
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 9, SEPTEMEBER 1985

Automated Software Quality Assurance

HARRY M. SNEED, MEMBER, IEEE, AND ANDRAS MEREY

Abstract-This paper describes a family of tools which not only sup-
ports software development, but also assures the quality of each soft-
ware product from the requirements defimition to the integrated system.
It is based upon an explicit definition of the design objectives and in-
cludes specification verification, design evaluation, static program anal-
ysis, dynamic program analysis, integration test auditing, and configura-
tion management.

Index Tenns-Dynamic analysis, review techniques, software metrics,
software qualtiy assurance, static analysis.

I. INTRODUCTION
Q UALITY assurance plays a vital role in the software life

cycle process. After each development phase, it is neces-
sary to confirm the result of that phase before proceeding

to the next. Manually this can be an expensive process, one
that is difficult to justify economically, not to mention the
fact that it is difficult to find qualified persons willing to carry
it out. The only real way to make quality assurance both sys-
tematic and economically feasible is to automate it [1] .
As yet there have, however, been few attempts to integrate

and automate the whole validation and verification process.
This is due to the fact that in order to be automatically pro-
cessed, the various software products must be in a machine pro-
cessable form, and this presupposes some type of formal lan-
guage for each semantic level of software development. Until
now, the only machine processable software has been the pro-
grams themselves. But programs are only one of at least seven
different software products [2]. These are
* requirements documentation,
* specification documentation,
* design documentation,
* programs,
* program documentation,
* test documentation, and
* user documentations (see Fig. 1).
A complete quality assurance plan is one that encompasses

all of the above named products. Thus, an automated quality
control system should be able to verify and validate each of
these products [3].
The SOFTING Software Engineering Environment is intended

to be such a system. It is a family of horizontally and vertically
integrated tools with a common development database in which
all of the software products are represented. Like ISDOS and
REVS, it not only supports the creation and maintenance of
the software products, it also ensures their quality through a
series of verification, validation, and evaluation procedures.

Manuscript received November 8, 1982.
The authors are with the Software Engineering Service, 8014 Neu-

biberg, West Germany.

Developnfent Descriptive

Spec. Prgns Test

Fig. 1.

These procedures for each phase of the software development
cycle are the subject of the following discourse.

II. QUALITY REQUIREMENT DEFINITION

Quality is relative. In order for quality to be measured it
must first be defined. This is a task of the project manager in
the requirements phase.
The SOFTMAN project management sytem supports this

effort in that it requires the project manager not only to require
quality but to specify the design objectives as well. The four
main objectives are

* quantity,
* quality,
* time, and
* costs.
Quantity is understood as the scope of a system in terms of

the proportion of possible entities included and relationships
implemented, i.e., what the system actually does as compared
to what it should have done.
Quality is, on the other hand, the sum of the characteristics

of a system, i.e., how the system is actually constructed and
how it performs as opposed to how it should have been built
and how it should perform.
Time and costs are directly measurable in terms of calendar

months passed and money expended.
The above named design objectives are contradictory to one

another. Quality can only be increased by reducing quantity
or by increasing time and costs. Quantity can only be increased
by sacrificing quality or by increasing time and costs. Time
and costs are also tradeoffs as demonstrated by Brooks [4].
Adding personnel to reduce time increases costs and vice versa.
The relationship of these conflicting goals is represented by

the so called devil's quadrat which is, in effect, a quadratic
equation for computing tradeoffs between four opposing vari-
ables when assuming a fixed capacity (see Fig. 2).
The flxed capacity of the productivity of the developing

organization is determined by a combination of productivity
factors such as

0098-5589/85/0900-0909$01.00 © 1985 IEEE

909

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1 1, NO. 9, SEPTEMBER 1985

Fig. 2.

* hardware facilities,
* software aides,
* developer experience, and
* application complexity.

