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Ch. IV  Differential Relations for a Fluid Particle 
 

This chapter presents the development and application of the basic differential 
equations of fluid motion.  Simplifications in the general equations and common 
boundary conditions are presented that allow exact solutions to be obtained.  Two 
of the most common simplifications are 1). steady flow and 2). incompressible 
flow. 
 
The Acceleration Field of a Fluid 
 
A general expression of the flow field velocity vector is given by: 
 

V (r ,t) = � i u x, y, z, t( ) + � j v x, y, z, t( ) + � k w x, y, z, t( ) 
 
One of two reference frames can be used to specify the flow field characteristics: 
 

eulerian � the coordinates are fixed and we observe the flow field 
characteristics as it passes by the fixed coordinates. 

 
lagrangian  - the coordinates move through the flow field following individual 

particles in the flow. 
 
Since the primary equation used in specifying the flow field velocity is based on 
Newton�s second law, the acceleration vector is an important solution parameter.  
In cartesian coordinates, this is expressed as 
 

a = d V 
d t

= ∂ V 
∂ t

+ u∂ V 
∂ x

+ v∂ V 
∂ y

+ w ∂ V 
∂ z

 
  

 
  

= ∂ V 
∂ t

+ V ⋅ ∇ ( )V  

 total local convective 
 
The acceleration vector is expressed in terms of three types of derivatives: 
 
    Total acceleration =  total derivative of velocity vector 
 
 = local derivative  +  convective derivative  of velocity vector 
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Likewise, the total derivative (also referred to as the substantial derivative ) of 
other variables can be expressed in a similar form, e.g., 
 

d P
d t

= ∂ P
∂ t

+ u ∂ P
∂ x

+ v∂ P
∂ y

+ w ∂ P
∂ z

 
  

 
  

= ∂ P
∂ t

+ V ⋅ ∇ ( )P  

 
Example 4.1 
 
Given the eulerian velocity-vector field 
 

V = 3 t � i + x z � j + t y2 � k  
 
find the acceleration of the particle. 
 
For the given velocity vector, the individual components are 
 
 u  =  3 t v =  x z w  =  t y2 
 
Evaluating the individual components, we obtain 
 

 
∂ V 
∂ t

 =  3 i  + y2 k  

 

 
∂ V 
∂ x

  =  z j    
∂ V 
∂ y

   =  2 t y k 
∂ V 
∂ z

  =  x j 

 
Substituting, we obtain 
 

d V 
d t

  =  ( 3 i  +  y2 k)  +  (3 t) (z j)  +  (x z) (2 t y k)  +  (t y2) (x j) 

 
After collecting terms, we have 
 

d V 
d t

  =  3 i + (3 t z + t x y2) j + ( 2 x y z t + y2) k    ans. 
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The Differential Equation of Conservation of Mass 
 
If we apply the basic concepts of conservation of mass to a differential control 
volume, we obtain a differential form for the continuity equation in cartesian 
coordinates 
 

∂ ρ
∂ t

+ ∂
∂ x

ρu( )+ ∂
∂ y

ρ v( )+ ∂
∂ z

ρ w( )= 0 

 
and in cylindrical coordinates 

 
∂ ρ
∂ t

+ 1
r

∂
∂ r

r ρvr( )+ 1
r

∂
∂θ

ρ vθ( )+ ∂
∂ z

ρvz( )= 0 

 
Steady Compressible Flow 
 

For steady flow, the term  
∂
∂ t

 =  0  and all properties are function of position only. 

 
The previous equations simplify to 
 

Cartesian: 
∂

∂ x
ρu( )+ ∂

∂ y
ρv( )+ ∂

∂ z
ρw( )= 0 

 

Cylindrical: 
1
r

∂
∂ r

r ρ vr( )+ 1
r

∂
∂θ

ρvθ( )+ ∂
∂ z

ρ vz( )= 0 

 
Incompressible Flow 
 

For incompressible flow, density changes are negligible, ρ = const., and   
∂ ρ
∂ t

  =  0  

 
In the two coordinate systems, we have 
 

Cartesian: 
∂ u
∂ x

+ ∂ v
∂ y

+ ∂ w
∂ z

= 0  
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Cylindrical: 
1
r

∂
∂ r

r vr( )+ 1
r

∂
∂θ

vθ( )+ ∂
∂ z

vz( )= 0  

 
Key Point: 
 
It is noted that the assumption of incompressible flow is not restricted to fluids 
which cannot be compressed, e.g. liquids.  Incompressible flow is valid for  
(1) when the fluid is essentially incompressible (liquids) and (2) for compressible 
fluids for which compressibility effects are not significant for the problem being 
considered. 
 
