
Inviscid potential flow past an array of cylinders. The mathematics of potential theory, pre-
sented in this chapter, is both beautiful and manageable, but results may be unrealistic when
there are solid boundaries. See Figure 8.13b for the real (viscous) flow pattern. (Courtesy of
Tecquipment Ltd., Nottingham, England)
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4.1 The Acceleration Field 
of a Fluid

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking
an estimate of gross effects (mass flow, induced force, energy change) over a finite re-
gion or control volume or (2) seeking the point-by-point details of a flow pattern by
analyzing an infinitesimal region of the flow. The former or gross-average viewpoint
was the subject of Chap. 3.

This chapter treats the second in our trio of techniques for analyzing fluid motion,
small-scale, or differential, analysis. That is, we apply our four basic conservation laws
to an infinitesimally small control volume or, alternately, to an infinitesimal fluid sys-
tem. In either case the results yield the basic differential equations of fluid motion. Ap-
propriate boundary conditions are also developed.

In their most basic form, these differential equations of motion are quite difficult to
solve, and very little is known about their general mathematical properties. However,
certain things can be done which have great educational value. First, e.g., as shown in
Chap. 5, the equations (even if unsolved) reveal the basic dimensionless parameters
which govern fluid motion. Second, as shown in Chap. 6, a great number of useful so-
lutions can be found if one makes two simplifying assumptions: (1) steady flow and
(2) incompressible flow. A third and rather drastic simplification, frictionless flow,
makes our old friend the Bernoulli equation valid and yields a wide variety of ideal-
ized, or perfect-fluid, possible solutions. These idealized flows are treated in Chap. 8,
and we must be careful to ascertain whether such solutions are in fact realistic when
compared with actual fluid motion. Finally, even the difficult general differential equa-
tions now yield to the approximating technique known as numerical analysis, whereby
the derivatives are simulated by algebraic relations between a finite number of grid
points in the flow field which are then solved on a digital computer. Reference 1 is an
example of a textbook devoted entirely to numerical analysis of fluid motion.

In Sec. 1.5 we established the cartesian vector form of a velocity field which varies in
space and time:

V(r, t) � iu(x, y, z, t) � j�(x, y, z, t) � kw(x, y, z, t) (1.4) 
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This is the most important variable in fluid mechanics: Knowledge of the velocity vec-
tor field is nearly equivalent to solving a fluid-flow problem. Our coordinates are fixed
in space, and we observe the fluid as it passes by—as if we had scribed a set of co-
ordinate lines on a glass window in a wind tunnel. This is the eulerian frame of ref-
erence, as opposed to the lagrangian frame, which follows the moving position of in-
dividual particles.

To write Newton’s second law for an infinitesimal fluid system, we need to calcu-
late the acceleration vector field a of the flow. Thus we compute the total time deriv-
ative of the velocity vector:

a � � i � j � k 

Since each scalar component (u, �, w) is a function of the four variables (x, y, z, t), we
use the chain rule to obtain each scalar time derivative. For example,

� � � �

But, by definition, dx/dt is the local velocity component u, and dy/dt � �, and dz/dt �
w. The total derivative of u may thus be written in the compact form

� � u � � � w � � (V � �)u (4.1) 

Exactly similar expressions, with u replaced by � or w, hold for d�/dt or dw/dt. Sum-
ming these into a vector, we obtain the total acceleration:

a � � � �u � � � w � � � (V � �)V (4.2)

Local Convective

The term �V/�t is called the local acceleration, which vanishes if the flow is steady,
i.e., independent of time. The three terms in parentheses are called the convective ac-
celeration, which arises when the particle moves through regions of spatially varying
velocity, as in a nozzle or diffuser. Flows which are nominally “steady” may have large
accelerations due to the convective terms.

Note our use of the compact dot product involving V and the gradient operator �:

u � � � w � V � � where � � i � j � k 

The total time derivative—sometimes called the substantial or material derivative—
concept may be applied to any variable, e.g., the pressure:

� � u � � � w � � (V � �)p (4.3) 

Wherever convective effects occur in the basic laws involving mass, momentum, or en-
ergy, the basic differential equations become nonlinear and are usually more compli-
cated than flows which do not involve convective changes.

We emphasize that this total time derivative follows a particle of fixed identity, mak-
ing it convenient for expressing laws of particle mechanics in the eulerian fluid-field
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4.2 The Differential Equation
of Mass Conservation

description. The operator d/dt is sometimes assigned a special symbol such as D/Dt as
a further reminder that it contains four terms and follows a fixed particle.

EXAMPLE 4.1

Given the eulerian velocity-vector field

V � 3ti � xzj � ty2k

find the acceleration of a particle.

Solution

First note the specific given components

u � 3t � � xz w � ty2

Then evaluate the vector derivatives required for Eq. (4.2)

� i � j � k � 3i � y2k

� zj � 2tyk � xj

This could have been worse: There are only five terms in all, whereas there could have been as
many as twelve. Substitute directly into Eq. (4.2):

� (3i � y2k) � (3t)(zj) � (xz)(2tyk) � (ty2)(xj)

Collect terms for the final result

� 3i � (3tz � txy2)j � (2xyzt � y2)k Ans.

Assuming that V is valid everywhere as given, this acceleration applies to all positions and times
within the flow field.

All the basic differential equations can be derived by considering either an elemental
control volume or an elemental system. Here we choose an infinitesimal fixed control
volume (dx, dy, dz), as in Fig. 4.1, and use our basic control-volume relations from
Chap. 3. The flow through each side of the element is approximately one-dimensional,
and so the appropriate mass-conservation relation to use here is

�
CV

d� � �
i

(�iAiVi)out 	 �
i

(�iAiVi)in � 0 (3.22)   

The element is so small that the volume integral simply reduces to a differential term

�
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Fig. 4.1 Elemental cartesian fixed
control volume showing the inlet
and outlet mass flows on the x
faces.

The mass-flow terms occur on all six faces, three inlets and three outlets. We make use
of the field or continuum concept from Chap. 1, where all fluid properties are consid-
ered to be uniformly varying functions of time and position, such as � � �(x, y, z, t).
Thus, if T is the temperature on the left face of the element in Fig. 4.1, the right face will
have a slightly different temperature T � (�T/�x) dx. For mass conservation, if �u is
known on the left face, the value of this product on the right face is �u � (��u/�x) dx.

Figure 4.1 shows only the mass flows on the x or left and right faces. The flows on
the y (bottom and top) and the z (back and front) faces have been omitted to avoid clut-
tering up the drawing. We can list all these six flows as follows:
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Introduce these terms into Eq. (3.22) above and we have

dx dy dz � (�u) dx dy dz � (��) dx dy dz � (�w) dx dy dz � 0 

The element volume cancels out of all terms, leaving a partial differential equation in-
volving the derivatives of density and velocity

� (�u) � (��) � (�w) � 0 (4.4)

This is the desired result: conservation of mass for an infinitesimal control volume. It
is often called the equation of continuity because it requires no assumptions except that
the density and velocity are continuum functions. That is, the flow may be either steady
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Fig. 4.2 Definition sketch for the
cylindrical coordinate system.

Cylindrical Polar Coordinates

or unsteady, viscous or frictionless, compressible or incompressible.1 However, the
equation does not allow for any source or sink singularities within the element.

The vector-gradient operator

� � i � j � k

enables us to rewrite the equation of continuity in a compact form, not that it helps
much in finding a solution. The last three terms of Eq. (4.4) are equivalent to the di-
vergence of the vector �V

(�u) � (��) � (�w) 	 � 
 (�V) (4.5) 

so that the compact form of the continuity relation is

� � 
 (�V) � 0 (4.6)

In this vector form the equation is still quite general and can readily be converted to
other than cartesian coordinate systems.

The most common alternative to the cartesian system is the cylindrical polar coordi-
nate system, sketched in Fig. 4.2. An arbitrary point P is defined by a distance z along
the axis, a radial distance r from the axis, and a rotation angle � about the axis. The
three independent velocity components are an axial velocity �z, a radial velocity �r, and
a circumferential velocity ��, which is positive counterclockwise, i.e., in the direction
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1 One case where Eq. (4.4) might need special care is two-phase flow, where the density is discontinu-
ous between the phases. For further details on this case, see, e.g., Ref. 2.



Steady Compressible Flow

of increasing �. In general, all components, as well as pressure and density and other
fluid properties, are continuous functions of r, �, z, and t.

The divergence of any vector function A(r, �, z, t) is found by making the trans-
formation of coordinates

r � (x2 � y2)1/2 � � tan	1 z � z (4.7)

and the result is given here without proof2

� � A � (rAr) � (A�) � (Az) (4.8) 

The general continuity equation (4.6) in cylindrical polar coordinates is thus

� (r��r) � (���) � (��z) � 0 (4.9) 

There are other orthogonal curvilinear coordinate systems, notably spherical polar co-
ordinates, which occasionally merit use in a fluid-mechanics problem. We shall not
treat these systems here except in Prob. 4.12.

There are also other ways to derive the basic continuity equation (4.6) which are in-
teresting and instructive. Ask your instructor about these alternate approaches.

If the flow is steady, �/�t 	 0 and all properties are functions of position only. Equa-
tion (4.6) reduces to

Cartesian: (�u) � (��) � (�w) � 0 

Cylindrical: (r��r) � (���) � (��z) � 0 (4.10) 

Since density and velocity are both variables, these are still nonlinear and rather for-
midable, but a number of special-case solutions have been found.

A special case which affords great simplification is incompressible flow, where the
density changes are negligible. Then ��/�t � 0 regardless of whether the flow is steady
or unsteady, and the density can be slipped out of the divergence in Eq. (4.6) and di-
vided out. The result is

� � V � 0 (4.11) 

valid for steady or unsteady incompressible flow. The two coordinate forms are

Cartesian: � � � 0 (4.12a) 

Cylindrical: (r�r) � (��) � (�z) � 0 (4.12b) 
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Incompressible Flow

2 See, e.g., Ref. 3, p. 783.



These are linear differential equations, and a wide variety of solutions are known, as
discussed in Chaps. 6 to 8. Since no author or instructor can resist a wide variety of
solutions, it follows that a great deal of time is spent studying incompressible flows.
Fortunately, this is exactly what should be done, because most practical engineering
flows are approximately incompressible, the chief exception being the high-speed gas
flows treated in Chap. 9.

When is a given flow approximately incompressible? We can derive a nice criterion
by playing a little fast and loose with density approximations. In essence, we wish to
slip the density out of the divergence in Eq. (4.6) and approximate a typical term as,
e.g.,

(�u) � � (4.13)

This is equivalent to the strong inequality

u  � � 
or   �   (4.14)

As we shall see in Chap. 9, the pressure change is approximately proportional to the
density change and the square of the speed of sound a of the fluid


p � a2 
� (4.15) 

Meanwhile, if elevation changes are negligible, the pressure is related to the velocity
change by Bernoulli’s equation (3.75)


p � 	�V 
V (4.16) 

Combining Eqs. (4.14) to (4.16), we obtain an explicit criterion for incompressible
flow:

� Ma2 � 1 (4.17) 

where Ma � V/a is the dimensionless Mach number of the flow. How small is small?
The commonly accepted limit is

Ma � 0.3 (4.18) 

For air at standard conditions, a flow can thus be considered incompressible if the ve-
locity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of air-
flows: automobile and train motions, light aircraft, landing and takeoff of high-speed
aircraft, most pipe flows, and turbomachinery at moderate rotational speeds. Further,
it is clear that almost all liquid flows are incompressible, since flow velocities are small
and the speed of sound is very large.3
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3An exception occurs in geophysical flows, where a density change is imposed thermally or mechani-
cally rather than by the flow conditions themselves. An example is fresh water layered upon saltwater or
warm air layered upon cold air in the atmosphere. We say that the fluid is stratified, and we must account
for vertical density changes in Eq. (4.6) even if the velocities are small.



Before attempting to analyze the continuity equation, we shall proceed with the der-
ivation of the momentum and energy equations, so that we can analyze them as a group.
A very clever device called the stream function can often make short work of the con-
tinuity equation, but we shall save it until Sec. 4.7.

One further remark is appropriate: The continuity equation is always important and
must always be satisfied for a rational analysis of a flow pattern. Any newly discov-
ered momentum or energy “solution” will ultimately crash in flames when subjected
to critical analysis if it does not also satisfy the continuity equation.

EXAMPLE 4.2

Under what conditions does the velocity field

V � (a1x � b1y � c1z)i � (a2x � b2y � c2z)j � (a3x � b3y � c3z)k

where a1, b1, etc. � const, represent an incompressible flow which conserves mass?

Solution

Recalling that V � ui � �j � wk, we see that u � (a1x � b1y � c1z), etc. Substituting into Eq.
(4.12a) for incompressible continuity, we obtain

(a1x � b1y � c1z) � (a2x � b2y � c2z) � (a3x � b3y � c3z) � 0 

or a1 � b2 � c3 � 0 Ans.

At least two of constants a1, b2, and c3 must have opposite signs. Continuity imposes no re-
strictions whatever on constants b1, c1, a2, c2, a3, and b3, which do not contribute to a mass in-
crease or decrease of a differential element.

EXAMPLE 4.3

An incompressible velocity field is given by

u � a(x2 	 y2) � unknown w � b

where a and b are constants. What must the form of the velocity component � be?

Solution

Again Eq. (4.12a) applies

(ax2 	 ay2) � � � 0

or � 	2ax (1)

This is easily integrated partially with respect to y

� (x, y, z, t) � 	2axy � f(x, z, t) Ans.
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4.3 The Differential Equation
of Linear Momentum

This is the only possible form for � which satisfies the incompressible continuity equation. The
function of integration f is entirely arbitrary since it vanishes when � is differentiated with re-
spect to y.†

EXAMPLE 4.4

A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15°C and 1-atm pressure.
What is the maximum allowable impeller rotational speed to avoid compressibility effects at the
blade tips?

Solution

The speed of sound of hydrogen for these conditions is a � 1300 m/s. Assume that the gas ve-
locity leaving the impeller is approximately equal to the impeller-tip speed

V � �r � �12��D

Our rule of thumb, Eq. (4.18), neglects compressibility if

V � �12��D � 0.3a � 390 m/s 

or �12��(0.4 m) � 390 m/s � � 1950 rad/s 

Thus we estimate the allowable speed to be quite large

� � 310 r/s (18,600 r/min) Ans.

An impeller moving at this speed in air would create shock waves at the tips but not in a light
gas like hydrogen.

