This article was downloaded by: [193.0.65.67] On: 18 December 2014, At: 07:00
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

ﬁ Management Science
MANAGEMENT SCIENCE

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Effects of Process Maturity on Quality, Cycle Time, and
Effort in Software Product Development

Donald E. Harter, Mayuram S. Krishnan, Sandra A. Slaughter,

To cite this article:

Donald E. Harter, Mayuram S. Krishnan, Sandra A. Slaughter, (2000) Effects of Process Maturity on Quality, Cycle
Time, and Effort in Software Product Development. Management Science 46(4):451-466. http://dx.doi.org/10.1287/
mnsc.46.4.451.12056

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 2000 INFORMS

Please scroll down for article—it is on subsequent pages

inf 0y

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTSE LI MN iy

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

Effects of Process Maturity on Quality,
Cycle Time, and Effort in Software Product
Development

Donald E. Harter ¢ Mayuram S. Krishnan e Sandra A. Slaughter
University of Michigan Business School, Ann Arbor, Michigan 48109-1234
University of Michigan Business School, Ann Arbor, Michigan 48109-1234
Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
harter@umich.edu o mskrish@umich.edu o sandras@andrew.cmu.edu

he information technology (IT) industry is characterized by rapid innovation and intense
competition. To survive, IT firms must develop high quality software products on time

and at low cost. A key issue is whether high levels of quality can be achieved without
adversely impacting cycle time and effort. Conventional beliefs hold that processes to
improve software quality can be implemented only at the expense of longer cycle times and
greater development effort. However, an alternate view is that quality improvement, faster
cycle time, and effort reduction can be simultaneously attained by reducing defects and
rework. In this study, we empirically investigate the relationship between process maturity,
quality, cycle time, and effort for the development of 30 software products by a major IT firm.
We find that higher levels of process maturity as assessed by the Software Engineering
Institute’s Capability Maturity Model™ are associated with higher product quality, but also
with increases in development effort. However, our findings indicate that the reductions in
cycle time and effort due to improved quality outweigh the increases from achieving higher
levels of process maturity. Thus, the net effect of process maturity is reduced cycle time and
development effort.

(Software Process Improvement; Software Economics; Software Productivity; Software Quality;

Software Costs; Software Cycle Time; Capability Maturity Model)

1. Introduction

Over the past decades, effective deployment of com-
puter software has emerged as one of the most impor-
tant determinants of success in the business world.
Firms are investing heavily in software as information
technology (IT) infiltrates and plays a critical role in all
aspects of the value chain. In consequence, the IT
industry has experienced more than 500% growth
worldwide over the past decade (Wall Street Journal
1997, Mowrey 1996). As the number of software de-
velopment firms increases, competition intensifies. To

0025-1909/00/4604 /0451$05.00
1526-5501 electronic ISSN

i,

survive, IT firms must accelerate the time to market
for their software products. However, reduced cycle
times cannot be achieved at the expense of low quality
and high development costs.

In an effort to keep costs within budget and deliver
quality products to customers, IT firms adopt various
quality practices in their software development pro-
cesses. However, IT firms may not consistently follow
these practices because of the dynamic nature of the
commercial software development environment. Cus-
tomers frequently change their requirements after

MANAGEMENT ScIENCE © 2000 INFORMS
Vol. 46, No. 4, April 2000 pp. 451-466

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

product design has begun, but they expect the soft-
ware to be delivered without delay. As a consequence,
to satisfy customer needs under severe schedule pres-
sure and yet control development costs, IT firms may
deviate from disciplined practices in their develop-
ment process and cut corners by shipping the prod-
ucts without adequate testing (Kemerer 1997). Such
behavior can result in a higher number of defects at
the customer site that delay the acceptance of the
product, and the cost of fixing these defects can be
significant. These dynamics suggest the importance of
delivering software products on time without com-
promising quality and cost.

In manufacturing, reduction of product develop-
ment cycle time has become the focal point of compe-
tition in many industries. The fast pace of technolog-
ical change and the intensity of international
competition place a premium on a firm’s ability to
respond quickly to customer demands. Many firms
have adopted time-based competition strategies to
reduce product development time and deliver higher
quality products and services to their respective cus-
tomers at lower cost. Under time-based competition,
firms strive to streamline and constantly improve the
reliability and capability of their manufacturing pro-
cesses. A key premise underlying process improve-
ment in manufacturing is the elimination of waste and
rework in manufacturing activities by reducing prod-
uct defects (Bockerstette and Shell 1993).

In software development, an important issue is
whether process improvement pays off in terms of
higher quality, reduced cycle time, and lower cost.
Under the conventional paradigm, higher quality can
be achieved only at the expense of increased develop-
ment expenditures and longer cycle times. From this
perspective, effort expended to improve software de-
velopment processes varies with the level of quality
attained. A typical view of software managers operat-
ing from this paradigm is: “I'd rather have it wrong
than have it late. We can always fix it later.” (Paulk et
al. 1995, p. 4)

An alternative view from manufacturing is that
quality, cost, and cycle time are complementary, i.e.,
improvements in quality directly relate to improved
cycle time and productivity (Crosby 1979, Deming

452

i,

1986, Nandakumar et al. 1993). This view is also
espoused by advocates for software process improve-
ment (Humphrey 1995). These advocates have pro-
vided frameworks for software firms to characterize
the capability of their software development practices
(El Emam and Goldenson 1996, Paulk et al. 1995). One
of the widely adopted frameworks is the Capability
Maturity Model™ (CMM™) developed by the Soft-
ware Engineering Institute (SEI) at Carnegie Mellon
University (Paulk et al. 1995). Based on the specific
software practices adopted, the CMM classifies the
software process into five maturity levels. Analogous
to concepts of time-based competition in manufactur-
ing, the basic premise of this framework is that im-
provements in cycle time, cost, and quality can be
simultaneously attained by improving software pro-
cess capability. These improvements are thought to
arise from reduced defects and rework in a mature
software development process. However, it is impor-
tant to provide empirical evidence to substantiate
these beliefs.

In this study, we empirically investigate the rela-
tionships between process maturity measured on the
CMM maturity scale, product quality, development
cycle time, and effort for 30 software products created
by a major IT firm over a period of 12 years. Size and
design complexity are reported as additional signifi-
cant variables that explain quality in the delivered
software products.

We find that improvements in process maturity lead
to higher quality but also increased effort in our
sample of software products. However, higher quality
in turn leads to reduced cycle time and development
effort in the software products. The net effect of
improvement in process maturity on development
cycle time and effort is negative. At the average values
for process maturity and software quality, a 1% im-
provement in process maturity leads to a 0.32% net
reduction in cycle time, and a 0.17% net reduction in
development effort (taking into account the positive
direct effects and the negative indirect effects through
quality). These findings provide empirical support in
the context of software production for theories of the
cycle time and cost benefits of improved quality
deriving from process improvement.

