2 m

45°

A

B

P2.97

45°
45°

r = 4 ft

B

C

Water

A

P2.98

 Water

 3 ft

 1 ft

 F

 1 ft

P2.99



whether his new crown was pure gold (SG � 19.3).
Archimedes measured the weight of the crown in air to be
11.8 N and its weight in water to be 10.9 N. Was it pure
gold?

P2.106 It is found that a 10-cm cube of aluminum (SG � 2.71)
will remain neutral under water (neither rise nor fall) if it
is tied by a string to a submerged 18-cm-diameter sphere
of buoyant foam. What is the specific weight of the foam,
in N/m3?

P2.107 Repeat Prob. 2.62, assuming that the 10,000-lbf weight is
aluminum (SG � 2.71) and is hanging submerged in the
water.

P2.108 A piece of yellow pine wood (SG � 0.65) is 5 cm square
and 2.2 m long. How many newtons of lead (SG � 11.4)
should be attached to one end of the wood so that it will
float vertically with 30 cm out of the water?

P2.109 A hydrometer floats at a level which is a measure of the
specific gravity of the liquid. The stem is of constant di-
ameter D, and a weight in the bottom stabilizes the body
to float vertically, as shown in Fig. P2.109. If the position
h � 0 is pure water (SG � 1.0), derive a formula for h as
a function of total weight W, D, SG, and the specific weight
�0 of water.

P2.100 Pressurized water fills the tank in Fig. P2.100. Compute
the net hydrostatic force on the conical surface ABC.
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P2.101 A fuel truck has a tank cross section which is approxi-
mately elliptical, with a 3-m horizontal major axis and a
2-m vertical minor axis. The top is vented to the atmos-
phere. If the tank is filled half with water and half with
gasoline, what is the hydrostatic force on the flat ellipti-
cal end panel?

P2.102 In Fig. P2.80 suppose that the manometer reading is h �
25 cm. What will be the net hydrostatic force on the com-
plete end wall, which is 160 cm high and 2 m wide?

P2.103 The hydrogen bubbles in Fig. 1.13 are very small, less
than a millimeter in diameter, and rise slowly. Their drag
in still fluid is approximated by the first term of Stokes’
expression in Prob. 1.10: F � 3�
VD, where V is the rise
velocity. Neglecting bubble weight and setting bubble
buoyancy equal to drag, (a) derive a formula for the ter-
minal (zero acceleration) rise velocity Vterm of the bubble
and (b) determine Vterm in m/s for water at 20°C if D �
30 
m.

P2.104 The can in Fig. P2.104 floats in the position shown. What
is its weight in N?

P2.105 It is said that Archimedes discovered the buoyancy laws
when asked by King Hiero of Syracuse to determine

2 m

A C

B
150 kPa

gage

4 m

7 m

Water

P2.100

Water

3 cm

8 cm

D = 9 cmP2.104

P2.110 An average table tennis ball has a diameter of 3.81 cm and
a mass of 2.6 g. Estimate the (small) depth at which this
ball will float in water at 20°C and sea level standard air
if air buoyancy is (a) neglected and (b) included.

P2.111 A hot-air balloon must be designed to support basket, cords,
and one person for a total weight of 1300 N. The balloon
material has a mass of 60 g/m2. Ambient air is at 25°C and
1 atm. The hot air inside the balloon is at 70°C and 1 atm.
What diameter spherical balloon will just support the total
weight? Neglect the size of the hot-air inlet vent.

P2.112 The uniform 5-m-long round wooden rod in Fig. P2.112
is tied to the bottom by a string. Determine (a) the tension

h

Fluid, SG > 1

W

D

SG = 1.0

P2.109



P2.116 The homogeneous 12-cm cube in Fig. 2.116 is balanced
by a 2-kg mass on the beam scale when the cube is im-
mersed in 20°C ethanol. What is the specific gravity of the
cube?

in the string and (b) the specific gravity of the wood. Is it
possible for the given information to determine the incli-
nation angle �? Explain.
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Water at 20°C

String

1 m

4 m

θ

D = 8 cm

P2.112

P2.113 A spar buoy is a buoyant rod weighted to float and protrude
vertically, as in Fig. P2.113. It can be used for measurements
or markers. Suppose that the buoy is maple wood (SG �
0.6), 2 in by 2 in by 12 ft, floating in seawater (SG � 1.025).
How many pounds of steel (SG � 7.85) should be added to
the bottom end so that h � 18 in?