Having done it once in Sec. 4.2 for mass conservation, we can move along a little faster
this time. We use the same elemental control volume as in Fig. 4.1, for which the ap-
propriate form of the linear-momentum relation is

� F � ��CV
V� d�� � � (ṁ iVi)out 	 � (ṁ iVi)in (3.40)

Again the element is so small that the volume integral simply reduces to a derivative
term

��CV
V� d�� � (�V) dx dy dz (4.19)

The momentum fluxes occur on all six faces, three inlets and three outlets. Refer-
ring again to Fig. 4.1, we can form a table of momentum fluxes by exact analogy with
the discussion which led up to the equation for net mass flux:
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†This is a very realistic flow which simulates the turning of an inviscid fluid through a 60° angle; see
Examples 4.7 and 4.9.



Introduce these terms and Eq. (4.19) into Eq. (3.40), and get the intermediate result

� F � dx dy dz� (�V) � (�uV) � (��V) � (�wV)� (4.20) 

Note that this is a vector relation. A simplification occurs if we split up the term in
brackets as follows:

(�V) � (�uV) � (��V) � (�wV)

� V� � � � (�V)� � �� � u � � � w � (4.21) 

The term in brackets on the right-hand side is seen to be the equation of continuity,
Eq. (4.6), which vanishes identically. The long term in parentheses on the right-hand
side is seen from Eq. (4.2) to be the total acceleration of a particle which instanta-
neously occupies the control volume

� u � � � w � (4.2) 

Thus we have now reduced Eq. (4.20) to

� F � � dx dy dz (4.22) 

It might be good for you to stop and rest now and think about what we have just done.
What is the relation between Eqs. (4.22) and (3.40) for an infinitesimal control vol-
ume? Could we have begun the analysis at Eq. (4.22)?

Equation (4.22) points out that the net force on the control volume must be of dif-
ferential size and proportional to the element volume. These forces are of two types,
body forces and surface forces. Body forces are due to external fields (gravity, mag-
netism, electric potential) which act upon the entire mass within the element. The only
body force we shall consider in this book is gravity. The gravity force on the differ-
ential mass � dx dy dz within the control volume is

dFgrav � �g dx dy dz (4.23) 

where g may in general have an arbitrary orientation with respect to the coordinate
system. In many applications, such as Bernoulli’s equation, we take z “up,” and 
g � 	gk.

dV
�
dt

dV
�
dt

�V
�
�z

�V
�
�y

�V
�
�x

�V
�
�t

�V
�
�z

�V
�
�y

�V
�
�x

�V
�
�t

��
�
�t

�
�
�z

�
�
�y

�
�
�x

�
�
�t

�
�
�z

�
�
�y

�
�
�x

�
�
�t

224 Chapter 4 Differential Relations for a Fluid Particle

Faces Inlet momentum flux Outlet momentum flux

x �uV dy dz ��uV � �
�
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x
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y
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z
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Fig. 4.3 Notation for stresses.

The surface forces are due to the stresses on the sides of the control surface. These
stresses, as discussed in Chap. 2, are the sum of hydrostatic pressure plus viscous
stresses �ij which arise from motion with velocity gradients


	p � �xx �yx �zx

�ij � �xy 	p � �yy �zy (4.24)
�xz �yz 	p � �zz

The subscript notation for stresses is given in Fig. 4.3.
It is not these stresses but their gradients, or differences, which cause a net force

on the differential control surface. This is seen by referring to Fig. 4.4, which shows
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Fig. 4.4 Elemental cartesian fixed
control volume showing the surface
forces in the x direction only.



only the x-directed stresses to avoid cluttering up the drawing. For example, the left-
ward force �xx dy dz on the left face is balanced by the rightward force �xx dy dz on
the right face, leaving only the net rightward force (��xx/�x) dx dy dz on the right face.
The same thing happens on the other four faces, so that the net surface force in the x
direction is given by

dFx,surf � � (�xx) � (�yx) � (�zx)� dx dy dz (4.25) 

We see that this force is proportional to the element volume. Notice that the stress terms
are taken from the top row of the array in Eq. (4.24). Splitting this row into pressure
plus viscous stresses, we can rewrite Eq. (4.25) as

� 	 � (�xx) � (�yx) � (�zx) (4.26) 

In exactly similar manner, we can derive the y and z forces per unit volume on the
control surface

� 	 � (�xy) � (�yy) � (�zy)

� 	 � (�xz) � (�yz) � (�zz) (4.27) 

Now we multiply Eqs. (4.26) and (4.27) by i, j, and k, respectively, and add to obtain
an expression for the net vector surface force

� �
surf

� 	�p � � �
viscous

(4.28) 

where the viscous force has a total of nine terms:

� �
viscous

� i� � � �
� j� � � �
� k� � � � (4.29) 

Since each term in parentheses in (4.29) represents the divergence of a stress-compo-
nent vector acting on the x, y, and z faces, respectively, Eq. (4.29) is sometimes ex-
pressed in divergence form

��
d
d
�
F
��

viscous

� � � �ij (4.30) 
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where �ij � �xy �yy �zy (4.31) 
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Inviscid Flow: Euler’s Equation

is the viscous-stress tensor acting on the element. The surface force is thus the sum of
the pressure-gradient vector and the divergence of the viscous-stress tensor. Substitut-
ing into Eq. (4.22) and utilizing Eq. (4.23), we have the basic differential momentum
equation for an infinitesimal element

�g 	 �p � � � �ij � � (4.32) 

where � � u � � � w (4.33) 

We can also express Eq. (4.32) in words:

Gravity force per unit volume � pressure force per unit volume

� viscous force per unit volume � density � acceleration (4.34) 

Equation (4.32) is so brief and compact that its inherent complexity is almost invisi-
ble. It is a vector equation, each of whose component equations contains nine terms.
Let us therefore write out the component equations in full to illustrate the mathemati-
cal difficulties inherent in the momentum equation:

�gx 	 � � � � �� � u � � � w �
�gy 	 � � � � �� � u � � � w � (4.35) 

�gz 	 � � � � �� � u � � � w �
This is the differential momentum equation in its full glory, and it is valid for any fluid
in any general motion, particular fluids being characterized by particular viscous-stress
terms. Note that the last three “convective” terms on the right-hand side of each com-
ponent equation in (4.35) are nonlinear, which complicates the general mathematical
analysis.

Equation (4.35) is not ready to use until we write the viscous stresses in terms of ve-
locity components. The simplest assumption is frictionless flow �ij � 0, for which Eq.
(4.35) reduces to

�g 	 �p � � (4.36) 

This is Euler’s equation for inviscid flow. We show in Sec. 4.9 that Euler’s equation
can be integrated along a streamline to yield the frictionless Bernoulli equation, (3.75)
or (3.77). The complete analysis of inviscid flow fields, using continuity and the
Bernoulli relation, is given in Chap. 8.

For a newtonian fluid, as discussed in Sec. 1.7, the viscous stresses are proportional to
the element strain rates and the coefficient of viscosity. For incompressible flow, the
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generalization of Eq. (1.23) to three-dimensional viscous flow is4

�xx � 2� �yy � 2� �zz � 2�

�xy � �yx � �� � � �xz � �zx � �� � � (4.37) 

�yz � �zy � �� � �
where � is the viscosity coefficient. Substitution into Eq. (4.35) gives the differential
momentum equation for a newtonian fluid with constant density and viscosity

�gx 	 � �� � � � � �

�gy 	 � �� � � � � � �
d
d
�

t
� (4.38) 

�gz 	 � �� � � � � �

These are the Navier-Stokes equations, named after C. L. M. H. Navier (1785–1836)
and Sir George G. Stokes (1819–1903), who are credited with their derivation. They
are second-order nonlinear partial differential equations and are quite formidable, but
surprisingly many solutions have been found to a variety of interesting viscous-flow
problems, some of which are discussed in Sec. 4.11 and in Chap. 6 (see also Refs. 4
and 5). For compressible flow, see eq. (2.29) of Ref. 5.

Equation (4.38) has four unknowns: p, u, �, and w. It should be combined with the
incompressible continuity relation (4.12) to form four equations in these four unknowns.
We shall discuss this again in Sec. 4.6, which presents the appropriate boundary con-
ditions for these equations.

EXAMPLE 4.5

Take the velocity field of Example 4.3, with b � 0 for algebraic convenience

u � a(x2 	 y2) � � 	2axy w � 0 

and determine under what conditions it is a solution to the Navier-Stokes momentum equation
(4.38). Assuming that these conditions are met, determine the resulting pressure distribution when
z is “up” (gx � 0, gy � 0, gz � 	g).

Solution

Make a direct substitution of u, �, w into Eq. (4.38):

�(0) 	 � �(2a 	 2a) � 2a2�(x3 � xy2) (1) 
�p
�
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4When compressibility is significant, additional small terms arise containing the element volume ex-
pansion rate and a second coefficient of viscosity; see Refs. 4 and 5 for details.



�(0) 	 � �(0) � 2a2�(x2y � y3) (2) 

�(	g) 	 � �(0) � 0 (3) 

The viscous terms vanish identically (although � is not zero). Equation (3) can be integrated
partially to obtain

p � 	�gz � f1(x, y) (4) 

i.e., the pressure is hydrostatic in the z direction, which follows anyway from the fact that the
flow is two-dimensional (w � 0). Now the question is: Do Eqs. (1) and (2) show that the given
velocity field is a solution? One way to find out is to form the mixed derivative �2p/(�x �y) from
(1) and (2) separately and then compare them.

Differentiate Eq. (1) with respect to y

� 	4a2�xy (5) 

Now differentiate Eq. (2) with respect to x

� 	 [2a2�(x2y � y3)] � 	4a2�xy (6) 

Since these are identical, the given velocity field is an exact solution to the Navier-Stokes 
equation. Ans.

To find the pressure distribution, substitute Eq. (4) into Eqs. (1) and (2), which will enable
us to find f1(x, y)

� 	2a2�(x3 � xy2) (7)

� 	2a2�(x2y � y3) (8)

Integrate Eq. (7) partially with respect to x

f1 � 	�12�a2�(x4 � 2x2y2) � f2(y) (9)

Differentiate this with respect to y and compare with Eq. (8)

� 	2a2�x2y � f�2(y) (10) 

Comparing (8) and (10), we see they are equivalent if

f�2(y) � 	2a2�y3

or f2(y) � 	�12�a2�y4 � C (11)

where C is a constant. Combine Eqs. (4), (9), and (11) to give the complete expression for pres-
sure distribution

p(x, y, z) � 	�gz 	 �12�a2�(x4 � y4 � 2x2y2) � C Ans. (12)

This is the desired solution. Do you recognize it? Not unless you go back to the beginning and
square the velocity components:
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4.4 The Differential Equation
of Angular Momentum

u2 � �2 � w2 � V2 � a2(x4 � y4 � 2x2y2) (13) 

Comparing with Eq. (12), we can rewrite the pressure distribution as

p � �12��V2 � �gz � C (14) 

This is Bernoulli’s equation (3.77). That is no accident, because the velocity distribution given in
this problem is one of a family of flows which are solutions to the Navier-Stokes equation and
which satisfy Bernoulli’s incompressible equation everywhere in the flow field. They are called
irrotational flows, for which curl V � � � V 	 0. This subject is discussed again in Sec. 4.9.

Having now been through the same approach for both mass and linear momentum, we
can go rapidly through a derivation of the differential angular-momentum relation. The
appropriate form of the integral angular-momentum equation for a fixed control vol-
ume is

� MO � ��CV
(r � V)� d�� ��

CS
(r � V)�(V � n) dA (3.55) 

We shall confine ourselves to an axis O which is parallel to the z axis and passes through
the centroid of the elemental control volume. This is shown in Fig. 4.5. Let � be the
angle of rotation about O of the fluid within the control volume. The only stresses
which have moments about O are the shear stresses �xy and �yx. We can evaluate the
moments about O and the angular-momentum terms about O. A lot of algebra is in-
volved, and we give here only the result

��xy 	 �yx � (�xy) dx 	 (�yx) dy� dx dy dz

� �(dx dy dz)(dx2 � dy2) (4.39) 

Assuming that the angular acceleration d2�/dt2 is not infinite, we can neglect all higher-
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Fig. 4.5 Elemental cartesian fixed
control volume showing shear
stresses which may cause a net an-
gular acceleration about axis O.
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4.5 The Differential Equation
of Energy6

order differential terms, which leaves a finite and interesting result

�xy � �yx (4.40) 

Had we summed moments about axes parallel to y or x, we would have obtained ex-
actly analogous results

�xz � �zx �yz � �zy (4.41) 

There is no differential angular-momentum equation. Application of the integral theo-
rem to a differential element gives the result, well known to students of stress analy-
sis, that the shear stresses are symmetric: �ij � �ji. This is the only result of this sec-
tion.5 There is no differential equation to remember, which leaves room in your brain
for the next topic, the differential energy equation.

We are now so used to this type of derivation that we can race through the energy equa-
tion at a bewildering pace. The appropriate integral relation for the fixed control vol-
ume of Fig. 4.1 is

Q̇ 	 Ẇs 	 Ẇ� � ��CV
e� d�� � �

CS �e � ��(V � n) dA (3.63) 

where Ẇs � 0 because there can be no infinitesimal shaft protruding into the control
volume. By analogy with Eq. (4.20), the right-hand side becomes, for this tiny element,

Q̇ 	 Ẇ� � � (�e) � (�u�) � (��� ) � (�w� )� dx dy dz (4.42) 

where � � e � p/�. When we use the continuity equation by analogy with Eq. (4.21),
this becomes

Q̇ 	 Ẇ� � �� � V � �p� dx dy dz (4.43) 

To evaluate Q̇, we neglect radiation and consider only heat conduction through the sides
of the element. The heat flow by conduction follows Fourier’s law from Chap. 1

q � 	k �T (1.29a) 

where k is the coefficient of thermal conductivity of the fluid. Figure 4.6 shows the
heat flow passing through the x faces, the y and z heat flows being omitted for clarity.
We can list these six heat-flux terms:
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5We are neglecting the possibility of a finite couple being applied to the element by some powerful ex-
ternal force field. See, e.g., Ref. 6, p. 217.

6This section may be omitted without loss of continuity.

Faces Inlet heat flux Outlet heat flux
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Fig. 4.6 Elemental cartesian control
volume showing heat-flow and 
viscous-work-rate terms in the x
direction.

