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Preface

Introduction
This text was written for an introductory course in fluid mechanics. Our approach to
the subject, as in all previous editions, emphasizes the physical concepts of fluid
mechanics and methods of analysis that begin from basic principles. The primary
objective of this text is to help users develop an orderly approach to problem solving.
Thus we always start from governing equations, state assumptions clearly, and try to
relate mathematical results to corresponding physical behavior. We continue
to emphasize the use of control volumes to maintain a practical problem-solving
approach that is also theoretically inclusive.

Proven Problem-Solving Methodology
The Fox-McDonald-Pritchard solution methodology used in this text is illustrated in
numerous Examples in each chapter. Solutions presented in the Examples have been
prepared to illustrate good solution technique and to explain difficult points of theory.
Examples are set apart in format from the text so that they are easy to identify and
follow. Additional important information about the text and our procedures is given
in the “Note to Student” in Section 1.1 of the printed text. We urge you to study this
section carefully and to integrate the suggested procedures into your problem-solving
and results-presentation approaches.

SI and English Units
SI units are used in about 70 percent of both Example and end-of-chapter problems.
English Engineering units are retained in the remaining problems to provide
experience with this traditional system and to highlight conversions among unit sys-
tems that may be derived from fundamentals.
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Goals and Advantages of Using This Text
Complete explanations presented in the text, together with numerous detailed
Examples, make this book understandable for students, freeing the instructor to
depart from conventional lecture teaching methods. Classroom time can be used to
bring in outside material, expand on special topics (such as non-Newtonian flow,
boundary-layer flow, lift and drag, or experimental methods), solve example prob-
lems, or explain difficult points of assigned homework problems. In addition, the 51
Example Excel workbooks are useful for presenting a variety of fluid mechanics
phenomena, especially the effects produced when varying input parameters. Thus
each class period can be used in the manner most appropriate to meet student needs.

When students finish the fluid mechanics course, we expect them to be able to
apply the governing equations to a variety of problems, including those they have not
encountered previously. We particularly emphasize physical concepts throughout to
help students model the variety of phenomena that occur in real fluid flow situations.
Although we collect, for convenience, useful equations at the end of most chapters, we
stress that our philosophy is to minimize the use of so-called magic formulas and
emphasize the systematic and fundamental approach to problem solving. By following
this format, we believe students develop confidence in their ability to apply the
material and to find that they can reason out solutions to rather challenging problems.

The book is well suited for independent study by students or practicing engineers.
Its readability and clear examples help build confidence. Answer to Selected Problems
are included, so students may check their own work.

Topical Coverage
The material has been selected carefully to include a broad range of topics suitable for
a one- or two-semester course at the junior or senior level. We assume a background
in rigid-body dynamics and mathematics through differential equations. A back-
ground in thermodynamics is desirable for studying compressible flow.

More advanced material, not typically covered in a first course, has been moved to
the Web site (these sections are identified in the Table of Contents as being on the
Web site). Advanced material is available to interested users of the book; available
online, it does not interrupt the topic flow of the printed text.

Material in the printed text has been organized into broad topic areas:

� Introductory concepts, scope of fluid mechanics, and fluid statics (Chapters 1, 2,
and 3)

� Development and application of control volume forms of basic equations
(Chapter 4)

� Development and application of differential forms of basic equations (Chapters 5
and 6)

� Dimensional analysis and correlation of experimental data (Chapter 7)

� Applications for internal viscous incompressible flows (Chapter 8)

� Applications for external viscous incompressible flows (Chapter 9)

� Analysis of fluid machinery and system applications (Chapter 10)

� Analysis and applications of open-channel flows (Chapter 11)

� Analysis and applications of one- and two-dimensional compressible flows
(Chapters 12 and 13)

Chapter 4 deals with analysis using both finite and differential control volumes. The
Bernoulli equation is derived (in an optional subsection of Section 4.4) as an example
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application of the basic equations to a differential control volume. Being able to use
the Bernoulli equation in Chapter 4 allows us to include more challenging problems
dealing with the momentum equation for finite control volumes.

Another derivation of the Bernoulli equation is presented in Chapter 6, where it is
obtained by integrating Euler’s equation along a streamline. If an instructor chooses
to delay introducing the Bernoulli equation, the challenging problems from Chapter 4
may be assigned during study of Chapter 6.

Text Features
This edition incorporates a number of useful features:

� Examples: Fifty-one of the Examples include Excel workbooks, available online at
the text Web site, making them useful for what-if analyses by students or by the
instructor during class.

� Case Studies: Every chapter begins with a Case Studies in Energy and the Envi-
ronment, each describing an interesting application of fluid mechanics in the area of
renewable energy or of improving machine efficiencies. We have also retained from
the previous edition chapter-specific Case Studies, which are now located at the end
of chapters. These explore unusual or intriguing applications of fluid mechanics in a
number of areas.

� Chapter Summary and Useful Equations: At the end of most chapters we collect for
the student’s convenience the most used or most significant equations of the
chapter. Although this is a convenience, we cannot stress enough the need for
the student to ensure an understanding of the derivation and limitations of each
equation before its use!

� Design Problems: Where appropriate, we have provided open-ended design prob-
lems in place of traditional laboratory experiments. For those who do not have
complete laboratory facilities, students could be assigned to work in teams to solve
these problems. Design problems encourage students to spend more time exploring
applications of fluid mechanics principles to the design of devices and systems. As in
the previous edition, design problems are included with the end-of-chapter
problems

� Open-Ended Problems: We have included many open-ended problems. Some are
thought-provoking questions intended to test understanding of fundamental con-
cepts, and some require creative thought, synthesis, and/or narrative discussion. We
hope these problems will help instructors to encourage their students to think and
work in more dynamic ways, as well as to inspire each instructor to develop and use
more open-ended problems.

� End-of-Chapter Problems: Problems in each chapter are arranged by topic, and
within each topic they generally increase in complexity or difficulty. This makes it
easy for the instructor to assign homework problems at the appropriate difficulty
level for each section of the book. For convenience, problems are now grouped
according to the chapter section headings.

New to This Edition
This edition incorporates a number of significant changes:

� Case Studies in Energy and the Environment: At the beginning of each chapter is a
new case study. With these case studies we hope to provide a survey of the most
interesting and novel applications of fluid mechanics with the goal of generating
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increasing amounts of the world’s energy needs from renewable sources. The case
studies are not chapter specific; that is, each one is not necessarily based on
the material of the chapter in which it is presented. Instead, we hope these new case
studies will serve as a stimulating narrative on the field of renewable energy for
the reader and that theywill providematerial for classroomdiscussion. The case studies
from the previous edition have been retained and relocated to the ends of chapters.

� Demonstration Videos: The “classic” NCFMF videos (approximately 20 minutes
each, with Professor Ascher Shapiro of MIT, a pioneer in the field of biomedical
engineering and a leader in fluid mechanics research and education, explaining and
demonstrating fluid mechanics concepts) referenced in the previous edition have all
been retained and supplemented with additional new brief videos (approximately
30 seconds to 2 minutes each) from a variety of sources.

Both the classic and new videos are intended to provide visual aids for many of
the concepts covered in the text, and are available at www.wiley.com/college/
pritchard.

� CFD: The section on basic concepts of computational fluid dynamics in Chapter 5
now includes material on using the spreadsheet for numerical analysis of simple
one- and two-dimensional flows; it includes an introduction to the Euler method.

� Fluid Machinery: Chapter 10 has been restructured, presenting material for pumps
and fans first, followed by a section on hydraulic turbines. Propellers and wind
turbines are now presented together. The section on wind turbines now includes the
analysis of vertical axis wind turbines (VAWTs) in additional depth. A section on
compressible flow machines has also been added to familiarize students with the
differences in evaluating performance of compressible versus incompressible flow
machines. The data in Appendix D on pumps and fans has been updated to reflect
new products and new means of presenting data.

� Open-Channel Flow: In this edition we have completely rewritten the material on
open-channel flows. An innovation of this new material compared to similar texts is
that we have treated “local” effects, including the hydraulic jump before con-
sidering uniform and gradually varying flows. This material provides a sufficient
background on the topic for mechanical engineers and serves as an introduction for
civil engineers.

� Compressible Flow: The material in Chapter 13 has been restructured so that
normal shocks are discussed before Fanno and Rayleigh flows. This was done
because many college fluid mechanics curriculums cover normal shocks but not
Fanno or Rayleigh flows.

� New Homework Problems: The eighth edition includes 1705 end-of-chapter prob-
lems. Many problems have been combined and contain multiple parts. Most have
been structured so that all parts need not be assigned at once, and almost 25 percent
of subparts have been designed to explore what-if questions. New or modified for
this edition are some 518 problems, some created by a panel of instructors and
subject matter experts. End-of-chapter homework problems are now grouped
according to text sections.

Resources for Instructors
The following resources are available to instructors who adopt this text. Visit the Web
site at www.wiley.com/college/pritchard to register for a password.

� Solutions Manual for Instructors: The solutions manual for this edition contains a
complete, detailed solution for all homework problems. Each solution is prepared in
the same systematic way as the Example solutions in the printed text. Each solution

CLASSIC VIDEO

Classics!

VIDEO

New Videos!
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begins from governing equations, clearly states assumptions, reduces governing
equations to computing equations, obtains an algebraic result, and finally substitutes
numerical values to calculate a quantitative answer. Solutions may be reproduced
for classroom or library use, eliminating the labor of problem solving for the
instructor who adopts the text.

The Solutions Manual is available online after the text is adopted. Visit the
instructor section of the text’s Web site at www.wiley.com/college/pritchard to
request access to the password-protected online Solutions Manual.

� Problem Key: A list of all problems that are renumbered from the seventh edition of
this title, to the eighth edition. There is no change to the actual solution to each
of these problems.

� PowerPoint Lecture Slides: Lecture slides have been developed by Philip Pritchard,
outlining the concepts in the book, and including appropriate illustrations and
equations.

� Image Gallery: Illustrations from the text in a format appropriate to include in
lecture presentations.

Additional Resources
� A Brief Review of Microsoft Excel: Prepared by Philip Pritchard and included on
the book Web site as Appendix H, this resource will coach students in setting up
and solving fluid mechanics problems using Excel spreadsheets. Visit www.wiley.
com/college/pritchard to access it.

� Excel Files: These Excel Files and add-ins are for use with specific Examples from
the text.

� Additional Text Topics: PDF files for these topics/sections are available only on the
Web site. These topics are highlighted in the text’s table of contents and in
the chapters as being available on the Web site.

� Answers to Selected Problems: Answers to odd-numbered problems are listed at the
end of the book as a useful aid for student self-study.

� Videos: Many worthwhile videos are available on the book Web site to demonstrate
and clarify the basic principles of fluid mechanics. When it is appropriate to view
these videos to aid in understanding concepts or phenomena, an icon appears in the
margin of the printed text; the Web site provides links to both classic and new
videos, and these are also listed in Appendix C.

WileyPLUS
WileyPLUS is an innovative, research-based, online environment for effective
teaching and learning.

What do students receive with WileyPLUS?
A Research-Based Design

WileyPLUS provides an online environment that integrates relevant resources, including
the entire digital textbook, in an easy-to-navigate framework that helps students study
more effectively.
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� WileyPLUS adds structure by organizing textbook content into smaller, more
manageable “chunks.”

� Related media, examples, and sample practice items reinforce the learning
objectives.

� Innovative features such as calendars, visual progress tracking and self-evaluation
tools improve time management and strengthen areas of weakness.

One-on-One Engagement

With WileyPLUS for Introduction to Fluid Mechanics, eighth edition, students receive
24/7 access to resources that promote positive learning outcomes. Students engage with
related examples (in various media) and sample practice items, including:

� Guided Online (GO) Tutorial problems

� Concept Questions

� Demonstration videos

Measurable Outcomes

Throughout each study session, students can assess their progress and gain immediate
feedback.WileyPLUSprovides precise reporting of strengths andweaknesses, aswell as
individualized quizzes, so that students are confident they are spending their time on the
right things.WithWileyPLUS, students always know the exact outcome of their efforts.

What do instructors receive with WileyPLUS?
WileyPLUS provides reliable, customizable resources that reinforce course goals
inside and outside of the classroom as well as visibility into individual student prog-
ress. Pre-created materials and activities help instructors optimize their time:

Customizable Course Plan

WileyPLUS comes with a pre-created Course Plan designed by a subject matter
expert uniquely for this course. Simple drag-and-drop tools make it easy to assign the
course plan as-is or modify it to reflect your course syllabus.

Pre-created Activity Types Include

� Questions

� Readings and Resources

Course Materials and Assessment Content

� Lecture Notes PowerPoint Slides

� Image Gallery

� Gradable FE Exam sample Questions

� Question Assignments: Selected end-of-chapter problems coded algorithmically
with hints, links to text, whiteboard/show work feature and instructor controlled
problem solving help.
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� Concept Question Assignments: Questions developed by Jay Martin and John
Mitchell of the University of Wisconsin-Madison to assess students’ conceptual
understanding of fluid mechanics.

Gradebook

WileyPLUS provides instant access to reports on trends in class performance, student
use of course materials, and progress towards learning objectives, helping inform
decisions and drive classroom discussions.

WileyPLUS. Learn More. www.wileyplus.com.

Powered by proven technology and built on a foundation of cognitive research,
WileyPLUS has enriched the education of millions of students, in over 20 countries
around the world.
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Table G.1
SI Units and Prefixesa

SI Units Quantity Unit SI Symbol Formula

SI base units: Length meter m —
Mass kilogram kg —
Time second s —
Temperature kelvin K —

SI supplementary unit: Plane angle radian rad —
SI derived units: Energy joule J N �m

Force newton N kg �m/s2

Power watt W J/s
Pressure pascal Pa N/m2

Work joule J N �m
SI prefixes Multiplication Factor Prefix SI Symbol

1 000 000 000 000 5 1012 tera T
1 000 000 000 5 109 giga G

1 000 000 5 106 mega M
1 000 5 103 kilo k
0.01 5 1022 centib c
0.001 5 1023 milli m

0.000 001 5 1026 micro µ
0.000 000 001 5 1029 nano n

0.000 000 000 001 5 10212 pico p

aSource: ASTM Standard for Metric Practice E 380-97, 1997.
bTo be avoided where possible.



Table G.2
Conversion Factors and Definitions

Fundamental
Dimension English Unit Exact SI Value Approximate SI Value

Length 1 in. 0.0254 m —
Mass 1 lbm 0.453 592 37 kg 0.454 kg
Temperature 1�F 5/9 K —

Definitions:

Acceleration of gravity: g5 9.8066 m/s2 (5 32.174 ft/s2)
Energy: Btu (British thermal unit) � amount of energy required to raise the

temperature of 1 lbm of water 1�F (1 Btu5 778.2 ft � lbf)
kilocalorie � amount of energy required to raise the temperature of
1 kg of water 1 K(1 kcal5 4187 J)

Length: 1 mile5 5280 ft; 1 nautical mile5 6076.1 ft5 1852 m (exact)
Power: 1 horsepower � 550 ft � lbf/s
Pressure: 1 bar � 105 Pa
Temperature: degree Fahrenheit, TF 5 9

5TC 1 32 (where TC is degrees Celsius)
degree Rankine, TR5TF 1 459.67
Kelvin, TK5TC 1 273.15 (exact)

Viscosity: 1 Poise � 0.1 kg/(m � s)
1 Stoke � 0.0001 m2/s

Volume: 1 gal � 231 in.3 (1 ft35 7.48 gal)

Useful Conversion Factors:

Length: 1 ft5 0.3048 m
1 in.5 25.4 mm

Mass: 1 lbm5 0.4536 kg
1 slug5 14.59 kg

Force: 1 lbf5 4.448 N
1 kgf5 9.807 N

Velocity: 1 ft/s5 0.3048 m/s
1 ft/s5 15/22 mph
1 mph5 0.447 m/s

Pressure: 1 psi5 6.895 kPa
1 lbf/ft25 47.88 Pa
1 atm5 101.3 kPa
1 atm5 14.7 psi
1 in. Hg5 3.386 kPa
1 mm Hg5 133.3 Pa

Energy: 1 Btu5 1.055 kJ
1 ft � lbf5 1.356 J
1 cal5 4.187 J

Power: 1 hp5 745.7 W
1 ft � lbf/s5 1.356 W
1 Btu/hr5 0.2931 W

Area 1 ft25 0.0929 m2

1 acre5 4047 m2

Volume: 1 ft35 0.02832 m3

1 gal (US)5 0.003785 m3

1 gal (US)5 3.785 L
Volume flow rate: 1 ft3/s5 0.02832 m3/s

1 gpm5 6.309 3 10� 5 m3/s
Viscosity (dynamic) 1 lbf � s/ft25 47.88 N � s/m2

1 g/(cm � s)5 0.1 N � s/m2

1 Poise5 0.1 N � s/m2

Viscosity (kinematic) 1 ft2/s5 0.0929 m2/s
1 Stoke5 0.0001 m2/s
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Case Study in Energy and the Environment

Wind Power
At the beginning of each chapter we present

a case study in the role of fluid mechanics in
helping solve the energy crisis and in alleviating the
environmental impact of our energy needs: the cases
provide insight into the ongoing importance of the field
of fluid mechanics. We have tried to present novel and
original developments, not the kind of applications
such as the ubiquitous wind farms. Please note that
case studies represent a narrative; so each chapter’s
case study is not necessarily representative of the
material in that chapter. Perhaps as a creative new
engineer, you’ll be able to create even better ways to

extract renewable, nonpolluting forms of energy or
invent something to make fluid-mechanics devices more
efficient!
According to the July 16, 2009, edition of the New York

Times, the global wind energy potential is much higher
than previously estimated by both wind industry groups
and government agencies. (Wind turbines are discussed
in Chapter 10.) Using data from thousands of meteo-
rological stations, the research indicates that the world’s
wind power potential is about 40 times greater than
total current power consumption; previous studies had
put that multiple at about seven times! In the lower
48 states, the potential fromwind power is 16 timesmore
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We decided to title this textbook “Introduction to . . .” for the following reason: After
studying the text, you will not be able to design the streamlining of a new car or an
airplane, or design a new heart valve, or select the correct air extractors and ducting for
a $100 million building; however, you will have developed a good understanding of the
concepts behind all of these, and many other applications, and have made significant
progress toward being ready to work on such state-of-the-art fluid mechanics projects.

To start toward this goal, in this chapter we cover some very basic topics: a case
study, what fluid mechanics encompasses, the standard engineering definition of a fluid,
and the basic equations and methods of analysis. Finally, we discuss some common
engineering student pitfalls in areas such as unit systems and experimental analysis.

than total electricity demand in the United States, the
researchers suggested, again much higher than a 2008
Department of Energy study that projected wind could
supply a fifth of all electricity in the country by 2030. The
findings indicate the validity of the often made claim
that “the United States is the Saudi Arabia of wind.”
The new estimate is based the idea of deploying 2.5- to
3-megawatt (MW) wind turbines in rural areas that are
neither frozen nor forested and also on shallow offshore
locations, and it includes a conservative 20 percent
estimate for capacity factor, which is a measure of how
much energy a given turbine actually produces. It has
been estimated that the total power from the wind that
could conceivably be extracted is about 72 terawatts (TW,
72 3 1012 watts). Bearing in mind that the total power
consumption by all humans was about 16 TW (as of
2006), it is clear that wind energy could supply all the
world’s needs for the foreseeable future!

One reason for the new estimate is due to the
increasingly common use of very large turbines that
rise to almost 100 m, where wind speeds are greater.
Previous wind studies were based on the use of 50- to
80-m turbines. In addition, to reach even higher ele-
vations (and hence wind speed), two approaches have
been proposed. In a recent paper, Professor Archer at

California State University and Professor Caldeira at
the Carnegie Institution of Washington, Stanford,
discussed some possibilities. One of these is a design
of KiteGen (shown in the figure), consisting of tethered
airfoils (kites) manipulated by a control unit and con-
nected to a ground-based, carousel-shaped generator;
the kites are maneuvered so that they drive the car-
ousel, generating power, possibly as much as 100 MW.
This approach would be best for the lowest few kilo-
meters of the atmosphere. An approach using further
increases in elevation is to generate electricity aloft
and then transmit it to the surface with a tether. In the
design proposed by Sky Windpower, four rotors are
mounted on an airframe; the rotors both provide lift
for the device and power electricity generation. The
aircraft would lift themselves into place with supplied
electricity to reach the desired altitude but would then
generate up to 40 MW of power. Multiple arrays could
be used for large-scale electricity generation. (Airfoils
are discussed in Chapter 9.)
We shall examine some interesting developments in

wind power in the Case Studies in Energy and the
Environment in subsequent chapters.

Sky Windpower’s flying electric generators would fly at altitudes of
about 10,000 m. (Picture courtesy of Ben Shepard and Archer &
Caldeira.)

KiteGen’s kites would fly at an altitude of about 1000 m and spin a
power carousel on the ground. (Picture courtesy of Ben Shepard and
Archer & Caldeira.)
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1.1Note to Students
This is a student-oriented book: We believe it is quite comprehensive for an intro-
ductory text, and a student can successfully self-teach from it. However, most students
will use the text in conjunctionwith one or two undergraduate courses. In either case, we
recommend a thorough reading of the relevant chapters. In fact, a good approach is to
read a chapter quickly once, then reread more carefully a second and even a third time,
so that concepts develop a context and meaning. While students often find fluid
mechanics quite challenging, we believe this approach, supplemented by your instruc-
tor’s lectures that will hopefully amplify and expand upon the text material (if you are
taking a course), will reveal fluid mechanics to be a fascinating and varied field of study.

Other sources of information on fluid mechanics are readily available. In addition
to your professor, there are many other fluid mechanics texts and journals as well as
the Internet (a recent Google search for “fluid mechanics” yielded 26.4 million links,
including many with fluid mechanics calculators and animations!).

There are some prerequisites for reading this text. We assume you have already
studied introductory thermodynamics, as well as statics, dynamics, and calculus;
however, as needed, we will review some of this material.

It is our strong belief that one learns best by doing. This is true whether the subject
under study is fluid mechanics, thermodynamics, or soccer. The fundamentals in any
of these are few, and mastery of them comes through practice. Thus it is extremely
important that you solve problems. The numerous problems included at the end of
each chapter provide the opportunity to practice applying fundamentals to the solu-
tion of problems. Even though we provide for your convenience a summary of useful
equations at the end of each chapter (except this one), you should avoid the temp-
tation to adopt a so-called plug-and-chug approach to solving problems. Most of the
problems are such that this approach simply will not work. In solving problems we
strongly recommend that you proceed using the following logical steps:

1. State briefly and concisely (in your own words) the information given.

2. State the information to be found.

3. Draw a schematic of the system or control volume to be used in the analysis. Be
sure to label the boundaries of the system or control volume and label appropriate
coordinate directions.

4. Give the appropriate mathematical formulation of the basic laws that you consider
necessary to solve the problem.

5. List the simplifying assumptions that you feel are appropriate in the problem.

6. Complete the analysis algebraically before substituting numerical values.

7. Substitute numerical values (using a consistent set of units) to obtain a numerical
answer.
a. Reference the source of values for any physical properties.
b. Be sure the significant figures in the answer are consistent with the given data.

8. Check the answer and review the assumptions made in the solution to make sure
they are reasonable.

9. Label the answer.

In your initial work this problem format may seem unnecessary and even long-
winded. However, it is our experience that this approach to problem solving is
ultimately the most efficient; it will also prepare you to be a successful professional,
for which a major prerequisite is to be able to communicate information and the
results of an analysis clearly and precisely. This format is used in all Examples pre-
sented in this text; answers to Examples are rounded to three significant figures.

Finally, we strongly urge you to take advantage of the many Excel tools available for
this book on the text Web site, for use in solving problems. Many problems can be
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solved much more quickly using these tools; occasional problems can only be solved
with the tools or with an equivalent computer application.

1.2 Scope of Fluid Mechanics
As the name implies, fluid mechanics is the study of fluids at rest or in motion. It has
traditionally been applied in such areas as the design of canal, levee, and dam systems;
the design of pumps, compressors, and piping and ducting used in the water and air
conditioning systems of homes and businesses, as well as the piping systems needed in
chemical plants; the aerodynamics of automobiles and sub- and supersonic airplanes;
and the development of many different flow measurement devices such as gas pump
meters.

While these are still extremely important areas (witness, for example, the current
emphasis on automobile streamlining and the levee failures in New Orleans in 2005),
fluid mechanics is truly a “high-tech” or “hot” discipline, and many exciting areas
have developed in the last quarter-century. Some examples include environmental
and energy issues (e.g., containing oil slicks, large-scale wind turbines, energy gene-
ration from ocean waves, the aerodynamics of large buildings, and the fluid mechanics
of the atmosphere and ocean and of phenomena such as tornadoes, hurricanes, and
tsunamis); biomechanics (e.g., artificial hearts and valves and other organs such as
the liver; understanding of the fluid mechanics of blood, synovial fluid in the joints, the
respiratory system, the circulatory system, and the urinary system); sport (design of
bicycles and bicycle helmets, skis, and sprinting and swimming clothing, and the
aerodynamics of the golf, tennis, and soccer ball); “smart fluids” (e.g., in automobile
suspension systems to optimize motion under all terrain conditions, military uniforms
containing a fluid layer that is “thin” until combat, when it can be “stiffened” to give
the soldier strength and protection, and fluid lenses with humanlike properties for use
in cameras and cell phones); and microfluids (e.g., for extremely precise administra-
tion of medications).

These are just a small sampling of the newer areas of fluid mechanics. They illus-
trate how the discipline is still highly relevant, and increasingly diverse, even though it
may be thousands of years old.

1.3 Definition of a Fluid
We already have a common-sense idea of when we are working with a fluid, as
opposed to a solid: Fluids tend to flow when we interact with them (e.g., when you stir
your morning coffee); solids tend to deform or bend (e.g., when you type on a key-
board, the springs under the keys compress). Engineers need a more formal and
precise definition of a fluid: A fluid is a substance that deforms continuously under the
application of a shear (tangential) stress no matter how small the shear stress may be.
Because the fluid motion continues under the application of a shear stress, we can also
define a fluid as any substance that cannot sustain a shear stress when at rest.

Hence liquids and gases (or vapors) are the forms, or phases, that fluids can take.
We wish to distinguish these phases from the solid phase of matter. We can see the
difference between solid and fluid behavior in Fig. 1.1. If we place a specimen of either
substance between two plates (Fig. 1.1a) and then apply a shearing force F, each will
initially deform (Fig. 1.1b); however, whereas a solid will then be at rest (assuming the
force is not large enough to go beyond its elastic limit), a fluid will continue to deform
(Fig. 1.1c, Fig. 1.1d, etc) as long as the force is applied. Note that a fluid in contact with
a solid surface does not slip—it has the same velocity as that surface because of the no-
slip condition, an experimental fact.

CLASSIC VIDEO

Deformation of Continuous Media.
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The amount of deformation of the solid depends on the solid’s modulus of rigidity
G; in Chapter 2 we will learn that the rate of deformation of the fluid depends on the
fluid’s viscosity μ. We refer to solids as being elastic and fluids as being viscous. More
informally, we say that solids exhibit “springiness.” For example, when you drive over
a pothole, the car bounces up and down due to the car suspension’s metal coil springs
compressing and expanding. On the other hand, fluids exhibit friction effects so that
the suspension’s shock absorbers (containing a fluid that is forced through a small
opening as the car bounces) dissipate energy due to the fluid friction, which stops the
bouncing after a few oscillations. If your shocks are “shot,” the fluid they contained
has leaked out so that there is almost no friction as the car bounces, and it bounces
several times rather than quickly coming to rest. The idea that substances can be
categorized as being either a solid or a liquid holds for most substances, but a number
of substances exhibit both springiness and friction; they are viscoelastic. Many bio-
logical tissues are viscoelastic. For example, the synovial fluid in human knee joints
lubricates those joints but also absorbs some of the shock occurring during walking or
running. Note that the system of springs and shock absorbers comprising the car
suspension is also viscoelastic, although the individual components are not. We will
have more to say on this topic in Chapter 2.

1.4Basic Equations
Analysis of any problem in fluid mechanics necessarily includes statement of the basic
laws governing the fluid motion. The basic laws, which are applicable to any fluid, are:

1. The conservation of mass

2. Newton’s second law of motion

3. The principle of angular momentum

4. The first law of thermodynamics

5. The second law of thermodynamics

Not all basic laws are always required to solve any one problem. On the other hand, in
many problems it is necessary to bring into the analysis additional relations that
describe the behavior of physical properties of fluids under given conditions.

For example, you probably recall studying properties of gases in basic physics or
thermodynamics. The ideal gas equation of state

p 5 ρRT ð1:1Þ
is a model that relates density to pressure and temperature for many gases under normal
conditions. In Eq. 1.1, R is the gas constant. Values of R are given in Appendix A for
several common gases; p and T in Eq. 1.1 are the absolute pressure and absolute tem-
perature, respectively; ρ is density (mass per unit volume). Example 1.1 illustrates use of
the ideal gas equation of state.

F F F

Time

(a) Solid or fluid (b) Solid or fluid (c) Fluid only (d) Fluid only

Fig. 1.1 Difference in behav-
ior of a solid and a fluid due to
a shear force.

CLASSIC VIDEO
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It is obvious that the basic laws with which we shall deal are the same as those used
in mechanics and thermodynamics. Our task will be to formulate these laws in suitable
forms to solve fluid flow problems and to apply them to a wide variety of situations.

We must emphasize that there are, as we shall see, many apparently simple
problems in fluid mechanics that cannot be solved analytically. In such cases we must
resort to more complicated numerical solutions and/or results of experimental tests.

1.5 Methods of Analysis
The first step in solving a problem is to define the system that you are attempting to
analyze. In basic mechanics, we made extensive use of the free-body diagram. We will

Example 1.1 FIRST LAW APPLICATION TO CLOSED SYSTEM

A piston-cylinder device contains 0.95 kg of oxygen initially at a temperature of 27�C and a pressure due to the
weight of 150 kPa (abs). Heat is added to the gas until it reaches a temperature of 627�C. Determine the amount of
heat added during the process.

Given: Piston-cylinder containing O2, m5 0.95 kg.

T1 5 27�C T2 5 627�C

Find: Q1!2.

Solution: p5 constant5 150 kPa (abs)
We are dealing with a system, m5 0.95 kg.

Governing equation: First law for the system, Q122W125E22E1

Assumptions: (1) E5U, since the system is stationary.
(2) Ideal gas with constant specific heats.

Under the above assumptions,

E2 2E1 5 U2 2U1 5 mðu2 2 u1Þ 5 mcvðT2 2T1Þ
The work done during the process is moving boundary work

W12 5

Z V---2

V---1
pdV--- 5 pðV---2 2V---1Þ

For an ideal gas, pV---5mRT. Hence W125mR(T22T1). Then from the
first law equation,

Q12 5 E2 2E1 1W12 5 mcvðT2 2T1Þ1mRðT2 2T1Þ
Q12 5 mðT2 2T1Þðcv 1RÞ
Q12 5 mcpðT2 2T1Þ fR 5 cp 2 cvg

From the Appendix, Table A.6, for O2, cp5 909.4 J/(kg �K). Solving for
Q12, we obtain

Q12 5 0:95 kg3 909
J

kg �K 3 600K 5 518 kJ ß

Q12

Q

W

This problem:
ü Was solved using the nine logical
steps discussed earlier.ü Reviewed use of the ideal gas
equation and the first law of ther-
modynamics for a system.
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use a system or a control volume, depending on the problem being studied. These
concepts are identical to the ones you used in thermodynamics (except you may
have called them closed system and open system, respectively). We can use either
one to get mathematical expressions for each of the basic laws. In thermodynamics
they were mostly used to obtain expressions for conservation of mass and the first
and second laws of thermodynamics; in our study of fluid mechanics, we will be
most interested in conservation of mass and Newton’s second law of motion. In
thermodynamics our focus was energy; in fluid mechanics it will mainly be forces
and motion. We must always be aware of whether we are using a system or a
control volume approach because each leads to different mathematical expressions
of these laws. At this point we review the definitions of systems and control
volumes.

System and Control Volume

A system is defined as a fixed, identifiable quantity of mass; the system boundaries
separate the system from the surroundings. The boundaries of the system may be
fixed or movable; however, no mass crosses the system boundaries.

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas in
the cylinder is the system. If the gas is heated, the piston will lift the weight; the
boundary of the system thus moves. Heat and work may cross the boundaries of
the system, but the quantity of matter within the system boundaries remains fixed.
No mass crosses the system boundaries.

In mechanics courses you used the free-body diagram (system approach) exten-
sively. This was logical because you were dealing with an easily identifiable rigid body.
However, in fluid mechanics we normally are concerned with the flow of fluids
through devices such as compressors, turbines, pipelines, nozzles, and so on. In these
cases it is difficult to focus attention on a fixed identifiable quantity of mass. It is much
more convenient, for analysis, to focus attention on a volume in space through which
the fluid flows. Consequently, we use the control volume approach.

A control volume is an arbitrary volume in space through which fluid flows. The
geometric boundary of the control volume is called the control surface. The control
surface may be real or imaginary; it may be at rest or in motion. Figure 1.3 shows flow
through a pipe junction, with a control surface drawn on it. Note that some regions of
the surface correspond to physical boundaries (the walls of the pipe) and others (at
locations �1 , �2 , and �3 ) are parts of the surface that are imaginary (inlets or outlets).
For the control volume defined by this surface, we could write equations for the basic
laws and obtain results such as the flow rate at outlet�3 given the flow rates at inlet �1

Gas

Weight

Piston

CylinderSystem
boundary

Fig. 1.2 Piston-cylinder
assembly.

Control volume

Control surface

1

2

3

Fig. 1.3 Fluid flow through a pipe junction.
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and outlet �2 (similar to a problem we will analyze in Example 4.1 in Chapter 4), the
force required to hold the junction in place, and so on. It is always important to take
care in selecting a control volume, as the choice has a big effect on the mathematical
form of the basic laws. We will illustrate the use of a control volume with an example.

Differential versus Integral Approach

The basic laws that we apply in our study of fluid mechanics can be formulated in
terms of infinitesimal or finite systems and control volumes. As you might suspect,
the equations will look different in the two cases. Both approaches are important
in the study of fluid mechanics and both will be developed in the course of our work.

In the first case the resulting equations are differential equations. Solution of the
differential equations of motion provides a means of determining the detailed
behavior of the flow. An example might be the pressure distribution on a wing surface.

Example 1.2 MASS CONSERVATION APPLIED TO CONTROL VOLUME

A reducing water pipe section has an inlet diameter of 50 mm and exit diameter of 30 mm. If the steady inlet speed
(averaged across the inlet area) is 2.5 m/s, find the exit speed.

Given: Pipe, inlet Di5 50 mm, exit De5 30 mm.
Inlet speed, Vi5 2.5 m/s.

Find: Exit speed, Ve.

Solution:

Assumption: Water is incompressible (density ρ5 constant).

The physical law we use here is the conservation of mass, which you learned in thermodynamics when studying
turbines, boilers, and so on. You may have seen mass flow at an inlet or outlet expressed as either �m 5 VA=v or�m 5 ρVA where V,A, v, and ρ are the speed, area, specific volume, and density, respectively. We will use the density
form of the equation.

Hence the mass flow is:

�m 5 ρVA

Applying mass conservation, from our study of thermodynamics,

ρViAi 5 ρVeAe

(Note: ρi5 ρe5 ρ by our first assumption.)
(Note: Even though we are already familiar with this equation from
thermodynamics, we will derive it in Chapter 4.)

Solving for Ve,

Ve 5 Vi

Ai

Ae

5 Vi

πD2
i =4

πD2
e=4

5 Vi

Di

De

� �2

Ve 5 2:7
m

s

50

30

� �2

5 7:5
m

s
ß

Ve

This problem:
ü Was solved using the nine logical
steps.

ü Demonstrated use of a control
volume and the mass conservation
law.

Inlet Exit

Control volume
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Frequently the information sought does not require a detailed knowledge of the
flow. We often are interested in the gross behavior of a device; in such cases it is
more appropriate to use integral formulations of the basic laws. An example might be
the overall lift a wing produces. Integral formulations, using finite systems or control
volumes, usually are easier to treat analytically. The basic laws of mechanics and
thermodynamics, formulated in terms of finite systems, are the basis for deriving the
control volume equations in Chapter 4.

Methods of Description

Mechanics deals almost exclusively with systems; you have made extensive use of the
basic equations applied to a fixed, identifiable quantity of mass. On the other hand,
attempting to analyze thermodynamic devices, you often found it necessary to use a
control volume (open system) analysis. Clearly, the type of analysis depends on the
problem.

Where it is easy to keep track of identifiable elements of mass (e.g., in particle
mechanics), we use a method of description that follows the particle. This sometimes
is referred to as the Lagrangian method of description.

Consider, for example, the application of Newton’s second law to a particle of fixed
mass. Mathematically, we can write Newton’s second law for a system of mass m as

Σ~F 5 m~a 5 m
d~V

dt
5 m

d2~r

dt2
ð1:2Þ

In Eq. 1.2, Σ~F is the sum of all external forces acting on the system, ~a is the accel-
eration of the center of mass of the system, ~V is the velocity of the center of mass of
the system, and~r is the position vector of the center of mass of the system relative to a
fixed coordinate system.

Example 1.3 FREE FALL OF BALL IN AIR

The air resistance (drag force) on a 200 g ball in free flight is given by FD5 2 3 1024 V2, where FD is in newtons and
V is in meters per second. If the ball is dropped from rest 500 m above the ground, determine the speed at which it
hits the ground. What percentage of the terminal speed is the result? (The terminal speed is the steady speed a falling
body eventually attains.)

Given: Ball, m5 0.2 kg, released from rest at y05 500 m.
Air resistance, FD5 kV2, where k5 2 3 1024 N � s2/m2.
Units: FD(N), V(m/s).

Find: (a) Speed at which the ball hits the ground.
(b) Ratio of speed to terminal speed.

Solution:

Governing equation: Σ~F 5 m~a

Assumption: Neglect buoyancy force.

The motion of the ball is governed by the equation

ΣFy 5 may 5 m
dV

dt

FD

x

y

y0

mg

1.5 Methods of Analysis 9



We could use this Lagrangian approach to analyze a fluid flow by assuming the fluid
to be composed of a very large number of particles whose motion must be described.
However, keeping track of the motion of each fluid particle would become a horren-
dous bookkeeping problem. Consequently, a particle description becomes unmanage-
able. Often we find it convenient to use a different type of description. Particularly with
control volume analyses, it is convenient to use the field, or Eulerian, method of
description, which focuses attention on the properties of a flow at a given point in space
as a function of time. In the Eulerian method of description, the properties of a flow
field are described as functions of space coordinates and time. We shall see in Chapter 2
that this method of description is a logical outgrowth of the assumption that fluids may
be treated as continuous media.

Since V5V(y), we write ΣFy 5 m
dV

dy

dy

dt
5 mV

dV

dy
Then,

ΣFy 5 FD 2mg 5 kV2 2mg 5 mV
dV

dy

Separating variables and integrating,

Z y

y0

dy 5

Z V

0

mVdV

kV2 2mg

y2 y0 5
m

2k
lnðkV2 2mgÞ

2
4

3
5
V

0

5
m

2k
ln

kV2 2mg

2mg

Taking antilogarithms, we obtain

kV2 2mg 52mg e½ð2k=mÞðy2 y0Þ�

Solving for V gives

V 5
mg

k

�
12 e½ð2k=mÞðy2 y0Þ�

�n o1=2
Substituting numerical values with y5 0 yields

V 5 0:2 kg3 9:81
m

s2
3

m2

23 102 4N � s2 3
N � s2
kg �m 12 e½23 23 102 4=0:2ð2 500Þ�

� �8<
:

9=
;

V 5 78:7m=s ß
V

At terminal speed, ay5 0 and ΣFy 5 0 5 kV2
t 2mg:

Then, Vt 5
hmg

k

i1=2
5

"
0:2 kg3 9:81

m

s2
3

m2

23 102 4N � s2 3
N � s2
kg �m

#1=2

5 99:0 m=s

The ratio of actual speed to terminal speed is

V

Vt

5
78:7

99:0
5 0:795; or 79:5%ß

V

Vt

This problem:
ü Reviewed the methods used in par-
ticle mechanics.ü Introduced a variable aerodynamic
drag force.