Boehm has defined these factors in his COCOMO Model [5].
SOFTMAN requires the manager of a project to first calculate

his productivity factor and to weigh the basic design objectives.
For this purpose, he has a fixed number of points to distribute
as practiced by the MECCA Method [6]. Once this is done, he
must further distribute the points already assigned to quantity
and quality since each of these main goals contains subgoals.
Quantity encompasses the subgoals
* functional completeness,
* informational completeness, and
* relational completeness.
Functional completeness is a measure of the proportion of

processes within an application area which are automated by
the new system.
Informational completeness is a measure of the proportion

of data communications and data storages, i.e., the objects
within an application area which are actually reproduced or

stored by the new system.
Relational completeness is measure of the proportion of rele-

vant relationships between objects and processes in the appli-
cation which are actually implemented in the new system.
Quality contains the subgoals
-extendability,
-transferability,
-maintainability,
-reliability,
-security,
-efficiency, and
-usability.

Extendability is the measure of the amount of effort required
in order to change or enhance a system relative to the amount
of effort needed to originally develop it.

Transferability is a measure of the amount of effort required
in order to transfer the system from one environment to an-
other relative to the original development effort.
Maintainability is a measure of the effort to keep a system

operational relative to the effort required to develop it.

- Reliability
- Security
- Ease of Use
TieUtilatRtQn

Fig. 3.

Reliability is a measure of the proportion of cases, i.e., time,
in which the system operates correctly relative to the total
number of cases. Correctness is, in turn, a question of consis-
tency between actual behavior and specified behavior.
Security is a measure of the degree to which a system secures

its data and recovers from failures without human intervention.
Efficiency is a measure of the execution time and storage

space actually necessary to operate the system as opposed to
that planned.

Usability is, in turn, a measure of user satisfaction with the
new system as compared to the old system, whereby the old
system may have been a manual one.
These design objectives are indispensable for the succeeding

quality assurance procedures. The objectives of scope such as
functional, informational, and relational completeness are re-
quired to measure the completeness of the application specifi-
cation. The technical objectives such as maintainability, trans-
ferability, extendability, and usability are needed to measure
the adequacy of the implementation design. The operational
objectives like reliability, security, and efficiency are essential
to judge the quality of the implementation. Finally, the man-
agerial objectives-time and costs-are necessary to control the
development process.
SOFTMAN is designed to force the project manager to com-

mit himself to certain measurable objectives in the require-
ments definition phase. From this point on, all the properties
of the system under development are assessed in accordance
with the management prerogatives (see Fig. 3).

III. SPECIFICATION VERIFICATION
The first software product which can be subjected to an auto-

mated quality control is the requirements specification, i.e.,
application design. This preliminary product can be analyzed
automatically in regard to its

* completeness,
* consistency, and
* feasibility [7].
Completeness is defined in the context of the specification

as the proportion of objects, processes, and relationships plan-

910

SNEED AND MEREY: AUTOMATED SOFTWARE QUALITY ASSURANCE

ned which have actually been fully specified. Consistency is
the lack of contradiction between various parts of the specifi-
cation. Feasibility is the probability that the system specified
can be imnplemented within the time and cost restraints stated
in the requirements phase.
The purpose of such an analysis is to prevent an unripened

prematured concept from being implemented. An automatic
analysis at this time is a prerequisite to a manual design review

since it is extremely difficult to review the contents of an ap-

plication design which is incomplete, contradictionary, and
infeasible. The chances of being understood by the potential
user is also greatly reduced when it is formally incorrect. The
design reviewees will only be distracted from assessing the con-

tents of the proposed solution by the many fo-rmal errors in its
definition. For, these and other reasons, the formal verifica-
tion of an application design should be an important part of
any quality assurance program.

