
International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

87

Application of Genetic Algorithm in Software Testing

Praveen Ranjan Srivastava1 and Tai-hoon Kim2

1, Computer Science & Information System Group, BITS PILANI – 333031 (INDIA)

praveenrsrivastava@gmail.com
2Dept. of Multimedia Engineering, Hannam University, Korea

taihoonn@hnu.kr

 Abstract

 This paper presents a method for optimizing software testing efficiency by identifying the
most critical path clusters in a program. We do this by developing variable length Genetic
Algorithms that optimize and select the software path clusters which are weighted in
accordance with the criticality of the path. Exhaustive software testing is rarely possible
because it becomes intractable for even medium sized software. Typically only parts of a
program can be tested, but these parts are not necessarily the most error prone. Therefore,
we are developing a more selective approach to testing by focusing on those parts that are
most critical so that these paths can be tested first. By identifying the most critical paths, the
testing efficiency can be increased.

Keywords: Software Testing, Genetic Algorithm, Test Data

1. Introduction

 The verification and validation of software through dynamic testing is an area of software
engineering where progress towards automation has been slow. In particular the automatic
design and generation of test data remains, by and large, a manual activity. Software testing
remains the primary technique used to gain consumers’ confidence in the software. The
process of testing any software system is an enormous task which is time consuming and
costly [1] [2]. Software testing is laborious and time-consuming work; it spends almost 50%
of software system development resources [1] [2]. Generally, the goal of software testing is to
design a set of minimal number of test cases such that it reveals as many faults as possible. As
mentioned earlier, software testing is a lengthy and time-consuming work [3]. Absolutely, an
automated software testing can significantly reduce the cost of developing software. Other
benefits include: the test preparation can be done in advance, the test runs would be
considerably fast, and the confidence of the testing result can be increased. However,
software testing automation is not a straight forward process. For years, many researchers
have proposed different methods to generate test data automatically, i.e. different methods for
developing test data/case generators [4, 5, 6, 7, 8, 9]. The development of techniques that will
also support the automation of software testing will result in significant cost savings. The
application of artificial intelligence (AI) techniques in Software Engineering (SE) is an
emerging area of research that brings about the cross fertilization of ideas across two
domains. A number of researchers did the work on software testing using artificial
inelegance; they examine the effective use of AI for SE related activities which are inherently

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

88

knowledge intensive and human-centered. These issues necessitate the need to investigate the
suitability of search algorithms, e.g. simulated annealing, genetic algorithms, and ant colony
optimization as a better alternative for developing test data generators [4, 5].Using
evolutionary computations, researchers have done some work in developing genetic
algorithms (GA)-based test data generators [6, 7, 8, 9, 10]. A variety of techniques for test
data generation have been developed previously [12, 13, 14, 15, 16] and these can be
categorized as structural and functional testing.

In this paper, we present the results of our research into the application of GA search
approach, to identify the most error prone paths in a software construct. The paper is
structured in the following way: section 2 describe basic structure of genetic algorithm, in
section 3 we discussed our proposed algorithm for test data generator, while section 4
represents the case study of proposed approach using an example and finally in section
5.describe the conclusions part.

2. Genetic algorithm

 A GA [10] starts with guesses and attempts to improve the guesses by evolution. A GA
will typically have five parts: (1) a representation of a guess called a chromosome, (2) an
initial pool of chromosomes, (3) a fitness function, (4) a selection function and (5) a crossover
operator and a mutation operator. A chromosome can be a binary string or a more elaborate
data structure. The initial pool of chromosomes can be randomly produced or manually
created. The fitness function measures the suitability of a chromosome to meet a specified
objective: for coverage based ATG, a chromosome is fitter if it corresponds to greater
coverage. The selection function decides which chromosomes will participate in the evolution
stage of the genetic algorithm made up by the crossover and mutation operators. The
crossover operator exchanges genes from two chromosomes and creates two new
chromosomes. The mutation operator changes a gene in a chromosome and creates one new
chromosome. GA has well-defined steps:

A basic algorithm for a GA is as follows [1]
The pseudo code for GA is:
Initialize (population)
Evaluate (population)
While (stopping condition not satisfied) do
{
 Selection (population)
 Crossover (population)
 Mutate (population)
 Evaluate (population)
}
The algorithm will iterate until the population has evolved to form a solution to the problem,
or until a maximum number of iterations have taken place (suggesting that a solution is not
going to be found given the resources available).

