
A FRAMEWORK FOR THE MEASUREMENT

OF SOFTWARE QUALITY

Joseph P. Cavano
Rome Air Development Center

James A. McCall
General Electric Company

ABSTRACT

Research in software metrics incorporated in a
framework establ ished for software qua l i t y meas-
urement can po ten t ia l l y provide s i gn i f i can t bene-
f i t s to software qua l i t y assurance programs. The
research described has been conducted by General
E lec t r i c Company for the A i r Force Systems Com-
mand Rome A i r Development Center. The problems
encountered def ining software qua l i t y and the
approach taken to establ ish a framework for the
measurement of software qua l i t y are described in
this paper.

INTRODUCTION

We are a l l aware of the c r i t i c a l problems encoun-
tered in the development of software systems: the
estimated costs for development and operation are
overrun; the de l iver ies are delayed; and the sys-
tems, once del ivered, do not perform adequately.
Software, as such, continues to be a c r i t i c a l
element in most large-scale systems because of i t s
cost and the c r i t i c a l functions i t performs. Many
of the excessive costs and performance inadequa-
cies can be a t t r ibu ted to the fact that "software
systems possess many qua l i t i es or a t t r ibu tes that
are jus t as c r i t i c a l to the user as the function
they perform" (Ref I) . For th is reason, con-
siderable emphasis in the research community has
been directed at the software qua l i t y area.

The Ai r Force, as well as the rest of DOD and
industry, is constantly s t r i v i ng to improve the
qua l i t y of i t s computer-based systems. Producing
high qua l i t y software is a prerequis i te for
sa t is fy ing the s t r ingent r e l i a b i l i t y and e r ro r -
free requirements of command and control software.
Increasingly t i gh t budgets necessitate get t ing
the highest qua l i t y software products at the
best possible cost. A major d i f f i c u l t y in
dealing with software, however, is that there are
no quant i ta t ive measures of the qua l i t y of a so f t -
ware product. This affects the military Command-
Control-Communications-Intelligence (Cml) envi-
ronment where the requirements for software
quality far exceed the demands of the con~nercial
world. The basic resources available for accom-
plishing each military mission are often speci-
fied by agencies external to the responsible
organization (i .e. , funding by Congress and tech-
nology by the laboratories). Thus, the organiza-
tion must optimize its performance within a

l imi ted set of resources. For the development of
a software system, th is opt imizat ion revolves
around producing software that f u l f i l l s the mis-
sion requirements. In order to know that th is has
been done successful ly, the software development
should be per iod ica l l y measured in a quant i ta t ive
fashion to determine whether the f ina l system w i l l
be capable of meeting i t s object ives.

One problem in making this determination is the
absence of a widely accepted definition of soft-
ware quality. This leads to confusion when trying
to specify quality goals for software. A limited
understanding of the relationships among the fac-
tors that comprise software quality is a further
drawback to making quality specifications for
software.

A second current problem in producing high quality
software is that only at delivery and into opera-
tions and maintenance is one able to determine how
good the software system is. At this time, modi-
fications or enhancements are very expensive. The
user is usually forced to accept systems that can-
not perform the mission adequately because of
funding, contractual, or schedule constraints.

Since software testing alone does not produce or
ensure good software -- i t only gives an indica-
tion of error frequency that can be expected --
and since verification only shows correspondence
to functional requirements, a new process is
needed to measure and represent the qualities of
a software system. This process should indicate
which software characteristics relate directly to
mission requirements and serve to define a vari-
ety of quality factors: maintainability, rel iabi l-
i ty, f lex ib i l i ty , correctness, testabil ity, port-
abi l i ty, reusability, efficiency, usability,
integrity, and interoperability. The process of
software quality measurement may become a new
function within the domain of quality assurance.
The quantification of these measurements can be
compared to mission requirements to determine i f
those requirements are being met.

