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VI. VISCOUS INTERNAL FLOW 
 

To date, we have considered only problems where the viscous effects were either: 
 a.  known: i.e. - known  FD   or hf   
 b.  negligible: i.e. - inviscid flow 
 
This chapter presents methodologies for predicting viscous effects and viscous 
flow losses for internal flows in pipes, ducts, and conduits. 
 
Typically, the first step in determining viscous effects is to determine the flow 
regime at the specified condition. 
 
The two possibilities are: 
 a.  Laminar flow 
 b.  Turbulent flow 
 
The student should read Section 6.1 in the text, which presents an excellent 
discussion of the characteristics of laminar and turbulent flow regions. 
 
For steady flow at a known flow rate, these regions exhibit the following: 

Laminar flow: A local velocity constant with time, but which varies 
spatially due to viscous shear and geometry. 

Turbulent flow:  A local velocity which has a constant mean value but 
also has a statistically random fluctuating component due 
to turbulence in the flow. 

Typical plots of velocity time histories for laminar flow, turbulent flow, and 
the region of transition between the two are shown below.  

 

 
Fig. 6.1 (a) Laminar, (b)transition, and (c) turbulent flow velocity time histories. 
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Principal parameter used to specify the type of flow regime is the 
 

Reynolds number  - Re = ρV D
µ

= V D
ν

 

 
V - characteristic flow velocity 
D  - characteristic flow dimension 
 µ -  dynamic viscosity 

  υ   - kinematic viscosity =   
µ
ρ  

 
We can now define the 
 
 Recr  ≡  critical or transition Reynolds number 
 

Recr  ≡  Reynolds number below which the flow is laminar,  
 above which the flow is turbulent 
 
While transition can occur over a range of Re, we will use the following for 
internal pipe or duct flow: 
 

Recr ≅ 2300 =
ρVD

µ
 
 
 

cr

=
VD
υ
 
 cr  

 
Internal Viscous Flow 
 
A second classification concerns whether the flow has significant entrance region 
effects or is fully developed.  The following figure indicates the characteristics of 
the entrance region for internal flows.  Note that the slope of the streamwise 
pressure distribution is greater in the entrance region than in the fully developed 
region. 
 
Typical criteria for the length of the entrance region are given as follows: 
 

 Laminar: 
Le

D
≅ 0.06 Re  
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 Turbulent Le
D ≅ 4.4Re1/ 6  

 
 where: Le = length of the entrance region 

 

 
 
Note: Take care in neglecting entrance region effects. 

In the entrance region, frictional pressure drop/length > the pressure 
drop/length for the fully developed region.  Therefore, if the effects of the 
entrance region are neglected, the overall predicted pressure drop will be 
low.  This can be significant in a system with short tube lengths, e.g., some 
heat exchangers. 

 
 
Fully Developed Pipe Flow 
 
The analysis for steady, incompressible, fully developed, laminar flow in a 
circular horizontal pipe yields the following equations: 
 
 

U r( ) = −
R2

4µ
dP
dx

1 −
r2

R2
 
 
 

 
 
 
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U

Umax
= 1 −

r2

R2
 
 
 

 
 
 

, Umax = 2Vavg  

 
and 
 
  Q = A Vavg = ππππ R2 Vavg 
 
Key  Points:  Thus for laminar, fully developed pipe flow (not turbulent): 

a. The velocity profile is parabolic. 
b. The maximum local velocity is at the centerline (r = 0). 
c. The average velocity is one-half the centerline velocity. 
d. The local velocity at any radius varies only with radius, not on the 

streamwise (x) location ( due to the flow being fully developed). 
 
Note:  All subsequent equations will use the symbol   V (no subscript) to represent 
the average flow velocity in the flow cross section. 
 
Darcy Friction Factor: 
 
We can now define the Darcy friction factor  f  as: 

f ≡

D
L

 
 

 
 ∆P f

ρ V
2

2  

where  ∆Pf = the pressure drop due to friction 
only. 
The general energy equation must still be used 
to determine total pressure drop. 