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

The rest of our paper is organized as follows. A brief
review of the relevant literature is presented in §2.
Section 3 contains the development of our model and
theory. Section 4 provides details about the research
site and data collection. Model estimation and results
are presented in §5. In the final sections, we discuss
the managerial implications of our results and provide
directions for future research.

2. Prior Literature

The increasing dependence on software and the severe
consequences of software failures have mandated IT
firms to deliver higher quality products. In addition,
with the increased competition in the global IT indus-
try, attention has turned more recently to problems of
economically delivering defect-free products to cus-
tomers in a shortened development cycle time. The
software quality literature has approached these prob-
lems from the perspective of predicting and prevent-
ing software defects. A primary focus has been the
development of models to analyze and prevent defects
and to predict the reliability of software products (e.g.,
Lyu 1996, Basili and Perricone 1984).

The cycle time and cost implications of product
quality have been addressed in manufacturing re-
search. Kaplan (1986), for example, discusses the im-
pact of product quality on the direct costs of labor and
materials. Nandakumar et al. (1993) argue that poor
quality in manufacturing systems not only leads to
higher defect rates but also affects product develop-
ment time. Hence, they emphasize that it is important
to include both direct costs and indirect opportunity
costs of the decrease in demand and price resulting
from delayed product delivery in the cost of quality
analysis. Their analytical model captures both the
direct and indirect (through delayed product develop-
ment time) costs of poor quality, and indicates that
costs of poor quality are a convex and increasing
function of defects.

In software engineering research, the life-cycle cost
impact of quality in software products has been exam-
ined by Krishnan et al. (2000). They find that im-
proved conformance quality in system software prod-
ucts leads to significant improvement in life-cycle
productivity, and that factors such as deployment of

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

i,

resources in the initial stages of product design drive
increased quality. However, this study does not con-
sider the cycle time impact of quality improvement.

New technologies are emerging at an increasing rate
in the software industry, rapidly rendering the exist-
ing products obsolete. As a consequence, product
life-cycles are getting shorter, and cycle time reduction
is imperative for software firms. Although a number
of commercial computer-aided software engineering
(CASE) tools have been introduced to facilitate cycle
time reduction, from a software engineering research
perspective the quality impacts of delays in product
development are not well understood. The effect of
development cycle time on total effort has been indi-
rectly addressed in software cost models through the
effect of schedule pressure in projects (Boehm 1981,
Abdel-Hamid and Madnick 1991).

The streams of research on software cost, quality,
and cycle time have often considered one factor in the
absence of one or more of the other factors. That is,
many cost models ignore the quality or time to market
of the delivered product, and quality models often
ignore cycle time or the cost incurred in product
development. In the absence of an understanding of
the interrelationships between these factors, software
managers eliminate important process steps such as
front-end inspections in the erroneous belief that they
are saving time. However, this can result in major
delays in product development resulting from the
additional time required to fix errors detected during
customer acceptance testing (Humphrey 1995). With
the focus in the IT industry on simultaneously reduc-
ing product cycle time, cost, and defects, it is impor-
tant to examine the interrelationships among all these
factors.

The quality, cycle time, and cost problems associ-
ated with software are partly a result of the nature of
software and partly of the practices adopted in soft-
ware development (Brooks 1995). As noted earlier,
software process is viewed as an important determi-
nant of product quality, effort, and cycle time. The
importance of process maturity has been demon-
strated in manufacturing contexts. For example, Bohn
(1995) has reported a field study that provides evi-
dence for the significance of process maturity and

453

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

controlling process variability in enhancing process
yield and product quality. Even if a manufacturer has
a low-quality supplier, it has been shown that the cost
impact of higher defects can be controlled by improve-
ment in the manufacturing process (Tagaras and Lee
1996).

The disciplined methods and practices described in
the CMM and various other software process models
are believed to provide various benefits to software
firms, such as improved quality and reduced cycle
time and cost. Informal studies such as anecdotal case
reports and surveys (Herbsleb et al. 1997) suggest
positive impacts of software process improvement. In
light of the significant investment required to improve
software processes, it is important to rigorously study
and quantify empirically the benefits of process ma-
turity for quality, cycle time, and effort.

3. Research Models and
Hypotheses

The conceptual framework for our study (Figure 1)
integrates three models that interrelate process matu-
rity, quality, cycle time, and effort for software prod-
uct development. The first model relates the maturity
of the development process to product quality, con-
trolling for the size and design complexity of the
software products. In the second and third models,
cycle time and development effort are specified as a
function of product quality and process maturity,
controlling for the size of the product and the ambi-
guity of user requirements. A detailed explanation of
each model and our hypotheses follow.

Figure 1 Conceptual Model
Product Size (-) Product Size (+)
Product Complexity (-) Requirements Ambiguity (+) Cycle
Time
+
+
Process Product
Maturity Quality
) \'—
Product Size (+) Effort
Requirements Ambiguity (+)
454

i,

3.1. Product Quality

In our first model (1), we relate process maturity to
product quality, controlling for the size and design
complexity of the software product:

Product-Quality = Function (Process-Maturity,

Product-Size, Product-Design-Complexity). (1)

In the life-cycle perspective of software develop-
ment, there are several phases of testing that are
conducted to discern the quality of software products.
Unit tests are conducted separately for each module in
the software product, with the goal of detecting and
removing syntactical errors. System tests examine the
functioning of the product as a whole to determine
whether discrete modules will function together as
planned and whether discrepancies exist between the
way the product actually works and the way it was
designed. Acceptance tests are conducted by the cus-
tomers of the product to ensure that it meets their
specifications.

Our definition of product quality is based on errors
uncovered in system and acceptance testing. These
errors are deviations from the initial customer speci-
fications and do not include enhancements. Specifi-
cally, we define product-quality as the lines of source
code in the software product divided by the number
of errors reported during system testing and customer
acceptance testing. This definition reflects the size of
the software per defect, with larger values implying a
lower frequency of errors per unit of software, ie.,
higher product quality.