The quality measurement process must be able to be
applied during the requirements and design phases
of software production; this key aspect further
distinguishes i t from the testing and verification
activities. The quality measurements are predic-
tive in nature and oriented toward the development
phases rather than toward the finished system.
Early measurement will give an indication of how

133

well the sof~vare product wi l l operate in relation
to the quali t l requirements levied on i t . In
other words, an in i t ia l assessment wil l be made of
the quality of the software system. By obtaining
such an assessment before testing or final deliv-
ery, faults or inadequacies can be identified and
corrected early enough in the development process
to result in large cost savings.

The framework for the measurement of software
qualitywas established to be useful at two dif-
ferent levels of application: management and
quality assurance. At the management level, the
software quality factors are user-oriented and
can be directed toward meeting the objectives of
the system. At the quality assurance level,
software-oriented metrics attempt to objectively
measure specific elements at both the module and
the system level and relate these to the software
quality objectives. This paper is concerned mostly
with the latter function.

QUALITY AS A RELATIVE MEASURE

The determination of "quality" is a key factor in
everyday events -- wine-tasting contests, sporting
events, beauty contests, etc. In these situations,
quality is judged in the most fundamental and
direct manner: side by side comparison of objects
under identical conditions and with predetermined
concepts. Time wine may be judged according to
clarity of color, bouquet, taste, etc. However,
this type of judgment is very subjective; to have
any value at al l , i t must be made by an expert.

Subjectivity and specialization also apply to
determining software quality. To help solve this
problem, a more precise definition of software
quality is needed as well as a way to derive
quantitative measurements of software for objec-
tive analysis. A major question at this point
is whether software can be measured at al l . A
number of studies indicate that the answer to
this question is yes (Refs 2, 3), but i t is a
qualified yes. Since there is no such thing as
absolute knowledge, one should not expect to
measure software quality exactly, for every
measurement must be partial ly imperfect. Jacob
Bronowski described this paradox of knowedge in
this way: "Year by year we devise more precise
instruments with which to observe nature with more
fineness. And when we look at the observations,
we are discomfited to see that they are s t i l l
fuzzy, and we feel that they are as uncertain as
ever. We seem to be running after a goal which
lurches away from us to inf in i ty every time we
come within sight of i t . " (Ref 4).

Consequently, any measurement of software must be
somewhat imprecise. This promotes areas of uncer-
tainty surrounding the meaurement, so a confidence
level must be established to allow for tolerance
in software measurement. The real goal of software
measurement lies in determining what this area of
tolerance might be and how i t might affect the
use of the measurement.

For instance, i f precise results are unattainable,
does one s t i l l wish to expend energy and money to
make these measurements? The answer to this is not

always clear, but for some applications even a
sl ight indication is better than no indication.
Or as Reichenbach states: "Every act of planning
requires some knowledge of the future and i f we
have no perfectly certain knowledge, we are wil-
ling to use probable knowledge in i ts place"
(Ref 5).

DIFFICULTY IN ASSESSING SOFTWARE QUALITy

Software has always been viewed as an abstraction.
Unlike hardware, i t has no physical presence.
This concept has contributed to the d i f f icu l ty in
assessing the quality of software. The d i f f icu l -
ties manifest themselves in several ways. To
i l lustrate, a few examples wil l be described.

I f the maintainability of a program is to be
assessed (maintainability being one of the quality
factors), one might construct a hypothesis which
states that as the number of unconditional branches
in a program increases, the more d i f f i cu l t i t wil l
be to maintain the program.

However, the exact form of the relationship
between maintainability and the number of uncondi-
tional branches is not known (or even that i t
exists). There may be an isotonic increasing
function, and for each unconditional branch, the
degree of d i f f icul ty for maintenance increases by
some delta or the relationship may be in the form
of a step function where at certain threshold
values the degree of d i f f icul ty takes a quantum
jump. The hope is that the specific relationships
can be discovered and converted into meaningful
ratings for the top level qualities. For main-
tainabi l i ty, this rating might be in terms of the
average number of person-days needed to f i x an
error. Of course, at this time what encompasses
a good number for a rating l ike that (is a person-
day good for maintenance or should i t be 2 person-
days) is not well known. Baselines are desperately
needed to f i l l this gap.