Try the Excel workbook for this
Example for variations on this

problem.
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1.6Dimensions and Units
Engineering problems are solved to answer specific questions. It goes without saying
that the answer must include units. In 1999, NASA’s Mars Climate Observer crashed
because the JPL engineers assumed that a measurement was in meters, but the sup-
plying company’s engineers had actually made the measurement in feet! Conse-
quently, it is appropriate to present a brief review of dimensions and units. We say
“review” because the topic is familiar from your earlier work in mechanics.

We refer to physical quantities such as length, time, mass, and temperature as
dimensions. In terms of a particular system of dimensions, all measurable quantities
are subdivided into two groups—primary quantities and secondary quantities. We
refer to a small group of dimensions from which all others can be formed as primary
quantities, for which we set up arbitrary scales of measure. Secondary quantities are
those quantities whose dimensions are expressible in terms of the dimensions of the
primary quantities.

Units are the arbitrary names (and magnitudes) assigned to the primary dimensions
adopted as standards for measurement. For example, the primary dimension of length
may be measured in units of meters, feet, yards, or miles. These units of length are
related to each other through unit conversion factors (1mile5 5280 feet5 1609meters).

Systems of Dimensions

Any valid equation that relates physical quantities must be dimensionally homo-
geneous; each term in the equation must have the same dimensions. We recognize
that Newton’s second law (~F ~ m~a) relates the four dimensions, F, M, L, and t. Thus
force and mass cannot both be selected as primary dimensions without introducing a
constant of proportionality that has dimensions (and units).

Length and time are primary dimensions in all dimensional systems in common use.
In some systems, mass is taken as a primary dimension. In others, force is selected as a
primary dimension; a third system chooses both force and mass as primary dimen-
sions. Thus we have three basic systems of dimensions, corresponding to the different
ways of specifying the primary dimensions.

a. Mass [M], length [L], time [t], temperature [T]

b. Force [F], length [L], time [t], temperature [T]

c. Force [F], mass [M], length [L], time [t], temperature [T]

In system a, force [F] is a secondary dimension and the constant of proportionality in
Newton’s second law is dimensionless. In system b, mass [M] is a secondary dimension,
and again the constant of proportionality in Newton’s second law is dimensionless. In
system c, both force [F] and mass [M] have been selected as primary dimensions. In this
case the constant of proportionality, gc (not to be confused with g, the acceleration of
gravity!) in Newton’s second law (written ~F5m~a/gc) is not dimensionless. The
dimensions of gc must in fact be [ML/Ft2] for the equation to be dimensionally
homogeneous. The numerical value of the constant of proportionality depends on the
units of measure chosen for each of the primary quantities.

Systems of Units

There is more than one way to select the unit of measure for each primary dimension.
We shall present only the more common engineering systems of units for each of the
basic systems of dimensions. Table 1.1 shows the basic units assigned to the primary
dimensions for these systems. The units in parentheses are those assigned to that unit
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system’s secondary dimension. Following the table is a brief description of each of
them.

a. MLtT

SI, which is the official abbreviation in all languages for the Système International
d’Unités,1 is an extension and refinement of the traditional metric system. More than
30 countries have declared it to be the only legally accepted system.

In the SI system of units, the unit of mass is the kilogram (kg), the unit of length is
the meter (m), the unit of time is the second (s), and the unit of temperature is the
kelvin (K). Force is a secondary dimension, and its unit, the newton (N), is defined
from Newton’s second law as

1 N � 1kg �m=s2

In the Absolute Metric system of units, the unit of mass is the gram, the unit of
length is the centimeter, the unit of time is the second, and the unit of temperature is
the kelvin. Since force is a secondary dimension, the unit of force, the dyne, is defined
in terms of Newton’s second law as

1 dyne � 1g � cm=s2

b. FLtT

In the British Gravitational system of units, the unit of force is the pound (lbf), the
unit of length is the foot (ft), the unit of time is the second, and the unit of tem-
perature is the degree Rankine (�R). Since mass is a secondary dimension, the unit of
mass, the slug, is defined in terms of Newton’s second law as

1 slug � 1 lbf � s2=ft

c. FMLtT

In the English Engineering system of units, the unit of force is the pound force (lbf),
the unit of mass is the pound mass (lbm), the unit of length is the foot, the unit of time
is the second, and the unit of temperature is the degree Rankine. Since both force and
mass are chosen as primary dimensions, Newton’s second law is written as

~F 5
m~a

gc

Table 1.1
Common Unit Systems

System of Dimensions Unit System Force F Mass M Length L Time t Temperature T

a. MLtT Système International d’Unités (SI) (N) kg m s K
b. FLtT British Gravitational (BG) lbf (slug) ft s �R
c. FMLtT English Engineering (EE) lbf lbm ft s �R

1American Society for Testing and Materials, ASTM Standard for Metric Practice, E380-97. Conshohocken,

PA: ASTM, 1997.

CLASSIC VIDEO

Fluid Quantity and Flow.
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A force of one pound (1 lbf) is the force that gives a pound mass (1 lbm) an accel-
eration equal to the standard acceleration of gravity on Earth, 32.2 ft/s2. From
Newton’s second law we see that

1 lbf � 1 lbm3 32:2 ft=s2

gc

or

gc � 32:2 ft � lbm=ðlbf � s2Þ
The constant of proportionality, gc, has both dimensions and units. The dimensions
arose because we selected both force and mass as primary dimensions; the units (and
the numerical value) are a consequence of our choices for the standards of
measurement.

Since a force of 1 lbf accelerates 1 lbm at 32.2 ft/s2, it would accelerate 32.2 lbm at
1 ft/s2. A slug also is accelerated at 1 ft/s2 by a force of 1 lbf. Therefore,

1 slug � 32:2 lbm

Many textbooks and references use lb instead of lbf or lbm, leaving it up to the reader
to determine from the context whether a force or mass is being referred to.

Preferred Systems of Units

In this text we shall use both the SI and the British Gravitational systems of units. In
either case, the constant of proportionality in Newton’s second law is dimensionless
and has a value of unity. Consequently, Newton’s second law is written as ~F5m~a. In
these systems, it follows that the gravitational force (the “weight”2) on an object of
mass m is given by W5mg.

SI units and prefixes, together with other defined units and useful conversion
factors, are summarized in Appendix G.

Example 1.4 USE OF UNITS

The label on a jar of peanut butter states its net weight is 510 g. Express its mass and weight in SI, BG, and EE units.

Given: Peanut butter “weight,” m5 510 g.

Find: Mass and weight in SI, BG, and EE units.

Solution: This problem involves unit conversions and use of the equation relating weight and mass:

W 5 mg

The given “weight” is actually the mass because it is expressed in units of mass:

mSI 5 0:510 kg ß
mSI

Using the conversions of Table G.2 (Appendix G),

mEE 5 mSI
1 lbm

0:454 kg

� �
5 0:510 kg

1 lbm

0:454 kg

� �
5 1:12 lbm ß

mEE

2Note that in the English Engineering system, the weight of an object is given by W5mg/gc.
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Dimensional Consistency and “Engineering” Equations

In engineering, we strive to make equations and formulas have consistent dimensions.
That is, each term in an equation, and obviously both sides of the equation, should be
reducible to the same dimensions. For example, a very important equation we will
derive later on is the Bernoulli equation

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2

which relates the pressure p, velocity V, and elevation z between points 1 and 2 along
a streamline for a steady, frictionless incompressible flow (density ρ). This equation is
dimensionally consistent because each term in the equation can be reduced to
dimensions of L2/t2 (the pressure term dimensions are FL/M, but from Newton’s law
we find F5M/Lt2, so FL/M5ML2/Mt25L2/t2).

Almost all equations you are likely to encounter will be dimensionally consistent.
However, you should be alert to some still commonly used equations that are not; these
are often “engineering” equations derived many years ago, or are empirical (based on
experiment rather than theory), or areproprietary equations used in a particular industry
or company. For example, civil engineers oftenuse the semi-empiricalManning equation

V 5
R

2=3
h S

1=2
0

n

Using the fact that 1 slug5 32.2 lbm,

mBG 5 mEE
1 slug

32:2 lbm

0
@

1
A 5 1:12 lbm

1 slug

32:2 lbm

0
@

1
A

5 0:0349 slug ß
mBG

To find the weight, we use

W 5 mg

In SI units, and using the definition of a newton,

WSI 5 0:510 kg3 9:81
m

s2
5 5:00

kg �m
s2

0
@

1
A N

kg �m=s2

0
@

1
A

5 5:00 N ß
WSI

In BG units, and using the definition of a slug,

WBG 5 0:0349 slug3 32:2
ft

s2
5 1:12

slug � ft
s2

5 1:12
slug � ft

s2

0
@

1
A s2 � lbf=ft

slug

0
@

1
A 5 1:12 lbf ß

WBG

In EE units, we use the form W5mg/gc, and using the definition of gc,

WEE 5 1:12 lbm3 32:2
ft

s2
3

1

gc
5

36:1

gc

lbm � ft
s2

5 36:1
lbm � ft

s2

� �
lbf � s2

32:2 ft � lbm
� �

5 1:12 lbf ß
WEE

This problem illustrates:ü Conversions from SI to BG and EE
systems.ü Use of gc in the EE system.Notes: The student may feel this

example involves a lot of unnecessary
calculation details (e.g., a factor of
32.2 appears, then disappears), but it
cannot be stressed enough that such
steps should always be explicitly writ-
ten out to minimize errors—if you do
not write all steps and units down, it is
just too easy, for example, to multiply
by a conversion factor when you
should be dividing by it. For the
weights in SI, BG, and EE units, we
could alternatively have looked up the
conversion from newton to lbf.
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which gives the flow speed V in an open channel (such as a canal) as a function of the
hydraulic radius Rh (which is a measure of the flow cross-section and contact surface
area), the channel slope S0, and a constant n (the Manning resistance coefficient). The
value of this constant depends on the surface condition of the channel. For example,
for a canal made from unfinished concrete, most references give n � 0.014. Unfor-
tunately, the equation is dimensionally inconsistent! For the right side of the equation,
Rh has dimensions L, and S0 is dimensionless, so with a dimensionless constant n, we
end up with dimensions of L2/3; for the left side of the equation the dimensions must
be L/t! A user of the equation is supposed to know that the values of n provided in
most references will give correct results only if we ignore the dimensional incon-
sistency, always use Rh in meters, and interpret V to be in m/s! (The alert student will
realize that this means that even though handbooks provide n values as just constants,
they must have units of s/m1/3.) Because the equation is dimensionally inconsistent,
using the same value for n with Rh in ft does not give the correct value for V in ft/s.

A second type of problem is one in which the dimensions of an equation are
consistent but use of units is not. The commonly used EER of an air conditioner is

EER 5
cooling rate

electrical input

which indicates how efficiently the AC works—a higher EER value indicates better
performance. The equation is dimensionally consistent, with the EER being dimen-
sionless (the cooling rate and electrical input are both measured in energy/time).
However, it is used, in a sense, incorrectly, because the units traditionally used in it are
not consistent. For example, a good EER value is 10, which would appear to imply you
receive, say, 10 kW of cooling for each 1 kW of electrical power. In fact, an EER of
10 means you receive 10 Btu/hr of cooling for each 1 W of electrical power! Manu-
facturers, retailers, and customers all use the EER, in a sense, incorrectly in that they
quote an EER of, say, 10, rather than the correct way, of 10 Btu/hr/W. (The EER, as
used, is an everyday, inconsistent unit version of the coefficient of performance, COP,
studied in thermodynamics.)

The two examples above illustrate the dangers in using certain equations. Almost all the
equations encountered in this textwill bedimensionally consistent, but you shouldbeaware
of the occasional troublesome equation you will encounter in your engineering studies.

As a final note on units, we stated earlier that we will use SI and BG units in this
text. You will become very familiar with their use through using this text but should
be aware that many of the units used, although they are scientifically and engineering-
wise correct, are nevertheless not units you will use in everyday activities, and vice
versa; we do not recommend asking your grocer to give you, say, 22 newtons, or 0.16
slugs, of potatoes; nor should you be expected to immediately know what, say, a motor
oil viscosity of 5W20 means!

SI units and prefixes, other defined units, and useful conversions are given in
Appendix G.

1.7Analysis of Experimental Error
Most consumers are unaware of it but, as with most foodstuffs, soft drink containers
are filled to plus or minus a certain amount, as allowed by law. Because it is difficult to
precisely measure the filling of a container in a rapid production process, a 12-fl-oz
container may actually contain 12.1, or 12.7, fl oz. The manufacturer is never supposed
to supply less than the specified amount; and it will reduce profits if it is unnecessarily
generous. Similarly, the supplier of components for the interior of a car must
satisfy minimum and maximum dimensions (each component has what are called
tolerances) so that the final appearance of the interior is visually appealing. Engineers
performing experiments must measure not just data but also the uncertainties in their
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measurements. They must also somehow determine how these uncertainties affect the
uncertainty in the final result.

All of these examples illustrate the importance of experimental uncertainty, that is,
the study of uncertainties in measurements and their effect on overall results. There
is always a trade-off in experimental work or in manufacturing: We can reduce the
uncertainties to a desired level, but the smaller the uncertainty (the more precise
the measurement or experiment), the more expensive the procedure will be. Fur-
thermore, in a complex manufacture or experiment, it is not always easy to see which
measurement uncertainty has the biggest influence on the final outcome.

Anyone involved in manufacturing, or in experimental work, should understand
experimental uncertainties. Appendix F has details on this topic; there is a selection of
problems on this topic at the end of this chapter.

Case Study

“Fly Like a Bird”

The airplane with various instantaneous wing shapes. (Courtesy of
Dr. Rick Lind, University of Florida.)

At the end of each chapter, we present a case study:
an interesting development in fluid mechanics chosen
to illustrate that the field is constantly evolving.

No airplane, or airplane model, flies like a bird; air-
craft all have fixed wings when in flight, whereas birds
are (almost) constantly flapping away! One reason for
this is that airplane and model wings must support
relatively significant weight and are therefore thick and
stiff; another reason is that we don’t yet fully under-
stand bird flight! Engineers at the University of Florida
in Gainesville, led by researcher Rick Lind, have gone
back to the drawing board and have developed a
small surveillance aircraft (2-ft wingspan, weight a
total of 11/2 lb) that can change its wing shape during
flight. While it is not true bird flight (the main propul-
sion is through a propeller), it is a radical departure
from current airplane design. The airplane can change,
for example, from an M shape wing configuration (very
stable for gliding) to a W shape (for high maneuver-
ability). It is amazingly dexterous: It can turn three rolls
in less than a second (comparable to an F-15 fighter!),
and its flight is sufficiently birdlike that it has attracted
sparrows (friendly) and crows (unfriendly). Possible
uses are in military surveillance, detection of biological
agents in congested urban areas, and environmental
studies in difficult airspaces such as forests.

1.8 Summary
In this chapter we introduced or reviewed a number of basic concepts and definitions, including:

ü How fluids are defined, and the no-slip condition
ü System/control volume concepts
ü Lagrangian and Eulerian descriptions
ü Units and dimensions (including SI, British Gravitational, and English Engineering systems)
ü Experimental uncertainty
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Problems
Definition of a Fluid: Basic Equations

1.1 A number of common substances are

Tar Sand
“Silly Putty” Jello
Modeling clay Toothpaste
Wax Shaving cream

Some of these materials exhibit characteristics of both solid
and fluid behavior under different conditions. Explain and
give examples.

1.2 Give a word statement of each of the five basic con-
servation laws stated in Section 1.4, as they apply to a
system.

Methods of Analysis

1.3 The barrel of a bicycle tire pump becomes quite warm
during use. Explain the mechanisms responsible for the
temperature increase.

1.4 Discuss the physics of skipping a stone across the water
surface of a lake. Compare these mechanisms with a stone as
it bounces after being thrown along a roadway.

1.5 Make a guess at the order of magnitude of the mass (e.g.,
0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that
is in a room 10 ft by 10 ft by 8 ft, and then compute this mass
in lbm and kg to see how close your estimate was.

1.6 A spherical tank of inside diameter 16 ft contains com-
pressed oxygen at 1000 psia and 77�F. What is the mass of
the oxygen?

1.7 Very small particles moving in fluids are known to experi-
ence a drag force proportional to speed. Consider a particle of
net weight W dropped in a fluid. The particle experiences
a drag force, FD5kV, where V is the particle speed. Deter-
mine the time required for the particle to accelerate from
rest to 95 percent of its terminal speed, Vt, in terms of k,
W, and g.

1.8 Consider again the small particle of Problem 1.7. Express
the distance required to reach 95 percent of its terminal
speed in percent terms of g, k, and W.

1.9 A cylindrical tank must be designed to contain 5 kg of
compressed nitrogen at a pressure of 200 atm (gage) and
20�C. The design constraints are that the length must be
twice the diameter and the wall thickness must be 0.5 cm.
What are the external dimensions?

1.10 In a combustion process, gasoline particles are to be
dropped in air at 200�F. The particles must drop at least 10
in. in 1 s. Find the diameter d of droplets required for this.
(The drag on these particles is given by FD 5 πμVd, where V

is the particle speed and μ is the air viscosity. To solve this
problem, use Excel’s Goal Seek.)

1.11 For a small particle of styrofoam (1 lbm/ft3) (spherical,
with diameter d5 0.3 mm) falling in standard air at speed V,
the drag is given by FD5 3πμVd, where μ is the air viscosity.
Find the maximum speed starting from rest, and the time it

takes to reach 95 percent of this speed. Plot the speed as a
function of time.

1.12 In a pollution control experiment, minute solid particles
(typical mass 1 3 10213 slug) are dropped in air. The termi-
nal speed of the particles is measured to be 0.2 ft/s. The drag
of these particles is given by FD = kV, where V is the instan-
taneous particle speed. Find the value of the constant k. Find
the time required to reach 99 percent of terminal speed.

1.13 For Problem 1.12, find the distance the particles travel
before reaching 99 percent of terminal speed. Plot the dis-
tance traveled as a function of time.

1.14 A sky diver with a mass of 70 kg jumps from an aircraft.
The aerodynamic drag force acting on the sky diver is known
to be FD5kV2, where k5 0.25 N � s2/m2. Determine the
maximum speed of free fall for the sky diver and the speed
reached after 100 m of fall. Plot the speed of the sky diver as
a function of time and as a function of distance fallen.

1.15 For Problem 1.14, the initial horizontal speed of the sky
diver is 70 m/s. As she falls, the k value for the vertical drag
remains as before, but the value for horizontal motion is
k5 0.05 N � s/m2. Compute and plot the 2D trajectory of the
sky diver.

1.16 The English perfected the longbow as a weapon after the
Medieval period. In the hands of a skilled archer, the longbow
was reputed to be accurate at ranges to 100 m or more. If
the maximum altitude of an arrow is less than h5 10 m while
traveling to a target 100 m away from the archer, and
neglecting air resistance, estimate the speed and angle at
which the arrow must leave the bow. Plot the required release
speed and angle as a function of height h.

Dimensions and Units

1.17 For each quantity listed, indicate dimensions using mass
as a primary dimension, and give typical SI and English units:
(a) Power
(b) Pressure
(c) Modulus of elasticity
(d) Angular velocity
(e) Energy
(f) Moment of a force
(g) Momentum
(h) Shear stress
(i) Strain
(j) Angular momentum

1.18 For each quantity listed, indicate dimensions using force
as a primary dimension, and give typical SI and English units:
(a) Power
(b) Pressure
(c) Modulus of elasticity
(d) Angular velocity
(e) Energy
(f) Momentum
(g) Shear stress
(h) Specific heat

Problems 17



(i) Thermal expansion coefficient
(j) Angular momentum

1.19 Derive the following conversion factors:
(a) Convert a viscosity of 1 m2/s to ft2/s.
(b) Convert a power of 100 W to horsepower.
(c) Convert a specific energy of 1 kJ/kg to Btu/lbm.

1.20 Derive the following conversion factors:
(a) Convert a pressure of 1 psi to kPa.
(b) Convert a volume of 1 liter to gallons.
(c) Convert a viscosity of 1 lbf � s/ft2 to N � s/m2.

1.21 Derive the following conversion factors:
(a) Convert a specific heat of 4.18 kJ/kg �K to Btu/lbm � �R.
(b) Convert a speed of 30 m/s to mph.
(c) Convert a volume of 5.0 L to in3.

1.22 Express the following in SI units:
(a) 5 acre � ft
(b) 150 in3/s
(c) 3 gpm
(d) 3 mph/s

1.23 Express the following in SI units:
(a) 100 cfm (ft3/min)
(b) 5 gal
(c) 65 mph
(d) 5.4 acres

1.24 Express the following in BG units:
(a) 50 m2

(b) 250 cc
(c) 100 kW
(d) 5 kg/m2

1.25 Express the following in BG units:
(a) 180 cc/min
(b) 300 kW � hr
(c) 50 N � s/m2

(d) 40 m2 � hr
1.26 While you’re waiting for the ribs to cook, you muse about
the propane tank of your barbecue. You’re curious about the
volume of propane versus the actual tank size. Find the liquid
propane volume when full (the weight of the propane is spec-
ified on the tank). Compare this to the tank volume (take some
measurements, and approximate the tank shape as a cylinder
with a hemisphere on each end). Explain the discrepancy.

1.27 A farmer needs 4 cm of rain per week on his farm, with
10 hectares of crops. If there is a drought, how much water
(L/min) will have to be supplied to maintain his crops?

1.28 Derive the following conversion factors:
(a) Convert a volume flow rate in cubic inches per minute to

cubic millimeters per minute.
(b) Convert a volume flow rate in cubic meters per second

to gallons per minute (gpm).
(c) Convert a volume flow rate in liters per minute to gpm.
(d) Convert a volume flow rate of air in standard cubic feet

per minute (SCFM) to cubic meters per hour. A stan-
dard cubic foot of gas occupies one cubic foot at
standard temperature and pressure (T5 15�C and
p5 101.3 kPa absolute).

1.29 The density of mercury is given as 26.3 slug/ft3. Calculate
the specific gravity and the specific volume in m3/kg of the

mercury. Calculate the specific weight in lbf/ft3 on Earth
and on the moon. Acceleration of gravity on the moon is
5.47 ft/s2.

1.30 The kilogram force is commonly used in Europe as a
unit of force. (As in the U.S. customary system, where 1 lbf is
the force exerted by a mass of 1 lbm in standard gravity, 1 kgf
is the force exerted by a mass of 1 kg in standard gravity.)
Moderate pressures, such as those for auto or truck tires, are
conveniently expressed in units of kgf/cm2. Convert 32 psig
to these units.

1.31 In Section 1.6 we learned that the Manning equation com-
putes the flow speed V (m/s) in a canal made from unfinished
concrete, given thehydraulic radiusRh (m), the channel slopeS0,
and a Manning resistance coefficient constant value n � 0.014.
For a canal with Rh5 7.5 m and a slope of 1/10, find the flow
speed. Compare this result with that obtained using the same n
value, but withRh first converted to ft, with the answer assumed
to be in ft/s. Finally, find the value of n if wewish to correctly use
the equation for BG units (and compute V to check!).

1.32 From thermodynamics, we know that the coefficient of
performance of an ideal air conditioner (COPideal) is given by

COPideal ¼ TL

TH 2TL

where TL and TH are the room and outside temperatures
(absolute). If an AC is to keep a room at 20�C when it is 40�C
outside, find the COPideal. Convert to an EER value, and
compare this to a typical Energy Star�compliant EER value.

1.33 The maximum theoretical flow rate (slug/s) through a
supersonic nozzle is

_mmax ¼ 2:38
Atp0ffiffiffiffiffiffi
T0

p

where At (ft
2) is the nozzle throat area, p0 (psi) is the tank

pressure, and T0 (�R) is the tank temperature. Is this equa-
tion dimensionally correct? If not, find the units of the 2.38
term. Write the equivalent equation in SI units.

1.34 The mean free path λ of a molecule of gas is the average
distance it travels before collision with another molecule. It
is given by

λ 5 C
m

ρd2

where m and d are the molecule’s mass and diameter,
respectively, and ρ is the gas density.What are the dimensions
of constant C for a dimensionally consistent equation?

1.35 In Chapter 9 we will study aerodynamics and learn that
the drag force FD on a body is given by

FD 5
1

2
ρV2ACD

Hence the drag depends on speed V, fluid density ρ, and body
size (indicated by frontal areaA) and shape (indicated by drag
coefficient CD). What are the dimensions of CD?

1.36 A container weighs 3.5 lbf when empty. When filled with
water at 90�F, the mass of the container and its contents is
2.5 slug. Find the weight of water in the container, and its
volume in cubic feet, using data from Appendix A.
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1.37 An important equation in the theory of vibrations is

m
d2x

dt2
1 c

dx

dt
1 kx 5 f ðtÞ

wherem (kg) is the mass and x (m) is the position at time t (s).
For a dimensionally consistent equation, what are the
dimensions of c, k, and f? What would be suitable units for c,
k, and f in the SI and BG systems?

1.38 A parameter that is often used in describing pump
performance is the specific speed, NScu , given by

Nscu 5
NðrpmÞ½QðgpmÞ�1=2

½HðftÞ�3=4

What are the units of specific speed? A particular pump has a
specific speed of 2000. What will be the specific speed in SI
units (angular velocity in rad/s)?

1.39 A particular pump has an “engineering” equation form of
the performance characteristic equation given by H (ft)5
1.52 4.5 3 1025 [Q (gpm)]2, relating the head H and flow rate
Q. What are the units of the coefficients 1.5 and 4.5 3 1025?
Derive an SI version of this equation.

Analysis of Experimental Error

1.40 Calculate the density of standard air in a laboratory
from the ideal gas equation of state. Estimate the experi-
mental uncertainty in the air density calculated for standard
conditions (29.9 in. of mercury and 59�F) if the uncertainty in
measuring the barometer height is 60.1 in. of mercury and
the uncertainty in measuring temperature is 60.5�F. (Note
that 29.9 in. of mercury corresponds to 14.7 psia.)

1.41 Repeat the calculation of uncertainty described in Prob-
lem 1.40 for air in a hot air balloon. Assume the measured
barometer height is 759 mm of mercury with an uncertainty
of 61 mm of mercury and the temperature is 60�C with an
uncertainty of 61�C. [Note that 759 mm of mercury corre-
sponds to 101 kPa (abs).]

1.42 The mass of the standard American golf ball is 1.62 6
0.01 oz and its mean diameter is 1.68 6 0.01 in. Determine
the density and specific gravity of the American golf ball.
Estimate the uncertainties in the calculated values.

1.43 A can of pet food has the following internal dimensions:
102 mm height and 73 mm diameter (each 61 mm at odds of
20 to 1). The label lists the mass of the contents as 397 g.
Evaluate the magnitude and estimated uncertainty of the
density of the pet food if the mass value is accurate to61 g at
the same odds.

1.44 The mass flow rate in a water flow system determined by
collecting the discharge over a timed interval is 0.2 kg/s. The
scales used can be read to the nearest 0.05 kg and the stop-
watch is accurate to 0.2 s. Estimate the precision with which
the flow rate can be calculated for time intervals of (a) 10 s
and (b) 1 min.

1.45 The mass flow rate of water in a tube is measured using a
beaker to catch water during a timed interval. The nominal
mass flow rate is 100 g/s. Assume that mass is measured using
a balance with a least count of 1 g and a maximum capacity of

1 kg, and that the timer has a least count of 0.1 s. Estimate the
time intervals and uncertainties in measured mass flow rate
that would result from using 100, 500, and 1000 mL beakers.
Would there be any advantage in using the largest beaker?
Assume the tare mass of the empty 1000 mL beaker is 500 g.

1.46 The mass of the standard British golf ball is 45.9 6 0.3 g
and its mean diameter is 41.1 6 0.3 mm. Determine the
density and specific gravity of the British golf ball. Estimate
the uncertainties in the calculated values.

1.47 The estimated dimensions of a soda can are D5 66.0 6
0.5 mm and H5 110 6 0.5 mm. Measure the mass of a full
can and an empty can using a kitchen scale or postal scale.
Estimate the volume of soda contained in the can. From your
measurements estimate the depth to which the can is filled
and the uncertainty in the estimate. Assume the value of
SG5 1.055, as supplied by the bottler.

1.48 From Appendix A, the viscosity μ (N � s/m2) of water at
temperature T (K) can be computed from μ = A10B/(T2C),
where A = 2.4143 1025 N � s/m2, B = 247.8 K, and C = 140 K.
Determine the viscosity of water at 30�C, and estimate its
uncertainty if the uncertainty in temperature measurement is
60.5�C.

1.49 Using the nominal dimensions of the soda can given
in Problem 1.47, determine the precision with which the
diameter and heightmust bemeasured to estimate the volume
of the can within an uncertainty of 60.5 percent.

1.50 An enthusiast magazine publishes data from its road tests
on the lateral acceleration capabilityof cars.Themeasurements
are made using a 150-ft-diameter skid pad. Assume the vehicle
path deviates from the circle by62 ft and that the vehicle speed
is read fromafifth-wheel speed-measuring system to60.5mph.
Estimate the experimental uncertainty in a reported lateral
acceleration of 0.7 g. Howwould you improve the experimental
procedure to reduce the uncertainty?

1.51 Theheightof abuildingmaybeestimatedbymeasuring the
horizontal distance to a point on the ground and the angle from
this point to the top of the building. Assuming these measure-
ments areL5 1006 0.5 ft and θ5 306 0.2�, estimate theheight
H of the building and the uncertainty in the estimate. For the
same building height and measurement uncertainties, use
Excel’s Solver to determine the angle (and the corresponding
distance from the building) at which measurements should be
made tominimize the uncertainty in estimatedheight.Evaluate
and plot the optimum measurement angle as a function of
building height for 50#H# 1000 ft.

1.52 An American golf ball is described in Problem 1.42
Assuming the measured mass and its uncertainty as given,
determine the precision to which the diameter of the ball
must be measured so the density of the ball may be estimated
within an uncertainty of 61 percent.

1.53 A syringe pump is to dispense liquid at a flow rate of
100 mL/min. The design for the piston drive is such that the
uncertainty of the piston speed is 0.001 in./min, and the
cylinder bore diameter has a maximum uncertainty of 0.0005
in. Plot the uncertainty in the flow rate as a function of
cylinder bore. Find the combination of piston speed and bore
that minimizes the uncertainty in the flow rate.
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2
Fundamental Concepts
2.1 Fluid as a Continuum

2.2 Velocity Field

2.3 Stress Field

2.4 Viscosity

2.5 Surface Tension

2.6 Description and Classification of Fluid Motions

2.7 Summary and Useful Equations

Case Study in Energy and the Environment

Ocean Power
We’re not used to thinking of them this

way, but the oceans are a huge repository of
solar energy (and energy due to the moon’s motion).
The solar energy storage is initially thermal in nature, as
the water surface is heated during the day. When the
water cools overnight, thermal gradients are created
that ultimately lead to ocean currents (as well as winds)
containing huge amounts of energy. According to a
2009 U.S. Department of Energy study titled “Ocean
Energy Technology,” there are four types of ocean
energy conversion: wave energy, tidal energy, marine
current energy, and ocean thermal energy conversion.

The total power from waves believed to be available
is about 2.7 TW, of which it is currently practical to

extract 500 GW (500 3 109 W). Bear in mind that we
mentioned in Chapter 1 that total power consumption
by humans was about 16 TW (as of 2006), so at best
wave power could supply about 3 percent of human
needs using current technology. These devices work by
either floating on the surface of the ocean or by being
moored to the ocean floor. Many of these devices rely
on buoyancy forces, which we will discuss in Chapter 3.
Forexample, a device thatfloatson thesurfacemayhave
joints hinged together that bend with the waves; this
bending motion pumps fluid through turbines and cre-
ates electric power. Alternatively, stationary tethered
devices use pressure fluctuations produced in long
tubes from the waves swelling up and down; the bob-
bing motion drives a turbine. Wave energy is already
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In Chapter 1 we discussed in general terms what fluid mechanics is about, and
described some of the approaches we will use in analyzing fluid mechanics problems.
In this chapter we will be more specific in defining some important properties of fluids
and ways in which flows can be described and characterized.

2.1Fluid as a Continuum
We are all familiar with fluids—the most common being air and water—and we
experience them as being “smooth,” i.e., as being a continuous medium. Unless we use

reaching fairly advanced levels of development, with a
number of companies being involved.

Tidal energy uses the 12-hr cycle due to the grav-
itational force of the moon; the difference in water
height from low to high tide is an extractable form of
potential energy. For example, water can be captured
by using a barrier across an estuary during high tide
and by forcing the water through a turbine during low
tide. Alternatively, as shown in the figure, turbine sys-
tems could be mounted in such a way that they swing
with the tide, extracting energy when the tide comes in
and goes out. There are only about 20 locations on
earth with tides sufficiently high to make tidal energy
practical. The Bay of Fundy between Maine and Nova
Scotia features the highest tides in the world, reaching
17 m (56 ft). This area alone could produce up to 15 GW
of power. The total wave energy power believed to be
available is about 2.5 TW, of which, with current tech-
nology, it is practical to extract only about 65 GW.

Marine current energy is that due to ocean currents
(which in turn are generated by solar heating and by
the winds—ultimately solar in origin—as well as by the
Earth’s rotation). About 5 TW of power is believed to be
available, of which it is currently practical to extract 450
GW; at best, this energy source will supply something
less than 5 percent of total current needs. In the United
States, it is most abundant off the coast of Florida in the
flow known as the Gulf Stream. Kinetic energy can be
captured from the Gulf Stream and other currents with
submerged turbines that are very similar in appearance
to miniature wind turbines. As with wind turbines, the
continuous movement of the marine current moves
the rotor blades to generate electric power. Turbines
will be discussed in some detail in Chapter 10.

Ocean thermal energy conversion (OTEC), uses the
ocean temperature difference between surface water
and that at depths lower than 1000 m to extract
energy. The temperature of ocean water at a depth of
1000 m is just above freezing; a temperature differ-
ence of as little as 20�C (36�F) can yield usable
energy. (You can figure out the minimum surface

temperature required!) The warm surface water can be
used as a heat source to evaporate a fluid such as
ammonia, which can drive a turbine, and the deep
water acts as a heat sink. Because of the temperatures
involved, such devices will have a very low theoretical
efficiency, but the amount of stored thermal energy is
huge—about 200 TW of power!
Yet another form of ocean energy (ultimately

traceable to solar energy) is that due to the variability
of salinity due to water evaporation. When salty ocean
water (brine) is separated from fresh water by a
semipermeable membrane, a pressure gradient builds
up across the membrane (osmotic pressure). We will
learn in this text that a pressure gradient can be used
as a driving force for energy generation. The exploi-
tation of this energy is called salinity gradient energy
conversion. This is a future technology with huge
potential. There is about 1000 TW of energy available,
or about 60 times total worldwide power usage!
We shall discuss some interesting developments in

several of these energy conversion methods in Case
Studies in Energy and the Environment in subsequent
chapters.

Proposed tidal turbines.
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specialized equipment, we are not aware of the underlying molecular nature of fluids.
This molecular structure is one in which the mass is not continuously distributed in
space, but is concentrated in molecules that are separated by relatively large regions
of empty space. The sketch in Fig. 2.1a shows a schematic representation of this. A
region of space “filled” by a stationary fluid (e.g., air, treated as a single gas) looks like
a continuous medium, but if we zoom in on a very small cube of it, we can see that we
mostly have empty space, with gas molecules scattered around, moving at high speed
(indicated by the gas temperature). Note that the size of the gas molecules is greatly
exaggerated (they would be almost invisible even at this scale) and that we have
placed velocity vectors only on a small sample. We wish to ask: What is the minimum
volume, δV---u, that a “point” C must be, so that we can talk about continuous fluid
properties such as the density at a point? In other words, under what circumstances
can a fluid be treated as a continuum, for which, by definition, properties vary
smoothly from point to point? This is an important question because the concept of a
continuum is the basis of classical fluid mechanics.

Consider how we determine the density at a point. Density is defined as mass per
unit volume; in Fig. 2.1a the mass δm will be given by the instantaneous number of
molecules in δV--- (and the mass of each molecule), so the average density in volume δV---
is given by ρ 5 δm=δV---. We say “average” because the number of molecules in δV---,
and hence the density, fluctuates. For example, if the gas in Fig. 2.1a was air at
standard temperature and pressure (STP1) and the volume δV--- was a sphere of dia-
meter 0.01 μm, there might be 15 molecules in δV--- (as shown), but an instant later
there might be 17 (three might enter while one leaves). Hence the density at “point” C
randomly fluctuates in time, as shown in Fig. 2.1b. In this figure, each vertical dashed
line represents a specific chosen volume, δV---, and each data point represents the
measured density at an instant. For very small volumes, the density varies greatly, but
above a certain volume, δV---u, the density becomes stable—the volume now encloses a
huge number of molecules. For example, if δV--- 5 0:001 mm3 (about the size of a grain
of sand), there will on average be 2:53 1013 molecules present. Hence we can con-
clude that air at STP (and other gases, and liquids) can be treated as a continuous
medium as long as we consider a “point” to be no smaller than about this size; this is
sufficiently precise for most engineering applications.

The concept of a continuum is the basis of classical fluid mechanics. The con-
tinuum assumption is valid in treating the behavior of fluids under normal conditions.
It only breaks down when the mean free path of the molecules2 becomes the same
order of magnitude as the smallest significant characteristic dimension of the problem.

(a) (b)

C
x

y

“Point” C at x,y,z
Volume
of mass

δV
δm

δm/δV

δV δV'

Fig. 2.1 Definition of density at a point.

VIDEO

Fluid as a Continuum.

1STP for air are 15�C (59�F) and 101.3 kPa absolute (14.696 psia), respectively.
2Approximately 6 3 1028 m at STP (Standard Temperature and Pressure) for gas molecules that show ideal

gas behavior [1].
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This occurs in such specialized problems as rarefied gas flow (e.g., as encountered in
flights into the upper reaches of the atmosphere). For these specialized cases (not
covered in this text) we must abandon the concept of a continuum in favor of the
microscopic and statistical points of view.

As a consequence of the continuum assumption, each fluid property is assumed
to have a definite value at every point in space. Thus fluid properties such as
density, temperature, velocity, and so on are considered to be continuous functions of
position and time. For example, we now have a workable definition of density at a
point,

ρ � lim
δV----δV---u

δm
δV---

ð2:1Þ

Since point C was arbitrary, the density at any other point in the fluid could be
determined in the same manner. If density was measured simultaneously at an
infinite number of points in the fluid, we would obtain an expression for the density
distribution as a function of the space coordinates, ρ 5 ρðx; y; zÞ, at the given
instant.

The density at a point may also vary with time (as a result of work done on or by
the fluid and/or heat transfer to the fluid). Thus the complete representation of density
(the field representation) is given by

ρ 5 ρðx; y; z; tÞ ð2:2Þ
Since density is a scalar quantity, requiring only the specification of a magnitude for a
complete description, the field represented by Eq. 2.2 is a scalar field.

An alternative way of expressing the density of a substance (solid or fluid) is to
compare it to an accepted reference value, typically the maximum density of water,
ρH2O

(1000 kg/m3 at 4�C or 1.94 slug/ft3 at 39�F). Thus, the specific gravity, SG, of a
substance is expressed as

SG 5
ρ

ρH2O

ð2:3Þ

For example, the SG of mercury is typically 13.6—mercury is 13.6 times as dense as
water. Appendix A contains specific gravity data for selected engineering materials.
The specific gravity of liquids is a function of temperature; for most liquids specific
gravity decreases with increasing temperature.

The specific weight, γ, of a substance is another useful material property. It is
defined as the weight of a substance per unit volume and given as

γ 5
mg

V---
-γ 5 ρg ð2:4Þ

For example, the specific weight of water is approximately 9.81 kN/m3 (62.4 lbf/ft3).

