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 III. Control Volume Relations for Fluid Analysis 
 
From consideration of hydrostatics, we now move to problems involving fluid 
flow with the addition of effects due to fluid motion, e.g. inertia and convective 
mass, momentum, and energy terms. 
 
We will present the analysis based on a control volume (not differential element) 
formulation, e.g. similar to that used in thermodynamics for the first law. 
 
 
Basic Conservation Laws: 
 

 Each of the following basic conservation laws is presented in its most 
fundamental, fixed mass form.  We will subsequently develop an equivalent 
expression for each law that includes the effects of the flow of mass, momentum, 
and energy (as appropriate) across a control volume boundary.  These transformed 
equations will be the basis for the control volume analyses developed in this 
chapter. 
 

Conservation of Mass: 
 

Defining m as the mass of a fixed mass system, the mass for a control volume 
V is given by 
 

      
msys = ρdV

sys
∫

 
 

The basic equation for conservation of mass is then expressed as 
 

 
dm
dt
 
 sys

= 0
 

The time rate of change of mass for 
the control volume is zero since at 
this point we are still working with 
a fixed mass system. 

 
Linear Momentum: 

 
Defining      P sys   as the linear momentum of a fixed mass, the linear momentum 
of a fixed mass control volume is given by: 
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P sys = mV = V ρdV

sys
∫

 
 

where      V   is the local fluid velocity and        dV   is a differential volume element 
in the control volume.   
 
The basic linear momentum equation is then written as 
 

    
F =∑

dP 
dt
 
 
 

sys
=

d mV ( )
dt

 

 
 

sys  
 

Moment of Momentum: 
 
Defining      H   as the moment of momentum for a fixed mass, the moment of 
momentum for a fixed mass control volume is given by 
 

  

H sys = r × V ρdV
sys
∫

 
 

where      r   is the moment arm from an inertial coordinate system to the 
differential control volume of interest.  The basic equation is then written as 
 

    
M sys = r ×∑ F =∑

dH 
dt
 
 
 

sys  
 

Energy: 
 
Defining      E sys   as the total energy of an element of fixed mass, the energy of a 
fixed mass control volume is given by 
 

  

E sys = eρ dV
sys
∫
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where  e  is the total energy per unit mass ( includes  kinetic, potential, and 
internal energy ) of the differential control volume element of interest.   
 
The basic equation is then written as 
 

sys

d E
d t

Q W ==== 


−−−−& &  (Note:  written on a rate basis) 

It is again noted that each of the conservation relations as previously written 
applies only to fixed, constant mass systems.   
 
 
However, since most fluid problems of importance are for open systems, we 
must transform each of these relations to an equivalent expression for a control 
volume which includes the effect of mass entering and/or leaving the system. 
 
This is accomplished with the Reynolds transport theorem. 
 
 

Reynolds Transport Theorem 
 
We define a general, extensive property ( an extensive property depends on the 
size or extent of the system)   Bsys    where 
 

  

Bsys = β ρd V
sys
∫

 
 
 Bsys could be total mass, total energy, total momentum, etc., of a system. 
 

and      Bsys   per unit mass is defined as   β   or   β =
dB
dm  

 

Thus,  β     is the intensive equivalent of  Bsys  . 

 
Applying a general control volume formulation to the time rate of change of 
Bsys  , we obtain the following (see text for detailed development): 
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e i

e e e e i i i i
sys cv A A

d B dV V d A V d A
d t t

β ρ β ρ β ρβ ρ β ρ β ρβ ρ β ρ β ρβ ρ β ρ β ρ ∂∂∂∂= + −= + −= + −= + − ∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

  ↓    ↓   ↓    ↓  
System rate Rate of   Rate of B  Rate of B  
of change  change of  leaving c.v. entering c.v. 
 of B B in c.v. 

   ↓    ↓  

 transient term convective terms 

where  B  is any conserved quantity, e.g. mass, linear momentum, moment of 
momentum, or energy. 
 