The second case is assumed to be met when the Mach number is less than 0.3: 
 
 Ma = V/c  < 0.3     Gas flows can be considered incompressible 
 
 
The Differential Equation of Linear Momentum 
 
If we apply Newton�s Second Law of Motion to a differential control volume we 
obtain the three components of the differential equation of linear momentum.  In 
cartesian coordinates, the equations are expressed in the form: 
 

 
 
 
Inviscid Flow:  Euler’s Equation 
 
If we assume the flow is frictionless, all of the shear stress terms drop out. The 
resulting equation is known as Euler�s equation and in vector form is given by: 
 

ρg - ∇ P = ρ dV
d t
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where  
d V
d t

  is the total or substantial derivative of the velocity discussed 

previously and  ∇ P   is the usual vector gradient of pressure.  This form of Euler�s 
equation can be integrated along a streamline to obtain the frictionless Bernoulli�s 
equation ( Sec. 4.9).   
 
 
The Differential Equation of Energy 
 
The differential equation of energy is obtained by applying the first law of 
thermodynamics to a differential control volume.  The most complex element of 
the development is the differential form of the control volume work due to both 
normal and tangential viscous forces.  When this is done, the resulting equation has 
the form 
 

ρ d u
d t

+ P ∇ ⋅ V( ) = ∇ ⋅ k ∇ T( ) + Φ 

 
where Φ  is the viscous dissipation function.  The term for the total derivative of 
internal energy includes both the transient and convective terms seen previously. 
 
Two common assumptions used to simplify the general equation are: 
 
 1.   du ≈ Cv dT     and  2.  Cv, µ, k, ρ  ≈ constants 
 
With these assumptions, the energy equation reduces to 
 

ρCv
d T
d t

= k ∇ 2 T + Φ 

 
It is noted that the flow-work term was eliminated as a result of the assumption of 
constant density, ρ, for which the continuity equation becomes  ∇ ⋅ V = 0   ,thus 
eliminating the term  P ∇ ⋅ V( ) . 
 
We now have the three basic differential equations necessary to obtain complete 
flow field solutions of fluid flow problems. 
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Boundary Conditions for the Basic Equations 
 
In vector form, the three basic governing equations are written as 
 

Continuity: 
∂ ρ
∂ t

+ ∇ ⋅ ρV( )= 0 

 

Momentum: ρ d V
d t

= ρ g − ∇ P + ∇ ⋅ τ i j  

 

Energy: ρ d u
d t

+ P ∇ ⋅ V( ) = ∇ ⋅ k ∇ T( ) + Φ 

 
We have three equations and five unknowns:  ρ, V, P, u, and T ;  and thus need two 
additional equations.  These would be the equations of state describing the 
variation of density and internal energy as functions of P and T, i.e., 
 
 ρ =   ρ (P,T)  and  u = u (P,T) 
 
Two common assumptions providing this information are either: 
 

1. Ideal gas: ρ =  P/RT   and    du =  Cv dT 
 
2. Incompressible fluid: ρ = constant   and  du  =  C dT 
 

Time and Spatial Boundary Conditions 
 
Time Boundary Conditions:  If the flow is unsteady, the variation of each of the 
variables (ρ, V, P, u, and T ) must be specified initially, t = 0, as functions of 
spatial coordinates e.g. x,y,z. 
 
Spatial Boundary Conditions:  The most common spatial boundary conditions are 
those specified at a fluid � surface boundary.  This typically takes the form of 
assuming equilibrium (e.g., no slip condition � no property jump) between the fluid 
and the surface at the boundary. 
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This takes the form: 
 
 Vfluid  =  Vwall Tfluid  =  Twall 
 
Note that for porous surfaces with mass injection, the wall velocity will be equal to 
the injection velocity at the surface. 
 
A second common spatial boundary condition is to specify the values of  V, P, and 
T at any flow inlet or exit. 
 
Example 4.6 
 
For steady incompressible laminar flow through a long tube, the velocity 
distribution is given by 
 

vz =U 1 − r 2

R2
 
  

 
  

vr = 0 vθ = 0 

 
where U is the maximum or centerline velocity and R is the tube radius.  If the wall 
temperature is constant at Tw and the temperature  T  =  T(r) only, find T(r) for this 
flow. 
 
For the given conditions, the energy equation reduces to 
 

ρCv vr
d T
dr

= k
r

d
d r

r d T
d r

 
  

 
  

+ µ d vz

d r
 
  

 
  

2

 

 
Substituting for vz and realizing the vr = 0, we obtain 
 

k
r

d
d r

r d T
d r

 
  

 
  

= − µ d vz

d r
 
  

 
  

2

= − 4U 2 µ r 2

R4  

 
Multiply by  r/k and integrate to obtain 
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d T
d r

= − µU 2r3

k R4 + C1  

 
Integrate a second time to obtain 
 

T = − µU 2r4

4 k R4 + C1 ln r + C2  

 
Since the term, ln r, approaches infinity as r approaches 0, C1 = 0. 
 