2.2Velocity Field
In the previous section we saw that the continuum assumption led directly to the
notion of the density field. Other fluid properties also may be described by fields.

A very important property defined by a field is the velocity field, given by

~V 5 ~Vðx; y; z; tÞ ð2:5Þ
Velocity is a vector quantity, requiring a magnitude and direction for a complete
description, so the velocity field (Eq. 2.5) is a vector field.
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The velocity vector, V~, also can be written in terms of its three scalar components.
Denoting the components in the x, y, and z directions by u, v, and w, then

~V 5 uî1 vĵ1wk̂ ð2:6Þ
In general, each component, u, v, and w, will be a function of x, y, z, and t.

We need to be clear on what ~Vðx; y; z; tÞmeasures: It indicates the velocity of a fluid
particle that is passing through the point x, y, z at time instant t, in the Eulerian sense.
We can keep measuring the velocity at the same point or choose any other point x, y, z
at the next time instant; the point x, y, z is not the ongoing position of an individual
particle, but a point we choose to look at. (Hence x, y, and z are independent variables.
In Chapter 5 we will discuss the material derivative of velocity, in which we choose
x 5 xpðtÞ; y 5 ypðtÞ; and z 5 zpðtÞ, where xp(t), yp(t), zp(t) is the position of a specific
particle.) We conclude that ~Vðx; y; z; tÞ should be thought of as the velocity field of all
particles, not just the velocity of an individual particle.

If properties at every point in a flow field do not change with time, the flow is
termed steady. Stated mathematically, the definition of steady flow is

@η
@t

5 0

where η represents any fluid property. Hence, for steady flow,

@ρ
@t

5 0 or ρ 5 ρðx; y; zÞ

and

@ ~V

@t
5 0 or ~V 5 ~Vðx; y; zÞ

In steady flow, any property may vary from point to point in the field, but all prop-
erties remain constant with time at every point.

One-, Two-, and Three-Dimensional Flows

A flow is classified as one-, two-, or three-dimensional depending on the number of
space coordinates required to specify the velocity field.3 Equation 2.5 indicates that
the velocity field may be a function of three space coordinates and time. Such a flow
field is termed three-dimensional (it is also unsteady) because the velocity at any point
in the flow field depends on the three coordinates required to locate the point in space.

Although most flow fields are inherently three-dimensional, analysis based on
fewer dimensions is frequently meaningful. Consider, for example, the steady flow
through a long straight pipe that has a divergent section, as shown in Fig. 2.2. In this
example, we are using cylindrical coordinates (r, θ, x). We will learn (in Chapter 8)
that under certain circumstances (e.g., far from the entrance of the pipe and from the
divergent section, where the flow can be quite complicated), the velocity distribution
may be described by

u 5 umax 12
r

R

� �2
� �

ð2:7Þ

This is shown on the left of Fig. 2.2. The velocity u(r) is a function of only one
coordinate, and so the flow is one-dimensional. On the other hand, in the diverging

3Some authors choose to classify a flow as one-, two-, or three-dimensional on the basis of the number of

space coordinates required to specify all fluid properties. In this text, classification of flow fields will be based

on the number of space coordinates required to specify the velocity field only.
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section, the velocity decreases in the x direction, and the flow becomes two-dimensional:
u5 u(r, x).

As you might suspect, the complexity of analysis increases considerably with the
number of dimensions of the flow field. For many problems encountered in engi-
neering, a one-dimensional analysis is adequate to provide approximate solutions of
engineering accuracy.

Since all fluids satisfying the continuum assumption must have zero relative velocity
at a solid surface (to satisfy the no-slip condition), most flows are inherently two-
or three-dimensional. To simplify the analysis it is often convenient to use the notion
of uniform flow at a given cross section. In a flow that is uniform at a given cross
section, the velocity is constant across any section normal to the flow. Under this
assumption,4 the two-dimensional flow of Fig. 2.2 is modeled as the flow shown in
Fig. 2.3. In the flow of Fig. 2.3, the velocity field is a function of x alone, and thus the
flow model is one-dimensional. (Other properties, such as density or pressure, also
may be assumed uniform at a section, if appropriate.)

The term uniform flow field (as opposed to uniform flow at a cross section) is used
to describe a flow in which the velocity is constant, i.e., independent of all space
coordinates, throughout the entire flow field.

Timelines, Pathlines, Streaklines, and Streamlines

Airplane and auto companies and college engineering laboratories, among others,
frequently use wind tunnels to visualize flow fields [2]. For example, Fig. 2.4 shows a
flow pattern for flow around a car mounted in a wind tunnel, generated by releasing
smoke into the flow at five fixed upstream points. Flow patterns can be visualized
using timelines, pathlines, streaklines, or streamlines.

If a number of adjacent fluid particles in a flowfield aremarked at a given instant, they
form a line in the fluid at that instant; this line is called a timeline. Subsequent observa-
tions of the linemay provide information about the flow field. For example, in discussing
the behavior of a fluid under the action of a constant shear force (Section 1.2) timelines
were introduced to demonstrate the deformation of a fluid at successive instants.

A pathline is the path or trajectory traced out by a moving fluid particle. To make a
pathline visible, we might identify a fluid particle at a given instant, e.g., by the use of
dye or smoke, and then take a long exposure photograph of its subsequent motion.
The line traced out by the particle is a pathline. This approach might be used to study,
for example, the trajectory of a contaminant leaving a smokestack.

On the other hand, we might choose to focus our attention on a fixed location in
space and identify, again by the use of dye or smoke, all fluid particles passing through
this point. After a short period of time we would have a number of identifiable fluid

u(r)

r

x

R
r
θ

u(r,x)

umax

Fig. 2.2 Examples of one- and two-dimensional flows.

x

Fig. 2.3 Example of uniform
flow at a section.

4This may seem like an unrealistic simplification, but actually in many cases leads to useful results. Sweeping

assumptions such as uniform flow at a cross section should always be reviewed carefully to be sure they

provide a reasonable analytical model of the real flow.
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Flow Visualization.

VIDEO

Streaklines.
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particles in the flow, all of which had, at some time, passed through one fixed location
in space. The line joining these fluid particles is defined as a streakline.

Streamlines are lines drawn in the flow field so that at a given instant they are
tangent to the direction of flow at every point in the flow field. Since the streamlines
are tangent to the velocity vector at every point in the flow field, there can be no flow
across a streamline. Streamlines are the most commonly used visualization technique.
For example, they are used to study flow over an automobile in a computer simula-
tion. The procedure used to obtain the equation for a streamline in two-dimensional
flow is illustrated in Example 2.1.

In steady flow, the velocity at each point in the flow field remains constant with
time and, consequently, the streamline shapes do not vary from one instant to the
next. This implies that a particle located on a given streamline will always move along
the same streamline. Furthermore, consecutive particles passing through a fixed point
in space will be on the same streamline and, subsequently, will remain on this
streamline. Thus in a steady flow, pathlines, streaklines, and streamlines are identical
lines in the flow field.

Figure 2.4 shows a photograph of five streaklines for flowover an automobile in awind
tunnel. A streakline is the line produced in a flow when all particles moving through a
fixed point are marked in some way (e.g., using smoke). We can also define streamlines.
These are lines drawn in the flow field so that at a given instant they are tangent to the
direction of flow at every point in the flow field. Since the streamlines are tangent to
the velocity vector at every point in the flow field, there is no flow across a streamline.
Pathlines are as the name implies: They show, over time, the paths individual particles
take (if you’ve seen time-lapse photos of nighttime traffic, you get the idea). Finally,
timelines are created by marking a line in a flow and watching how it evolves over time.

We mentioned that Fig. 2.4 shows streaklines, but in fact the pattern shown also
represents streamlines and pathlines! The steady pattern shown will exist as long as
smoke is released from the five fixed points. If we were somehow to measure the
velocity at all points at an instant, to generate streamlines, we’d get the same pattern;
if we were instead to release only one smoke particle at each location, and video its
motion over time, we’d see the particles follow the same curves. We conclude that for
steady flow, streaklines, streamlines, and pathlines are identical.

Fig. 2.4 Streaklines over an automobile in a wind tunnel. (Courtesy Audi AG.)

VIDEO

Streamlines.
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Things are quite different for unsteady flow. For unsteady flow, streaklines,
streamlines, and pathlines will in general have differing shapes. For example, consider
holding a garden hose and swinging it side to side as water exits at high speed, as
shown in Fig. 2.5. We obtain a continuous sheet of water. If we consider individual
water particles, we see that each particle, once ejected, follows a straight-line path
(here, for simplicity, we ignore gravity): The pathlines are straight lines, as shown. On
the other hand, if we start injecting dye into the water as it exits the hose, we will
generate a streakline, and this takes the shape of an expanding sine wave, as shown.

Clearly, pathlines and streaklines do not coincide for this unsteady flow (we leave
determination of streamlines to an exercise).

We can use the velocity field to derive the shapes of streaklines, pathlines, and
streamlines. Starting with streamlines: Because the streamlines are parallel to the
velocity vector, we can write (for 2D)

dy

dx

�
streamline

5
vðx; yÞ
uðx; yÞ ð2:8Þ

Note that streamlines are obtained at an instant in time; if the flow is unsteady, time t
is held constant in Eq. 2.8. Solution of this equation gives the equation y 5 yðxÞ, with
an undetermined integration constant, the value of which determines the particular
streamline.

For pathlines (again considering 2D), we let x 5 xpðtÞ and y 5 ypðtÞ, where xp(t)
and yp(t) are the instantaneous coordinates of a specific particle. We then get

dx

dt

�
particle

5 uðx; y; tÞ dy

dt

�
particle

5 vðx; y; tÞ ð2:9Þ

The simultaneous solution of these equations gives the path of a particle in parametric
form xp(t), yp(t).

The computation of streaklines is somewhat tricky. The first step is to compute the
pathline of a particle (using Eqs. 2.9) that was released from the streak source point
(coordinates x0, y0) at time t0, in the form

xparticleðtÞ 5 xðt; x0; y0; t0Þ yparticleðtÞ 5 yðt; x0; y0; t0Þ
Then, instead of interpreting this as the position of a particle over time, we rewrite
these equations as

xstreaklineðt0Þ 5 xðt; x0; y0; t0Þ ystreaklineðt0Þ 5 yðt; x0; y0; t0Þ ð2:10Þ
Equations 2.10 give the line generated (by time t) from a streak source at point
(x0, y0). In these equations, t0 (the release times of particles) is varied from 0 to t to
show the instantaneous positions of all particles released up to time t!

Pathlines of
individual

fluid particles

Streakline at
some instant

Streakline at a
later instant

Fig. 2.5 Pathlines and
streaklines for flow from the
exit of an oscillating garden
hose.

Example 2.1 STREAMLINES AND PATHLINES IN TWO-DIMENSIONAL FLOW

A velocity field is given by ~V 5 Axî2Ayĵ; the units of velocity are m/s; x and y are given in meters; A5 0.3 s21.
(a) Obtain an equation for the streamlines in the xy plane.
(b) Plot the streamline passing through the point (x0, y0)5 (2, 8).
(c) Determine the velocity of a particle at the point (2, 8).
(d) If the particle passing through the point (x0, y0) is marked at time t5 0, determine the location of the particle

at time t5 6 s.
(e) What is the velocity of this particle at time t5 6 s?
(f) Show that the equation of the particle path (the pathline) is the same as the equation of the streamline.
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Given: Velocity field, ~V 5 Axî2Ayĵ; x and y in meters; A5 0.3 s21.

Find: (a) Equation of the streamlines in the xy plane.
(b) Streamline plot through point (2, 8).
(c) Velocity of particle at point (2, 8).
(d) Position at t5 6 s of particle located at (2, 8) at t5 0.
(e) Velocity of particle at position found in (d).
(f) Equation of pathline of particle located at (2, 8) at t5 0.

Solution:
(a) Streamlinesare linesdrawn in theflowfield such that,atagiven instant,

they are tangent to the direction of flow at every point. Consequently,

dy

dx

�
streamline

5
v
u

5
2Ay

Ax
5

2y

x

Separating variables and integrating, we obtainZ
dy

y
52

Z
dx

x

or

ln y 52lnx1 c1

This can be written as xy5 c ß

(b) For the streamline passing through the point (x0, y0)5 (2, 8) the constant, c, has a value of 16 and the equation
of the streamline through the point (2, 8) is

xy 5 x0y0 5 16m2
ß

The plot is as sketched above.
(c) The velocity field is ~V 5 Axî2Ayĵ. At the point (2, 8) the velocity is

~V 5 Aðxî2 yĵ Þ 5 0:3s21ð2î2 8ĵÞm 5 0:6î2 2:4ĵm=s ß

(d) A particle moving in the flow field will have velocity given by

~V 5 Axî2Ayĵ

Thus

up 5
dx

dt
5 Ax and vp 5

dy

dt
52Ay

Separating variables and integrating (in each equation) givesZ x

x0

dx

x
5

Z t

0

Adt and

Z y

y0

dy

y
5

Z t

0

2Adt

Then

ln
x

x0
5 At and ln

y

y0
52At

or

x 5 x0e
At and y 5 y0e

2At

At t5 6 s,

x 5 2m eð0:3Þ6 5 12:1m and y 5 8m e2ð0:3Þ6 5 1:32m

At t5 6 s, particle is at (12.1, 1.32) m ß

16

12

8

4

0
0 4 8 12 16

xy = 16 m2

x (m)

y 
(m

)

2,8 = 0.6i – 2.4 j m/s^^
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2.3Stress Field
In our study of fluid mechanics, we will need to understand what kinds of forces act on
fluid particles. Each fluid particle can experience: surface forces (pressure, friction)
that are generated by contact with other particles or a solid surface; and body forces
(such as gravity and electromagnetic) that are experienced throughout the particle.

The gravitational body force acting on an element of volume, dV---, is given by ρ~gdV---,
where ρ is the density (mass per unit volume) and ~g is the local gravitational accel-
eration. Thus the gravitational body force per unit volume is ρ~g and the gravitational
body force per unit mass is ~g.

Surface forces on a fluid particle lead to stresses. The concept of stress is useful for
describing how forces acting on the boundaries of a medium (fluid or solid) are
transmitted throughout the medium. You have probably seen stresses discussed in
solid mechanics. For example, when you stand on a diving board, stresses are gener-
ated within the board. On the other hand, when a body moves through a fluid, stresses
are developed within the fluid. The difference between a fluid and a solid is, as we’ve
seen, that stresses in a fluid are mostly generated by motion rather than by deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and
consider the contact force being generated between the particles. Consider a portion,
δ~A, of the surface at some point C. The orientation of δ~A is given by the unit vector, n̂,
shown in Fig. 2.6. The vector n̂ is the outwardly drawn unit normal with respect to the
particle.

The force, δ~F , acting on δ~A may be resolved into two components, one normal to
and the other tangent to the area. A normal stress σn and a shear stress τn are then
defined as

σn 5 lim
δAn-0

δFn
δAn

ð2:11Þ

and

τn 5 lim
δAn-0

δFt
δAn

ð2:12Þ

Subscript n on the stress is included as a reminder that the stresses are associated with
the surface δ~A through C, having an outward normal in the n̂ direction. The fluid is

(e) At the point (12.1, 1.32) m,

~V 5 Aðxî2 yĵ Þ 5 0:3 s21ð12:1î2 1:32ĵ Þm
5 3:63î2 0:396ĵm=s ß

(f) To determine the equation of the pathline, we use the parametric
equations

x 5 x0e
At and y 5 y0e

2At

and eliminate t. Solving for eAt from both equations

eAt 5
y0
y

5
x

x0

Therefore xy5 x0y05 16 m2
ß

Notes:
ü This problem illustrates the
method for computing streamlines
and pathlines.ü Because this is a steady flow, the
streamlines and pathlines have the
same shape—in an unsteady flow
this would not be true.ü When we follow a particle (the
Lagrangian approach), its position
(x, y) and velocity (up5 dx/dt and
vp5 dy/dt) are functions of time,
even though the flow is steady.
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actually a continuum, so we could have imagined breaking it up any number of dif-
ferent ways into fluid particles around point C, and therefore obtained any number of
different stresses at point C.

In dealing with vector quantities such as force, we usually consider components in
an orthogonal coordinate system. In rectangular coordinates we might consider the
stresses acting on planes whose outwardly drawn normals (again with respect to
the material acted upon) are in the x, y, or z directions. In Fig. 2.7 we consider the stress
on the element δAx, whose outwardly drawn normal is in the x direction. The force, δ~F ,
has been resolved into components along each of the coordinate directions. Dividing
the magnitude of each force component by the area, δAx, and taking the limit as δAx

approaches zero, we define the three stress components shown in Fig. 2.7b:

σxx 5 lim
δAx-0

δFx
δAx

τxy 5 lim
δAx-0

δFy
δAx

τxz 5 lim
δAx-0

δFz
δAx

ð2:13Þ

Wehave used a double subscript notation to label the stresses. The first subscript (in this
case, x) indicates the plane on which the stress acts (in this case, a surface perpendicular
to the x axis). The second subscript indicates the direction in which the stress acts.

Consideration of area element δAy would lead to the definitions of the stresses, σyy,
τyx, and τyz; use of area element δAzwould similarly lead to the definitions ofσzz, τzx, τzy.

Although we just looked at three orthogonal planes, an infinite number of planes can
be passed through point C, resulting in an infinite number of stresses associated with
planes through that point. Fortunately, the state of stress at a point can be described
completely by specifying the stresses acting on any three mutually perpendicular planes
through the point. The stress at a point is specified by the nine components

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

2
4

3
5

where σ has been used to denote a normal stress, and τ to denote a shear stress. The
notation for designating stress is shown in Fig. 2.8.

δF
δA

δFn

δFt

δA

C
C

n̂

δF

Fig. 2.6 The concept of stress in a continuum.

C

x

z

y

C

x

z

y

δFz

δFx

δFy

(a) Force components (b) Stress components

τxz

σxx

τxy

Fig. 2.7 Force and stress components on the element of area δAx.
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Referring to the infinitesimal element shown in Fig. 2.8, we see that there are six
planes (two x planes, two y planes, and two z planes) on which stresses may act. In
order to designate the plane of interest, we could use terms like front and back, top
and bottom, or left and right. However, it is more logical to name the planes in terms
of the coordinate axes. The planes are named and denoted as positive or negative
according to the direction of the outwardly drawn normal to the plane. Thus the top
plane, for example, is a positive y plane and the back plane is a negative z plane.

It also is necessary to adopt a sign convention for stress. A stress component is
positive when the direction of the stress component and the plane on which it acts are
both positive or both negative. Thus τyx 5 5 lbf=in:2 represents a shear stress on a
positive y plane in the positive x direction or a shear stress on a negative y plane in the
negative x direction. In Fig. 2.8 all stresses have been drawn as positive stresses. Stress
components are negative when the direction of the stress component and the plane on
which it acts are of opposite sign.

2.4Viscosity
Where do stresses come from? For a solid, stresses develop when the material is
elastically deformed or strained; for a fluid, shear stresses arise due to viscous flow (we
will discuss a fluid’s normal stresses shortly). Hence we say solids are elastic, and fluids
are viscous (and it’s interesting to note that many biological tissues are viscoelastic,
meaning they combine features of a solid and a fluid). For a fluid at rest, there will be
no shear stresses. We will see that each fluid can be categorized by examining the
relation between the applied shear stresses and the flow (specifically the rate of
deformation) of the fluid.

Consider the behavior of a fluid element between the two infinite plates shown in
Fig. 2.9a. The rectangular fluid element is initially at rest at time t. Let us now suppose
a constant rightward force δFx is applied to the upper plate so that it is dragged across
the fluid at constant velocity δu. The relative shearing action of the infinite plates
produces a shear stress, τyx, which acts on the fluid element and is given by

σyy

τyx

τyz

τzy

τzx

σzz

τxy

σxx
τxz

σyy

τyx

τyz

x

z

y

τzy

τzx

σzz

τxy

σxx

τxz

Fig. 2.8 Notation for stress.
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τyx 5 lim
δAy-0

δFx
δAy

5
dFx
dAy

where δAy is the area of contact of the fluid element with the plate and δFx is the force
exerted by the plate on that element. Snapshots of the fluid element, shown in Figs.
2.9a�c, illustrate the deformation of the fluid element from position MNOP at time t,
to MuNOPu at time t1 δt, to MvNOPv at time t1 2δt, due to the imposed shear stress.
As mentioned in Section 1.2, it is the fact that a fluid continually deforms in response
to an applied shear stress that sets it apart from solids.

Focusing on the time interval δt (Fig. 2.9b), the deformation of the fluid is given by

deformation rate 5 lim
δt-0

δα
δt

5
dα
dt

We want to express dα/dt in terms of readily measurable quantities. This can be
done easily. The distance, δl, between the points M and Mu is given by

δl 5 δu δt

Alternatively, for small angles,

δl 5 δy δα
Equating these two expressions for δl gives

δα
δt

5
δu
δy

Taking the limits of both sides of the equality, we obtain

dα
dt

5
du

dy

Thus, the fluid element of Fig. 2.9, when subjected to shear stress τyx, experiences a
rate of deformation (shear rate) given by du/dy. We have established that any fluid
that experiences a shear stress will flow (it will have a shear rate). What is the relation
between shear stress and shear rate? Fluids in which shear stress is directly propor-
tional to rate of deformation are Newtonian fluids. The term non-Newtonian is used to
classify all fluids in which shear stress is not directly proportional to shear rate.

Newtonian Fluid

Most common fluids (the ones discussed in this text) such as water, air, and gasoline
are Newtonian under normal conditions. If the fluid of Fig. 2.9 is Newtonian, then

τyx ~
du

dy
ð2:14Þ

We are familiar with the fact that some fluids resist motion more than others.
For example, a container of SAE 30W oil is much harder to stir than one of water.
Hence SAE 30W oil is much more viscous—it has a higher viscosity. (Note that a con-
tainer of mercury is also harder to stir, but for a different reason!) The constant of

(a) (b) (c)

δ x

δα
δ y

x

y

N O N O N O

δ l

δF
δu

δF
δu

M M M'P P P'

δ l2

M M' M'' P P' P''

Fig. 2.9 (a) Fluid element at time t, (b) deformation of fluid element at time t1 δt, and
(c) deformation of fluid element at time t1 2δt.
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proportionality in Eq. 2.14 is the absolute (or dynamic) viscosity, μ. Thus in terms of the
coordinates of Fig. 2.9, Newton’s law of viscosity is given for one-dimensional flow by

τyx 5 μ
du

dy
ð2:15Þ

Note that, since the dimensions of τ are [F/L2] and thedimensions ofdu/dy are [1/t],μhas
dimensions [Ft/L2]. Since the dimensions of force, F, mass,M, length,L, and time, t, are
related by Newton’s second law of motion, the dimensions of μ can also be expressed
as [M/Lt]. In the British Gravitational system, the units of viscosity are lbf � s/ft2 or slug/
(ft � s). In theAbsoluteMetric system, the basic unit of viscosity is called a poise [1 poise�
1 g/(cm � s)]; in the SI system the units of viscosity are kg/(m � s) or Pa � s (1Pa � s5
1N � s/m2). The calculation of viscous shear stress is illustrated in Example 2.2.

In fluid mechanics the ratio of absolute viscosity, μ, to density, ρ, often arises. This
ratio is given the name kinematic viscosity and is represented by the symbol ν. Since
density has dimensions [M/L3], the dimensions of ν are [L2/t]. In the Absolute Metric
system of units, the unit for ν is a stoke (1 stoke � 1 cm2/s).

Viscosity data for a number of common Newtonian fluids are given in Appendix A.
Note that for gases, viscosity increases with temperature, whereas for liquids, viscosity
decreases with increasing temperature.

Example 2.2 VISCOSITY AND SHEAR STRESS IN NEWTONIAN FLUID

An infinite plate is moved over a second plate on a layer of liquid as shown. For small gap width, d, we assume a
linear velocity distribution in the liquid. The liquid viscosity is 0.65 centipoise and its specific gravity is 0.88.
Determine:

(a) The absolute viscosity of the liquid, in lbf � s/ft2.
(b) The kinematic viscosity of the liquid, in m2/s.
(c) The shear stress on the upper plate, in lbf/ft2.
(d) The shear stress on the lower plate, in Pa.
(e) The direction of each shear stress calculated in parts (c) and (d).

Given: Linear velocity profile in the liquid between infinite parallel
plates as shown.

μ 5 0:65 cp
SG 5 0:88

Find: (a) μ in units of lbf � s/ft2.
(b) ν in units of m2/s.
(c) τ on upper plate in units of lbf/ft2.
(d) τ on lower plate in units of Pa.
(e) Direction of stresses in parts (c) and (d).

Solution:

Governing equation: τyx 5 μ
du

dy
Definition: ν 5

μ
ρ

Assumptions: (1) Linear velocity distribution (given)
(2) Steady flow
(3) μ5 constant

(a) μ 5 0:65 cp3
poise

100 cp
3

g

cm � s �poise 3
lbm

454 g
3

slug

32:2 lbm
3 30:5

cm

ft
3

lbf � s2
slug � ft

μ 5 1:363 1025 lbf � s=ft2 ß
μ

x

y

U = 0.3 m/s

d = 0.3 mm

x

y

U = 0.3 m/s

d = 0.3 mm
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Non-Newtonian Fluids

Fluids in which shear stress is not directly proportional to deformation rate are non-
Newtonian. Although we will not discuss these much in this text, many common fluids
exhibit non-Newtonian behavior. Two familiar examples are toothpaste and Lucite5

paint. The latter is very “thick” when in the can, but becomes “thin” when sheared by
brushing. Toothpaste behaves as a “fluid” when squeezed from the tube. However, it
does not run out by itself when the cap is removed. There is a threshold or yield stress
below which toothpaste behaves as a solid. Strictly speaking, our definition of a fluid is
valid only for materials that have zero yield stress. Non-Newtonian fluids commonly
are classified as having time-independent or time-dependent behavior. Examples of
time-independent behavior are shown in the rheological diagram of Fig. 2.10.

Numerous empirical equations have been proposed [3, 4] to model the observed
relations between τyx and du/dy for time-independent fluids. They may be adequately

(b) ν 5
μ
ρ

5
μ

SG ρH2O

5 1:363 1025 lbf � s
ft2

3
ft3

ð0:88Þ1:94 slug
3

slug � ft
lbf � s2 3 ð0:305Þ2 m

2

ft2

ν 5 7:413 1027m2=s ß
ν

(c) τupper 5 τyx; upper 5 μ
du

dy

�
y5d

Since u varies linearly with y,

du

dy
5

Δu

Δy
5

U2 0

d2 0
5

U

d

5 0:3
m

s
3

1

0:3 mm
3 1000

mm

m
5 1000 s21

τupper 5 μ
U

d
5 1:363 1025 lbf � s

ft2
3

1000

s
5 0:0136 lbf=ft2 ß

τupper

(d) τlower 5 μ
U

d
5 0:0136

lbf

ft2
3 4:45

N

lbf
3

ft2

ð0:305Þ2m2
3

Pa �m2

N
5 0:651 Pa ß

τlower

(e) Directions of shear stresses on upper and lower plates.

The upper plate is a negative y surface; so
positive τyx acts in the negative x direction:

� �

The lower plate is a positive y surface; so
positive τyx acts in the positive x direction:

� �

ß

ðeÞx

y

τupper

τlower

Part (c) shows that the shear stress
is:

ü Constant across the gap for a lin-
ear velocity profile.ü Directly proportional to the speed
of the upper plate (because of the
linearity of Newtonian fluids).

ü Inversely proportional to the gap
between the plates.Note that multiplying the shear stress

by the plate area in such problems
computes the force required to
maintain the motion.

5Trademark, E. I. du Pont de Nemours & Company.
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represented for many engineering applications by the power law model, which for
one-dimensional flow becomes

τyx 5 k
du

dy

	 �n

ð2:16Þ

where the exponent, n, is called the flow behavior index and the coefficient, k, the con-
sistency index. This equation reduces to Newton’s law of viscosity for n5 1 with k5μ.

To ensure that τyx has the same sign as du/dy, Eq. 2.16 is rewritten in the form

τyx 5 k
du

dy











n21

du

dy
5 η

du

dy
ð2:17Þ

The term η 5 kjdu=dyjn21 is referred to as the apparent viscosity. The idea behind Eq.
2.17 is that we end up with a viscosity η that is used in a formula that is the same form
as Eq. 2.15, in which the Newtonian viscosity μ is used. The big difference is that while
μ is constant (except for temperature effects), η depends on the shear rate. Most non-
Newtonian fluids have apparent viscosities that are relatively high compared with the
viscosity of water.

Fluids in which the apparent viscosity decreases with increasing deformation rate
(n, 1) are called pseudoplastic (or shear thinning) fluids. Most non-Newtonian fluids
fall into this group; examples include polymer solutions, colloidal suspensions, and
paper pulp in water. If the apparent viscosity increases with increasing deformation rate
(n. 1) the fluid is termed dilatant (or shear thickening). Suspensions of starch and of
sand are examples of dilatant fluids. You can get an idea of the latter when you’re on
the beach—if you walk slowly (and hence generate a low shear rate) on very wet sand,
you sink into it, but if you jog on it (generating a high shear rate), it’s very firm.

A “fluid” that behaves as a solid until a minimum yield stress, τy, is exceeded and
subsequently exhibits a linear relation between stress and rate of deformation is
referred to as an ideal or Bingham plastic. The corresponding shear stress model is

τyx 5 τy 1μp
du

dy
ð2:18Þ

Clay suspensions, drilling muds, and toothpaste are examples of substances exhibiting
this behavior.

The study of non-Newtonian fluids is further complicated by the fact that the
apparent viscosity may be time-dependent. Thixotropic fluids show a decrease in η
with time under a constant applied shear stress; many paints are thixotropic. Rheo-
pectic fluids show an increase in η with time. After deformation some fluids partially
return to their original shape when the applied stress is released; such fluids are called
viscoelastic (many biological fluids work this way).

Bingham
plastic

Pseudoplastic

Pseudoplastic

Dilatant Dilatant

Newtonian Newtonian

Deformation rate, du___
dy

Deformation rate, du___
dy
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Fig. 2.10 (a) Shear stress, τ, and (b) apparent viscosity, η, as a function of deformation rate for
one-dimensional flow of various non-Newtonian fluids.
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Rheological Behavior of Fluids.
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2.5 Surface Tension
You can tell when your car needs waxing: Water droplets tend to appear somewhat
flattened out. After waxing, you get a nice “beading” effect. These two cases are
shown in Fig. 2.11. We define a liquid as “wetting” a surface when the contact angle
θ, 90�. By this definition, the car’s surface was wetted before waxing, and not wetted
after. This is an example of effects due to surface tension. Whenever a liquid is in
contact with other liquids or gases, or in this case a gas/solid surface, an inter-
face develops that acts like a stretched elastic membrane, creating surface tension.
There are two features to this membrane: the contact angle, θ, and the magnitude
of the surface tension, σ (N/m or lbf/ft). Both of these depend on the type of liquid
and the type of solid surface (or other liquid or gas) with which it shares an interface.
In the car-waxing example, the contact angle changed from being smaller than 90�, to
larger than 90�, because, in effect, the waxing changed the nature of the solid surface.
Factors that affect the contact angle include the cleanliness of the surface and the
purity of the liquid.

Other examples of surface tension effects arise when you are able to place a needle
on a water surface and, similarly, when small water insects are able to walk on the
surface of the water.

Appendix A contains data for surface tension and contact angle for common liquids
in the presence of air and of water.

A force balance on a segment of interface shows that there is a pressure jump across the
imagined elastic membrane whenever the interface is curved. For a water droplet in air,
pressure in the water is higher than ambient; the same is true for a gas bubble in liquid. For
a soap bubble in air, surface tension acts on both inside and outside interfaces between the
soap film and air along the curved bubble surface. Surface tension also leads to the
phenomena of capillary (i.e., very small wavelength) waves on a liquid surface [5], and
capillary rise or depression, discussed below in Example 2.3.

In engineering, probably the most important effect of surface tension is the creation of
a curved meniscus that appears in manometers or barometers, leading to a (usually
unwanted) capillary rise (or depression), as shown in Fig. 2.12. This rise may be pro-
nounced if the liquid is in a small-diameter tube or narrow gap, as shown in Example 2.3.

(a) A “wetted” surface

θ < 90°

(b) A nonwetted surface

Water
droplet

θ > 90°

Fig. 2.11 Surface tension effects on water droplets.

Tube Tube

h

h

θ

θ

θ(a) Capillary rise (   < 90°) (b) Capillary depression (   > 90°)θ

Δ

Δ

Fig. 2.12 Capillary rise and capillary depression inside and
outside a circular tube.
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Molecular Interactions at the Interface.
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Shrinking Soap Film.
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Soap Film Burst.

VIDEO

Wetted and Non-wetted Surfaces.
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Example 2.3 ANALYSIS OF CAPILLARY EFFECT IN A TUBE

Create a graph showing the capillary rise or fall of a column of water or mercury, respectively, as a function of tube
diameterD. Find the minimum diameter of each column required so that the height magnitude will be less than 1 mm.

Given: Tube dipped in liquid as in Fig. 2.12.

Find: A general expression for Δh as a function of D.

Solution:
Apply free-body diagram analysis, and sum vertical forces.

Governing equation: X
Fz 5 0

Assumptions: (1) Measure to middle of meniscus
(2) Neglect volume in meniscus region

Summing forces in the z direction: X
Fz 5 σπD cos θ2 ρgΔV--- 5 0 ð1Þ

If we neglect the volume in the meniscus region:

ΔV--- � πD2

4
Δh

Substituting in Eq. (1) and solving for Δh gives

Δh 5
4σ cos θ
ρgD

ß
Δh

For water, σ5 72.8 mN/m and θ � 0�, and for mercury, σ5 484 mN/m and θ5 140� (Table A.4). Plotting,

Using the above equation to compute Dmin for Δh5 1 mm, we find for
mercury and water

DMmin
5 11:2 mm and DWmin

5 30 mm
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Notes:
ü This problem reviewed use of the
free-body diagram approach.

ü It turns out that neglecting the
volume in the meniscus region is
only valid when Δh is large com-
pared with D. However, in this
problem we have the result that
Δh is about 1 mm when D is 11.2
mm (or 30 mm); hence the results
can only be very approximate.The graph and results weregenerated from the Excel

workbook.
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Folsom [6] shows that the simple analysis of Example 2.3 overpredicts the capillary
effect and gives reasonable results only for tube diameters less than 0.1 in. (2.54 mm).
Over a diameter range 0.1,D, 1.1 in., experimental data for the capillary rise with a
water-air interface are correlated by the empirical expression Δh5 0.400/e4.37D.

Manometer and barometer readings should be made at the level of the middle of
the meniscus. This is away from the maximum effects of surface tension and thus
nearest to the proper liquid level.

All surface tension data in Appendix A were measured for pure liquids in contact
with clean vertical surfaces. Impurities in the liquid, dirt on the surface, or surface
inclination can cause an indistinct meniscus; under such conditions it may be difficult
to determine liquid level accurately. Liquid level is most distinct in a vertical tube.
When inclined tubes are used to increase manometer sensitivity (see Section 3.3) it is
important to make each reading at the same point on the meniscus and to avoid use of
tubes inclined less than about 15� from horizontal.

Surfactant compounds reduce surface tension significantly (more than 40% with
little change in other properties [7]) when added to water. They have wide commercial
application: Most detergents contain surfactants to help water penetrate and lift soil
from surfaces. Surfactants also have major industrial applications in catalysis, aero-
sols, and oil field recovery.

2.6 Description and Classification of Fluid Motions
In Chapter 1 and in this chapter, we have almost completed our brief introduction to
some concepts and ideas that are often needed when studying fluid mechanics. Before
beginning detailed analysis of fluidmechanics in the rest of this text, wewill describe some
interesting examples to illustrate a broad classification of fluid mechanics on the basis of
important flow characteristics. Fluid mechanics is a huge discipline: It covers everything
from the aerodynamics of a supersonic transport vehicle to the lubrication of human joints
by sinovial fluid. We need to break fluid mechanics down into manageable proportions. It
turns out that the two most difficult aspects of a fluid mechanics analysis to deal with are:
(1) the fluid’s viscous nature and (2) its compressibility. In fact, the area of fluidmechanics
theory that first became highly developed (about 250 years ago!) was that dealing with a
frictionless, incompressible fluid. As we will see shortly (and in more detail later on), this
theory, while extremely elegant, led to the famous result called d’Alembert’s paradox:All
bodies experience no drag as they move through such a fluid—a result not exactly con-
sistent with any real behavior!

Although not the only way to do so, most engineers subdivide fluid mechanics in
terms of whether or not viscous effects and compressibility effects are present, as
shown in Fig. 2.13. Also shown are classifications in terms of whether a flow is laminar
or turbulent, and internal or external. We will now discuss each of these.

Viscous and Inviscid Flows

When you send a ball flying through the air (as in a game of baseball, soccer, or any
number of other sports), in addition to gravity the ball experiences the aerodynamic
drag of the air. The question arises: What is the nature of the drag force of the air on
the ball? At first glance, we might conclude that it’s due to friction of the air as it flows
over the ball; a little more reflection might lead to the conclusion that because air has
such a low viscosity, friction might not contribute much to the drag, and the drag
might be due to the pressure build-up in front of the ball as it pushes the air out of the
way. The question arises: Can we predict ahead of time the relative importance of
the viscous force, and force due to the pressure build-up in front of the ball? Can we
make similar predictions for any object, for example, an automobile, a submarine, a
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red blood cell, moving through any fluid, for example, air, water, blood plasma? The
answer (which we’ll discuss in much more detail in Chapter 7) is that we can! It turns
out that we can estimate whether or not viscous forces, as opposed to pressure forces,
are negligible by simply computing the Reynolds number

Re 5 ρ
VL

μ

where ρ and μ are the fluid density and viscosity, respectively, and V and L are the
typical or “characteristic” velocity and size scale of the flow (in this example the ball
velocity and diameter), respectively. If the Reynolds number is “large,” viscous effects
will be negligible (but will still have important consequences, as we’ll soon see), at
least in most of the flow; if the Reynolds number is small, viscous effects will be
dominant. Finally, if the Reynolds number is neither large nor small, no general
conclusions can be drawn.

To illustrate this very powerful idea, consider two simple examples. First, the drag
on your ball: Suppose you kick a soccer ball (diameter5 8.75 in.) so it moves at
60 mph. The Reynolds number (using air properties from Table A.10) for this case is
about 400,000—by any measure a large number; hence the drag on the soccer ball
is almost entirely due to the pressure build-up in front of it. For our second example,
consider a dust particle (modeled as a sphere of diameter 1 mm) falling under gravity
at a terminal velocity of 1 cm/s: In this case Re � 0.7—a quite small number; hence the
drag is mostly due to the friction of the air. Of course, in both of these examples, if we
wish to determine the drag force, we would have to do substantially more analysis.

These examples illustrate an important point: A flow is considered to be friction
dominated (or not) based not just on the fluid’s viscosity, but on the complete flow
system. In these examples, the airflow was low friction for the soccer ball, but was high
friction for the dust particle.

Let’s return for a moment to the idealized notion of frictionless flow, called
inviscid flow. This is the branch shown on the left in Fig. 2.13. This branch encom-
passes most aerodynamics, and among other things explains, for example, why sub-
and supersonic aircraft have differing shapes, how a wing generates lift, and so forth.
If this theory is applied to the ball flying through the air (a flow that is also incom-
pressible), it predicts streamlines (in coordinates attached to the sphere) as shown in
Fig. 2.14a.

Continuum
fluid mechanics

Laminar Turbulent

ExternalInternalIncompressibleCompressible

Inviscid
   = 0μ

Viscous

Fig. 2.13 Possible classification of continuum fluid mechanics.
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The streamlines are symmetric front-to-back. Because the mass flow between any
two streamlines is constant, wherever streamlines open up, the velocity must decrease,
and vice versa. Hence we can see that the velocity in the vicinity of points A and C
must be relatively low; at point B it will be high. In fact, the air comes to rest at points
A and C: They are stagnation points. It turns out that (as we’ll learn in Chapter 6) the
pressure in this flow is high wherever the velocity is low, and vice versa. Hence, points A
and C have relatively large (and equal) pressures; point B will be a point of low pressure.
In fact, the pressure distribution on the sphere is symmetric front-to-back, and there is
no net drag force due to pressure. Because we’re assuming inviscid flow, there can be
no drag due to friction either. Hence we have d’Alembert’s paradox of 1752: The ball
experiences no drag!

