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Ch. 10  Open-Channel Flow 
 

Previous internal flow analyses have considered only closed conduits where the 
fluid typically fills the entire conduit and may be either a liquid or a gas. 
 
This chapter considers only partially filled channels of liquid flow referred to as 
open-channel flow. 
 
Open-Channel Flow:  Flow of a liquid in a conduit with a free surface. 
 
Open-channel flow analysis basically results in the balance of gravity and friction 
forces. 
 
One Dimensional Approximation 
 
While open-channel flow can, in general, be very complex ( three dimensional and 
transient),  one common approximation in basic analyses is the 
 
One-D Approximation:   
The flow at any local cross 
section can be treated as 
uniform and at most varies 
only in the principal flow 
direction. 

 
 
This results in the following equations. 
 
Conservation of Mass (for ρ = constant) 
 

 Q  =  V(x) A(x)  =  constant 
 
Energy Equation 
 

 
V1

2

2 g
+ Z1 = V2

2

2g
+ Z2 + hf  
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The equation in this form is written between two points ( 1 – 2 ) on the free surface 
of the flow.  Note that along the free surface, the pressure is a constant, is equal to 
local atmospheric pressure, and does not contribute to the analysis with the energy 
equation. 
 
The friction head loss  hf  is analogous to the head loss term in duct flow, Ch. VI, 
and can be represented by 
 

h f = f x2 −x1

Dh

Vavg
2

2g
 

where   P = wetted perimeter 

Dh = hydraulic diameter = 
4A
P

 

 
Note:  One of the most commonly used formulas uses the hydraulic radius: 
 

Rh = 1
4

Dh = A
P

 

 
Flow Classification by Depth Variation 
 
The most common classification method is by rate of change of free-surface depth.  
The classes are summarized as 
 

1. Uniform flow (constant depth and slope) 
2. Varied flow 

a. Gradually varied (one-dimensional) 
b. Rapidly varied (multidimensional) 
 

Flow Classification by Froude Number: Surface Wave Speed 
 
A second classification method is by the dimensionless Froude number, which is a 
dimensionless surface wave speed.  For a rectangular or very wide channel we 
have 
 

Fr = V
co

= V
gy( )1/2  where   y is the water depth 

and       co = the speed of a surface wave as the wave height approaches zero.   
 
There are three flow regimes of incompressible flow. These have analogous flow 
regimes in compressible flow as shown below: 
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Incompressible Flow Compressible Flow 

Fr < 1  subcritical flow 
Fr = 1 critical flow 
Fr > 1 supercritical flow 

Ma < 1 subsonic flow 
Ma = 1 sonic flow 
Ma > 1 supersonic flow 

  
 
Hydraulic Jump 
 
Analogous to a normal shock in compressible flow, a hydraulic jump provides a 
mechanism by which an incompressible flow, once having accelerated to the 
supercritical regime, can return to subcritical flow.  This is illustrated by the 
following figure. 
 

 
Fig. 10.5  Flow under a sluice gate accelerates from subcritical to critical to 

supercritical and then jumps back to subcritical flow. 
 

The critical depth  yc = Q
b2g
 
  

 
  

1/3

 is an important parameter in open-

channel flow and is used to determine the local flow regime (Sec. 10.4). 
 
Uniform Flow;  the Chezy Formula 
 
Uniform flow 1.  Occurs in long straight runs of constant slope 

2.  The velocity is constant with V = Vo 
3.  Slope is constant with  So  = tan θ 
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From the energy equation with  V1  =  V2  =  Vo, we have 
 
 h f = Z1 − Z2 = SoL  
 
Since the flow is fully developed, we can write from Ch. VI 
 

 h f = f L
Dh

Vo
2

2g
 and Vo = 8g

f
 
 

 
 

1/2

Rh
1/2So

1/2  

 

For fully developed, uniform flow, the quantity  
8g
f

 
 

 
 

1/2

is a constant 

and can be denoted by  C.  The equations for velocity and flow rate 
thus become 
 

Vo = C Rh
1/2 So

1/2 and Q = CA Rh
1/2 So

1/2  
 
The quantity C is called the  Chezy coefficient, and varies from 60 ft1/2/s for small 
rough channels to 160 ft1/2/s for large rough channels (30 to 90 m1/2/s in  SI). 
 