3. Proposed Approach

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

89

This section describes details of our proposed approach, to test data generation using
GA; more precisely, it describes our fitness function. Our approach uses a weighted
CFG. Path testing searches the program domain for suitable test cases that covers every
possible path in the software under test (SUT). However, it is generally impossible to
achieve this goal, for several reasons. First, a program may contain an infinite number
of paths when the program has loops. Second, the number of paths in a program is
exponential to the number of branches in it and many of them may be unfeasible. Third,
the number of test cases is too large, since each path can be covered by several test
cases. For these reasons, the problem of path testing can become a NP complete
problem making the covering of all possible paths computationally impractical. Since it
is impossible to cover all paths in software, the problem of path testing selects a subset
of paths to execute and find test data to cover it.

Our algorithm works on control flow graph (CFG). CFG is a simple notation for the
representation of control flow. An independent path is any path through the program
that introduces at least one new set of processing statements or a new condition. When
stated in terms of a flow graph an independent path must move along at least edge that
has not been traversed before the path is defined.

3.1 Procedure

Input: CFG of the code

Assigning weights to edges of CFG – The first step of algorithm is assigning weights
to CFG. More weights are assigned to edges which are critical so to say, that are part of
paths which are more error prone. An initial credit is taken (100 or 10), if CFG is dense
i.e. large numbers of edges are there than initial credit should be taken as 100 and if
CFG is sparse (small codes) then it can be taken as 10.

At each node of CFG the incoming credit (sum of the weights of all the incoming
edges) is divided and distributed to all the outgoing edges of the node.

Distribution of weights is done as follows:

Take ‘n’ to be the number of outgoing edges.

We have considered an 80-20 rule. 80 percentage of weight of the incoming credit is
given to loops and branches and the remaining 20 percentage of the incoming credit is
given to the edges in sequential path. From each node if n1 is the number of edges in
sequential path and n2 is the number of edges in looping and branching paths, then n1
edges are given 20 percentage of incoming weight and then divided equally amongst
them and the remaining 80 percentage is given to n2 edges.

If there is only one outgoing edge from a particular node than the incoming weight is
assigned to the outgoing edge.

In figure 1 of illustration it can be seen that a similar procedure has been followed to
assign weights to the edges.

3.2 Selection

The selection of parents for reproduction is done according to a probability
distribution based on the individual’s fitness values. First the fitness value is calculated

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

90

using the Fitness function proposed in the algorithm. Weights are used to determine the
relative contribution of a path to the fitness calculation. Thus, more weight is assigned
to a path which is more “critical”. Criticality of the path to test data generation is based
on the fact that predicate, loop and branch nodes are given preference over sequential
nodes during software testing. The fitness function we are using here is
 n
 F = ∑ wi
 i=1

Where, wi = weight assigned to i-th edge on the path under consideration

The algorithm works by assigning weights to the edges (depicting flow) of CFG on
the basis of the importance of path in which the edge lies. Higher weights are assigned
to the edges of path corresponding to the critical section of the code for example loops,
branch statements, control statements etc. for which testing is essential. After all the
fitness function values are calculated, the probability of selection pj for each path j, so
that

pj = Fj/ ∑. Fj
Where, j=1 to n
n= initial population size

Then cumulative probability ck is calculated for each path k with equation:

 k
 ck = ∑ pj

 j=1

3.3 Reproduction (crossover)

 In one-point (or single) crossover, two input data selected as potential parents by selection
process exchange substring information at a random position in the data to produce two new
data. Crossover happens according to a crossover probability pc, which is an adjustable
parameter. For each parent selected, generate a random real number r in the range [0, 1]; if r <
pc then select the parent for crossover. After that, the selected data are formatted randomly.
Each pair of parents generates two new paths, called offspring.

The crossover technique used is one point crossover done at the midpoint of the input
bit string. In this technique, right half of the bits of one parent are swapped with the
corresponding right half of the other parent.

3.4 Mutation

Mutation is performed on a bit-by-bit basis. Every bit of every chromosome in the
offspring has an equal chance to mutate (change from ‘0’ to ‘1’ or from ‘1’ to ‘0’), and
the mutation occurs according to a mutation probability pm, which is also an adjustable
parameter. To perform mutation, for each chromosome in the offspring and for each bit
within the chromosome, generate a random real number r in the range [0, 1]; if r < pm
then mutate the bit.