Therefore, we obtain 

 
∆P f = ρ ghf = f

L
D

ρ V
2

2

 
and the friction head loss  hf  is given as 

 
h f = f

L
D

V
2g

2 

 
Note:  The definitions for f and hf are valid for either laminar or turbulent flow.  
However, you must evaluate  f  for the correct flow regime, laminar or turbulent. 
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Key Point: It is common in industry to define and use a “fanning” friction 
factor  ff .   The fanning friction factor differs from the Darcy friction factor 
by a factor of   4.  Thus, care should be taken when using unfamiliar 
equations or data since use of ff  in equations developed for the Darcy friction 
factor will result in significant errors (a factor of 4).  Your employer will not 
be happy if you order a 10 hp motor for a 2.5 hp application.  The equation 
suitable for use with  ff I s 
 

h f = 4 f f
L
D

V
2g

2
 

Laminar flow: 
 
Application of the results for the laminar flow velocity profile to the definition of 
the Darcy friction factor yields the following expression: 
 

 f =
64
Re

 laminar flow only (Re < 2300)
 

 

Thus with the value of the Reynolds number, the friction factor for laminar flow is 
easily determined. 

Turbulent flow: 

A similar analysis is not readily available for turbulent flow.  However, the 
Colebrook equation, shown below, provides an excellent representation for the 
variation of the Darcy friction factor in the turbulent flow regime.  Note that the 
equation depends on both the pipe Reynolds number and the roughness ratio, is 
transcendental, and cannot be expressed explicitly for  f . 
 
 

 f = −2log
2.51

Re f 1/ 2 +
ε / D
3.7

 

 
 

 

 
  turbulent flow only (Re > 2300) 
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where ε = nominal roughness of pipe or duct being used.  (Table 6.1, text) 

(Note:  Take care with units for ε;        ε /D must be non-dimensional). 
 
A good approximate equation for the turbulent region of the Moody chart is given 
by Haaland’s equation: 
 

f = −1.8log 6.9
Re

+ ε / D
3.7

 
 

 
 

1.11 

 
 

 

 
 

 
 
 

 
 
 

−2

 

 
Note again the roughness ratio  ε/D  must be non-dimensional in both equations. 
Graphically, the results for both laminar and turbulent flow pipe friction are 
represented by the Moody chart as shown below. 

 

 
 
 
Typical roughness values are shown in the following table: 
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Table 6.1  Average roughness values of commercial pipe 

 
 
Haaland’s equation is valid for turbulent flow (Re > 2300) and is easily set up on a 
computer, spreadsheet, etc. 
 
Key fluid system design considerations for laminar and turbulent flow 
 
a. Most internal flow problems of engineering significance are turbulent, not 

laminar.  Typically, a very low flow rate is required for internal pipe flow to be 
laminar.  If you open your kitchen faucet and the outlet flow stream is larger 
than a kitchen match, the flow is probably turbulent.  Thus, check your work 
carefully if your analysis indicates laminar flow. 

 
b. The following can be easily shown: 
 
 Laminar flow:   ∆Pf ~ µ, L,Q, D−4{ } 

   {{{{ }}}}2 4~ , , ,fW L Q Dµµµµ −−−−&  

 
 Turbulent flow: ∆Pf ~ ρ 3/ 4 , µ 1/ 4 , L, Q1.75, D−4.75{ }  

   {{{{ }}}}3 / 4 1/ 4 2.75 4.75~ , , , ,fW L Q Dρ µρ µρ µρ µ −−−−&  

Thus both pressure drop and pump power are very dependent on flow rate 
and pipe/conduit diameter.  Small changes in diameter and/or flow rate can 
significantly change circuit pressure drop and power requirements. 
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Example ( Laminar flow): 
Water, 20oC flows through a 0.6 cm 
tube, 30 m long, at a flow rate of 0.34 
liters/min.  If the pipe discharges to the 
atmosphere, determine the supply 
pressure if the tube is inclined 10o 
above the horizontal in the flow 
direction. 