The Manning Roughness Correlation 
 
The friction factor   f   in the Chezy equations can be obtained from the Moody 
chart of Ch. VI.  However, since most flows can be considered fully rough, it is 
appropriate to use Eqn 6.64: 
 

 fully rough flow:     f ≈ 2.0 log 3.7Dh

ε
 
 

 
 

−2

 

 
However, most engineers use a simple correlation by Robert Manning: 
 

 S.I. Units Vo m/s( ) ≈ α
n

Rh m( )[ ]2/3 So
1/2  

 

 B.G. Units Vo ft/s( ) ≈ α
n

Rh ft( )[ ]2/3 So
1/2  
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where   n   is a roughness parameter given in Table 10.1 and is the same in both 
systems of units and α is a dimensional constant equal to 1.0 in S.I. units and 1.486 
in B.G. units.  The volume flow rate is then given by 
 
 

 Uniform flow Q = Vo A ≈ α
n

A Rh
2/3 So

1/2  

 
 
 Table 10.1  Experimental Values for Manning’s    n   Factor 
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Example 10.1 
 
Given: 
Rectangular channel, 
finished concrete, slope = 0.5˚ 
water depth: y = 4 ft, width: b = 8 ft 
Find: 
Volume flow rate (ft3/s) 
 

 

4 ft

8 ft

cross-section

 

θ  
 
For the given conditions:      n = 0.012 So = tan 0.5˚  =  0.0873 
 
 A =  b y  =  (8 ft) (4 ft)  =  32 ft2 P  =  b  +  2 y  =  8  +  2 (4) = 16 ft 
 

 Rh = A
P

= 32 ft2

16 ft
= 2 ft Dh = 4 Rh = 8ft  

 
Using Manning’s formula in BG units, we obtain for the flow rate 
 

Q ≈ 1.486
0.012

32ft2( ) 2ft( )2/3 0.00873( )1.2 ≈ 590 ft3/s    ans. 

 
 
Alternative Problem 
 
The previous uniform problem can also be formulated where the volume flow rate 
Q  is given and the fluid depth is unknown.  For these conditions, the same basic 
equations are used and the area A and hydraulic radius Rh are expressed in terms 
of the unknown water depth  yn.   
 
The solution is then obtained using iterative or systematic trial and error techniques 
that are available in several math analysis/ math solver packages such as EES 
(provided with the text) or Mathcad ®.   
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Uniform Flow in a Partly Full, Circular Pipe 
 

Fig. 10.6 shows a partly full, circular 
pipe with uniform flow.  Since 
frictional resistance increases with 
wetted perimeter, but volume flow 
rate increases with cross sectional 
flow area, 
 
the maximum velocity and flow rate 
occur before the pipe is completely 
full. 
 
For this condition, the geometric 
properties of the flow are given by the 
equations below. 

 
Fig. 10.6 Uniform Flow in a Partly Full, 

Circular Channel 
 
 

A = R2 θ − sin2θ
2

 
 

 
  P = 2Rθ  Rh = R

2
1− sin2θ

2θ
 
  

 
  

 

 
 
The previous Manning formulas are used to predict Vo and Q for uniform flow 
when the above expressions are substituted for A, P, and Rh.   
 
 

Vo ≈ α
n

R
2

1− sin2θ
2θ

 
  

 
  

 

 
 

 

 
 

2 /3

So
1/2  Q = Vo R2 θ −sin2θ

2
 
 

 
  

 
 
These equations have respective maxima for Vo and Q  given by 
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Vmax = 0.718α
n

R2/3 So
1/2 at θ =128.73Þ and y = 0.813 D 

Qmax = 2.129α
n

R8/3 So
1/2 at θ = 151.21Þ and y = 0.938 D 

 
Efficient Uniform Flow Channels 
 
A common problem in channel flow is 
that of finding the most efficient low-
resistance sections for given conditions. 
This is typically obtained by maximizing 
Rh for a given  area and flow rate.  This 
is the same as minimizing the wetted 
perimeter. 

