A FRAMEWORK FOR THE MEASUREMENT

OF SOFTWARE QUALITY

Joseph P. Cavano
Rome Air Development Center

James A. McCall
General Electric Company

ABSTRACT

Research in software metrics incorporated in a
framework established for software quality meas-
urement can potentially provide significant bene-
fits to software quality assurance programs. The
research described has been conducted by General
Electric Company for the Air Force Systems Com-
mand Rome Air Development Center. The problems
encountered defining software quality and the
approach taken to establish a framework for the
measurement of software quality are described in
this paper.

INTRODUCTION

We are all aware of the critical problems encoun-
tered in the development of software systems: the
estimated costs for development and operation are
overrun; the deliveries are delayed; and the sys-
tems, once delivered, do not perform adequately.
Software, as such, continues to be a critical
element in most large-scale systems because of its
cost and the critical functions it performs. Many
of the excessive costs and performance inadequa-
cies can be attributed to the fact that "software
systems possess many qualities or attributes that
are just as critical to the user as the function
they perform" (Ref 1). For this reason, con-
siderable emphasis in the research community has
been directed at the software quality area.

The Air Force, as well as the rest of DOD and
industry, is constantly striving to improve the
quality of its computer-based systems. Producing
high quality software is a prerequisite for
satisfying the stringent reliability and error-
free requirements of command and control software.
Increasingly tight budgets necessitate getting
the highest quality software products at the

best possible cost. A major difficulty in
dealing with software, however, is that there are
no quantitative measures of the quality of a soft-
ware product. This affects the military Command-
Control-Communications-Intelligence (C°I) envi-
ronment where the requirements for software
quality far exceed the demands of the commercial
world. The basic resources available for accom-
plishing each military mission are often speci-
fied by agencies external to the responsible
organization (i.e., funding by Congress and tech-
nology by the laboratories). Thus, the organiza-
tion must optimize its performance within a

133

limited set of resources. For the development of
a software system, this optimization revolves
around producing software that fulfills the mis-
sion requirements. In order to know that this has
been done successfully, the software development
should be periodically measured in a quantitative
fashion to determine whether the final system will
be capable of meeting its objectives.

One problem in making this determination is the
absence of a widely accepted definition of soft-
ware quality. This leads to confusion when trying
to specify quality goals for software. A Timited
understanding of the relationships among the fac-
tors that comprise software quality is a further
drawback to making quality specifications for
software.

A second current problem in producing high quality
software is that only at delivery and into opera-
tions and maintenance is one able to determine how
good the software system is. At this time, modi-
fications or enhancements are very expensive. The
user is usually forced to accept systems that can-
not perform the mission adequately because of
funding, contractual, or schedule constraints.

Since software testing alone does not produce or
ensure good software -- it only gives an indica-
tion of error frequency that can be expected --
and since verification only shows correspondence
to functional requirements, a new process is
needed to measure and represent the qualities of
a software system. This process should indicate
which software characteristics relate directly to
mission requirements and serve to define a vari-
ety of quality factors: maintainability, reliabil-
ity, flexibility, correctness, testability, port-
ability, reusability, efficiency, usability,
integrity, and interoperability. The process of
software quality measurement may become a new
function within the domain of quality assurance.
The quantification of these measurements can be
compared to mission requirements to determine if
those requirements are being met.

The quality measurement process must be able to be
applied during the requirements and design phases
of software production; this key aspect further
distinguishes it from the testing and verification
activities, The quality measurements are predic-
tive in nature and oriented toward the development
phases rather than toward the finished system.
Early measurement will give an indication of how



well the software product will operate in relation
to the quality requirements levied on it. In
other words, an initial assessment will be made of
the quality of the software system. By obtaining
such an assessment before testing or final deliv-
ery, faults or inadequacies can be identified and
corrected early enough in the development process
to result in large cost savings.

The framework for the measurement of software
quality was established to be useful at two dif-
ferent levels of application: management and
quality assurance. At the management level, the
software quality factors are user-oriented and
can be directed toward meeting the objectives of
the system, At the quality assurance level,
software-oriented metrics attempt to objectively
measure specific elements at both the module and
the system level and relate these to the software
quality objectives. This paper is concerned mostly
with the latter function.