In the SOFTING software production environment the
specification verification is performed by the SOFSPEC sys-

tom which also supports the definition, storage, and docu-
mentation 6f the requirements specification.
The application design is represented as an entity/relation-

ship model as proposed by Chen [8] and stored in a linked list
data base in accordance with the network data model [9] . The
elements of the model are the

* objects,
* processes,

* data,
functions,

* forms, and
* predicates

of the applibation design.
The specification is considered complete when all elements,

attributes, and relationships relevant to i particular application
have been identified and defined. A tool such as SOFSPEC
can of course not know if all the relevant entities have been
defined. It can only compare the objects, processes, and rela-
tions defined in the final specification to those given in the ini-

tial requirements definition. It can, however, automatically
check if all the required attributes of an entity, for instance
the length, type, description, and domain of a data item have
been submitted. This applies to all the elements of the system.
Furthermore, it can detect missing relationships between ele-
ments, such as objects with no links to processes, objects with
no data, processes with no functions, conditional functions
with no predicates, and transformation functions with no re-

lated data.
The specification is consistent when there are no contradic-

tions between the defined relationships. Thus when one pro-
cess is defmed as a predecessor tQ another, then the other must
be defined as its successor. When a process generates an object,
then that object must be generated by it. A communicational
entity must be represented by a form and an informational
entity must be defimed by a data tree. In each data tree, at
least one data item must be designatbd as a search key. Also,
each repetitive data item must have an occurence greater than
one aid each repetitive function must be defmed as an itera-
tion. Decision rules may not be ambiguous and the representa-

tion of data in forms must correspond to the data types. These
are only some of the many consistency checks carried out by
the SOFSPEC system. In effect, the consistency verification is
similar to an extensive syntax analysis of a formal language.
An application specification is considered to befeasib?e when

the size and complexity of the system specified is not greater
than that which can be implemented within the time and cost
restraints prescribed in the requirements definition. The size of
an application is measured here in terms of the number of dif-
ferent elements defined in the specification. The complexity
is a factor of the number of distinct relationships between all
the entities contained therein. Should these numbers exceed
the maximum numbers stated in the project definition, then it
is obvious that the system will cost more than what manage-
ment is willing to pay. Ifthere is a limited number ofprocesses
and objects with a high degree of interrelationships, it is also a
sign that the inplementation work can not be easily distributed.
This means an increase in calendar time.
Besides these three automatic controls, SOFSPEC aslo pro-

vides an extensive documentation of the system specification
both at the level of objects, and processes as well as at the level
of data and functions. With the help of this documentation it
is possible for the user to review the accuracy ofthe application
design before it is implemented.

IV. DESIGN EVALUATION
The second quality assurance point in the computer aided

software production process with SOFTING is the design eval-
uation. The implementation design is a for"mal definition of
the data and program organization. This definition is repre-
sented by the system SOFTCON in a design database which,
like the specification database, is based on the entity/relation-
ship miodel.
The data design consists of five elements and fi've relations.

The data elements are:
* the file or logical database descriptions,
* the data communication interface descriptions,
* the data item descriptions,
* the data item codes, and
* the data input/output assertions.
The data relations are:
* the assignment of data capsules to files of logical databases,

i.e., the file or database structures;
* the assignment of data items to data capsules;
* the assignment of codes to data items;
* the assignment of input/output assertions to data items,

and
* the relationship of data capsules to modules, i.e., files or

logical databases to programs.
The program design alSo consists of five elements and five

relations. The program elements are:
* the process or job descriptions,
* the program descriptions,
* the module interface descriptions,
* the module control flow descriptions, and
* the testdriver/stub procedures.
The program relations are:
* the assignment of programs to processes or jobs,

911

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 9, SEPTEMBER 1985

* the assignment of modules to programs and to other
modules,
* the assignment of functions and predicates, i.e., test paths,

to modules,
* the assignment of assertions to test paths, and
* the relationship of modules to data capsules, i.e., programs

to files or logical databases.
It is important to note that the data and program design are

symmetrical and that they complement one another. This
facilitates automated design validation.
The design validation in SOFTCON consists of two parts: a

content verification and a technical assessment.
The content verification is a consistency check against the

application design or specification. Using the specification
database as a basis the design database is processed to verify
that each