 

 

Note:  Minimizing the wetted perimeter for a given flow should minimize the 
frictional pressure drop per unit length for a given flow. 

 
It is shown in the text that for constant value of area A and  α = cot θ,   the 
minimum value of  wetted perimeter is obtained for  
 

A = y2 2 1+α 2( )1/ 2
−α[ ] P = 4 y 1+α 2( )1/ 2

− 2α y Rh = 1
2

y  

 
Note:  For any trapezoid angle, the most efficient cross section occurs when the 
hydraulic radius is one-half the depth. 
 
For the special case of a rectangle (a = 0, q = 90˚),  the most efficient cross section 
occurs with 
 

A = 2y2  P = 4 y Rh = 1
2

y  b = 2y  
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Best Trapezoid Angle 
 
The general equations listed previously are valid for any value of α.   For a given, 
fixed value of area A and depth y the best trapezoid angle is given by 
 

 1/2
1= cot =

3
orα θ θα θ θα θ θα θ θ ==== 60o 

 
Example 10.3 
What are the best dimensions for a rectangular brick channel designed to carry 5 
m3/s of water in uniform flow with So = 0.001? 
 

Taking n = 0.015 from Table 10.1,    A  =  2 y2 ,  and  Rh = 1/2 y ; Manning’s 
formula is written as 
 

Q ≈ 1.0
n

A Rh
2/3 So

1/2 or 5 m3 / s = 1.0
0.015

2 y2( ) 1
2

y 
 

 
 

2 / 3

0.001( )1/ 2  

 
This can be solved to obtain 
 

y8/ 3 =1.882 m8 / 3 or y = 1.27m  
 
The corresponding area and width are 
 

A = 2y2 = 3.21m2 and b = A
y

= 2.53m  

Note:  The text compares these results with those for two other geometries having 
the same area. 
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Specific Energy:  Critical Depth 
 

One useful parameter in channel 
flow is the specific energy E, 
where  y is the local water depth. 
 
Defining a flow per unit channel 
width as    q  =  Q/b    we write 

E = y + V2

2 g
 

 

E = y + q2

2 g y2  

 
Fig. 10.8b is a plot of 
the water depth  y  vs. 
the specific energy E. 
 
The water depth for 
which E is a minimum 
is referred to as the 
critical depth  yc. 
 

 
Fig. 10.8  Specific Energy Illustration 

 

Emin  occurs at y = yc = q2

g
 
  

 
  

1/3

= Q2

b2 g
 
  

 
  

1/3

 

 

The value of   Emin   is given by   Emin = 3
2

yc  

 
At this value of minimum energy and minimum depth we can write 
 

Vc = gyc( )1/2 = Co and Fr =1 
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Depending on the value of Emin and V, one of several flow conditions can exist. 
 
For a given flow, if 
 

E   <   Emin 

E   =   Emin 

E   >   Emin  , V  <  Vc 

 

E   >   Emin  ,  V  >  Vc 

No solution is possible 

Flow is critical, y = yc, V = Vc 

Flow is subcritical, y > yc ,disturbances can 
propagate upstream as well as downstream 

Flow is supercritical, y < yc , disturbances can 
only propagate downstream within a wave angle 
given by 

 µ = sin-1 Co

V
= sin-1 g y( )1/ 2

V
 

 
Nonrectangular Channels 
 
For flows where the local channel width varies with depth y, critical values can be 
expressed as 
 

 Ac = bo Q2

g
 
  

 
  

1/3

   and Vc = Q
Ac

= g Ac

bo

 
  

 
  

1/2

 

where bo = channel width at the free surface. 
 