QUALITY AS A RELATIVE MEASURE

The determination of "quality" is a key factor in
everyday events -- wine-tasting contests, sporting
events, beauty contests, etc. In these situations,
quality is judged in the most fundamental and
direct manner: side by side comparison of objects
under identical conditions and with predetermined
concepts. The wine may be judged according to
clarity of color, bouquet, taste, etc. However,
this type of judgment is very subjective; to have
any value at all, it must be made by an expert.

Subjectivity and specialization also apply to
determining software quality. To help solve this
problem, a more precise definition of software
quality is needed as well as a way to derive
quantitative measurements of software for objec-
tive analysis. A major question at this point
is whether software can be measured at all. A
number of studies indicate that the answer to
this question is yes (Refs 2, 3), but it is a
qualified yes. Since there is no such thing as
absolute knowledge, one should not expect to
measure software quality exactly, for every
measurement must be partially imperfect. Jacob
Bronowski described this paradox of knowedge 1in
this way: "Year by year we devise more precise
instruments with which to observe nature with more
fineness. And when we look at the observations,
we are discomfited to see that they are still
fuzzy, and we feel that they are as uncertain as
ever. We seem to be running after a goal which
Turches away from us to infinity every time we
come within sight of it." (Ref 4).

Consequently, any measurement of software must be
somewhat imprecise. This promotes areas of uncer-
tainty surrounding the meaurement, so a confidence
level must be established to allow for tolerance

in software measurement. The real goal of software
measurement iies in determining what this area of
tolerance might be and how it might affect the

use of the measurement.

For instance, if precise results are unattainable,
does one still wish to expend energy and money to
make these measurements? The answer to this is not

always clear, but for some applications even a

slight indication is better than no indication.

Or as Reichenbach states: "Every act of planning
requires some knowledge of the future and if we
have no perfectly certain knowledge, we are wil-
1ing to use probable knowledge in its place"
(Ref 5).

DIFFICULTY IN ASSESSING SOFTWARE QUALITY

Software has always been viewed as an abstraction.
Unlike hardware, it has no physical presence.
This concept has contributed to the difficulty in
assessing the quality of software. The difficul-
ties manifest themselves in several ways. To
illustrate, a few examples will be described.

If the maintainability of a program is to be
assessed (maintainability being one of the quality
factors), one might construct a hypothesis which
states that as the number of unconditional branches
in a program increases, the more difficult it will
be to maintain the program.

However, the exact form of the relationship
between maintainability and the number of uncondi-
tional branches is not known (or even that it
exists). There may be an isotonic increasing
function, and for each unconditional branch, the
degree of difficulty for maintenance increases by
some delta or the relationship may be in the form
of a step function where at certain threshold
values the degree of difficulty takes a quantum
jump. The hope is that the specific relationships
can be discovered and converted into meaningful
ratings for the top level qualities. For main-
tainability, this rating might be in terms of the
average number of person-days needed to fix an
error. Of course, at this time what encompasses

a good number for a rating like that (is a person-
day good for maintenance or should it be 2 person-
days) is not well known. Baselines are desperately
needed to fil1l this gap.

This leads us into still another problem when con-
sidering software quality. Since the quality is
application-oriented (i.e., the requirement for
reliability must be higher for a manned space
flight than for computer-aided instruction), the
user must be able to clearly state his quality
objectives. This is not always easy to do.
Guidelines to assist in defining these application-
oriented quality requirements are needed.

For instance, consider two application programs,
A and B, which were given the same problem
requirement, written in the same language, and
implemented on the same computer. Program A runs
10 percent faster, has 5 percent fewer errors
under identical testing conditions, and costs

20 percent less than Program B and is similar in
maintainability and documentation aspects. Which
program has the higher quality?

An impulsive answer would be Program A. However,
how can one be sure that the testing on the two
programs was really identical? And what does one
mean by "10 percent faster?" Perhaps Program B
was developed to execute in half the core-space as
Program A. Now a completely different



interpretation is possible; with a constraint 1ike
that, Program B may well be considered to have the
higher "quality." Likewise, another interpreta-
tion might result if a different application was
chosen. For instance, if one knew that Program A
was designed to operate on only one machine while
Program B was built for a distributed system,
quality measurements would be interpreted differ-
ently according to the users.

