Ch. 10 Open-Channel Flow

Previous internal flow analyses have considered only closed conduits where the
fluid typically fills the entire conduit and may be either aliquid or agas.

This chapter considers only partialy filled channels of liquid flow referred to as
open-channel flow.

Open-Channel Flow: Flow of aliquid in a conduit with afree surface.

Open-channel flow analysis basically results in the balance of gravity and friction
forces.

One Dimensional Approximation

While open-channel flow can, in general, be very complex ( three dimensiona and
transient), one common approximation in basic analysesisthe

One-D Approximation:
Theflow at any local cross

section can be treated as = Y % s
uniform and at most varies . ~-=_1 ¢ i ; r
only in the principal flow e e N ;

direction. Hertzoral £ Ry

Thisresultsin the following equations.

Conservation of Mass (for p = constant)

Q = V(X) A(X) = constant

Enerqgy Equation

2 2
ﬁ*’zl:ﬁ*’zz"’hf
29 29
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The equation in this form is written between two points ( 1 —2 ) on the free surface
of the flow. Note that along the free surface, the pressure is a constant, is equal to
local atmospheric pressure, and does not contribute to the analysis with the energy
eguation.

Thefriction head loss hs isanalogous to the head loss term in duct flow, Ch. VI,
and can be represented by

v 2 where P = wetted perimeter
h, =fR—1— Dh = hydraulic diameter = 22
D, 29 =1 P

Note: One of the most commonly used formulas uses the hydraulic radius:

1 A
Rh :ZDh:E

Flow Classification by Depth Variation

The most common classification method is by rate of change of free-surface depth.
The classes are summarized as

1. Uniform flow (constant depth and slope)
2. Varied flow
a. Gradually varied (one-dimensional)
b. Rapidly varied (multidimensional)

Flow Classification by Froude Number: Surface Wave Speed

A second classification method is by the dimensionless Froude number, whichisa
dimensionless surface wave speed. For arectangular or very wide channel we
have

V V
— = where y isthe water depth

¢, (ay)”

and g = the speed of a surface wave as the wave height approaches zero.

Fr=

There are three flow regimes of incompressible flow. These have analogous flow
regimes in compressible flow as shown below:
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Incompressible Flow

Compressible Flow

Fr<il subcritical flow
Fr=1 critical flow
Fr>1 supercritical flow

Ma<1 subsonic flow
Ma=1 sonic flow
Ma>1 supersonic flow

Hydraulic Jump

Analogous to anormal shock in compressible flow, a hydraulic jump provides a
mechanism by which an incompressible flow, once having accelerated to the
supercritical regime, can return to subcritical flow. Thisisillustrated by the
following figure.

o= Hlulce
- g

= . Hvdraulic

bnastical |||I:|I|! Sobcriical
iy | l 4
e (5 '
. e | e

1| Supercritical I ﬁ

Fa =3

h _'p

Fig. 10.5 Flow under a sluice gate accel erates from subcritical to critical to
supercritical and then jumps back to subcritical flow.

Q

13

Y. = (bT) IS an important parameter in open-
g

channel flow and is used to determine the local flow regime (Sec. 10.4).

The critical depth

Uniform Flow; the Chezy Formula

1. Occursin long straight runs of constant slope
2. Theveocity is constant withV =V
3. Slopeisconstant with Sy =tan 6

Uniform flow
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From the energy equation with V1 = Vo = V,, we have
h,=2,-7Z,=S,L
Sincethe flow is fully developed, we can write from Ch. VI

2 12
h, = LY, and V. = (Q) R¥S”
D, 29 f

. (8"
For fully developed, uniform flow, the quantity (Tg) IS a constant

and can be denoted by C. The equations for velocity and flow rate
thus become

V,=CR”S” and Q=CAR/S”
The quantity Ciscaled the Chezy coefficient, and varies from 60 ftjjz/sfor small
rough channelsto 160 #Y%/s for large rough channels (30 to 90 mY?/sin Sl).
The Manning Roughness Correlation
Thefriction factor f inthe Chezy equations can be obtained from the Moody

chart of Ch. VI. However, since most flows can be considered fully rough, it is
appropriate to use Egn 6.64:

-2
fully rough flow: f = (Z.Olog 3'7Dh)

However, most engineers use a simple correlation by Robert Manning:

S.. Units V. (m/s)= % [R,(m)]° s
B.G. Units V. (ft/s) = % [R, ()] S
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where n isaroughness parameter givenin Table 10.1 and is the same in both
systems of unitsand a isadimensional constant equal to 1.0 in S.I. units and 1.486
in B.G. units. The volume flow rate is then given by