We will now apply this theorem to each of the basic conservation equations to 
develop their equivalent open system, control volume forms. 
 

Conservation of mass 
 
For conservation of mass, we have that 
 

  B  =  m and   β = 1 
 
From the previous statement of conservation of mass and these definitions, 
Reynolds transport theorem becomes 
 

 0
e i

e e e i i i
cv A A

dV V d A V d A
t

ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ∂∂∂∂ + − =+ − =+ − =+ − =
∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

 

or 
 

 0
e i

e e e i i i
cv A A

dV V d A V d A
t

ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ∂∂∂∂ + − =+ − =+ − =+ − =
∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

   ↓    ↓    ↓  
 

 Rate of change Rate of mass Rate of mass  
of mass in c.v., leaving c.v.,  entering c.v., 

 ↓  ↓  ↓  
 = 0 for steady-state em&  

i
m&  
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This can be simplified to 
 

0e i
cv

d m m m
d t

 + − =+ − =+ − =+ − =


∑ ∑∑ ∑∑ ∑∑ ∑& &  

 
Note that the exit and inlet velocities  Ve and Vi  are the local components of 
fluid velocities at the exit and inlet boundaries relative to an observer 
standing on the boundary.  Therefore, if the boundary is moving, the velocity 
is measured relative to the boundary motion.  The location and orientation of a 
coordinate system for the problem are not considered in determining these 
velocities. 
 
Also, the result of   V e ⋅ dA e   and  V i ⋅dA i   is the product of the normal 
velocity component times the flow area at the exit or inlet, e.g.  
 
 
 Ve,n dAe  and Vi,n dAi 
 
Special Case:  For incompressible flow with a uniform velocity over the flow 
area, the previous integral expressions simplify to: 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫&  

 
Conservation of Mass Example 
 

Water at a velocity of 7 m/s exits a 
stationary nozzle with D = 4 cm and is 
directed toward a turning vane with θ = 40o,  
Assume steady-state. 
 
Determine:  
a.  Velocity and flow rate entering the c.v. 
b.  Velocity and flow rate leaving the c.v. 
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a.  Find V1 and 1m&  
 

Recall that the mass flow velocity is the normal component of velocity 
measured relative to the inlet or exit area. 
 
 
Thus, relative to the nozzle, V(nozzle) = 7 m/s and since there is no relative 
motion of point 1 relative to the nozzle, we also have   V1 = 7 m/s    ans. 
 
From the previous equation: 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫& =  998 kg/m3*7 m/s*π*0.042/4 

 
 1m& = 8.78 kg/s   ans. 
 
b.  Find V2 and 2m&  
 
Determine the flow rate first.  
 
Since the flow is steady state and no mass accumulates on the vane: 

 1m& =  2m&  , 2m& =  8.78 kg/s   ans. 
 
Now:   2m& =  8.78 kg/s  =  ρ A V)2   
 
Since  ρ and A are constant,    V2  =  7 m/s  ans. 
 
Key Point:  For steady flow of a constant area, incompressible stream, the 
flow velocity and total mass flow are the same at the inlet and exit, even 
though the direction changes.   
or alternatively: 
Rubber Hose Concept:  For steady flow of an incompressible fluid, the 
flow stream can be considered as a rubber hose and if it enters a c.v. at a 
velocity of V, it exits at a velocity V, even if it is redirected. 
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Problem Extension: 
 
 
Let the turning vane (and c.v.) now 
move to the right at a steady velocity of 
2 m/s (other values remain the same); 
perform the same calculations. 

 
Therefore: 
 
Given:  Uc = 2 m/s     VJ = 7 m/s 

 

 
 
For an observer standing at the c.v. inlet (point 1) 
 
V1 = VJ � Uc = 7 � 2 = 5 m/s 
 

1m& = ρ1 V1 A1 = 998 kg/m3*5 m/s*π*0.042/4 = 6.271 kg/s 
 

Note:  The inlet velocity used to specify the mass flow rate is again measured 
relative to the inlet boundary but now is given by  VJ � Uc .   
 