It is easy to see that assessing software quality
quickly becomes very difficult. One reason for
this is that the same function or algorithm can

be implemented in many forms and it is not always
clear which form is best. Another reason is that
the complexity and interactions involved in large-
scale software developments increase nonlinearly
with size (Ref 1). And finally, documentation
must be considered an integral part of software.
In fact, software can be considered to consist
almost entirely as documentation. From require-
ments specification to the coded program, software
exists primarily as a written document. There are
few proven techniques for determining quality for
written works.

The progress being made in the measurement of
software quality is due primarily to the use of
new software engineering techniques. As more
disciplined, engineering approaches, tools, and
methodologies are developed and followed in the
production of software, the software products
themselves become more orderly and rigorous. As
a result of this, certain aspects of quality can
be measured in more objective, quantifiable ways.
By breaking down the quality of software into its
component factors, one can arrive at several
aspects of software that can be analyzed quan-
titatively. This decomposition has been the pri-
mary research interest in quality measurement.

Research sponsored by the Air Force has led to a
proposed software measurement model which con-

tains a comprehensive, hierarchical definition of -

software quality (figure 1). At the highest
level, quality factors are defined that are appro-
priate for software acquisition managers to use

FACTOR

CRITERIA

as an aid in specifying quality objectives for
their software systems. These high Tevel factors
are then broken down into criteria and subcriteria
that are more software-directed until specific
metrics (actual, quantifiable measurements) are
proposed that relate to the factors. These metrics
are based on suggested programming practices in
the literature. By making these measurements, it
is believed that a corresponding measurement or
rating will be obtained for the quality factor.
The current state of this research is that few of
the metrics have been either proven or disproven.
The current state of work in this area is com-
pletely described in reference 2.

Based on these discussions, the following three
points must be considered in measuring software
quality:

1. To determine the quality of software,
predetermined attributes must be measured in a
consistent fashion.

2. A relationship must be developed between
the product to be measured and the application
that will use it.

3. A predictive rating of software quality

is not absolute. It is an indication of the
quality of the end product.

AN APPROACH TO QUANTIFICATION

The framework established (figure 1) is conducive
to the quantitative méasurement of software
quality. The approach to quantitatively measur-
ing software quality utilizing this framework will
be discussed in this section of the paper.

At the highest level, the major aspects (factors)
of software quality are identified. In identify-
ing and defining these factors, the user and use
of these factors has to be considered.

The user is the program manager or acquisition
manager, the customer of the software system

MANAGEMENT-ORIENTED VIEW OF
PRODUCT QUALITY

SOFTWARE-ORIENTED ATTRIBUTES
WHICH PROVIDE QUALITY

METRICS

QUANTITATIVE MEASURES OF
THOSE ATTRIBUTES

Figure 1. Software Quality Framework



developer. The user requires a defined set of fac- Underlying these user-oriented quality factors is

tors in order to identify what qualities are desired a set of attributes which, if present in the soft-

in the software product being developed. To sat- ware, provide the characteristics represented by

isfy this use, the definitions of the factors must the factors. For each factor then, a set of

lend themselves to quantification (measurement) criteria has been established and defined.

that is meaningful to the user.

The approach taken to satisfy these two require- A key point in the approach should be noted here.

ments was to evaluate how a program manager Views The measurements are to be taken during the

the end product of a software development. The development effort. These measurements are not

orientations or viewpoints identified relate to post-implementation assessments of software qual-

1ife cycle activities involving the software ity. They are not test-like measurements. Their

product. These activities and the quality fac- purpose is to provide an indication of the pro-

tors associated with them are shown in figure 2. gression toward a desired level of quality. The
set of attributes, or criteria, established for

The questions in parentheses briefly indicate the each quality factor then represents attributes

relevancy of tne factor to the user. The formal which can be measured during the software

definitions of these factors are in table 1. development.

MAINTAINABILITY (CAN 1 FIX IT?) PORTABILITY (WILL I BE ABLE TO USE IT
FLEXIBILITY (CAN I CHANGE IT?) ON ANOTHER MACHINE?)
TESTABILITY (CAN I TEST IT?) REUSABILITY (WILL I BE ABLE TO REUSE

SOME OF THE SOFTWARE?)