Uniform flow

Q:VOA=%ARﬁ’3SffZ

Table 10.1 Experimental Valuesfor Manning's n Factor

Avernge roughnesy
hight «
n n m
Ariifecial limed chaneels:
CFlass (L0 2 g2 [AEL AR 03
Bross 0,01 ] = 0402 (IR INEE (LK
Steed, smooth (0,012 = 0002 06032 1.0
Paimied (k014 = 0003 (L3RG 24
Rivesd (LO15 = D002 (L0 2 1.7
Casd irom (L0133 = 0003 0058 1.6
Cement, Finisked 012 = 042 3x 1.0
Unfimished 014 = 0,002 00,0080 24
Planed woond {LO1Z = Ax2 {3z Lo
Clay iile k14 = 0,003 {1.00R0 24
Brckwoark ROLS = 0002 {01 3.7
Asphalt EHE 2 0003 LERRRES 24
Cormugased metal 022 = 0005 12 ki
Ruabble masonry (U038 + (0,005 (1.2 Al
Excavaied enrth channels:
Clean 032 = 0,00t 11 )
Ciravelly (U2S = 003 (.26 a0
Weedy LA = {),DNFE .H 240
Siomy, cobbles L3S £ 010 1§ S
Matural channels:
Clean and sivaiphi 0 * {0.0HKS .8 240
Slisgpnsh, deep poods 0 = 010 3 SHX)
Major rivers OA3ES = {010 1.5 Six)
Floadplains:
Pestare, [amibsml 0435 £ 4010 1.5 500
Light hrush 05 = (02 f K]
Heavy brush 0475 = (025 15 SN
Trees (15 = (5 T T
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Example 10.1

Given: T

Rectangular channel, 4ft  cross-section
finished concrete, Slope= 0.5 v

water depth: y = 4 ft, width: b = 8 ft |l«— 8ft — |

Find:

Volume flow rate (ft3/s)

For the given conditions:  n=0.012 So=tan0.5" = 0.0873

A= by = (8ft)(4ft) = 32f> P =b+ 2y =8 + 2(4)=16ft

_A _32ft’

=== = 2ft D, =4R, = 8ft
P 16ft

Using Manning's formulain BG units, we obtain for the flow rate

Q=225 (32417)(21t)** (0.00873)" = 500 t/s ans

0.012

Alternative Problem

The previous uniform problem can also be formulated where the volume flow rate
Q isgiven and the fluid depth is unknown. For these conditions, the same basic

equations are used and the area A and hydraulic radius Ry, are expressed in terms
of the unknown water depth vy,

The solution is then obtained using iterative or systematic trial and error techniques
that are available in several math analysis/ math solver packages such as EES
(provided with the text) or Mathcad ®.
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Uniform Flow in a Partly Full, Circular Pipe

Fig. 10.6 shows a partly full, circular

pipe with uniform flow. Since ," B i 23
frictional resistance increases with ik '-:r"": N 5: |
wetted perimeter, but volume flow K o f 1
. . . i 4
rate increases with cross sectional .

flow area, .

the maximum vel ocity and flow rate
occur before the pipeis completely
full.

For this condition, the geometric
properties of the flow are given by the
equations below.

Fig. 10.6 Uniform Flow in aPartly Full,
Circular Channel

SIHZH) P=2RY Rh:B(l_smzej
20

A:RZ(H—
2

The previous Manning formulas are used to predict Vo and Q for uniform flow
when the above expressions are substituted for A, P, and Ry,.

_ 213 .
v =2 5(1_sm29) 5 Q:VORZ(Q—Snzg)
2 26 2

These equations have respective maximafor Vo and Q given by
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V= 0.718% R®S? a 6=12873p and y=0.813D

Q.. :2.129% R®S” a #=151.21p and y=0.938D

Efficient Uniform Flow Channeds

A common problemin channel flow is _ iy <
that of finding the most efficient low- : :
resistance sections for given conditions. .

Thisistypically obtained by maximizing
Rn for agiven areaand flow rate. This

is the same as minimizing the wetted O =
perimeter.

Note: Minimizing the wetted perimeter for a given flow should minimizethe
frictional pressuredrop per unit length for a given flow.

It is shown in the text that for constant value of area A and o = cot 8, the
minimum value of wetted perimeter is obtained for

A :y2 [2(1+a'2)1/2—a’:| P:4y(1+0'2)1/2—2ay Rh :%y

Note: For any trapezoid angle, the most efficient cross section occurs when the
hydraulic radius is one-half the depth.