* object,
* process,
* data,
* function,
* form, and
* predicate

in the application specification has been properly transferred
to the implementation design. The objects must be assigned to
files or databases, the forms to data communication interfaces,
the processes to programs and the data to data capsules, while
functions and predicates are assigned to modules. In addition,
the relationships which exist in the technical design are checked
for consistency with one another. For instance, a module
interface must agree with the module's use of data. This check
insures that the design is formally correct.
The technical assessment is a measure of design techniques

such as
* modularity,
* generality,
* portability,
* redundancy,
* integrity,
* complexity,
* time utilization, and
* space utilization.
The goal of this assessment is to examine to what extent the

technical design objectives-extendability, transferability, main-
tainability, security, usability, efficiency, and reliability-have
been met. If the system is supposed to be maintainable, then
the design should be modular and noncomplex. If the-system
is supposed to be extendable, then the design should be mod-
ular and general. If the system is supposed to be transferable,
then the design should be modular and portable. If the system
is supposed to be secure, then the design should have redun-
dancy and integrity. If the system is supposed to be efficient,
then the design should be economic in regard to either time,
space, or both. Finally, if the system is to be reliable, then it
should be secure and noncomplex.
Modularity is the mean of five related ratios (M) where

Ml =
modules

application functions

data capsules
application oriented data items

modules
- module calls

data capsules
M4= data flows

modules
Ms module interfaces

Data capsules are logical access units which may be records,
tables, or parameter lists. Data flows are defined here as the
transfer of data from one capsule in the system to another.
Module interfaces are the number of data flows into and out of
the modules. This includes parameter passing, input/output
operations, message transmissions, and database accesses.
Generality is the mean of two ratios (G) where

applicaton independent modules
modules

application independent data capsules
G2=

data capsules

Application independent modules are those which contain
no application specific functions. Application independent
data capsules contain no application speccific data.
Portability is the mean of the ratios (P) where

environment independent modules
modules

environment independent data capsules
P2= data capsules
Environment independent modules are those which contain

no references to a particular operating, database or data com-
munication system. Environment independent data capsules
contain no data connecting them to a particular database or
data communication system [101 .
Redundancy is the mean of the three ratios (R) where

RI=repeatable modules
- modules

D reproducable data capsules
capsules

R logged transactions
transactions

Repeatable modules are those which can be restarted with
no side effects. Reproducable data capsules are those that can
be restored in case of loss or contamination. Logged transac-
tions are those which are protocolled for restarting if necessary.
Integrity is the mean of two ratios (I) where

edited.system input data items
systerh input data items

= edited system outputdataitems
system output data items

912

X2

SNEED AND MEREY: AUTOMATED SOFTWARE QUALITY ASSURANCE

System input data are all data items received via an external
interface, i.e., form. Edited input data are those whose plausi-
bility is checked before they are processed. System output
data are, on the other hand, all data items transmitted by the
system to its environment via an external interface. Edited
output data are those whose validity is confirmed before they
are transmitted.
Complexity is measured in the design as the mean of the

predicate, predicate variables, function, and data element ratios

(C) where

predicates
predicate variables

functions
C2 =

predicates

variables - predicate variables
C3 variables

functions
4 variables

The predicates are the selection and repetition conditions of
the module pseudocode, i.e., the nodes of the flow graph. The
predicate variables are the operands in these conditions. The
functions are the edges of the module flow graph. The variables
are the input and output operands.
The utilization can be measured at design time only in terms

of module calls and data accesses per transaction. Time effi-
ciency can thus be stated as the mean of the two ratios (T)
where

transactions
l data accesses per transaction X transactions

transactions
T =

module calls per transaction X transactions

Space utilization is measured at design time in terms of the
required storage compared to the number of data items. The
ratio

data items

average capsule length X number of data capsules

In all cases the result of the attribute measurement is a frac-
tional number from 0 to 1 with 0 being the lowest and 1 the
highest grade. Each of these detailed quality characteristics
can then be weighted in accordance with the quality goals set
forth in the requirements definition to assess the conformity
of the implementation design with the design objectives [11].