By adding the inlet terms and subtracting the outlet terms, we obtain the net heat
added to the element

Q̇ � 	� (qx) � (qy) � (qz)� dx dy dz � 	� � q dx dy dz (4.44) 

As expected, the heat flux is proportional to the element volume. Introducing Fourier’s
law from Eq. (1.29), we have

Q̇ � � � (k �T) dx dy dz (4.45) 

The rate of work done by viscous stresses equals the product of the stress compo-
nent, its corresponding velocity component, and the area of the element face. Figure
4.6 shows the work rate on the left x face is

Ẇυ,LF � wx dy dz where wx � 	(u�xx � υ�xy � w�xz) (4.46) 

(where the subscript LF stands for left face) and a slightly different work on the right
face due to the gradient in wx. These work fluxes could be tabulated in exactly the same
manner as the heat fluxes in the previous table, with wx replacing qx, etc. After outlet
terms are subtracted from inlet terms, the net viscous-work rate becomes

Ẇ� � 	� (u�xx � ��xy � w�xz) � (u�yx � ��yy � w�yz)

� (u�zx � ��zy � w�zz)� dx dy dz

� 	� � (V � �ij) dx dy dz (4.47) 

We now substitute Eqs. (4.45) and (4.47) into Eq. (4.43) to obtain one form of the dif-
ferential energy equation

� � V � �p � � � (k �T) � � � (V � �ij) where e � û � �12�V2 � gz (4.48) 

A more useful form is obtained if we split up the viscous-work term

� � (V � �ij) 	 V � (� � �ij) � � (4.49) 
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where � is short for the viscous-dissipation function.7 For a newtonian incompressible
viscous fluid, this function has the form

� � ��2� �
2

� 2� �
2

� 2� �
2

� � � �
2

� � � �
2

� � � �
2

� (4.50)

Since all terms are quadratic, viscous dissipation is always positive, so that a viscous
flow always tends to lose its available energy due to dissipation, in accordance with
the second law of thermodynamics.

Now substitute Eq. (4.49) into Eq. (4.48), using the linear-momentum equation (4.32)
to eliminate � � �ij. This will cause the kinetic and potential energies to cancel, leav-
ing a more customary form of the general differential energy equation

� � p(� � V) � � � (k �T) � � (4.51) 

This equation is valid for a newtonian fluid under very general conditions of unsteady,
compressible, viscous, heat-conducting flow, except that it neglects radiation heat trans-
fer and internal sources of heat that might occur during a chemical or nuclear reaction.

Equation (4.51) is too difficult to analyze except on a digital computer [1]. It is cus-
tomary to make the following approximations:

dû � c� dT c�, �, k, � � const (4.52) 

Equation (4.51) then takes the simpler form

�c� � k�2T � � (4.53)

which involves temperature T as the sole primary variable plus velocity as a secondary
variable through the total time-derivative operator

� � u � � � w (4.54)

A great many interesting solutions to Eq. (4.53) are known for various flow conditions,
and extended treatments are given in advanced books on viscous flow [4, 5] and books
on heat transfer [7, 8].

One well-known special case of Eq. (4.53) occurs when the fluid is at rest or has
negligible velocity, where the dissipation � and convective terms become negligible

�c� � k �2T (4.55)

This is called the heat-conduction equation in applied mathematics and is valid for
solids and fluids at rest. The solution to Eq. (4.55) for various conditions is a large part
of courses and books on heat transfer.

This completes the derivation of the basic differential equations of fluid motion.
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4.6 Boundary Conditions for
the Basic Equations

There are three basic differential equations of fluid motion, just derived. Let us sum-
marize them here:

Continuity: � � � (�V) � 0 (4.56) 

Momentum: � � �g 	 �p � � � �ij (4.57) 

Energy: � � p(� � V) � � � (k �T) � � (4.58) 

where � is given by Eq. (4.50). In general, the density is variable, so that these three
equations contain five unknowns, �, V, p, û, and T. Therefore we need two additional
relations to complete the system of equations. These are provided by data or algebraic
expressions for the state relations of the thermodynamic properties

� � �( p, T) û � û( p, T) (4.59) 

For example, for a perfect gas with constant specific heats, we complete the system with

� � û � � c� dT � c� T � const (4.60) 

It is shown in advanced books [4, 5] that this system of equations (4.56) to (4.59) is
well posed and can be solved analytically or numerically, subject to the proper bound-
ary conditions.

What are the proper boundary conditions? First, if the flow is unsteady, there must
be an initial condition or initial spatial distribution known for each variable:

At t � 0: �, V, p, û, T � known f(x, y, z) (4.61) 

Thereafter, for all times t to be analyzed, we must know something about the variables
at each boundary enclosing the flow.

Figure 4.7 illustrates the three most common types of boundaries encountered in
fluid-flow analysis: a solid wall, an inlet or outlet, a liquid-gas interface.

First, for a solid, impermeable wall, there is no slip and no temperature jump in a
viscous heat-conducting fluid

Vfluid � Vwall Tfluid � Twall solid wall (4.62) 

The only exception to Eq. (4.62) occurs in an extremely rarefied gas flow, where slip-
page can be present [5].

Second, at any inlet or outlet section of the flow, the complete distribution of ve-
locity, pressure, and temperature must be known for all times:

Inlet or outlet: Known V, p, T (4.63) 

These inlet and outlet sections can be and often are at � �, simulating a body im-
mersed in an infinite expanse of fluid.

Finally, the most complex conditions occur at a liquid-gas interface, or free surface,
as sketched in Fig. 4.7. Let us denote the interface by

Interface: z � �(x, y, t) (4.64) 
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Fig. 4.7 Typical boundary condi-
tions in a viscous heat-conducting
fluid-flow analysis.

Then there must be equality of vertical velocity across the interface, so that no holes
appear between liquid and gas:

wliq � wgas � � � u � � (4.65) 

This is called the kinematic boundary condition.
There must be mechanical equilibrium across the interface. The viscous-shear

stresses must balance

(�zy)liq � (�zy)gas (�zx)liq � (�zx)gas (4.66) 

Neglecting the viscous normal stresses, the pressures must balance at the interface ex-
cept for surface-tension effects

pliq � pgas 	 �(R	1
x  � R	1

y  ) (4.67) 

which is equivalent to Eq. (1.34). The radii of curvature can be written in terms of the
free-surface position �

Rx
	1 � Ry

	1 � �
�
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y
� � � (4.68)
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Simplified Free-Surface
Conditions

Incompressible Flow with
Constant Properties

Finally, the heat transfer must be the same on both sides of the interface, since no
heat can be stored in the infinitesimally thin interface

(qz)liq � (qz)gas (4.69) 

Neglecting radiation, this is equivalent to

�k �
liq

� �k �
gas

(4.70)

This is as much detail as we wish to give at this level of exposition. Further and even
more complicated details on fluid-flow boundary conditions are given in Refs. 5 and 9.

In the introductory analyses given in this book, such as open-channel flows in Chap.
10, we shall back away from the exact conditions (4.65) to (4.69) and assume that the
upper fluid is an “atmosphere” which merely exerts pressure upon the lower fluid, with
shear and heat conduction negligible. We also neglect nonlinear terms involving the
slopes of the free surface. We then have a much simpler and linear set of conditions at
the surface

pliq � pgas 	 �� � � wliq �

� �
liq

� 0 � �
liq

� 0 (4.71)

In many cases, such as open-channel flow, we can also neglect surface tension, so that

pliq � patm (4.72) 

These are the types of approximations which will be used in Chap. 10. The nondi-
mensional forms of these conditions will also be useful in Chap. 5.

Flow with constant �, �, and k is a basic simplification which will be used, e.g., through-
out Chap. 6. The basic equations of motion (4.56) to (4.58) reduce to:

Continuity: � � V � 0 (4.73) 

Momentum: � � �g 	 �p � � �2V (4.74) 

Energy: �c� � k �2T � � (4.75) 

Since � is constant, there are only three unknowns: p, V, and T. The system is closed.8

Not only that, the system splits apart: Continuity and momentum are independent of
T. Thus we can solve Eqs. (4.73) and (4.74) entirely separately for the pressure and
velocity, using such boundary conditions as

Solid surface: V � Vwall (4.76) 
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Inviscid-Flow Approximations

Inlet or outlet: Known V, p (4.77) 

Free surface: p � pa w � (4.78) 

Later, entirely at our leisure,9 we can solve for the temperature distribution from Eq.
(4.75), which depends upon velocity V through the dissipation � and the total time-
derivative operator d/dt.

Chapter 8 assumes inviscid flow throughout, for which the viscosity � � 0. The mo-
mentum equation (4.74) reduces to

� � �g 	 �p (4.79) 

This is Euler’s equation; it can be integrated along a streamline to obtain Bernoulli’s
equation (see Sec. 4.9). By neglecting viscosity we have lost the second-order deriva-
tive of V in Eq. (4.74); therefore we must relax one boundary condition on velocity.
The only mathematically sensible condition to drop is the no-slip condition at the wall.
We let the flow slip parallel to the wall but do not allow it to flow into the wall. The
proper inviscid condition is that the normal velocities must match at any solid surface:

Inviscid flow: (Vn)fluid � (Vn)wall (4.80) 

In most cases the wall is fixed; therefore the proper inviscid-flow condition is

Vn � 0 (4.81) 

There is no condition whatever on the tangential velocity component at the wall in in-
viscid flow. The tangential velocity will be part of the solution, and the correct value
will appear after the analysis is completed (see Chap. 8).

EXAMPLE 4.6

For steady incompressible laminar flow through a long tube, the velocity distribution is given
by

�z � U�1 	 � �r � �� � 0 

where U is the maximum, or centerline, velocity and R is the tube radius. If the wall tempera-
ture is constant at Tw and the temperature T � T(r) only, find T(r) for this flow.

Solution

With T � T(r), Eq. (4.75) reduces for steady flow to

�c��r � �r � � ���
d
d
�

r
z��

2

(1) 
dT
�
dr

d
�
dr

k
�
r

dT
�
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dV
�
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�t
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9Since temperature is entirely uncoupled by this assumption, we may never get around to solving for it
here and may ask you to wait until a course on heat transfer.
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But since �r � 0 for this flow, the convective term on the left vanishes. Introduce �z into Eq. (1)
to obtain

�r �
2

� 	���
d
d
�

r
z��

2

� 	 (2)

Multiply through by r/k and integrate once:

r � 	 � C1 (3) 

Divide through by r and integrate once again:

T � 	 � C1 ln r � C2 (4) 

Now we are in position to apply our boundary conditions to evaluate C1 and C2.
First, since the logarithm of zero is 	�, the temperature at r � 0 will be infinite unless

C1 � 0 (5) 

Thus we eliminate the possibility of a logarithmic singularity. The same thing will happen if we
apply the symmetry condition dT/dr � 0 at r � 0 to Eq. (3). The constant C2 is then found by
the wall-temperature condition at r � R

T � Tw � 	 � C2

or C2 � Tw � (6) 

The correct solution is thus

T(r) � Tw � �1 	 � Ans. (7) 

which is a fourth-order parabolic distribution with a maximum value T0 � Tw � �U2/(4k) at the
centerline.

We have seen in Sec. 4.6 that even if the temperature is uncoupled from our system of
equations of motion, we must solve the continuity and momentum equations simulta-
neously for pressure and velocity. The stream function � is a clever device which al-
lows us to wipe out the continuity equation and solve the momentum equation directly
for the single variable �.

The stream-function idea works only if the continuity equation (4.56) can be re-
duced to two terms. In general, we have four terms:

Cartesian: � (�u) � (��) � (�w) � 0 (4.82a)

Cylindrical: � (r��r) � (���) � (��z) � 0 (4.82b)
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First, let us eliminate unsteady flow, which is a peculiar and unrealistic application of
the stream-function idea. Reduce either of Eqs. (4.82) to any two terms. The most com-
mon application is incompressible flow in the xy plane

� � 0 (4.83) 

This equation is satisfied identically if a function �(x, y) is defined such that Eq. (4.83)
becomes

� � � �	 � 	 0 (4.84) 

Comparison of (4.83) and (4.84) shows that this new function � must be defined such
that

u � � � 	 (4.85) 

or V � i 	 j

Is this legitimate? Yes, it is just a mathematical trick of replacing two variables (u and
�) by a single higher-order function �. The vorticity, or curl V, is an interesting func-
tion

curl V � 2k�z � 	k�2� where �2� � � (4.86) 

Thus, if we take the curl of the momentum equation (4.74) and utilize Eq. (4.86), we
obtain a single equation for �

(�2�) 	 (�2�) � � �2(�2�) (4.87) 

where � � �/� is the kinematic viscosity. This is partly a victory and partly a defeat:
Eq. (4.87) is scalar and has only one variable, �, but it now contains fourth-order 
derivatives and probably will require computer analysis. There will be four boundary
conditions required on �. For example, for the flow of a uniform stream in the x di-
rection past a solid body, the four conditions would be

At infinity: � U� � 0 

At the body: � � 0 

(4.88)

Many examples of numerical solution of Eqs. (4.87) and (4.88) are given in Ref. 1.
One important application is inviscid irrotational flow in the xy plane, where �z 	 0.

Equations (4.86) and (4.87) reduce to

�2� � � � 0 (4.89)

This is the second-order Laplace equation (Chap. 8), for which many solutions and an-
alytical techniques are known. Also, boundary conditions like Eq. (4.88) reduce to

�2�
�
�y2

�2�
�
�x2

��
�
�x

��
�
�y

��
�
�x

��
�
�y

�
�
�y

��
�
�x

�
�
�x

��
�
�y

�2�
�
�y2

�2�
�
�x2

��
�
�x

��
�
�y

��
�
�x

��
�
�y

��
�
�x

�
�
�y

��
�
�y

�
�
�x

��
�
�y

�u
�
�x

4.7 The Stream Function 239



Geometric Interpretation of �

At infinity: � � U�y � const (4.90)

At the body: � � const 

It is well within our capability to find some useful solutions to Eqs. (4.89) and (4.90),
which we shall do in Chap. 8.

The fancy mathematics above would serve by itself to make the stream function im-
mortal and always useful to engineers. Even better, though, � has a beautiful geomet-
ric interpretation: Lines of constant � are streamlines of the flow. This can be shown
as follows. From Eq. (1.41) the definition of a streamline in two-dimensional flow is

�

or u dy 	 � dx � 0 streamline (4.91) 

Introducing the stream function from Eq. (4.85), we have

dx � dy � 0 � d� (4.92) 

Thus the change in � is zero along a streamline, or

� � const along a streamline (4.93) 

Having found a given solution �(x, y), we can plot lines of constant � to give the
streamlines of the flow.

There is also a physical interpretation which relates � to volume flow. From Fig.
4.8, we can compute the volume flow dQ through an element ds of control surface of
unit depth

dQ � (V � n) dA � �i 	 j � 
 �i 	 j � ds(1)

� dx � dy � d� (4.94) 
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Fig. 4.8 Geometric interpretation of
stream function: volume flow
through a differential portion of a
control surface.

dQ = ( V • n) dA = d

Control surface
(unit depth
into paper)

dy

dx

V = i u + j v

n =
dy

ds
i –

dx

ds
j

ds

ψ



Fig. 4.9 Sign convention for flow
in terms of change in stream func-
tion: (a) flow to the right if �U is
greater; (b) flow to the left if �L is
greater.