INTEROPERABILITY (WILL 1 BE ABLE TO INTERFACE
IT WITH ANOTHER SYSTEM?)

PRODUCT OPERATIONS

CORRECTNESS (DOES IT DO WHAT I WANT?)

RELIABILITY (DOES IT DO IT ACCURATELY
ALL OF THE TIME?)

EFFICIENCY (WILL IT RUN ON MY HARDWARE
AS WELL AS IT CAN?)

INTEGRITY (IS IT SECURE?)
USABILITY (CAN T RUN IT?) 1575

Figure 2. Software Quality Factors

Table 1. Definition of Software Quality Factors

CORRECTNESS Extent to which a program satisfies its specifications and fulfills
the user's mission objectives.

RELIABILITY Extent to which a program can be expected to perform its intended
function with required precision.

EFFICIENCY The amount of computing resources and code required by a program to
perform a function.

INTEGRITY Extent to which access to software or data by unauthorized persons
can be controlled.

USABILITY Effort required to learn, operate, prepare input, and interpret
output of a program.

MAINTAINABILITY Effort required to locate and fix an error in an operational program.

TESTABILITY Effort required to test a program to ensure it performs its intended
function.

136




Table 1. Definition of Software Quality Factors (Continued)
FLEXIBILITY Effort required to modify an operational program.
PORTABILITY Effort required to transfer a program from one hardware configuration
and/or software system environment to another.
REUSABILITY Extent to which a program can be used in other applications - related
to the packaging and scope of the functions that programs pérform.
INTEROPERABILITY Effort required to couple one system with another.

Software quality metrics, when established, provide
measures of the software attributes. The metrics
may be in the form of a checklist used to "grade"

a document produced during the development or par-
ticular count of specific attributes such as the
number of paths through a module or the number of
unconditional branches in a program. Many of the
metrics incorporated in the framework have resulted
from efforts of the research community in recent
years (Refs 6, 7, 8, 9).

Formal relationships between the set of metrics
related to a quality factor and a rating of the
quality factor have been established via regres-
sion analyses performed on empirical data. These
relationships take the form of a linear equation.
An example is shown here:

re = cy m + C m2 + c3 m3 + ...
where:
re is a rating of a quality factor, f
c; are the regression coefficients

m. are the various measurements identified as
relating to the quality factor, f.

This relationship, once established, is then used
as a predictor. The measurements, m;, are applied
at specific times during the development. The
major aspects of this apprach are:

User-oriented at highest level
Software-oriented at lower Tevels
Provides quantification of the attributes
. Can be applied periodically during software
development
o Additional metrics, criteria, or even fac-
tors can be added as the technologies of
producing software change and as research
efforts identify better measures

This approach avoids several pitfalls encountered
by other efforts in this area in recent years.

It does not attempt to utilize a single measure-
ment to quantify quality. It does not rely on
measures applied only to the source code, but
also to the documentation associated with the
software which adds signficantly to its quality,
especially for such factors as maintainability,
testability, or portability. The metrics have
been established as language-independent measures.
And lastly, a rule was used in choosing the units
of the metric. The rule, the units of the metric
will be the number of occurrences of an attribute
divided by the total possible occurrences of that

137

attribute, essentially normalizes the measurements,
and discounts biases introduced by size.

The formal relationships established are based on
several large-scale Air Force software develop-
ments. They are not claimed as generally appli-
cable relationships. Continuing efforts are
underway to establish the metrics applicability in
other environments such as support software and
management information software. The concern in
this initial effort was to establish that the con-
cept was viable. The fact that some metrics were
found to exhibit significant correlation to
qualities demonstrated during the operational his-
tory confirmed our hypothesis (Ref 10). Future
research efforts are planned to further extend
these concepts and pursue the true or more accu-
rate relationships. The fact that the framework
has been established .and is conducive to the
introduction of new findings facilitates these
research efforts.

The framework is essentially a model of software
quality. It potentially extends the scope of
quality assurance activities. It quantifies the
definition of software quality. It supports the
collection of data, the documentation of Tessons
learned, and therefore its own evolution as an
up~-to-date software quality assurance tool and
methodology.

IMPACT ON SOFTWARE QUALITY ASSURANCE

The framework established has several potentially
significant impacts on quality assurance activ-
ities during large-scale software developments.