These equations must be solved iteratively to determine the critical area  Ac  and 
critical velocity  Vc. 
 
For critical channel flow that is also moving with constant depth (yc), the slope 
corresponds to a critical slope  Sc  given by 
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Sc = n2 gAc

α 2 bo Rh, c

        and       α = 1. for S I units and 2.208 for B. G. units 

 
Example 10.5 
Given:  a 50˚, triangular channel has a 
flow rate of Q = 16 m3/s.  

Compute:  (a) yc,   (b)  Vc,   

  (c)    Sc  for n = 0.018  

a.  For the given geometry, we have 
 
 P = 2 ( y csc 50˚) A = 2[y (1/2 y cot 50˚)]  

 Rh = A/P = y/2  cos 50˚ bo = 2 ( y cot 50˚) 
 
For critical flow, we can write 

   g Ac
3 = bo Q2 or g yc

2 cot 50Þ( )= 2 yc cot 50Þ( )Q2  
 

 yc = 2.37 m   ans. 
 

b.  With yc, we compute   

 Pc = 6.18 m Ac = 4.70 m2  bo,c = 3.97 m 
 

The critical velocity is now   Vc = Q
A

= 16 m3 / s
4.70m

= 3.41 m / s     ans. 

c.  With n = 0.018, we compute the critical slope as 

Sc = g n2 P
α 2 bo Rh

1/3 = 9.81 0.018( )2 6.18( )
1.02 3.97( ) 0.76( )1 /3 = 0.0542  
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Frictionless Flow over a Bump 
 
Frictionless flow over a bump 
provides a second interesting 
analogy,  that of  compressible 
gas flow in a nozzle. 
 
The flow can either increase or 
decrease in depth depending on 
whether the initial flow is 
subcritical or supercritical.   
 
The height of the bump can also 
change the results of the 
downstream flow. 

 
Fig. 10.9 Frictionless, 2-D flow over a bump 

 
Writing the continuity and energy equations for two dimensional, frictionless flow 
between sections 1 and 2 in Fig. 10.10, we have 
 

V1 y1 = V2 y2 and V1
2

2g
+ y1 = V2

2

2g
+ y2 + ∆h  

Eliminating V2, we obtain 
 

y2
3 − E2 y2

2 + V1
2 y1

2

2 g
= 0 where E2 = V1

2

2g
+ y1 − ∆ h 

 
The problem has the following solutions depending on the initial flow condition 
and the height of the jump: 
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Key Points: 

1. The specific energy E2 is exactly  ∆h less than the approach energy E1. 
2. Point 2 will lie on the same leg of the curve as point 1. 
3. For Fr < 1, subcritical 

approach 
4. For Fr > 1, supercritical 

approach 
5. For bump height equal to 

∆hmax = E1 - Ec 

6. For ∆h  > ∆hmax 

The water level will decrease at the bump.  Flow 
at point 2 will be subcritical. 
The water level will increase at the bump.  Flow at 
point 2 will be supercritical. 
Flow at the crest will be exactly critical (Fr =1). 
 
No physically correct, frictionless solutions are 
possible. Instead, the channel will choke and 
typically result in a hydraulic jump. 

 
Flow under a Sluice Gate 
A sluice gate is a bottom opening in a wall as shown below in Fig. 10.10a.  For 
free discharge through the gap, the flow smoothly accelerates to critical flow near 
the gap and the supercritical flow downstream. 
 

 
Fig. 10.10 Flow under a sluice gate 

 
This is analogous to the compressible flow through a converging-diverging nozzle.  
For a free discharge, we can neglect friction. Since this flow has no bump (∆h = 0) 
and E1 = E2, we can write 
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y2
3 − V1

2

2g
+ y1

 
  

 
  

y2
2 + V1

2 y1
2

2g
= 0  

 
This equation has the following possible solutions. 
 