For the specia case of arectangle (a=0, g =90°), the most efficient cross section
occurs with

A =2y° P=4y Rh:%y b=2y
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Best Trapezoid Angle

The general equations listed previously are valid for any value of a. For agiven,
fixed value of area A and depth y the best trapezoid angle is given by

a'=cot6?=3i or 6 = 60°

1/2

Example 10.3

What are the best dimensions for arectangular brick channel designed to carry 5
m3/s of water in uniform flow with Sy = 0.001?

Takingn=0.015from Table10.1, A =2 y2 , and Ry=21/2y; Manning’s
formulaiswritten as

10 2/3 2 3 ( )2/3 1/2
== ARP®S? or 5m’/s= 0.001
Q= n 0015( ) ( )

This can be solved to obtain
y*=1882m"° or y=127m

The corresponding area and width are

A =2y*=32lm’ and b :e =2.53m

Note: The text compares these results with those for two other geometries having
the same area.
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Specific Energy: Critical Depth

One useful parameter in channel _
flow isthe specific energy E, E=y+_—

where y istheloca water depth. 29
Defining a flow per unit channel E=y+ q°
widthas q = Q/b wewrite 29y°

Fig. 10.8bisaplot of b
the water depth y vs. i ;
the specific energy E.

The water depth for
which E isaminimum
isreferred to as the

critical depth ye.

o\ U3 2\ U3
Emin occurs at y= yc = (q_) = (szg)

Thevaueof Emin iSgiven by E. :gyc

At this value of minimum energy and minimum depth we can write

V.=(gy.) =C, ad Fr=1
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Depending on the value of Epjn and V, one of several flow conditions can exist.

For agiven flow, if

E < Enmin No solution is possible
E = Emin Flow iscritical,y =y¢, V = V¢
E > Emn ,V < Ve Flow is subcritical, y >y, ,disturbances can

propagate upstream as well as downstream

Flow is supercritical, y <y, disturbances can
only propagate downstream within awave angle
given by

E > Emin, V> V¢

1/2
,u:sin'1g :sin'l—(gy)
Vv Vv

Nonrectangular Channels

For flows where the local channel width varies with depth y, critical values can be
expressed as

o\ U3 12
A = (bOQ) and V.= Q :(gACj
g A b

c
where by = channel width at the free surface.

(o]

These equations must be solved iteratively to determine the critical area A and
critical velocity V.

For critical channel flow that is also moving with constant depth (y¢), the slope
correspondsto acritical Slope S; given by
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n’ gA
N T and o =1.for S| unitsand 2.208 for B. G. units
a“b, R,

Example 10.5

Given: a50’, triangular channel has a
flow rateof Q = 16 m’/s.

Compute: (&) ye, (b) Vg,

(c) S forn=0.018
a. For the given geometry, we have

P=2(ycsc50) A =2[y (1/2y cot 50°)]
Rh=A/P=y/2 cos50’ bo =2 (y cot 50°)

For critica flow, we can write

gA =b,Q or g(ycot509= 2y, cot500Q’

Ye=237m ans.
b. Withy., we compute
P.=6.18m Ac=4.70m° Do,c=3.97 m
16m’
Thecritical velocity isnow -Q :6—/S =341m/s ans
A 4.70m

c. With n=0.018, we compute the critical slope as
2 2
= 2gn Pll3 _ 9.8;[(0.018) (6115/33) — 0.0542
a’b, R, 1.0 (3.97)(0.76)
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Frictionless Flow over a Bump

Frictionless flow over a bump Supescritical spproach o
provides a second interesting i+ ot <
analogy, that of compressible ! = Al

gasflow in anozzle. ]_.-.r, Y

The flow can either increase or
decrease in depth depending on
whether the initial flow is
subcritical or supercritical.

The height of the bump can aso
change the results of the
downstream flow.

Fig. 10.9 Frictionless, 2-D flow over abump

Writing the continuity and energy equations for two dimensional, frictionless flow
between sections 1 and 2 in Fig. 10.10, we have

2 2

\A V,
Vi =V, y, and Zg+y1 g+y2+Ah

Eliminating Vo, we obtain
2

-EvY, + 1;/1—0 where EZ—Vg+y1 -Ah

The problem has the following solutions depending on the initial flow condition
and the height of the jump:
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Key Points:

1. The specific energy E isexactly Ah less than the approach energy E;.
2. Point 2 will lie on the same leg of the curve as point 1.