Exit: 
 1m& =  2m&  = 6.271 kg/s   Again, since ρ and A are constant, V2 = 5 m/s. 
 
Again, the exit flow is most easily specified by conservation of mass concepts. 
 
Note:  The coordinate system could either have been placed on the moving cart or 
have been left off the cart with no change in the results.   
 
Key Point:  The location of the coordinate system does not affect the calculation 
of mass flow rate which is calculated relative to the flow boundary.  It could have 
been placed at Georgia Tech with no change in the results. 
 
Review material and work examples in the text on conservation of mass. 
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Linear Momentum 
 
For linear momentum, we have that 
 
    B = P = mV  and      β = V  
 
From the previous statement of linear momentum and these definitions,  Reynolds 
transport theorem becomes 
 

(((( ))))
e i

e e e i i i
cv A Asys

d mV
F V dV V V d A V V d A

d t t
∂∂∂∂ ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ
∂∂∂∂


= = + ⋅ − ⋅= = + ⋅ − ⋅= = + ⋅ − ⋅= = + ⋅ − ⋅

∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

 
or 

e i

e i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

   ↓    ↓   ↓    ↓  
=  the ∑∑∑∑ of the = the rate of  = the rate of = the rate of 
external forces change of   momentum momentum 
acting on the c.v. momentum  leaving the  entering the c.v. 
  in the c.v. c.v. 
= body + point + =  0  for 
distributed, e.g. steady-state 
(pressure) forces 
 
and where  V  is the vector momentum velocity relative to an inertial reference 
frame.   

 
Key Point:  Thus, the momentum velocity has magnitude and direction and is 
measured relative to the reference frame (coordinate system) being used for the 
problem.  The velocities in the mass flow terms im& and  em&  are scalars, as noted 
previously, and are  measured relative to the inlet or exit boundary. 

 
 

Always clearly define a coordinate system and use it to specify the value of all 
inlet and exit momentum velocities when working linear momentum problems. 
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For the 'x' direction, the previous equation becomes 
 

 , ,
e i

x x x e e x i i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
Note that the above equation is also valid for control volumes moving at 
constant velocity with the coordinate system placed on the moving control 
volume.  This is because an inertial coordinate system is a nonaccelerating 
coordinate system which is still valid for a c.s. moving at constant velocity. 
 
Example: 
 
A water jet 4 cm in diameter with a velocity 
of 7 m/s is directed to a stationary turning 
vane with  θ = 40o.  Determine the force  F 
necessary to hold the vane stationary. 

 
 
Governing equation: 
 

, ,
e i

x x x e e x i i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
Since the flow is steady and the c.v. is stationary, the time rate of change of 
momentum within the c.v. is zero.  Also with uniform velocity at each inlet and 
exit and a constant flow rate, the momentum equation becomes 
 

 b e e i iF m V m V− = −− = −− = −− = −& &  

 
Note that the braking force, Fb, is written as negative since it is assumed to be 
in the negative  x  direction relative to positive  x  for the coordinate system. 
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From the previous example for conservation of mass, we can again write 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫& =  998 kg/m3*7 m/s*π*0.042/4 

 
 1m& = 8.78 kg/s    and  V1 = 7 m/s 

 
and for the exit: 
 
 2m& =  8.78 kg/s   and    V2  =  7 m/s   inclined 40û above the horizontal. 
 
Substituting in the momentum equation, we obtain 
 
 -Fb  =  8.78 kg/s * 7 m/s *cos 40o - 8.78 kg/s * 7 m/s 
 
 and  -Fb  =  - 14.4 kg m/s2   or    Fb  = 14.4 N  ←    ←    ←    ←    ans. 
 