This leads us into s t i l l another problem when con-
sidering software quality. Since the quality is
application-oriented (i .e . , the requirement for
re l iab i l i t y must be higher for a manned space
f l ight than for computer-aided instruction), the
user must be able to clearly state his quality
objectives. This is not always easy to do.
Guidelines to assist in defining these application-
oriented quality requirements are needed.

For instance, consider two application programs,
A and B, which were given the same problem
requirement, written in the same language, and
implemented on the same computer. Program A runs
lO percent faster, has 5 percent fewer errors
under identical testing conditions, and costs
20 percent less than Program B and is similar in
maintainability and documentation aspects. Which
program has the higher quality?

An impulsive answer would be Program A. However,
how can one be sure that the testing on the two
programs was really identical? And what does one
mean by "lO percent faster?" Perhaps Program B
was developed to execute in half the core-space as
Program A. Now a completely different

134

i n te rpre ta t ion is possible; with a constra int l i ke
that , Program B may well be considered to have the
higher "qua l i t y . " Likewise, another in te rp re ta -
t ion might resu l t i f a d i f f e ren t appl icat ion was
chosen. For instance, i f one knew that Program A
was designed to operate on only one machine while
Program B was b u i l t fo r a d is t r ibu ted system,
qua l i t y measurements would be in terpreted d i f f e r -
ent ly according to the users.

I t is easy to see that assessing software qua l i t y
quickly becomes very d i f f i c u l t . One reason for
th is is that the same funct ion or algorithm can
be implemented in many forms and i t is not always
c lear which form is best. Another reason is that
the complexity and in teract ions involved in large-
scale software developments increase nonl inear ly
with size (Ref I) . And f i n a l l y , documentation
must be considered an in tegra l part of software.
In fac t , software can be considered to consist
almost en t i r e l y as documentation. From require-
ments spec i f ica t ion to the coded program, software
exists pr imar i ly as a wr i t ten document. There are
few proven techniques for determining qua l i t y fo r
wr i t ten works.

The progress being made in the measurement of
software qua l i t y is due pr imar i ly to the use o f
new software engineering techniques. As more
d isc ip l ined, engineering approaches, tools, and
methodologies are developed and fol lowed in the
production of software, the software products
themselves become mere order ly and rigorous. As
a resu l t of t h i s , certa in aspects of qua l i t y can
be measured in more ob ject ive, quant i f iab le ways.
By breaking down the qua l i t y of software into i t s
component factors, one can arr ive at several
aspects of software that can be analyzed quan-
t i t a t i v e l y . This decomposition has been the p r i -
mary research in te res t in qua l i t y measurement.

as an aid in speci fy ing qua l i t y object ives fo r
t he i r software systems. These high level factors
are then broken down into c r i t e r i a and subcr i te r ia
that are more sof tware-directed unt i l spec i f i c
metrics (actual , quant i f iab le measurements) are
proposed that re la te to the factors. These metrics
are based on suggested programming pract ices in
the l i t e r a t u r e . By making these measurements, i t
is bel ieved that a corresponding measurement or
rat ing w i l l be obtained for the qua l i t y factor .
The current state of th is research is that few of
the metrics have been e i the r proven or disproven.
The current state of work in th is area is com-
p le te ly described in reference 2.

Based on these discussions, the fol lowing three
points must be considered in measuring software
qua l i ty :

I . To determine the qua l i t y of software,
predetermined a t t r ibu tes must be measured in a
consistent fashion.

2. A re la t ionsh ip must be developed between
the product to be measured and the appl icat ion
that w i l l use i t .

3. A pred ic t ive rat ing of software qua l i t y
is not absolute. I t is an ind icat ion of the
qua l i t y of the end product.

AN APPROACH TO QUANTIFICATION

The framework establ ished (f igure I) is conducive
to the quant i ta t ive measurement of software
qua l i ty . The approach to quan t i ta t i ve ly measur-
ing software qua l i t y u t i l i z i n g this framework w i l l
be discussed in th is section of the paper.

Research sponsored by the Ai r Force has led to a
proposed software measurement model which con-
tains a comprehensive, h ierarchica l de f i n i t i on o f
software qua l i t y (f igure I) . At the highest
leve l , qua l i ty factors are defined that are appro-
pr ia te for software acquis i t ion managers to use

FACTOR

At the highest leve l , the major aspects (factors)
of software qua l i t y are i den t i f i ed . In i den t i f y -
ing and def ining these factors, the user and use
of these factors has to be considered.