This is obviously unrealistic. On the other hand, everything seems logically con-
sistent: We established that Re for the sphere was very large (400,000), indicating
friction is negligible. We then used inviscid flow theory to obtain our no-drag result.
How can we reconcile this theory with reality? It took about 150 years after the
paradox first appeared for the answer, obtained by Prandtl in 1904: The no-slip con-
dition (Section 1.2) requires that the velocity everywhere on the surface of the sphere
be zero (in sphere coordinates), but inviscid theory states that it’s high at point B.
Prandtl suggested that even though friction is negligible in general for high-
Reynolds number flows, there will always be a thin boundary layer, in which friction is
significant and across the width of which the velocity increases rapidly from zero (at the
surface) to the value inviscid flow theory predicts (on the outer edge of the boundary
layer). This is shown in Fig. 2.14b from point A to point B, and in more detail in Fig.
2.15.

This boundary layer immediately allows us to reconcile theory and experiment:
Once we have friction in a boundary layer we will have drag. However, this boundary
layer has another important consequence: It often leads to bodies having a wake, as
shown in Fig. 2.14b from point D onwards. Point D is a separation point, where fluid
particles are pushed off the object and cause a wake to develop. Consider once again
the original inviscid flow (Fig. 2.14a): As a particle moves along the surface from point
B to C, it moves from low to high pressure. This adverse pressure gradient (a pressure
change opposing fluid motion) causes the particles to slow down as they move along
the rear of the sphere. If we now add to this the fact that the particles are moving in a
boundary layer with friction that also slows down the fluid, the particles will even-
tually be brought to rest and then pushed off the sphere by the following particles,
forming the wake. This is generally very bad news: It turns out that the wake will
always be relatively low pressure, but the front of the sphere will still have relatively
high pressure. Hence, the sphere will now have a quite large pressure drag (or form
drag—so called because it’s due to the shape of the object).

This description reconciles the inviscid flow no-drag result with the experimental
result of significant drag on a sphere. It’s interesting to note that although the
boundary layer is necessary to explain the drag on the sphere, the drag is actually due
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Fig. 2.14 Qualitative picture of incompressible flow over a sphere.
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mostly to the asymmetric pressure distribution created by the boundary layer
separation—drag directly due to friction is still negligible!

We can also now begin to see how streamlining of a body works. The drag force in
most aerodynamics is due to the low-pressure wake: If we can reduce or eliminate the
wake, drag will be greatly reduced. If we consider once again why the separation
occurred, we recall two features: Boundary layer friction slowed down the particles,
but so did the adverse pressure gradient. The pressure increased very rapidly across
the back half of the sphere in Fig. 2.14a because the streamlines opened up so rapidly.
If we make the sphere teardrop shaped, as in Fig. 2.16, the streamlines open up
gradually, and hence the pressure will increase slowly, to such an extent that fluid
particles are not forced to separate from the object until they almost reach the end of
the object, as shown. The wake is much smaller (and it turns out the pressure will not
be as low as before), leading to much less pressure drag. The only negative aspect of
this streamlining is that the total surface area on which friction occurs is larger, so drag
due to friction will increase a little.

We should point out that none of this discussion applies to the example of a falling
dust particle: This low-Reynolds number flow was viscous throughout—there is no
inviscid region.

Finally, this discussion illustrates the very significant difference between inviscid
flow (μ5 0) and flows in which viscosity is negligible but not zero (μ - 0).

Laminar and Turbulent Flows

If you turn on a faucet (that doesn’t have an aerator or other attachment) at a very
low flow rate the water will flow out very smoothly—almost “glass-like.” If you increase
the flow rate, the water will exit in a churned-up, chaoticmanner. These are examples of
how a viscous flow can be laminar or turbulent, respectively. A laminar flow is one in
which the fluid particles move in smooth layers, or laminas; a turbulent flow is one
in which the fluid particles rapidly mix as they move along due to random three-
dimensional velocity fluctuations. Typical examples of pathlines of each of these are
illustrated in Fig. 2.17, which shows a one-dimensional flow. In most fluid mechanics
problems—for example, flow of water in a pipe—turbulence is an unwanted but
often unavoidable phenomenon, because it generates more resistance to flow; in other
problems—for example, the flowof blood through blood vessels—it is desirable because
the randommixing allows all of the blood cells to contact thewalls of the blood vessels to
exchange oxygen and other nutrients.

The velocity of the laminar flow is simply u; the velocity of the turbulent flow is
given by the mean velocity ū plus the three components of randomly fluctuating
velocity uu, vu, and wu.

Although many turbulent flows of interest are steady in the mean (ū is not a
function of time), the presence of the random, high-frequency velocity fluctuations
makes the analysis of turbulent flows extremely difficult. In a one-dimensional laminar
flow, the shear stress is related to the velocity gradient by the simple relation

τyx 5 μ
du

dy
ð2:15Þ
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Fig. 2.17 Particle pathlines in one-dimensional laminar and turbulent flows.
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For a turbulent flow in which the mean velocity field is one-dimensional, no such
simple relation is valid. Random, three-dimensional velocity fluctuations (uu, vu, and
wu) transport momentum across the mean flow streamlines, increasing the effective
shear stress. (This apparent stress is discussed in more detail in Chapter 8.) Conse-
quently, in turbulent flow there is no universal relationship between the stress field
and the mean-velocity field. Thus in turbulent flows we must rely heavily on semi-
empirical theories and on experimental data.

Compressible and Incompressible Flows

Flows in which variations in density are negligible are termed incompressible; when
density variations within a flow are not negligible, the flow is called compressible. The
most common example of compressible flow concerns the flow of gases, while the flow
of liquids may frequently be treated as incompressible.

For many liquids, density is only a weak function of temperature. At modest
pressures, liquids may be considered incompressible. However, at high pressures,
compressibility effects in liquids can be important. Pressure and density changes in
liquids are related by the bulk compressibility modulus, or modulus of elasticity,

Ev � dp

ðdρ=ρÞ ð2:19Þ

If the bulk modulus is independent of temperature, then density is only a function of
pressure (the fluid is barotropic). Bulk modulus data for some common liquids are
given in Appendix A.

Water hammer and cavitation are examples of the importance of compressibility
effects in liquid flows. Water hammer is caused by acoustic waves propagating and
reflecting in a confined liquid, for example, when a valve is closed abruptly. The
resulting noise can be similar to “hammering” on the pipes, hence the term.

Cavitation occurs when vapor pockets form in a liquid flow because of local
reductions in pressure (for example at the tip of a boat’s propeller blades). Depending
on the number and distribution of particles in the liquid to which very small pockets of
undissolved gas or air may attach, the local pressure at the onset of cavitation may be
at or below the vapor pressure of the liquid. These particles act as nucleation sites to
initiate vaporization.

Vapor pressure of a liquid is the partial pressure of the vapor in contact with the
saturated liquid at a given temperature. When pressure in a liquid is reduced to less
than the vapor pressure, the liquid may change phase suddenly and “flash” to vapor.

The vapor pockets in a liquid flow may alter the geometry of the flow field sub-
stantially. When adjacent to a surface, the growth and collapse of vapor bubbles can
cause serious damage by eroding the surface material.

Very pure liquids can sustain large negative pressures—as much as 260 atmo-
spheres for distilled water—before the liquid “ruptures” and vaporization occurs.
Undissolved air is invariably present near the free surface of water or seawater, so
cavitation occurs where the local total pressure is quite close to the vapor pressure.

It turns out that gas flows with negligible heat transfer also may be considered
incompressible provided that the flow speeds are small relative to the speed of sound;
the ratio of the flow speed, V, to the local speed of sound, c, in the gas is defined as the
Mach number,

M � V

c

For M, 0.3, the maximum density variation is less than 5 percent. Thus gas flows with
M, 0.3 can be treated as incompressible; a value of M5 0.3 in air at standard condi-
tions corresponds to a speed of approximately 100 m/s. For example, although it might
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be a little counterintuitive, when you drive your car at 65 mph the air flowing around
it has negligible change in density. As we shall see in Chapter 12, the speed of sound in an
ideal gas is given by c 5

ffiffiffiffiffiffiffiffiffiffi
kRT

p
, where k is the ratio of specific heats,R is the gas constant,

and T is the absolute temperature. For air at STP, k5 1.40 and R5 286.9 J/kg �K
(53.33 ft � lbf/lbm � �R). Values of k and R are supplied in Appendix A for several
selected common gases at STP. In addition, Appendix A contains some useful data on
atmospheric properties, such as temperature, at various elevations.
Compressible flows occur frequently in engineering applications. Common examples
include compressed air systems used to power shop tools and dental drills, trans-
mission of gases in pipelines at high pressure, and pneumatic or fluidic control and
sensing systems. Compressibility effects are very important in the design of modern
high-speed aircraft and missiles, power plants, fans, and compressors.

Internal and External Flows

Flows completely bounded by solid surfaces are called internal or duct flows. Flows
over bodies immersed in an unbounded fluid are termed external flows. Both internal
and external flows may be laminar or turbulent, compressible or incompressible.

We mentioned an example of internal flow when we discussed the flow out of a
faucet—the flow in the pipe leading to the faucet is an internal flow. It turns out that
we have a Reynolds number for pipe flows defined as Re 5 ρVD=μ, where V is the
average flow velocity and D is the pipe diameter (note that we do not use the pipe
length!). This Reynolds number indicates whether a pipe flow will be laminar or
turbulent. Flow will generally be laminar for Re # 2300 and turbulent for larger
values: Flow in a pipe of constant diameter will be entirely laminar or entirely tur-
bulent, depending on the value of the velocity V. We will explore internal flows in
detail in Chapter 8.

We already saw some examples of external flows when we discussed the flow over a
sphere (Fig. 2.14b) and a streamlined object (Fig. 2.16). What we didn’t mention was
that these flows could be laminar or turbulent. In addition, we mentioned boundary
layers (Fig. 2.15): It turns out these also can be laminar or turbulent. When we discuss
these in detail (Chapter 9), we’ll start with the simplest kind of boundary layer—that
over a flat plate—and learn that just as we have a Reynolds number for the overall
external flow that indicates the relative significance of viscous forces, there will also be
a boundary-layer Reynolds number Rex 5 ρUNx=μ where in this case the char-
acteristic velocity UN is the velocity immediately outside the boundary layer and the
characteristic length x is the distance along the plate. Hence, at the leading edge of
the plate Rex 5 0, and at the end of a plate of length L, it will be Rex5 ρUNL/μ. The
significance of this Reynolds number is that (as we’ll learn) the boundary layer will be
laminar for Rex # 5 3 105 and turbulent for larger values: A boundary layer will start
out laminar, and if the plate is long enough the boundary layer will transition to
become turbulent.

It is clear by now that computing a Reynolds number is often very informative for
both internal and external flows. We will discuss this and other important dimen-
sionless groups (such as the Mach number) in Chapter 7.

The internal flow through fluid machines is considered in Chapter 10. The principle
of angular momentum is applied to develop fundamental equations for fluid machines.
Pumps, fans, blowers, compressors, and propellers that add energy to fluid streams are
considered, as are turbines and windmills that extract energy. The chapter features
detailed discussion of operation of fluid systems.

The internal flow of liquids in which the duct does not flow full—where there is a
free surface subject to a constant pressure—is termed open-channel flow. Common
examples of open-channel flow include flow in rivers, irrigation ditches, and aque-
ducts. Open-channel flow will be treated in Chapter 11.

VIDEO

Compressible Flow: Shock Waves.

2.6 Description and Classification of Fluid Motions 43



Both internal and external flows can be compressible or incompressible. Com-
pressible flows can be divided into subsonic and supersonic regimes. We will study
compressible flows in Chapters 12 and 13 and see among other things that supersonic
flows (M. 1) will behave very differently than subsonic flows (M, 1). For example,
supersonic flows can experience oblique and normal shocks, and can also behave in a
counterintuitive way—e.g., a supersonic nozzle (a device to accelerate a flow) must
be divergent (i.e., it has increasing cross-sectional area) in the direction of flow! We
note here also that in a subsonic nozzle (which has a convergent cross-sectional
area), the pressure of the flow at the exit plane will always be the ambient pressure;
for a sonic flow, the exit pressure can be higher than ambient; and for a supersonic
flow the exit pressure can be greater than, equal to, or less than the ambient
pressure!

2.7 Summary and Useful Equations
In this chapter we have completed our review of some of the fundamental concepts we will utilize in our study of fluid mechanics.

Some of these are:

ü How to describe flows (timelines, pathlines, streamlines, streaklines).
ü Forces (surface, body) and stresses (shear, normal).
ü Types of fluids (Newtonian, non-Newtonian—dilatant, pseudoplastic, thixotropic, rheopectic, Bingham plastic) and viscosity

(kinematic, dynamic, apparent).
ü Types of flow (viscous/inviscid, laminar/turbulent, compressible/incompressible, internal/external).

We also briefly discussed some interesting phenomena, such as surface tension, boundary layers, wakes, and streamlining. Finally,

we introduced two very useful dimensionless groups—the Reynolds number and the Mach number.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Definition of specific gravity: SG 5
ρ

ρH2O

(2.3) Page 23

Definition of specific weight: γ 5
mg

V---
-γ 5 ρg (2.4) Page 23

Definition of streamlines (2D): dy

dx

�
streamline

5
vðx; yÞ
uðx; yÞ

(2.8) Page 27

Definition of pathlines (2D): dx

dt

�
particle

5 uðx; y; tÞ dy

dt

�
particle

5 vðx; y; tÞ (2.9) Page 27

Definition of streaklines (2D): xstreaklineðt0Þ 5 xðt; x0; y0; t0Þ ystreaklineðt0Þ 5 yðt; x0; y0; t0Þ (2.10) Page 27

Newton’s law of viscosity (1D
flow): τyx 5 μ

du

dy

(2.15) Page 33

Shear stress for a non-Newtonian
fluid (1D flow): τyx 5 k




 du
dy




n21 du
dy

5 η
du

dy

(2.17) Page 35
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Case Study

Fluid Mechanics and Your MP3 Player

The MP3 player of one of the authors.

Some people have the impression that fluid mechanics
is old- or low-tech: water flow in a household pipe, the
fluid forces acting on a dam, and so on. While it’s true
that many concepts in fluid mechanics are hundreds of
years old, there are still lots of exciting new areas of
research and development. Everyone has heard of the
relatively high-tech area of fluid mechanics called
streamlining (of cars, aircraft, racing bikes, and racing
swimsuits, to mention a few), but there are many
others.

If you’re a typical engineering student, there’s a
decent chance that while reading this chapter you’re
listening to music on your MP3 player; you can thank
fluid mechanics for your ability to do this! The tiny
hard disk drive (HDD) in many of these devices typi-
cally holds about 250 gigabytes (GB) of data, so the
disk platter must have a huge density (greater than
100,000 tracks per inch); in addition, the read/write

head must get very close to the platter as it transfers
data (typically the head is about 0.05 μm above
the platter surface—a human hair is about 100 μm).
The platter also spins at something greater than 500
revolutions per second! Hence the bearings in which
the spindle of the platter spins must have very low
friction but also have virtually no play or looseness—
otherwise, at worst, the head will crash into the
platter or, at best, you won’t be able to read the data
(it will be too closely packed). Designing such a
bearing presents quite a challenge. Until a few years
ago, most hard drives used ball bearings (BBs), which
are essentially just like those in the wheel of a
bicycle; they work on the principle that a spindle can
rotate if it is held by a ring of small spheres that are
supported in a cage. The problems with BBs are that
they have a lot of components; they are very difficult
to build to the precision needed for the HDD; they are
vulnerable to shock (if you drop an HDD with such a
drive, you’re likely to dent one of the spheres as it
hits the spindle, destroying the bearing); and they are
relatively noisy.
Hard-drive makers are increasingly moving to fluid

dynamic bearings (FDBs). These are mechanically
much simpler than BBs; they consist basically of the
spindle directly mounted in the bearing opening, with
only a specially formulated viscous lubricant (such as
ester oil) in the gap of only a few microns. The spindle
and/or bearing surfaces have a herringbone pattern of
grooves to maintain the oil in place. These bearings are
extremely durable (they can often survive a shock of
500 g!) and low noise; they will also allow rotation
speeds in excess of 15,000 rpm in the future, making
data access even faster than with current devices. FDBs
have been used before, in devices such as gyroscopes,
but making them at such a small scale is new. Some
FDBs even use pressurized air as the lubrication fluid,
but one of the problems with these is that they
sometimes stop working when you take them on an
airplane flight—the cabin pressure is insufficient to
maintain the pressure the bearing needs!
In recent times the price and capacity of flash

memory have improved so much that many MP3
players are switching to this technology from HDDs.
Eventually, notebook and desktop PCs will also switch
to flash memory, but at least for the next few years
HDDs will be the primary storage medium. Your PC will
still have vital fluid-mechanical components!
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Problems
Velocity Field

2.1 For the velocity fields given below, determine:
a. whether the flow field is one-, two-, or three-dimensional,

and why.
b. whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)
(1) ~V ¼ ½ðaxþ tÞeby� î (2) ~V ¼ ðax2 byÞ î
(3) ~V ¼ ax îþ ½ebx� ĵ (4) ~V ¼ ax îþ bx2 ĵþ axk̂
(5) ~V ¼ ax îþ ½ebt� ĵ (6) ~V ¼ ax îþ bx2 ĵþ ayk̂
(7) ~V ¼ ax îþ ½ebt� ĵþ ayk̂ (8) ~V ¼ ax îþ ½eby� ĵþ azk̂

2.2 For the velocity fields given below, determine:
a. whether the flow field is one-, two-, or three-dimensional,

and why.
b. whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)
(1) ~V 5 [ay2e2bt]î (2) ~V 5 ax2 î1 bxĵ1 ck̂
(3) ~V 5 axyî2 bytĵ (4) ~V 5 axî2 byĵ1 ctk̂
(5) ~V 5 [ae2bx]î1bt2 ĵ (6) ~V 5 aðx2 1 y2Þ1=2ð1=z3Þk̂
(7) ~V 5 ðax1 tÞî2by2 ĵ (8) ~V 5 ax2 î1 bxzĵ1 cyk̂

2.3 A viscous liquid is sheared between two parallel disks; the
upper disk rotates and the lower one is fixed. The velocity
field between the disks is given by ~V 5 êθrωz=h. (The origin
of coordinates is located at the center of the lower disk; the
upper disk is located at z5h.) What are the dimensions of
this velocity field? Does this velocity field satisfy appropriate
physical boundary conditions? What are they?

2.4 For the velocity field ~V ¼ Ax2yîþ Bxy2 ĵ, where
A5 2 m22s21 and B5 1 m22s21, and the coordinates are
measured in meters, obtain an equation for the flow
streamlines. Plot several streamlines in the first quadrant.

2.5 The velocity field ~V ¼ Axî2Ayĵ, where A5 2 s21, can be
interpreted to represent flow in a corner. Find an equation
for the flow streamlines. Explain the relevance of A. Plot
several streamlines in the first quadrant, including the one
that passes through the point (x, y)5 (0, 0).

2.6 A velocity field is specified as ~V 5 axyî1 by2 ĵ, where
a5 2 m21s21, b526 m21s21, and the coordinates are mea-
sured in meters. Is the flow field one-, two-, or three-
dimensional? Why? Calculate the velocity components at the
point (2, 1/2). Develop an equation for the streamline passing
through this point. Plot several streamlines in the first quad-
rant including the one that passes through the point (2, 1/2).

2.7 A velocity field is given by ~V 5 axî2 btyĵ, where a5 1 s21

and b5 1 s22. Find the equation of the streamlines at any
time t. Plot several streamlines in the first quadrant at t5 0 s,
t5 1 s, and t5 20 s.

2.8 A velocity field is given by ~V 5 ax3 î1bxy3 ĵ, where
a5 1 m22s21 and b5 1 m23s21. Find the equation of the
streamlines. Plot several streamlines in the first quadrant.

2.9 A flow is described by the velocity field ~V 5 ðAx1BÞî1
ð2AyÞĵ, where A5 10 ft/s/ft and B5 20 ft/s. Plot a few
streamlines in the xy plane, including the one that passes
through the point (x, y)5 (1, 2).

2.10 The velocity for a steady, incompressible flow in the xy
plane is given by ~V 5 îA=x1 ĵAy=x2, where A5 2 m2/s, and
the coordinates are measured in meters. Obtain an equation
for the streamline that passes through the point (x, y)5
(1, 3). Calculate the time required for a fluid particle to move
from x5 1 m to x5 2 m in this flow field.

2.11 The flow field for an atmospheric flow is given by

~V ¼ 2
My

2π
îþMx

2π
ĵ

whereM5 1 s21, and the x and y coordinates are the parallel
to the local latitude and longitude. Plot the velocity
magnitude along the x axis, along the y axis, and along the
line y 5 x, and discuss the velocity direction with respect to
these three axes. For each plot use a range x or y 5 0 km
to 1 km. Find the equation for the streamlines and sketch
several of them. What does this flow field model?

2.12 The flow field for an atmospheric flow is given by

~V ¼ 2
Ky

2πðx2 þ y2Þ îþ
Kx

2πðx2 þ y2Þ ĵ

whereK5 105m2/s, and the x and y coordinates are parallel to
the local latitude and longitude. Plot the velocity magnitude
along the x axis, along the y axis, and along the line y5 x, and
discuss the velocity direction with respect to these three axes.
For each plot use a range x or y52 1 km to 1 km, excluding |x|
or |y|, 100 m. Find the equation for the streamlines and
sketch several of them. What does this flow field model?

2.13 A flow field is given by

~V ¼ 2
qx

2πðx2 þ y2Þ î2
qy

2πðx2 þ y2Þ ĵ
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where q5 5 3 104 m2/s. Plot the velocity magnitude along
the x axis, along the y axis, and along the line y5 x, and
discuss the velocity direction with respect to these three axes.
For each plot use a range x or y =2 1 km to 1 km, excluding
jxj or jyj, 100 m. Find the equation for the streamlines and
sketch several of them. What does this flow field model?

2.14 Beginning with the velocity field of Problem 2.5, show
that the parametric equations for particle motion are given
by xp ¼ c1e

At and yp ¼ c2e
2At. Obtain the equation for the

pathline of the particle located at the point (x, y)5 (2, 2) at
the instant t5 0. Compare this pathline with the streamline
through the same point.

2.15 Aflow field is given by ~V ¼ Axîþ 2Ayĵ, whereA5 2 s21.
Verify that the parametric equations for particle motion are
given by xp5 c1e

At and yp5 c2e
2At. Obtain the equation for the

pathline of theparticle located at the point (x, y) 5 (2, 2) at the
instant t5 0. Compare this pathline with the streamline
through the same point.

2.16 Avelocity field is givenby ~V 5 aytî2bxĵ, where a5 1 s22

andb5 4 s21. Find the equation of the streamlines at any time t.
Plot several streamlines at t5 0 s, t5 1 s, and t5 20 s.

2.17 Verify that xp52asin(ωt), yp5 acos(ωt) is the equation
for the pathlines of particles for the flow field of Problem
2.12. Find the frequency of motion ω as a function of the
amplitude of motion, a, and K. Verify that xp52asin(ωt),
yp5 acos(ωt) is also the equation for the pathlines of parti-
cles for the flow field of Problem 2.11, except that ω is now a
function of M. Plot typical pathlines for both flow fields and
discuss the difference.

2.18 Air flows downward toward an infinitely wide horizontal
flat plate. The velocity field is given by ~V 5 ðaxî2 ayĵÞð21
cosωtÞ, where a5 5 s21, ω5 2π s21, x and y (measured in
meters) are horizontal and vertically upward, respectively, and t
is in s. Obtain an algebraic equation for a streamline at t5 0.
Plot the streamline that passes through point (x, y)5 (3, 3) at
this instant. Will the streamline change with time? Explain
briefly. Show the velocity vector on your plot at the same point
and time. Is the velocity vector tangent to the streamline?
Explain.

2.19 Consider the flow described by the velocity field
~V ¼ Að1þ BtÞîþ Ctyĵ, with A5 1 m/s, B5 1 s21, and C5 1
s22. Coordinates are measured in meters. Plot the pathline
traced out by the particle that passes through the point (1, 1) at
time t5 0. Compare with the streamlines plotted through the
same point at the instants t5 0, 1, and 2 s.

2.20 Consider the flow described by the velocity field
~V 5 Bxð11AtÞî1Cyĵ, with A5 0.5 s21 and B5C5 1 s21.
Coordinates are measured in meters. Plot the pathline traced
out by the particle that passes through the point (1, 1) at time
t5 0. Compare with the streamlines plotted through the
same point at the instants t5 0, 1, and 2 s.

2.21 Consider the flow field given in Eulerian description by
the expression ~V ¼ Aî2Btĵ, where A5 2 m/s, B5 2 m/s2,
and the coordinates are measured in meters. Derive the
Lagrangian position functions for the fluid particle that was
located at the point (x, y)5 (1, 1) at the instant t5 0. Obtain
an algebraic expression for the pathline followed by this

particle. Plot the pathline and compare with the stream-
lines plotted through the same point at the instants t5 0, 1,
and 2 s.

2.22 Consider the velocity field V 5 axî1byð11 ctÞĵ, where
a5 b5 2 s21 and c5 0.4 s21. Coordinates are measured in
meters. For the particle that passes through the point
(x, y)5 (1, 1) at the instant t5 0, plot the pathline during the
interval from t5 0 to 1.5 s. Compare this pathline with
the streamlines plotted through the same point at the
instants t5 0, 1, and 1.5 s.

2.23 Consider the flow field given in Eulerian des-
criptionby the expression ~V ¼ axîþ bytĵ, where a5 0.2 s21,
b5 0.04 s22, and the coordinates are measured in meters.
Derive the Lagrangian position functions for the fluid par-
ticle that was located at the point (x, y)5 (1, 1) at
the instant t5 0. Obtain an algebraic expression for the
pathline followed by this particle. Plot the pathline and
compare with the streamlines plotted through the same
point at the instants t5 0, 10, and 20 s.

2.24 A velocity field is given by ~V 5 axtî2 byĵ, where
a5 0.1 s22 and b5 1 s21. For the particle that passes through
the point (x, y)5 (1, 1) at instant t5 0 s, plot the pathline
during the interval from t5 0 to t5 3 s. Compare with the
streamlines plotted through the same point at the instants
t5 0, 1, and 2 s.

2.25 Consider the flow field ~V 5 axtî1bĵ, where a5 0.1 s22

and b5 4 m/s. Coordinates are measured in meters. For the
particle that passes through the point (x, y)5 (3, 1) at the
instant t5 0, plot the pathline during the interval from t5 0
to 3 s. Compare this pathline with the streamlines plotted
through the same point at the instants t5 1, 2, and 3 s.

2.26 Consider the garden hose of Fig. 2.5. Suppose the
velocity field is given by ~V 5 u0 î1 v0sin[ωðt2 x=u0Þ]ĵ, where
the x direction is horizontal and the origin is at the mean
position of the hose, u05 10 m/s, v05 2 m/s, and ω5 5 cycle/s.
Find and plot on one graph the instantaneous streamlines
that pass through the origin at t5 0 s, 0.05 s, 0.1 s, and 0.15 s.
Also find and plot on one graph the pathlines of particles that
left the origin at the same four times.

2.27 Using the data of Problem 2.26, find and plot the
streakline shape produced after the first second of flow.

2.28 Consider the velocity field of Problem 2.20. Plot the
streakline formed by particles that passed through the point
(1, 1) during the interval from t5 0 to t5 3 s. Compare with
the streamlines plotted through the same point at the
instants t5 0, 1, and 2 s.

2.29 Streaklines are traced out by neutrally buoyant marker
fluid injected into a flow field from a fixed point in space. A
particle of the marker fluid that is at point (x, y) at time t
must have passed through the injection point (x0, y0) at some
earlier instant t5 τ. The time history of a marker particle
may be found by solving the pathline equations for the initial
conditions that x5 x0, y5 y0 when t5 τ. The present loca-
tions of particles on the streakline are obtained by setting τ
equal to values in the range 0# τ # t. Consider the flow field
~V 5 axð11 btÞî1 cyĵ, where a5 c5 1 s21 and b5 0.2 s21.
Coordinates are measured in meters. Plot the streakline that
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passes through the initial point (x0, y0)5 (1, 1), during the
interval from t5 0 to t5 3 s. Compare with the streamline
plotted through the same point at the instants t5 0, 1, and
2 s.

2.30 Consider the flow field ~V ¼ axtîþ bĵ, where a5 1/4 s22

and b5 1/3 m/s. Coordinates are measured in meters. For the
particle that passes through the point (x, y)5 (1, 2) at
the instant t5 0, plot the pathline during the time interval
from t5 0 to 3 s. Compare this pathline with the streakline
through the same point at the instant t5 3 s.

2.31 A flow is described by velocity field ~V 5 ay2 î1 bĵ,
where a5 1 m21s21 and b5 2 m/s. Coordinates are mea-
sured in meters. Obtain the equation for the streamline
passing through point (6, 6). At t5 1 s, what are the coor-
dinates of the particle that passed through point (1, 4) at
t5 0? At t5 3 s, what are the coordinates of the particle that
passed through point (23, 0) 2 s earlier? Show that pathlines,
streamlines, and streaklines for this flow coincide.

2.32 Tiny hydrogen bubbles are being used as tracers to
visualize a flow. All the bubbles are generated at the origin
(x5 0, y5 0). The velocity field is unsteady and obeys the
equations:

u 5 1 m=s v 5 2 m=s 0 # t , 2 s
u 5 0 v 521m=s 0# t # 4 s

Plot the pathlines of bubbles that leave the origin at t5 0, 1,
2, 3, and 4 s. Mark the locations of these five bubbles at t5 4
s. Use a dashed line to indicate the position of a streakline at
t5 4 s.

2.33 A flow is described by velocity field ~V ¼ axîþ bĵ, where
a5 1/5 s21 and b5 1 m/s. Coordinates are measured in
meters. Obtain the equation for the streamline passing
through point (1, 1). At t5 5 s, what are the coordinates of
the particle that initially (at t5 0) passed through point
(1, 1)? What are its coordinates at t5 10 s? Plot the
streamline and the initial, 5 s, and 10 s positions of the par-
ticle. What conclusions can you draw about the pathline,
streamline, and streakline for this flow?

2.34 A flow is described by velocity field ~V 5 aî1bxĵ, where
a5 2 m/s and b5 1 s21. Coordinates are measured in meters.
Obtain the equation for the streamline passing through point
(2, 5). At t5 2 s, what are the coordinates of the particle that
passed through point (0, 4) at t5 0? At t5 3 s, what are the
coordinates of the particle that passed through point (1, 4.25)
2 s earlier? What conclusions can you draw about the path-
line, streamline, and streakline for this flow?

2.35 A flow is described by velocity field ~V ¼ ayîþ btĵ,
where a5 0.2 s21 and b5 0.4 m/s2. At t5 2 s, what are the
coordinates of the particle that passed through point (1, 2) at
t5 0? At t5 3 s, what are the coordinates of the particle that
passed through point (1, 2) at t5 2 s? Plot the pathline and
streakline through point (1, 2), and plot the streamlines
through the same point at the instants t5 0, 1, 2, and 3 s.

2.36 A flow is described by velocity field ~V 5 atî1 bĵ,
where a5 0.4 m/s2 and b5 2 m/s. At t5 2 s, what are the
coordinates of the particle that passed through point (2, 1)
at t5 0? At t5 3 s, what are the coordinates of the particle
that passed through point (2, 1) at t5 2 s? Plot the pathline

and streakline through point (2, 1) and compare with the
streamlines through the same point at the instants t5 0, 1,
and 2 s.

Viscosity

2.37 The variation with temperature of the viscosity of air is
represented well by the empirical Sutherland correlation

μ ¼ bT1=2

1þ S=T

Best-fit values of b and S are given in Appendix A. Develop
an equation in SI units for kinematic viscosity versus tem-
perature for air at atmospheric pressure. Assume ideal gas
behavior. Check by using the equation to compute the
kinematic viscosity of air at 0�C and at 100�C and comparing
to the data in Appendix 10 (Table A.10); plot the kinematic
viscosity for a temperature range of 0�C to 100�C, using the
equation and the data in Table A.10.

2.38 The variation with temperature of the viscosity of air is
correlated well by the empirical Sutherland equation

μ 5
bT1=2

11 S=T

Best-fit values of b and S are given in Appendix A for use
with SI units. Use these values to develop an equation for
calculating air viscosity in British Gravitational units as a
function of absolute temperature in degrees Rankine. Check
your result using data from Appendix A.

2.39 Some experimental data for the viscosity of helium at
1 atm are

T, �C 0 100 200 300 400
μ, N � s/m2(3 105) 1.86 2.31 2.72 3.11 3.46

Using the approach described in Appendix A.3, correlate
these data to the empirical Sutherland equation

μ 5
bT1=2

11 S=T

(where T is in kelvin) and obtain values for constants b and S.

2.40 The velocity distribution for laminar flow between
parallel plates is given by

u

umax

5 12
2y

h

	 �2

where h is the distance separating the plates and the origin is
placed midway between the plates. Consider a flow of water
at 15�C, with umax5 0.10 m/s and h5 0.1 mm. Calculate the
shear stress on the upper plate and give its direction. Sketch
the variation of shear stress across the channel.

2.41 The velocity distribution for laminar flow between
parallel plates is given by

u

umax

5 12
2y

h

	 �2

where h is the distance separating the plates and the origin is
placed midway between the plates. Consider a flow of water
at 15�C with maximum speed of 0.05 m/s and h5 0.1 mm.
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Calculate the force on a 1 m2 section of the lower plate and
give its direction.

2.42 Explain how an ice skate interacts with the ice surface.
What mechanism acts to reduce sliding friction between
skate and ice?

2.43 Crude oil, with specific gravity SG5 0.85 and viscosity
μ5 2.15 3 1023 lbf � s/ft2, flows steadily down a surface
inclined θ5 45 degrees below the horizontal in a film of
thickness h5 0.1 in. The velocity profile is given by

u 5
ρg
μ

hy2
y2

2

	 �
sin θ

(Coordinate x is along the surface and y is normal to the
surface.) Plot the velocity profile. Determine the magnitude
and direction of the shear stress that acts on the surface.

2.44 A female freestyle ice skater, weighing 100 lbf, glides on
one skate at speed V5 20 ft/s. Her weight is supported by a
thin film of liquid water melted from the ice by the pressure
of the skate blade. Assume the blade is L5 11.5 in. long and
w5 0.125 in. wide, and that the water film is h5 0.0000575 in.
thick. Estimate the deceleration of the skater that results
from viscous shear in the water film, if end effects are
neglected.

2.45 A block weighing 10 lbf and having dimensions 10 in. on
each edge is pulled up an inclined surface on which there is a
film of SAE 10W oil at 100�F. If the speed of the block is 2 ft/s
and the oil film is 0.001 in. thick, find the force required to pull
the block. Assume the velocity distribution in the oil film is
linear. The surface is inclined at an angle of 25� from the
horizontal.

2.46 A block of mass 10 kg and measuring 250 mm on each
edge is pulled up an inclined surface on which there is a film
of SAE 10W-30 oil at 30�F (the oil film is 0.025 mm thick).
Find the steady speed of the block if it is released. If a force
of 75 N is applied to pull the block up the incline, find the
steady speed of the block. If the force is now applied to push
the block down the incline, find the steady speed of the
block. Assume the velocity distribution in the oil film is
linear. The surface is inclined at an angle of 30� from the
horizontal.

2.47 Tape is to be coated on both sides with glue by drawing
it through a narrow gap. The tape is 0.015 in. thick and 1.00
in. wide. It is centered in the gap with a clearance of 0.012 in.
on each side. The glue, of viscosity μ5 0.02 slug/(ft � s),
completely fills the space between the tape and gap. If the
tape can withstand a maximum tensile force of 25 lbf,
determine the maximum gap region through which it can be
pulled at a speed of 3 ft/s.

2.48 A73-mm-diameter aluminum (SG5 2.64) piston of 100-
mm length resides in a stationary 75-mm-inner-diameter steel
tube lined with SAE 10W-30 oil at 25�C. A mass m5 2 kg
is suspended from the free end of the piston. The piston is
set into motion by cutting a support cord. What is the
terminal velocity of mass m? Assume a linear velocity
profile within the oil.

2.49 The piston in Problem 2.48 is traveling at terminal
speed. The mass m now disconnects from the piston. Plot the

piston speed vs. time. How long does it take the piston to
come within 1 percent of its new terminal speed?

2.50 A block of mass M slides on a thin film of oil. The film
thickness is h and the area of the block is A. When released,
mass m exerts tension on the cord, causing the block to
accelerate. Neglect friction in the pulley and air resistance.
Develop an algebraic expression for the viscous force that acts
on the block when it moves at speed V. Derive a differential
equation for the block speed as a function of time. Obtain an
expression for the block speed as a function of time. The mass
M5 5 kg,m5 1 kg,A5 25 cm2, and h5 0.5 mm. If it takes 1 s
for the speed to reach 1 m/s, find the oil viscosity μ. Plot the
curve for V(t).

M

Block

h

mMass

Oil film
(viscosity,   )μ

V

g

Cord

P2.50

2.51 A block 0.1 m square, with 5 kg mass, slides down a
smooth incline, 30� below the horizontal, on a film of SAE 30
oil at 20�C that is 0.20 mm thick. If the block is released from
rest at t5 0, what is its initial acceleration? Derive an
expression for the speed of the block as a function of time.
Plot the curve for V(t). Find the speed after 0.1 s. If we want
the mass to instead reach a speed of 0.3 m/s at this time,
find the viscosity μ of the oil we would have to use.

2.52 A block that is a mm square slides across a flat plate on
a thin film of oil. The oil has viscosity μ and the film is h mm
thick. The block of mass M moves at steady speed U under
the influence of constant force F. Indicate the magnitude and
direction of the shear stresses on the bottom of the block
and the plate. If the force is removed suddenly and the block
begins to slow, sketch the resulting speed versus time curve
for the block. Obtain an expression for the time required for
the block to lose 95 percent of its initial speed.

2.53 Magnet wire is to be coated with varnish for insulation
by drawing it through a circular die of 1.0 mm diameter. The
wire diameter is 0.9 mm and it is centered in the die.

Cut to set
in motion

r

m V

x
Piston

Oil film

Tube

P2.48, P2.49
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The varnish (μ5 20 centipoise) completely fills the
space between the wire and the die for a length of 50 mm.
The wire is drawn through the die at a speed of 50 m/s.
Determine the force required to pull the wire.

2.54 In a food-processing plant, honey is pumped through an
annular tube. The tube is L5 2 m long, with inner and outer
radii of Ri5 5 mm and Ro5 25 mm, respectively. The
applied pressure difference is Δp5 125 kPa, and the honey
viscosity is μ5 5 N � s/m2. The theoretical velocity profile for
laminar flow through an annulus is:

uzðrÞ ¼ 1

4μ
Δp

L

	 �
R2

i 2 r2 2
R2

o 2R2
i

ln
Ri

Ro

	 � � ln r

Ri

	 �2
664

3
775

Show that the no-slip condition is satisfied by this expression.
Find the location at which the shear stress is zero. Find the
viscous forces acting on the inner and outer surfaces, and
compare these to the force ΔpπðR2

o 2R2
i Þ. Explain.