Note: Since our final answer is positive, our original assumption of the 

applied force being to the left was correct.  Had we assumed that the 
applied force was to the right, our answer would be negative, meaning 
that the direction of the applied force is opposite to what was assumed. 

 
Modify Problem:   
Now consider the same problem but with 
the cart moving to the right with a velocity 
Uc  = 2 m/s.  Again solve for the value of 
braking force  Fb  necessary to maintain a 
constant cart velocity of 2 m/s. 

Note:  The coordinate system for the 
problem has now been placed on the 
moving cart. 
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The transient term in the momentum equation is still zero.  With the coordinate 
system on the cart, the momentum of the cart relative to the coordinate system 
is still zero.  The fluid stream is still moving relative to the coordinate system, 
however, the flow is steady with constant velocity and the time rate of change 
of momentum of the fluid stream is therefore also zero. Thus 
 
The momentum equation has the same form as for the previous problem  
(However the value of individual terms will be different.) 
 
 b e e i iF m V m V− = −− = −− = −− = −& &  
 

1m& = ρ1 V1 A1 = 998 kg/m3*5 m/s*π*0.042/4 = 6.271 kg/s =  2m&  
 
Now we must determine the momentum velocity at the inlet and exit.  With the 
coordinate system on the moving control volume, the values of momentum 
velocity are 
 
V1 = VJ � Uc = 7 � 2 = 5 m/s and   V2 = 5 m/s  inclined 40o    
 
The momentum equation ( x - direction ) now becomes 
 
 -Fb  =  6.271 kg/s * 5 m/s *cos 40o - 6.271 kg/s * 5 m/s 
 
 and  -Fb  =  - 7.34 kg m/s2   or    Fb  = 7.34 N  ←    ←    ←    ←    ans. 
 
Question: What would happen to the braking force  Fb  if the turning 
angle had been > 90o, e.g., 130 o?   Can you explain based on your 
understanding of change in momentum for the fluid stream? 
 
Review and work examples for linear momentum with fixed and non-
accelerating (moving at constant velocity) control volumes. 
 
 

Accelerating Control Volume 
 
The previous formulation applies only to an inertial coordinate system, i.e., 
fixed or moving at constant velocity (non-accelerating). 
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We will now consider problems with accelerating control volumes.  For these 
problems we will again place the coordinate system on the accelerating control 
volume, thus making it a non-inertial coordinate system. 
 
For coordinate systems placed on an accelerating control volume, we must 
account for the acceleration of the c.s. by correcting the momentum equation 
for this acceleration.  This is accomplished by including the term as shown 
below: 
 

e i

cv cv e i
cv cv A A

F a d m V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

− = + −− = + −− = + −− = + −∑∑∑∑ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫& &  

 ↓  
 

 integral sum of 
 the local c.v. (c.s.) 
 acceleration * the c.v. mass 
 
The added term accounts for the acceleration of the control volume and allows 
the problem to be worked with the coordinate system placed on the accelerating 
c.v. 
 
Note:  Thus, all vector (momentum) velocities are then measured relative to an 
observer (coordinate system) on the accelerating control volume.  For example, 
the velocity of a rocket as seen by an observer (c.s.) standing on the rocket is 
zero and the time rate of change of momentum is zero in this reference frame 
even if the rocket is accelerating. 
 
Accelerating Control Volume Example 
 

A turning vane with θ = 60 o accelerates 
from rest due to a jet of water  
(VJ = 35 m/s, AJ = 0.003 m2 ).  Assuming 
the mass of the cart  mc,  is 75 kg and 
neglecting drag and friction effects, find: 
 
a. Cart acceleration at t  = 0. 
 

b. Uc as a f(t) 
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Starting with the general equation shown above, we can make the following 
assumptions: 

 
1. ∑∑∑∑  Fx = 0,  no friction or body forces. 
2. The jet has uniform velocity and constant properties. 
3. The entire cart accelerates uniformly over the entire control volume. 
4. Neglect the relative momentum change of the jet stream that is within the 

control volume. 
With these assumptions, the governing equation simplifies to 
 

, ,c c e x e i x ia m m V m V− = −− = −− = −− = −& &  
 
We thus have terms that account for the acceleration of the control volume, for 
the exit momentum, and for the inlet momentum (both of which change with 
time.) 
 