V. STATIC PROGRAM ANALYSIS

The static analysis ofthe finalized programs is the third check-
point in the SOFTING development process. It is carried out
by the system SOFTDOC with the dual purpose of controlling
the program quality and documenting the programs.
SOFTDOC analyzes programs at three different levels, at the

module, program, and system level. A module is defined as a

compilation unit such as a PL/1 procedure, or a Cobol pro-

gram. A program is a run unit with a main module and n sub-

modules. A system is, finally, the full set of programs making
up an application. The analysis is conducted bottom-up start-
ing with the finished modules and processing up to the system
level [12].
The SOFTDOC analysis process is, in effect, a retranslation

of the programs into a design. From the analysis of the data
structures and data flow in the programs, SOFTDOC generates
the

* data item description tables,
* data item code tables,
* data capsule structures, and
* file or data base structures.
From the analysis of the structure and control flow of the

programs SOFTDOC generates the
* interface description tables,
* pseudocode tables,
* program structures, and
* data flows.
In addition, it also produces a cross reference table of the

relations between data and modules. This design data base is
equivalent to that generated by SOFTCON from the applica-
tion specification. In fact, the elements of the original data
base are updated by the program analysis.
There are three ways in which SOFTDOC controls the quality

of programs. First, it audits the code against a set of coding
standards intended to enforce modular and structured program-
ming as well as to encourage a good programming style. Viola-
tions of the conventions are reported as code deficiencies.
Secondly, it measures the complexity of the programs and

the degree of program interdependence. For the measurement
of module control flow complexity, the decision outcomes,
i.e., segments, the forward paths, the internal subroutines, and
the nesting levels are counted. For the measurement of module
data flow complexity, the number of data variables used, the
number of predicate variables and the total number of data
references are computed [13].
Intermodule dependence is measured on the basis of the

number of modules and module invocations as well as the
number of data items passed between modules. Since all pa-
rameter strings are stored in an interface table, SOFTDOC is
also able to compare the parameters in the calling module to
those in the called module for formal correctness.
Interprogram dependence is measured in terms of the number

of modules used in two or more programs, the number of data
capsules used in two or more programs, and the average num-
ber of files, logical databases, and data communication inter-
faces per program in the system.

The. complexity and interdependence measurements derived
by SOFTDOC from the programs are used in the same manner
as those obtained from the design. They are compared to the
weighted design objectives to determine the degree of corre-
spondence between the programs and the requirements.
The third quality control performed by SOFTDOC is to com-

pare the actual data structures, data flows, program structures,
and' control flows to those defined in the original design data-
base. Wherever the content of the program deviates from the
content of the design, an implementation deficiency is re-
ported, for instance, when a module is missing arguments or
results specified in the module design.

913

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1 1, NO. 9, SEPTEMBER 1985

Thus, the automated static analysis by SOFTDOC points out
three distinct types of program deficiencies:

* coding deficiencies,
* structural deficiencies, and
* imple'mentation deficiencies.
This automated analysis can be enhanced by a manual code

inspection. For this purpose, SOFTDOC generate a series of
documents at the module, program, and system level.
At the module level it documents the
* input/output data of each internal section or procedure,
* data structures,
* data codes,
* data references,
* module structures,
* module interfaces,
* module control flow, and
* module test paths.
At the program level it documents the
* input/output data capsules for each module,
* intermodular data flow,
* file structures,
* program structure, and
* module calling flierarchy.
Finally, at the system level it documents the
- input/output files, databases, and data communications of

each program,
* interprogram data flow,
* data dictionary,
* process structures, and
* module cross references.
With the aid of these documents the manual code inspection

can be greatly enhanced [14].