Honey

Honey

RoRi

z

P2.54

2.55 SAE 10W-30 oil at 100�C is pumped through a tube L5
10 m long, diameter D5 20 mm. The applied pressure differ-
ence is Δp5 5 kPa. On the centerline of the tube is a metal
filament of diameter d5 1 μm. The theoretical velocity profile
for laminar flow through the tube is:

VðrÞ ¼ 1

16μ
Δp

L

	 �
d2 2 4r2 2

D2 2d2

ln
d

D

	 � � ln 2r

d

	 �2
664

3
775

Show that the no-slip condition is satisfied by this expression.
Find the location at which the shear stress is zero, and the
stress on the tube and on the filament. Plot the velocity
distribution and the stress distribution. (For the stress curve,
set an upper limit on stress of 5 Pa.) Discuss the results.

2.56 Fluids of viscositiesμ15 0.1 N � s/m2 andμ25 0.15N � s/m2

are contained between two plates (each plate is 1 m2 in area).

The thicknesses are h15 0.5mm and h25 0.3mm, respectively.
Find the force F to make the upper plate move at a speed of
1m/s.What is the fluid velocity at the interface between the two
fluids?

2.57 Fluids of viscosities μ15 0.15 N � s/m2, μ25 0.5 N � s/m2,
and μ35 0.2 N � s/m2 are contained between two plates
(each plate is 1 m2 in area). The thicknesses are h15 0.5 mm,
h25 0.25 mm, and h35 0.2 mm, respectively. Find the steady
speed V of the upper plate and the velocities at the two inter-
faces due to a force F5 100 N. Plot the velocity distribution.

h1

h2

h3

F,V

µ1

µ2

µ3

P2.57

2.58 A concentric cylinder viscometer may be formed by
rotating the inner member of a pair of closely fitting cylin-
ders. The annular gap is small so that a linear velocity profile
will exist in the liquid sample. Consider a viscometer with an
inner cylinder of 4 in. diameter and 8 in. height, and a
clearance gap width of 0.001 in., filled with castor oil at 90�F.
Determine the torque required to turn the inner cylinder at
400 rpm.

Vm

Pulley
Cordr

a

ω

H R

M

P2.58, P2.59, P2.60, P2.61

2.59 A concentric cylinder viscometer may be formed by
rotating the inner member of a pair of closely fitting cylin-
ders. For small clearances, a linear velocity profile may
be assumed in the liquid filling the annular clearance gap.
A viscometer has an inner cylinder of 75 mm diameter and
150 mm height, with a clearance gap width of 0.02 mm.
A torque of 0.021 N �m is required to turn the inner cylinder
at 100 rpm. Determine the viscosity of the liquid in the
clearance gap of the viscometer.

2.60 A concentric cylinder viscometer is driven by a falling
mass M connected by a cord and pulley to the inner cylinder,
as shown. The liquid to be tested fills the annular gap of width
a and height H. After a brief starting transient, the mass falls
at constant speed Vm. Develop an algebraic expression for

F, V

h2µ2

µ1

h1

P2.56
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the viscosity of the liquid in the device in terms ofM, g, Vm, r,
R, a, and H. Evaluate the viscosity of the liquid using:

M 5 0:10 kg r 5 25 mm
R 5 50 mm a 5 0:20 mm
H 5 80 mm Vm 5 30 mm=s

2.61 TheviscometerofProblem2.60 is beingused toverify that
the viscosity of a particular fluid is μ5 0.1 N � s/m2. Unfortu-
nately the cord snaps during the experiment. How long will it
take the cylinder to lose 99% of its speed? The moment of
inertia of the cylinder/pulley system is 0.0273 kg �m2.

2.62 A shaft with outside diameter of 18 mm turns at
20 revolutions per second inside a stationary journal bearing
60 mm long. A thin film of oil 0.2 mm thick fills the con-
centric annulus between the shaft and journal. The torque
needed to turn the shaft is 0.0036 N �m. Estimate the vis-
cosity of the oil that fills the gap.

2.63 The thin outer cylinder (mass m2 and radius R) of a
small portable concentric cylinder viscometer is driven by
a falling mass, m1, attached to a cord. The inner cylinder is
stationary. The clearance between the cylinders is a. Neglect
bearing friction, air resistance, and the mass of liquid in the
viscometer. Obtain an algebraic expression for the torque due
to viscous shear that acts on the cylinder at angular speed ω.
Derive and solve a differential equation for the angular speed
of the outer cylinder as a function of time. Obtain an expres-
sion for the maximum angular speed of the cylinder.

ω

h

a

m1

P2.63

2.64 Ashock-free coupling for a low-powermechanical drive is
to be made from a pair of concentric cylinders. The annular
space between the cylinders is to be filled with oil. The drive
must transmit power, 35 10 W. Other dimensions and prop-
erties are as shown.Neglect anybearing friction andendeffects.
Assume theminimumpractical gap clearance δ for the device is
δ5 0.25 mm. Dow manufactures silicone fluids with viscosities
as high as 106 centipoise.Determine the viscosity that should be
specified to satisfy the requirement for this device.

L = 20 mm

ω2 ≥ 9,000 rpm
(outer cylinder)

δ = Gap clearance

R = 10 mm

ω1 = 10,000 rpm

� = 10 W

P2.64

2.65 A circular aluminum shaft mounted in a journal is
shown. The symmetric clearance gap between the shaft and
journal is filled with SAE 10W-30 oil at T5 30�C. The shaft
is caused to turn by the attached mass and cord. Develop and
solve a differential equation for the angular speed of the
shaft as a function of time. Calculate the maximum angular
speed of the shaft and the time required to reach 95 percent
of this speed.

1.5 L
L = 50 mm

M = 10 g
M

Clearance,
a = 0.5 mm

R = 25 mm
g

P2.65

2.66 A proposal has been made to use a pair of parallel disks
to measure the viscosity of a liquid sample. The upper disk
rotates at height h above the lower disk. The viscosity of the
liquid in the gap is to be calculated from measurements of
the torque needed to turn the upper disk steadily. Obtain an
algebraic expression for the torque needed to turn the disk.
Could we use this device to measure the viscosity of a non-
Newtonian fluid? Explain.

z
r

R

h

ω

P2.66

2.67 The cone and plate viscometer shown is an instrument
used frequently to characterize non-Newtonian fluids. It
consists of a flat plate and a rotating cone with a very obtuse
angle (typically θ is less than 0.5 degrees). The apex of the
cone just touches the plate surface and the liquid to be tested
fills the narrow gap formed by the cone and plate. Derive an
expression for the shear rate in the liquid that fills the gap in
terms of the geometry of the system. Evaluate the torque on
the driven cone in terms of the shear stress and geometry of
the system.

ω

θ

R

Sample

P2.67, P2.68
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2.68 The viscometer of Problem 2.67 is used to measure the
apparent viscosity of a fluid. The data below are obtained.
What kind of non-Newtonian fluid is this? Find the values of
k and n used in Eqs. 2.16 and 2.17 in defining the apparent
viscosity of a fluid. (Assume θ is 0.5 degrees.) Predict
the viscosity at 90 and 100 rpm.

Speed (rpm) 10 20 30 40 50 60 70 80

μ (N � s/m2) 0.121 0.139 0.153 0.159 0.172 0.172 0.183 0.185

2.69 An insulation company is examining a new material for
extruding into cavities. The experimental data is given below
for the speed U of the upper plate, which is separated from a
fixed lower plate by a 1-mm-thick sample of the material,
when a given shear stress is applied. Determine the type of
material. If a replacement material with a minimum yield
stress of 250 Pa is needed, what viscosity will the material
need to have the same behavior as the current material at a
shear stress of 450 Pa?

τ (Pa) 50 100 150 163 171 170 202 246 349 444

U (m/s) 0 0 0 0.005 0.01 0.025 0.05 0.1 0.2 0.3

2.70 A viscometer is used to measure the viscosity of a
patient’s blood. The deformation rate (shear rate)�shear
stress data is shown below. Plot the apparent viscosity versus
deformation rate. Find the value of k and n in Eq. 2.17, and
from this examine the aphorism “Blood is thicker than
water.”

du/dy (s21) 5 10 25 50 100 200 300 400

τ (Pa) 0.0457 0.119 0.241 0.375 0.634 1.06 1.46 1.78

2.71 A viscous clutch is to be made from a pair of closely
spaced parallel disks enclosing a thin layer of viscous liquid.
Develop algebraic expressions for the torque and the power
transmitted by the disk pair, in terms of liquid viscosity, μ,
disk radius, R, disk spacing, a, and the angular speeds: ωi of
the input disk and ωo of the output disk. Also develop
expressions for the slip ratio, s5Δω/ωi, in terms of ωi and
the torque transmitted. Determine the efficiency, η, in terms
of the slip ratio.

R

a

ωi ωo

ω

R a

b

H

P2.71 P2.72

2.72 A concentric-cylinder viscometer is shown. Viscous
torque is produced by the annular gap around the inner

cylinder. Additional viscous torque is produced by the flat
bottom of the inner cylinder as it rotates above the flat
bottom of the stationary outer cylinder. Obtain an algebraic
expression for the viscous torque due to flow in the annular
gap of width a. Obtain an algebraic expression for the viscous
torque due to flow in the bottom clearance gap of height b.
Prepare a plot showing the ratio, b/a, required to hold the
bottom torque to 1 percent or less of the annulus torque,
versus the other geometric variables. What are the design
implications? What modifications to the design can you
recommend?

2.73 A viscometer is built from a conical pointed shaft that
turns in a conical bearing, as shown. The gap between shaft
and bearing is filled with a sample of the test oil. Obtain an
algebraic expression for the viscosity μ of the oil as a func-
tion of viscometer geometry (H, a, and θ), turning speed ω,
and applied torque T. For the data given, find by referring to
Figure A.2 in Appendix A, the type of oil for which the
applied torque is 0.325 N �m. The oil is at 20�C. Hint: First
obtain an expression for the shear stress on the surface of the
conical shaft as a function of z.

a = 0.2 mm

ω

θ

= 75 rev/s

= 30°

r

z
H = 25 mm

P2.73

2.74 Design a concentric-cylinder viscometer to measure the
viscosity of a liquid similar to water. The goal is to achieve a
measurement accuracy of 61 percent. Specify the config-
uration and dimensions of the viscometer. Indicate what
measured parameter will be used to infer the viscosity of the
liquid sample.

2.75 A spherical thrust bearing is shown. The gap between
the spherical member and the housing is of constant width h.
Obtain and plot an algebraic expression for the nondimen-
sional torque on the spherical member, as a function of
angle α.

h

ω

θ

α
μOil film (viscosity,   )

R

P2.75
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2.76 A cross section of a rotating bearing is shown. The
spherical member rotates with angular speed ω, a small dis-
tance, a, above the plane surface. The narrow gap is filled
with viscous oil, having μ5 1250 cp. Obtain an algebraic
expression for the shear stress acting on the spherical
member. Evaluate the maximum shear stress that acts on the
spherical member for the conditions shown. (Is the max-
imum necessarily located at the maximum radius?) Develop
an algebraic expression (in the form of an integral) for the
total viscous shear torque that acts on the spherical member.
Calculate the torque using the dimensions shown.

θ

ω
R = 75 mm

= 70 rpm

a = 0.5 mm

Oil in gap

R0 = 20 mm

P 2.76

Surface Tension

2.77 Small gas bubbles form in soda when a bottle or can is
opened. The average bubble diameter is about 0.1 mm.
Estimate the pressure difference between the inside and
outside of such a bubble.

2.78 You intend to gently place several steel needles on the
free surface of the water in a large tank. The needles come in
two lengths: Some are 5 cm long, and some are 10 cm long.
Needles of each length are available with diameters of 1 mm,
2.5 mm, and 5 mm. Make a prediction as to which needles, if
any, will float.

2.79 According to Folsom [6], the capillary rise Δh (in.) of a
water-air interface in a tube is correlated by the following
empirical expression:

Δh ¼ Ae2 b�D

where D (in.) is the tube diameter, A5 0.400, and b5 4.37.
You do an experiment to measure Δh versus D and obtain:

D (in.) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Δh (in.) 0.232 0.183 0.09 0.059 0.052 0.033 0.017 0.01 0.006 0.004 0.003

What are the values of A and b that best fit this data using
Excel’s Trendline feature? Do they agree with Folsom’s
values? How good is the data?

2.80 Slowly fill a glass with water to the maximum possible
level. Observe the water level closely. Explain how it can be
higher than the rim of the glass.

2.81 Plan an experiment to measure the surface tension of a
liquid similar to water. If necessary, review the NCFMF
video Surface Tension for ideas. Which method would be

most suitable for use in an undergraduate laboratory? What
experimental precision could be expected?

Description and Classification of Fluid Motions

2.82 Water usually is assumed to be incompressible when
evaluating static pressure variations. Actually it is 100 times
more compressible than steel. Assuming the bulk modulus of
water is constant, compute the percentage change in density
for water raised to a gage pressure of 100 atm. Plot the per-
centage change in water density as a function of p/patm up to
a pressure of 50,000 psi, which is the approximate pressure
used for high-speed cutting jets of water to cut concrete and
other composite materials. Would constant density be a rea-
sonable assumption for engineering calculations for cutting
jets?

2.83 The viscous boundary layer velocity profile shown in
Fig. 2.15 can be approximated by a parabolic equation,

uðyÞ 5 a1b
y

δ

� �
1 c

y

δ

� �2

The boundary condition is u5U (the free stream velocity) at
the boundary edge δ (where the viscous friction becomes
zero). Find the values of a, b, and c.

2.84 The viscous boundary layer velocity profile shown in
Fig. 2.15 can be approximated by a cubic equation,

uðyÞ 5 a1b
y

δ

� �
1 c

y

δ

� �3

The boundary condition is u5U (the free stream velocity)
at the boundary edge δ (where the viscous friction becomes
zero). Find the values of a, b, and c.

2.85 At what minimum speed (in mph) would an automobile
have to travel for compressibility effects to be important?
Assume the local air temperature is 60�F.

2.86 In a food industry process, carbon tetrachloride at 20�C
flows through a tapered nozzle from an inlet diameter Din

5 50 mm to an outlet diameter of Dout. The area varies lin-
early with distance along the nozzle, and the exit area is one-
fifth of the inlet area; the nozzle length is 250 mm. The
flow rate is Q5 2 L/min. It is important for the process
that the flow exits the nozzle as a turbulent flow. Does it? If
so, at what point along the nozzle does the flow become
turbulent?

2.87 What is the Reynolds number of water at 20�C flowing
at 0.25 m/s through a 5-mm-diameter tube? If the pipe is now
heated, at what mean water temperature will the flow tran-
sition to turbulence? Assume the velocity of the flow remains
constant.

2.88 A supersonic aircraft travels at 2700 km/hr at an alti-
tude of 27 km. What is the Mach number of the aircraft? At
what approximate distance measured from the leading edge
of the aircraft’s wing does the boundary layer change from
laminar to turbulent?

2.89 SAE 30 oil at 100�C flows through a 12-mm-diameter
stainless-steel tube. What is the specific gravity and specific
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weight of the oil? If the oil discharged from the tube fills a
100-mL graduated cylinder in 9 seconds, is the flow laminar
or turbulent?

2.90 A seaplane is flying at 100 mph through air at 45�F. At
what distance from the leading edge of the underside of the
fuselage does the boundary layer transition to turbulence?
How does this boundary layer transition change as the
underside of the fuselage touches the water during landing?
Assume the water temperature is also 45�F.

2.91 An airliner is cruising at an altitude of 5.5 km with a
speed of 700 km/hr. As the airliner increases its altitude, it
adjusts its speed so that the Mach number remains constant.
Provide a sketch of speed vs. altitude. What is the speed of
the airliner at an altitude of 8 km?

2.92 How does an airplane wing develop lift?
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Fluid Statics
3.1 The Basic Equation of Fluid Statics

3.2 The Standard Atmosphere

3.3 Pressure Variation in a Static Fluid

3.4 Hydraulic Systems

3.5 Hydrostatic Force on Submerged Surfaces

3.6 Buoyancy and Stability

3.7 Fluids in Rigid-Body Motion (on the Web)

3.8 Summary and Useful Equations

Case Study in Energy and the Environment

Wave Power: Wavebob
Humans have been interested in tapping

the immense power of the ocean for cen-
turies, but with fossil fuels (oil and gas) becoming
depleted, the development of ocean energy technol-
ogy is becoming important. Wave power in particular
is attractive to a number of countries with access to a
suitable resource. Geographically and commercially
it’s believed the richest wave energy resources cur-
rently are off the Atlantic coast of Europe (in particular
near Ireland, the UK, and Portugal), the west coast of
North America (from San Francisco to British Colum-
bia), Hawaii, and New Zealand.

A family of devices called point absorbers is being
developed by a number of companies. These are
usually axisymmetric about a vertical axis, and by
definition they are small compared to the wavelength
of the waves that they are designed to exploit. The
devices usually operate in a vertical mode, often
referred to as heave; a surface-piercing float rises and
falls with the passing waves and reacts against either
the seabed or something attached to it. These devices
ultimately depend on a buoyancy force, one of the
topics of this chapter.
A company named Wavebob Ltd. has developed one

of the simplest of these devices. This innovative
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In Chapter 1, we defined a fluid as any substance that flows (continuously deforms)
when it experiences a shear stress; hence for a static fluid (or one undergoing “rigid-
body” motion) only normal stress is present—in other words, pressure. We will study
the topic of fluid statics (often called hydrostatics, even though it is not restricted to
water) in this chapter.

Although fluid statics problems are the simplest kind of fluid mechanics prob-
lems, this is not the only reason we will study them. The pressure generated within a
static fluid is an important phenomenon in many practical situations. Using the
principles of hydrostatics, we can compute forces on submerged objects, develop
instruments for measuring pressures, and deduce properties of the atmosphere and
oceans. The principles of hydrostatics also may be used to determine the forces
developed by hydraulic systems in applications such as industrial presses or auto-
mobile brakes.

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid
particle retains its identity for all time, and fluid elements do not deform. We may
apply Newton’s second law of motion to evaluate the forces acting on the particle.

3.1 The Basic Equation of Fluid Statics
The first objective of this chapter is to obtain an equation for computing the pressure
field in a static fluid. We will deduce what we already know from everyday experience,
that the pressure increases with depth. To do this, we apply Newton’s second law to
a differential fluid element of mass dm 5 ρ dV---, with sides dx, dy, and dz, as shown

eponymous device, as shown in the figure, is proving
to be successful for extracting wave energy. The figure
does not indicate the size of the device, but it is quite
large; the upper champer has a diameter of 20 m. It
looks like just another buoy floating on the surface,
but underneath it is constantly harvesting energy. The
lower component of the Wavebob is tethered to the
ocean floor and so remains in its vertical location,
while the section at the surface oscillates as the waves
move over it. Hence the distance between the two
components is constantly changing, with a significant
force between them; work can thus be done on an
electrical generator. The two components of the
machinery contain electronic systems that can be con-
trolled remotely or self-regulating, and these make the
internal mechanism automatically react to changing
ocean and wave conditions by retuning as needed, so
that at all times the maximum amount of energy is
harvested.
It has already been tested in the Atlantic Ocean off

the coast of Ireland and is designed to have a 25-year
life span and to be able to survive all but the very
worst storms. Each Wavebob is expected to produce
about 500 kW of power or more, sufficient electricity
for over a thousand homes; it is intended to be part of

a large array of such devices. It seems likely this
device will become ubiquitous because it is relatively
inexpensive, very low maintenance, and durable, and
it takes up only a small area.

Schematic of Wavebob (Picture courtesy of Gráinne Byrne, Wavebob
Ltd.)
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in Fig. 3.1. The fluid element is stationary relative to the stationary rectangular coordinate
system shown. (Fluids in rigid-body motion will be treated in Section 3.7 on the Web.)

From our previous discussion, recall that two general types of forces may
be applied to a fluid: body forces and surface forces. The only body force that must be
considered in most engineering problems is due to gravity. In some situations body
forces caused by electric or magnetic fields might be present; they will not be con-
sidered in this text.

For a differential fluid element, the body force is

d~FB 5 ~gdm 5 ~gρ dV---

where ~g is the local gravity vector, ρ is the density, and dV--- is the volume of the
element. In Cartesian coordinates dV--- 5 dx dy dz, so

d~FB 5 ρ~g dx dy dz

In a static fluid there are no shear stresses, so the only surface force is the pressure
force. Pressure is a scalar field, p5 p(x, y, z); in general we expect the pressure to
vary with position within the fluid. The net pressure force that results from this
variation can be found by summing the forces that act on the six faces of the fluid
element.

Let the pressure be p at the center, O, of the element. To determine the pressure at
each of the six faces of the element, we use a Taylor series expansion of the pressure
about point O. The pressure at the left face of the differential element is

pL 5 p1
@p

@y
ðyL 2 yÞ 5 p1

@p

@y
2

dy

2

� �
5 p2

@p

@y

dy

2

(Terms of higher order are omitted because they will vanish in the subsequent limiting
process.) The pressure on the right face of the differential element is

pR 5 p1
@p

@y
ðyR 2 yÞ 5 p1

@p

@y

dy

2

The pressure forces acting on the two y surfaces of the differential element are
shown in Fig. 3.1. Each pressure force is a product of three factors. The first is
the magnitude of the pressure. This magnitude is multiplied by the area of the face to
give the magnitude of the pressure force, and a unit vector is introduced to indicate
direction. Note also in Fig. 3.1 that the pressure force on each face acts against the
face. A positive pressure corresponds to a compressive normal stress.

Pressure forces on the other faces of the element are obtained in the same way.
Combining all such forces gives the net surface force acting on the element. Thus

O

Pressure, p

y

dx

dz

dy

z

x

^(dx dz) ( j )

Fig. 3.1 Differential fluid element and pressure forces in the y direction.

CLASSIC VIDEO

Magnetohydrodynamics.
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dx
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0
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Collecting and canceling terms, we obtain

d~FS 52
@p

@x
î1

@p

@y
ĵ1

@p

@z
k̂

� �
dx dy dz ð3:1aÞ

The term in parentheses is called the gradient of the pressure or simply the pressure
gradient and may be written grad p or rp. In rectangular coordinates

grad p � rp � î
@p

@x
1 ĵ

@p

@y
1 k̂

@p

@z

� �
� î

@

@x
1 ĵ

@

@y
1 k̂

@

@z

� �
p

The gradient can be viewed as a vector operator; taking the gradient of a scalar field
gives a vector field. Using the gradient designation, Eq. 3.1a can be written as

d~FS 52grad p ðdx dy dzÞ 52rp dx dy dz ð3:1bÞ
Physically the gradient of pressure is the negative of the surface force per unit volume
due to pressure. Note that the pressure magnitude itself is not relevant in computing
the net pressure force; instead what counts is the rate of change of pressure with
distance, the pressure gradient. We shall encounter this term throughout our study of
fluid mechanics.

We combine the formulations for surface and body forces that we have developed
to obtain the total force acting on a fluid element. Thus

d~F 5 d~FS 1 d~FB 5 ð2rp1 ρ~gÞ dx dy dz 5 ð2rp1 ρ~gÞ dV---
or on a per unit volume basis

d~F

dV---
52rp1 ρ~g ð3:2Þ

For a fluid particle, Newton’s second law gives ~F 5 ~a dm 5 ~aρdV---. For a static
fluid, ~a 5 0. Thus

d~F

dV---
5 ρ~a 5 0

Substituting for d~F=dV--- from Eq. 3.2, we obtain

2rp1 ρ~g 5 0 ð3:3Þ

Let us review this equation briefly. The physical significance of each term is

2rp 1 ρ~g 5 0

net pressure force

per unit volume

at a point

8><
>:

9>=
>;1

body force per

unit volume

at a point

8><
>:

9>=
>; 5 0
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This is a vector equation, which means that it is equivalent to three component
equations that must be satisfied individually. The component equations are

2
@p

@x
1 ρgx 5 0 x direction

2
@p

@y
1 ρgy 5 0 y direction

2
@p

@z
1 ρgz 5 0 z direction

9>>>>>>>>=
>>>>>>>>;

ð3:4Þ

Equations 3.4 describe the pressure variation in each of the three coordinate
directions in a static fluid. It is convenient to choose a coordinate system such that the
gravity vector is aligned with one of the coordinate axes. If the coordinate system is
chosen with the z axis directed vertically upward, as in Fig. 3.1, then gx5 0, gy5 0, and
gz52g. Under these conditions, the component equations become

@p

@x
5 0

@p

@y
5 0

@p

@ z
52ρg ð3:5Þ

Equations 3.5 indicate that, under the assumptions made, the pressure is independent
of coordinates x and y; it depends on z alone. Thus since p is a function of a single
variable, a total derivative may be used instead of a partial derivative. With these
simplifications, Eqs. 3.5 finally reduce to

dp

dz
52ρg �2γ ð3:6Þ

Restrictions: (1) Static fluid.
(2) Gravity is the only body force.
(3) The z axis is vertical and upward.

In Eq. 3.6, γ is the specific weight of the fluid. This equation is the basic pressure-
height relation of fluid statics. It is subject to the restrictions noted. Therefore it must
be applied only where these restrictions are reasonable for the physical situation. To
determine the pressure distribution in a static fluid, Eq. 3.6 may be integrated and
appropriate boundary conditions applied.

Before considering specific applications of this equation, it is important to
remember that pressure values must be stated with respect to a reference level. If the
reference level is a vacuum, pressures are termed absolute, as shown in Fig. 3.2.

Most pressure gages indicate a pressure difference—the difference between
the measured pressure and the ambient level (usually atmospheric pressure). Pressure
levels measured with respect to atmospheric pressure are termed gage pressures. Thus

pgage 5 pabsolute 2 patmosphere

pabsolute

pgage

Pressure level

Atmospheric pressure:
101.3 kPa (14.696 psia)

at standard sea level
conditions

Vacuum

Fig. 3.2 Absolute and gage pressures, showing reference levels.
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For example, a tire gage might indicate 30 psi; the absolute pressure would be
about 44.7 psi. Absolute pressures must be used in all calculations with the ideal gas
equation or other equations of state.

3.2 The Standard Atmosphere
Scientists and engineers sometimes need a numerical or analytical model of the
Earth’s atmosphere in order to simulate climate variations to study, for example,
effects of global warming. There is no single standard model. An International
Standard Atmosphere (ISA) has been defined by the International Civil Aviation
Organization (ICAO); there is also a similar U.S. Standard Atmosphere.

The temperature profile of the U.S. Standard Atmosphere is shown in Fig. 3.3.
Additional property values are tabulated as functions of elevation in Appendix A.
Sea level conditions of the U.S. Standard Atmosphere are summarized in Table 3.1.
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Fig. 3.3 Temperature variation with altitude in the U.S. Standard
Atmosphere.

Table 3.1
Sea Level Conditions of the U.S. Standard Atmosphere

Property Symbol SI English

Temperature T 15�C 59�F
Pressure p 101.3 kPa (abs) 14.696 psia
Density ρ 1.225 kg/m3 0.002377 slug/ft3

Specific weight γ — 0.07651 lbf/ft3

Viscosity μ 1.789 3 1025 kg/(m � s) (Pa � s) 3.737 3 1027 lbf � s/ft2
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3.3Pressure Variation in a Static Fluid
We proved that pressure variation in any static fluid is described by the basic pressure-
height relation

dp

dz
52ρg ð3:6Þ

Although ρg may be defined as the specific weight, γ, it has been written as ρg in
Eq. 3.6 to emphasize that both ρ and g must be considered variables. In order to
integrate Eq. 3.6 to find the pressure distribution, we need information about varia-
tions in both ρ and g.

For most practical engineering situations, the variation in g is negligible. Only for a
purpose such as computing very precisely the pressure change over a large elevation
difference would the variation in g need to be included. Unless we state otherwise, we
shall assume g to be constant with elevation at any given location.

Incompressible Liquids: Manometers

For an incompressible fluid, ρ5 constant. Then for constant gravity,

dp

dz
52ρg 5 constant

To determine the pressure variation, we must integrate and apply appropriate
boundary conditions. If the pressure at the reference level, z0, is designated as p0, then
the pressure, p, at level z is found by integration:Z p

p0

dp 52

Z z

z0

ρg dz

or

p2 p0 52ρgðz2 z0Þ 5 ρgðz0 2 zÞ
For liquids, it is often convenient to take the origin of the coordinate system at the
free surface (reference level) and to measure distances as positive downward from
the free surface as in Fig. 3.4.

With h measured positive downward, we have

z0 2 z 5 h

and obtain

p2 p0 5 Δp 5 ρgh ð3:7Þ

Equation 3.7 indicates that the pressure difference between two points in a static
incompressible fluid can be determined by measuring the elevation difference
between the two points. Devices used for this purpose are called manometers.

Use of Eq. 3.7 for a manometer is illustrated in Example 3.1.

0
Reference
level and
pressure

Location and
pressure of
interest

z

z0

z < z0

p0

p > p0h

Fig. 3.4 Use of z and h coordinates.
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Manometers are simple and inexpensive devices used frequently for pressure
measurements. Because the liquid level change is small at low pressure differential, a
U-tube manometer may be difficult to read accurately. The sensitivity of a manometer
is a measure of how sensitive it is compared to a simple water-filled U-tube manom-
eter. Specifically, it is the ratio of the deflection of the manometer to that of a water-
filled U-tube manometer, due to the same applied pressure difference Δp. Sensitivity
can be increased by changing the manometer design or by using two immiscible
liquids of slightly different density. Analysis of an inclined manometer is illustrated in
Example 3.2.

Example 3.1 SYSTOLIC AND DIASTOLIC PRESSURE

Normal blood pressure for a human is 120/80 mm Hg. By modeling a sphyg-
momanometer pressure gage as a U-tube manometer, convert these pressures
to psig.

Given: Gage pressures of 120 and 80 mm Hg.

Find: The corresponding pressures in psig.

Solution:
Apply hydrostatic equation to points A, Au, and B.

Governing equation:
p2 p0 5 Δp 5 ρgh ð3:7Þ

Assumptions: (1) Static fluid.
(2) Incompressible fluids.
(3) Neglect air density ({ Hg density).

Applying the governing equation between points Au and B (and pB is atmospheric and therefore zero gage):

pAu 5 pB 1 ρHggh 5 SGHgρH2O
gh

In addition, the pressure increases as we go downward from point Au to the bottom of the manometer, and
decreases by an equal amount as we return up the left branch to point A. This means points A and Au have the same
pressure, so we end up with

pA 5 pAu 5 SGHgρH2O
gh

Substituting SGHg5 13.6 and ρH2O
5 1.94 slug/ft3 from Appendix A.1

yields for the systolic pressure (h5 120 mm Hg)

psystolic 5 pA 5 13:63 1:94
slug

ft3
3 32:2

ft

s2
3 120 mm3

in:

25:4mm

3
ft

12 in:
3

lbfUs2

slugUft

psystolic 5 334 lbf=ft2 5 2:32 psi ß
psystolic

By a similar process, the diastolic pressure (h5 80 mm Hg) is

pdiastolic 5 1:55 psi ß
pdiastolic

Blood
pressure

Air

Hg

h

B

A'A

Notes:
ü Two points at the same level in a
continuous single fluid have the
same pressure.ü In manometer problems we neglect
change in pressure with depth for
a gas: ρgas { ρliquid.ü This problem shows the conversion
from mm Hg to psi, using Eq. 3.7: 120
mm Hg is equivalent to about 2.32
psi. More generally, 1 atm5 14.7
psi5 101 kPa5 760 mm Hg.
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Example 3.2 ANALYSIS OF INCLINED-TUBE MANOMETER

An inclined-tube reservoir manometer is constructed as shown. Derive a
general expression for the liquid deflection, L, in the inclined tube, due to
the applied pressure difference, Δp. Also obtain an expression for the
manometer sensitivity, and discuss the effect on sensitivity of D, d, θ,
and SG.

Given: Inclined-tube reservoir manometer.

Find: Expression for L in terms of Δp.
General expression for manometer sensitivity.
Effect of parameter values on sensitivity.

Solution:
Use the equilibrium liquid level as a reference.

Governing equations: p2 p0 5 Δp 5 ρgh SG 5
ρ

ρH2O
Assumptions: (1) Static fluid.

(2) Incompressible fluid.

Applying the governing equation between points 1 and 2

p1 2 p2 5 Δp 5 ρlgðh1 1 h2Þ ð1Þ
To eliminate h1, we recognize that the volume of manometer liquid remains constant; the volume displaced from the
reservoir must equal the volume that rises in the tube, so

πD2

4
h1 5

πd2

4
L or h1 5 L

d

D

� �2

In addition, from the geometry of the manometer, h25L sin θ. Substituting into Eq. 1 gives

Δp 5 ρlg L sin θ1L
d

D

� �2
" #

5 ρlgL sin θ1
d

D

� �2
" #

Thus

L 5
Δp

ρlg sin θ1
d

D

� �2
" #

ß
L

To find the sensitivity of the manometer, we need to compare this to the deflection h a simple U-tube manometer,
using water (density ρ), would experience,

h 5
Δp

ρg

The sensitivity s is then

s 5
L

h
5

1

SGl sin θ1
d

D

� �2
" #

ß
s

where we have used SGl5 ρl/ρ. This result shows that to increase sensitivity, SGl, sin θ, and d/D each should be made
as small as possible. Thus the designer must choose a gage liquid and two geometric parameters to complete a design,
as discussed below.

θ

D L

d
Δ p

θ

D L

d

Gage liquid,   lρ

1

h2

h1

Equilibrium
liquid level

2
Δp
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Students sometimes have trouble analyzing multiple-liquid manometer situations.
The following rules of thumb are useful:

1. Any two points at the same elevation in a continuous region of the same liquid are
at the same pressure.

2. Pressure increases as one goes down a liquid column (remember the pressure
change on diving into a swimming pool).

Gage Liquid

The gage liquid should have the smallest possible specific gravity to increase sensitivity. In addition, the gage liquid
must be safe (without toxic fumes or flammability), be immiscible with the fluid being gaged, suffer minimal loss
from evaporation, and develop a satisfactory meniscus. Thus the gage liquid should have relatively low surface
tension and should accept dye to improve its visibility.

Tables A.1, A.2, and A.4 show that hydrocarbon liquids satisfy many of these criteria. The lowest specific gravity
is about 0.8, which increases manometer sensitivity by 25 percent compared to water.

Diameter Ratio

The plot shows the effect of diameter ratio on sensitivity for a vertical reservoir manometer with gage liquid of unity
specific gravity. Note that d/D5 1 corresponds to an ordinary U-tube manometer; its sensitivity is 0.5 because for this
case the total deflection will be h, and for each side it will be h/2, so L5 h/2. Sensitivity doubles to 1.0 as d/D
approaches zero because most of the level change occurs in the measuring tube.

The minimum tube diameter d must be larger than about 6 mm to avoid excessive capillary effect. The maximum
reservoir diameter D is limited by the size of the manometer. If D is set at 60 mm, so that d/D is 0.1, then

(d/D)25 0.01, and the sensitivity increases to 0.99, very close to the maximum attainable value of 1.0.

Inclination Angle

The final plot shows the effect of inclination angle on sensitivity for d/D5 0. Sensitivity increases sharply as incli-
nation angle is reduced below 30 degrees. A practical limit is reached at about 10 degrees: The meniscus becomes
indistinct and the level hard to read for smaller angles.

Summary

Combining the best values (SG5 0.8, d/D5 0.1, and θ5 10 degrees) gives a
manometer sensitivity of 6.81. Physically this is the ratio of observed gage
liquid deflection to equivalent water column height. Thus the deflection in
the inclined tube is amplified 6.81 times compared to a vertical water
column. With improved sensitivity, a small pressure difference can be read
more accurately than with a water manometer, or a smaller pressure
difference can be read with the same accuracy.

The graphs were generated from
the Excel workbook for this

Example. This workbook has more
detailed graphs, showing sensitivity
curves for a range of values of d/D
and θ.
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To find the pressure difference Δp between two points separated by a series of
fluids, we can use the following modification of Eq. 3.7:

Δp 5 g
X
i

ρihi ð3:8Þ

where ρi and hi represent the densities and depths of the various fluids, respectively.
Use care in applying signs to the depths hi; they will be positive downwards, and
negative upwards. Example 3.3 illustrates the use of a multiple-liquid manometer for
measuring a pressure difference.

Example 3.3 MULTIPLE-LIQUID MANOMETER

Water flows through pipes A and B. Lubricating oil is in the
upper portion of the inverted U. Mercury is in the bottom of
the manometer bends. Determine the pressure difference,
pA2 pB, in units of lbf/in.2

Given: Multiple-liquid manometer as shown.

Find: Pressure difference, pA2 pB, in lbf/in.2

Solution:

Governing equations: Δp 5 g
P
i

ρihi SG 5
ρ

ρH2O

Assumptions: (1) Static fluid.
(2) Incompressible fluid.

Applying the governing equation, working from point B to A

pA 2 pB 5 Δp 5 gðρH2O
d5 1 ρHgd4 2 ρoild3 1 ρHgd2 2 ρH2O

d1Þ ð1Þ
This equation can also be derived by repeatedly using Eq. 3.7 in the following form:

p2 2 p1 5 ρgðh2 2 h1Þ

A

d1 = 10" 4"

d3 = 4" d4 = 5"

d5 = 8"

d2 = 3"

H2O

Oil

Hg

H2O

B

D

C

E

F
h

z

z = h = 0

A

10" 4"

4" 5"

8"

3"

H2O

Oil

Hg

H2O

B
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Atmospheric pressure may be obtained from a barometer, in which the height of a
mercury column is measured. The measured height may be converted to pressure
using Eq. 3.7 and the data for specific gravity of mercury given in Appendix A, as
discussed in the Notes of Example 3.1. Although the vapor pressure of mercury may
be neglected, for precise work, temperature and altitude corrections must be applied
to the measured level and the effects of surface tension must be considered. The
capillary effect in a tube caused by surface tension was illustrated in Example 2.3.

Gases

In many practical engineering problems density will vary appreciably with altitude,
and accurate results will require that this variation be accounted for. Pressure var-
iation in a compressible fluid can be evaluated by integrating Eq. 3.6 if the density can
be expressed as a function of p or z. Property information or an equation of state may
be used to obtain the required relation for density. Several types of property variation
may be analyzed. (See Example 3.4.)

The density of gases generally depends on pressure and temperature. The ideal gas
equation of state,

p 5 ρRT ð1:1Þ
where R is the gas constant (see Appendix A) and T the absolute temperature,
accurately models the behavior of most gases under engineering conditions. However,
the use of Eq. 1.1 introduces the gas temperature as an additional variable. Therefore,
an additional assumption must be made about temperature variation before Eq. 3.6
can be integrated.

Beginning at point A and applying the equation between successive points along the manometer gives

pC 2 pA 5 1ρH2O
gd1

pD 2 pC 52ρHggd2

pE 2 pD 5 1ρoilgd3
pF 2 pE 52ρHggd4

pB 2 pF 52ρH2O
gd5

Multiplying each equation by minus one and adding, we obtain Eq. (1)

pA 2 pB 5 ð pA 2 pCÞ1 ð pC 2 pDÞ1 ð pD 2 pEÞ1 ð pE 2 pFÞ1 ð pF 2 pBÞ
52ρH2O

gd1 1 ρHggd2 2 ρoilgd3 1 ρHggd4 1 ρH2O
gd5

Substituting ρ 5 SGρH2O
with SGHg5 13.6 and SGoil5 0.88 (Table A.2), yields

pA 2 pB 5 gð2ρH2O
d1 1 13:6ρH2O

d2 2 0:88ρH2O
d3 1 13:6ρH2O

d4 1 ρH2O
d5Þ

5 gρH2O
ð2d1 1 13:6d2 2 0:88d3 1 13:6d4 1 d5Þ

pA 2 pB 5 gρH2O
ð2101 40:82 3:521 681 8Þ in:

pA 2 pB 5 gρH2O
3 103:3 in:

5 32:2
ft

s2
3 1:94

slug

ft3
3 103:3 in:3

ft

12 in:
3

ft2

144 in:2
3

lbfUs2

slugU ft

pA 2 pB 5 3:73 lbf=in:2 ß
pA 2 pB

This Example shows use of both Eq. 3.7
and Eq. 3.8. Use of either equation is a
matter of personal preference.
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In the U.S. Standard Atmosphere the temperature decreases linearly with altitude
up to an elevation of 11.0 km. For a linear temperature variation with altitude given
by T5T02mz, we obtain, from Eq. 3.6,

dp 52ρg dz 52
pg

RT
dz 52

pg

RðT0 2mzÞ dz

Separating variables and integrating from z5 0 where p5 p0 to elevation z where the
pressure is p gives Z p

p0

dp

p
52

Z z

0

gdz

RðT0 2mzÞ
Then

ln
p

p0
5

g

mR
ln

T0 2mz

T0

� �
5

g

mR
ln 12

mz

T0

� �

and the pressure variation, in a gas whose temperature varies linearly with elevation,
is given by

p 5 p0 12
mz

T0

� �g=mR

5 p0
T

T0

� �g=mR

ð3:9Þ

Example 3.4 PRESSURE AND DENSITY VARIATION IN THE ATMOSPHERE

The maximum power output capability of a gasoline or diesel engine decreases with altitude because the air density
and hence the mass flow rate of air decrease. A truck leaves Denver (elevation 5280 ft) on a day when the local
temperature and barometric pressure are 80�F and 24.8 in. of mercury, respectively. It travels through Vail Pass
(elevation 10,600 ft), where the temperature is 62�F. Determine the local barometric pressure at Vail Pass and the
percent change in density.