10o

1

2

L = 30 m D = 0.6 cm

L

 

 

Water Properties: Energy Equation 

ρ = 998 kg/m3     ρg = 9790 N/m3 

 
ν = 1.005 E-6 m2/s 

P1 − P2
ρg

=
V2

2 − V1
2

2 g
+Z2 −Z1 + hf − hp  

 

which for steady-flow in a 
constant diameter pipe with P2 = 0 
gage becomes, 

P1

ρ g
= Z2 −Z1 + hf =  L sin 10o + hf 

 

V = Q
A

= 0.34E−3 m 3 / min*1min/ 60 s
π 0.3 /100( )2 m2 = 0.2 m / s  

 

Re = V D
υ

= 0.2*0.006
1.005 E−6 =1197 → laminar flow 

 

f = 64
Re

= 64
1197

= 0.0535 

 

hf = f L
D

V 2

2g
= 0.0535* 30m

0.006m
0.22

2*9.807m / s2
= 0.545m  

 
P1

ρg
= 30 *sin10Þ+ 0.545 = 5.21 + 0.545 = 5.75m  

 gravity friction total head 
 head head loss 

P1 = 9790 N/m3*5.75 m  =  56.34 kN/m3 (kPa)  ~ 8.2 psig   ans. 
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Example:  (turbulent flow) 

Oil, ρ = 900 kg/m3, ν = 1 E-5 m2/s, 
flows at 0.2 m3/s through a 500 m length 
of 200 mm diameter, cast iron pipe. If 
the pipe slopes downward 10o in the 
flow direction, compute  hf, total head 
loss, pressure drop, and power required 
to overcome these losses. 

L
10o

L = 500 m
D = 200 mm

1

2

 

The energy equation can 
be written as follows 
where  ht = total head 
loss. 

P1 − P2
ρg

= ht =
V2

2 − V1
2

2g
+Z2 −Z1 + hf − hp

 
 

which reduces to ht = Z2 −Z1 + hf  
 

V = Q
A

= 0.2m 3 / s
π .1( )2 m 2 = 6.4 m / s  Table 6.1, cast iron, ε = 0.26 mm 

Re = V D
υ

= 6.4*.2
1E−5 = 128, 000 → turbulent flow, 

ε
D

= 0.26
200

= 0.0013 

 
Since flow is turbulent, use Haaland’s equation to determine friction factor (check your 
work using the Moody chart). 

f = −1.8log 6.9
Re

+ ε / D
3.7

 
 

 
 

1.11 
 
 

 
 
 

 
 
 

 
 
 

−2

, f = −1.8log 6.9
128, 000

+ 0.0013
3.7

 
 

 
 

1.11 

 
 

 

 
 

 
 
 

 
 
 

−2

 

 

f = 0.02257  hf = f L
D

V 2

2g
= 0.02257* 500m

0.2m
6.42

2 *9.807m / s 2
=116.6m     ans. 

 ht = Z2 – Z1 + hf = - 500 sin 0  + 116.6 = - 86.8 + 116.6 = 29.8 m    ans. 



 

VI-10 

Note that for this problem, there is a negative gravity head loss (i.e. a head increase) and 
a positive frictional head loss resulting in the net head loss of  29.8 m.   
 

∆P = ρ ght = 900kg / m3 *9.807m / s2 *29.8m = 263kPa     ans. 
 

3 20.2 / * 273,600 / 54.7tW Q g h Q P m s N m kwρρρρ= = ∆ = == = ∆ = == = ∆ = == = ∆ = =&    ans. 
 

Note that this is not necessarily the power required to drive a pump, as the pump 
efficiency will typically be less than 100%. 

These problems are easily set up for solution in a spreadsheet as shown below.  Make 
sure that the calculation for friction factor includes a test for laminar or turbulent flow 
with the result proceeding to the correct equation.   

Always verify any computer solution with problems having a known solution. 

FRICTIONAL HEAD LOSS CALCULATION

All Data are entered in S.I. Units e.g. (m, sec., kg), except as  noted,   ε

Ex. 6.7
Input Data Calculated Results

L = 500 (m ) V = 6.37 (m/sec)
D = 0.2 (m) Re = 127324
ε = 0.26 (mm) e/D = 0.0013
ρ = 900 (kg/m^3) f= 0.02258
ν = 1.00E-05 (m^2/sec) hf = 116.62

Q = 0.2 (m^3/sec) sum Ki = 0.00
D1 = 0.08 (m) hm = 0.00 (m)
D2 = 0.08 (m)

d KE = 0.00 (m) ht = 29.62 (m)
d Z = -87 (m) (m)

P1-P2 = 261.43 (kPa)  
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Solution Summary: 
To solve basic pipe flow frictional head loss problem, use the following 
procedure: 
 

 1. Use known flow rate to determine Reynolds number. 
 2. Identify whether flow is laminar or turbulent. 

 3. Use appropriate expression to determine friction factor (w ε/D if necessary). 
 4. Use definition of hf to determine friction head loss. 
 5. Use general energy equation to determine total pressure drop. 