Thus the change in � across the element is numerically equal to the volume flow through
the element. The volume flow between any two points in the flow field is equal to the
change in stream function between those points:

Q1→2 � �2

1
(V � n) dA � �2

1
d� � �2 	 �1 (4.95) 

Further, the direction of the flow can be ascertained by noting whether � increases or
decreases. As sketched in Fig. 4.9, the flow is to the right if �U is greater than �L,
where the subscripts stand for upper and lower, as before; otherwise the flow is to the
left.

Both the stream function and the velocity potential were invented by the French
mathematician Joseph Louis Lagrange and published in his treatise on fluid mechan-
ics in 1781.

EXAMPLE 4.7

If a stream function exists for the velocity field of Example 4.5

u � a(x2 	 y2) � � 	2axy w � 0 

find it, plot it, and interpret it.

Solution

Since this flow field was shown expressly in Example 4.3 to satisfy the equation of continuity,
we are pretty sure that a stream function does exist. We can check again to see if

� � 0 

Substitute: 2ax � (	2ax) � 0 checks 

Therefore we are certain that a stream function exists. To find �, we simply set

u � � ax2 	 ay2 (1)

� � 	 � 	2axy (2)
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and work from either one toward the other. Integrate (1) partially

� � ax2y 	 � f(x) (3) 

Differentiate (3) with respect to x and compare with (2)

� 2axy � f�(x) � 2axy (4) 

Therefore f�(x) � 0, or f � constant. The complete stream function is thus found

� � a�x2y 	 � � C Ans. (5) 

To plot this, set C � 0 for convenience and plot the function

3x2y 	 y3 � (6) 

for constant values of �. The result is shown in Fig. E4.7a to be six 60° wedges of circulating
motion, each with identical flow patterns except for the arrows. Once the streamlines are labeled,
the flow directions follow from the sign convention of Fig. 4.9. How can the flow be interpreted?
Since there is slip along all streamlines, no streamline can truly represent a solid surface in a
viscous flow. However, the flow could represent the impingement of three incoming streams at
60, 180, and 300°. This would be a rather unrealistic yet exact solution to the Navier-Stokes
equation, as we showed in Example 4.5.
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   = 2a

a

– a

–2a

x

y

60°
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stagnation point
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ψ
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Flow around a 60° corner

Flow around a
rounded 60° corner

Incoming stream impinging
against a 120° corner

By allowing the flow to slip as a frictionless approximation, we could let any given stream-
line be a body shape. Some examples are shown in Fig. E4.7b.

A stream function also exists in a variety of other physical situations where only
two coordinates are needed to define the flow. Three examples are illustrated here.

E4.7a E4.7b



Steady Plane Compressible Flow Suppose now that the density is variable but that w � 0, so that the flow is in the xy
plane. Then the equation of continuity becomes

(�u) � (��) � 0 (4.96) 

We see that this is in exactly the same form as Eq. (4.84). Therefore a compressible-
flow stream function can be defined such that

�u � �� � 	 (4.97) 

Again lines of constant � are streamlines of the flow, but the change in � is now equal
to the mass flow, not the volume flow

dṁ� �(V � n) dA � d�

or ṁ1→2 � �2

1
�(V � n) dA � �2 	 �1 (4.98) 

The sign convention on flow direction is the same as in Fig. 4.9. This particular stream
function combines density with velocity and must be substituted into not only mo-
mentum but also the energy and state relations (4.58) and (4.59) with pressure and tem-
perature as companion variables. Thus the compressible stream function is not a great
victory, and further assumptions must be made to effect an analytical solution to a typ-
ical problem (see, e.g., Ref. 5, chap. 7).

Suppose that the important coordinates are r and �, with �z � 0, and that the density
is constant. Then Eq. (4.82b) reduces to

(r�r) � (��) � 0 (4.99) 

After multiplying through by r, we see that this is the same as the analogous form of
Eq. (4.84)

� � � �	 � � 0 (4.100) 

By comparison of (4.99) and (4.100) we deduce the form of the incompressible polar-
coordinate stream function

�r � �� � 	 (4.101) 

Once again lines of constant � are streamlines, and the change in � is the volume flow
Q1→2 � �2 	 �1. The sign convention is the same as in Fig. 4.9. This type of stream
function is very useful in analyzing flows with cylinders, vortices, sources, and sinks
(Chap. 8).

As a final example, suppose that the flow is three-dimensional (υr, υz) but with no cir-
cumferential variations, �� � �/�� � 0 (see Fig. 4.2 for definition of coordinates). Such
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Incompressible Plane Flow in
Polar Coordinates

Incompressible Axisymmetric Flow



a flow is termed axisymmetric, and the flow pattern is the same when viewed on any
meridional plane through the axis of revolution z. For incompressible flow, Eq. (4.82b)
becomes

(r�r) � (�z) � 0 (4.102) 

This doesn’t seem to work: Can’t we get rid of the one r outside? But when we real-
ize that r and z are independent coordinates, Eq. (4.102) can be rewritten as

(r�r) � (r�z) � 0 (4.103) 

By analogy with Eq. (4.84), this has the form

�	 � � � � � 0 (4.104) 

By comparing (4.103) and (4.104), we deduce the form of an incompressible axisym-
metric stream function �(r, z)

�r � 	 �z � (4.105) 

Here again lines of constant � are streamlines, but there is a factor (2�) in the volume
flow: Q1→2 � 2�(�2 	 �1). The sign convention on flow is the same as in Fig. 4.9.

EXAMPLE 4.8

Investigate the stream function in polar coordinates

� � U sin ��r 	 � (1) 

where U and R are constants, a velocity and a length, respectively. Plot the streamlines. What
does the flow represent? Is it a realistic solution to the basic equations?

Solution

The streamlines are lines of constant �, which has units of square meters per second. Note that
�/(UR) is dimensionless. Rewrite Eq. (1) in dimensionless form

� sin ��η 	 �
�
1

�� η � (2) 

Of particular interest is the special line � � 0. From Eq. (1) or (2) this occurs when (a) � � 0
or 180° and (b) r � R. Case (a) is the x-axis, and case (b) is a circle of radius R, both of which
are plotted in Fig. E4.8.

For any other nonzero value of � it is easiest to pick a value of r and solve for �:

sin � � (3) 

In general, there will be two solutions for � because of the symmetry about the y-axis. For ex-
ample take �/(UR) � �1.0:
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E4.8

Guess r/R 3.0 2.5 2.0 1.8 1.7 1.618

Compute � 22° 28° 42° 54° 64° 90°
158° 152° 138° 156° 116°

This line is plotted in Fig. E4.8 and passes over the circle r � R. You have to watch it, though,
because there is a second curve for � /(UR) � �1.0 for small r  R below the x-axis:

Guess r/R 0.618 0.6 0.5 0.4 0.3 0.2 0.1

Compute � 	90° 	70° 	42° 	28° 	19° 	12° 	6°
	110° 	138° 	152° 	161° 	168° 	174°

This second curve plots as a closed curve inside the circle r � R. There is a singularity of infi-
nite velocity and indeterminate flow direction at the origin. Figure E4.8 shows the full pattern.

The given stream function, Eq. (1), is an exact and classic solution to the momentum equa-
tion (4.38) for frictionless flow. Outside the circle r � R it represents two-dimensional inviscid
flow of a uniform stream past a circular cylinder (Sec. 8.3). Inside the circle it represents a rather
unrealistic trapped circulating motion of what is called a line doublet.

The assumption of zero fluid angular velocity, or irrotationality, is a very useful sim-
plification. Here we show that angular velocity is associated with the curl of the local-
velocity vector.

The differential relations for deformation of a fluid element can be derived by ex-
amining Fig. 4.10. Two fluid lines AB and BC, initially perpendicular at time t, move
and deform so that at t � dt they have slightly different lengths A�B� and B�C� and are
slightly off the perpendicular by angles d! and d". Such deformation occurs kinemat-
ically because A, B, and C have slightly different velocities when the velocity field V
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Fig. 4.10 Angular velocity and
strain rate of two fluid lines de-
forming in the xy plane.

has spatial gradients. All these differential changes in the motion of A, B, and C are
noted in Fig. 4.10.

We define the angular velocity �z about the z axis as the average rate of counter-
clockwise turning of the two lines

ωz � � 	 �
d
d
β
t
�� (4.106) 

But from Fig. 4.10, d! and d" are each directly related to velocity derivatives in the
limit of small dt

d! � lim
dt→0 �tan	1 � � dt

d" � lim
dt→0 �tan	1 � � dt

(4.107)

Combining Eqs. (4.106) and (4.107) gives the desired result:

�z � � 	 � (4.108) 

In exactly similar manner we determine the other two rates:

�x � � 	 � �y � � 	 � (4.109) 
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4.9 Frictionless Irrotational
Flows

The vector � � i�x � j�y � k�z is thus one-half the curl of the velocity vector

i j k

� � (curl V) �   (4.110) 

 u � w 
Since the factor of �12� is annoying, many workers prefer to use a vector twice as large,
called the vorticity:

� � 2� � curl V (4.111) 

Many flows have negligible or zero vorticity and are called irrotational

curl V 	 0 (4.112) 

The next section expands on this idea. Such flows can be incompressible or com-
pressible, steady or unsteady.

We may also note that Fig. 4.10 demonstrates the shear-strain rate of the element,
which is defined as the rate of closure of the initially perpendicular lines

#̇xy � � � � (4.113) 

When multiplied by viscosity �, this equals the shear stress �xy in a newtonian fluid,
as discussed earlier in Eqs. (4.37). Appendix E lists strain-rate and vorticity compo-
nents in cylindrical coordinates.

When a flow is both frictionless and irrotational, pleasant things happen. First, the mo-
mentum equation (4.38) reduces to Euler’s equation

� � �g 	 �p (4.114) 

Second, there is a great simplification in the acceleration term. Recall from Sec. 4.1
that acceleration has two terms

� � (V � �)V (4.2) 

A beautiful vector identity exists for the second term [11]:

(V � �)V 	 �(�12�V2) � � � V (4.115) 

where � � curl V from Eq. (4.111) is the fluid vorticity.
Now combine (4.114) and (4.115), divide by �, and rearrange on the left-hand side.

Dot the entire equation into an arbitrary vector displacement dr:

� � �� V2� � � � V � �p 	 g� 
 dr � 0 (4.116) 

Nothing works right unless we can get rid of the third term. We want

(� � V) 
 (dr) 	 0 (4.117) 
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Velocity Potential

This will be true under various conditions:

1. V is zero; trivial, no flow (hydrostatics).

2. � is zero; irrotational flow.

3. dr is perpendicular to � � V; this is rather specialized and rare.

4. dr is parallel to V; we integrate along a streamline (see Sec. 3.7).

Condition 4 is the common assumption. If we integrate along a streamline in friction-
less compressible flow and take, for convenience, g � 	gk, Eq. (4.116) reduces to


 dr � d� V2� � � g dz � 0 (4.118)

Except for the first term, these are exact differentials. Integrate between any two points
1 and 2 along the streamline:

�2

1
ds � �2

1
� (V 2

2 	 V 2
1) � g(z2 	 z1) � 0 (4.119)

where ds is the arc length along the streamline. Equation (4.119) is Bernoulli’s equa-
tion for frictionless unsteady flow along a streamline and is identical to Eq. (3.76). For
incompressible steady flow, it reduces to

� V2 � gz � constant along streamline (4.120)

The constant may vary from streamline to streamline unless the flow is also irrotational
(assumption 2). For irrotational flow � � 0, the offending term Eq. (4.117) vanishes
regardless of the direction of dr, and Eq. (4.120) then holds all over the flow field with
the same constant.

Irrotationality gives rise to a scalar function $ similar and complementary to the stream
function �. From a theorem in vector analysis [11], a vector with zero curl must be the
gradient of a scalar function

If � � V 	 0 then V � �$ (4.121)

where $ � $ (x, y, z, t) is called the velocity potential function. Knowledge of $ thus
immediately gives the velocity components

u � � � w � (4.122)

Lines of constant $ are called the potential lines of the flow.
Note that $, unlike the stream function, is fully three-dimensional and not limited

to two coordinates. It reduces a velocity problem with three unknowns u, �, and w to
a single unknown potential $; many examples are given in Chap. 8 and Sec. 4.10. The
velocity potential also simplifies the unsteady Bernoulli equation (4.118) because if $
exists, we obtain


 dr � (��) 
 dr � d� � (4.123)
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Orthogonality of Streamlines and
Potential Lines

Generation of Rotationality

Equation (4.118) then becomes a relation between $ and p

� � � ��2 � gz � const (4.124)

This is the unsteady irrotational Bernoulli equation. It is very important in the analy-
sis of accelerating flow fields (see, e.g., Refs. 10 and 15), but the only application in
this text will be in Sec. 9.3 for steady flow.

If a flow is both irrotational and described by only two coordinates, � and $ both ex-
ist and the streamlines and potential lines are everywhere mutually perpendicular ex-
cept at a stagnation point. For example, for incompressible flow in the xy plane, we
would have

u � � (4.125) 

� � 	 � (4.126) 

Can you tell by inspection not only that these relations imply orthogonality but also
that $ and � satisfy Laplace’s equation?10 A line of constant $ would be such that the
change in $ is zero

d$ � dx � dy � 0 � u dx � � dy (4.127)

Solving, we have

� �$�const
� 	 � 	 (4.128)

Equation (4.128) is the mathematical condition that lines of constant $ and � be mu-
tually orthogonal. It may not be true at a stagnation point, where both u and � are zero,
so that their ratio in Eq. (4.128) is indeterminate.

This is the second time we have discussed Bernoulli’s equation under different circum-
stances (the first was in Sec. 3.7). Such reinforcement is useful, since this is probably
the most widely used equation in fluid mechanics. It requires frictionless flow with no
shaft work or heat transfer between sections 1 and 2. The flow may or may not be ir-
rotational, the latter being an easier condition, allowing a universal Bernoulli constant.

The only remaining question is: When is a flow irrotational? In other words, when
does a flow have negligible angular velocity? The exact analysis of fluid rotationality
under arbitrary conditions is a topic for advanced study, e.g., Ref. 10, sec. 8.5; Ref. 9,
sec. 5.2; and Ref. 5, sec. 2.10. We shall simply state those results here without proof.

A fluid flow which is initially irrotational may become rotational if

1. There are significant viscous forces induced by jets, wakes, or solid boundaries.
In this case Bernoulli’s equation will not be valid in such viscous regions.