Process-maturity measured on the CMM maturity
scale reflects the firm’s level of investment to improve
software process capabilities. The CMM framework
includes 18 key process areas such as quality assur-
ance, configuration management, defect prevention,
peer review, and training (Paulk et al. 1995). In all
these process areas, the CMM identifies various disci-
plined software development practices. A software
process is assigned the highest maturity level if the
practices in the 18 key process areas of the CMM are
adopted. As defined in the CMM, an effective and
mature software process must include the interactions
among employee skill and morale, tools, and methods
used in all the tasks and clearly defined metrics and

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

methods of products and process. The CMM practices
aid in reducing defect injection and in early identifi-
cation of defects. As a consequence, the number of
errors in system and acceptance testing will be lower
for software products developed with a mature pro-
cess. This implies:

HypotHESIS 1 (PROCESS MATURITY AND PRODUCT
QUALITY). Higher levels of process-maturity lead to higher
product-quality in software products.

We control in this model for the effect of product
size (product-size) and product design complexity
(product-design-complexity). Product-size (defined in
terms of thousand lines of source code in the product)
is a factor that we expect to be inversely related to
product quality. Prior studies of software productivity
and quality have identified product size measured in
lines of code as a primary determinant of product
defects (Basili and Musa 1991). Because of the volume
of code and increased product functionality, larger
products provide more opportunity to introduce er-
rors. In addition, larger products may include more
modules and interactions between modules, thus fur-
ther increasing the possibility of defects. Product-
design-complexity in our model captures three impor-
tant dimensions of complexity: domain, data, and
decision complexity. Domain complexity reflects the
difficulty of the functionality, specifically the algo-
rithms and calculations that will be accomplished in a
product. Data complexity refers to the complexity of
the data structures and relationships in the software
product. Decision complexity refers to the complexity
of decision paths and structures in the software prod-
uct. The more complex the product design on these
dimensions, the higher the likelihood that errors will
be injected in development and uncovered in system
and acceptance testing when live data rather than test
cases are used (Munson 1996).

3.2. Cycle Time

In our second model (2), we examine the link
between process maturity, quality, and develop-
ment cycle time in software products, controlling
for the effects of product size and the ambiguity of
user requirements.

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

i,

Cycle-Time = Function (Process-Maturity,
Product-Quality, Product-Size,

Requirements-Ambiguity). (2)

Cycle-time is the time to develop the product, i.e., the
elapsed time in days from the start of design on the
product until its final acceptance by the customer. The
relationship between cycle time, process maturity, and
quality has been viewed from two different perspec-
tives. One view is that cycle time must be traded off
against improvements in quality. That is, increased
investment in process improvement requires addi-
tional time for testing, code inspections, etc., that add
to the elapsed time required to develop the product
and delay its introduction.

In contrast, an alternate view is that improvements
in quality can lead to an overall reduction in cycle
time. The rationale behind this is that by adopting
disciplined practices as specified in the CMM frame-
work and improving process maturity, the time spent
on preventing and uncovering defects early in the
development can be more than recovered by avoiding
rework to correct defects detected at the later stages of
product development (Jones 1997). In the context of
software production, several studies have indicated
that more time is needed to fix defects uncovered at
later stages in software development than in earlier
stages (e.g., Swanson et al. 1991, Abdel-Hamid and
Madnick 1991). Following this view, we hypothesize
that increased investment in process improvement
activities (as reflected in process maturity) can in-
crease cycle time. However, higher process maturity
leads to higher product quality, and as products
exhibit fewer defects, there is less rework, thereby
reducing cycle time. Therefore:

HyroTHESIS 2 (PROCESS MATURITY AND CYCLE TIME).
Higher levels of process-maturity are associated with in-
creased cycle-time in software products.

HyroTHESIS 3 (PRODUCT QUALITY AND CYCLE TIME).
Higher product-quality is associated with lower cycle-time
in software products.

In the cycle time model, we control for the effects of
product size (product-size) and the ambiguity of user
requirements (requirements-ambiguity). We expect that

455

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

product size will be positively related to cycle time,
ceteris paribus, because larger products involve more
work and should take longer to develop in the absence
of variations in schedule pressure. Products for which
user requirements are not clearly specified in design
should also take longer to develop because additional
time is required to elicit precise requirements from the
users in a series of meetings during the development
process (Gopal et al. forthcoming). It may be argued
that the average team size could determine the cycle
time. Although our research site had predefined rules
for budgeting personnel in each phase of develop-
ment, because of differences in specific circumstances
the actual loading profile of individual projects often
deviated from the established norm. This variation in
actual loading profile makes average team size a less
meaningful variable at our research site.

3.3. Development Effort

In our third model (3) we examine the link between
process maturity, quality, and development effort in
software products, controlling for the effects of prod-
uct size and the ambiguity of user requirements:

Effort = Function (Process-Maturity,
Product-Quality, Product-Size,

Requirements-Ambiguity). (©)]

Effort refers to the person-months required to de-
velop the software product. The relationship between
development effort, process maturity, and product
quality has also been discussed from two different
viewpoints. The conventional school of thought as-
serts that effort and quality improvement must be
counterbalanced. That is, increased effort is required
to follow disciplined practices, use quality tools, and
conduct rigorous testing and code reviews in attaining
higher quality levels. A different school of thought
views development effort and quality improvement as
complementary. This stems from the argument that
defects detected at the later stages of product devel-
opment lead to substantial rework, and the cost of this
rework could be significantly higher than investments
in quality improvement at the early stages of product
development (Boehm 1981). This implies that there is
an inverse relationship between quality and effort.

456

i,

Along these lines, we expect that improved quality is
associated with lower development effort. However,
higher levels of process maturity would directly in-
crease development effort as a result of the additional
activities for process improvement. Thus:

HyroTHESIS 4 (PROCESS MATURITY AND DEVELOPMENT
EFFORT. Higher levels of process-maturity are associated with
increased development-effort in software products.

HyroTHEsis 5 (PRODUCT QUALITY AND DEVELOP-
MENT EFFORT). Higher product-quality is associated with
lower development-effort in software products.

We control in this model for the effect of product
size (product-size) and the ambiguity of user require-
ments (requirements-ambiguity). Software size has been
identified as the most significant factor that explains
development effort (Kemerer 1997). Accordingly, we
expect that product size will be positively related to
development effort. Products for which user require-
ments are ambiguous in design should also take more
effort to develop as additional work is required to
elicit precise requirements from the users in develop-
ment. The importance of effective requirements deter-
mination for software productivity has been empha-
sized by Jones (1996) and others.

4. Research Design and
Methodology

4.1. Research Setting

We examine data collected on 30 software products
created by the systems integration division of a $1
billion per year IT firm. The products comprise ap-
proximately 3.3 million lines of COBOL code and were
created from 1984 to 1996. The products were devel-
oped as part of a $230 million effort to build a material
requirements planning (MRP) information system to
manage spare parts acquisition. All of the MRP soft-
ware is designed to satisfy a stringent five-second
response time for all queries, regardless of geographic
location or complexity of retrieval.