  

Unknown Flow Rate and Diameter Problems 
Problems involving unknown flow rate and diameter in general require iterative/ 
trial & error solutions due to the complex dependence of Re, friction factor, and 
head loss on velocity and pipe size. 
Unknown Flow Rate: 
For the special case of known friction loss  hf  a closed form solution can be 
obtained for the problem of unknown Q. 
 
The solution proceeds as follows: 
 

Given:  Known values for  D, L, hf, ρ, and µ     calculate V or Q. 
Define solution parameter:   

ς = 1
2 f ReD

2 =
gD3 hf

Lυ 2  

 

Note that this solution does not contain velocity and the parameter  ζ  can be 
calculated from known values for D, L, hf, ρ, and µ.   The Reynolds number and 
subsequently the velocity can be determined from ζ and the following equations: 
 

Turbulent:   ReD = − 8ς( )1/ 2 log ε / D
3.7

+ 1.775
ζ

 
 
 

 
 
 
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Laminar: ReD =
ς
32

 
 

and laminar to turbulent transition can be assumed to occur approximately at 
ζ = 73,600  (check Re at end of calculation to confirm). 
 
Note that this procedure is not valid (except perhaps for initial estimates) for 
problems involving significant minor losses where the head loss due only to pipe 
friction is not known.   
For these problems a trial and error solution using a computer is best. 
 
Example 6.9 

Oil, with ρ = 950 kg/m3 and ν = 2 E-5 m2/s, flows through 100 m of a 30 cm 
diameter pipe.  The pipe is known to have a head loss of 8 m and a roughness ratio  
ε/D = 0.0002.  Determine the flow rate and oil velocity possible for these 
conditions. 
 

Without any information to the contrary, we will neglect minor losses and KE 
head changes.  With these assumptions, we can write: 
 

ς =
g D3 hf

Lυ 2 = 9.807m / s2 *0.303 m3 *8.0 m

100m* 2 E−5m2 / s( )2 = 5.3E7>   73,600;  turbulent 

 

ReD = − 8*5.3E7( )1/ 2 log 0.0002
3.7

+ 1.775
5.3E7

 
 
 

 
 
 

= 72,600   checks, turbulent 

 

ReD = V D
υ

, V = 72,600*2 E −5m2 / s
0.3m

= 4.84 m
s

   ans. 

 

Q = A V = π.152 m2 4.84 m/s = 0.342m3/s   ans. 
 

This is the maximum flow rate and oil velocity that could be obtained through the 
given pipe and given conditions (hf = 8 m). 
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Note that this problem could have also been solved using a computer based trial 
and error procedure in which a value is assumed for the fluid flow rate until a flow 
rate is found which results in the specified head loss.  Note also that with this 
procedure, the problem being solved can include the effects of minor losses, KE, 
and PE changes with no additional difficulty. 
 
Unknown Pipe Diameter: 
 

A similar difficulty arises for problems involving unknown pipe difficulty, except 
a closed form, analytical solution is not available.  Again, a trial and error solution 
is appropriate for use to obtain the solution and the problem can again include 
losses due to KE, PE, and piping components with no additional difficulty. 

 
Non-Circular Ducts: 

 
For flow in non-circular ducts or ducts for which the flow does not fill the entire 
cross-section, we can define the hydraulic diameter   Dh   as  

Dh =
4 A
P

 

where 
A = cross-sectional area of actual flow, 
P = wetted perimeter, i.e. the perimeter 
on which viscous shear acts 

A

P

Cross sectional area -

Perimeter -  
 
With this definition, all previous equations for the Reynolds number  Re  friction 
factor  f  and head loss  hf   are valid as previously defined and can be used on 
both circular and non-circular flow cross sections. 
 
Minor Losses 
 

In addition to frictional losses for a length  L  of pipe, we must also consider 
losses due to various fittings (valves, unions, elbows, tees, etc.).  These losses are 
expressed as 
 

 hm = Ki
V 2

2g
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where 
 
 hm = the equivalent head loss across the fitting or flow component. 
 