1
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10 Equations (4.125) and (4.126) are called the Cauchy-Riemann equations and are studied in com-
plex-variable theory.



Fig. 4.11 Typical flow patterns il-
lustrating viscous regions patched
onto nearly frictionless regions:
(a) low subsonic flow past a body
(U � a); frictionless, irrotational
potential flow outside the boundary
layer (Bernoulli and Laplace equa-
tions valid); (b) supersonic flow
past a body (U % a); frictionless,
rotational flow outside the bound-
ary layer (Bernoulli equation valid,
potential flow invalid).

2. There are entropy gradients caused by curved shock waves (see Fig. 4.11b).

3. There are density gradients caused by stratification (uneven heating) rather than
by pressure gradients.

4. There are significant noninertial effects such as the earth’s rotation (the Coriolis
acceleration).

In cases 2 to 4, Bernoulli’s equation still holds along a streamline if friction is negli-
gible. We shall not study cases 3 and 4 in this book. Case 2 will be treated briefly in
Chap. 9 on gas dynamics. Primarily we are concerned with case 1, where rotation is
induced by viscous stresses. This occurs near solid surfaces, where the no-slip condi-
tion creates a boundary layer through which the stream velocity drops to zero, and in
jets and wakes, where streams of different velocities meet in a region of high shear.

Internal flows, such as pipes and ducts, are mostly viscous, and the wall layers grow
to meet in the core of the duct. Bernoulli’s equation does not hold in such flows un-
less it is modified for viscous losses.

External flows, such as a body immersed in a stream, are partly viscous and partly
inviscid, the two regions being patched together at the edge of the shear layer or bound-
ary layer. Two examples are shown in Fig. 4.11. Figure 4.11a shows a low-speed 
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subsonic flow past a body. The approach stream is irrotational; i.e., the curl of a con-
stant is zero, but viscous stresses create a rotational shear layer beside and downstream
of the body. Generally speaking (see Chap. 6), the shear layer is laminar, or smooth,
near the front of the body and turbulent, or disorderly, toward the rear. A separated, or
deadwater, region usually occurs near the trailing edge, followed by an unsteady tur-
bulent wake extending far downstream. Some sort of laminar or turbulent viscous the-
ory must be applied to these viscous regions; they are then patched onto the outer flow,
which is frictionless and irrotational. If the stream Mach number is less than about 0.3,
we can combine Eq. (4.122) with the incompressible continuity equation (4.73).

� � V � � � (��) � 0 

or �2$ � 0 � � � (4.129)

This is Laplace’s equation in three dimensions, there being no restraint on the number
of coordinates in potential flow. A great deal of Chap. 8 will be concerned with solv-
ing Eq. (4.129) for practical engineering problems; it holds in the entire region of Fig.
4.11a outside the shear layer.

Figure 4.11b shows a supersonic flow past a body. A curved shock wave generally
forms in front, and the flow downstream is rotational due to entropy gradients (case
2). We can use Euler’s equation (4.114) in this frictionless region but not potential the-
ory. The shear layers have the same general character as in Fig. 4.11a except that the
separation zone is slight or often absent and the wake is usually thinner. Theory of sep-
arated flow is presently qualitative, but we can make quantitative estimates of laminar
and turbulent boundary layers and wakes.

EXAMPLE 4.9

If a velocity potential exists for the velocity field of Example 4.5

u � a(x2 	 y2) � � 	2axy w � 0 

find it, plot it, and compare with Example 4.7.

Solution

Since w � 0, the curl of V has only one z component, and we must show that it is zero:

(� � V)z � 2�z � 	 � (	2axy) 	 (ax2 	 ay2)

� 	2ay � 2ay � 0 checks Ans.

The flow is indeed irrotational. A potential exists.
To find $(x, y), set

u � � ax2 	 ay2 (1) 

� � � 	2axy (2) 
�$
�
�y

�$
�
�x

�
�
�y
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Integrate (1)

$ � 	 axy2 � f(y) (3) 

Differentiate (3) and compare with (2)

� 	2axy � f�(y) � 	2axy (4) 

Therefore f � � 0, or f � constant. The velocity potential is

$ � 	 axy2 � C Ans.

Letting C � 0, we can plot the $ lines in the same fashion as in Example 4.7. The result is shown
in Fig. E4.9 (no arrows on $). For this particular problem, the $ lines form the same pattern as
the � lines of Example 4.7 (which are shown here as dashed lines) but are displaced 30°. The
$ and � lines are everywhere perpendicular except at the origin, a stagnation point, where they
are 30° apart. We expected trouble at the stagnation point, and there is no general rule for de-
termining the behavior of the lines at that point.

Chapter 8 is devoted entirely to a detailed study of inviscid incompressible flows, es-
pecially those which possess both a stream function and a velocity potential. As sketched
in Fig. 4.11a, inviscid flow is valid away from solid surfaces, and this inviscid pattern
is “patched” onto the near-wall viscous layers—an idea developed in Chap. 7. Various
body shapes can be simulated by the inviscid-flow pattern. Here we discuss plane flows,
three of which are illustrated in Fig. 4.12.

A uniform stream V � iU, as in Fig. 4.12a, possesses both a stream function and a ve-
locity potential, which may be found as follows:

u � U � � � � 0 � � 	
��
�
�x

�$
�
�y

��
�
�y

�$
�
�x

ax3

�
3
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Fig. 4.12 Three elementary plane
potential flows. Solid lines are
streamlines; dashed lines are poten-
tial lines.

We may integrate each expression and discard the constants of integration, which do
not affect the velocities in the flow. The results are

Uniform stream iU: � � Uy $ � Ux (4.130) 

The streamlines are horizontal straight lines (y � const), and the potential lines are ver-
tical (x � const), i.e., orthogonal to the streamlines, as expected.

Suppose that the z-axis were a sort of thin-pipe manifold through which fluid issued
at total rate Q uniformly along its length b. Looking at the xy plane, we would see a
cylindrical radial outflow or line source, as sketched in Fig. 4.12b. Plane polar coor-
dinates are appropriate (see Fig. 4.2), and there is no circumferential velocity. At any
radius r, the velocity is

�r � � � � �� � 0 � 	 �

where we have used the polar-coordinate forms of the stream function and the veloc-
ity potential. Integrating and again discarding the constants of integration, we obtain
the proper functions for this simple radial flow:

Line source or sink: � � m� $ � m ln r (4.131)

where m � Q/(2�b) is a constant, positive for a source, negative for a sink. As shown
in Fig. 4.12b, the streamlines are radial spokes (constant �), and the potential lines are
circles (constant r).

A (two-dimensional) line vortex is a purely circulating steady motion, �� � f(r) only,
�r � 0. This satisfies the continuity equation identically, as may be checked from Eq.
(4.12b). We may also note that a variety of velocity distributions ��(r) satisfy the 
�-momentum equation of a viscous fluid, Eq. (E.6). We may show, as a problem ex-
ercise, that only one function ��(r) is irrotational, i.e., curl V � 0, and that is �� � K/r,
where K is a constant. This is sometimes called a free vortex, for which the stream
function and velocity may be found:

�r � 0 � � �� � � 	 �
�$
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Fig. 4.13 Potential flow due to a
line source plus an equal line sink,
from Eq. (4.133). Solid lines are
streamlines; dashed lines are poten-
tial lines.

We may again integrate to determine the appropriate functions:

� � 	K ln r $ � K� (4.132) 

where K is a constant called the strength of the vortex. As shown in Fig. 4.12c, the
streamlines are circles (constant r), and the potential lines are radial spokes (constant
�). Note the similarity between Eqs. (4.131) and (4.132). A free vortex is a sort of re-
versed image of a source. The “bathtub vortex,” formed when water drains through a
bottom hole in a tank, is a good approximation to the free-vortex pattern.

Each of the three elementary flow patterns in Fig. 4.12 is an incompressible irrotational
flow and therefore satisfies both plane “potential flow” equations �2� � 0 and
�2$ � 0. Since these are linear partial differential equations, any sum of such basic
solutions is also a solution. Some of these composite solutions are quite interesting and
useful.

For example, consider a source �m at (x, y) � (	a, 0), combined with a sink of
equal strength 	m, placed at (�a, 0), as in Fig. 4.13. The resulting stream function is
simply the sum of the two. In cartesian coordinates,

� � �source � �sink � m tan	1 	 m tan	1

Similarly, the composite velocity potential is

$ � $source � $sink � m ln [(x � a)2 � y2] 	 m ln [(x 	 a)2 � y2]
1
�
2

1
�
2

y
�
x 	 a

y
�
x � a
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Fig. 4.14 Superposition of a sink
plus a vortex, Eq. (4.134), simu-
lates a tornado.

By using trigonometric and logarithmic identities, these may be simplified to

Source plus sink: � � 	m tan	1

$ � m ln 
(4.133)

These lines are plotted in Fig. 4.13 and are seen to be two families of orthogonal
circles, with the streamlines passing through the source and sink and the potential
lines encircling them. They are harmonic (laplacian) functions which are exactly
analogous in electromagnetic theory to the electric-current and electric-potential pat-
terns of a magnet with poles at (�a, 0).

An interesting flow pattern, approximated in nature, occurs by superposition of a sink
and a vortex, both centered at the origin. The composite stream function and velocity
potential are

Sink plus vortex: � � m� 	 K ln r $ � m ln r � K� (4.134) 

When plotted, these form two orthogonal families of logarithmic spirals, as shown in
Fig. 4.14. This is a fairly realistic simulation of a tornado (where the sink flow moves
up the z-axis into the atmosphere) or a rapidly draining bathtub vortex. At the center
of a real (viscous) vortex, where Eq. (4.134) predicts infinite velocity, the actual cir-
culating flow is highly rotational and approximates solid-body rotation �� ≈ Cr.

(x � a)2 � y2

��
(x 	 a)2 � y2

1
�
2

2ay
��
x2 � y2 	 a2
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Uniform Stream Plus a Sink at
the Origin: The Rankine Half-
Body

If we superimpose a uniform x-directed stream against an isolated source, a half-body
shape appears. If the source is at the origin, the combined stream function is, in polar
coordinates,

Uniform stream plus source: � � Ur sin � � m� (4.135)

We can set this equal to various constants and plot the streamlines, as shown in Fig.
4.15. A curved, roughly elliptical, half-body shape appears, which separates the source
flow from the stream flow. The body shape, which is named after the Scottish engi-
neer W. J. M. Rankine (1820–1872), is formed by the particular streamlines � �
��m. The half-width of the body far downstream is �m/U. The upper surface may be
plotted from the relation

r � (4.136) 
m(� 	 �)
�
U sin �
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It is not a true ellipse. The nose of the body, which is a “stagnation” point where V �
0, stands at (x, y) � (	a, 0), where a � m/U. The streamline � � 0 also crosses this
point—recall that streamlines can cross only at a stagnation point.

The cartesian velocity components are found by differentiation:

u � � U � cos � � � 	 � sin � (4.137) 

Setting u � � � 0, we find a single stagnation point at � � 180° and r � m/U, or 
(x, y) � (	m/U, 0), as stated. The resultant velocity at any point is

V2 � u2 � �2 � U2�1 � � cos �� (4.138) 

where we have substituted m � Ua. If we evaluate the velocities along the upper sur-
face � � �m, we find a maximum value Us,max � 1.26U at � � 63°. This point is la-
beled in Fig. 4.15 and, by Bernoulli’s equation, is the point of minimum pressure on
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Fig. 4.15 Superposition of a source
plus a uniform stream forms a
Rankine half-body.
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the body surface. After this point, the surface flow decelerates, the pressure rises, and
the viscous layer grows thicker and more susceptible to “flow separation,” as we shall
see in Chap. 7.

EXAMPLE 4.10

The bottom of a river has a 4-m-high bump which approximates a Rankine half-body, as in
Fig. E4.10. The pressure at point B on the bottom is 130 kPa, and the river velocity is 
2.5 m/s. Use inviscid theory to estimate the water pressure at point A on the bump, which is 
2 m above point B.

4.10 Some Illustrative Plane Potential Flows 257

Solution

As in all inviscid theories, we ignore the low-velocity boundary layers which form on solid sur-
faces due to the no-slip condition. From Eq. (4.136) and Fig. 4.15, the downstream bump half-
height equals �a. Therefore, for our case, a � (4 m)/� � 1.27 m. We have to find the spot where
the bump height is half that much, h � 2 m � �a/2. From Eq. (4.136) we may compute

r � hA � � a or � � � 90°

Thus point A in Fig. E4.10 is directly above the (initially unknown) origin of coordinates (la-
beled O in Fig. E4.10) and is 1.27 m to the right of the nose of the bump. With r � �a/2 and 
� � �/2 known, we compute the velocity at point A from Eq. (4.138):

V2
A � U2�1 � � cos � � 1.405U2

or VA � 1.185U � 1.185(2.5 m/s) � 2.96 m/s 

For water at 20°C, take � � 998 kg/m2 and & � 9790 N/m3. Now, since the velocity and eleva-
tion are known at point A, we are in a position to use Bernoulli’s inviscid, incompressible-flow
equation (4.120) to estimate pA from the known properties at point B (on the same streamline):

� � zA � � � zB

or � � 2 m � � � 0

Solving, we find

pA � (13.60 	 2.45)(9790) � 109,200 Pa Ans.
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4.11 Some Illustrative
Incompressible Viscous Flows

If the approach velocity is uniform, this should be a pretty good approximation, since water is
relatively inviscid and its boundary layers are thin.

The inviscid flows of Sec. 4.10 do not satisfy the no-slip condition. They “slip” at the
wall but do not flow through the wall. To look at fully viscous no-slip conditions, we
must attack the complete Navier-Stokes equation (4.74), and the result is usually not
at all irrotational, nor does a velocity potential exist. We look here at three cases: (1)
flow between parallel plates due to a moving upper wall, (2) flow between parallel
plates due to pressure gradient, and (3) flow between concentric cylinders when the in-
ner one rotates. Other cases will be given as problem assignments or considered in
Chap. 6. Extensive solutions for viscous flows are discussed in Refs. 4 and 5.

Consider two-dimensional incompressible plane (�/�z � 0) viscous flow between par-
allel plates a distance 2h apart, as shown in Fig. 4.16. We assume that the plates are
very wide and very long, so that the flow is essentially axial, u ' 0 but � � w � 0.
The present case is Fig. 4.16a, where the upper plate moves at velocity V but there is
no pressure gradient. Neglect gravity effects. We learn from the continuity equation
(4.73) that

� � � 0 � � 0 � 0 or u � u(y) only 

Thus there is a single nonzero axial-velocity component which varies only across the
channel. The flow is said to be fully developed (far downstream of the entrance). Sub-
stitute u � u(y) into the x-component of the Navier-Stokes momentum equation (4.74)
for two-dimensional (x, y) flow:

��u � � � � 	 � �gx � �� � �

or �(0 � 0) � 0 � 0 � ��0 � � (4.139)
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Fig. 4.16 Incompressible viscous
flow between parallel plates: (a) no
pressure gradient, upper plate mov-
ing; (b) pressure gradient �p/�x
with both plates fixed.