Wsteel

h

P2.113

8 m

Hinge

� = 30�

2 kg of lead

D = 4 cm
B

P2.114

P2.117 The balloon in Fig. P2.117 is filled with  helium and pres-
surized to 135 kPa and 20°C. The balloon material has a

P2.114 The uniform rod in Fig. P2.114 is hinged at point B on the
waterline and is in static equilibrium as shown when 2 kg
of lead (SG � 11.4) are attached to its end. What is the
specific gravity of the rod material? What is peculiar about
the rest angle � � 30?

P2.115 The 2-in by 2-in by 12-ft spar buoy from Fig. P2.113 has 5
lbm of steel attached and has gone aground on a rock, as in
Fig. P2.115. Compute the angle � at which the buoy will
lean, assuming that the rock exerts no moments on the spar.

Rock

Seawater

Wood

A

B

8 ft θ SG = 0.6

P2.115

12 cm

2 kg

P2.116



P2.120 A uniform wooden beam (SG � 0.65) is 10 cm by 10 cm
by 3 m and is hinged at A, as in Fig. P2.120. At what an-
gle � will the beam float in the 20°C water?

mass of 85 g/m2. Estimate (a) the tension in the mooring
line and (b) the height in the standard atmosphere to which
the balloon will rise if the mooring line is cut.
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P2.118 A 14-in-diameter hollow sphere is made of steel (SG �
7.85) with 0.16-in wall thickness. How high will this
sphere float in 20°C water? How much weight must be
added inside to make the sphere neutrally buoyant?

P2.119 When a 5-lbf weight is placed on the end of the uniform
floating wooden beam in Fig. P2.119, the beam tilts at an
angle � with its upper right corner at the surface, as shown.
Determine (a) the angle � and (b) the specific gravity of
the wood. (Hint: Both the vertical forces and the moments
about the beam centroid must be balanced.)

Air:
100 kPa at

20°C

D = 10 m

P2.117

Water 9 ft

5 lbf

4 in × 4 in

θ

P2.119

P2.121 The uniform beam in Fig. P2.121, of size L by h by b and
with specific weight �b, floats exactly on its diagonal when
a heavy uniform sphere is tied to the left corner, as shown.
Show that this can only happen (a) when �b � �/3 and (b)
when the sphere has size

D � � �
1/3Lhb

��
� (SG � 1)

θ

Water

1 m

A

P2.120

P2.122 A uniform block of steel (SG � 7.85) will “float’’ at a 
mercury-water interface as in Fig. P2.122. What is the 
ratio of the distances a and b for this condition?

�

L

Diameter D

γ

Width b << L

γ b

SG > 1

h << L

P2.121

Steel
block

Mercury: SG = 13.56

a

b

Water

P2.122

EES

P2.123 In an estuary where fresh water meets and mixes with sea-
water, there often occurs a stratified salinity condition with
fresh water on top and salt water on the bottom, as in Fig.
P2.123. The interface is called a halocline. An idealization
of this would be constant density on each side of the halo-
cline as shown. A 35-cm-diameter sphere weighing 50 lbf
would “float’’ near such a halocline. Compute the sphere
position for the idealization in Fig. P2.123.

P2.124 A balloon weighing 3.5 lbf is 6 ft in diameter. It is filled
with hydrogen at 18 lbf/in2 absolute and 60°F and is re-
leased. At what altitude in the U.S. standard atmosphere
will this balloon be neutrally buoyant?



Fig. P2.128 suppose that the height is L and the depth into
the paper is L, but the width in the plane of the paper is
H � L. Assuming S � 0.88 for the iceberg, find the ratio
H/L for which it becomes neutrally stable, i.e., about to
overturn.