The user is the program manager or acquis i t ion
manager, the customer of the software system

14ANAGEHENT-ORIENTED VIEW OF
PRODUCT QUALITY

SOFTNARE-ORIENTED ATTRIBUTES
MILCH PROVIDE QUALITY

ll.,R,cs j I SEOOT'TA"V ASUR SO --
Figure I . Software Qual i ty Framework

135

The approach taken to satisfy these two require-
ments was to evaluate how a program manager views
the end product of a software development. The
orientations oi- viewpoints identified relate to
l i fe cycle activit ies involving the software
product. These activit ies and the quality fac-
tors associated with them are shown in figure 2.

The questions in parentheses brief ly indicate the
relevancy of the factor to the user. The formal
definitions of these factors are in table I.

MAINTAINABILITY
FLEXIBILITY
TESTABILITY

Underlying these user-oriented quality factors is
a set of attributes which, i f present in the soft-
ware, provide the characteristics represented by
the factors. For each factor then, a set of
cri teria has been established and defined.

A key point in the approach should be noted here.
The measurements are to be taken during the
development effort. These measurements are not
post-implementation assessments of software qual-
i ty. They are not test- l ike measurements. Their
purpose is to provide an indication of the pro-
gression toward a desired level of quality. The
set of attributes, or cr i ter ia, established for
each quality factor then represents attributes
which can be measured during the software
development.

(CAN I FIX IT?) PORTABILITY
(CAN I CHANGE IT?)
(CAN I TEST IT?) REUSABILITY

INTEROPERABILITY

developer. The user requires a defined set of fac-
tors in order to identify what qualities are desired
in the software product being developed. To sat-
isfy this use, the definitions of the factors must
lend themselves to quantification (measurement)
that is meaningful to the user.

CORRECTNESS (DOES IT DO WHAT I WANT?)
RELIABILITY (DOES IT DO IT ACCURATELY

ALL OF THE TIME?)

EFFICIENCY (WILL IT RUN ON MY HARDWARE
AS WELL AS IT CAN?)

INTEGRITY (IS IT SECURE?)
USABILITY (CAN I RUN IT?)

Figure 2. Software Quality Factors

Table I. Definition of Software Quality Factors

~WILL I BE ABLE TO USE IT
ON ANOTHER MACHINE?)

(WILL I BE ABLE TO REUSE
SOME OF THE SOFTWARE?)

(WILL I BE ABLE TO INTERFACE
IT WITH ANOTHER SYSTEM?)

1575

CORRECTNESS

RELIABILITY

EFFICIENCY

INTEGRITY

USABILITY

MAINTAINABILITY

TESTABILITY

Extent to which a program satisfies its specifications and f u l f i l l s
the user's mission objectives.

Extent to which a program can be expected to perform its intended
function with required precision.

The amount of computing resources and code required by a program to
perform a function.

Extent to which access to software or data by unauthorized persons
can be controlled.

Effort required to learn, operate, prepare input, and interpret
output of a program.

Effort required to locate and f ix an error in an operational program.

Effort required to test a program to ensure i t performs its intended
function.

136

Table I. Definition of Software Quality Factors (Continued)

FLEXIBILITY

PORTABILITY

REUSABILITY

INTEROPERABILITY

Effort required to modify an operational program.

Effort required to transfer a program from one hardware configuration
and/or software system environment to another.

Extent to which a program can be used in other applications - related
to the packaging and scope of the functions that programs perform.

Effort required to couple one system with another.

Software qua l i t y metrics, when establ ished, provide
measures of the software a t t r i bu tes . The metrics
may be in the form of a check l is t used to "grade"
a document produced during the development or par-
t i cu l a r count of spec i f i c a t t r ibu tes such as the
number of paths through a module or the number of
unconditional branches in a program. Many of the
metrics incorporated in the framework have resul ted
from e f fo r t s of the research community in recent
years (Refs 6, 7, 8, 9).