This IT firm provides an interesting research site to
study software development because the firm focused
on improvements to development processes and qual-
ity during the time frame in which the products were

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

developed, and advanced in process maturity. A con-
tractual arrangement using incentive targets moti-
vated the IT firm to continually search for techniques
to improve the process and reduce cycle time and
costs. Costs exceeding a fixed ceiling were borne by
the firm, but savings resulting from process improve-
ment were shared jointly by the firm and customer.
The risk of cost overruns and the opportunity for
increased profits provided significant motivation for
improving process capabilities. Incremental process
improvements included adoption of advanced devel-
opment tools including CASE tools, integration of
documentation with CASE, and automated configura-
tion management tools. In addition, techniques such
as Pareto Analysis were adopted to detect, manage,
and reduce software errors. Human resource practices
were modified by changing recruitment policies to
encourage improved skills and qualifications in IT
personnel. Figure 2 summarizes the process improve-
ments adopted by the IT firm.

4.2. Data Collection Methods

Process improvement data were collected by external
divisions and by government agencies to provide
independent assessments of the IT development firm’s
software development processes. Government audi-
tors and senior corporate personnel in divisions out-
side of systems integration performed five software
process maturity assessments during the 12-year pe-
riod. These independent groups used the SEI's CMM
(Paulk et al. 1995) to assess the maturity of software
development and supporting activities.

Figure 2 Process Improvements at the Research Site

Content Mgt

-CASE AA

Program Mgt
- Estimation tools A
- Scheduling & Budget

Process Mgt

- Configuration Mgt ﬁ A

- Quality Assurance

Personnel Mgt
- Advanced degrees A

84 85 86 87 88 89 90 91 92 93 94 95 96

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

i,

All other data were collected by the IT development
firm and were audited by the customer to ensure
accuracy and accountability. Within the IT firm, the
departments responsible for data collection included
configuration management, program control, and en-
gineering. The researchers extracted data used in this
study from the electronic and paper files maintained
by these divisions and departments.

Configuration management (CM) maintained a da-
tabase on software errors identified during the IT
firm’s system level test and during the customer’s
acceptance test. An independent test team within the
IT firm (different from the development team) devel-
oped a formal test plan to test the functionality of the
system based on the product requirements. Upon
completion of development, the software was mi-
grated to the independent test team, where the prod-
uct was tested using the detailed test plan procedures.
This test team recorded development errors via the
Software Problem Report. Upon completion of devel-
opment testing and resolution of all errors found, the
software was formally migrated to the customer test
region. The customer’s acceptance test team used the
test plan to test the functionality of the system, per-
formed stress testing with larger data bases and user
populations, and used the Software Problem Report to
document acceptance errors. Both test teams followed
a comprehensive and consistent approach to software
testing. All errors were fixed regardless of the severity
of the error. The IT firm’s quality assurance depart-
ment and an independent customer audit team re-
viewed both types of error reports to ensure accuracy
and completeness.

The IT firm’s program control department was
responsible for maintaining audited records of cycle
time and effort. Cycle time data were stored using the
Artemis® scheduling system. Effort data were tracked
by the corporate time reporting system. The effort data
were entered into the standard corporate payroll sys-
tem and summarized by software development prod-
uct. The customer audited both schedule and effort
data to ensure accuracy.

Engineering was responsible for estimating product
schedules and costs based on the user requirements
specified in design in order to allocate resources and

457

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

manage the development process. Domain, data, and
decision complexity are three variables that were
critical to the estimation process and were principal
inputs to the Software Productivity Quality and Reli-
ability (SPQR20€) methodology for projecting sched-
ules and costs. Based on user requirements specifica-
tion documents, engineering estimated the domain,
decision, and data complexity of the design in order to
use SPQR20° to develop initial product development
estimates. Engineering also evaluated the ambiguity
of user requirements to assess the potential effect of
unclear or incomplete specifications. Products that
implemented familiar functionality tended to have
low requirements ambiguity; products that imple-
mented new policies and procedures that had never
before been used by the customer tended to have high
requirements ambiguity. Engineering estimated the
level of requirements ambiguity based on historical
understanding of the processes, the relative newness
of policies, and the clarity with which the specification
described them.

4.3. Construct Measurement

We operationalize the variables used in our models as
follows. Process maturity reflects the level of discipline
and sophistication of the software development and
supporting processes. We measure process maturity
using the SEI's CMM level of maturity. Maturity levels
were associated with a software product based on the
maturity level of the IT firm at the beginning of a
product’s design. The maturity level of a product that
benefited from process improvements later in the prod-
uct’s life-cycle stages (e.g., coding stage) was assigned a
commensurate increase in maturity level. Product quality
assesses the total defects in the product prior to customer
release. We measure this variable as the number of lines
of source code in the product divided by the sum of the
defects found in system and acceptance testing. The
inverse of this measure, ie., defect density, has been
used in many prior quality studies (Basili and Musa
1991, Fenton and Pfleeger 1997).

Cycle time measures the number of calendar days
elapsed from the first day of design to final customer
acceptance of the product. Life-cycle stages included
in cycle time are high-level design, detailed design,
coding, unit testing, system-level test, and customer

458

i,

acceptance test. Development effort is the total number
of person-months logged by the development team in
all the stages of product development, starting from
initial design through final product acceptance testing.
Our measures for development cycle time and effort
are consistent with those used in prior research of
software engineering (e.g., Boehm 1981).

Product size is measured in terms of KLOC (thousand
lines of source code). Lines of code is a primary metric
for assessing product size in many empirical software
productivity studies (e.g., Boehm 1981, Conte et al. 1986).
The main shortcoming of this measure stems from the
inaccurate and inconsistent definition of “a line of code”
across various programming languages (Jones 1986).
However, in this study, this problem is not salient
because all the products were developed in a single
language (COBOL), and the lines of code were counted
in a consistent manner using the same tool.

As noted earlier, the product design complexity vari-
able in our analysis captures three important under-
lying dimensions of complexity: domain, data, and
decision complexity (Jones 1996). Domain complexity
measures the level of functional complexity as deter-
mined by engineering from the user requirements
specification. Although the products are part of the
same application domain (i.e., MRP), the development
difficulty of these products may significantly differ
because of differences in the tasks implemented in the
products. Data complexity measures the anticipated
level of difficulty in developing the system because of
complicated data structures and data base relation-
ships. Decision complexity captures the degree of diffi-
culty in the decision paths and structures within the
product. All three complexity constructs are assessed
subjectively on a scale of 1 to 5 (low to high). The
complexity constructs exhibited high intercorrelation.
An exploratory factor analysis using the principal
components method revealed a single factor that ex-
plained 60% of the variance among the three variables.
For ease of interpretation, scores for the product design
complexity variable were computed by taking an aver-
age of the three complexity constructs.