P2.130 Consider a wooden cylinder (SG � 0.6) 1 m in diameter
and 0.8 m long. Would this cylinder be stable if placed to
float with its axis vertical in oil (SG � 0.8)?

P2.131 A barge is 15 ft wide and 40 ft long and floats with a draft
of 4 ft. It is piled so high with gravel that its center of grav-
ity is 2 ft above the waterline. Is it stable?

P2.132 A solid right circular cone has SG � 0.99 and floats ver-
tically as in Fig. P2.132. Is this a stable position for the
cone?

P2.125 Suppose that the balloon in Prob. 2.111 is constructed to
have a diameter of 14 m, is filled at sea level with hot air
at 70°C and 1 atm, and is released. If the air inside the bal-
loon remains constant and the heater maintains it at 70°C,
at what altitude in the U.S. standard atmosphere will this
balloon be neutrally buoyant?

*P2.126 A cylindrical can of weight W, radius R, and height H is
open at one end. With its open end down, and while filled
with atmospheric air (patm, Tatm), the can is eased down
vertically into liquid, of density �, which enters and com-
presses the air isothermally. Derive a formula for the height
h to which the liquid rises when the can is submerged with
its top (closed) end a distance d from the surface.

P2.127 Consider the 2-in by 2-in by 10-ft spar buoy of Prob. 2.113.
How many pounds of steel (SG � 7.85) should be added
at the bottom to ensure vertical floating with a metacen-
tric height M�G� of (a) zero (neutral stability) or (b) 1 ft
(reasonably stable)?

P2.128 An iceberg can be idealized as a cube of side length L, as
in Fig. P2.128. If seawater is denoted by S � 1.0, then
glacier ice (which forms icebergs) has S � 0.88. Deter-
mine if this “cubic’’ iceberg is stable for the position shown
in Fig. P2.128.
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Salinity Idealization

Halocline

SG = 1.025

35°/°°

SG = 1.0

0

P2.123

P2.129 The iceberg idealization in Prob. 2.128 may become un-
stable if its sides melt and its height exceeds its width. In

Water
S = 1.0

M?
G
B

Specific gravity

L

= S

h

P2.133 Consider a uniform right circular cone of specific gravity
S � 1, floating with its vertex down in water (S � 1). The
base radius is R and the cone height is H. Calculate and
plot the stability MM�G� of this cone, in dimensionless form,
versus H/R for a range of S � 1.

P2.134 When floating in water (SG � 1.0), an equilateral trian-
gular body (SG � 0.9) might take one of the two positions
shown in Fig. P2.134. Which is the more stable position?
Assume large width into the paper.

P2.128

*

Water :
SG = 1.0

SG = 0.99

P2.132

(a) (b)

P2.134

P2.135 Consider a homogeneous right circular cylinder of length
L, radius R, and specific gravity SG, floating in water
(SG � 1). Show that the body will be stable with its axis
vertical if

� [2SG(1 � SG)]1/2
R
�
L



P2.136 Consider a homogeneous right circular cylinder of length
L, radius R, and specific gravity SG � 0.5, floating in wa-
ter (SG � 1). Show that the body will be stable with its
axis horizontal if L/R � 2.0.

P2.137 A tank of water 4 m deep receives a constant upward ac-
celeration az. Determine (a) the gage pressure at the tank
bottom if az � 5 m2/s and (b) the value of az which causes
the gage pressure at the tank bottom to be 1 atm.

P2.138 A 12-fl-oz glass, of 3-in diameter, partly full of water, is
attached to the edge of an 8-ft-diameter merry-go-round
which is rotated at 12 r/min. How full can the glass be be-
fore water spills? (Hint: Assume that the glass is much
smaller than the radius of the merry-go-round.)

P2.139 The tank of liquid in Fig. P2.139 accelerates to the right
with the fluid in rigid-body motion. (a) Compute ax in
m/s2. (b) Why doesn’t the solution to part (a) depend upon
the density of the fluid? (c) Determine the gage pressure
at point A if the fluid is glycerin at 20°C.