Mass flow: 
 
As with the previous example for a moving control volume, the mass flow terms 
are given by: 
 

i em m m= = == = == = == = =& & & ρ AJ (VJ � Uc) 
 
Note that since the cart accelerates, Uc is not a constant but rather changes with 
time. 
 
Momentum velocities: 
 

Ux,i=  VJ  -  Uc       Ux,e  =   (VJ  -  Uc ) cos θ 
 

Substituting, we now obtain 
 

- ac mc  =  ρ AJ (VJ � Uc)2 cos θ  -  ρ AJ (VJ � Uc) 
 
Solving for the cart acceleration, we obtain 

 

ac =
ρ AJ 1 − cosθ( ) VJ − Uc( )2

mc
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Substituting for the given values at t = 0,  i.e.,  Uc = 0, we obtain 
 

ac (t = 0)  = 24.45 m/s2  =  2.49 g�s 
 
 
Note:   The acceleration at any other time can be obtained once the cart velocity  

Uc  at that time is known. 
 
 
To determine the equation for cart velocity as a function of time, the equation 
for the acceleration must be written in terms of Uc (t) and integrated. 
 

dUc
dt =

ρ AJ 1 −cosθ( )VJ −Uc( )2
mc

 

 
Separating variables, we obtain 
 
 

dUc

VJ − Uc( )2
0

Uc (t )

∫ =
ρ AJ 1 − cosθ( )

mc0

t

∫ dt  

 
Completing the integration and rearranging the terms, we obtain a final 
expression of the form 
 

  

Uc

VJ
=

VJ b t
1+ VJ b t

 where b =
ρ AJ 1 − cosθ( )

mc
 

 
Substituting for known values, we obtain  VJ b  = 0.699 s-1 
 
Thus the final equation for Uc is give by 
 

Uc
VJ

= 0.699 t
1+0.699 t  
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The final results are now given as shown below: 
 

t Uc/VJ Uc ac 
(s) (m/s) (m/s2)
0 0.0   0.0 24.45 
2 0.583 20.0   4.49 
5 0.757 27.2   1.22 
10 0.875 30.6   0.39 
15 0.912 31.9   0.192 
∞ 1.0 35   0.0 

 

Uc vs t

0

5

10

15

20

25

30

35

0 5 10 15 20

t(s)

 
 

 
Note that the limiting case occurs when the cart velocity reaches the jet 
velocity.  At this point, the jet can impart no more momentum to the cart, the 
acceleration is now zero, and the terminal velocity has been reached. 
 
Review the text example on accelerating control volumes. 
 
 
Moment of Momentum (angular momentum) 
 
 
For moment of momentum we have that 
 
 
 B = H = r × m V ( ) and β = r ×V  
 
 
From the previous equation for moment of momentum and these definitions, 
Reynolds transport theorem becomes 
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e i

e i
cv A A

M r V dV r V d m r V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= × + × − ×= × + × − ×= × + × − ×= × + × − ×∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

   ↓    ↓    ↓   ↓  
 

= the ∑∑∑∑  of all = the rate of  = the rate of = the rate of  
 external change of mom- moment of  moment of  
 moments  ent of momentum momentum momentum  
 acting in the c.v.  =  0 leaving entering 
 on the c.v. for steady state the c.v. the c.v. 
 