Requirements-ambiguity is a subjective, ordinal mea-
sure that assesses the degree to which user require-
ments are clearly defined for a product. It is measured

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Table 1 Summary Statistics
Variable Mean Std Deviation Median Minimum Maximum
Product Quality 659.53 531.02 400.77 105.16 2024.00
Cycle Time 759.27 457.30 663.00 62.00 1692.00
Development Effort 196.88 211.53 130.89 3.38 829.78
Process Maturity 2.02 0.64 2.00 1.00 3.00
Product Size 109.82 130.79 78.02 4.05 605.68
Product Design Complexity 1.95 0.41 1.95 1.23 2.85
Requirements Ambiguity 2.68 1.08 2.93 1.00 5.00
Table 2 Correlation Matrix
In(Process In(Product Design In(Regmts
In(Product Quality) In(Cycle Time) In(Effort) Maturity) In(Product Size) Complexity) Ambiguity)
In(Product Quality) 1.000
In(Cycle Time) —0.342 1.000
(0.065)
In(Effort) -0.220 0.861 1.000
(0.243) (0.000)
In(Process Maturity) 0.454 —-0.124 —-0.073 1.000
(0.012) (0.516) (0.702)
In(Product Size) 0.036 0.624 0.843 —0.115 1.000
(0.850) (0.000) (0.000) (0.545)
In(Product Design Complexity) —0.131 0.459 0.533 0.363 0.480 1.000
(0.489) (0.011) (0.002) (0.049) (0.007)
In(Regmts Ambiguity) —0.043 —0.043 0.457 0.141 0.541 0.687 1.000
(0.823) (0.082) (0.011) (0.458) (0.002) (0.000)

Note. Pearson correlation coefficients with p values in parentheses.

on a scale of 1 to 5, with 5 reflecting the highest degree
of ambiguity in user requirements specification, and 1
indicating that user requirements are clear and unam-
biguous. Descriptive statistics for all variables are in
Table 1, and a correlation matrix is in Table 2.

5. Analysis and Results

A linear specification of the three models implies that the
effects of process maturity, product size, product design
complexity, and ambiguity of user requirements on
product quality, cycle time, and development effort are
additively separable and linear. However, in the case of
software development, the effects of size and other
factors are not linear. Both economies and diseconomies
of scale (i.e., size) of the software product have been
observed by researchers for cost (Banker and Slaughter
1997, Banker et al. 1994) and quality (Newfelder 1993). In

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

L

addition, for the data sample in this study, statistical
tests rejected standard assumptions of the linear model
such as normality of error terms. Thus, a generic multi-
plicative specification for our models is adopted through
log transformation of the variables (Kmenta 1986). The
specification test for nonnested models (the J-test) sup-
ported the log-linear models specified below over linear
models for each of our equations (Davidson and Mac-
Kinnon 1995).

In(Product-Quality) = By + B
* In(Process-Maturity)
+ Bo* In(Product-Size) + By
In(Product-Design-Complexity) + €y (1)

In(Cycle-Time) = By, + Bro* In(Product-Quality)

459

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Table 3 Model 1 Parameter Estimates (n = 30)
OLS SURE 2SLS Rank Regression

Variable Parameter Estimate Estimate Estimate Estimate
Intercept Bo 5.597 5.602 5.597 5.611
s.e 0.464 0.470 0.464 3.814
t 12.059 11.930 12.059 1.471
p 0.000 0.000 0.000 0.076
In(Process-Maturity) B 1.589 1.594 1.589 0.733
s.e 0.386 0.391 0.386 0.179
t 4116 4.081 4116 4.095
p 0.000 0.000 0.000 0.000
In(Product-Size) B 0.234 0.236 0.234 0.369
s.e 0.108 0.109 0.108 0177
t 2.160 2.152 2.160 2.080
p 0.020 0.017 0.020 0.024
In(Product-Design-Complexity) B —2.111 —2.137 —-211 —0.464
s.e 0.712 0.720 0.712 0.195
t —2.963 —2.969 —2.963 —2.378
p 0.003 0.002 0.003 0.012
R 0.412 0.413 0.412 0.399
R? (adj) 0.345 0.345 0.330
F Model Fyas 6.080 6.010 6.080 5.750
p 0.003 0.001 0.003 0.004

Note. (one-tailed p values)

In(Product-Quality) = B, + Bi,* In(Process-Maturity) + B,,* In(Product-Size) + B,,* In(Product-Design-Complexity) + €,,.

+ Boy* In(Process-Maturity)
+ Bao* In(Product-Size)
+ By* In(Requirements-Ambiguity) + €y,)
In(Development-Effort) = Bos
+ Biz* In(Product-Quality)
+ Bog* In(Process-Maturity)
+ Bss* In(Product-Size)
+ By* In(Requirements-Ambiguity) + ey

®)

The parameters of the individual equations were
initially estimated using ordinary least squares (OLS)
(column three in Tables 3 through 5). Because all the
products in our sample are from the same company, it
may be possible that the error terms are correlated as
a result of a common effect. Hence, we also estimated
the seemingly unrelated regression (SURE) parame-

460

L

ters using a feasible generalized least squares (FGLS)
procedure that allows for correlation of disturbances
across equations (Greene 1997). The FGLS estimates
were very similar in sign, magnitude, and significance
to the OLS estimates (column four in Tables 3 through
5), indicating the absence of any correlation across the
error terms.

It may be argued that quality, cycle time, and effort
are codetermined. We checked for endogeneity of
quality, cycle time, and effort in our models using the
Hausman specification test (Hausman 1978) and the
Durbin-Wu-Hausman test (Davidson and MacKinnon
1993). Although these tests did not suggest endogene-
ity, in small samples the precision of these tests is not
certain. We thus estimated a two-stage least squares
(2SLS) model to correct for possible inconsistency in
the OLS estimators. The 2SLS estimates of the param-
eters for all models (column five in Tables 3 through 5)
were very similar in sign, significance, and magnitude
to the OLS estimates.