Given: Truck travels from Denver to Vail Pass.

Denver: z5 5280 ft Vail Pass: z5 10,600 ft
p5 24.8 in. Hg T5 62�F
T5 80�F

Find: Atmospheric pressure at Vail Pass.
Percent change in air density between Denver and Vail.

Solution:

Governing equations:
dp

dz
52ρg p 5 ρRT

Assumptions: (1) Static fluid.
(2) Air behaves as an ideal gas.

We shall consider four assumptions for property variations with altitude.

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives

p

p0
5

T

T0

� �g=mR

Evaluating the constant m gives

m 5
T0 2T

z2 z0
5

ð802 62Þ�F
ð10:62 5:28Þ103 ft 5 3:383 1023 �F=ft
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and

g

mR
5 32:2

ft

s2
3

ft

3:383 1023 �F
3

lbm U�R
53:3 ftUlbf

3
slug

32:2 lbm
3

lbfUs2

slugUft
5 5:55

Thus

p

p0
5

T

T0

� �g=mR

5
4601 62

4601 80

� �5:55

5 ð0:967Þ5:55 5 0:830

and

p 5 0:830 p0 5 ð0:830Þ24:8 in: Hg 5 20:6 in: Hgß

p

Note that temperature must be expressed as an absolute temperature in the ideal gas equation of state.
The percent change in density is given by

ρ2 ρ0
ρ0

5
ρ
ρ0

2 1 5
p

p0

T0

T
2 1 5

0:830

0:967
2 1 520:142 or 214:2%ß

Δρ
ρ0

(b) For ρ assumed constant (5ρ0),

p 5 p0 2 ρ0gðz2 z0Þ 5 p0 2
p0g ðz2 z0Þ

RT0

5 p0 12
gðz2 z0Þ

RT0

2
4

3
5

p 5 20:2 in: Hg and
Δρ
ρ0

5 0 ß

p;
Δρ
ρ0

(c) If we assume the temperature is constant, then

dp 52ρg dz 52
p

RT
g dz

and Z p

p0

dp

p
52

Z z

z0

g

RT
dz

p 5 p0 exp
2gðz2 z0Þ

RT

2
4

3
5

For T5 constant5T0,

p 5 20:6 in: Hg and
Δρ
ρ0

5216:9% ß

p;
Δρ
ρ0

(d) For an adiabatic atmosphere p/ρk5 constant,

p 5 p0
T

T0

� �k=k21

5 22:0 in: Hg and
Δρ
ρ0

528:2% ß

p;
Δρ
ρ0

We note that over the modest change in elevation the predicted pressure is
not strongly dependent on the assumed property variation; values calculated
under four different assumptions vary by a maximum of approximately
9 percent. There is considerably greater variation in the predicted percent
change in density. The assumption of a linear temperature variation with
altitude is the most reasonable assumption.

This Example shows use of the ideal gas
equation with the basic pressure-height
relation to obtain the change in pressure
with height in the atmosphere under
various atmospheric assumptions.
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3.4Hydraulic Systems
Hydraulic systems are characterized by very high pressures, so by comparison
hydrostatic pressure variations often may be neglected. Automobile hydraulic brakes
develop pressures up to 10 MPa (1500 psi); aircraft and machinery hydraulic actuation
systems frequently are designed for pressures up to 40 MPa (6000 psi), and jacks use
pressures to 70 MPa (10,000 psi). Special-purpose laboratory test equipment is com-
mercially available for use at pressures to 1000 MPa (150,000 psi)!

Although liquids are generally considered incompressible at ordinary pressures,
density changes may be appreciable at high pressures. Bulk moduli of hydraulic fluids
also may vary sharply at high pressures. In problems involving unsteady flow, both
compressibility of the fluid and elasticity of the boundary structure (e.g., the pipe
walls) must be considered. Analysis of problems such as water hammer noise and
vibration in hydraulic systems, actuators, and shock absorbers quickly becomes
complex and is beyond the scope of this book.

3.5Hydrostatic Force on Submerged Surfaces
Now that we have determined how the pressure varies in a static fluid, we can examine
the force on a surface submerged in a liquid.

In order to determine completely the resultant force acting on a submerged sur-
face, we must specify:

1. The magnitude of the force.

2. The direction of the force.

3. The line of action of the force.

We shall consider both plane and curved submerged surfaces.

Hydrostatic Force on a Plane Submerged Surface

A plane submerged surface, on whose upper face we wish to determine the resultant
hydrostatic force, is shown in Fig. 3.5. The coordinates are important: They have been
chosen so that the surface lies in the xy plane, and the origin O is located at the
intersection of the plane surface (or its extension) and the free surface. As well as

VIDEO

Hydraulic Force Amplification.

θ
h

O

Liquid surface

dF

FR
Liquid,
density = ρ

Edge view

y

y

z

x

dx

y'dAx'

dy

xy xy plane viewed from above

Point of application of FR
(center of pressure)

Ambient pressure, p0

Fig. 3.5 Plane submerged surface.
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the magnitude of the force FR, we wish to locate the point (with coordinates xu, yu)
through which it acts on the surface.

Since there are no shear stresses in a static fluid, the hydrostatic force on any
element of the surface acts normal to the surface. The pressure force acting on an
element dA5 dx dy of the upper surface is given by

dF 5 p dA

The resultant force acting on the surface is found by summing the contributions of the
infinitesimal forces over the entire area.

Usually when we sum forces we must do so in a vectorial sense. However, in this
case all of the infinitesimal forces are perpendicular to the plane, and hence so is the
resultant force. Its magnitude is given by

FR 5

Z
A

p dA ð3:10aÞ

In order to evaluate the integral in Eq. 3.10a, both the pressure, p, and the element of
area, dA, must be expressed in terms of the same variables.

We can use Eq. 3.7 to express the pressure p at depth h in the liquid as

p 5 p0 1 ρgh

In this expression p0 is the pressure at the free surface (h5 0).
In addition, we have, from the system geometry, h5 y sin θ. Using this expression

and the above expression for pressure in Eq. 3.10a,

FR 5

Z
A

pdA 5

Z
A

ð p0 1 ρghÞdA 5

Z
A

ð p0 1 ρgy sin θÞdA

FR 5 p0

Z
A

dA1 ρg sin θ
Z
A

y dA 5 p0A1 ρg sin θ
Z
A

y dA

The integral is the first moment of the surface area about the x axis, which may be
written Z

A

y dA 5 ycA

where yc is the y coordinate of the centroid of the area, A. Thus,

FR 5 p0A1 ρg sin θ ycA 5 ð p0 1 ρghcÞA
or

FR 5 pcA ð3:10bÞ

where pc is the absolute pressure in the liquid at the location of the centroid of area A.
Equation 3.10b computes the resultant force due to the liquid—including the effect of
the ambient pressure p0—on one side of a submerged plane surface. It does not take
into account whatever pressure or force distribution may be on the other side of
the surface. However, if we have the same pressure, p0, on this side as we do at the
free surface of the liquid, as shown in Fig. 3.6, its effect on FR cancels out, and if we
wish to obtain the net force on the surface we can use Eq. 3.10b with pc expressed as a
gage rather than absolute pressure.

In computing FRwe can use either the integral of Eq. 3.l0a or the resulting Eq. 3.10b.
It is important to note that even though the force can be computed using the pressure
at the center of the plate, this is not the point through which the force acts!

Our next task is to determine (xu, yu), the location of the resultant force. Let’s first
obtain yu by recognizing that the moment of the resultant force about the x axis must
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be equal to the moment due to the distributed pressure force. Taking the sum (i.e.,
integral) of the moments of the infinitesimal forces dF about the x axis we obtain

yuFR 5

Z
A

yp dA ð3:11aÞ

We can integrate by expressing p as a function of y as before:

yuFR 5

Z
A

yp dA 5

Z
A

yð p0 1 ρghÞ dA 5

Z
A

ð p0y1 ρgy2 sin θÞ dA

5 p0

Z
A

y dA1 ρg sin θ
Z
A

y2dA

The first integral is our familiar ycA. The second integral,
R
A y2 dA, is the secondmoment

of area about the x axis, Ixx. We can use the parallel axis theorem, Ixx 5 Ix̂x̂ 1Ay2c ,
to replace Ixx with the standard second moment of area, about the centroidal x̂ axis.
Using all of these, we find

yuFR 5 p0ycA1 ρg sin θðIx̂x̂ 1Ay2cÞ 5 ycð p0 1 ρgyc sin θÞA1 ρg sin θ Ix̂x̂
5 ycð p0 1 ρghcÞA1 ρg sin θIx̂x̂ 5 ycFR 1 ρg sin θIx̂x̂

Finally, we obtain for yu:

yu 5 yc 1
ρg sin θ Ix̂x̂

FR

ð3:11bÞ

Equation 3.11b is convenient for computing the location yu of the force on the sub-
merged side of the surface when we include the ambient pressure p0. If we have the
same ambient pressure acting on the other side of the surface we can use Eq. 3.10b
with p0 neglected to compute the net force,

FR 5 pcgage A 5 ρghc A 5 ρgyc sin θA

and Eq. 3.11b becomes for this case

yu 5 yc 1
Ix̂x̂
Ayc

ð3:11cÞ

Equation 3.11a is the integral equation for computing the location yu of the resultant
force; Eq. 3.11b is a useful algebraic form for computing yu when we are interested in the
resultant force on the submerged side of the surface; Eq. 3.11c is for computing yu when
we are interested in the net force for the case when the same p0 acts at the free surface
and on the other side of the submerged surface. For problems that have a pressure on the
other side that is not p0, we can either analyze each side of the surface separately or
reduce the two pressure distributions to one net pressure distribution, in effect creating a
system to be solved using Eq. 3.10b with pc expressed as a gage pressure.

θh

O

Liquid surface

Liquid,
density = ρ

Edge view

y

z

Ambient pressure, p0

FR

Fig. 3.6 Pressure distribution on plane submerged surface.
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Note that in any event, yu. yc—the location of the force is always below the level of
the plate centroid. This makes sense—as Fig. 3.6 shows, the pressures will always be
larger on the lower regions, moving the resultant force down the plate.

A similar analysis can be done to compute xu, the x location of the force on the plate.
Taking the sum of the moments of the infinitesimal forces dF about the y axis we obtain

xuFR 5

Z
A

x p dA ð3:12aÞ

We can express p as a function of y as before:

xuFR 5

Z
A

xp dA 5

Z
A

xð p0 1 ρghÞ dA 5

Z
A

ð p0x1 ρgxy sin θÞ dA

5 p0

Z
A

x dA1 ρg sin θ
Z
A

xy dA

The first integral is xcA (where xc is the distance of the centroid from y axis). The second
integral is

R
A xy dA 5 Ixy. Using the parallel axis theorem, Ixy 5 Ix̂ŷ 1Axc yc, we find

xuFR 5 p0xcA1 ρg sin θðIx̂ŷ1AxcycÞ 5 xcðp0 1 ρgyc sin θÞA1 ρg sin θ Ix̂ŷ
5 xcðp0 1 ρghcÞA1 ρg sin θ Ix̂ŷ 5 xcFR 1 ρg sin θ Ix̂ŷ

Finally, we obtain for xu:

xu 5 xc 1
ρ g sin θ Ix̂ŷ

FR

ð3:12bÞ

Equation 3.12b is convenient for computing xu when we include the ambient pressure
p0. If we have ambient pressure also acting on the other side of the surface we can
again use Eq. 3.10b with p0 neglected to compute the net force and Eq. 3.12b becomes
for this case

xu 5 xc 1
Ix̂ŷ

Ayc
ð3:12cÞ

Equation 3.12a is the integral equation for computing the location xu of the resultant
force; Eq. 3.12b can be used for computations when we are interested in the force on
the submerged side only; Eq. 3.12c is useful when we have p0 on the other side of the
surface and we are interested in the net force.

In summary, Eqs. 3.10 through 3.12 constitute a complete set of equations for com-
puting the magnitude and location of the force due to hydrostatic pressure on any sub-
mergedplane surface.Thedirectionof the forcewill alwaysbeperpendicular to theplane.

We can now consider several examples using these equations. In Example 3.5 we
use both the integral and algebraic sets of equations.

Example 3.5 RESULTANT FORCE ON INCLINED PLANE
SUBMERGED SURFACE

The inclined surface shown, hinged along edge A, is 5 m wide. Determine the
resultant force, FR, of the water and the air on the inclined surface.

Given: Rectangular gate, hinged along A, w5 5 m.

Find: Resultant force, FR, of the water and the air on the gate.

D = 2 m

A

L = 4 m30°
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Solution:
In order to completely determine FR, we need to find (a) the magnitude and (b) the line of action of the force (the
direction of the force is perpendicular to the surface). We will solve this problem by using (i) direct integration and
(ii) the algebraic equations.

Direct Integration

Governing equations: p 5 p0 1 ρgh FR 5

Z
A

p dA ηuFR 5

Z
A

η p dA xuFR 5

Z
A

xp dA

Because atmospheric pressure p0 acts on both sides of the plate its effect cancels, and we can work in gage pressures
( p5 ρgh). In addition, while we could integrate using the y variable, it will be more convenient here to define a
variable η, as shown in the figure.

Using η to obtain expressions for h and dA, then

h 5 D1 η sin 303 and dA 5 wdη

Applying these to the governing equation for the resultant force,

FR 5

Z
A

pdA 5

Z L

0

ρgðD1 η sin 303Þwdη

5 ρgw D η1
η2

2
sin 303

2
4

3
5
L

0

5 ρgw DL1
L2

2
sin 303

2
4

3
5

5 999
kg

m3
3 9:81

m

s2
3 5m 2m 3 4m1

16m2

2
3

1

2

2
4

3
5 NUs2

kgUm

FR 5 588 kN ß
FR

For the location of the force we compute ηu (the distance from the top edge of the plate),

ηuFR 5

Z
A

ηpdA

Then

ηu 5
1

FR

Z
A

ηpdA 5
1

FR

Z L

0

ηpwdη 5
ρgw
FR

Z L

0

ηðD1 η sin 303Þ dη

5
ρgw
FR

Dη2

2
1

η3

3
sin 303

2
4

3
5
L

0

5
ρgw
FR

DL2

2
1

L3

3
sin 303

2
4

3
5

5 999
kg

m3
3 9:8

m

s2
3

5m

5:883 105 N

2m3 16m2

2
1

64m3

3
3

1

2

2
4

3
5 NUs2

kgUm

ηu 5 2:22m and yu 5
D

sin 303
1 ηu 5

2m

sin 303
1 2:22m 5 6:22mß

yu

D = 2 m

A

L = 4 m30°

h

z

y

η

Net hydrostatic pressure distribution on gate.

3.5 Hydrostatic Force on Submerged Surfaces 73



Also, from consideration of moments about the y axis through edge A,

xu 5
1

FR

Z
A

xp dA

In calculating the moment of the distributed force (right side), recall, from your earlier courses in statics, that the
centroid of the area element must be used for x. Since the area element is of constant width, then x5w/2, and

xu 5
1

FR

Z
A

w

2
p dA 5

w

2FR

Z
A

p dA 5
w

2
5 2:5mß

xu

Algebraic Equations

In using the algebraic equations we need to take care in selecting the appropriate set. In this problem we have
p05 patm on both sides of the plate, so Eq. 3.10b with pc as a gage pressure is used for the net force:

FR 5 pcA 5 ρghiA 5 ρg D1
L

2
sin 303

0
@

1
ALw

FR 5 ρgw DL1
L2

2
sin 303

2
4

3
5

This is the same expression as was obtained by direct integration.
The y coordinate of the center of pressure is given by Eq. 3.11c:

yu 5 yc 1
Ix̂x̂
Ayc

ð3:11cÞ

For the inclined rectangular gate

yc 5
D

sin 303
1

L

2
5

2m

sin 303
1

4m

2
5 6m

A 5 Lw 5 4m3 5m 5 20m2

Ix̂x̂ 5
1

12
wL3 5

1

12
3 5m3 ð4mÞ3 5 26:7m2

yu 5 yc 1
Ix̂x̂
Ayc

5 6m1 26:7m4 3
1

20 m2
3

1

6m2
5 6:22 m ß

yu

The x coordinate of the center of pressure is given by Eq. 3.12c:

xu 5 xc 1
Ix̂ŷ

Ayc
ð3:12cÞ

For the rectangular gate Ix̂ŷ 5 0 and xu 5 xc 5 2:5 m: ß
xu

Example 3.6 FORCE ON VERTICAL PLANE SUBMERGED SURFACE
WITH NONZERO GAGE PRESSURE AT FREE SURFACE

The door shown in the side of the tank is hinged along its bottom edge. A
pressure of 100 psfg is applied to the liquid free surface. Find the force, Ft,
required to keep the door closed.

Given: Door as shown in the figure.

Find: Force required to keep door shut.

Hinge

2'

3'

Ftp = 100 lbf/ft2 (gage)

Liquid,   = 100 lbf/ft3γ

This Example showsü Use of integral and algebraic
equations.ü Use of the algebraic equations for
computing the net force.
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Solution:
This problem requires a free-body diagram (FBD) of the door. The pressure distributions
on the inside and outside of the door will lead to a net force (and its location) that will be
included in the FBD. We need to be careful in choosing the equations for computing the
resultant force and its location. We can either use absolute pressures (as on the left FBD)
and compute two forces (one on each side) or gage pressures and compute one force (as on
the right FBD). For simplicity we will use gage pressures. The right-hand FBD makes clear
we should use Eqs. 3.10b and 3.11b, which were derived for problems in which we wish to
include thc effects of an ambient pressure ( p0), or in other words, for problems when we
have a nonzero gage pressure at the free surface. The components of force due to the hinge
are Ay and Az. The force Ft can be found by taking moments about A (the hinge).

Governing equations:

FR 5 pcA yu 5 yc 1
ρg sin θ Ix̂x̂

FR

X
MA 5 0

The resultant force and its location are

FR 5 ðp0 1 ρghcÞA 5 p0 1 γ
L

2

� �
bL ð1Þ

and

yu 5 yc 1
ρg sin 903 Ix̂x̂

FR

5
L

2
1

γbL3=12

p0 1 γ
L

2

� �
bL

5
L

2
1

γL2=12

p0 1 γ
L

2

� � ð2Þ

Taking moments about point A

X
MA 5 FtL2FRðL2 yuÞ 5 0 or Ft 5 FR 12

yu
L

� �

Using Eqs. 1 and 2 in this equation we find

Ft 5 p0 1 γ
L

2

� �
bL 12

1

2
2

γL2=12

p0 1 γ
L

2

� �
2
664

3
775

Ft 5 p0 1 γ
L

2

0
@

1
A bL

2
1 γ

bL2

12
5

p0bL

2
1

γbL2

6

5 100
lbf

ft2
3 2 ft3 3 ft3

1

2
1 100

lbf

ft3
3 2 ft3 9 ft2 3

1

6

Ft 5 600 lbf ß
Ft

ð3Þ

Ft

FR

Az

Ay

y'
L

A

Force free-body diagram

Hinge

h
y

z

x Ft

p0 + patm patm

p0 + patm +   gLρ

Ft

Az

Ay

AL = 3'

2'

p0 (gage)

p0 (gage) +   gLρ

Ft

Az

Ay

A

Free-body diagrams of door

p0 = 100 lb/ft2 (gage)
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Hydrostatic Force on a Curved Submerged Surface

For curved surfaces, we will once again derive expressions for the resultant force by
integrating the pressure distribution over the surface. However, unlike for the plane
surface, we have a more complicated problem—the pressure force is normal to the
surface at each point, but now the infinitesimal area elements point in varying directions
because of the surface curvature. This means that instead of integrating over an element
dA we need to integrate over vector element d~A. This will initially lead to a more
complicated analysis, but we will see that a simple solution technique will be developed.

Consider the curved surface shown in Fig. 3.7. The pressure force acting on the
element of area, d~A, is given by

d~F 52p d~A

where the minus sign indicates that the force acts on the area, in the direction opposite
to the area normal. The resultant force is given by

~FR 52

Z
A

p d~A ð3:13Þ

We can write

~FR 5 îFRx
1 ĵFRy

1 k̂FRz

where FRx;FRy; andFRz are the components of ~FR in the positive x, y, and z directions,
respectively.

To evaluate the component of the force in a given direction, we take the dot
product of the force with the unit vector in the given direction. For example, taking
the dot product of each side of Eq. 3.13 with unit vector î gives

FRx
5 ~FRUî 5

Z
d~FUî 52

Z
A

p d~AUî 52

Z
Ax

p dAx

We could have solved this problem by considering the two separate pres-
sure distributions on each side of the door, leading to two resultant forces and
their locations. Summing moments about point A with these forces would
also have yielded the same value for Ft. (See Problem 3.59.) Note also that
Eq. 3 could have been obtained directly (without separately finding FR and
yu) by using a direct integration approach:

X
MA 5 FtL2

Z
A

y p dA 5 0

This Example shows:ü Use of algebraic equations for non-
zero gage pressure at the liquid free
surface.

ü Use of the moment equation from
statics for computing the required
applied force.

z

x

y

dA

dAx

dAz

dAy

z = z0

Fig. 3.7 Curved submerged surface.
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where dAx is the projection of d~A on a plane perpendicular to the x axis (see Fig. 3.7),
and the minus sign indicates that the x component of the resultant force is in the
negative x direction.

Since, in any problem, the direction of the force component can be determined by
inspection, the use of vectors is not necessary. In general, the magnitude of the
component of the resultant force in the l direction is given by

FRl
5

Z
Al

p dAl ð3:14Þ

where dAl is the projection of the area element dA on a plane perpendicular to the l
direction. The line of action of each component of the resultant force is found by
recognizing that the moment of the resultant force component about a given axis must
be equal to the moment of the corresponding distributed force component about the
same axis.

Equation 3.14 can be used for the horizontal forces FRx
and FRy

. We have the
interesting result that the horizontal force and its location are the same as for an
imaginary vertical plane surface of the same projected area. This is illustrated in
Fig. 3.8, where we have called the horizontal force FH.

Figure 3.8 also illustrates how we can compute the vertical component of force:
With atmospheric pressure at the free surface and on the other side of the curved
surface the net vertical force will be equal to the weight of fluid directly above
the surface. This can be seen by applying Eq. 3.14 to determine the magnitude of the
vertical component of the resultant force, obtaining

FRz
5 FV 5

Z
p dAz

Since p5 ρgh,

FV 5

Z
ρgh dAz 5

Z
ρg dV---

where ρgh dAz 5 ρg dV--- is the weight of a differential cylinder of liquid above
the element of surface area, dAz, extending a distance h from the curved surface to the
free surface. The vertical component of the resultant force is obtained by integrating
over the entire submerged surface. Thus

FV 5

Z
Az

ρgh dAz 5

Z
V---
ρg dV--- 5 ρgV---

In summary, for a curved surface we can use two simple formulas for computing the
horizontal and vertical force components due to the fluid only (no ambient pressure),

FH 5 pcA and FV 5 ρgV--- ð3:15Þ

Curved surface

+
FH

FV

FV =   gVρ

FH = pcA

Liquid volume

Fig. 3.8 Forces on curved submerged surface.
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where pc and A are the pressure at the center and the area, respectively, of a vertical
plane surface of the same projected area, and V--- is the volume of fluid above the
curved surface.

It can be shown that the line of action of the vertical force component passes
through the center of gravity of the volume of liquid directly above the curved surface
(see Example 3.7).

We have shown that the resultant hydrostatic force on a curved submerged surface
is specified in terms of its components. We recall from our study of statics that the
resultant of any force system can be represented by a force-couple system, i.e.,
the resultant force applied at a point and a couple about that point. If the force
and the couple vectors are orthogonal (as is the case for a two-dimensional curved
surface), the resultant can be represented as a pure force with a unique line of action.
Otherwise the resultant may be represented as a “wrench,” also having a unique line of
action.

Example 3.7 FORCE COMPONENTS ON A CURVED SUBMERGED SURFACE

The gate shown is hinged at O and has constant width, w5 5 m. The equation of
the surface is x5 y2/a, where a5 4 m. The depth of water to the right of the gate is
D5 4 m. Find the magnitude of the force, Fa, applied as shown, required to
maintain the gate in equilibrium if the weight of the gate is neglected.

Given: Gate of constant width, w5 5 m.
Equation of surface in xy plane is x5 y2/a, where a5 4 m.
Water stands at depth D5 4 m to the right of the gate.
Force Fa is applied as shown, and weight of gate is to be neglected. (Note
that for simplicity we do not show the reactions at O.)

Find: Force Fa required to maintain the gate in equilibrium.

Solution:
We will take moments about point O after finding the magnitudes and locations of the horizontal and vertical forces
due to the water. The free body diagram (FBD) of the system is shown above in part (a). Before proceeding we need to
think about how we compute FV, the vertical component of the fluid force—we have stated that it is equal (in mag-
nitude and location) to the weight of fluid directly above the curved surface. However, we have no fluid directly above
the gate, even though it is clear that the fluid does exert a vertical force! We need to do a “thought experiment” in
which we imagine having a system with water on both sides of the gate (with null effect), minus a system with water
directly above the gate (which generates fluid forces). This logic is demonstrated above: the system FBD(a)5 the null
FBD(b)2 the fluid forces FBD(c). Thus the vertical and horizontal fluid forces on the system, FBD(a), are equal and
opposite to those on FBD(c). In summary, the magnitude and location of the vertical fluid force FV are given by the
weight and location of the centroid of the fluid “above” the gate; the magnitude and location of the horizontal fluid
force FH are given by the magnitude and location of the force on an equivalent vertical flat plate.

D = 4 m

Fa
y

x

x =
y2
___
a

l = 5 m

O

(a) System FBD

x

y

Fa

FH
FV

(b) Null fluid forces (c) Fluid forces

x

y
Fa

l = 5 m

xx'

y

y'

FHFV

–
O
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Governing equations: FH 5 pcA yu 5 yc 1
Ix̂x̂
Ayc

FV 5 ρgV--- xu 5 water center of gravity

For FH, the centroid, area, and second moment of the equivalent vertical flat plate are, respectively, yc5 hc5D/2,
A5Dw, and Ix̂x̂ 5wD3/12.

FH 5 pcA 5 ρghcA

5 ρg
D

2
Dw 5 ρg

D2

2
w 5 999

kg

m3
3 9:81

m

s2
3

ð4m2Þ
2

3 5m3
NUs2

kgUm

FH 5 392 kN

ð1Þ

and

yu 5 yc 1
Ix̂x̂
Ayc

5
D

2
1

wD3=12

wDD=2
5

D

2
1

D

6

yu 5
2

3
D 5

2

3
3 4m 5 2:67m ð2Þ

For FV, we need to compute the weight of water “above” the gate. To do this we define a differential column of
volume (D2 y) w dx and integrate

FV 5 ρgV--- 5 ρg
Z D2=a

0

ðD2 yÞwdx 5 ρgw
Z D2=a

0

ðD2
ffiffiffi
a

p
x1=2Þdx

5 ρgw Dx2
2

3

ffiffiffi
a

p
x3=2

2
4

3
5
D3=a

0

5 ρgw
D3

a
2

2

3

ffiffiffi
a

p D3

a3=2

2
4

3
5 5

ρgwD3

3a

FV 5 999
kg

m3
3 9:81

m

s2
3 5m3

ð4Þ3m3

3
3

1

4m
3

N � s2
kg �m 5 261 kN ð3Þ

The location xu of this force is given by the location of the center of gravity of the water “above” the gate. We
recall from statics that this can be obtained by using the notion that the moment of FV and the moment of the sum of
the differential weights about the y axis must be equal, so

xuFV 5 ρg
Z D2=a

0

xðD2 yÞwdx 5 ρgw
Z D2=a

0

ðD2
ffiffiffi
a

p
x3=2Þdx

xuFV 5 ρgw
D

2
x2 2

2

5

ffiffiffi
a

p
x5=2

2
4

3
5
D2=a

0

5 ρgw
D5

2a2
2

2

5

ffiffiffi
a

p D5

a5=2

2
4

3
5 5

ρgwD5

10a2

xu 5
ρgwD5

10a2FV

5
3D2

10a
5

3

10
3

ð4Þ2 m2

4m
5 1:2m ð4Þ

Now that we have determined the fluid forces, we can finally take
moments about O (taking care to use the appropriate signs), using
the results of Eqs. 1 through 4P

MO 52lFa 1 xuFV 1 ðD2 yuÞFH 5 0

Fa 5
1

l
[xuFV 1 ðD2 yuÞFH]

5
1

5m
[1:2m3 261 kN1 ð42 2:67Þm3 392 kN]

Fa 5 167 kN ß
Fa

This Example shows:ü Use of vertical flat plate equations
for the horizontal force, and fluid
weight equations for the vertical
force, on a curved surface.

ü The use of “thought experiments” to
convert a problem with fluid below a
curved surface into an equivalent
problem with fluid above.
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*3.6 Buoyancy and Stability
If an object is immersed in a liquid, or floating on its surface, the net vertical force
acting on it due to liquid pressure is termed buoyancy. Consider an object totally
immersed in static liquid, as shown in Fig. 3.9.

The vertical force on the body due to hydrostatic pressure may be found most
easily by considering cylindrical volume elements similar to the one shown in Fig. 3.9.

We recall that we can use Eq. 3.7 for computing the pressure p at depth h in a liquid,

p 5 p0 1 ρgh

The net vertical pressure force on the element is then

dFz 5 ð p0 1 ρgh2Þ dA2 ð p0 1 ρgh1Þ dA 5 ρgðh2 2 h1Þ dA
But ðh2 2 h1ÞdA 5 dV---, the volume of the element. Thus

Fz 5

Z
dFz 5

Z
V---
ρgdV--- 5 ρgV---

where V--- is the volume of the object. Hence we conclude that for a submerged body
the buoyancy force of the fluid is equal to the weight of displaced fluid,

Fbuoyancy 5 ρgV--- ð3:16Þ

This relation reportedly was used by Archimedes in 220 B.C. to determine the gold
content in the crown of King Hiero II. Consequently, it is often called “Archimedes’
Principle.” In more current technical applications, Eq. 3.16 is used to design dis-
placement vessels, flotation gear, and submersibles [1].

The submerged object need not be solid. Hydrogen bubbles, used to visualize
streaklines and timelines in water (see Section 2.2), are positively buoyant; they rise
slowly as they are swept along by the flow. Conversely, water droplets in oil are
negatively buoyant and tend to sink.

Airships andballoons are termed“lighter-than-air” craft. Thedensity of an ideal gas is
proportional to molecular weight, so hydrogen and helium are less dense than air at the
same temperature and pressure. Hydrogen (Mm5 2) is less dense than helium (Mm5 4),
but extremely flammable, whereas helium is inert. Hydrogen has not been used com-
mercially since the disastrous explosion of the German passenger airshipHindenburg in
1937. The use of buoyancy force to generate lift is illustrated in Example 3.8.

Equation 3.16 predicts the net vertical pressure force on a body that is totally
submerged in a single liquid. In cases of partial immersion, a floating body displaces its
own weight of the liquid in which it floats.

The line of action of the buoyancy force, which may be found using the methods of
Section 3.5, acts through the centroid of the displaced volume. Since floating bodies

z

h
h1

h2

p0

Liquid,
density = ρd

dA

V

Fig. 3.9 Immersed body in static liquid.

1This section may be omitted without loss of continuity in the text material.
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are in equilibrium under body and buoyancy forces, the location of the line of action
of the buoyancy force determines stability, as shown in Fig. 3.10.

The weight of an object acts through its center of gravity, CG. In Fig. 3.10a, the lines
of action of the buoyancy and the weight are offset in such a way as to produce a couple
that tends to right the craft. In Fig. 3.10b, the couple tends to capsize the craft.

Ballast may be needed to achieve roll stability. Wooden warships carried stone
ballast low in the hull to offset the weight of the heavy cannon on upper gun decks.

Example 3.8 BUOYANCY FORCE IN A HOT AIR BALLOON

A hot air balloon (approximated as a sphere of diameter 50 ft) is to lift a basket load of
600 lbf. To what temperature must the air be heated in order to achieve liftoff?

Given: Atmosphere at STP, diameter of balloon d5 50 ft, and load Wload5 600 lbf.

Find: The hot air temperature to attain liftoff.

Solution:
Apply the buoyancy equation to determine the lift generated by atmosphere, and apply
the vertical force equilibrium equation to obtain the hot air density. Then use the ideal
gas equation to obtain the hot air temperature.

Governing equations:

Fbuoyancy 5 ρgV---
X

Fy 5 0 p 5 ρRT

Assumptions: (1) Ideal gas.
(2) Atmospheric pressure throughout.

Summing vertical forcesX
Fy 5 Fbuoyancy 2Whot air 2Wload 5 ρatmgV---2 ρhot air gV---2Wload 5 0

Rearranging and solving for ρhot air (using data from Appendix A),

ρhot air 5 ρatm 2
Wload

gV---
5 ρatm 2

6W load

πd3g

5 0:00238
slug

ft3
2 63

600 lbf

πð50Þ3 ft3 3
s2

32:2 ft
3

slugUft
s2Ulbf

ρhot air 5 ð0:002382 0:000285Þ slug
ft3

5 0:00209
slug

ft3

Finally, to obtain the temperature of this hot air, we can use the ideal gas
equation in the following form

phot air
ρhot airRThot air

5
patm

ρatmRTatm

and with phot air5 patm

Thot air 5 Tatm
ρatm
ρhot air

5 ð4601 59Þ3R3
0:00238

0:00209
5 5913R

Thot air 5 1313F ß

Thot air

Air at STP

Basket

Hot air

Notes:

ü Absolute pressures and tempera-
tures are always used in the ideal
gas equation.ü This problem demonstrates that for
lighter-than-air vehicles the buoy-
ancy force exceeds the vehicle
weight—that is, the weight of fluid
(air) displaced exceeds the vehicle
weight.
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Modern ships can have stability problems as well: overloaded ferry boats have cap-
sized when passengers all gathered on one side of the upper deck, shifting the CG
laterally. In stacking containers high on the deck of a container ship, care is needed to
avoid raising the center of gravity to a level that may result in the unstable condition
depicted in Fig. 3.10b.

For a vessel with a relatively flat bottom, as shown in Fig. 3.10a, the restoring
moment increases as roll angle becomes larger. At some angle, typically that at which
the edge of the deck goes below water level, the restoring moment peaks and starts to
decrease. The moment may become zero at some large roll angle, known as the angle
of vanishing stability. The vessel may capsize if the roll exceeds this angle; then, if still
intact, the vessel may find a new equilibrium state upside down.

The actual shape of the restoring moment curve depends on hull shape. A broad
beam gives a large lateral shift in the line of action of the buoyancy force and thus a high
restoring moment. High freeboard above the water line increases the angle at which the
moment curve peaks, but may make the moment drop rapidly above this angle.

Sailing vessels are subjected to large lateral forces as wind engages the sails (a boat
under sail in a brisk wind typically operates at a considerable roll angle). The lateral
wind force must be counteracted by a heavily weighted keel extended below the hull
bottom. In small sailboats, crew members may lean far over the side to add additional
restoring moment to prevent capsizing [2].

Within broad limits, the buoyancy of a surface vessel is adjusted automatically as
the vessel rides higher or lower in the water. However, craft that operate fully sub-
merged must actively adjust buoyancy and gravity forces to remain neutrally buoyant.
For submarines this is accomplished using tanks which are flooded to reduce excess
buoyancy or blown out with compressed air to increase buoyancy [1]. Airships may
vent gas to descend or drop ballast to rise. Buoyancy of a hot-air balloon is controlled
by varying the air temperature within the balloon envelope.

For deep ocean dives use of compressed air becomes impractical because of the high
pressures (the Pacific Ocean is over 10 km deep; seawater pressure at this depth is
greater than 1000 atmospheres!).A liquid such as gasoline,which is buoyant in seawater,
may beused to provide buoyancy.However, because gasoline ismore compressible than
water, its buoyancy decreases as the dive gets deeper. Therefore it is necessary to carry
and drop ballast to achieve positive buoyancy for the return trip to the surface.

The most structurally efficient hull shape for airships and submarines has a circular
cross-section. The buoyancy force passes through the center of the circle. Therefore,
for roll stability the CG must be located below the hull centerline. Thus the crew
compartment of an airship is placed beneath the hull to lower the CG.

3.7 Fluids in Rigid-Body Motion (on the Web)

buoyancy

buoyancygravity

gravity

(a) Stable (b) Unstable

CG

CG

Fig. 3.10 Stability of floating bodies.
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3.8 Summary and Useful Equations
In this chapter we have reviewed the basic concepts of fluid statics. This included:

ü Deriving the basic equation of fluid statics in vector form.
ü Applying this equation to compute the pressure variation in a static fluid:

* Incompressible liquids: pressure increases uniformly with depth.
* Gases: pressure decreases nonuniformly with elevation (dependent on other thermodynamic properties).

ü Study of:
* Gage and absolute pressure.
* Use of manometers and barometers.

ü Analysis of the fluid force magnitude and location on submerged:
* Plane surfaces.
* Curved surfaces.

ü *Derivation and use of Archimedes’ Principle of Buoyancy.
ü *Analysis of rigid-body fluid motion (on the Web).

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Hydrostatic pressure variation: dp

dz
52ρg �2γ

(3.6) Page 59

Hydrostatic pressure variation (incompressible fluid): p2 p0 5 Δp 5 ρgh (3.7) Page 61

Hydrostatic pressure variation (several incompressible
fluids):

Δp 5 g
P
i

ρihi
(3.8) Page 65

Hydrostatic force on submerged plane (integral form): FR 5

Z
A

pdA (3.10a) Page 70

Hydrostatic force on submerged plane: FR 5 pcA (3.10b) Page 70

Location yu of hydrostatic force on submerged plane
(integral):

yuFR 5

Z
A

yp dA
(3.11a) Page 71

Location yu of hydrostatic force on submerged plane
(algebraic): yu 5 yc 1

ρg sin θ Ix̂x̂
FR

(3.11b) Page 71

Location yu of hydrostatic force on submerged plane
(p0 neglected):

yu 5 yc 1
Ix̂x̂
Ayc

(3.11c) Page 71

Location xu of hydrostatic force on submerged plane
(integral):

xuFR 5

Z
A

x p dA
(3.12a) Page 72

Location xu of hydrostatic force on submerged plane
(algebraic): xu 5 xc 1

ρ g sin θ Ix̂ŷ
FR

(3.12b) Page 72

Location xu of hydrostatic force on submerged plane
(p0 neglected):

xu 5 xc 1
I x̂ŷ

A yc

(3.12c) Page 72

Horizontal and vertical hydrostatic forces on curved
submerged surface: FH 5 pcA and FV 5 ρgV---

(3.15) Page 77

Buoyancy force on submerged object: Fbuoyancy 5 ρgV--- (3.16) Page 80

We have now concluded our introduction to the fundamental concepts of fluid mechanics, and the basic concepts
of fluid statics. In the next chapter we will begin our study of fluids in motion.