122 Chapter 2 Pressure Distribution in a Fluid

Fig. P2.139

P2.141

P2.140 Suppose that the elliptical-end fuel tank in Prob. 2.101 is
10 m long and filled completely with fuel oil (� � 890
kg/m3). Let the tank be pulled along a horizontal road. For
rigid-body motion, find the acceleration, and its direction,
for which (a) a constant-pressure surface extends from the
top of the front end wall to the bottom of the back end and
(b) the top of the back end is at a pressure 0.5 atm lower
than the top of the front end.

P2.141 The same tank from Prob. 2.139 is now moving with con-
stant acceleration up a 30° inclined plane, as in Fig.
P2.141. Assuming rigid-body motion, compute (a) the
value of the acceleration a, (b) whether the acceleration is
up or down, and (c) the gage pressure at point A if the fluid
is mercury at 20°C.

P2.142 The tank of water in Fig. P2.142 is 12 cm wide into the
paper. If the tank is accelerated to the right in rigid-body
motion at 6.0 m/s2, compute (a) the water depth on side
AB and (b) the water-pressure force on panel AB. Assume
no spilling.

P2.143 The tank of water in Fig. P2.143 is full and open to the at-
mosphere at point A. For what acceleration ax in ft/s2 will the
pressure at point B be (a) atmospheric and (b) zero absolute?

28 cm
100 cm

15 cm

V

A

a?

30°
z

x

A

28 cm

100 cm

ax

15 cm

P2.144 Consider a hollow cube of side length 22 cm, filled com-
pletely with water at 20°C. The top surface of the cube is
horizontal. One top corner, point A, is open through a small
hole to a pressure of 1 atm. Diagonally opposite to point
A is top corner B. Determine and discuss the various rigid-
body accelerations for which the water at point B begins
to cavitate, for (a) horizontal motion and (b) vertical mo-
tion.

P2.145 A fish tank 14 in deep by 16 by 27 in is to be carried 
in a car which may experience accelerations as high as 
6 m/s2. What is the maximum water depth which will avoid

Water at 20°C

24 cm

9 cm

A

B

P2.142

Water

2ft

2ft

1ft

1ft

A

B

ax

pa = 15 lbf/in2 abs

P2.143



with the child, which way will the balloon tilt, forward or
backward? Explain. (b) The child is now sitting in a car
which is stopped at a red light. The helium-filled balloon
is not in contact with any part of the car (seats, ceiling,
etc.) but is held in place by the string, which is in turn held
by the child. All the windows in the car are closed. When
the traffic light turns green, the car accelerates forward. In
a frame of reference moving with the car and child, which
way will the balloon tilt, forward or backward? Explain.
(c) Purchase or borrow a helium-filled balloon. Conduct a
scientific experiment to see if your predictions in parts (a)
and (b) above are correct. If not, explain.

P2.149 The 6-ft-radius waterwheel in Fig. P2.149 is being used to
lift water with its 1-ft-diameter half-cylinder blades. If the
wheel rotates at 10 r/min and rigid-body motion is as-
sumed, what is the water surface angle � at position A?

spilling in rigid-body motion? What is the proper align-
ment of the tank with respect to the car motion?

P2.146 The tank in Fig. P2.146 is filled with water and has a vent
hole at point A. The tank is 1 m wide into the paper. In-
side the tank, a 10-cm balloon, filled with helium at 130
kPa, is tethered centrally by a string. If the tank acceler-
ates to the right at 5 m/s2 in rigid-body motion, at what
angle will the balloon lean? Will it lean to the right or to
the left?
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P2.147 The tank of water in Fig. P2.147 accelerates uniformly by
freely rolling down a 30° incline. If the wheels are fric-
tionless, what is the angle �? Can you explain this inter-
esting result?

Water at 20°C

60 cm

40 cm

20 cm

D = 10 cm

String

1 atm

A

He

P2.146

θ

30°

P2.147

P2.148 A child is holding a string onto which is attached a he-
lium-filled balloon. (a) The child is standing still and sud-
denly accelerates forward. In a frame of reference moving

10 r/min

A

θ

1 ft

6 ft

P2.149

D

ax

L1
2

L

L1
2

h Rest level

P2.150

P2.150 A cheap accelerometer, probably worth the price, can be
made from a U-tube as in Fig. P2.150. If L � 18 cm and
D � 5 mm, what will h be if ax � 6 m/s2? Can the scale
markings on the tube be linear multiples of ax?