 V = average flow velocity for the pipe size of the fitting 
 

Ki = the minor loss coefficient for given flow component; valve, union, etc. 
See Sec. 6.7, Table 6.5, 6.6, Fig. 6.19, 6.20, 6.21, 6.22, etc. 
 

 
Table 6.5 shows minor loss K values for several common types of valves, fully 
open, and for elbows and tees.   

 
 

Table 6.5  Minor loss coefficient for common valves and piping components 

 
 
 
Figure 6.18 shows minor loss K values for several types of common valves.  
 
Note that the K valves shown here are for the indicated fractional opening. Also, 
fully open values may not be consistent with values indicated in Table 6.5 for fully 
open valves or for the valve of a particular manufacturer.  In general, use specific 
manufacturer’s data when available. 
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Fig. 6.18  Average loss coefficients for partially open valves 
 
 
 

Note that exit losses are K 
≅  1  for all submerged 
exits, e.g., fluid discharged 
into a tank at a level below 
the fluid surface.   
 
Also, for an open pipe 
discharge to the 
atmosphere, there is no loss 
coefficient when the energy 
equation is written only to 
the end of the pipe. 
 
In general, do not take 
point 1 for an analysis to be 
in the plane of an inlet 
having an inlet loss.  You 
do not know what fraction 
of the inlet loss to consider. 

 
Fig. 6.21  Entrance and exit loss coefficients 
(a) reentrant inlets; (b) rounded and beveled inlets 
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Fig. 6.22  Sudden contraction and expansion 
losses. 

Note that the losses shown in Fig. 
6.22 do not represent losses 
associated with pipe unions or 
reducers.  These must be found in 
other sources in the literature.  
 
Also note that the loss coefficient 
is always based on the velocity in 
the smaller diameter (d) of the 
pipe, irrespective of the direction 
of flow.    
 
Assume that this is also true for 
reducers and similar area change 
fittings. 

 
These and other sources of data now provide the ability to determine frictional 
losses for both the pipe and other piping/duct flow components. 
 
 
The total frictional loss now becomes 
 

hf = f
L
D

V
2g

2
+∑Ki

V 2

2g
 

 
or  
 

hf = f
L
D

+ ∑Ki
  
 

  
 

V
2g

2
 

 
These equations would be appropriate for a single pipe size (with average velocity 
V).   For multiple pipe/duct sizes, this term must be repeated for each pipe size.   

Key Point:  The energy equation must still be used to determine the total head 
loss and pressure drop from all possible contributions. 
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Example  6.16 
 

 
 
Water, ρ = 1.94 slugs/ft3 and  ν = 1.1 E-5 ft2/s, is pumped between two reservoirs 
at 0.2 ft3/s through 400 ft of 2–in diameter pipe with ε/D = 0.001 having the 
indicated minor losses.  Compute the pump horsepower (motor size) required. 
 
Writing the energy equation between points 1 and 2 (the free surfaces of the two 
reservoirs), we obtain 
 
 

P1 − P2

ρ g
=

V2
2 − V1

2

2g
+ Z2 − Z1 + hf − hp  

 
For this problem, the pressure (P1 = P2) and velocity (V1 = V2 = 0) head terms are 
zero and the equation reduces to 
 

hp = Z2 − Z1 + hf = Z2 − Z1 + f
L
D

+∑Ki
  
 

  
 

V
2g

2
 

 
For a flow rate Q = 0.2 ft3/s we obtain 
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V =
Q
A

=
0.2 ft3 / s

π 1/12( )2 ft2 = 9.17 ft / s  

 

With  ε/D = 0.001  and  Re =
V D
ν

=
9.17 ft / s 2/12( ) ft

1.1E−5 ft2 / s
=139,000  

 
the flow is turbulent and Haaland’s equation can be used to determine the friction 
factor: 
 

f = −1.8log 6.9
139, 000

+ .001
3.7

 
 

 
 
1.11 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

−2
= 0.0214 

 
 

the minor losses for the problem are summarized in the following table: 
 
Note:  The loss for a 
pipe bend is not the 
same as for an elbow 
fitting. 
If there were no tank at 
the pipe discharge and 
point 2 were at the pipe 
exit, there would be no 
exit loss coefficient.  
However, there would 
be an exit K.E. term. 