For the special case of steady-state, steady-flow and uniform properties at any 
exit or inlet, the equation becomes 
 

e e i iM m r V m r V= × − ×= × − ×= × − ×= × − ×∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑& &  

 
For moment of momentum problems, we must be careful to correctly evaluate 
the moment of all applied forces and all inlet and exit momentum flows, with 
particular attention to the signs.  
 
Moment of Momentum Example: 
 
A small lawn sprinkler operates as indicated.  
The inlet flow rate is 9.98 kg/min with an inlet 
pressure of 30 kPa.  The two exit jets direct 
flow at an angle of 40o above the horizontal.  
 

For these conditions, determine the following: 
a.  Jet velocity relative to the nozzle. 
b.  Torque required to hold the arm stationary. 
c.  Friction torque if the arm is rotating at 35 rpm. 
d.  Maximum rotational speed if we neglect 

friction. 

 

160 mm

D  = 5 mmJ

 



 

III-17 

a. R = 160 mm,  DJ = 5 mm,   Therefore, for each of the two jets: 
 

QJ =  0.5* 9.98 kg/min/998 kg/m3 = 0.005 m3/min 
 

AJ =  ππππ ππππ  0.00252 =  1.963*10-5 m2    
 

VJ = 0.005 m3/min / 1.963*10-5 m2 /60 s/min 
 
VJ = 4.24 m/s  relative to the nozzle exit    ans. 
 

b.  Torque required to hold the arm stationary. 
 
First develop the governing equations and analysis for the general case of the 
arm rotating.   
 

 
With the coordinate system at the 
center of rotation of the arm, a 
general velocity diagram for the case 
when the arm is rotating is shown in 
the adjacent schematic. 
 
 

R

V cos θJ

oω

rω

+

 
 
 
Taking the moment about the center of rotation, the moment of the inlet flow is 
zero since the moment arm is zero for the inlet flow. 

 
The basic equation then becomes 

 
(((( ))))0 2 cose JT m R V Rα ωα ωα ωα ω= −= −= −= −&  

 
Note that the net momentum velocity is the difference between the tangential 
component of the jet exit velocity and the rotational speed of the arm.  Also note 
that the direction of positive moments was taken as the same as for VJ and 
opposite to the direction of rotation. 

 
For a stationary arm    R ω  =  0.  We thus obtain for the stationary torque 
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To = 2 ρ QJ R VJ cos α 
 

3

3
1min2 * 998 .005 * 4.24 cos4.160

min 60
o

o
kg m mT m

sm
====  

 
To = 0.0864 N m  clockwise. ans. 
 

A resisting torque of  0.0864 N m must be applied in the clockwise direction to 
keep the arm from rotating in the counterclockwise direction. 
 
c.  At  ω = 30 rpm, calculate the friction torque Tf 
 

1min30 2
min 60 s
rev rad rad

rev
ω π πω π πω π πω π π= == == == =  

 
3

3
1min2 * 998 0.005 0.16 4.24 cos40 .16 *

min 60 s
o

o
kg m m radT m m

sm
ππππ    = −= −= −= −        

 

 
 ans. 

Note;  The resisting torque decreases as the speed increases. 
 
d.  Find the maximum rotational speed. 
 
The maximum rotational speed occurs when the opposing torque is zero and all 
the moment of momentum goes to the angular rotation.  For this case,  
 

VJ cos θ � Rω  = 0 
 

4.2 193.8 4 / cos40cos s 20.3 193.8
0.16

J

rad rpm m sV rad rpm
R m s

θθθθωωωω
••••====

= = = == = = == = = == = = =  ans. 