Flow due to Pressure Gradient
between Two Fixed Plates

Most of the terms drop out, and the momentum equation simply reduces to

� 0 or u � C1y � C2

The two constants are found by applying the no-slip condition at the upper and lower
plates:

At y � �h: u � V � C1h � C2

At y � 	h: u � 0 � C1(	h) � C2

or C1 � and C2 �

Therefore the solution for this case (a), flow between plates with a moving upper wall, is

u � y � 	h � y � �h (4.140)

This is Couette flow due to a moving wall: a linear velocity profile with no-slip at each
wall, as anticipated and sketched in Fig. 4.16a. Note that the origin has been placed in
the center of the channel, for convenience in case (b) below.

What we have just presented is a rigorous derivation of the more informally dis-
cussed flow of Fig. 1.6 (where y and h were defined differently).

Case (b) is sketched in Fig. 4.16b. Both plates are fixed (V � 0), but the pressure varies
in the x direction. If � � w � 0, the continuity equation leads to the same conclusion
as case (a), namely, that u � u(y) only. The x-momentum equation (4.138) changes
only because the pressure is variable:

� � (4.141)

Also, since � � w � 0 and gravity is neglected, the y- and z-momentum equations 
lead to

� 0 and � 0 or p � p(x) only 

Thus the pressure gradient in Eq. (4.141) is the total and only gradient:

� � � const  0 (4.142)

Why did we add the fact that dp/dx is constant? Recall a useful conclusion from the
theory of separation of variables: If two quantities are equal and one varies only with
y and the other varies only with x, then they must both equal the same constant. Oth-
erwise they would not be independent of each other.

Why did we state that the constant is negative? Physically, the pressure must de-
crease in the flow direction in order to drive the flow against resisting wall shear stress.
Thus the velocity profile u(y) must have negative curvature everywhere, as anticipated
and sketched in Fig. 4.16b.
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The solution to Eq. (4.142) is accomplished by double integration:

u � � C1y � C2

The constants are found from the no-slip condition at each wall:

At y � �h: u � 0 or C1 � 0 and C2 � 	

Thus the solution to case (b), flow in a channel due to pressure gradient, is

u � 	 �1 	 � (4.143)

The flow forms a Poiseuille parabola of constant negative curvature. The maximum ve-
locity occurs at the centerline y � 0:

umax � 	 (4.144)

Other (laminar) flow parameters are computed in the following example.

EXAMPLE 4.11

For case (b) above, flow between parallel plates due to the pressure gradient, compute (a) the
wall shear stress, (b) the stream function, (c) the vorticity, (d) the velocity potential, and (e) the
average velocity.

Solution

All parameters can be computed from the basic solution, Eq. (4.143), by mathematical 
manipulation.

(a) The wall shear follows from the definition of a newtonian fluid, Eq. (4.37):

�w � �xy wall � �� � � �
y��h

� � ��	 ���
2

h

�

2

���1 	 �� �
y��h

� � h � ( Ans. (a)

The wall shear has the same magnitude at each wall, but by our sign convention of Fig. 4.3,
the upper wall has negative shear stress.

(b) Since the flow is plane, steady, and incompressible, a stream function exists:

u � � umax�1 	 � � � 	 � 0 

Integrating and setting � � 0 at the centerline for convenience, we obtain

� � umax�y 	 � Ans. (b)

At the walls, y � � h and � � � 2umaxh/3, respectively.
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Flow between Long Concentric
Cylinders

(c) In plane flow, there is only a single nonzero vorticity component:

�z � (curl V)z � 	 � y Ans. (c)

The vorticity is highest at the wall and is positive (counterclockwise) in the upper half and
negative (clockwise) in the lower half of the fluid. Viscous flows are typically full of vor-
ticity and are not at all irrotational.

(d) From part (c), the vorticity is finite. Therefore the flow is not irrotational, and the velocity
potential does not exist. Ans. (d)

(e) The average velocity is defined as Vav � Q/A, where Q � � u dA over the cross section. For
our particular distribution u(y) from Eq. (4.143), we obtain

Vav � � u dA � ��h

	h
umax�1 	 �b dy � umax Ans. (e)

In plane Poiseuille flow between parallel plates, the average velocity is two-thirds of the
maximum (or centerline) value. This result could also have been obtained from the stream
function derived in part (b). From Eq. (4.95),

Qchannel � �upper 	 �lower � 	 �	 � � umaxh per unit width

whence Vav � Q/Ab�1 � (4umaxh/3)/(2h) � 2umax/3, the same result.
This example illustrates a statement made earlier: Knowledge of the velocity vector V

[as in Eq. (4.143)] is essentially the solution to a fluid-mechanics problem, since all other
flow properties can then be calculated.

Consider a fluid of constant (�, �) between two concentric cylinders, as in Fig. 4.17.
There is no axial motion or end effect �z � �/�z � 0. Let the inner cylinder rotate at
angular velocity �i. Let the outer cylinder be fixed. There is circular symmetry, so the
velocity does not vary with � and varies only with r.
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Fixed

Ω i

ro

vθ

r
ri

Fluid: ρ, µ
Fig. 4.17 Coordinate system for
incompressible viscous flow be-
tween a fixed outer cylinder and a
steadily rotating inner cylinder.



Instability of Rotating Inner
Cylinder Flow

The continuity equation for this problem is Eq. (D.2):

(r�r) � � 0 � (r�r) or r�r � const

Note that �� does not vary with �. Since �r � 0 at both the inner and outer cylinders,
it follows that �r � 0 everywhere and the motion can only be purely circumferential,
�� � ��(r). The �-momentum equation (D.6) becomes

�(V � �)�� � � 	 � �g� � ���2�� 	 �
For the conditions of the present problem, all terms are zero except the last. Therefore
the basic differential equation for flow between rotating cylinders is

�2�� � �r � � (4.145)

This is a linear second-order ordinary differential equation with the solution

�� � C1r �

The constants are found by the no-slip condition at the inner and outer cylinders:

Outer, at r � ro: �� � 0 � C1ro �

Inner, at r � ri: �� � �iri � C1ri �

The final solution for the velocity distribution is

Rotating inner cylinder: �� � �iri (4.146) 

The velocity profile closely resembles the sketch in Fig. 4.17. Variations of this case,
such as a rotating outer cylinder, are given in the problem assignments.

The classic Couette-flow solution11 of Eq. (4.146) describes a physically satisfying con-
cave, two-dimensional, laminar-flow velocity profile as in Fig. 4.17. The solution is
mathematically exact for an incompressible fluid. However, it becomes unstable at a
relatively low rate of rotation of the inner cylinder, as shown in 1923 in a classic pa-
per by G. I. Taylor [17]. At a critical value of what is now called the Taylor number,
denoted Ta,

Tacrit � � 1700 (4.147) 

the plane flow of Fig. 4.17 vanishes and is replaced by a laminar three-dimensional
flow pattern consisting of rows of nearly square alternating toroidal vortices. An ex-
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11Named after M. Couette, whose pioneering paper in 1890 established rotating cylinders as a method,
still used today, for measuring the viscosity of fluids.



perimental demonstration of toroidal “Taylor vortices” is shown in Fig. 4.18a, mea-
sured at Ta � 1.16 Tacrit by Koschmieder [18]. At higher Taylor numbers, the vortices
also develop a circumferential periodicity but are still laminar, as illustrated in Fig.
4.18b. At still higher Ta, turbulence ensues. This interesting instability reminds us that
the Navier-Stokes equations, being nonlinear, do admit to multiple (nonunique) lami-
nar solutions in addition to the usual instabilities associated with turbulence and chaotic
dynamic systems.

This chapter complements Chap. 3 by using an infinitesimal control volume to derive
the basic partial differential equations of mass, momentum, and energy for a fluid.
These equations, together with thermodynamic state relations for the fluid and appro-
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(a)

(b)

Fig. 4.18 Experimental verification
of the instability of flow between a
fixed outer and a rotating inner
cylinder. (a) Toroidal Taylor vor-
tices exist at 1.16 times the critical
speed; (b) at 8.5 times the critical
speed, the vortices are doubly peri-
odic. (After Koschmieder, Ref. 18.)
This instability does not occur if
only the outer cylinder rotates.

Summary



Problems
Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard
end-of-chapter problems 4.1 to 4.91 (categorized in the problem
list below) are followed by word problems W4.1 to W4.10, fun-
damentals of engineering exam problems FE4.1 to FE4.3, and com-
prehensive problem C4.1.

Problem distribution

Section Topic Problems

4.1 The acceleration of a fluid 4.1–4.8
4.2 The continuity equation 4.9–4.25
4.3 Linear momentum: Navier-Stokes 4.26–4.37
4.4 Angular momentum: couple stresses 4.38
4.5 The differential energy equation 4.39–4.42
4.6 Boundary conditions 4.43–4.46
4.7 Stream function 4.47–4.55
4.8 Vorticity, irrotationality 4.56–4.60
4.9 Velocity potential 4.61–4.67
4.10 Plane potential flows 4.68–4.78
4.11 Incompressible viscous flows 4.79–4.91

P4.1 An idealized velocity field is given by the formula

V � 4txi 	 2t2yj � 4xzk

Is this flow field steady or unsteady? Is it two- or three-di-
mensional? At the point (x, y, z) � (	1, 1, 0), compute (a)

the acceleration vector and (b) any unit vector normal to the
acceleration.

P4.2 Flow through the converging nozzle in Fig. P4.2 can be ap-
proximated by the one-dimensional velocity distribution

u � V0�1 � � � � 0 w � 0 

(a) Find a general expression for the fluid acceleration in
the nozzle. (b) For the specific case V0 � 10 ft/s and L �
6 in, compute the acceleration, in g’s, at the entrance and at
the exit.

2x
�
L
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priate boundary conditions, in principle can be solved for the complete flow field in
any given fluid-mechanics problem. Except for Chap. 9, in most of the problems to be
studied here an incompressible fluid with constant viscosity is assumed.

In addition to deriving the basic equations of mass, momentum, and energy, this
chapter introduced some supplementary ideas—the stream function, vorticity, irrota-
tionality, and the velocity potential—which will be useful in coming chapters, espe-
cially Chap. 8. Temperature and density variations will be neglected except in Chap.
9, where compressibility is studied.

This chapter ended by discussing a few classical solutions for inviscid flows (uni-
form stream, source, sink, vortex, half-body) and for viscous flows (Couette flow due
to moving walls and Poiseuille flow due to pressure gradient). Whole books [11, 13]
are written on the basic equations of fluid mechanics. Whole books [4, 5, 15] are writ-
ten on classical solutions to fluid-flow problems. Reference 12 contains 360 solved
problems which relate fluid mechanics to the whole of continuum mechanics. This does
not mean that all problems can be readily solved mathematically, even with the mod-
ern digital-computer codes now available. Often the geometry and boundary conditions
are so complex that experimentation (Chap. 5) is a necessity.

V0
u = 3V0

x = L
x

x = 0P4.2

P4.3 A two-dimensional velocity field is given by

V � (x2 	 y2 � x)i 	 (2xy � y)j

in arbitrary units. At (x, y) � (1, 2), compute (a) the accel-
erations ax and ay, (b) the velocity component in the direc-
tion � � 40°, (c) the direction of maximum velocity, and (d)
the direction of maximum acceleration.



P4.4 Suppose that the temperature field T � 4x2 	 3y3, in arbi-
trary units, is associated with the velocity field of Prob. 4.3.
Compute the rate of change dT/dt at (x, y) � (2, 1).

P4.5 The velocity field near a stagnation point (see Example 1.10)
may be written in the form

u � � � 	 U0 and L are constants 

(a) Show that the acceleration vector is purely radial. (b)
For the particular case L � 1.5 m, if the acceleration at (x,
y) � (1 m, 1 m) is 25 m/s2, what is the value of U0?

P4.6 Assume that flow in the converging nozzle of Fig. P4.2 has
the form V � V0[1 � (2x)/L]i. Compute (a) the fluid accel-
eration at x � L and (b) the time required for a fluid parti-
cle to travel from x � 0 to x � L.

P4.7 Consider a sphere of radius R immersed in a uniform stream
U0, as shown in Fig. P4.7. According to the theory of Chap.
8, the fluid velocity along streamline AB is given by

V � ui � U0�1 � �i

Find (a) the position of maximum fluid acceleration along
AB and (b) the time required for a fluid particle to travel
from A to B.

R3

�
x3

U0y
�

L
U0x
�

L

the time for which the fluid acceleration at x � L is zero.
Why does the fluid acceleration become negative after con-
dition (b)?

P4.9 A velocity field is given by V � (3y2 	 3x2)i � Cxyj � 0k.
Determine the value of the constant C if the flow is to be
(a) incompressible and (b) irrotational.

P4.10 Write the special cases of the equation of continuity for (a)
steady compressible flow in the yz plane, (b) unsteady in-
compressible flow in the xz plane, (c) unsteady compress-
ible flow in the y direction only, (d) steady compressible
flow in plane polar coordinates.

P4.11 Derive Eq. (4.12b) for cylindrical coordinates by consider-
ing the flux of an incompressible fluid in and out of the el-
emental control volume in Fig. 4.2.

P4.12 Spherical polar coordinates (r, �, $) are defined in Fig.
P4.12. The cartesian transformations are

x � r sin � cos $

y � r sin � sin $

z � r cos �
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x = 0 x = L

u (x, t)

U0

A

x = – 4R

B

y

x
Sphere

R

P4.7

P4.8 When a valve is opened, fluid flows in the expansion duct
of Fig. 4.8 according to the approximation

V � iU�1 	 � tanh 

Find (a) the fluid acceleration at (x, t) � (L, L/U) and (b)

Ut
�
L

x
�
2L

P4.8

y

x

z

P

θ

φ

υθ

r = constant

υφ

r

r

υ

P4.12

The cartesian incompressible continuity relation (4.12a) can
be transformed to the spherical polar form

(r2�r) � (�� sin �) � (�$) � 0

What is the most general form of �r when the flow is purely
radial, that is, �� and �$ are zero?

P4.13 A two-dimensional velocity field is given by

u � 	 � �

where K is constant. Does this field satisfy incompressible

Kx
�
x2 � y2

Ky
�
x2 � y2

�
�
�$

1
�
r sin �

�
�
��

1
�
r sin �

�
�
�r

1
�
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continuity? Transform these velocities to polar components
�r and ��. What might the flow represent?