P2.151 The U-tube in Fig. P2.151 is open at A and closed at D.
If accelerated to the right at uniform ax, what acceleration



will cause the pressure at point C to be atmospheric? The
fluid is water (SG � 1.0).
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1 ft

1 ft1 ft

D

CB

A

P2.151

A

B

C

20 cm

10 cm 5 cm

12 cm

Ω

P2.155

P2.156 Suppose that the U-tube of Fig. P2.151 is rotated about
axis DC. If the fluid is water at 122°F and atmospheric
pressure is 2116 lbf/ft2 absolute, at what rotation rate will
the fluid within the tube begin to vaporize? At what point
will this occur?

P2.157 The 45° V-tube in Fig. P2.157 contains water and is open
at A and closed at C. What uniform rotation rate in r/min
about axis AB will cause the pressure to be equal at points
B and C? For this condition, at what point in leg BC will
the pressure be a minimum?

30 cm

45˚

A C

B

P2.157

P2.158 It is desired to make a 3-m-diameter parabolic telescope
mirror by rotating molten glass in rigid-body motion un-
til the desired shape is achieved and then cooling the glass
to a solid. The focus of the mirror is to be 4 m from the
mirror, measured along the centerline. What is the proper
mirror rotation rate, in r/min, for this task?

P2.152 A 16-cm-diameter open cylinder 27 cm high is full of wa-
ter. Compute the rigid-body rotation rate about its central
axis, in r/min, (a) for which one-third of the water will
spill out and (b) for which the bottom will be barely ex-
posed.

P2.153 Suppose the U-tube in Fig. P2.150 is not translated but
rather rotated about its right leg at 95 r/min. What will be
the level h in the left leg if L � 18 cm and D � 5 mm?

P2.154 A very deep 18-cm-diameter can contains 12 cm of water
overlaid with 10 cm of SAE 30 oil. If the can is 
rotated in rigid-body motion about its central axis at 
150 r/min, what will be the shapes of the air-oil and 
oil-water interfaces? What will be the maximum fluid pres-
sure in the can in Pa (gage)?

P2.155 For what uniform rotation rate in r/min about axis C will
the U-tube in Fig. P2.155 take the configuration shown?
The fluid is mercury at 20°C.

EES

*



Fundamentals of Engineering Exam Problems

FE2.1 A gage attached to a pressurized nitrogen tank reads a
gage pressure of 28 in of mercury. If atmospheric pres-
sure is 14.4 psia, what is the absolute pressure in the tank?
(a) 95 kPa, (b) 99 kPa, (c) 101 kPa, (d) 194 kPa,
(e) 203 kPa

FE2.2 On a sea-level standard day, a pressure gage, moored be-
low the surface of the ocean (SG � 1.025), reads an ab-
solute pressure of 1.4 MPa. How deep is the instrument?
(a) 4 m, (b) 129 m, (c) 133 m, (d) 140 m, (e) 2080 m

FE2.3 In Fig. FE2.3, if the oil in region B has SG � 0.8 and the
absolute pressure at point A is 1 atm, what is the absolute
pressure at point B?
(a) 5.6 kPa, (b) 10.9 kPa, (c) 106.9 kPa, (d) 112.2 kPa,
(e) 157.0 kPa

Word Problems

W2.1 Consider a hollow cone with a vent hole in the vertex at
the top, along with a hollow cylinder, open at the top, with
the same base area as the cone. Fill both with water to the
top. The hydrostatic paradox is that both containers have
the same force on the bottom due to the water pressure, al-
though the cone contains 67 percent less water. Can you
explain the paradox?

W2.2 Can the temperature ever rise with altitude in the real at-
mosphere? Wouldn’t this cause the air pressure to increase
upward? Explain the physics of this situation.

W2.3 Consider a submerged curved surface which consists of a
two-dimensional circular arc of arbitrary angle, arbitrary
depth, and arbitrary orientation. Show that the resultant hy-
drostatic pressure force on this surface must pass through
the center of curvature of the arc.