Formal re lat ionships between the set of metrics
related to a qua l i t y fac tor and a rat ing o f the
qua l i t y factor have been establ ished via regres-
sion analyses performed on empirical data. These
relat ionships take the form of a l i near equation.
An example is shown here:

r f = c I m I + c 2 m 2 + c 3 m 3 + . . .

where:

r f is a rating of a quality factor, f

c i are the regression coefficients

m. are the various measurements identi f ied as
1 relating to the quality factor, f.

This relationship, once established, is then used
as a predictor. The measurements, m i , are applied
at specific times during the development. The
major aspects of this apprach are:

• User-oriented at highest level
• Software-oriented at lower levels
• Provides quant i f i ca t ion of the a t t r ibu tes
• Can be applied per iod ica l l y during software

development
e Addit ional metr ics, c r i t e r i a , or even fac-

tors can be added as the technologies of
producing software change and as research
e f fo r t s i den t i f y bet ter measures

This approach avoids several p i t fa l l s encountered
by other efforts in this area in recent years.
I t does not attempt to u t i l i ze a single measure-
ment to quantify quality. I t does not rely on
measures applied only to the source code, but
also to the documentation associated with the
software which adds signficantly to i ts quality,
especially for such factors as maintainability,
testabi l i ty , or portabi l i ty. The metrics have
been established as language-independent measures.
And last ly, a rule was used in choosing the units
of the metric. The rule, the units of the metric
wi l l be the number of occurrences of an attr ibute
divided by the total possible occurrences of that

attr ibute, essentially normalizes the measurements,
and discounts biases introduced by size.

The formal relationships established are based on
several large-scale Air Force software develop-
ments. They are not claimed as generally appli-
cable relationships. Continuing efforts are
underway to establish the metrics appl icabi l i ty in
other environments such as support software and
management information software. The concern in
this i n i t i a l ef for t was to establish that the con-
cept was viable. The fact that some metrics were
found to exhibit signif icant correlation to
qualit ies demonstrated during the operational his-
tory confirmed our hypothesis (Ref lO). Future
research efforts are planned to further extend
these concepts and pursue the true or more accu-
rate relationships. The fact that the framework
has been established.and is conducive to the
introduction of new findings fac i l i ta tes these
research efforts.

The framework is essentially a model of software
quality. I t potential ly extends the scope of
quality assurance act iv i t ies. I t quantifies the
definit ion of software quality. I t supports the
collection of data, the documentation of lessons
learned, and therefore i ts own evolution as an
up-to-date software quality assurance tool and
methodology.

IMPACT ON SOFTWARE QUALITY ASSURANCE

The framework established has several potential ly
signif icant impacts on quality assurance activ-
i t ies during large-scale software developments.

First, the framework provides a mechanism for a
program manager to identi fy what qualit ies are
important. These qualit ies are attributes of the
software in addition to i ts functional correctness
and performance which have l i f e cycle implica-
tions. Such factors as maintainability and port-
ab i l i t y have been shown in recent years to have
signif icant l i f e cycle cost impact. Software
quality assurance personnel therefore receive
better direction. They are made aware of what
qualit ies are considered important and therefore
should be checked.

Second, the framework provides a means of quanti-
tat ively assessing how well the development is
progressing relative to the quality goals estab-
lished. This augments current techniques used by
quality assurance personnel which may range from

137

only test ing to test ing and standards enforcement
to test ing, sta:qdards enforcement, part ic ipat ion in
walkthroughs, a:qd so forth. The advantage pro-
vided by the framework over current techniques
such as code inspections or the use of source code
auditors is the quant i f icat ion i t introduces. The
same techniques can be used (e.g. , a code auditor
is a good source of metric data) and translat ion
to the metric values can be made. Thus the qual-
i t y assurance personnel have an addit ional tool
with which to assess the qual i ty of the software
being produced. In fact, the tool provides
assessment of qual i ty in a d i f ferent dimension
(i . e . , according to the qual i ty factors which
relate to the program manager's view of the
required qua l i ty) .