Applying the wall boundary condition, T = Tw  at r = R, we obtain for C2 
 

C2 = Tw + µ U 2

4 k
 

 
The final solution then becomes 
 

T r( ) = Tw + µ U 2

4k
1 − r4

R4
 
  

 
  

 

 
 
The Stream Function 
 
The necessity to obtain solutions for multiple variables in multiple governing 
equations presents an obvious mathematical challenge.  However, the stream 
function, Ψ , allows the continuity equation to be eliminated and the momentum 
equation solved directly for the single variable, Ψ .  The use of the stream function 
works for cases when the continuity equation can be reduced to only two terms.   
 
For example, for 2-D, incompressible flow, continuity becomes 
 

∂ u
∂ x

+ ∂ v
∂ y

= 0  
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Defining the velocity components to be 
 

u = ∂ Ψ
∂ y

and v = − ∂ Ψ
∂ x

 

 
which when substituted into the continuity equation yields 
 

∂
∂ x

∂ Ψ
∂ y

 
  

 
  

+ ∂
∂ y

− ∂ Ψ
∂ x

 
  

 
  

= 0  

 
and continuity is automatically satisfied. 
 
 
Geometric interpretation of ΨΨΨΨ    
 
It is easily shown that lines of constant   Ψ Ψ Ψ Ψ  are flow streamlines.  Since flow does 
not cross a streamline, for any two points in the flow we can write 
 

Q1→2 = V ⋅n( )
1

2

∫ d A = d Ψ
1

2

∫ = Ψ2 − Ψ1  
 
Thus the volume flow rate between two points in the flow is equal to the difference 
in the  stream function between the two points. 
 
 
Steady Plane Compressible Flow 
 
In like manner, for steady, 2-D, compressible flow, the continuity equation is 
 

∂
∂ x

ρ u( )+ ∂
∂ y

ρv( )= 0  

 
For this problem, the stream function can be defined such that 
 

ρu = ∂ Ψ
∂ y

and ρ v = − ∂ Ψ
∂ x
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As before, lines of constant stream function are streamlines for the flow, but the 
change in stream function is now related to the local mass flow rate by 
 

(((( ))))
2 2

1 2 2 1
1 1

m V n d A dρρρρ−−−− = ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ∫ ∫∫ ∫∫ ∫∫ ∫&  

 
 
Vorticity and Irrotationality 
 
The concept of vorticity and irrotationality are very useful in analyzing many fluid 
problems.  The analysis starts with the concept of angular velocity in a flow field. 
 
Consider three points, A, B, & 
C, initially perpendicular at 
time t, that then move and 
deform to have the position and 
orientation at t + dt.   
 
The lines AB and BC have both 
changed length and incurred 
angular rotation dα and dβ 
relative to their initial 
positions. 
 
 

 
Fig. 4.10 Angular velocity and strain rate of two 

fluid lines deforming in the x-y plane 
 
 
We define the angular velocity ωz about the z axis as the average rate of counter-
clockwise turning of the two lines expressed as 
 

ωz = 1
2

dα
d t

− d β
d t

 
  

 
  
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Applying the geometric properties of the deformation shown in Fig. 4.10 
and taking the limit as ∆t  → 0, we obtain  
 

ωz = 1
2

d v
d x

− d u
d y

 
  

 
  

 

 
In like manner, the angular velocities about the remaining two axes are 
 

 ωx = 1
2

d w
d y

− d v
d z

 
  

 
  

 ωy = 1
2

d u
d z

− d w
d x

 
  

 
  

 

 
From vector calculus, the angular velocity can be expressed as a vector with 
the form 
 
 ωωωω  =  i ω x  +  j ω y  +  k ωz  = 1/2 the curl of the velocity vector, e.g. 
 

ω = 1
2

curl V( )= 1
2

i j k
∂

∂ x
∂

∂ y
∂

∂ z
u v w

 

 
The factor of  2  is eliminated by defining the vorticity, ξ  ,  as follows: 
 

ξξξξ = 2 ωωωω  = curl V 
 
 

Frictionless Irrotational Flows 
 
When a flow is both frictionless and irrotational, the momentum equation reduces 
to Euler�s equation given previously by 
 

ρg - ∇ P = ρ dV
d t

 



 

IV - 12 

As shown in the text, this can be integrated along the path, ds, of a streamline 
through the flow to obtain 
 

∂ V
∂ t1

2

∫ ds + d P
ρ1

2

∫ + 1
2

V2
2 − V1

2( )+ g z2 − z1( )= 0 

 
For steady, incompressible flow this reduces to 
 

P
ρ

+ 1
2

V 2 + gz = constant along a streamline 
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