W2.4 Fill a glass approximately 80 percent with water, and add a
large ice cube. Mark the water level. The ice cube, having
SG � 0.9, sticks up out of the water. Let the ice cube melt
with negligible evaporation from the water surface. Will the
water level be higher than, lower than, or the same as before?
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5 cm

3 cm

4 cm

8 cm

A

B

Oil

Mercury
SG = 13.56

Water
SG = 1

FE2.3

W2.5 A ship, carrying a load of steel, is trapped while floating
in a small closed lock. Members of the crew want to get
out, but they can’t quite reach the top wall of the lock. A
crew member suggests throwing the steel overboard in the
lock, claiming the ship will then rise and they can climb
out. Will this plan work?

W2.6 Consider a balloon of mass m floating neutrally in the at-
mosphere, carrying a person/basket of mass M � m. Dis-
cuss the stability of this system to disturbances.

W2.7 Consider a helium balloon on a string tied to the seat of
your stationary car. The windows are closed, so there is no
air motion within the car. The car begins to accelerate for-
ward. Which way will the balloon lean, forward or back-
ward? (Hint: The acceleration sets up a horizontal pressure
gradient in the air within the car.)

W2.8 Repeat your analysis of Prob. W2.7 to let the car move at
constant velocity and go around a curve. Will the balloon
lean in, toward the center of curvature, or out?

FE2.4 In Fig. FE2.3, if the oil in region B has SG � 0.8 and the
absolute pressure at point B is 14 psia, what is the ab-
solute pressure at point B?
(a) 11 kPa, (b) 41 kPa, (c) 86 kPa, (d) 91 kPa, (e) 101 kPa

FE2.5 A tank of water (SG � 1,.0) has a gate in its vertical wall
5 m high and 3 m wide. The top edge of the gate is 2 m
below the surface. What is the hydrostatic force on the gate?
(a) 147 kN, (b) 367 kN, (c) 490 kN, (d) 661 kN,
(e) 1028 kN

FE2.6 In Prob. FE2.5 above, how far below the surface is the
center of pressure of the hydrostatic force?
(a) 4.50 m, (b) 5.46 m, (c) 6.35 m, (d) 5.33 m, (e) 4.96 m

FE2.7 A solid 1-m-diameter sphere floats at the interface between
water (SG � 1.0) and mercury (SG � 13.56) such that 40 per-
cent is in the water. What is the specific gravity of the sphere?
(a) 6.02, (b) 7.28, (c) 7.78, (d) 8.54, (e) 12.56

FE2.8 A 5-m-diameter balloon contains helium at 125 kPa absolute
and 15°C, moored in sea-level standard air. If the gas con-
stant of helium is 2077 m2/(s2�K) and balloon material weight
is neglected, what is the net lifting force of the balloon?
(a) 67 N, (b) 134 N, (c) 522 N, (d) 653 N, (e) 787 N

FE2.9 A square wooden (SG � 0.6) rod, 5 cm by 5 cm by 10 m
long, floats vertically in water at 20°C when 6 kg of steel
(SG � 7.84) are attached to one end. How high above the
water surface does the wooden end of the rod protrude?
(a) 0.6 m, (b) 1.6 m, (c) 1.9 m, (d) 2.4 m, (e) 4.0 m



of buoyancy is above its metacenter, (d) metacenter is
above its center of buoyancy, (e) metacenter is above its
center of gravity

FE2.10 A floating body will be stable when its
(a) center of gravity is above its center of buoyancy,
(b) center of buoyancy is below the waterline, (c) center
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Zero pressure level