Thi rd ly , the framework provides for more interac-
tion by the qual i ty assurance personnel throughout
the development e f fo r t . The metrics have been
established so that subsets are applied during the
three phases of development: requirements analysis,
design, and implementation. The qual i ty assurance
personnel is not only checking a requirements
speci f icat ion for compliance in format with regu-
la tory requirements but is also taking measurements
which can ident i f y poor qual i ty in the require-
ments document which could eventually lead to a
poor end product. This early indicat ion provided
by the framework gives more leverage to the qual-
i t y assurance personnel par t ic ipat ing in the early
phases of development.

Last ly, indicat ions of poor qual i ty in early phases
may for one reason or another not be acted upon;
that is , correct ive actions may be postponed due
to higher p r i o r i t y ac t i v i t i e s , such as a del ivery.
However, they are indicators that potential prob-
lems could ex is t . Quality assurance personnel
can u t i l i z e these indicat ions for ident i fy ing new
standards to be enforced in the future, or for
ident i fy ing modules to be emphasized during test
test ing.

UTILITY OF CONCEPT

In order to assess the impact th is framework or
model of software qual i ty w i l l or could have on
software qual i ty assurance, the framework i tsel f
must be evaluated. To evaluate the framework, the
fol lowing character ist ics must be investigated:

Def ini t ion
- What is the model measuring?
- Is i t detai led enough?

Fi de I i ty
- Will d i f ferent qual i ty assurance per-

sonnel get s imi lar results?
Are the actuals close to the
predictions?

Constructiveness
Does i t help in understanding sof t -
ware qual i ty?
Are the measures derived explainable?

S tab i l i t y
Can the model be manipulated to obtain
desired results?

Usabi l i ty
- Can the methodology be cost -e f fect ive ly

implemented in a qual i ty assurance
program?

Each of these character ist ics w i l l be discussed in
the fol lowing paragraphs,

Def ini t ion

The metrics are quant i tat ive measures of the char-
ac ter is t ics of the software which provide certain
qua l i t ies . The hierarchical structure of the
framework provides relevancy to management at one
level and to software developers at the other
level. The detail is substantiated by the fact
that current ly there are approximately 25 charac-
t e r i s t i cs being measured during requirements
analysis, I00 during design, and 150 during
implementation.

Fi del i ty.

The quant i f icat ion provided by the metrics pro-
vides consistency in i t s appl icat ion. Unlike
standards and conventions or inspections, in which
sub jec t iv i ty is introduced, the metrics u t i l i z e
objective quant i tat ive measures. Validations to
date have shown s ignf icant correlat ions between
the predict ions based on measurements and the
actuals based on operational h is tory.

Constructiveness

The fact that the metrics relate to specif ic
character is t ics in the software means the concept
lends i t s e l f to understanding software qual i ty .
In most cases, the measures are i n t u i t i v e l y asso-
ciated with the related qua l i t ies .

S tab i l i t y

A developer could ensure the software provides
high measures with considerable e f fo r t and s t i l l
not have a good product. Testing is a safeguard
against th is type s i tuat ion. The d i f f i c u l t y in
subverting the concept is also a deterrent.

Usabi I i ty

The methodology for applying the framework lends
i t s e l f to proceduralization. I t requires se l f -
checking periodic measurement and i t lends i t s e l f
to automation. While formal relat ionships which
give s ta t i s t i ca l c r e d i b i l i t y to the model have not
been t o t a l l y val idated, the concepts have imme-
diate application to qual i ty assurance ac t i v i t i es .

SUMMARY

Thus, the framework described appears to have s ig-
n i f i can t potential as a qual i ty assurance tool .
I t enforces a l i f e cycle management viewpoint on
qual i ty assurance ac t i v i t i es and provides early
indications of qual i ty problems.

138

The measurement of characteristics of the software
and documentation via software quality metrics
lends i tsel f to automation. Thus i t can be accom-
plished cost-effectively. Formal relationships
between the metrics and their related quality
factors have not been validated to date, however,
there are indications based on a limited sample
that relationships can be established. There
are considerable benefits derived using the tech-
niques as they exist currently.

Future resource efforts and experience with these
concepts promise to improve i ts application and
expose i ts potential benefits further.