*These topics apply to sections that may be omitted without loss of continuity in the text material.
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Problems
3.1 Compressednitrogen (140 lbm) is stored ina spherical tankof
diameterD=2.5 ft at a temperatureof 77�F.What is thepressure
inside the tank? If the maximum allowable stress in the tank is
30 ksi, find the minimum theoretical wall thickness of the tank.

Standard Atmosphere

3.2 Because the pressure falls, water boils at a lower tem-
perature with increasing altitude. Consequently, cake mixes
and boiled eggs, among other foods, must be cooked dif-
ferent lengths of time. Determine the boiling temperature of
water at 1000 and 2000 m elevation on a standard day, and
compare with the sea-level value.

3.3 Ear “popping” is an unpleasant phenomenon sometimes
experienced when a change in pressure occurs, for example
in a fast-moving elevator or in an airplane. If you are in a
two-seater airplane at 3000 m and a descent of 100 m causes
your ears to “pop,” what is the pressure change that your ears
“pop” at, in millimeters of mercury? If the airplane now rises
to 8000 m and again begins descending, how far will the air-
plane descend before your ears “pop” again? Assume a U.S.
Standard Atmosphere.

3.4 When you are on a mountain face and boil water, you
notice that the water temperature is 195�F. What is your
approximate altitude? The next day, you are at a location
where it boils at 185�F. How high did you climb between the
two days? Assume a U.S. Standard Atmosphere.

Pressure Variation in a Static Fluid

3.5 A 125-mL cube of solid oak is held submerged by a tether
as shown. Calculate the actual force of the water on the
bottom surface of the cube and the tension in the tether.

SG = 0.8

Oil

Water

patm

0.3 m

0.5 m
Diameter, D = 50 mm

h = 25 mm

d = 10 mm

H = 200 mm

F

P3.5 P3.6

3.6 The tube shown is filled with mercury at 20�C. Calculate
the force applied to the piston.

Case Study

The Falkirk Wheel

The Falkirk Wheel.

Hydrostatics, the study of fluids at rest, is an ancient
discipline, so one might think there are no new or
exciting applications still to be developed. The Falkirk
wheel in Scotland is a dramatic demonstration that

this is not the case; it is a novel replacement for a lock,
a device for moving a boat from one water level to
another. The wheel, which has a diameter of 35 m,
consists of two sets of axe-shaped opposing arms
(which take the shape of a Celtic-inspired, double-
headed axe). Sitting in bearings in the ends of these
arms are two water-filled caissons, or tanks, each with
a capacity of 80,000 gal. The hydrostatics concept of
Archimedes’ principle, which we studied in this chap-
ter, states that floating objects displace their own
weight of water. Hence, the boat shown entering the
lower caisson displaces water from the caisson
weighing exactly the same as the boat itself. This
means the entire wheel remains balanced at all times
(both caissons always carry the same weight, whether
containing boats or not), and so, despite its enormous
mass, it rotates through 180� in less than four minutes
while using very little power. The electric motors used
for this use 22.5 kilowatts (kW) of power, so the
energy used in four minutes is about 1.5 kilowatt-
hours (kWh); even at current prices, this works out to
be only a few cents worth of energy.
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3.7 The following pressure and temperature measurements
were taken by a meteorological balloon rising through the
lower atmosphere:

p (psia) 14.71 14.62 14.53 14.45 14.36 14.27 14.18 14.1 14.01 13.92 13.84

T (�F) 53.6 52 50.9 50.4 50.2 50 50.5 51.4 52.9 54 53.8

The initial values (top of table) correspond to ground level.
Using the ideal gas law (p = ρRT with R = 53.3 ft � lbf/
lbm � �R), compute and plot the variation of air density (in
lbm/ft3) with height.

3.8 A hollow metal cube with sides 100 mm floats at the
interface between a layer of water and a layer of SAE 10W
oil such that 10% of the cube is exposed to the oil. What is
the pressure difference between the upper and lower hor-
izontal surfaces? What is the average density of the cube?

3.9 Your pressure gage indicates that the pressure in your cold
tires is 0.25MPa (gage)onamountainatanelevationof3500m.
What is the absolute pressure? After you drive down to sea
level, your tires havewarmed to 25�C.What pressure does your
gage now indicate? Assume a U.S. Standard Atmosphere.

3.10 An air bubble, 0.3 in. in diameter, is released from the
regulator of a scuba diver swimming 100 ft below the sea
surface. (The water temperature is 86�F.) Estimate the diam-
eter of the bubble just before it reaches the water surface.

3.11 A cube with 6 in. sides is suspended in a fluid by a wire.
The top of the cube is horizontal and 8 in. below the free
surface. If the cube has a mass of 2 slugs and the tension in
the wire is T5 50.7 lbf, compute the fluid specific gravity,
and from this determine the fluid. What are the gage pres-
sures on the upper and lower surfaces?

3.12 Assuming the bulk modulus is constant for seawater,
derive an expression for the density variation with depth, h,
below the surface. Show that the result may be written

ρ � ρ0 þ bh

where ρ0 is the density at the surface. Evaluate the constant
b. Then, using the approximation, obtain an equation for the
variation of pressure with depth below the surface. Deter-
mine the depth in feet at which the error in pressure pre-
dicted by the approximate solution is 0.01 percent.

3.13 Oceanographic research vessels have descended to
6.5 mi below sea level. At these extreme depths, the com-
pressibility of seawater can be significant. One may model
the behavior of seawater by assuming that its bulk modulus
remains constant. Using this assumption, evaluate the
deviations in density and pressure compared with values
computed using the incompressible assumption at a depth, h,
of 6.5 mi in seawater. Express your answers as a percentage.
Plot the results over the range 0 # h # 7 mi.

3.14 An inverted cylindrical container is lowered slowly
beneath the surface of a pool of water. Air trapped in the
container is compressed isothermally as the hydrostatic
pressure increases. Develop an expression for the water
height, y, inside the container in terms of the container
height, H, and depth of submersion, h. Plot y/H versus h/H.

3.15 Youclose the topof your strawwith your thumband lift the
straw out of your glass containing Coke. Holding it vertically,
the total length of the straw is 45 cm, but the Coke held in the

straw is in the bottom 15 cm. What is the pressure in the straw
just below your thumb? Ignore any surface tension effects.

3.16 A water tank filled with water to a depth of 16 ft has in
inspection cover (1 in. 3 1 in.) at its base, held in place by a
plastic bracket. The bracket can hold a load of 9 lbf. Is the
bracket strong enough? If it is, what would the water depth
have to be to cause the bracket to break?

3.17 A container with two circular vertical tubes of diameters
d15 39.5 mm and d25 12.7 mm is partially filled with mer-
cury. The equilibrium level of the liquid is shown in the left
diagram. A cylindrical object made from solid brass is placed
in the larger tube so that it floats, as shown in the right dia-
gram. The object is D5 37.5 mm in diameter and H5 76.2
mm high. Calculate the pressure at the lower surface needed
to float the object. Determine the new equilibrium level, h, of
the mercury with the brass cylinder in place.

d1 d2

h

x

Brass

Mercury

P3.17

3.18 A partitioned tank as shown contains water and mercury.
What is the gage pressure in the air trapped in the left chamber?
What pressurewould the air on the left need to be pumped to in
order to bring the water and mercury free surfaces level?

Mercury

Water

1 m

0.75 m 3.75 m

2.9 m 3 m

3 m

P3.18, P3.19

3.19 In the tank of Problem 3.18, if the opening to atmo-
sphere on the right chamber is first sealed, what pressure
would the air on the left now need to be pumped to in order
to bring the water and mercury free surfaces level? (Assume
the air trapped in the right chamber behaves isothermally.)

3.20 Consider the two-fluid manometer shown. Calculate the
applied pressure difference.

l =
10.2 mm

Water

Carbon
tetrachloride

p1 p2

P3.20
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3.21 A manometer is formed from glass tubing with uniform
inside diameter, D5 6.35 mm, as shown. The U-tube is
partially filled with water. Then V---5 3.25 cm3 of Meriam red
oil is added to the left side. Calculate the equilibrium height,
H, when both legs of the U-tube are open to the atmosphere.

Oil

Water
D

H

P3.21

3.22 The manometer shown contains water and kerosene.
With both tubes open to the atmosphere, the free-surface
elevations differ by H05 20.0 mm. Determine the elevation
difference when a pressure of 98.0 Pa (gage) is applied to the
right tube.

Kerosene

Water

H0 =
20 mm

h

Liquid A

Liquid B

p1 p2

P3.22 P3.23

3.23 Themanometer shown contains two liquids. LiquidA has
SG5 0.88 and liquidB has SG5 2.95. Calculate the deflection,
h, when the applied pressure difference is p12p25 18 lbf/ft2.

3.24 Determine the gage pressure in kPa at point a, if liquid
A has SG = 1.20 and liquid B has SG = 0.75. The liquid
surrounding point a is water, and the tank on the left is open
to the atmosphere.

Liquid B

Liquid A

0.25 m

0.4 m
0.125 m

0.9 m

Water
a

P3.24

3.25 An engineering research company is evaluating using
a sophisticated $80,000 laser system between two large
water storage tanks. You suggest that the job can be donewith
a $200 manometer arrangement. Oil less dense than water
can be used to give a significant amplification of meniscus
movement; a small difference in level between the tanks
will cause a much larger deflection in the oil levels in the ma-
nometer. If you set up a rig using Meriam red oil as
the manometer fluid, determine the amplification factor that
will be seen in the rig.

Equilibrium
level

Meriam red oil

Water
(Tank 1)

Water
(Tank 2)

P3.25

3.26 Water flows downward along a pipe that is inclined at 30�

below the horizontal, as shown. Pressure difference pA2pB is
due partly to gravity and partly to friction. Derive an algebraic
expression for the pressure difference. Evaluate the pressure
difference if L5 5 ft and h5 6 in.

Mercury h__
2

h__
2

z g

A

B

L

Water

a

30°

P3.26

3.27 Consider a tank containing mercury, water, benzene,
and air as shown. Find the air pressure (gage). If an opening
is made in the top of the tank, find the equilibrium level of
the mercury in the manometer.

Benzene

Water

Air

Mercury

D = 0.25 m

d = 0.025 m

0.3 m

0.1 m

0.1 m

0.1 m

P3.27

3.28 A reservoir manometer has vertical tubes of diameter
D5 18 mm and d5 6 mm. The manometer liquid is Meriam
red oil. Develop an algebraic expression for liquid deflection
L in the small tube when gage pressure Δp is applied to the
reservoir. Evaluate the liquid deflection when the applied
pressure is equivalent to 25 mm of water (gage).

D = 18 mm

x

L

Δp

Equilibrium level

d = 6 mm

P3.28
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3.29 A rectangular tank, open to the atmosphere, is filled with
water to a depth of 2.5 m as shown. A U-tube manometer is
connected to the tank at a location 0.7 m above the tank bot-
tom. If the zero level of the Meriam blue manometer fluid is
0.2 m below the connection, determine the deflection l after
the manometer is connected and all air has been removed
from the connecting leg.

l

0.2 m

Zero
level

0.7 m

2.5 m
3 m

P3.29, P3.31, P3.37

3.30 A reservoir manometer is calibrated for use with a
liquid of specific gravity 0.827. The reservoir diameter is
5/8 in. and the (vertical) tube diameter is 3/16 in. Calculate
the required distance between marks on the vertical scale for
1 in. of water pressure difference.

3.31 The manometer fluid of Problem 3.29 is replaced with
mercury (same zero level). The tank is sealed and the air
pressure is increased to a gage pressure of 0.5 atm. Deter-
mine the deflection l.

3.32 The inclined-tube manometer shown has D5 96 mm
and d5 8 mm. Determine the angle, θ, required to provide a
5 : 1 increase in liquid deflection, L, compared with the total
deflection in a regular U-tube manometer. Evaluate the
sensitivity of this inclined-tube manometer.

θ

Δ

D L

d

p

P3.32, P3.33

3.33 The inclined-tube manometer shown has D5 76 mm
and d5 8 mm, and is filled with Meriam red oil. Compute
the angle, θ, that will give a 15-cm oil deflection along the
inclined tube for an applied pressure of 25 mm of water
(gage). Determine the sensitivity of this manometer.

3.34 A barometer accidentally contains 6.5 inches of water
on top of the mercury column (so there is also water vapor
instead of a vacuum at the top of the barometer). On a day
when the temperature is 70�F, the mercury column height is
28.35 inches (corrected for thermal expansion). Determine
the barometric pressure in psia. If the ambient temperature
increased to 85�F and the barometric pressure did not
change, would the mercury column be longer, be shorter, or
remain the same length? Justify your answer.

3.35 A student wishes to design a manometer with better
sensitivity than a water-filled U-tube of constant diameter. The
student’s concept involves using tubes with different diameters
and two liquids, as shown. Evaluate the deflection h of this
manometer, if the applied pressure difference isΔp5 250 N/m2.

Determine the sensitivity of this manometer. Plot the mano-
meter sensitivity as a function of the diameter ratio d2/d1.

g

patm patm patm + Δ  
p patm

h

d1 =
10 mm

d2 = 15 mm

Oil
(SG = 0.85)

Water

P3.35

3.36 A water column stands 50 mm high in a 2.5-mm diam-
eter glass tube. What would be the column height if the
surface tension were zero? What would be the column height
in a 1.0-mm diameter tube?

3.37 If the tank of Problem 3.29 is sealed tightly and water
drains slowly from the bottom of the tank, determine the
deflection, l, after the system has attained equilibrium.

3.38 Consider a small-diameter open-ended tube inserted at
the interface between two immiscible fluids of different den-
sities. Derive an expression for the height difference Δh
between the interface level inside and outside the tube in
terms of tube diameterD, the two fluid densities ρ1 and ρ2, and
the surface tension σ and angle θ for the two fluids’ interface. If
the two fluids are water and mercury, find the height differ-
ence if the tube diameter is 40 mils (1 mil = 0.001 in.).

3.39 You have a manometer consisting of a tube that is
0.5 in. inner diameter (ID). On one side, the manometer leg
contains mercury, 0.6 in.3 of an oil (SG = 1.4), and 0.2 in.3 of
air as a bubble in the oil. The other leg contains only mer-
cury. Both legs are open to the atmosphere and are in a static
condition. An accident occurs in which 0.2 in.3 of the oil and
the air bubble are removed from one leg. How much do the
mercury height levels change?

3.40 Compare the height due to capillary action of water
exposed to air in a circular tube of diameter D5 0.5 mm,
and between two infinite vertical parallel plates of gap
a5 0.5 mm.

3.41 Two vertical glass plates 12 in. 3 12 in. are placed in an
open tank containing water. At one end the gap between the
plates is 0.004 in., and at the other it is 0.080 in. Plot the curve
of water height between the plates from one end of the pair
to the other.

3.42 Based on the atmospheric temperature data of the
U.S. Standard Atmosphere of Fig. 3.3, compute and plot
the pressure variation with altitude, and compare with the
pressure data of Table A.3.

3.43 On a certain calm day, a mild inversion causes the
atmospheric temperature to remain constant at 30�C
between sea level and 5000-m altitude. Under these condi-
tions, (a) calculate the elevation change for which a 3 percent
reduction in air pressure occurs, (b) determine the change of
elevation necessary to effect a 5 percent reduction in density,
and (c) plot p2/p1 and ρ2/ρ1 as a function of Δz.
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3.44 At ground level in Denver, Colorado, the atmospheric
pressure and temperature are 83.2 kPa and 25�C. Calculate
the pressure on Pike’s Peak at an elevation of 2690 m
above the city assuming (a) an incompressible and (b) an
adiabatic atmosphere. Plot the ratio of pressure to ground
level pressure in Denver as a function of elevation for both
cases.

3.45 The Martian atmosphere behaves as an ideal gas with
mean molecular mass of 32.0 and constant temperature of
200 K. The atmospheric density at the planet surface is
ρ5 0.015 kg/m3 and Martian gravity is 3.92 m/s2. Calculate
the density of the Martian atmosphere at height z5 20 km
above the surface. Plot the ratio of density to surface density
as a function of elevation. Compare with that for data on the
Earth’s atmosphere.

3.46 A door 1 m wide and 1.5 m high is located in a plane
vertical wall of a water tank. The door is hinged along its upper
edge, which is 1 m below the water surface. Atmospheric
pressure acts on the outer surface of the door and at the water
surface. (a) Determine the magnitude and line of action of
the total resultant force from all fluids acting on the door.
(b) If the water surface gage pressure is raised to 0.3 atm,
what is the resultant force and where is its line of action?
(c) Plot the ratios F/F0 and yu/yc for different values of the sur-
face pressure ratio ps/patm. (F0 is the resultant force when
ps5patm.)

3.47 A door 1 m wide and 1.5 m high is located in a plane
vertical wall of a water tank. The door is hinged along its
upper edge, which is 1 m below the water surface. Atmo-
spheric pressure acts on the outer surface of the door. (a) If
the pressure at the water surface is atmospheric, what force
must be applied at the lower edge of the door in order to
keep the door from opening? (b) If the water surface gage
pressure is raised to 0.5 atm, what force must be applied
at the lower edge of the door to keep the door from
opening? (c) Find the ratio F/F0 as a function of the surface
pressure ratio ps/patm. (F0 is the force required when
ps5patm.)

3.48 A hydropneumatic elevator consists of a piston-cylin-
der assembly to lift the elevator cab. Hydraulic oil, stored in
an accumulator tank pressurized by air, is valved to the
piston as needed to lift the elevator. When the elevator
descends, oil is returned to the accumulator. Design the least
expensive accumulator that can satisfy the system require-
ments. Assume the lift is 3 floors, the maximum load is 10
passengers, and the maximum system pressure is 800 kPa
(gage). For column bending strength, the piston diameter
must be at least 150 mm. The elevator cab and piston have a
combined mass of 3000 kg, and are to be purchased. Perform
the analysis needed to define, as a function of system
operating pressure, the piston diameter, the accumulator
volume and diameter, and the wall thickness. Discuss safety
features that your company should specify for the complete
elevator system. Would it be preferable to use a completely
pneumatic design or a completely hydraulic design? Why?

3.49 Find the pressures at pointsA, B, and C, as shown in the
figure, and in the two air cavities.

Air

Air

4 in

4 in

6 in
Meriam

Blue
Meriam

Blue
Meriam

Blue

A

B C

H2O

P3.49

Hydrostatic Force on Submerged Surfaces

3.50 Semicircular plane gateAB is hinged alongB and held by
horizontal force FA applied at A. The liquid to the left of the
gate is water. Calculate the force FA required for equilibrium.

FAA

B

R = 10 ft

H = 25 ft

Gate:
side view

P3.50

3.51 A triangular access port must be provided in the side of
a form containing liquid concrete. Using the coordinates and
dimensions shown, determine the resultant force that acts on
the port and its point of application.

Liquid
concrete

a = 1.25 ft

b = 1 ft

Port

y

P3.51

3.52 A plane gate of uniform thickness holds back a depth of
water as shown. Find the minimum weight needed to keep
the gate closed.

L = 3 m= 30°θ

Water

w = 2 m

P3.52

3.53 Consider a semicylindrical trough of radiusR and lengthL.
Develop general expressions for the magnitude and line of
action of the hydrostatic force on one end, if the trough is par-
tially filled with water and open to atmosphere. Plot the results
(in nondimensional form) over the range of water depth
0# d/R# 1.
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3.54 A rectangular gate (width w5 2 m) is hinged as shown,
witha stopon the loweredge.AtwhatdepthHwill the gate tip?

Hinge

Stop

Water

0.55 m

0.45 m

H

P3.54

3.55 For a mug of tea (65 mm diameter), imagine it cut
symmetrically in half by a vertical plane. Find the force that
each half experiences due to an 80-mm depth of tea.

3.56 Gates in thePoeLockat Sault Ste.Marie,Michigan, close
a channelW5 34mwide,L5 360m long, andD5 10m deep.
The geometry of one pair of gates is shown; each gate is hinged
at the channel wall. When closed, the gate edges are forced
together at the center of the channel by water pressure.
Evaluate the force exerted by the water on gateA. Determine
the magnitude and direction of the force components exerted
by the gate on the hinge. (Neglect the weight of the gate.)

x

yPlan view:
Hinge

Gate A
W = 34 m

15°

Water

P3.56

3.57 A section of vertical wall is to be constructed from ready-
mix concrete poured between forms. The wall is to be 3 m
high, 0.25 m thick, and 5 m wide. Calculate the force exerted
by the ready-mix concrete on each form. Determine the line
of application of the force.

3.58 A window in the shape of an isosceles triangle and
hinged at the top is placed in the vertical wall of a form that
contains liquid concrete. Determine the minimum force
that must be applied at point D to keep the window closed
for the configuration of form and concrete shown. Plot the
results over the range of concrete depth 0 # c # a

b = 0.3 m

a = 0.4 m
c = 0.25 m

D

Hinge line

P3.58

3.59 SolveExample 3.6 again using the two separate pressures
method. Consider the distributed force to be the sumof a force
F1 caused by the uniform gage pressure and a force F2 caused
by the liquid. Solve for these forces and their lines of action.
Then sum moments about the hinge axis to calculate Ft.

3.60 A large open tank contains water and is connected to a
6-ft-diameter conduit as shown. A circular plug is used to
seal the conduit. Determine the magnitude, direction, and
location of the force of the water on the plug.

D = 6 ft

9 ft

Plug

Water

P3.60

3.61 What holds up a car on its rubber tires? Most people
would tell you that it is the air pressure inside the tires.
However, the air pressure is the same all around the hub
(inner wheel), and the air pressure inside the tire therefore
pushes down from the top as much as it pushes up from
below, having no net effect on the hub. Resolve this paradox
by explaining where the force is that keeps the car off the
ground.

3.62 The circular access port in the side of a water stand-
pipe has a diameter of 0.6 m and is held in place by eight bolts
evenly spaced around the circumference. If the standpipe
diameter is 7 m and the center of the port is located 12 m
below the free surface of the water, determine (a) the total
force on the port and (b) the appropriate bolt diameter.

3.63 As water rises on the left side of the rectangular gate,
the gate will open automatically. At what depth above the
hinge will this occur? Neglect the mass of the gate.

D

Gate

5 ft

Hinge

6 ft
O

8 ft

12 ft

3 ft

Water

A B

C

P3.63 P3.64

3.64 The gate AOC shown is 6 ft wide and is hinged alongO.
Neglecting the weight of the gate, determine the force in bar
AB. The gate is sealed at C.

3.65 The gate shown is 3 m wide and for analysis can be
considered massless. For what depth of water will this rec-
tangular gate be in equilibrium as shown?

d

60°

5 m

2500 kg

P3.65

Problems 89



3.66 The gate shown is hinged at H. The gate is 3 m wide
normal to the plane of the diagram. Calculate the force
required at A to hold the gate closed.

F

A

30°

3 m
Water

1.5 m
H

P3.66

3.67 A long, square wooden block is pivoted along one edge.
The block is in equilibrium when immersed in water to the
depth shown. Evaluate the specific gravity of the wood, if
friction in the pivot is negligible.

Wood
d = 0.5 m

Water

Pivot, O

L = 1.0 m

L Air

P3.67

3.68 A solid concrete dam is to be built to hold back a depth
D of water. For ease of construction the walls of the dammust
be planar. Your supervisor asks you to consider the following
dam cross-sections: a rectangle, a right triangle with the
hypotenuse in contact with the water, and a right triangle with
the vertical in contact with the water. She wishes you to
determine which of these would require the least amount of
concrete. What will your report say? You decide to look at
one more possibility: a nonright triangle, as shown. Develop
and plot an expression for the cross-section area A as a
function of a, and find the minimum cross-sectional area.

Water

D

b

b

α

P3.68

3.69 For the geometry shown, what is the vertical force on the
dam? The steps are 0.5 m high, 0.5 m deep, and 3 m wide.

Dam

Water

P3.69

3.70 For the dam shown, what is the vertical force of the
water on the dam?

Top

Front Side

Water

3 ft

3 ft

3 ft

3 ft

3 ft 3 ft 3 ft6 ft 3 ft 3 ft 3 ft

3 ft

3 ft

3 ft

3 ft

P3.70

3.71 The gate shown is 1.5 m wide and pivoted at O;
a5 1.0 m22, D5 1.20 m, and H5 1.40 m. Determine (a) the
magnitude and moment of the vertical component of the force
about O, and (b) the horizontal force that must be applied at
point A to hold the gate in position.

O
x

y

Gate

Water

x = ay3

A

D H

P3.71

3.72 The parabolic gate shown is 2 m wide and pivoted at O;
c5 0.25 m21, D5 2 m, and H5 3 m. Determine (a) the
magnitude and line of action of the vertical force on the gate
due to the water, (b) the horizontal force applied at A
required to maintain the gate in equilibrium, and (c) the
vertical force applied at A required to maintain the gate in
equilibrium.

H

D

O

Gate

y = cx2

x

A

y

Water

P3.72

3.73 Liquid concrete is poured into the form (R = 2 ft). The
form is w = 15 ft wide normal to the diagram. Compute
the magnitude of the vertical force exerted on the form
by the concrete, and specify its line of action.

Concrete
h

FV

R
θ

dF

P3.73
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3.74 An open tank is filled with water to the depth indicated.
Atmospheric pressure acts on all outer surfaces of the tank.
Determine the magnitude and line of action of the vertical
component of the force of the water on the curved part of the
tank bottom.

10 ft

12 ft

10 ft

4 ft

Water

P3.74

3.75 A spillway gate formed in the shape of a circular arc is
wmwide. Find themagnitude and line of action of the vertical
component of the force due to all fluids acting on the gate.

R

h = R

Water

7 ft 1.67 ft

H = 9 ft

A = 1 ft
B = 10 ft2

xy – Ay = B

Water

y
x

10 ft

2 ft

P3.75 P3.76

3.76 A dam is to be constructed using the cross-section
shown. Assume the dam width is w5 160 ft. For water height
H5 9 ft, calculate themagnitude and lineof actionof the vertical
force of water on the dam face. Is it possible for water forces to
overturn this dam? Under what circumstances will this happen?

3.77 A Tainter gate used to control water flow from the
Uniontown Dam on the Ohio River is shown; the gate width
is w5 35 m. Determine the magnitude, direction, and line of
action of the force from the water acting on the gate.

R = 20 m
D = 10 m

Water

P3.77

3.78 A gate, in the shape of a quarter-cylinder, hinged at A
and sealed at B, is 3 m wide. The bottom of the gate is 4.5 m
below the water surface. Determine the force on the stop at
B if the gate is made of concrete; R5 3 m.

R
B

A 

D

Water

P3.78

3.79 Consider the cylindrical weir of diameter 3 m and length
6 m. If the fluid on the left has a specific gravity of 1.6, and on
the right has a specific gravity of 0.8, find the magnitude and
direction of the resultant force.

1.5 m
D = 3.0 m3.0 m

P3.79, P3.80

3.80 A cylindrical weir has a diameter of 3 m and a length of
6 m. Find the magnitude and direction of the resultant force
acting on the weir from the water.

3.81 A cylindrical log of diameterD rests against the top of a
dam. The water is level with the top of the log and the center
of the log is level with the top of the dam. Obtain expressions
for (a) the mass of the log per unit length and (b) the contact
force per unit length between the log and dam.

3.82 A curved surface is formed as a quarter of a circular
cylinder with R5 0.750 m as shown. The surface is w5 3.55
m wide. Water stands to the right of the curved surface to
depth H5 0.650 m. Calculate the vertical hydrostatic force
on the curved surface. Evaluate the line of action of this
force. Find the magnitude and line of action of the horizontal
force on the surface.

θ

R
Water H

P3.82

Buoyancy and Stability

3.83 If you throwananchoroutof your canoebut the rope is too
short for the anchor to rest on the bottom of the pond, will your
canoe float higher, lower, or stay the same? Prove your answer.

3.84 A curved submerged surface, in the shape of a quarter
cylinder with radius R5 1.0 ft is shown. The form can
withstand a maximum vertical load of 350 lbf before break-
ing. The width is w5 4 ft. Find the maximum depth H to
which the form may be filled. Find the line of action of
the vertical force for this condition. Plot the results over the
range of concrete depth 0 # H # R.

H

R

w

y

x
y = ax2

d

P3.84 P3.85

3.85 The cross-sectional shape of a canoe is modeled by the
curve y5 ax2, where a5 1.2 ft21 and the coordinates are in
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feet. Assume the width of the canoe is constant at w = 2 ft
over its entire length L5 18 ft. Set up a general algebraic
expression relating the total mass of the canoe and its con-
tents to distance d between the water surface and the gun-
wale of the floating canoe. Calculate the maximum total
mass allowable without swamping the canoe.

3.86 The cylinder shown is supported by an incompressible
liquid of density ρ, and is hinged along its length. The
cylinder, of mass M, length L, and radius R, is immersed in
liquid to depth H. Obtain a general expression for the
cylinder specific gravity versus the ratio of liquid depth
to cylinder radius, α5H/R, needed to hold the cylinder in
equilibrium for 0 # α, 1. Plot the results.

H

R

Hinge

P3.86

3.87 A canoe is represented by a right semicircular cylinder,
with R5 1.2 ft and L5 17 ft. The canoe floats in water that is
d5 1 ft deep. Set up a general algebraic expression for the
total mass (canoe and contents) that can be floated, as a
function of depth. Evaluate for the given conditions. Plot the
results over the range of water depth 0 # d # R.

3.88 Aglass observation room is to be installed at the corner of
thebottomofanaquarium.Theaquarium isfilledwith seawater
to a depth of 35 ft. The glass is a segment of a sphere, radius 5 ft,
mounted symmetrically in the corner. Compute the magnitude
and direction of the net force on the glass structure.

*3.89 A hydrometer is a specific gravity indicator, the value
being indicated by the level at which the free surface intersects
the stemwhenfloating ina liquid.The1.0mark is the levelwhen
in distilled water. For the unit shown, the immersed volume in
distilled water is 15 cm3. The stem is 6mm in diameter. Find the
distance, h, from the 1.0 mark to the surface when the hydro-
meter is placed in a nitric acid solution of specific gravity 1.5.

h
1.0

Nitric
acid

10 kg

Water
= 0.025 m3V

P3.89 P3.90

*3.90 Find the specific weight of the sphere shown if its
volume is 0.025m3. State all assumptions. What is the equi-
librium position of the sphere if the weight is removed?

*3.91 The fat-to-muscle ratio of a person may be determined
from a specific gravity measurement. The measurement is
made by immersing the body in a tank of water andmeasuring

the net weight. Develop an expression for the specific
gravity of a person in terms of their weight in air, net weight
in water, and SG5 f(T) for water.

*3.92 Quantify the statement, “Only the tip of an iceberg
shows (in seawater).”

*3.93 An open tank is filled to the top with water. A steel
cylindrical container, wall thickness δ5 1 mm, outside diameter
D5 100 mm, and height H5 1 m, with an open top, is gently
placed in the water. What is the volume of water that overflows
from the tank? How many 1 kg weights must be placed in the
container to make it sink? Neglect surface tension effects.

*3.94 Quantify the experiment performed by Archimedes to
identify the material content of King Hiero’s crown. Assume
you can measure the weight of the king’s crown in air, Wa,
and the weight in water, Ww. Express the specific gravity of
the crown as a function of these measured values.

*3.95 Gas bubbles are released from the regulator of a
submerged scuba diver. What happens to the bubbles as they
rise through the seawater? Explain.

*3.96 Hot-air ballooning is a popular sport. According to a
recent article, “hot-air volumes must be large because air
heated to 150�F over ambient lifts only 0.018 lbf/ft3 com-
pared to 0.066 and 0.071 for helium and hydrogen, respec-
tively.” Check these statements for sea-level conditions.
Calculate the effect of increasing the hot-air maximum
temperature to 250�F above ambient.

*3.97 Hydrogen bubbles are used to visualize water flow
streaklines in the video, Flow Visualization. A typical
hydrogen bubble diameter is d5 0.001 in. The bubbles tend
to rise slowly in water because of buoyancy; eventually they
reach terminal speed relative to the water. The drag force
of the water on a bubble is given by FD5 3πμVd, where μ is
the viscosity of water and V is the bubble speed relative
to the water. Find the buoyancy force that acts on a hydrogen
bubble immersed in water. Estimate the terminal speed of
a bubble rising in water.

*3.98 It is desired to use a hot air balloon with a volume of
320,000 ft3 for rides planned in summer morning hours when
the air temperature is about 48�F. The torch will warm the
air inside the balloon to a temperature of 160�F. Both inside
and outside pressures will be “standard” (14.7 psia). How
much mass can be carried by the balloon (basket, fuel, pas-
sengers, personal items, and the component of the balloon
itself) if neutral buoyancy is to be assured? What mass can be
carried by the balloon to ensure vertical takeoff acceleration
of 2.5 ft/s2? For this, consider that both balloon and inside air
have to be accelerated, as well as some of the surrounding air
(to make way for the balloon). The rule of thumb is that the
total mass subject to acceleration is the mass of the balloon,
all its appurtenances, and twice its volume of air. Given that
the volume of hot air is fixed during the flight, what can the
balloonists do when they want to go down?

*3.99 Scientific balloons operating at pressure equilibrium
with the surroundings have been used to lift instrument
packages to extremely high altitudes. One such balloon,

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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filled with helium, constructed of polyester with a skin
thickness of 0.013 mm and a diameter of 120 m, lifted a
payload of 230 kg. The specific gravity of the skin material is
1.28. Determine the altitude to which the balloon would rise.
Assume that the helium used in the balloon is in thermal
equilibrium with the ambient air, and that the balloon is a
perfect sphere.

*3.100 A helium balloon is to lift a payload to an altitude
of 40 km, where the atmospheric pressure and temperature
are 3.0 mbar and 225�C, respectively. The balloon skin is
polyester with specific gravity of 1.28 and thickness of 0.015
mm. To maintain a spherical shape, the balloon is pres-
surized to a gage pressure of 0.45 mbar. Determine the
maximum balloon diameter if the allowable tensile stress in
the skin is limited to 62 MN/m2. What payload can be
carried?

*3.101 A block of volume 0.025 m3 is allowed to sink in
water as shown. A circular rod 5 m long and 20 cm2 in cross-
section is attached to the weight and also to the wall. If the
rod mass is 1.25 kg and the rod makes an angle of 12 degrees
with the horizontal at equilibrium, what is the mass of the
block?

5 m

θ

M

V = 0.025 m3

0.25 m

= 12°

P3.101

*3.102 The stem of a glass hydrometer used to measure
specific gravity is 5 mm in diameter. The distance between
marks on the stem is 2mmper 0.1 increment of specific gravity.
Calculate the magnitude and direction of the error introduced
by surface tension if the hydrometer floats in kerosene.
(Assume the contact angle between kerosene and glass is 0�.)

*3.103 A sphere, of radius R, is partially immersed, to depth
d, in a liquid of specific gravity SG. Obtain an algebraic
expression for the buoyancy force acting on the sphere as a
function of submersion depth d. Plot the results over the
range of water depth 0 # d # 2R.

*3.104 If the mass M in Problem 3.101 is released from the
rod, at equilibrium how much of the rod will remain sub-
merged? What will be the minimum required upward force
at the tip of the rod to just lift it out of the water?

*3.105 In a logging operation, timber floats downstream to a
lumber mill. It is a dry year, and the river is running low, as
low as 60 cm in some locations. What is the largest diameter
log that may be transported in this fashion (leaving a mini-
mum 5 cm clearance between the log and the bottom of the
river)? For the wood, SG5 0.8.

*3.106 A sphere of radius 1 in., made from material of
specific gravity of SG5 0.95, is submerged in a tank of water.
The sphere is placed over a hole of radius 0.075 in., in the

tank bottom. When the sphere is released, will it stay on the
bottom of the tank or float to the surface?

a = 0.075 in.

H = 2.5 ft R = 1 in.

P3.106

*3.107 A cylindrical timber, with D5 1 ft and L5 15 ft, is
weighted on its lower end so that it floats vertically with 10 ft
submerged in seawater. When displaced vertically from its
equilibrium position, the timber oscillates or “heaves” in a
vertical direction upon release. Estimate the frequency of
oscillation in this heave mode. Neglect viscous effects and
water motion.

*3.108 You are in the Bermuda Triangle when you see a
bubble plume eruption (a large mass of air bubbles, similar
to a foam) off to the side of the boat. Do you want to head
toward it and be part of the action? What is the effective
density of the water and air bubbles in the drawing on the
right that will cause the boat to sink? Your boat is 10 ft long,
and weight is the same in both cases.

Floating

1ft

7ft

60°

Sea water

Sinking

Water rushing in!

Sea water
and air
bubbles

P3.108

*3.109 A bowl is inverted symmetrically and held in a dense
fluid, SG5 15.6, to a depth of 200 mm measured along the
centerline of the bowl from the bowl rim. The bowl height is
80 mm, and the fluid rises 20 mm inside the bowl. The bowl
is 100 mm inside diameter, and it is made from an old clay
recipe, SG5 6.1. The volume of the bowl itself is about 0.9 L.
What is the force required to hold it in place?

200 mm

80 mm

20 mm

D = 100 mm

P3.109

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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*3.110 In the “Cartesian diver” child’s toy, a miniature
“diver” is immersed in a column of liquid. When a dia-
phragm at the top of the column is pushed down, the diver
sinks to the bottom. When the diaphragm is released, the
diver again rises. Explain how the toy might work.

*3.111 Consider a conical funnel held upside down and sub-
merged slowly in a container of water. Discuss the force
needed to submerge the funnel if the spout is open to the
atmosphere. Compare with the force needed to submerge the
funnel when the spout opening is blocked by a rubber stopper.

*3.112 Three steel balls (each about half an inch in diam-
eter) lie at the bottom of a plastic shell floating on the water
surface in a partially filled bucket. Someone removes the
steel balls from the shell and carefully lets them fall to
the bottom of the bucket, leaving the plastic shell to float
empty. What happens to the water level in the bucket? Does
it rise, go down, or remain unchanged? Explain.

*3.113 A proposed ocean salvage scheme involves pumping
air into “bags” placed within and around a wrecked vessel on
the sea bottom. Comment on the practicality of this plan,
supporting your conclusions with analyses.

Fluids in Rigid-Body Motion

*3.114 A cylindrical container, similar to that analyzed in
Example 3.10 (on theWeb), is rotated at a constant rate of 2Hz
about its axis. The cylinder is 0.5 m in diameter and initially
contains water that is 0.3 m deep. Determine the height of the
liquid free surface at the center of the container. Does your
answer depend on the density of the liquid? Explain.

*3.115 A crude accelerometer can be made from a liquid-
filled U-tube as shown. Derive an expression for the liquid
level difference h caused by an acceleration~a, in terms of the
tube geometry and fluid properties.

Liquid
density,  ρ

y

x

h

L

d

a

P3.115

*3.116 A rectangular container of water undergoes constant
acceleration down an incline as shown. Determine the slope
of the free surface using the coordinate system shown.

y

x

= 30°θ

ax = 3 m/s2

g

P3.116

*3.117 The U-tube shown is filled with water at T5 68�F. It
is sealed at A and open to the atmosphere at D. The tube is
rotated about vertical axis AB at 1600 rpm. For the dimen-
sions shown, would cavitation occur in the tube?

L = 3 in.

A

B C

D

WaterH = 12 in.

ω

P3.117, P3.118

*3.118 If the U-tube of Problem 3.117 is spun at 300 rpm,
what will the pressure be at A? If a small leak appears at A,
how much water will be lost at D?

*3.119 A centrifugal micromanometer can be used to create
small and accurate differential pressures in air for precise
measurement work. The device consists of a pair of parallel
disks that rotate to develop a radial pressure difference.
There is no flow between the disks. Obtain an expression for
pressure difference in terms of rotation speed, radius, and air
density. Evaluate the speed of rotation required to develop a
differential pressure of 8 μm of water using a device with a
50 mm radius.

*3.120 A test tube is spun in a centrifuge. The tube support
is mounted on a pivot so that the tube swings outward as
rotation speed increases. At high speeds, the tube is nearly
horizontal. Find (a) an expression for the radial component
of acceleration of a liquid element located at radius r, (b) the
radial pressure gradient dp/dr, and (c) the required angular
velocity to generate a pressure of 250 MPa in the bottom of a
test tube containing water. (The free surface and bottom
radii are 50 and 130 mm, respectively.)