Subcritical upstream flow 
and low to moderate 
tailwater (downstream 
water level) 
 
Subcritical upstream flow 
and high tailwater 

One positive, real solution.  Supercritical flow at y2 
with the same specific energy E2 = E1.  Flow rate 
varies as y2/y1.  Maximum flow is obtained for  
y2/y1 = 2/3. 
The sluice gate is drowned or partially drowned 
(analogous to a choked condition in compressible 
flow).  Energy dissipation will occur downstream in 
the form of a hydraulic jump and the flow 
downstream will be subcritical. 

 
The Hydraulic Jump 
 
The hydraulic jump is an irreversible, 
frictional dissipation of energy which 
provides a mechanism for super-
critical flow to transition (jump) to 
subcritical flow analogous to  a 
normal shock in compressible flow. 

 
 
 
 
The development of the theory is equivalent to that for a strong fixed wave (Sec 
10.1) and is summarized for a hydraulic jump in the following section. 
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Theory for a Hydraulic Jump 
 
If we apply the continuity and momentum equations between points 1 and 2 across 
a hydraulic  jump, we obtain 
 

2 y2

y1

= −1 + 1+ 8 Fr1
2( )1 /2

 which can be solved for y2. 

 

We obtain V2 from continuity:  V2 = V1 y1

y2

 

 
The dissipation head loss is obtained from the energy equation as 
 

hf = E1 − E2 = V1
2

2 g
+ y1

 
  

 
  

− V2
2

2g
+ y2

 
  

 
  

 

or 

hf =
y2 − y1( )3

4 y1 y2

 

Key points: 

 1. Since the dissipation loss must be positive, y2 must be >  y1. 

 2. The initial Froude number Fr1 must be > 1 (supercritical flow). 

 3. The downstream flow must be subcritical and V2 < V1. 
 

 
Example 10.7 

Water flows in a wide channel at q = 10 m3/(s m) and y1 = 1.25 m. If the flow 
undergoes a hydraulic jump, compute:  (a) y2, (b) V2, (c) Fr2, (d) hf, (e) the 
percentage dissipation, (f)  power dissipated/unit width, and (g) temperature rise. 
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a.  The upstream velocity is V1 = q
y1

=
10 m3 / s ⋅m( )

1.25 m
= 8.0 m / s 

 

      The upstream Froude number is Fr1 = V1

g y1( )1/ 2 = 8.0
9.81 1.25( )[ ]1/ 2 = 2.285 

 

This is a weak jump and y2 is given by 
2 y2

y1

= −1 + 1+ 8 2.285( )2( )1/ 2
= 5.54 

and 
y2 =1 / 2 y1 5.54( ) = 3.46 m  

 

b.  The downstream velocity is  V2 = V1 y1

y2

= 8.0 1.25( )
3.46

= 2.89 m / s  

 
c.  The downstream Froude number is 
 

Fr2 = V2

g y2( )1/ 2 = 2.89
9.81 3.46( )[ ]1/ 2 = 0.496 

and Fr2 is subcritical as expected. 
 
d.  The dissipation loss is given by   

hf =
y2 − y1( )3

4 y1 y2

=
3.46 −1.25( )3

4 3.46( ) 1.25( )
= 0.625 m  

 

e.  The percentage dissipation is the ratio of  hf/E1. 
 

E1 = V1
2

2 g
+ y1 =1.25 + 8.02

2 9.81( )
= 4.51m  



 

X-18 

The percentage loss is thus given by   

% Loss =
hf

E1

100 = 0.625
4.51

100 = 14% 

 
f. The power dissipated per unit width is 
 

Power  = ρ Q g hf  =  9800 M/m3*10 m3/(s m) * 0.625 m  =  61.3 kw/m 

 

g.  Using Cp = 4200 J/kg K, the temperature rise is given by 
 

pPower dissipated mC T= ∆= ∆= ∆= ∆&  

or 
61,300 W/m  =  10,000 kg/s m * 4200 J/kg K* ∆T 

 
∆T  =  0.0015˚K 

negligible temperature rise 
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