VI. DYNAMIC PROGRAM ANALYSIS
The fourth step in SOFTING's automated product assurance

process is the dynamic analysis ofthe programs. Dynamic anal-
ysis is performed by testing the modules in a simulated test
environment against the assertions postulated in the specifica-
tion and by monitoring their behavior. This is the task of the
SOFTEST system.
SOFTEST consists of several integrated testing tools, among

them
* an instrumentor,
* a test bed generator,
* a test data generator,
* a test monitor,
* an- assertion checker,
* a data flow analyzer, and
* a control flow analyzer.
These tools are supported by a test database consisting of
* assertion procedures to simulate each data interface,
* driver and stub procedures,
* data flow coverage tables,
* control flow coverage tables, and
* the appropriate symbol-tables.
The first step in the program testing process is to generate

test data tables from the input/output assertion procedures
supplied by the system SOFTCON. SOFTEST creates such a

table for each data interface, module stub and module driver.
These tables go into the test database to be used at test time.
The second step is to instrument the programs at the branch

level, that is, at each decision outcome, for the purpose of
measuring test coverage and to instrument the input/output
operations and module calls for the purpose of simulating
them [15].
The third step is the generation of a testbed based on the

data symbol and module interface tables created bySOFTDOC
through the static analysis of the program. The testbed is
constructed to assign the storage areas needed by the unit
under test, to invoke them and to intercept all stub calls and
references to files, databases, or to data communication inter-
faces [16].
The fourth step is the actual execution of the test. The

modules are assigned their common data and parameters by
the test driver which calls the appropriate assertion procedure.
After having been invoked by the driver, the vnit under test is
then interrupted at each stub call and input/output operation.
The test monitor filrst interprets the output assertions to vali-
date the output values. Assertion violations are reported in a
test log. The test monitor then interprets the input assertions
to assign the next series of input values before restarting the
test object. This handling of assertion procedures in an inter-
pretive manner denotes a significant departure from the con-
ventional mode of compiling assertions into the modules [17].
The dynamic behavior of the test object is measured by

monitoring the data flow as well as the control flow. Each path
traversed by a test case is stored in a test path file. Each branch
execution is registered in the test coverage file by a trace rou-
tine. The data flow is traced at each interrupt point by com-
paring the state of the current data domain to the state of the
last data domain and by storing all values which have been
altered since the last interruption. Thereafter, the contents of
the present data area become the last domain.
The fifth and final step in the program test process is the

documentation of the test results. In all, SOFTEST provides
five test reports:

* a log of assertion violations,
* a report of test path traversed,
* a report of data flow incurred,
* a report on the branch coverage, and
* a report on the data input coverage.
These reports assist quality assurance by pointing out where

the actual behavior of a program deviates from the expected
behavior, both in regard to its result arnd in regard to its flow.
Besides this, the coverage reports can be used to assess the
degree to which the programs have been tested. The most im-
portant feature of SOFTEST is, however, the fact that the pro-
grams are tested against assertions written in an assertion lan-
guage at specification time with SOFSPEC and enhanced at
design time by SOFTCON. This ensures the independence of
the test from the implementation [18] (see Fig. 4).

VII. SYSTEMTEST AUDITING
The final activity of the software developers is to integrate

and test all of the system components before turning the sys-
tem over to the user. This is also the last chance to control the

914

SNEED AND MEREY: AUTOMATED SOFTWARE QUALITY ASSURANCE

DB f~Besides that, SOFTINT supports integration testing by gen-
Progra es erating files and databases from the same input assertions as

used by SOFTEST. Here a record or segment is created for
MTSTDATA TESBED DINRS- each relevant combination of data values for each file or logicalGERERA R ME database. The generated files are then used to test the system.