Loss element Ki
Sharp entrance (Fig. 6.21) 0.5
Open globe valve (Table 6.5) 6.9
12 " bend, R/D = 12/6 = 2 (Fig. 6.19) 0.15
Threaded, 90Þ, reg. elbow, (Table 6.5) 0.95
Gate valve, 1/2 closed (Fig. 6.18) 2.7
Submerged exit (Fig. 6.20) 1

� Ki = 12.2
 

 
 
 

Substituting in the energy equation we obtain 
 

h p = 120 −20( ) + 0.0214 400
2/12

9.172

64.4
 
 
 

 
 
 

+ 12.2 9.172

64.4
 
 
 

 
 
 

 

 
h p =100 + 67.1+ 15.9 = 183ft  
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Note the distribution of the total loss between static, pipe friction, and minor 
losses. 
 
The power required to be delivered to the fluid is give by 
 

Pf = ρ Qghp =1.94 slug
ft3 32.2 ft

s2 0.2 ft3

s
183 ft = 2286 ft lbf  

 

Pf = 2286ftlbf
550ftlbf / s /hp

=4.2hp 

 
If the pump has an efficiency of 70 %, the power requirements would be specified 
by 
 

4.2 6
0.70p

hp hpw = == == == =&  

 
Solution Summary: 
To solve basic pipe flow pressure drop problem, use the following procedure: 

 1. Use known flow rate to determine Reynolds number. 
 2. Identify whether flow is laminar or turbulent. 

 3. Use appropriate expression to find friction factor (with ε/D if necessary). 

 4. Use definition of hf to determine friction head loss. 
 5. Tabulate and sum minor loss coefficients for piping components. 
 6a. Use general energy equation to determine total pressure drop, or 
 6b. Determine pump head requirements as appropriate. 
 7. Determine pump power and motor size if required. 
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Multiple-Pipe Systems 
 
Basic concepts of pipe system analysis apply also to multiple pipe systems.  
However, the solution procedure is more involved and can be iterative. 
 
Consider the following: 

a. Multiple pipes in series 
b. Multiple pipes in parallel 
 

Series Pipe System: 
 
The indicated pipe system has a 
steady flow rate  Q  through three 
pipes with diameters D1, D2, & D3. 
 
Two important rules apply to this 
problem. 

a b
1 2 3

 
 

 
 
1. The flow rate is the same through each pipe section. For incompressible 

flow, this is expressed as 
 
 Q1  =  Q2  =  Q3  =  Q    or    D1

2V1  =  D2
2V2  =  D3

2V3 
 
 
2. The total frictional head loss is the sum of the head losses through the 

various sections. 
 
 hf ,a−b = hf ,1 + hf ,2 + hf ,3 
 

hf ,a−b = f L
D

+ Ki∑ 
 

 
 

D1

V1
2

2g
+ f L

D
+ Ki∑ 

 
 
 

D2

V2
2

2g
+ f L

D
+ Ki∑ 

 
 
 

D3

V3
2

2g
 

Note:  Be careful how you evaluate the transitions from one section to the 
next.  In general, loss coefficients for transition sections are based on 
the velocity of the smaller section. 



 

VI-21 

Example:  Given a pipe system as shown in the previous figure.  The total 
pressure drop is Pa – Pb = 150 kPa and the elevation change is Za – Zb = – 5 m.  
Given the following data, determine the flow rate of water through the section. 
 

Pipe L (m) D (cm) e (mm) e/D
1 100 8 0.24 0.003
2 150 6 0.12 0.02
3 80 4 0.2 0.005

 
 
The energy equation is written as 
where  hf  is given by the sum of 
the total frictional losses for three 
pipe sections.   

With no pump; hp is 0, Zb  -  Za =  
- 5 m and  ht = 15.3 m for ∆P = 
150 kPa   

Pa − Pb
ρ g

=
Vb

2 − Va
2

2 g
+ Zb − Za + h f − hp 

 

ht =
Pa − Pb

ρ g
=

150,000 N / m2

9790 N / m2 = 15.3m  

 
Since the flow rate  Q  and thus velocity is the only remaining variable, the 
solution is easily obtained from a spreadsheet by assuming Q until ∆P = 150 kPa. 
 