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Table 4 Model 2 Parameter Estimates (n = 30)
OLS SURE 2SLS Rank Regression

Variable Parameter Estimate Estimate Estimate Estimate
Intercept Bo 7.399 7.660 8.553 7.999
s.e 0.912 0.904 1.847 4.022
t 8.116 8.470 4.631 1.989
p 0.000 0.000 0.000 0.058
In(Product-Quality) [—0.454 —0.503 —0.674 —0.395
s.e 0.155 0.154 0.343 0.167
t —2.920 —3.267 —1.966 —2.369
D 0.004 0.001 0.030 0.013
In(Process-Maturity) B 0.403 0.461 0.655 0.239
s.e 0.360 0.357 0.510 0.168
t 1.120 1.292 1.285 1.421
p 0.137 0.100 0.106 0.084
In(Product-Size) B, 0.424 0.432 0.453 0.699
s.e 0.099 0.098 0.110 0.150
t 4.285 4.397 4110 4.670
p 0.000 0.000 0.000 0.000
In(Regmts-Ambiguity) B -0.170 —0.194 —0.249 —0.060
s.e 0.259 0.257 0.291 0.150
t —0.656 —0.756 —0.858 —0.399
p 0.259 0.226 0.200 0.347
R 0.546 0.546 0.510 0.498
R? (adj) 0.474 0.431 0.418
F Model Fozs 7.520 8.130 5.960 6.210
p 0.000 0.000 0.002 0.001

Note. (one-tailed p values).

In(Cycle-Time) = By, + Bi,* In(Product-Quality) + B,,* In(Process-Maturity) + B.,* In(Product-Size) + B,,* In(Requirements-Ambiguity) + €.

As a robustness check, we estimated a rank regres-
sion model for each equation (Iman and Conover
1979). The parameter estimates from the rank regres-
sions (column six in Tables 3 through 5) are similar in
sign, magnitude, and significance to those from the
OLS regressions, suggesting the robustness of the OLS
estimates.

Thus, we used the OLS estimates for the interpretation
of our results. Standard assumptions of the OLS estima-
tors were tested. The assumption of normality is not
rejected for any of the models at the 5% significance level
using the Shapiro-Wilk test (Shapiro and Wilk 1965). The
presence of heteroskedasticity in all the models was
tested using White’s (1980) test, and no evidence of it
was found. The effect of multicollinearity was examined
using conditions specified in Belsley et al. (1980). The
condition index for all models is less than 30, within the

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

L

acceptable limit. We did not detect any influential outli-
ers in the equations using Cook’s distance (Cook and
Weisberg 1982) and the guidelines specified by Belsley et
al. (1980). Because the products were developed over a
period of 12 years, we tested for serial correlation be-
tween products using both the Durbin-Watson test
(Durbin and Watson 1971) and the Breusch-Godfrey test
(Breusch and Godfrey 1981) but did not find any evi-
dence of it. The calculated values of all four models’
F-statistics exceeded the critical values at the 5% signif-
icance level.

6. Discussion

6.1. Product-Quality Model
In model one, we find as expected that higher levels of
process maturity are associated with higher product

461

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Table 5 Model 3 Parameter Estimates (n = 30)
OLS SURE 2SLS Rank Regression

Variable Parameter Estimate Estimate Estimate Estimate
Intercept Bos 4.280 4.479 5.065 2.274
s.e 1.049 1.041 2.073 2.538
t 4.081 4.302 2.433 0.896
p 0.000 0.000 0.011 0.190
In(Product-Quality) Bis —0.611 —0.649 —0.760 —0.223
s.e 0.179 0.177 0.385 0.105
t —3.416 —3.657 -1.977 —-2.119
p 0.001 0.000 0.029 0.022
In(Process-Maturity) Bos 0.799 0.844 0.971 0.211
s.e 0.414 0.411 0.572 0.106
t 1.932 2.055 1.697 1.986
p 0.033 0.021 0.051 0.029
In(Product-Size) B 0.954 0.960 0.973 0.930
s.e 0.114 0.113 0.124 0.094
t 8.375 8.486 7.869 9.839
p 0.000 0.000 0.000 0.000
In(Regmts-Ambiguity) B —0.235 —0.253 —0.289 —0.064
s.e 0.298 0.296 0.326 0.095
t —0.787 —0.856 —0.885 —0.681
D 0.220 0.197 0.193 0.251
R 0.803 0.803 0.798 0.800
R? (adj) 0.772 0.766 0.768
F Model Fozs 25.530 26.260 22.970 25.040
p 0.000 0.000 0.000 0.000

Note. (one-tailed p values)

In(Development-Effor) = B, + Biy* In(Product-Quality) + B,,* In(Process-Maturity) + Bs,+ In(Product-Size) + B* In(Requirements-Ambiguity) + €.

quality (i.e., fewer defects in system and acceptance
testing, B,; = 1.589, p < 0.001). The value of the
coefficient for process maturity implies that, holding
the other variables in the equation constant at their
mean levels, a 1% improvement in process maturity is
associated with a 1.589% increase in product quality.
The value of the process maturity coefficient also
suggests that the quality benefits increase with higher
levels of process maturity. As noted earlier, if the
development process is not disciplined and mature,
there will be deviations from the standard process
such as absence of requirements tracking, lack of
rigorous code reviews and inspections, and myopic
design choices. As a consequence, both design and
coding errors will be injected during the development
process.

Our results indicate that larger products exhibit

462

L

higher quality. Although larger products may have
more defects, in our sample the rate of increase in
defects resulting from size is lower for larger products.
Hence the coefficient of size in our model is positive
(B, 0.234, p = 0.020). Also as we expected,
products with a more complex design have lower
quality.

6.2. Cycle-Time Model

Our findings in this model indicate that product
quality is significantly and negatively associated with
cycle time (B3,, = —0.454, p = 0.004). That is, higher
quality products exhibit significant reductions in cycle
time. The value of the coefficient for product quality
implies that, holding the other variables in the equa-
tion constant at their mean levels, a 1% improvement
in product quality is associated with a 0.454% decrease

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

in cycle time. Because the model specification is mul-
tiplicative, the value for the coefficient of product
quality implies that, at higher levels of quality, the
payoff in development cycle time savings decreases.
Our results also indicate that controlling for product
size and requirements ambiguity, the direct effect of
process maturity on cycle time is positive. However,
in our sample this effect is not statistically significant
at the 5% level (3,, = 0.403, p = 0.137).

An interesting finding in our model is that the net
effect of process maturity on cycle time is negative.
Although the direct effect of process maturity on cycle
time is positive, when we include the positive effect on
quality and the consequent reduction in cycle time, the
net marginal effect of process maturity on cycle time is
negative (—0.318). As expected, we find that larger
products are associated with longer cycle times. The
coefficient for requirements ambiguity is not statisti-
cally significant in this model.