After the test is completed, SOFTINT compares the after
images of the record with the before images which it had

eat DataTestbed created as well as with the output assertions. Thereby, it de-
tects not only what data have been changed, but also what out-
put data do not coincide with their predicate domain. Both
data mutations and assertion violations are reported for the

_ affi7m system audit.
Finally, SOFTINT monitors all data communications between

Test - | the system and its environment and reports them in a symbolic
form so they can be easily interpreted by the system auditors.

1 As8erticnViolations
.ATA FLd OCL VIII. PROJECT MONITORING
ANALYZER

No software quality control environment can be complete
without a feedback loop to the original system requirement.

Data Data trol rogran This task is performed by the SOFTMAN system which not
overage Flow Flow Coverag only keeps account of the man days, computer resources, and

Dynnic Progr-am Behatvior calendar time expended, but also compares the status of the
Fig. 4. Dynamic analysis. system represented in the specification, design, and test data-

bases with the functional and technical objectives stated in the
requirements. For instance, it measures to what extent the sys-quallty of the software before the user does. It is, therefore, . *.

imperative that the integration test be audited. The objective tem is really maintainable, transferrable, extendable, and reli-
able by matching the metrics gathered from the static programof the audit is to ensure that the system in its entirety has been

adeqatel testanalysis against the technical objectives. It also measures theadequately tested.
extent to which a system has been tested by evaluating theA software system is more than just the sum of all its com-

th u coverage data produced by SOFTEST and SOFTINT. Thusponent parts such as modules and data capsules. It is the sum
there is a feedback from the actual properties of the softwareof all the parts and all effects produced through the collabora-

tiol of the parts [19]. In addition, the target environment, system under development to those features postulated by
both hardware and software, must be considered a part of the m

test. In order to confirm thebrof a t in percentage points. This gives management the opportunitytest. Inordertoconfirm he behaior of asystem, hen tha
to take corrective action before it is too late [21].system must be tested within its target environment for all

relevant cases, including stress testing, security testing, excep- IX.SUMMARY
tion testing, etc. for an adequate period of time. What is rele-
vant and adequate can only be determined by independent test This has been a brief summary of the quality assurance as-
auditors supported by automated auditing tools [20]. pests of the SOFTING Software Engineering System consisting
In the integration test, the programs are executed in conjunc- of seven integrated subsystems, one for each phase of the devel-

tion with their operating environment, i.e., database, data opment cycle. The system is presently being developed by
communication, and operating system. The measure of their the two Hungarian national Software Institutes-SZKI and
integration is a question of the degree to which all interfaces SZAMALK. FFive of the seven subsystems have been completed
have been tested. Thus, it is necessary to know how many and are in operation in West Germany. The two others are
DB/DC connections, input/output assertions, module invoca- scheduled for release by 1986. The system is implemented to
tions and exception conditions there are in the system, and run under the operating systems MVS and VM on all IBM and
what percentage of these have been tested with each possible IBM compatible computers. With the completion of the sys-
option. tem in 1986, it is hoped that the major portion of the software
The SOFTINT system is designed to instrument each input/ quality assurance effort will be either partially or fully auto-

output operation, DB/DC function, and module invocation in mated. This could bring about a significant reduction in the
order to record the degree of interface coverage. To this end, cost of quality assurance, while at the same time improving the
it produces two reports: quality of the quality assurance itself. The experience with

* one on the CALL coverage the completed systems has been rather discouraging. The
* one on the I/O coverage. programming community, at least that in Germarny, is a long

as well as a system trace report. These reports aid the test way from Softw4re Engineering. Neither the programmers nor
auditors in determining the extend to which a system has been their managers really i.iderstand the essence of software quality.
tested. And one thing has become clear. There is no substitute for

915

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-II, NO. 9, SEPTEMBER 1985

education. Software tools can only be as good as the people
who are using them.

REFERENCES

[1] Ramainoorthy, Dong, Ganesch, Jen, and Tsai, "Techniques in
software quality assurance," in Proc. ACM Congress Software
Quality Assurance. Stuttgart, West Germany: Teubner-Verlag,
1982.