 
Review material and examples on moment of momentum. 
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Energy Equation (Extended Bernoulli Equation) 
 
For energy, we have that 
 

B = E = e ρd V
cv
∫  and β = e = u + 1

2
V 2 + g z  

 
From the previous statement of conservation of energy and these definitions, 
Reynolds transport theorem becomes: 
 

e i

e e e e i i i i
cv A Asys

d EQ W e dV e V d A e V d A
d t t

∂∂∂∂ ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ
∂∂∂∂

− = = + ⋅ − ⋅− = = + ⋅ − ⋅− = = + ⋅ − ⋅− = = + ⋅ − ⋅


∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
After extensive algebra and simplification (see text for detailed development), 
we obtain: 
 

 

P1 − P2
ρ g

=
V2

2
− V1

2

2 g
+ Z2 − Z1 + hf,1−2 − hp 

   ↓    ↓   ↓   ↓    ↓  
Pressure drop Pressure Pressure Pressure Pressure 
from 1 – 2, drop due to  drop due to  drop due to drop due to 
in the flow acceleration elevation frictional mechanical 
direction of the fluid change head loss work on fluid 
 
Note: this formulation must be written in the flow direction from 1 - 2  to be 
consistent with the sign of the mechanical work term and so that  hf,1-2 is always 
a positive term.  Also note the following: 
 

❑  The points 1 and 2 must be specific points along the flow path 

❑  Each term has units of linear dimension, e.g., ft or meters, and z2 � z1 is 
positive for z2 above z1 

❑  The term hf,1-2 is always positive when written in the flow direction and for 
internal, pipe flow includes pipe or duct friction losses and fitting or piping 
component (valves, elbows, etc.) losses, 
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❑  The term hp is positive for pumps and fans ( i.e., pumps increase the 
pressure in the flow direction) and negative for turbines (turbines decrease 
the pressure in the flow direction) 

❑  For pumps: 

hp =
ws

g  
 where   ws = the useful work per unit mass to the fluid 

 
Therefore: psw g h====  

and f s pW mw Q g hρρρρ= == == == =& &  

where fW&    =  the useful power delivered to the fluid 

 

and f
p

p

WW ηηηη====
&

&  where η p    is the pump efficiency 

Example 
 
Water flows at 30 ft/s through a 
1000 ft length of 2 in diameter pipe.  
The inlet pressure is 250 psig and the 
exit is 100 ft higher than the inlet.   
 
Assuming that the frictional loss is 
given by 18 V2/2g, 
 
 Determine the exit pressure.   
 

1

2

100 ft

250 psig

2

 
 
 
Given:  V1 = V2 = 30 ft/s,   L = 1000 ft,    Z2 � Z1 = 100 ft,    P1  =  250 psig 
 
Also, since there is no mechanical work in the process, the energy equation 
simplifies to 
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P1 − P2

ρg
= Z2 − Z1 + hf  

 
P1 − P2

ρg
= 100 ft +18 302 ft2 / s 2

64.4 ft / s2 = 351.8 ft  

 
P1 � P2 = 62.4 lbf/ft3 351.8 ft = 21,949 psf = 152.4 psi 

 
P2 = 250 � 152.4 = 97.6 psig    ans. 

 
Problem Extension 
 
A pump driven by an electric motor is now added to the system.  The motor 
delivers 10.5 hp.  The flow rate and inlet pressure remain constant and the pump 
efficiency is 71.4 %, determine the new exit pressure. 
 

Q  = AV  = ππππ ππππ  (1/12)2 ft2 * 30 ft/s  =  0.6545 ft3/s 
 

Wf = ηp Wp= ρ Q g hp  
3 3

0.714 *10.5 * 550 / / 101
62.4 / * 0.6545 /p

hp ft lbf s hph ft
lbm ft ft s

−−−−= == == == =  

 
The pump adds a head increase equal to 101 ft to the system and the exit pressure 
should increase. 
 
Substituting in the energy equation, we obtain 
 

P1 − P2

ρg
= 100 ft +18 302 ft2 / s 2

64.4 ft / s2 −101 ft = 250.8 ft  

 
P1 � P2 = 62.4 lbf/ft3 250.8 ft = 15,650 psf = 108.7 psi 

 
P2 = 250 � 108.7 = 141.3 psig    ans. 

 
Review examples for the use of the energy equation 
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