6.3. Development-Effort Model

Similar to our findings in the cycle time model, our
results in the effort model indicate that the direct effect
of process maturity on development effort is positive
(By; = 0.799, p = 0.033). This effect is statistically
significant, indicating that higher development effort
is associated with higher levels of process maturity.
We find that the quality of the product is significantly
and negatively associated with effort (8,, = —0.611, p
= 0.001). That is, higher quality products exhibit
lower development effort. The value of the coefficient
for product quality in our multiplicative specification
implies that, holding the other variables in the equa-
tion constant at their mean levels, a 1% improvement
in quality is associated with a 0.611% decrease in
development effort. Also, the value for the coefficient
of product quality implies that, at higher levels of
quality, the payoff in development cost savings de-
creases. Our results on the relationship between de-
velopment cost and product quality are consistent
with findings from the study of life-cycle cost and
quality by Krishnan (1996).

Similar to the cycle time model, we find that the net
effect of process maturity on effort is negative. Al-
though the direct effect of process maturity on devel-
opment effort is positive, when we include the conse-

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

i,

quent reduction in effort because of improved quality,
the net effect is negative (—0.175). As expected, we
find that larger products are associated with greater
effort. The coefficient for requirements ambiguity is
not statistically significant in this model.

6.4. Marginal Analysis

The value of the coefficient for process maturity in the
product quality model suggests that the marginal
benefits from improved process maturity increase
with higher levels of process maturity (Figure 3). This
implies that from the perspective of quality improve-
ment, it is beneficial to advance to the higher levels of
process maturity, all other things being equal. It
should be noted, however, that this relationship is
valid only within the range of process maturity
present within our data set. We also observe that the
values of the coefficients for product quality in the
development effort and cycle time models imply that
there may exist a threshold quality level beyond
which any process improvements would not be justi-
fied in terms of development effort and cycle time
savings. As shown in Figures 4 and 5, the marginal
benefits of quality improvement for cycle time and
effort decrease with higher levels of quality.

To illustrate the application of our models from the
perspective of justifying investments in process matu-
rity, we compare the predicted effect of an improve-
ment in process maturity on quality, cycle time and
effort. Based on our sample, the predicted benefit of

Figure 3 Marginal Effects of Process Maturity on Product Quality
Product Quality (LOC/Error)
™
S 1200
St
2 1000 7
Q
S 800 //
& 600 /
g 400
o
S 200
2 o0
L]
& 1 2 3
Process Maturity (SEI CMM Level)

463

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Figure 4 Marginal Effects of Product Quality on Cycle Time

Cycle Time (Days)

g

1500 +—\ -
Ist quartile
\ Median
1000 S

Development Time in Days

Mean
™ 3rd quartile
500 =
0 L] L] L] L)
0 500 1000 1500 2000

Product Quality (LOC/Error)

increasing from CMM level 1 to level 2 for the average
product is a reduction in cycle time of 183 calendar
days and in development effort of 23 person-months
(Table 6). By comparison, increasing from CMM level
2 to level 3 would yield an additional 90-calendar-
days reduction in cycle time, and a 12-person-months
reduction in development effort.

7. Conclusion

We have studied empirically the relationships be-
tween process maturity, product quality, cycle time,
and development effort. Our analysis suggests that
higher levels of process maturity as assessed by the
SEI's CMM are associated with significantly higher

Figure 5 Marginal Effects of Product Quality on Development Effort

Effort (Person Months)

=
g 600
& 500
-E 00 \ Ist quartile
Bt
é ,-==f \ Median
= £ 300 S M
- €an
T

rd quartile
& 100 ———
°
g 0 L] L] L) L]

0 500 1000 1500 2000

Product Quality (LOC/Error)

464

Ay

Table 6 Estimated Benefits of Process Maturity

SEI CMM Quality (lines of Cycle Time Effort
Maturity Level code/error) (calendar days) (person-months)
1 195.96 926.92 202.41
2 593.21 743.31 179.32
3 1133.97 653.26 167.05

product quality, but also with increases in cycle time
and development effort. However, the marginal re-
ductions in cycle time and effort resulting from im-
proved quality outweigh the marginal increases from
achieving higher levels of process maturity. Thus, the
net marginal effect of process maturity is reduced
cycle time and development effort in our sample of
software products.

It should be noted that the relationships between
process maturity, quality, cycle time, and develop-
ment effort are valid only in the ranges observed in
this application domain (custom software develop-
ment of an algorithmically intense system in a
COBOL, mainframe development environment). It is
possible that the effort and cycle time incurred to
achieve considerably higher quality levels in a mis-
sion-critical software product could be significantly
higher. This is because additional time and resources
must be deployed for rigorous testing, inspection or
checking at every stage of product development and
for several rounds of regression testing of the product.
Hence, the investments required to achieve extremely
high levels of product quality may not be recovered by
reductions in cycle time and effort.

We expect that our models, methodology, and ap-
proach for evaluating the effects of process maturity
may be applied usefully in other software develop-
ment contexts. However, variables such as product
size may need to be operationalized differently to
reflect other environments such as object-oriented
design where, for example, size may be measured
using object points (Pfleeger 1998) rather than lines of
code. Other independent variables may need to be
included to reflect the unique aspects of a particular
firm’s development environment. It would be useful
to determine and evaluate the cost of quality improve-
ment across different development environments,

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

team size, and compositions. Such comparisons could
yield insights into the variations in the quality prac-
tices used in the various software development do-
mains.

Our study makes several significant contributions to
software engineering research and practice. A primary
contribution is the rigorous examination of the inter-
relationships between quality, cycle time, and effort in
software product development. As noted earlier, prior
studies have modeled quality, cycle time, or effort in
the absence of one or more of the other variables.
Another contribution is the examination of the direct
and indirect effects of improved process maturity on
quality, cycle time, and development effort. These
effects are not well understood and are generally not
rigorously studied in the software engineering litera-
ture. Further research could explore reengineering the
software life cycle through leaner processes, enabling
greater reduction in cycle time from quality improve-
ment. Also, future research could examine the trade-
off between cycle time and effort, controlling for team
loading and schedule pressure. It would be instructive
to explore the effects of process improvement in
different phases of the software life cycle. Finally, the
impact of process improvement on the nonengineer-
ing activities that support software development
could be examined.

For software engineering practice, our results quan-
tify the benefits of process maturity. Software manag-
ers may be reluctant to invest in quality improvement
practices without knowledge of the return on that
investment. For managers of software projects, our
analysis provides a methodology for quantifying the
time and cost savings from quality improvement.
These results provide useful insights for planning and
assessing the return on investment from quality im-
provement in the development process.'

' The authors gratefully acknowledge research support from the
Graduate School of Industrial Administration at Carnegie Mellon
University and the University of Michigan Business School. The
assistance of managers and staff at our data site were invaluable.
Helpful comments were provided by participants in research sem-
inars at Carnegie Mellon University, the University of Michigan, the
University of Pennsylvania, the University of Minnesota, the Uni-
versity of Texas at Austin, and the Workshop on Information
Systems and Economics (WISE 97).