[2] H. D. Mills, "Principles of software engineering," IBM Syst. J.,
voL 19, no.4, 1980.

[3] Bryan, Siegel, and Whiteleather, "Auditing throughout the soft-
ware life cycle" in IEEE Comput. Mag., Mar. 1982.

[4] F. Brooks, The Mythical Man-Month, Essays on Software Engi-
neern& Reading, MA: Addision-Wesley, 1975.

[5] B. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[6] T. Gilb, Software-Metrics. Stockholm, Sweden: 1976.
[7] W. Howden, "Life cycle software validation," IEEE Comput.

Mag., Feb. 1982.
[8] P. Chen, Entity/Relationship to System Analysis and Design.

Ansterdam, The Netherlands: North-Holland, 1980.
[9] C. Date, An Introduction to Database Systems. Reading, MA:

Addison-Wesley, 1977.
[10] Boehm and Brown, Characteristics of Software Quality, (TRW

Series ofSoftware-Technology 1). Amsterdam,The Netherlands:
North-Holland, 1978.

[11] S. Mohanty, "Models and measurements for quality assessment of
software,"ACMComput. Surveys, vol. 11, no.3, 1979.

[121 Chen, Huang, and Ramamoorthy, "Automated techniques for
static structural validation of programs, in Proc. Compsac 77,
IEEE, Chicago, IL, 1977.

[13] T. McCabe, "A complexitymeasure,"IEEETrans. SoftwareEng.,
voL SE-2, 1976.

[14] M. Fagan, "Design and code inspection to reduce errors in pro-
gram development," IBM Syst. J., vol. 15, no. 3, 1976.

[151 J. C. Huang, "An approach to program testing," ACM Comput.
Surveys, Sept. 1975.

[16] M. Majoros, "SOFTEST-Model of a commercial program testsys-
tem," in Proc ACM Congress on Software Quality Assurance.
Stuttgart, West Germany: Teubner-Verlag, 1982.

[17] C. Ramamoorthy, "Application of methodology for the valida-
tion of process control software," IEEE Trans. Software Eng.,
voL SE-7, 1981.

[18]

[19]

[20]
[21]
[22]

W. Howden "Theoretical and empirical studies of program test-
ing," IEEE Trans. Software Eng., SE-4, 1978.
H. Sneed, Software-Entwicklungsmethodik. Koln, West Ger-
many: Rudolf MUller Verlag, 1980.
G. Myers, TheArt ofSoftware Testing. New York: Wiley, 1979.
Bersoff, Henderson, and Siegel, Software Configuration Manage-
ment. Prentice-Hall, 1980.
C.-IC. Cho, An Introduction to Software Quality Control. New
York: Wiley, 1980.

Harry M. Sneed (M'78) received the Master's
degree in public administration from the Univer-
sity of Maryland, College Park, in 1969.
He has worked as a Systems Analyst for the

U.S. Department of the Navy, Washington, DC,
as a Programmer/Analyst for the Volkswagen
Foundation, Hanover, Germany, and as a Sys-
tems Programmer for Siemens A.G., Munich,
West Germany. Since 1978 he has been Director
of the Software Engineering Service, Neubiberg,
West Germany.

Mr. Sneed is a member of the Association for Computing Machinery
and the IEEE Computer Society.

Andris M6rey received the M.Sc. degree in elec-
tronics and the Ph.D. degree in microwave engi-
neering from the Technical University of Buda-
pest, Budapest, Hungary, in 1967 and 1971,
respectively.
He is a Senior Research Fellow with the Com-

puter Education and Information Center of
Budapest. His research interests include com-
pilers, static analyzers, and software develop-
ment support environments. Since 1980 he has
been a consultant for several German user firms

and has participated in the development of a software production en-
viroment for the Software Engineering Service, Munich, West Germany.
Dr. M6rey is a member of the John von Neumann Society, the Hunga-

rian equivalent of the Association for Computing Machinery.