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

91

These major components including the fitness function will evolve test data to better
ones, trying to find a candidate that covers the target path. The crossover process tries
to create better test data from fitter ones, while mutation introduces diversity into
population, avoiding getting stuck at local optima solutions.

4. Case Study

I have to check my procedure under case study.

Figure1: Code with weight CFG

This is the CFG for the above code. The numbers of the nodes correspond to line of
the code. Since line 1 of the code is an IF statement, node 1 becomes a predicate node
and two outgoing edges are made to account for the two possible outcomes of the IF
statement. Line 6 is a while statement and correspondingly node 6 has two outgoing
edges in the CFG. Also can be seen is an edge from node 9 to node 6 depicting the loop.
This figure shows the assignments of weights to the CFG following the procedure
described in section 3.1. Here an initial credit of 10 is taken since it is a small piece of
code. Then as we traverse CFG from top to bottom, we keep dividing the incoming
credit at each node following the 80 – 20 rule.

4.1 Assigning Weights

 In the given example we started with initial credit of 10 and then distributed it to the
various edges on the basis of their importance. Values of weights are shown in figure 1
and are those which are closer to the edges.

4.2 Solving Case study Using Genetic Algorithms

The table depicts the procedure and key to the table is:

X: denotes our test data set

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

92

F(x): corresponding fitness value calculated for each test data, by adding the weights
of the path followed by it in the CFG.

Pi: probability for the corresponding data

 Pi = F(Xi) / (∑ (F(Xi))

Ci: cumulative probability

Ran: Random number generated for the test data

Ns: Test data number that has cumulative probability just greater than the
corresponding random number.

Mating pool: This column contains the number of times a test data appears in the Ns
column.

Steps for carrying out cross over and mutation:

The data obtained from the Ns values is written in binary representation

Pair-wise crossover is done by interchanging the second half off the binary
representation of the data, for data satisfying the condition that Ran<0.8. This is
because crossover probability is 80% and crossover is carried out only if its
corresponding random number is less than this probability.

Mutation: For each entry in the new data set, bit-wise random number are generated.
And for random number values less than 0.3, that corresponding bit is flipped to
obtain a new data entry.

Same procedure is carried out for the new data set obtained for further crossover and
mutation until we start getting better values of the fitness function F(x).

Example 1:

Initial population: (n, m)

(15, 4), (5, 6), (6, 2), (4, 12)

Fitness function used:

 Summation of weights of path traversed by a given input data in CFG

 For example (15, 4) will travel the path 0-1-2-3-4-5-6-7-8-9-6-7-8-9-6-10-11-12
and therefore its fitness value is 108

Since the mating pool consists of only (15, 4) therefore this is the test data that
should be used for the testing of the code during execution. This is because the mating
pool depicts the population that will mate in the next iteration. Here since the only
value in mating pool is (15, 4), this shows that no further improvement in the fitness
function value can be achieved with further reproduction and mutation. Thus (15, 4) is
the test data that should be used as input for software testing.

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

93

Example 2

Initial population: (n, m)

 (12, 8), (2, 3), (6, 2), (15, 4)

Iteration: Table 1, 2, 3, 4, 5, 6and Table 7 on the next page show iteration of the
procedure followed. Fitness function values of input population is calculated in
coloumn3,then probability is calculated using the formula in section 3.Coloumn5 shown
the cumulative probability .Random number are generated to simulate the GA process.

 5. Conclusion

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

94

Genetic algorithms are often used for optimization problems in which the evolution of a
population is a search for a satisfactory solution given a set of constraints. We have reported
preliminary results from an experiment comparing random test data generation with a new
approach using genetic search. In this paper we have demonstrated that it is possible to apply
Genetic Algorithm techniques for finding the most critical paths for improving software
testing efficiency. The Genetic Algorithms also outperforms the exhaustive search and local
search techniques. In conclusion, by examining the most critical paths first, we obtain a more
effective way to approach testing which in turn helps to refine effort and cost estimation in
the testing phase. Our experiments conducted so far are based on relatively small examples
and more research needs to be conducted with larger commercial examples. Future research
will involve comparing GA selected paths in larger test data and further refining the method
presented. This research would help in generating various software test cases. Also, since GA
can be used independently for any problem and it is an emerging field so it has tremendous
importance for users.