3. For Fr <1, subcritical The water level will decrease at the bump. Flow
approach at point 2 will be subcritical.

4. For Fr>1, supercritical  The water level will increase at the bump. Flow at
approach point 2 will be supercritical.

5. For bump height equal to  Flow at the crest will be exactly critical (Fr =1).
Ahmax = E1 - B¢
6. For Ah > Ahmax No physically correct, frictionless solutions are

possible. Instead, the channel will choke and
typically result in ahydraulic jump.

Flow under a Sluice Gate

A sluice gate is a bottom opening in awall as shown below in Fig. 10.10a. For
free discharge through the gap, the flow smoothly acceleratesto critical flow near
the gap and the supercritical flow downstream.

sl

(LR

Fig. 10.10 Flow under a sluice gate
Thisis analogous to the compressible flow through a converging-diverging nozzle.

For afree discharge, we can neglect friction. Since this flow has no bump (Ah = 0)
and E1 = E», we can write
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2 2.2
yi-(\zl—lg+y1jy§+—vl Lo

This equation has the following possible solutions.

Subcritical upstream flow  One positive, real solution. Supercritical flow at y-

and [ow to moderate , L -
tailwater (downstream with the same specific energy E> = E;. Flow rate

water level) varies as yoly;. Maximum flow is obtained for
yoly1 = 2/3.

Subcritical upstream flow ~ The sluice gate is drowned or partially drowned

and high tailwater (analogous to a choked condition in compressible

flow). Energy dissipation will occur downstream in
the form of a hydraulic jump and the flow
downstream will be subcritical.

The Hydraulic Jump

The hydraulic jump isan irreversible, v [ s
frictional dissipation of energy which AU | —_
provides a mechanism for super- '

ot

critical flow to transition (jump) to B () | e
subcritical flow analogousto a I— 2 S
normal shock in compressible flow. ~ )

The development of the theory is equivalent to that for a strong fixed wave (Sec
10.1) and is summarized for a hydraulic jump in the following section.
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Theory for a Hydraulic Jump

If we apply the continuity and momentum equations between points 1 and 2 across
ahydraulic jump, we obtain

2Y, _ 44 (1+8Fr?)™  which can be solved for y
Yi

: o \/
We obtain V; from continuity: V, = ARt

Y

The dissipation head loss is obtained from the energy equation as

V& Vi
hf :El_Ezz(_l+y1j_(_2+y2j

29 29
or
3
h = fy2 — yl)
f
4y, Y,

Key points:

1. Since the dissipation loss must be positive, yo must be > .

2. Theinitial Froude number Frq must be > 1 (supercritical flow).

3. The downstream flow must be subcritical and Vo < V1.
Example 10.7

Water flowsin awide channel at g =10 m3/(s m) and y; = 1.25 m. If the flow

undergoes a hydraulic jump, compute: (@) yo, (b) Vo, (€) Fra, (d) hy, (€) the
percentage dissipation, (f) power dissipated/unit width, and (g) temperature rise.
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_ﬂ_lOm:*/(smn)_

a Theupstreamvelocityis 8.0m/s
A 1.25m
The upstream Froude number is  Fr, = v 5 = 8.0 75 = 2.285
@v)" (81125
Thisisaweak jump and y» is given by
% =-1+(1+8(2.285)") =554
1
and
y, =1/2y,(5.54) =3.46m
b. The downstream velocity is V, = vy, 800125 2.89m/ s
Y, 3.46
c. The downstream Froude number is
Fr, = Ve T 2.89 7= — 0.496
(ay,) " [9.81(3.46)]
and Fro is subcritical as expected.
d. Thedissipation lossisgiven by
3 3
- 3.46 -1.25
h, = (=) _ ) - 0625m
4y, Y, 4(3.46)(1.25)
e. The percentage dissipation istheratio of h/E;.
2 2
E, :V—l +y, =125+ 8.0 =4.51m
29 2(9.81)
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The percentage loss is thus given by

h
% Loss=—100 = @100 = 14%
E, 451

f. The power dissipated per unit width is
Power =pQghs = 9800 M/m>*10m /(sm) * 0.625m = 61.3 kw/m

g. Using Cp = 4200 Jkg K, the temperature rise is given by

Power dissipated =mC, AT
or
61,300 W/m = 10,000 kg/s m* 4200 Jkg K* AT

AT = 0.0015°K
negligible temperature rise
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