To pressure measurement location

p1

�a (air)pa

�m

C2.1

Comprehensive Problems

C2.1 Some manometers are constructed as in Fig. C2.1, where
one side is a large reservoir (diameter D) and the other side
is a small tube of diameter d, open to the atmosphere. In
such a case, the height of manometer liquid on the reservoir
side does not change appreciably. This has the advantage
that only one height needs to be measured rather than two.
The manometer liquid has density �m while the air has den-
sity �a. Ignore the effects of surface tension. When there is
no pressure difference across the manometer, the elevations
on both sides are the same, as indicated by the dashed line.
Height h is measured from the zero pressure level as shown.
(a) When a high pressure is applied to the left side, the
manometer liquid in the large reservoir goes down, while
that in the tube at the right goes up to conserve mass. Write
an exact expression for p1gage, taking into account the move-
ment of the surface of the reservoir. Your equation should
give p1gage as a function of h, �m, and the physical para-
meters in the problem, h, d, D, and gravity constant g. 
(b) Write an approximate expression for p1gage, neglecting
the change in elevation of the surface of the reservoir liq-
uid. (c) Suppose h � 0.26 m in a certain application. If pa �
101,000 Pa and the manometer liquid has a density of 820
kg/m3, estimate the ratio D/d required to keep the error 
of the approximation of part (b) within 1 percent of the ex-
act measurement of part (a). Repeat for an error within 0.1
percent.

U-tube is still useful as a pressure-measuring device. It is
attached to a pressurized tank as shown in the figure. (a)
Find an expression for h as a function of H and other pa-
rameters in the problem. (b) Find the special case of your
result in (a) when ptank � pa. (c) Suppose H � 5.0 cm, pa

is 101.2kPa, ptank is 1.82 kPa higher than pa, and SG0 �
0.85. Calculate h in cm, ignoring surface tension effects and
neglecting air density effects.

Oil

Water

H
h

Pressurized air tank, 
with pressure � ptank

pa

C2.2

C2.3 Professor F. Dynamics, riding the merry-go-round with his
son, has brought along his U-tube manometer. (You never
know when a manometer might come in handy.) As shown
in Fig. C2.3, the merry-go-round spins at constant angular
velocity and the manometer legs are 7 cm apart. The
manometer center is 5.8 m from the axis of rotation. De-
termine the height difference h in two ways: (a) approxi-
mately, by assuming rigid body translation with a equal to
the average manometer acceleration; and (b) exactly, using
rigid-body rotation theory. How good is the approximation?

C2.4 A student sneaks a glass of cola onto a roller coaster ride.
The glass is cylindrical, twice as tall as it is wide, and filled
to the brim. He wants to know what percent of the cola he
should drink before the ride begins, so that none of it spills
during the big drop, in which the roller coaster achieves
0.55-g acceleration at a 45° angle below the horizontal.
Make the calculation for him, neglecting sloshing and as-
suming that the glass is vertical at all times.

C2.2 A prankster has added oil, of specific gravity SG0, to the
left leg of the manometer in Fig. C2.2. Nevertheless, the 
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h, m F, N h, m F, N

6.00 400 7.25 554
6.25 437 7.50 573
6.50 471 7.75 589
6.75 502 8.00 600
7.00 530
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h

Y

L

W

Circular arc block

Fluid: �

Pivot arm Pivot
Counterweight

Side view
of block face

R

D2.2

Design Projects

D2.1 It is desired to have a bottom-moored, floating system
which creates a nonlinear force in the mooring line as the
water level rises. The design force F need only be accurate
in the range of seawater depths h between 6 and 8 m, as
shown in the accompanying table. Design a buoyant sys-
tem which will provide this force distribution. The system
should be practical, i.e., of inexpensive materials and sim-
ple construction.

D2.2 A laboratory apparatus used in some universities is shown
in Fig. D2.2. The purpose is to measure the hydrostatic
force on the flat face of the circular-arc block and com-
pare it with the theoretical value for given depth h. The
counterweight is arranged so that the pivot arm is hori-
zontal when the block is not submerged, whence the weight
W can be correlated with the hydrostatic force when the
submerged arm is again brought to horizontal. First show
that the apparatus concept is valid in principle; then derive
a formula for W as a function of h in terms of the system
parameters. Finally, suggest some appropriate values of Y,
L, etc., for a suitable appartus and plot theoretical W ver-
sus h for these values.

R � 5.80 m (to center of manometer)

h

Center of
rotation

� � 6.00 rpm

Water

7.00 cm

C2.3
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