MANAGEMENT ScIENCE/Vol. 46, No. 4, April 2000

L

References

Abdel-Hamid, T., S. Madnick. 1991. Software Project Dynamics: An
Integrated Approach. Prentice-Hall, Englewood Cliffs, NJ.

Banker, R. D., H. Chang, C. Kemerer. 1994. Evidence on economies
of scale in software development. Inform. Software Tech. 36(5)
275-282.

——, S. Slaughter. 1997. A field study of scale economies in software
maintenance. Management Sci. 43(12) 1709-1725.

Basili, V. R,, J. D. Musa. 1991. The future engineering of software: A
management perspective. IEEE Comput. 20(4) 90-96.

——, B. Perricone. 1984. Software errors and complexity: An empir-
ical investigation. Comm. ACM 27(1) 42-52.

Belsley, D. A., E. Kuh, R. E. Welsch. 1980. Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity. Wiley and
Sons, New York.

Bockerstette, J., R. Shell. 1993. Time Based Manufacturing. McGraw-
Hill, New York.

Boehm, B. W. 1981. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ.

Bohn, R. E. 1995. Noise and learning in semiconductor manufactur-
ing. Management Sci. 41(1) 31-42.

Breusch, T., L. Godfrey. 1981. A review of recent work on testing for
autocorrelation in dynamic simultaneous models. D. Currie, R.
Nobay, D. Peel, eds. Macroeconomic Analysis: Essays in Macro-
economics and Econometrics. Croon Helm, London, England.
63-105.

Brooks, F. 1995. The Mythical Man-Month: Essays on Software Engi-
neering. Anniversary Edition, Addison-Wesley, Reading, MA.

Conte, S. D., H. E. Dunsmore, V. Y. Shen. 1986. Software Engineering
Metrics and Models. Benjamin/Cummings Publication Com-
pany, Menlo Park, CA.

Cook, R. D., S. Weisberg. 1982. Residuals and Influence in Regression.
Chapman & Hall, London, England.

Crosby, P. B. 1979. Quality Is Free. McGraw-Hill, New York.

Davidson, R., J. MacKinnon. 1995. Several tests for model specifica-
tions in the presence of multiple alternatives. Econometrica 49
781-793.

——, —— 1993. Estimation and Inference in Econometrics. Oxford
University Press, New York.

Deming, W. E. 1986. Out of the Crisis. MIT Center for Advanced
Engineering Study, Cambridge, MA.

Durbin, J., G. Watson. 1971. Testing for serial correlation in least
squares regression III. Biometrica 58 1-42.

El Emam, K., D. R. Goldenson. 1996. Some initial results from the
international SPICE trials. Software Process Newsletter, Technical
Council on Software Engineering 6 (Spring) IEEE Computer
Society.

Fenton, N. E,, S. L. Pfleeger. 1997. Software Metrics: A Rigorous and
Practical Approach. International Thompson Computer Press,
London, England.

Gopal, A., T. Mukhopadhyay, M. S. Krishnan. The role of software
process and communication in offshore software development.
Comm. ACM. Forthcoming.

465

Downloaded from informs.org by [193.0.65.67] on 18 December 2014, at 07:00 . For personal use only, al rights reserved.

RIGHTS

HARTER, KRISHNAN, AND SLAUGHTER
Process Maturity in Software Product Development

Greene, W. H. 1997. Econometric Analysis. 3rd ed., MacMillan
Publishing Company, New York.

Hausman, J. 1978. Specification tests in econometrics. Econometrica
46 1251-1271.

Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes, M. Paulk. 1997.
Software quality and the capability maturity model. Comm.
ACM 40(6) 30-40.

Humphrey, W. S. 1995. A Discipline for Software Engineering. Addi-
son-Wesley, Reading, MA.

Iman, R.,, W. Conover. 1979. The use of the rank transform in
regression. Technometrics 21(4) 499-509.

Jones, C. 1986. How not to measure programmer productivity.
Computerworld 20(2) 65-76.

—— 1996. Applied Software Measurement: Assuring Productivity and
Quality. McGraw-Hill, New York.

—— 1997. Software Quality: Analysis and Guidelines for Success. ITP
Press, London, UK.

Kaplan, R. 1986. Must CIM be justified by faith alone? Harvard Bus.
Rev. 64(2) 87-95.

Kemerer, C. F. 1997. Software Project Management Readings and Cases.
McGraw-Hill, New York.

Kmenta, J. 1986. Elements of Econometrics. Macmillan, New York.

Krishnan, M. S. 1996. Cost and quality considerations in software
product management. Ph.D. Dissertation, Graduate School of
Industrial Administration, Carnegie Mellon University, Pitts-
burgh, PA.

——, S. Kekre, C. H. Kriebel, T. Mukhopadhyay. 2000. An empirical
analysis of productivity and quality in software products.
Management Sci. Forthcoming.

This paper was accepted by Haim Mendelson and Seungjin Whang.

466

1T ‘f

Lyu, M. R. 1996. Handbook of Software Reliability Engineering.
McGraw-Hill, New York.

Mowrey, D. C. 1996. The International Computer Software Industry: A
Comparative Study of Industrial Evolution and Structure. Oxford
University Press, Oxford, UK.

Munson, J. 1996. Software faults, software failures, and software
reliability modeling. Inform. Software Tech. 38(11) 687—-699.
Nandakumar, P., S. M. Datar, R. Akella. 1993. Models for measuring
and accounting for cost of conformance quality. Management

Sci. 39(1) 1-16.

Newfelder, A. M. 1993. Ensuring Software Reliability. Marcel Dekker,
Inc., New York.

Paulk, M. C., C. V. Weber, B. Curtis, M. B. Chrissis. 1995. The
Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley Publishing Company, Reading, MA.

Pfleeger, S. 1998. Software Engineering: Theory and Practice. Prentice-
Hall, NJ.

Shapiro, S., M. Wilk. 1965. An analysis of variance test for normality.
Biometrika 52 591-612.

Swanson, K., D. McComb, J. Smith, D. McCubbrey. 1991. The
application software factory: Applying total quality techniques
to systems development. MIS Quart. 15(4) 566-580.

Tagaras, G., H. Lee. 1996. Economic models of vendor evalua-
tion with quality cost analysis. Management Sci. 42(11) 1531-
1543.

The Wall Street Journal. 1997. The spoils of war. September 11.

White, H. 1980. Heteroskedasticity-consistent covariance matrix
estimator and a direct test for heteroskedasticity. Econometrica
48(5) 817-838.

MANAGEMENT ScIENCE/ Vol. 46, No. 4, April 2000