P4.14 For incompressible polar-coordinate flow, what is the most
general form of a purely circulatory motion, �� � ��(r, �, t)
and �r � 0, which satisfies continuity?

P4.15 What is the most general form of a purely radial polar-
coordinate incompressible-flow pattern, �r � �r(r, �, t) and
�� � 0, which satisfies continuity?

P4.16 An incompressible steady-flow pattern is given by u � x3 �
2z2 and w � y3 	 2yz. What is the most general form of the
third component, �(x, y, z), which satisfies continuity?

P4.17 A reasonable approximation for the two-dimensional in-
compressible laminar boundary layer on the flat surface in
Fig. P4.17 is

u � U � 	 � for y � 
 where 
 � Cx1/2, C � const

(a) Assuming a no-slip condition at the wall, find an ex-
pression for the velocity component �(x, y) for y � 
. (b)
Then find the maximum value of � at the station x � 1 m,
for the particular case of airflow, when U � 3 m/s and 
 �
1.1 cm.

y2

�

2

2y
�



P4.20 A two-dimensional incompressible velocity field has u �
K(1 	 e	ay), for x � L and 0 � y � �. What is the most
general form of �(x, y) for which continuity is satisfied and
� � �0 at y � 0? What are the proper dimensions for con-
stants K and a?

P4.21 Air flows under steady, approximately one-dimensional
conditions through the conical nozzle in Fig. P4.21. If the
speed of sound is approximately 340 m/s, what is the min-
imum nozzle-diameter ratio De /D0 for which we can safely
neglect compressibility effects if V0 � (a) 10 m/s and (b)
30 m/s?
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D0

De

V0 Ve

P4.21

V = constant

x = 0 x = L (t)
x

 (t)
u (x, t)

ρ

P4.18

U
y

x

u (x, y)

U

Layer thickness    (x)

0

U = constant

δ

u (x, y)

P4.17

P4.18 A piston compresses gas in a cylinder by moving at constant
speed �, as in Fig. P4.18. Let the gas density and length at 
t � 0 be �0 and L0, respectively. Let the gas velocity vary lin-
early from u � V at the piston face to u � 0 at x � L. If the
gas density varies only with time, find an expression for �(t).

P4.19 An incompressible flow field has the cylindrical components
�� � Cr, �z � K(R2 	 r2), �r � 0, where C and K are con-
stants and r � R, z � L. Does this flow satisfy continuity?
What might it represent physically?

P4.22 Air at a certain temperature and pressure flows through a
contracting nozzle of length L whose area decreases linearly,
A � A0[1 	 x/(2L)]. The air average velocity increases
nearly linearly from 76 m/s at x � 0 to 167 m/s at x � L. If
the density at x � 0 is 2.0 kg/m3, estimate the density at 
x � L.

P4.23 A tank volume � contains gas at conditions (�0, p0, T0). At
time t � 0 it is punctured by a small hole of area A. Ac-
cording to the theory of Chap. 9, the mass flow out of such
a hole is approximately proportional to A and to the tank
pressure. If the tank temperature is assumed constant and
the gas is ideal, find an expression for the variation of den-
sity within the tank.

*P4.24 Reconsider Fig. P4.17 in the following general way. It is
known that the boundary layer thickness 
(x) increases mo-
notonically and that there is no slip at the wall (y � 0). Fur-
ther, u(x, y) merges smoothly with the outer stream flow,
where u � U � constant outside the layer. Use these facts
to prove that (a) the component �(x, y) is positive every-
where within the layer, (b) � increases parabolically with y
very near the wall, and (c) � is a maximum at y � 
.

P4.25 An incompressible flow in polar coordinates is given by

�r � K cos ��1 	 �
�� � 	K sin ��1 � �

Does this field satisfy continuity? For consistency, what

b
�
r2

b
�
r2



should the dimensions of constants K and b be? Sketch the
surface where �r � 0 and interpret.

*P4.26 Curvilinear, or streamline, coordinates are defined in Fig.
P4.26, where n is normal to the streamline in the plane of
the radius of curvature R. Show that Euler’s frictionless mo-
mentum equation (4.36) in streamline coordinates becomes

� V � 	 � gs (1)

	V 	 � 	 � gn (2)

Further show that the integral of Eq. (1) with respect to s is
none other than our old friend Bernoulli’s equation (3.76).
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Is this also the position of maximum fluid deceleration?
Evaluate the maximum viscous normal stress if the fluid is
SAE 30 oil at 20°C, with U � 2 m/s and a � 6 cm.

P4.32 The answer to Prob. 4.14 is �� � f(r) only. Do not reveal
this to your friends if they are still working on Prob. 4.14.
Show that this flow field is an exact solution to the Navier-
Stokes equations (4.38) for only two special cases of the
function f(r). Neglect gravity. Interpret these two cases phys-
ically.

P4.33 From Prob. 4.15 the purely radial polar-coordinate flow
which satisfies continuity is �r � f(�)/r, where f is an arbi-
trary function. Determine what particular forms of f(�) sat-
isfy the full Navier-Stokes equations in polar-coordinate
form from Eqs. (D.5) and (D.6).

P4.34 The fully developed laminar-pipe-flow solution of Prob.
3.53, �z � umax(1 	 r2/R2), �� � 0, �r � 0, is an exact so-
lution to the cylindrical Navier-Stokes equations (App. D).
Neglecting gravity, compute the pressure distribution in the
pipe p(r, z) and the shear-stress distribution �(r, z), using R,
umax, and � as parameters. Why does the maximum shear
occur at the wall? Why does the density not appear as a pa-
rameter?

P4.35 From the Navier-Stokes equations for incompressible flow
in polar coordinates (App. D for cylindrical coordinates),
find the most general case of purely circulating motion ��(r),
�r � �z � 0, for flow with no slip between two fixed con-
centric cylinders, as in Fig. P4.35.
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P4.26

P4.27 A frictionless, incompressible steady-flow field is given by

V � 2xyi 	 y2j

in arbitrary units. Let the density be �0 � constant and ne-
glect gravity. Find an expression for the pressure gradient
in the x direction.

P4.28 If z is “up,” what are the conditions on constants a and b
for which the velocity field u � ay, � � bx, w � 0 is an ex-
act solution to the continuity and Navier-Stokes equations
for incompressible flow?

P4.29 Consider a steady, two-dimensional, incompressible flow of
a newtonian fluid in which the velocity field is known, i.e.,
u � 	2xy, � � y2 	 x2, w � 0. (a) Does this flow satisfy
conservation of mass? (b) Find the pressure field, p(x, y) if
the pressure at the point (x � 0, y � 0) is equal to pa.

P4.30 Show that the two-dimensional flow field of Example 1.10
is an exact solution to the incompressible Navier-Stokes
equations (4.38). Neglecting gravity, compute the pressure
field p(x, y) and relate it to the absolute velocity V2 � u2 �
�2. Interpret the result.

P4.31 According to potential theory (Chap. 8) for the flow ap-
proaching a rounded two-dimensional body, as in Fig. P4.31,
the velocity approaching the stagnation point is given by 
u � U(1 	 a2/x2), where a is the nose radius and U is the
velocity far upstream. Compute the value and position of
the maximum viscous normal stress along this streamline.

EES



P4.36 A constant-thickness film of viscous liquid flows in lami-
nar motion down a plate inclined at angle �, as in Fig. P4.36.
The velocity profile is

u � Cy(2h 	 y) � � w � 0 

Find the constant C in terms of the specific weight and vis-
cosity and the angle �. Find the volume flux Q per unit width
in terms of these parameters.

u � � � w � 0 

If the wall temperature is Tw at both walls, use the incom-
pressible-flow energy equation (4.75) to solve for the tem-
perature distribution T(y) between the walls for steady flow.

*P4.41 The approximate velocity profile in Prob. 3.18 and Fig. P3.18
for steady laminar flow through a duct, was suggested as

u � umax �1 	 ��1 	 �
With � � w � 0, it satisfied the no-slip condition and gave
a reasonable volume-flow estimate (which was the point of
Prob. 3.18). Show, however, that it does not satsify the x-
momentum Navier-Stokes equation for duct flow with con-
stant pressure gradient �p/�x  0. For extra credit, explain
briefly how the actual exact solution to this problem is ob-
tained (see, for example, Ref. 5, pp. 120–121).

P4.42 In duct-flow problems with heat transfer, one often defines
an average fluid temperature. Consider the duct flow of Fig.
P4.40 of width b into the paper. Using a control-volume in-
tegral analysis with constant density and specific heat, de-
rive an expression for the temperature arising if the entire
duct flow poured into a bucket and was stirred uniformly.
Assume arbitrary u(y) and T(y). This average is called the
cup-mixing temperature of the flow.

P4.43 For the draining liquid film of Fig. P4.36, what are the ap-
propriate boundary conditions (a) at the bottom y � 0 and
(b) at the surface y � h?

P4.44 Suppose that we wish to analyze the sudden pipe-expansion
flow of Fig. P3.59, using the full continuity and Navier-
Stokes equations. What are the proper boundary conditions
to handle this problem?

P4.45 Suppose that we wish to analyze the U-tube oscillation flow
of Fig. P3.96, using the full continuity and Navier-Stokes
equations. What are the proper boundary conditions to han-
dle this problem?

P4.46 Fluid from a large reservoir at temperature T0 flows into a
circular pipe of radius R. The pipe walls are wound with an
electric-resistance coil which delivers heat to the fluid at a
rate qw (energy per unit wall area). If we wish to analyze

z2

�
h2

y2

�
b2

4umaxy(h 	 y)
��

h2
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*P4.37 A viscous liquid of constant � and � falls due to gravity be-
tween two plates a distance 2h apart, as in Fig. P4.37. The
flow is fully developed, with a single velocity component
w � w(x). There are no applied pressure gradients, only
gravity. Solve the Navier-Stokes equation for the velocity
profile between the plates.

P4.38 Reconsider the angular-momentum balance of Fig. 4.5 by
adding a concentrated body couple Cz about the z axis [6].
Determine a relation between the body couple and shear
stress for equilibrium. What are the proper dimensions for
Cz? (Body couples are important in continuous media with
microstructure, such as granular materials.)

P4.39 Problems involving viscous dissipation of energy are depen-
dent on viscosity �, thermal conductivity k, stream velocity U0,
and stream temperature T0. Group these parameters into the di-
mensionless Brinkman number, which is proportional to �.

P4.40 As mentioned in Sec. 4.11, the velocity profile for laminar
flow between two plates, as in Fig. P4.40, is



this problem by using the full continuity, Navier-Stokes, and
energy equations, what are the proper boundary conditions
for the analysis?

P4.47 A two-dimensional incompressible flow is given by the ve-
locity field V � 3yi � 2xj, in arbitrary units. Does this flow
satisfy continuity? If so, find the stream function �(x, y)
and plot a few streamlines, with arrows.

P4.48 Determine the incompressible two-dimensional stream
function �(x, y) which represents the flow field given in Ex-
ample 1.10.

P4.49 Investigate the stream function � � K(x2 	 y2), K � con-
stant. Plot the streamlines in the full xy plane, find any stag-
nation points, and interpret what the flow could represent.

P4.50 Investigate the polar-coordinate stream function � �
Kr1/2 sin �12��, K � constant. Plot the streamlines in the full
xy plane, find any stagnation points, and interpret.

P4.51 Investigate the polar-coordinate stream function � �
Kr2/3 sin (2�/3), K � constant. Plot the streamlines in all ex-
cept the bottom right quadrant, and interpret.

P4.52 A two-dimensional, incompressible, frictionless fluid is
guided by wedge-shaped walls into a small slot at the ori-
gin, as in Fig. P4.52. The width into the paper is b, and the
volume flow rate is Q. At any given distance r from the slot,
the flow is radial inward, with constant velocity. Find an ex-
pression for the polar-coordinate stream function of this flow.

(2L, 0, 0), (2L, 0, b), (0, L, b), and (0, L, 0). Show the di-
rection of Q.

*P4.55 In spherical polar coordinates, as in Fig. P4.12, the flow is
called axisymmetric if �$ 	 0 and �/�$ 	 0, so that �r �
�r(r, �) and �� � ��(r, �). Show that a stream function �(r,
�) exists for this case and is given by

�r � �� � 	

This is called the Stokes stream function [5, p. 204].
P4.56 Investigate the velocity potential $ � Kxy, K � constant.

Sketch the potential lines in the full xy plane, find any stag-
nation points, and sketch in by eye the orthogonal stream-
lines. What could the flow represent?

P4.57 Determine the incompressible two-dimensional velocity po-
tential $(x, y) which represents the flow field given in Ex-
ample 1.10. Sketch a few potential lines and streamlines.

P4.58 Show that the incompressible velocity potential in plane po-
lar coordinates $(r, �) is such that

�r � �� �

Further show that the angular velocity about the z-axis in
such a flow would be given by

2�z � (r��) 	 (�r) 

Finally show that $ as defined above satisfies Laplace’s
equation in polar coordinates for incompressible flow.

P4.59 Consider the simple flow defined by V � xi 	 yj, in arbi-
trary units. At t � 0, consider the rectangular fluid element
defined by the lines x � 2, x � 3 and y � 2, y � 3. Deter-
mine, and draw to scale, the location of this fluid element
at t � 0.5 unit. Relate this new element shape to whether
the flow is irrotational or incompressible.

P4.60 Liquid drains from a small hole in a tank, as shown in Fig.
P4.60, such that the velocity field set up is given by �r � 0,
�z � 0, �� � �R2/r, where z � H is the depth of the water  
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�
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�
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�
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�
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P4.53 For the fully developed laminar-pipe-flow solution of Prob.
4.34, find the axisymmetric stream function �(r, z). Use this
result to determine the average velocity V � Q/A in the pipe
as a ratio of umax.

P4.54 An incompressible stream function is defined by

�(x, y) � (3x2y 	 y3) 

where U and L are (positive) constants. Where in this chap-
ter are the streamlines of this flow plotted? Use this stream
function to find the volume flow Q passing through the rec-
tangular surface whose corners are defined by (x, y, z) �

U
�
L2



far from the hole. Is this flow pattern rotational or irrota-
tional? Find the depth zC of the water at the radius r � R.

P4.61 Investigate the polar-coordinate velocity potential $ �
Kr1/2 cos �

1
2

��, K � constant. Plot the potential lines in the
full xy plane, sketch in by eye the orthogonal streamlines,
and interpret.

P4.62 Show that the linear Couette flow between plates in Fig.
1.6 has a stream function but no velocity potential. Why
is this so?

P4.63 Find the two-dimensional velocity potential $(r, �) for the
polar-coordinate flow pattern �r � Q/r, �� � K/r, where Q
and K are constants.