References

[1] Somerville, I., “Soft ware engineering,” 7th Ed. Addison-Wesley,

[2] Aditya P mathur,”Foundation of Software Testing”, 1st edition Pearson Education 2008.

[3] Alander, J.T., Mantere, T., and Turunen, P, “Genetic Algorithm Based Software Testing,”
http://citeseer.ist.psu.edu/40769.html, 1997.

[4] Nashat Mansour, Miran Salame,” Data Generation for Path Testing”, Software Quality Journal, 12,
121–136, 2004,Kluwer Academic Publishers.

[5] Praveen Ranjan Srivastava et al, “Generation of test data using Meta heuristic approach” IEEE TENCON
(19-21 NOV 2008), India available in IEEEXPLORE.

[6] Wegener, J., Baresel, A., and Sthamer, H, “Suitability of Evolutionary Algorithms for Evolutionary
Testing,” In Proceedings of the 26th Annual International Computer Software and Applications Conference,
Oxford, England, August 26-29, 2002.

[7] Berndt, D.J. and Watkins A, “Investigating the Performance of Genetic Algorithm-Based Software Test
Case Generation,” In Proceedings of the Eighth IEEE International Symposium on High Assurance Systems
Engineering (HASE'04), pp. 261-262, University of South Florida, March 25-26, 2004.

[8] B. Korel. Automated software test data generation. IEEE Transactions on Software Engineering, 16(8),
August 1990.

[9] B.F. Jones, H.-H. Sthamer and D.E. Eyres. Automatic structural testing using genetic algorithms. Software
Engineering Journal, pages 299-306, September, 1996.

[10] Goldberg, D.E, “Genetic Algorithms: in Search, Optimization & Machine Learning,” Addison Wesley,
MA. 1989.

[11] Horgan, J., London, S., and Lyu, M., “Achieving Software Quality with Testing Coverage Measures”,
IEEE Computer, Vol. 27 No.9 pp. 60-69, 1994.

[12] Berndt, D.J., Fisher, J., Johnson, L., Pinglikar, J., and Watkins, A., “Breeding Software Test Cases with
Genetic Algorithms,” In Proceedings of the Thirty-Sixth Hawaii International Conference on System Sciences
(HICSS-36), Hawaii, January 2003.

[13]Mark Last, Shay Eyal1, and Abraham Kandel, “Effective Black-Box Testing with Genetic Algorithms,”
IBM conference.

[14] Lin, J.C. and Yeh, P.L, “Using Genetic Algorithms for Test Case Generation in Path Testing,” In
Proceedings of the 9th Asian Test Symposium (ATS’00). Taipei, Taiwan, December 4-6, 2000.

[15] andré baresel, harmen sthamer and michael schmidt, “fitness function design to improve evolutionary
structural testing,” proceedings of the genetic and evolutionary computation conference, 2002.

[16] Dr. Velur Rajappa, Arun Biradar, Satanik Panda, “Efficient Software Test Case Generation Using Genetic
Algorithm Based Graph Theory,” First International Conference on Emerging Trends in Engineering and
Technology, ICETET '08, pp.298-303, 2008.

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

95

[17] Christoph C. Michael, Gary E. McGraw, Michael A. Schatz, and Curtis C. Walton, “Genetic Algorithms
for Dynamic Test Data Generation,” Proceedings of the 1997 International Conference on Automated Software
Engineering (ASE'97) (formerly: KBSE) 0-8186-7961-1/97 © 1997 IEEE.

[18] C. Darwin. On the Origin of Species: A facsimile of the first edition. Harvard University Press, July 1975.

Authors

Praveen Ranjan Srivastava is working in computer science and
information systems group at Birla Institute of Technology and
Science (BITS) Pilani India. He is currently doing research in the
area of Software Testing. His research areas are software testing,
quality assurance, testing effort, software release, test data
generation, agent oriented software testing, soft computing
techniques. He has a number of publications in the area of
software testing. He has been actively involved in reviewing
various research papers submitted in his field to different leading

Journals and various International and National level conferences. Contact him at
praveenrsrivastava@gmail.com

International Journal of Software Engineering and Its Applications

Vol. 3, No.4, October 2009

96