ACKNOWLEDGEMENTS

Many of the ideas discussed in this paper were
derived during a study of the factors in software
quality sponsored by the Air Force Systems Command
Electronic Systems Division (ESD) and Rome Air
Development Center (RADC), contract number F30602-
76-C-0147. Current efforts extending these con-
cepts is being sponsored by RADC and the U.S. Army
Computer Systems Command, AIRMICS, contract num-
ber F30602-78-C-0216. General Electric partci-
pants in these two efforts are Gene Walters, Paul
Richards, Mike Matsumoto, Bob Hassell, and Jim
McCall.

REFERENCES

(I) Kosy, Donald W., R-IOI2-PR, "Air Force Com-
mand and Control Information Processing in the
1980s: Trends in Software Technology," June 1974.

(2) McCall, J.; Richards, P.; Walters, G.,
"Factors in Software Quality," three volumes, NTIS
AD-A049-OI4, AD-A049-OI5, AD-A049-055, November
1977.

(3) Boehm, B., et al, Characteristics of Software
Quality, North Holland Publishing Co., NY, 1978.

(4) Bronowski, Jacob, The Ascent of Man, L i t t l e ,
Brown, and Co., Boston, 1973.

(5) Reichenbach, Hans, "Logic and Predictive
Knowledge," Space, Time, and the New Mathematics,
ed. Robert Marks, Bantam Books, 1964.

(6) Halstead, M., Elements of Software Science,
Elsevier Computer Science Library, NY, 1977.

(7) McCabe, T., "A Complexity Measure," 1976
Software En~ineerin9 Conference, October 1976.

(8) Myers, G., Reliable Software through Com-
posite Design, Petrocelli/Charter, 1975.

(9) Fagan, M., "Design and Code Inspections and
Process Control in the Development of Programs,"
IBM TR 00.2763, June 1976.

(lO) Walters, G. and McCall, J., "The Develop-
ment of Metrics for Software R&M," 1978 Proceed-
ings of the Annual Rel iab i l i ty an.d Maintainabil ity
Symposium, January 1978.

BIOGRAPHIES

Mailing Address:

Mr. Joseph P. Cavano
Information Sciences Division/ISl
Rome Air Development Center
Air Force Systems Command
Gri f f iss Air Force Base, New York
(315) 330-4235

13441

Mr. Cavano has been working at the Rome Air Devel-
opment Center for the past 8 years. His current
position deals with developing a methodology for
software acquisition based on quality measurements.
Prior to this, Mr. Cavano has worked in extending
software engineering ideas to an on-line envi-
ronment. This research was incorporated in his
Master's thesis, "On-Line Software Engineering."
Mr. Cavano has also designed and implemented a
financial management system based on a model of
government procurement and combining data manage-
ment functions with text-processing. Mr. Cavano
has received an M.S. in Industrial Engineering
and Operations Research from Syracuse Univer-
s i ty and a B.S. in Mathematics from Clarkson
College of Technology.

Mailing Address:

Mr. James A. McCall
General Electric Company
Information Systems Programs
450 Persian Drive
Sunnyvale, California 94086
(408) 734-4980

Mr. McCall has a wide range of experience in oper-
ations research, cost-benefit analysis, systems
analysis, and simulation. He was principal inves-
t igator on the Factors in Software Quality contract
with RADC and ESD, and is currently principal
investigator on the Metrics Enhancement contract
with RADC and USACSC. He has participated in
research efforts involving cost estimation, model-
ing the software development process, and the
development of an information and data system sim-
ulator and a computer network simulator. Prior
to joining GE, Mr. McCall worked in the Advanced
Technology Directorate, U.S. Army Computer Systems
Command. He participated in a large study ana-
lyzing the most cost-effective method of network-
ing the Army's multicommand management information
system support. He was also involved in R&D
efforts, including program veri f icat ion and
validation, data base management systems, struc-
tured programming techniques, and software re l i -
ab i l i t y . He received an MoS. in Operations
Research and an M.S. in Engineering-Economic Sys-
tems from Stanford University and a B.S. in
Engineering from the U.S. Miltary Academy.

139