P4.64 Show that the velocity potential $(r, z) in axisymmetric
cylindrical coordinates (see Fig. 4.2) is defined such that

�r � �z �

Further show that for incompressible flow this potential
satisfies Laplace’s equation in (r, z) coordinates.

P4.65 A two-dimensional incompressible flow is defined by

u � 	 � �

where K � constant. Is this flow irrotational? If so, find
its velocity potential, sketch a few potential lines, and in-
terpret the flow pattern.

P4.66 A plane polar-coordinate velocity potential is defined by

$ � K � const

Find the stream function for this flow, sketch some stream-
lines and potential lines, and interpret the flow pattern.

P4.67 A stream function for a plane, irrotational, polar-coordi-
nate flow is

� � C� 	 K ln r C and K � const

Find the velocity potential for this flow. Sketch some stream-
lines and potential lines, and interpret the flow pattern.

P4.68 Find the stream function and plot some streamlines for the
combination of a line source m at (x, y) � (0, �a) and an
equal line source placed at (0, 	a).

P4.69 Find the stream function and plot some streamlines for the
combination of a counterclockwise line vortex K at (x, y)
� (�a, 0) and an equal line vortex placed at (	a, 0).

*P4.70 Superposition of a source of strength m at (	a, 0) and a
sink (source of strength 	m) at (a, 0) was discussed briefly
in this chapter, where it was shown that the velocity po-
tential function is

$ � m 
 ln 
(x � a)2 � y2

��
(x 	 a)2 � y2

1
�
2

K cos �
�

r

Kx
�
x2 � y2

Ky
�
x2 � y2

�$
�
�z

�$
�
�r

A doublet is formed in the limit as a goes to zero (the source
and sink come together) while at the same time their
strengths m and 	m go to infinity and minus infinity, re-
spectively, with the product a 
 m remaining constant. (a)
Find the limiting value of velocity potential for the doublet.
Hint: Expand the natural logarithm as an infinite series of
the form

ln � 2�# � � 


�
as # goes to zero. (b) Rewrite your result for $doublet in cylin-
drical coordinates.

P4.71 Find the stream function and plot some streamlines for the
combination of a counterclockwise line vortex K at (x, y) �
(�a, 0) and an opposite (clockwise) line vortex placed at
(	a, 0).

P4.72 A coastal power plant takes in cooling water through a ver-
tical perforated manifold, as in Fig. P4.72. The total volume
flow intake is 110 m3/s. Currents of 25 cm/s flow past the
manifold, as shown. Estimate (a) how far downstream and
(b) how far normal to the paper the effects of the intake are
felt in the ambient 8-m-deep waters.

#3

�
3

1 � #
�
1 	 #
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25 cm/s

Water

Manifold

110 m3/s

8 m

P4.72

P4.73 A two-dimensional Rankine half-body, 8 cm thick, is placed
in a water tunnel at 20°C. The water pressure far upstream
along the body centerline is 120 kPa. What is the nose ra-
dius of the half-body? At what tunnel flow velocity will cav-
itation bubbles begin to form on the surface of the body?

P4.74 Find the stream function and plot some streamlines for the
combination of a uniform stream iU and a clockwise line
vortex 	K at the origin. Are there any stagnation points in
the flow field?

*P4.75 Find the stream function and plot some streamlines for the
combination of a line source 2m at (x, y) � (�a, 0) and a
line source m at (	a, 0). Are there any stagnation points in
the flow field?

P4.76 Air flows at 1.2 m/s along a flat surface when it encounters
a jet of air issuing from the horizontal wall at point A, as in
Fig. 4.76. The jet volume flow is 0.4 m3/s per unit depth
into the paper. If the jet is approximated as an inviscid line
source, (a) locate the stagnation point S on the wall. (b) How
far vertically will the jet flow extend into the stream?



P4.77 A tornado is simulated by a line sink m � 	1000 m2/s plus
a line vortex K � �1600 m2/s. Find the angle between any
streamline and a radial line, and show that it is independent
of both r and �. If this tornado forms in sea-level standard
air, at what radius will the local pressure be equivalent to
29 inHg?

P4.78 The solution to Prob. 4.68 (do not reveal!) can represent a
line source m at (0, �a) near a horizontal wall (y � 0). [The
other source at (0, 	a) represents an “image” to create the
wall.] Find (a) the magnitude of the maxinun flow velocity
along the wall and (b) the point of minimum pressure along
the wall. Hint: Use Bernoulli’s equation.

*P4.79 Study the combined effect of the two viscous flows in Fig.
4.16. That is, find u(y) when the upper plate moves at speed
V and there is also a constant pressure gradient (dp/dx). Is
superposition possible? If so, explain why. Plot representa-
tive velocity profiles for (a) zero, (b) positive, and (c) neg-
ative pressure gradients for the same upper-wall speed V.

*P4.80 Oil, of density � and viscosity �, drains steadily down the
side of a vertical plate, as in Fig. P4.80. After a develop-
ment region near the top of the plate, the oil film will be-
come independent of z and of constant thickness 
. Assume
that w � w(x) only and that the atmosphere offers no shear
resistance to the surface of the film. (a) Solve the Navier-
Stokes equation for w(x), and sketch its approximate shape.
(b) Suppose that film thickness 
 and the slope of the ve-
locity profile at the wall [�w/�x]wall are measured with a
laser-Doppler anemometer (Chap. 6). Find an expression for
oil viscosity � as a function of (�, 
, g, [�w/�x]wall).

P4.81 Modify the analysis of Fig. 4.17 to find the velocity u� when
the inner cylinder is fixed and the outer cylinder rotates at
angular velocity �0. May this solution be added to Eq.
(4.146) to represent the flow caused when both inner and
outer cylinders rotate? Explain your conclusion.

*P4.82 A solid circular cylinder of radius R rotates at angular ve-
locity � in a viscous incompressible fluid which is at rest
far from the cylinder, as in Fig. P4.82. Make simplifying
assumptions and derive the governing differential equation
and boundary conditions for the velocity field �� in the fluid.
Do not solve unless you are obsessed with this problem.
What is the steady-state flow field for this problem?
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P4.83 The flow pattern in bearing lubrication can be illustrated by
Fig. P4.83, where a viscous oil (�, �) is forced into the gap
h(x) between a fixed slipper block and a wall moving at ve-
locity U. If the gap is thin, h �L, it can be shown that the
pressure and velocity distributions are of the form p � p(x),
u � u(y), � � w � 0. Neglecting gravity, reduce the Navier-
Stokes equations (4.38) to a single differential equation for
u(y). What are the proper boundary conditions? Integrate and
show that

u � (y2 	 yh) � U�1 	 �
where h � h(x) may be an arbitrary slowly varying gap
width. (For further information on lubrication theory, see
Ref. 16.)

y
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h0 h (x) u ( y)
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x
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*P4.84 Consider a viscous film of liquid draining uniformly down
the side of a vertical rod of radius a, as in Fig. P4.84. At
some distance down the rod the film will approach a ter-
minal or fully developed draining flow of constant outer ra-
dius b, with �z � �z(r), �� � �r � 0. Assume that the at-
mosphere offers no shear resistance to the film motion.
Derive a differential equation for �z, state the proper bound-
ary conditions, and solve for the film velocity distribution.
How does the film radius b relate to the total film volume
flow rate Q?

P4.87 Suppose in Fig. 4.17 that neither cylinder is rotating. The
fluid has constant (�, �, k, cp). What, then, is the steady-
flow solution for ��(r)? For this condition, suppose that the
inner and outer cylinder surface temperatures are Ti and To,
respectively. Simplify the differential energy equation ap-
propriately for this problem, state the boundary conditions,
and find the temperature distribution in the fluid. Neglect
gravity.

P4.88 The viscous oil in Fig. P4.88 is set into steady motion by a
concentric inner cylinder moving axially at velocity U in-
side a fixed outer cylinder. Assuming constant pressure and
density and a purely axial fluid motion, solve Eqs. (4.38)
for the fluid velocity distribution �z(r). What are the proper
boundary conditions?
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P4.85 A flat plate of essentially infinite width and breadth oscil-
lates sinusoidally in its own plane beneath a viscous fluid,
as in Fig. P4.85. The fluid is at rest far above the plate. Mak-
ing as many simplifying assumptions as you can, set up the
governing differential equation and boundary conditions for
finding the velocity field u in the fluid. Do not solve (if you
can solve it immediately, you might be able to get exempted
from the balance of this course with credit).

x

y
Incompressible

viscous
fluid u (x, y, z, t)?

Plate velocity:

U0 sin ω t P4.85

P4.86 SAE 10 oil at 20°C flows between parallel plates 8 cm apart,
as in Fig. P4.86. A mercury manometer, with wall pressure
taps 1 m apart, registers a 6-cm height, as shown. Estimate
the flow rate of oil for this condition.

SAE 10
oil Q 8 mm

6 cm
Mercury

1 mP4.86

Fixed outer cylinder

U

Oil:ρ, µ vz

b vz(r)r

a

P4.88

*P4.89 Modify Prob. 4.88 so that the outer cylinder also moves to
the left at constant speed V. Find the velocity distribution
�z(r). For what ratio V/U will the wall shear stress be the
same at both cylinder surfaces?

P4.90 A 5-cm-diameter rod is pulled steadily at 2 m/s through a
fixed cylinder whose clearance is filled with SAE 10 oil at
20°C, as in Fig. P4.90. Estimate the (steady) force required
to pull the inner rod.

*P4.91 Consider two-dimensional, incompressible, steady Couette
flow (flow between two infinite parallel plates with the up-
per plate moving at constant speed and the lower plate sta-
tionary, as in Fig. 4.16a). Let the fluid be nonnewtonian,
with its viscous stresses given by

EES



�xx � a� �
c

�yy � a� �
c

�zz � a� �
c

�xy � �yx � �
1
2

�a� � �
c

�xz � �zx � �
1
2

�a� � �
c

�yz � �zy � �
1
2

�a� � �
c

where a and c are constants of the fluid. Make all the same
assumptions as in the derivation of Eq. (4.140). (a) Find the
velocity profile u(y). (b) How does the velocity profile for
this case compare to that of a newtonian fluid?
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Word Problems

W4.1 The total acceleration of a fluid particle is given by Eq.
(4.2) in the eulerian system, where V is a known function
of space and time. Explain how we might evaluate parti-
cle acceleration in the lagrangian frame, where particle po-
sition r is a known function of time and initial position,
r � fcn(r0, t). Can you give an illustrative example?

W4.2 Is it true that the continuity relation, Eq. (4.6), is valid for
both viscous and inviscid, newtonian and nonnewtonian,
compressible and incompressible flow? If so, are there any
limitations on this equation?

W4.3 Consider a CD compact disk rotating at angular velocity
�. Does it have vorticity in the sense of this chapter? If
so, how much vorticity?

W4.4 How much acceleration can fluids endure? Are fluids like
astronauts, who feel that 5g is severe? Perhaps use the flow
pattern of Example 4.8, at r � R, to make some estimates
of fluid-acceleration magnitudes.

W4.5 State the conditions (there are more than one) under which
the analysis of temperature distribution in a flow field can
be completely uncoupled, so that a separate analysis for
velocity and pressure is possible. Can we do this for both
laminar and turbulent flow?

W4.6 Consider liquid flow over a dam or weir. How might the
boundary conditions and the flow pattern change when we
compare water flow over a large prototype to SAE 30 oil
flow over a tiny scale model?

W4.7 What is the difference between the stream function � and
our method of finding the streamlines from Sec. 1.9? Or
are they essentially the same?

W4.8 Under what conditions do both the stream function � and
the velocity potential $ exist for a flow field? When does
one exist but not the other?

W4.9 How might the remarkable three-dimensional Taylor in-
stability of Fig. 4.18 be predicted? Discuss a general pro-
cedure for examining the stability of a given flow pattern.

W4.10 Consider an irrotational, incompressible, axisymmetric
(�/�� � 0) flow in (r, z) coordinates. Does a stream func-
tion exist? If so, does it satisfy Laplace’s equation? Are
lines of constant � equal to the flow streamlines? Does a
velocity potential exist? If so, does it satisfy Laplace’s
equation? Are lines of constant $ everywhere perpendicu-
lar to the � lines?

Fundamentals of Engineering Exam Problems
This chapter is not a favorite of the people who prepare the FE
Exam. Probably not a single problem from this chapter will appear
on the exam, but if some did, they might be like these.
FE4.1 Given the steady, incompressible velocity distribution V �

3xi � Cyj � 0k, where C is a constant, if conservation of
mass is satisfied, the value of C should be
(a) 3, (b) 3/2, (c) 0, (d) 	3/2, (e) 	3

FE4.2 Given the steady velocity distribution V � 3xi � 0j � Cyk,

where C is a constant, if the flow is irrotational, the value
of C should be
(a) 3, (b) 3/2, (c) 0, (d) 	3/2, (e) 	3

FE4.3 Given the steady, incompressible velocity distribution V �
3xi � Cyj � 0k, where C is a constant, the shear stress �xy

at the point (x, y, z) is given by
(a) 3� , (b) (3x � Cy)� , (c) 0, (d) C� ,
(e) (3 � C)�



Comprehensive Problem

C4.1 In a certain medical application, water at room temperature
and pressure flows through a rectangular channel of length
L � 10 cm, width s � 1.0 cm, and gap thickness b � 0.30
mm as in Fig. C4.1. The volume flow rate is sinusoidal with
amplitude Q̂ � 0.50 mL/s and frequency f � 20 Hz, i.e.,
Q � Q̂ sin (2� f t).
(a) Calculate the maximum Reynolds number (Re � Vb/�)
based on maximum average velocity and gap thickness.
Channel flow like this remains laminar for Re less than about
2000. If Re is greater than about 2000, the flow will be tur-
bulent. Is this flow laminar or turbulent? (b) In this problem,
the frequency is low enough that at any given time, the flow
can be solved as if it were steady at the given flow rate. (This
is called a quasi-steady assumption.) At any arbitrary instant
of time, find an expression for streamwise velocity u as a
function of y, �, dp/dx, and b, where dp/dx is the pressure
gradient required to push the flow through the channel at vol-
ume flow rate Q. In addition, estimate the maximum mag-
nitude of velocity component u. (c) At any instant of time,
find a relationship between volume flow rate Q and pressure
gradient dp/dx. Your answer should be given as an expres-
sion for Q as a function of dp/dx, s, b, and viscosity �. (d)

Estimate the wall shear stress, �w as a function of Q̂, f, �, b,
s, and time (t). (e) Finally, for the numbers given in the prob-
lem statement, estimate the amplitude of the wall shear stress,
�̂w, in N/m2.
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