First, the framework provides a mechanism for a
program manager to identify what qualities are
important. These qualities are attributes of the
software in addition to its functional correctness
and performance which have life cycle implica-
tions. Such factors as maintainability and port-
ability have been shown in recent years to have
significant life cycle cost impact. Software
quality assurance personnel therefore receive
better direction. They are made aware of what
qualities are considered important and therefore
should be checked.

Second, the framework provides a means of quanti-
tatively assessing how well the development is
progressing relative to the quality goals estab-
lished. This augments current techniques used by
quality assurance personnel which may range from



only testing to testing and standards enforcement
to testing, standards enforcement, participation in
walkthroughs, and so forth. The advantage pro-
vided by the framework over current techniques
such as code inspections or the use of source code
auditors is the quantification it introduces. The
same techniques can be used (e.g., a code auditor
is a good source of metric data) and translation
to the metric values can be made. Thus the qual-
ity assurance personnel have an additional tool
with which to assess the quality of the software
being produced. In fact, the tool provides
assessment of quality in a different dimension
(i.e., according to the quality factors which
relate to the program manager's view of the
required quality).

Thirdly, the framework provides for more interac-
tion by the quality assurance personnel throughout
the development effort. The metrics have been
established so that subsets are applied during the
three phases of development: requirements analysis,
design, and implementation. The quality assurance
personnel is not only checking a requirements
specification for compliance in format with regu-
latory requirements but is also taking measurements
which can identify poor quality in the require-
ments document which could eventually lead to a
poor end product. This early indication provided
by the framework gives more leverage to the qual-
ity assurance personnel participating in the early
phases of development. '

Lastly, indications of poor quality in early phases
may for one reason or another not be acted upon;
that is, corrective actions may be postponed due

to higher priority activities, such as a delivery.
However, they are indicators that potential prob-
Tems could exist. Quality assurance personnel

can utilize these indications for identifying new
standards to be enforced in the future, or for
jdentifying modules to be emphasized during test
testing.

UTILITY OF CONCEPT

In order to assess the impact this framework or
model of software quality will or could have on
software quality assurance, the framework itself
must be evaluated. To evaluate the framework, the
following characteristics must be investigated:

e Definition
- What is the model measuring?
- Is it detailed enough?

e Fidelity
- Will different quality assurance per-
sonnel get similar results?
- Are the actuals close to the
predictions?

e Constructiveness
- Does it help in understanding soft-
ware quality?
- Are the measures derived explainable?

e Stability
- Can the model be manipulated to obtain
desired results?

138

o Usability
- Can the methodology be cost-effectively
implemented in a quality assurance
program?

Each of these characteristics will be discussed in
the following paragraphs.

Definition

The metrics are quantitative measures of the char-
acteristics of the software which provide certain
qualities. The hierarchical structure of the
framework provides relevancy to management at one
level and to software developers at the other
Tevel. The detail is substantiated by the fact
that currently there are approximately 25 charac-
teristics being measured during requirements
analysis, 100 during design, and 150 during
implementation.

Fidelity

The quantification provided by the metrics pro-
vides consistency in its application. Unlike
standards and conventions or inspections, in which
subjectivity is introduced, the metrics utilize
objective quantitative measures. Validations to
date have shown signficant correlations between
the predictions based on measurements and the
actuals based on operational history.

Constructiveness

The fact that the metrics relate to specific
characteristics in the software means the concept
Jends itself to understanding software quality.
In most cases, the measures are intuitively asso-
ciated with the related qualities.

Stability

A developer could ensure the software provides
high measures with considerable effort and still
not have a good product. Testing is a safeguard
against this type situation. The difficulty in
subverting the concept is also a deterrent.

Usability

The methodology for applying the framework lends
itself to proceduralization. It requires self-
checking periodic measurement and it lends itself
to automation. While formal relationships which
give statistical credibility to the model have not
been totally validated, the concepts have imme-
diate application to quality assurance activities.

SUMMARY

Thus, the framework described appears to have sig-
nificant potential as a quality assurance tool.

It enforces a life cycle management viewpoint on
quality assurance activities and provides early
indications of quality problems.