Fluid 1 2 3
ρ(kg/m^3) = 1000 L(m) 100 150 80
ν(m^2/s) = 1.02E-06 D(m) = 0.08 0.06 0.04

ε(mm) = 0.24 0.12 0.20
inlet & exit ε/D= 0.003 0.002 0.005

dZ (m) = -5
Da(m) = 0.08 V(m/s)= 0.56 1.00 2.25
Db(m) = 0.04 Re = 44082.8 58777.1 88165.6

Assume f= 0.02872 0.02591 0.03139
Q (m^3/s)= 0.00283 hf = 0.58 3.30 16.18

Va(m/s)= 0.56 � Ki 0 0 0
Vb(m/s)= 2.25 hm= 0 0 0
dKE(m) = 0.24

hf (net) = 20.08 hf(calc) = 0.58 3.30 16.18
Actual Calculated

Pa - Pb (kPa) 150 150.00 Q(m^3/hr) = 10.17
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Thus it is seen that a flow rate of 10.17 m3/hr produces the indicated head loss 
through each section and a net total ∆P = 150 kPa. 
 
A solution can also be obtained by writing all terms explicitly in terms of a single 
velocity, however, the algebra is quite complex (unless the flow is laminar), and 
an iterative solution is still required.  All equations used to obtained the solution 
are the same as those presented in previous sections. 
 
Parallel Pipe Systems 
 
A flow rate QT enters the indicated 
parallel pipe system.  The total flow 
splits and flows through 3 pipe 
sections, each with different 
diameters and lengths. 
 
Two basic rules apply to parallel 
pipe systems; 

a b

1

2

3
Q

T
Q

T
 

 

 
1. The total flow entering the parallel section is equal to the sum of the flow 

rates through the individual sections, 
2. The total pressure drop across the parallel section is equal to the pressure 

drop across each individual parallel segment. 
 
Note that if a common junction is used for the start and end of the parallel section, 
the velocity and elevation change is also the same for each section.  Thus, the flow 
rate through each section must be such that the frictional loss is the same for each 
and the sum of the flow rates equals the total flow. 
 
For the special case of no kinetic or potential energy change across the sections, 
we obtain: 
 

ht  =  ( hf  +  hm)1  =  ( hf  +  hm)2  =( hf  +  hm)3  
and 
 

QT  =  Q1  +  Q2  +  Q3 
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Again, the equation used for both the pipe friction and minor losses is the same as 
previously presented.  The flow and pipe dimensions used for the previous 
example are now applied to the parallel circuit shown above. 
 
 
Example:  A parallel pipe section consists of three parallel pipe segments with the 
lengths and diameters shown below.  The total pressure drop is 150 kPa and the 
parallel section has an elevation drop of 5 m.  Neglecting minor losses and kinetic 
energy changes, determine the flow rate of water through each pipe section. 
 
The solution is iterative and is again presented in a spreadsheet.  The net friction 
head loss of 20.3 m now occurs across each of the three parallel sections. 
 
Fluid 1 2 3
ρ(kg/m^3) = 1000 L(m) 100 150 80
ν(m^2/s) = 1.02E-06 D(m) = 0.08 0.06 0.04

ε(mm) = 0.24 0.12 0.20
inlet & exit ε/D= 0.003 0.002 0.005

dZ (m) = -5 Q(m^3/hr) = 62.54 25.95 11.41
Da(m) = 0.08 V(m/s)= 3.46 2.55 2.52
Db(m) = 0.04 Re = 271083.5 149977.8 98919.7

f= 0.02666 0.02450 0.03129
Q (m^3/hr)= 99.91 hf = 20.30 20.30 20.30

Assume �Ki = 0 0 0
Q1 (m^3/s)= 62.54 hm= 0.00 0.00 0.00
Q2(m^3/s)= 25.95

hf,net(m) = 20.30 20.30 20.30
hf + ∆z= 15.30 15.30 15.30

Pa - Pb (kPa) 150.13
ht(m) = 15.31 Q(m^3/hr) = 62.54 25.95 11.41

Total Flow, Qt(m^3/hr) = 99.91
 
The strong effect of diameter can be seen with the smallest diameter having the 
lowest flow rate, even though it also has the shortest length of pipe. 
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