The measurement of characteristics of the software
and documentation via software quality metrics
lends itself to automation. Thus it can be accom-
plished cost-effectively. Formal relationships
between the metrics and their related quality
factors have not been validated to date, however,
there are indications based on a limited sample
that relationships can be established. There

are considerable benefits derived using the tech-
niques as they exist currently.

Future resource efforts and experience with these

concepts promise to improve its application and
expose its potential benefits further.

ACKNOWLEDGEMENTS

Many of the ideas discussed in this paper were
derived during a study of the factors in software
quality sponsored by the Air Force Systems Command
Electronic Systems Division (ESD) and Rome Air
Development Center (RADC), contract number F30602-
76-C-0147. Current efforts extending these con-
cepts is being sponsored by RADC and the U.S. Army
Computer Systems Command, AIRMICS, contract num-
ber F30602-78-C-0216. General Electric partci-
pants in these two efforts are Gene Walters, Paul
Richards, Mike Matsumoto, Bob Hassell, and Jim
McCall.

REFERENCES

(1) Kosy, Donald W., R-1012-PR, "Air Force Com-
mand and Control Information Processing in the
1980s: Trends in Software Technology," June 1974.

(2) McCall, J.; Richards, P.; Walters, G.,
"Factors in Software Quality," three volumes, NTIS
AD-A049-014, AD-A049-015, AD-A049-055, November
1977.

(3) Boehm, B., et al, Characteristics of Software

Quality, North Holland Publishing Co., NY, 1978.

(4) Bronowski, Jacob, The Ascent of Man, Little,
Brown, and Co., Boston, 1973.

(5) Reichenbach, Hans, "Logic and Predictive
Knowledge," Space, Time, and the New Mathematics,

ed. Robert Marks, Bantam Books, 1964.

(6) Halstead, M., Elements of Software Science,
Elsevier Computer Science Library, NY, 1977.

(7) McCabe, T., "A Complexity Measure," 1976

Software Engineering Conference, October 1976.

(8) Myers, G., Reliable Software through Com-
posite Design, Petrocelli/Charter, 1975.

(9) Fagan, M., "Design and Code Inspections and
Process Control in the Development of Programs,"
IBM TR 00.2763, June 1976.

139

(10) Walters, G. and McCall, J., "The Develop-
ment of Metrics for Software R&M," 1978 Proceed-
ings of the Annual Reliability and Maintainability

Symposium, January 1978.

BIOGRAPHIES

Mailing Address:

Mr. Jcseph P. Cavano

Information Sciences Division/ISI

Rome Air Development Center

Air Force Systems Command

Griffiss Air Force Base, New York 13441
(315) 330-4235

Mr. Cavano has been working at the Rome Air Devel-
opment Center for the past 8 years. His current
position deals with developing a methodology for
software acquisition based on quality measurements.
Prior to this, Mr. Cavano has worked in extending
software engineering ideas to an on-line envi-
ronment. This research was incorporated in his
Master's thesis, "On-Line Software Engineering."
Mr. Cavano has also designed and implemented a
financial management system based on a model of
government procurement and combining data manage-
ment functions with text-processing. Mr. Cavano
has received an M.S. in Industrial Engineering

and Operations Research from Syracuse Univer-

sity and a B.S. in Mathematics from Clarkson
College of Technology.

Mailing Address:

Mr. James A. McCall

General Electric Company
Information Systems Programs
450 Persian Drive

Sunnyvale, California 94086
(408) 734-4980

Mr. McCall has a wide range of experience in oper-
ations research, cost-benefit analysis, systems
analysis, and simulation. He was principal inves-
tigator on the Factors in Software Quality contract
with RADC and ESD, and is currently principal
investigator on the Metrics Enhancement contract
with RADC and USACSC. He has participated in
research efforts involving cost estimation, model-
ing the software development process, and the
development of an information and data system sim-
ulator and a computer network simulator. Prior

to joining GE, Mr. McCall worked in the Advanced
Technology Directorate, U.S. Army Computer Systems
Command. He participated in a large study ana-
lyzing the most cost-effective method of network-
ing the Army's multicommand management information
system support. He was also involved in R&D
efforts, including program verification and
validation, data base management systems, struc-
tured programming techniques, and software reli-
ability. He received an M.S. in Operations
Research and an M.S. in Engineering-Economic Sys-
tems from Stanford University and a B.S. in
Engineering from the U.S. Miltary Academy.