*3.121 A rectangular container, of base dimensions 0.4 m 3
0.2 m and height 0.4 m, is filled with water to a depth of
0.2 m; the mass of the empty container is 10 kg. The con-
tainer is placed on a plane inclined at 30� to the horizontal.
If the coefficient of sliding friction between the container and
the plane is 0.3, determine the angle of the water surface
relative to the horizontal.

*3.122 If the container of Problem 3.121 slides without
friction, determine the angle of the water surface relative to
the horizontal. What is the slope of the free surface for the
same acceleration up the plane?

*3.123 A cubical box, 80 cm on a side, half-filled with oil
(SG5 0.80), is given a constant horizontal acceleration of 0.25
g parallel to one edge. Determine the slope of the free surface
and the pressure along the horizontal bottom of the box.

*3.124 Gas centrifuges are used in one process to produce
enriched uranium for nuclear fuel rods. The maximum

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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peripheral speed of a gas centrifuge is limited by stress
considerations to about 950 ft/s. Assume a gas centrifuge
containing uranium hexafluoride gas, withmolecular gasMm =
352, and ideal gas behavior. Develop an expression for the
ratio of maximum pressure to pressure at the centrifuge axis.
Evaluate the pressure ratio for a gas temperature of 620�F.

*3.125 A pail, 400 mm in diameter and 400 mm deep, weighs
15 N and contains 200 mm of water. The pail is swung in a
vertical circle of 1-m radius at a speed of 5 m/s. Assume the
water moves as a rigid body. At the instant when the pail is at
the top of its trajectory, compute the tension in the string and
the pressure on the bottom of the pail from the water.

*3.126 A partially full can of soda is placed at the outer edge
of a child’s merry-go-round, located R5 5 ft from the axis of
rotation. The can diameter and height are 2.5 in. and 5 in.,
respectively. The can is half full, and the soda has specific
gravity SG5 1.05. Evaluate the slope of the liquid surface in
the can if the merry-go-round spins at 20 rpm. Calculate the
spin rate at which the can would spill, assuming no slippage
between the can bottom and the merry-go-round. Would the
can most likely spill or slide off the merry-go-round?

*3.127 When a water polo ball is submerged below the
surface in a swimming pool and released from rest, it is
observed to pop out of the water. How would you expect the
height to which it rises above the water to vary with depth of
submersion below the surface? Would you expect the same
results for a beach ball? For a table-tennis ball?

*3.128 Cast iron or steel molds are used in a horizontal-
spindle machine to make tubular castings such as liners and
tubes. A charge of molten metal is poured into the spinning
mold. The radial acceleration permits nearly uniformly thick
wall sections to form. A steel liner, of length L5 6 ft, outer
radius ro5 6 in., and inner radius ri5 4 in., is to be formed by
this process. To attain nearly uniform thickness, the angular
velocity should beat least 300 rpm.Determine (a) the resulting
radial acceleration on the inside surface of the liner and (b) the
maximum and minimum pressures on the surface of the mold.

*3.129 The analysis of Problem 3.121 suggests that it may be
possible to determine the coefficient of sliding friction
between two surfaces by measuring the slope of the free
surface in a liquid-filled container sliding down an inclined
surface. Investigate the feasibility of this idea.

*These problems require material from sections that may be omitted without loss of continuity in the text material.

Problems 95



4
Basic Equations in
Integral Form for
a Control Volume
4.1 Basic Laws for a System

4.2 Relation of System Derivatives to the Control Volume Formulation

4.3 Conservation of Mass

4.4 Momentum Equation for Inertial Control Volume

4.5 Momentum Equation for Control Volume with Rectilinear Acceleration

4.6 Momentum Equation for Control Volume with Arbitrary Acceleration (on the Web)

4.7 The Angular-Momentum Principle

4.8 The First Law of Thermodynamics

4.9 The Second Law of Thermodynamics

4.10 Summary and Useful Equations

96



We are now ready to study fluids in motion, so we have to decide how we are to
examine a flowing fluid. There are two options available to us, discussed in Chapter 1:

1. We can study the motion of an individual fluid particle or group of particles as they
move through space. This is the system approach, which has the advantage that the

physical laws (e.g., Newton’s second law, ~F 5 d~P=dt, where ~F is the force and

d~P=dt is the rate of momentum change of the fluid) apply to matter and hence
directly to the system. One disadvantage is that in practice the math associated with
this approach can become somewhat complicated, usually leading to a set of partial
differential equations. We will look at this approach in detail in Chapter 5. The
system approach is needed if we are interested in studying the trajectory of par-
ticles over time, for example, in pollution studies.

2. We can study a region of space as fluid flows through it, which is the control volume
approach. This is very often the method of choice, because it has widespread
practical application; for example, in aerodynamics we are usually interested in the
lift and drag on a wing (which we select as part of the control volume) rather than
what happens to individual fluid particles. The disadvantage of this approach is that

Case Study in Energy and the Environment

Wave Power: Pelamis Wave
Energy Converter

Aswehave seen in earlier Case Studies in Energy and the
Environment, there is a lot of renewable energy in ocean
waves that could be exploited. A good example of a
machine for doing this is the Pelamis Wave Energy
Converter developed by Pelamis Wave Power Ltd. in
Scotland. Thismachinewas theworld’s first commercial-
scale machine to generate power and supply it to the
power grid from offshore wave energy, and the first to be
used in a commercial wave farm project.

The wave-powered electrical generating machine
consists of a partially submerged, articulated structure
made up of cylindrical sections connected by hinged
joints. As waves pass over the structure, the flexing

motion of the joints (generated by buoyancy forces,
discussed in Chapter 3) is resisted by an arrangement
of hydraulic “rams” inside the cylindrical sections;
these rams are then used to pump high-pressure fluid
through hydraulic motors, which ultimately drive elec-
trical generators to produce electricity. The power that
is generated in each joint is sent down a single cable to
a junction device on the sea bed; several devices can be
connected together (as suggested in the schematic)
and linked to shore through a single seabed cable.
The latest generation of machines are 180 meters

long (they have four sections, each 45 meters long) and
4 meters in diameter, with four power conversion
modules. Each machine can generate up to 750 kilo-
watts, depending on the specific environmental condi-
tions at the site; they will produce 25�40 percent of the
full rated output, on average, over the course of a year.
Hence each machine can provide sufficient power to
meet the annual electricity demand of about 500 homes.
This is not a future technology; three first-generation
machines have already been installed off the coast of
Portugal, and a single machine is being built and a
four-unit machine (generating 3 megawatts of power) is
planned for use off the northern coast of Scotland.
Pelamis Wave Power Ltd. has also expressed interest in
installing Pelamis machines off the coast of Cornwall
in England, and in the Pacific Ocean off the coast of
Tillamook, Oregon. The Pelamis machine has a number
of advantages: It is durable and low maintenance,
uses available technology, and generates electricity
inexpensively.

Schematic of possible Pelamis wave farm. (Picture courtesy of
Pelamis Wave Power Ltd.)
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the physical laws apply to matter and not directly to regions of space, so we have to
perform some math to convert physical laws from their system formulation to a
control volume formulation.

We will examine the control volume approach in this chapter. The alert reader will
notice that this chapter has the word integral in its title, and Chapter 5 has the word
differential. This is an important distinction: It indicates that we will study a finite
region in this chapter and the motion of a particle (an infinitesimal) in Chapter 5
(although in Section 4.4 we will look at a differential control volume to derive the
famous Bernoulli equation). The agenda for this chapter is to review the physical
laws as they apply to a system (Section 4.1); develop some math to convert from a
system to a control volume (Section 4.2) description; and obtain formulas for the
physical laws for control volume analysis by combining the results of Sections 4.1
and 4.2.

4.1 Basic Laws for a System
The basic laws we will apply are conservation of mass, Newton’s second law, the
angular-momentum principle, and the first and second laws of thermodynamics. For
converting these system equations to equivalent control volume formulas, it turns out
we want to express each of the laws as a rate equation.

Conservation of Mass

For a system (by definition a fixed amount of matter, M, we have chosen) we have the
simple result thatM5 constant. However, as discussed above, we wish to express each
physical law as a rate equation, so we write

dM

dt

�
system

5 0 ð4:1aÞ

where

Msystem 5

Z
MðsystemÞ

dm 5

Z
V---ðsystemÞ

ρ dV--- ð4:1bÞ

Newton’s Second Law

For a system moving relative to an inertial reference frame, Newton’s second law
states that the sum of all external forces acting on the system is equal to the time rate
of change of linear momentum of the system,

~F 5
d~P

dt

!
system

ð4:2aÞ

where the linear momentum of the system is given by

~Psystem 5

Z
MðsystemÞ

~V dm 5

Z
V---ðsystemÞ

~V ρ dV--- ð4:2bÞ
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The Angular-Momentum Principle

The angular-momentum principle for a system states that the rate of change of
angular momentum is equal to the sum of all torques acting on the system,

~T 5
d~H

dt

!
system

ð4:3aÞ

where the angular momentum of the system is given by

~H system 5

Z
MðsystemÞ

~r3 ~V dm 5

Z
V---ðsystemÞ

~r3 ~V ρ dV--- ð4:3bÞ

Torque can be produced by surface and body forces (here gravity) and also by shafts
that cross the system boundary,

~T 5 ~r3 ~Fs 1

Z
MðsystemÞ

~r3~g dm1 ~T shaft ð4:3cÞ

The First Law of Thermodynamics

The first law of thermodynamics is a statement of conservation of energy for a
system,

δQ2 δW 5 dE

The equation can be written in rate form as

_Q2 _W 5
dE

dt

�
system

ð4:4aÞ

where the total energy of the system is given by

Esystem 5

Z
MðsystemÞ

e dm 5

Z
V---ðsystemÞ

e ρ dV--- ð4:4bÞ

and

e 5 u1
V2

2
1 gz ð4:4cÞ

In Eq. 4.4a, _Q (the rate of heat transfer) is positive when heat is added to the system
from the surroundings; _W (the rate of work) is positive when work is done by the
system on its surroundings. In Eq. 4.4c, u is the specific internal energy, V the speed,
and z the height (relative to a convenient datum) of a particle of substance having
mass dm.

The Second Law of Thermodynamics

If an amount of heat, δQ, is transferred to a system at temperature T, the second law
of thermodynamics states that the change in entropy, dS, of the system satisfies

dS$
δQ
T
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On a rate basis we can write

dS

dt

�
system

$
1

T
_Q ð4:5aÞ

where the total entropy of the system is given by

Ssystem 5

Z
MðsystemÞ

s dm 5

Z
V---ðsystemÞ

s ρ dV--- ð4:5bÞ

4.2 Relation of System Derivatives
to the Control Volume Formulation
We now have the five basic laws expressed as system rate equations. Our task in this
section is to develop a general expression for converting a system rate equation into
an equivalent control volume equation. Instead of converting the equations for rates
of change of M, ~P, ~H , E, and S (Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and 4.5a) one by one, we let
all of them be represented by the symbol N. Hence N represents the amount of mass,
or momentum, or angular momentum, or energy, or entropy of the system. Corre-
sponding to this extensive property, we will also need the intensive (i.e., per unit mass)
property η. Thus

Nsystem 5

Z
MðsystemÞ

η dm 5

Z
V---ðsystemÞ

η ρ dV--- ð4:6Þ

Comparing Eq. 4.6 with Eqs. 4.1b, 4.2b, 4.3b, 4.4b, and 4.5b, we see that if:

N 5 M; then η 5 1
N 5 ~P; then η 5 ~V
N 5 ~H ; then η 5 ~r3 ~V
N 5 E; then η 5 e
N 5 S; then η 5 s

How can we derive a control volume description from a system description of a
fluid flow? Before specifically answering this question, we can describe the derivation
in general terms. We imagine selecting an arbitrary piece of the flowing fluid at some
time t0, as shown in Fig. 4.1a—we could imagine dyeing this piece of fluid, say, blue.

y

x
z

y

x
z

Streamlines
at time, t0 Subregion (1)

of region I

Subregion (3)
of region III

I

II
III

System

Control volume
(b) Time, t0 + Δ t(a) Time, t0

Fig. 4.1 System and control volume configuration.

100 Chapter 4 Basic Equations in Integral Form for a Control Volume



This initial shape of the fluid system is chosen as our control volume, which is fixed
in space relative to coordinates xyz. After an infinitesimal time Δt the system will
have moved (probably changing shape as it does so) to a new location, as shown in
Fig. 4.1b. The laws we discussed above apply to this piece of fluid—for example, its
mass will be constant (Eq. 4.1a). By examining the geometry of the system/control
volume pair at t5 t0 and at t5 t01Δt, we will be able to obtain control volume for-
mulations of the basic laws.

Derivation

From Fig. 4.1 we see that the system, which was entirely within the control volume at
time t0, is partially out of the control volume at time t01Δt. In fact, three regions can
be identified. These are: regions I and II, which together make up the control volume,
and region III, which, with region II, is the location of the system at time t01Δt.

Recall that our objective is to relate the rate of change of any arbitrary extensive
property, N, of the system to quantities associated with the control volume. From the
definition of a derivative, the rate of change of Nsystem is given by

dN

dt

�
system

� lim
Δt-0

NsÞt01Δt 2NsÞt0
Δt

ð4:7Þ

For convenience, subscript s has been used to denote the system in the definition of a
derivative in Eq. 4.7.

From the geometry of Fig. 4.1,

NsÞt01Δt 5 ðNII 1NIIIÞt01Δt 5 ðNCV 2NI 1NIIIÞt01Δt

and

NsÞt0 5 ðNCVÞt0
Substituting into the definition of the system derivative, Eq. 4.7, we obtain

dN

dt

�
s

5 lim
Δt-0

ðNCV 2NI 1NIIIÞt01Δt 2NCVÞt0
Δt

Since the limit of a sum is equal to the sum of the limits, we can write

dN

dt

�
s

5 lim
Δt-0

NCVÞt01Δt 2NCVÞt0
Δt

1 lim
Δt-0

NIIIÞt01Δt

Δt
2 lim

Δt-0

NIÞt01Δt

Δt
ð4:8Þ

�1 �2 �3

Our task now is to evaluate each of the three terms in Eq. 4.8.
Term 1 in Eq. 4.8 simplifies to

lim
Δt-0

NCVÞt01Δt 2NCVÞt0
Δt

5
@NCV

@t
5

@

@t

Z
CV

η ρ dV--- ð4:9aÞ

To evaluate term 2 we first develop an expression for NIIIÞt01Δt by looking at the
enlarged view of a typical subregion (subregion (3)) of region III shown in Fig. 4.2.
The vector area element d~A of the control surface has magnitude dA, and its direction
is the outward normal of the area element. In general, the velocity vector ~V will be at
some angle α with respect to d~A.
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For this subregion we have

dNIIIÞt01Δt 5 ðη ρ dV---Þt01Δt

We need to obtain an expression for the volume dV--- of this cylindrical element. The
vector length of the cylinder is given by Δ~l 5 ~VΔt. The volume of a prismatic
cylinder, whose area d~A is at an angle α to its length Δ~l, is given by
dV--- 5 Δl dA cos α5 Δ~l � d~A 5 ~V � d~AΔt. Hence, for subregion (3) we can write

dNIIIÞt01Δt 5 η ρ~V � d~AΔt

Then, for the entire region III we can integrate and for term 2 in Eq. 4.8 obtain

lim
Δt-0

NIIIÞt01Δt

Δt
5 lim

Δt-0

R
CSIII

dNIIIÞt01Δt

Δt
5 lim

Δt-0

R
CSIII

ηρ~V �d~AΔt

Δt
5

Z
CSIII

ηρ~V �d~A ð4:9bÞ

We can perform a similar analysis for subregion (1) of region I, and obtain for term in
Eq. 4.8

lim
Δt-0

NIÞt01Δt

Δt
52

Z
CS1

η ρ~V � d~A ð4:9cÞ

For subregion (1), the velocity vector acts into the control volume, but the area
normal always (by convention) points outward (angle α.π/2), so the scalar product
in Eq. 4.9c is negative. Hence the minus sign in Eq. 4.9c is needed to cancel the
negative result of the scalar product to make sure we obtain a positive result for the
amount of matter that was in region I (we can’t have negative matter).

This concept of the sign of the scalar product is illustrated in Fig. 4.3 for (a) the
general case of an inlet or exit, (b) an exit velocity parallel to the surface normal, and
(c) an inlet velocity parallel to the surface normal. Cases (b) and (c) are obviously
convenient special cases of (a); the value of the cosine in case (a) automatically
generates the correct sign of either an inlet or an exit.

We can finally use Eqs. 4.9a, 4.9b, and 4.9c in Eq. 4.8 to obtain

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS1

η ρ~V � d~A1

Z
CSIII

η ρ~V � d~A

and the two last integrals can be combined because CSI and CSIII constitute the entire
control surface,

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ~V � d~A ð4:10Þ

Control surface III

System boundary
at time t0 + Δt

Δl = VΔt

V
dA
α

Fig. 4.2 Enlarged view of subregion (3) from Fig. 4.1.
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Equation 4.10 is the relation we set out to obtain. It is the fundamental relation
between the rate of change of any arbitrary extensive property, N, of a system and the
variations of this property associated with a control volume. Some authors refer to
Eq. 4.10 as the Reynolds Transport Theorem.

Physical Interpretation

It took several pages, but we have reached our goal: We now have a formula (Eq. 4.10)
that we can use to convert the rate of change of any extensive property N of a system to
an equivalent formulation for use with a control volume. We can now use Eq. 4.10 in
the various basic physical law equations (Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and 4.5a) one by
one, with N replaced with each of the propertiesM, ~P, ~H , E, and S (with corresponding
symbols for η), to replace system derivatives with control volume expressions. Because
we consider the equation itself to be “basic” we repeat it to emphasize its importance:

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ~V � d~A ð4:10Þ

We need to be clear here: The system is the matter that happens to be passing through
the chosen control volume, at the instant we chose. For example, if we chose as a
control volume the region contained by an airplane wing and an imaginary rectan-
gular boundary around it, the system would be the mass of the air that is instanta-
neously contained between the rectangle and the airfoil. Before applying Eq. 4.10 to
the physical laws, let’s discuss the meaning of each term of the equation:

dN

dt

�
system

is the rate of change of the system extensive property N. For exam-
ple, if N 5 ~P, we obtain the rate of change of momentum.

@

@t

Z
CV

η ρ dV--- is the rate of change of the amount of propertyN in the control volume.
The term

R
CV η ρ dV--- computes the instantaneous value of N in the

control volume (
R
CV ρ dV--- is the instantaneous mass in the control

volume). For example, ifN 5 ~P, then η 5 ~V and
R
CV

~VρdV--- computes
the instantaneous amount of momentum in the control volume.Z

CS

η ρ~V � d~A is the rate at which property N is exiting the surface of the control

volume. The term ρ~V � d~A computes the rate of mass transfer leaving

across control surface area element d~A; multiplying by η computes
the rate of flux of property N across the element; and integrating
therefore computes the net flux of N out of the control volume. For

example, if N 5 ~P, then η 5 ~V and
R
CS

~Vρ~V � d~A computes the net

flux of momentum out of the control volume.

We make two comments about velocity ~V in Eq. 4.10. First, we reiterate the dis-
cussion for Fig. 4.3 that care should be taken in evaluating the dot product: Because ~A
is always directed outwards, the dot product will be positive when ~V is outward and

V · dA = VdA cos �

V

�

dA

CS

(a) General inlet/exit

V · dA = +VdA

V

CS

(b) Normal exit

V · dA = –VdA

V

CS

(c) Normal inlet

dA dA

Fig. 4.3 Evaluating the scalar product.
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negative when ~V is inward. Second, ~V is measured with respect to the control volume:
When the control volume coordinates xyz are stationary or moving with a constant
linear velocity, the control volume will constitute an inertial frame and the physical
laws (specifically Newton’s second law) we have described will apply.1

With these comments we are ready to combine the physical laws (Eqs. 4.1a, 4.2a,
4.3a, 4.4a, and 4.5a) with Eq. 4.10 to obtain some useful control volume equations.

4.3 Conservation of Mass
The first physical principle to which we apply this conversion from a system to a
control volume description is the mass conservation principle: The mass of the system
remains constant,

dM

dt

�
system

5 0 ð4:1aÞ

where

Msystem 5

Z
MðsystemÞ

dm 5

Z
V---ðsystemÞ

ρ dV--- ð4:1bÞ

The system and control volume formulations are related by Eq. 4.10,

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ~V � d~A ð4:10Þ

where

Nsystem 5

Z
MðsystemÞ

η dm 5

Z
V---ðsystemÞ

η ρ dV--- ð4:6Þ

To derive the control volume formulation of conservation of mass, we set

N 5 M and η 5 1

With this substitution, we obtain

dM

dt

�
system

5
@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V � d~A ð4:11Þ

Comparing Eqs. 4.1a and 4.11, we arrive (after rearranging) at the control volume
formulation of the conservation of mass:

@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V � d~A 5 0 ð4:12Þ

In Eq. 4.12 the first term represents the rate of change of mass within the control
volume; the second term represents the net rate of mass flux out through the control
surface. Equation 4.12 indicates that the rate of change of mass in the control volume
plus the net outflow is zero. The mass conservation equation is also called the

1For an accelerating control volume (one whose coordinates xyz are accelerating with respect to an

“absolute” set of coordinatesXYZ), we must modify the form of Newton’s second law (Eq. 4.2a). We will do

this in Sections 4.6 (linear acceleration) and 4.7 (arbitrary acceleration).

104 Chapter 4 Basic Equations in Integral Form for a Control Volume



continuity equation. In common-sense terms, the rate of increase of mass in the
control volume is due to the net inflow of mass:

Rate of increase
of mass in CV

5
Net influx of

mass

@

@t

Z
CV

ρ dV--- 5 2

Z
CS

ρ~V � d~A

Once again, we note that in using Eq. 4.12, care should be taken in evaluating the
scalar product ~V � d~A 5 VdA cos α: It could be positive (outflow, α,π/2), negative
(inflow, α.π/2), or even zero (α5π/2). Recall that Fig. 4.3 illustrates the general
case as well as the convenient cases α5 0 and α5π.

Special Cases

In special cases it is possible to simplify Eq. 4.12. Consider first the case of an
incompressible fluid, in which density remains constant. When ρ is constant, it is not a
function of space or time. Consequently, for incompressible fluids, Eq. 4.12 may be
written as

ρ
@

@t

Z
CV

dV---1 ρ
Z
CS

~V � d~A 5 0

The integral of dV--- over the control volume is simply the volume of the control
volume. Thus, on dividing through by ρ, we write

@V---

@t
1

Z
CS

~V � d~A 5 0

For a nondeformable control volume of fixed size and shape, V--- 5 constant. The
conservation of mass for incompressible flow through a fixed control volume becomes

Z
CS

~V � d~A 5 0 ð4:13aÞ

A useful special case is when we have (or can approximate) uniform velocity at
each inlet and exit. In this case Eq. 4.13a simplifies to

X
CS

~V � ~A 5 0 ð4:13bÞ

Note that we have not assumed the flow to be steady in reducing Eq. 4.12 to the forms
4.13a and 4.13b. We have only imposed the restriction of incompressible fluid. Thus
Eqs. 4.13a and 4.13b are statements of conservation of mass for flow of an
incompressible fluid that may be steady or unsteady.

The dimensions of the integrand in Eq. 4.13a are L3/t. The integral of ~V � d~A over a
section of the control surface is commonly called the volume flow rate or volume rate
of flow. Thus, for incompressible flow, the volume flow rate into a fixed control
volume must be equal to the volume flow rate out of the control volume. The volume
flow rate Q, through a section of a control surface of area A, is given by

Q 5

Z
A

~V � d~A ð4:14aÞ

VIDEO

Mass Conservation: Filling a Tank.
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The average velocity magnitude, ~V , at a section is defined as

~V 5
Q

A
5

1

A

Z
A

~V � d~A ð4:14bÞ

Consider now the general case of steady, compressible flow through a fixed control
volume. Since the flow is steady, this means that at most ρ5 ρ(x, y, z). By definition,
no fluid property varies with time in a steady flow. Consequently, the first term of
Eq. 4.12 must be zero and, hence, for steady flow, the statement of conservation of
mass reduces to

Z
CS

ρ~V � d~A 5 0 ð4:15aÞ

A useful special case is when we have (or can approximate) uniform velocity at
each inlet and exit. In this case, Eq. 4.15a simplifies to

X
CS

ρ~V � ~A 5 0 ð4:15bÞ

Thus, for steady flow, the mass flow rate into a control volume must be equal to the
mass flow rate out of the control volume.

Wewill now look at threeExamples to illustrate some features of the various forms of
the conservation ofmass equation for a control volume. Example 4.1 involves a problem
in which we have uniform flow at each section, Example 4.2 involves a problem in which
we do not have uniform flow at a location, and Example 4.3 involves a problem in
which we have unsteady flow.

Example 4.1 MASS FLOW AT A PIPE JUNCTION

Consider the steady flow in a water pipe joint shown in the diagram.
The areas are: A15 0.2 m2, A25 0.2 m2, and A35 0.15 m2. In addition,
fluid is lost out of a hole at 4 , estimated at a rate of 0.1 m3/s. The
average speeds at sections 1 and 3 are V15 5 m/s and V35 12 m/s,
respectively. Find the velocity at section 2 .

Given: Steady flow of water through the device.

A1 5 0:2m2 A2 5 0:2m2 A3 5 0:15 m2

V1 5 5m=s V3 5 12 m=s ρ 5 999 kg=m3

Volume flow rate at 4 5 0.1 m3/s

Find: Velocity at section 2 .

Solution: Choose a fixed control volume as shown. Make an assumption
that the flow at section 2 is outwards, and label the diagram accordingly
(if this assumption is incorrect our final result will tell us).

Governing equation: The general control volume equation is Eq. 4.12,
but we can go immediately to Eq. 4.13b because of assumptions (2) and
(3) below, X

CS
~V � ~A 5 0

= 30°

1
4

3

2

�

1
4

3

2

CV
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Assumptions: (1) Steady flow (given).
(2) Incompressible flow.
(3) Uniform properties at each section.

Hence (using Eq. 4.14a for the leak)

~V 1 � ~A1 1~V 2 � ~A2 1~V 3 � ~A3 1Q4 5 0 ð1Þ
where Q4 is the flow rate out of the leak.

Let us examine the first three terms in Eq. 1 in light of the discussion of Fig. 4.3 and the directions of the velocity
vectors:

~V1 � ~A1 52V1A1
Sign of ~V1 � ~A1 is
negative at surface 1

� �

~V2 � ~A2 5 1V2A2
Sign of ~V2 � ~A2 is
positive at surface 2

� �

~V3 � ~A3 5 1V3A3
Sign of ~V3 � ~A3 is
positive at surface 3

� �

Using these results in Eq. 1,

2V1A1 1V2A2 1V3A3 1Q4 5 0

or

V2 5
V1A1 2V3A3 2Q4

A2

5
5
m

s
3 0:2m2 2 12

m

s
3 0:15 m2 2

0:1m3

s
0:2m2

524:5 m=s ß
V2

Recall that V2 represents the magnitude of the velocity, which we
assumed was outwards from the control volume. The fact that V2 is
negative means that in fact we have an inflow at location 2 —our
initial assumption was invalid.

V1

A1

1

V2

A2

2

V3

A3

3

This problem demonstrates use of the
sign convention for evaluating

R
A
~V � d~A or ΣCS

~V � ~A. In particular, the
area normal is always drawn outwards
from the control surface.
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Example 4.2 MASS FLOW RATE IN BOUNDARY LAYER

The fluid in direct contact with a stationary solid boundary has zero velocity; there is no slip at the boundary. Thus
the flow over a flat plate adheres to the plate surface and forms a boundary layer, as depicted below. The flow ahead of
the plate is uniform with velocity ~V 5 Uî; U5 30 m/s. The velocity distribution within the boundary layer (0 # y # δ)
along cd is approximated as u/U5 2(y/δ)2 (y/δ)2.

The boundary-layer thickness at location d is δ5 5 mm. The fluid is air with density ρ5 1.24 kg/m3. Assuming the
plate width perpendicular to the paper to be w5 0.6 m, calculate the mass flow rate across surface bc of control
volume abcd.

Given: Steady, incompressible flow over a flat plate, ρ5 1.24 kg/m3. Width of plate, w5 0.6 m.
Velocity ahead of plate is uniform: ~V 5 Uî, U5 30 m/s.

At x 5 xd :

δ 5 5mm

u

U
5 2

y

δ

� �
2

y

δ

� �2

Find: Mass flow rate across surface bc.

Solution: The fixed control volume is shown by the dashed lines.

Governing equation: The general control volume equation is Eq. 4.12, but we can go immediately to Eq. 4.15a
because of assumption (1) below, Z

CS

ρ~V � d~A 5 0

Assumptions: (1) Steady flow (given).
(2) Incompressible flow (given).
(3) Two-dimensional flow, given properties are independent of z.

Assuming that there is no flow in the z direction, then

no flow
across da

� �
Z
Aab

ρ~V � d~A1

Z
Abc

ρ~V � d~A1

Z
Acd

ρ~V � d~A1

Z
Ada

ρ~V � d~A 5 0

‘ _mbc 5

Z
Abc

ρ~V � d~A 52

Z
Aab

ρ~V � d~A2

Z
Acd

ρ~V � d~A ð1Þ

We need to evaluate the integrals on the right side of the equation.

CV

Edge of
boundary

layer

a d

b c

U U

x

y

CV

a d

b c

U U

x

y
δ = 5 mm
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For depth w in the z direction, we obtainZ
Aab

ρ~V � d~A 52

Z
Aab

ρu dA 52

Z yb

ya

ρuw dy

52

Z δ

0

ρuw dy 52

Z δ

0

ρUw dy

Z
Aab

ρ~V � d~A 52 ρUwy
h iδ

0
52ρUwδ

Z
Acd

ρ~V � d~A 5

Z
Acd

ρu dA 5

Z yc

yd

ρuw dy

5

Z δ

0

ρuw dy 5

Z δ

0

ρwU 2
y

δ

0
@
1
A2

y

δ

0
@
1
A

22
4

3
5 dy

Z
Acd

ρ~V � d~A 5 ρwU
y2

δ
2

y3

3δ2

2
4

3
5
δ

0

5 ρwUδ 12
1

3

2
4

3
5 5

2ρUwδ
3

Substituting into Eq. 1, we obtain

‘ _mbc 5 ρUwδ2
2ρUwδ

3
5

ρUwδ
3

5
1

3
3 1:24

kg

m3
3 30

m

s
3 0:6m3 5 mm3

m

1000mm

_mbc 5 0:0372 kg=s ß

Positive sign indicates flow
out across surface bc:

� �
_mb

dA

V

b

a

dA

V

c

d

~V � d~A is negative
dA 5 wdy

� �

fu 5 U over area abg

~V � d~A is positive
dA 5 wdy

� �

This problem demonstrates use of the
conservation of mass equation when
we have nonuniform flow at a section.

Example 4.3 DENSITY CHANGE IN VENTING TANK

A tank of 0.05 m3 volume contains air at 800 kPa (absolute) and 15�C. At t5 0, air begins escaping from the tank
through a valve with a flow area of 65 mm2. The air passing through the valve has a speed of 300 m/s and a density of
6 kg/m3. Determine the instantaneous rate of change of density in the tank at t5 0.

Given: Tank of volume V--- 5 0:05 m3 contains air at p5 800 kPa (absolute), T5
15�C. At t5 0, air escapes through a valve. Air leaves with speed V5 300 m/s
and density ρ5 6 kg/m3 through area A5 65 mm2.

Find: Rate of change of air density in the tank at t5 0.

Solution: Choose a fixed control volume as shown by the dashed line.

Governing equation:
@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V � d~A 5 0

Assumptions: (1) Properties in the tank are uniform, but time-dependent.
(2) Uniform flow at section 1 .

CV

y

x

1
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4.4 Momentum Equation for Inertial Control Volume
We now wish to obtain a control volume form of Newton’s second law. We use the
same procedure we just used for mass conservation, with one note of caution:
the control volume coordinates (with respect to which we measure all velocities) are
inertial; that is, the control volume coordinates xyz are either at rest or moving at
constant speed with respect to an “absolute” set of coordinates XYZ. (Sections 4.6
and 4.7 will analyze noninertial control volumes.) We begin with the mathematical
formulation for a system and then use Eq. 4.10 to go from the system to the control
volume formulation.

Since properties are assumed uniform in the tank at any instant, we can take ρ out from within the volume integral
of the first term,

@

@t
ρCV

Z
CV

dV---

� 	
1

Z
CS

ρ~V � d~A 5 0

Now,
R
CVdV--- 5 V---, and hence

@

@t
ðρV---ÞCV 1

Z
CS

ρ~V � d~A 5 0

The only place where mass crosses the boundary of the control volume is at surface 1 . HenceZ
CS

ρ~V � d~A 5

Z
A1

ρ~V � d~A and
@

@t
ðρV---Þ1

Z
A1

ρ~V � d~A 5 0

At surface 1 the sign of ρ~V � d~A is positive, so

@

@t
ðρV---Þ1

Z
A1

ρV dA 5 0

Since flow is assumed uniform over surface 1 , then

@

@t
ðρV---Þ1 ρ1V1A1 5 0 or

@

@t
ðρV---Þ 52ρ1V1A1

Since the volume, V---, of the tank is not a function of time,

V---
@ρ
@t

52ρ1V1A1

and
@ρ
@t

52
ρ1V1A1

V---

At t5 0,

@ρ
@t

526
kg

m3
3 300

m

s
3 65 mm2 3

1

0:05 m3
3

m2

106 mm2

@ρ
@t

522:34 ðkg=m3Þ=s ß

fThe density is decreasing:g @ρ
@t

A1

V1

This problem demonstrates use of the
conservation of mass equation for
unsteady flow problems.
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Recall that Newton’s second law for a system moving relative to an inertial coor-
dinate system was given by Eq. 4.2a as

~F 5
d~P

dt

!
system

ð4:2aÞ

where the linear momentum of the system is given by

~Psystem 5

Z
MðsystemÞ

~V dm 5

Z
V---ðsystemÞ

~V ρ dV--- ð4:2bÞ

and the resultant force, ~F , includes all surface and body forces acting on the system,

~F 5 ~FS 1 ~FB

The system and control volume formulations are related using Eq. 4.10,

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ~V � d~A ð4:10Þ

To derive the control volume formulation of Newton’s second law, we set

N 5 ~P and η 5 ~V

From Eq. 4.10, with this substitution, we obtain

d~P

dt

!
system

5
@

@t

Z
CV

~V ρ dV---1
Z
CS

~Vρ~V � d~A ð4:16Þ

From Eq. 4.2a

d~P

dt

!
system

5 ~F Þon system ð4:2aÞ

Since, in deriving Eq. 4.10, the system and the control volume coincided at t0, then

~F Þon system 5 ~F Þon control volume

In light of this, Eqs. 4.2a and 4.16 may be combined to yield the control volume
formulation of Newton’s second law for a nonaccelerating control volume

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~V ρdV---1
Z
CS

~V ρ~V � d~A ð4:17aÞ

For cases when we have uniform flow at each inlet and exit, we can use

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~V ρdV---1
X

CS
~V ρ~V � ~A ð4:17bÞ

Equations 4.17a and 4.17b are our (nonaccelerating) control volume forms of
Newton’s second law. It states that the total force (due to surface and body forces)
acting on the control volume leads to a rate of change of momentum within the
control volume (the volume integral) and/or a net rate at which momentum is leaving
the control volume through the control surface.

We must be a little careful in applying Eqs. 4.17. The first step will always be to
carefully choose a control volume and its control surface so that we can evaluate the
volume integral and the surface integral (or summation); each inlet and exit should be
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carefully labeled, as should the external forces acting. In fluid mechanics the body
force is usually gravity, so

~FB 5

Z
CV

ρ~g dV--- 5 ~WCV 5 M~g

where ~g is the acceleration of gravity and ~WCV is the instantaneous weight of the
entire control volume. In many applications the surface force is due to pressure,

~FS 5

Z
A

2 pd~A

Note that the minus sign is to ensure that we always compute pressure forces acting
onto the control surface (recall d~A was chosen to be a vector pointing out of the
control volume). It is worth stressing that even at points on the surface that have an
outflow, the pressure force acts onto the control volume.

In Eqs. 4.17 we must also be careful in evaluating
R
CS

~Vρ~V � d~A or ΣCS
~Vρ~V � ~A

(this may be easier to do if we write them with the implied parentheses,R
CS

~Vρð~V � d~AÞ or ΣCS
~Vρð~V � ~AÞ). The velocity ~V must be measured with respect to

the control volume coordinates xyz, with the appropriate signs for its vector com-
ponents u, v, and w; recall also that the scalar product will be positive for outflow and
negative for inflow (refer to Fig. 4.3).

The momentum equation (Eqs. 4.17) is a vector equation. We will usually write the
three scalar components, as measured in the xyz coordinates of the control volume,

Fx 5 FSx 1FBx
5

@

@t

Z
CV

u ρ dV---1
Z
CS

u ρ~V � d~A ð4:18aÞ

Fy 5 FSy 1FBy
5

@

@t

Z
CV

v ρ dV---1
Z
CS

v ρ~V � d~A ð4:18bÞ

Fz 5 FSz 1FBz
5

@

@t

Z
CV

w ρ dV---1
Z
CS

w ρ~V � d~A ð4:18cÞ

or, for uniform flow at each inlet and exit,

Fx 5 FSx 1FBx
5

@

@t

Z
CV

u ρ dV---1
X

CS
u ρ~V � ~A ð4:18dÞ

Fy 5 FSy 1FBy
5

@

@t

Z
CV

v ρ dV---1
X

CS
v ρ~V � ~A ð4:18eÞ

Fz 5 FSz 1FBz
5

@

@t

Z
CV

w ρ dV---1
X

CS
w ρ~V � ~A ð4:18fÞ

Note that, as we found for the mass conservation equation (Eq. 4.12), for steady flow
the first term on the right in Eqs. 4.17 and 4.18 is zero.

We will now look at five Examples to illustrate some features of the various forms
of the momentum equation for a control volume. Example 4.4 demonstrates how
intelligent choice of the control volume can simplify analysis of a problem, Example
4.5 involves a problem in which we have significant body forces, Example 4.6 explains
how to simplify surface force evaluations by working in gage pressures, Example 4.7
involves nonuniform surface forces, and Example 4.8 involves a problem in which we
have unsteady flow.

VIDEO

Momentum Effect: A Jet Impacting a

Surface.
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Example 4.4 CHOICE OF CONTROL VOLUME FOR MOMENTUM ANALYSIS

Water from a stationary nozzle strikes a flat plate as shown. The water leaves the
nozzle at 15 m/s; the nozzle area is 0.01 m2. Assuming the water is directed normal to
the plate, and flows along the plate, determine the horizontal force you need to resist
to hold it in place.

Given: Water from a stationary nozzle is directed normal to the plate; subsequent
flow is parallel to plate.

Jet velocity; ~V 5 15îm=s

Nozzle area;An 5 0:01 m2

Find: Horizontal force on your hand.

Solution: We chose a coordinate system in defining the problem above. We must now choose a suitable control
volume. Two possible choices are shown by the dashed lines below.

In both cases, water from the nozzle crosses the control surface through areaA1 (assumed equal to the nozzle area)
and is assumed to leave the control volume tangent to the plate surface in the 1y or 2y direction. Before trying to
decide which is the “best” control volume to use, let us write the governing equations.

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~VρdV---1
Z
CS

~Vρ~V � d~A and
@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V � d~A 5 0

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Uniform flow at each section where fluid crosses the CV boundaries.

Regardless of our choice of control volume, assumptions (1), (2), and (3) lead to

~F 5 ~FS 1 ~FB 5
X

CS
~Vρ~V � ~A and

X
CS

ρ~V � ~A 5 0

Evaluating the momentum flux term will lead to the same result for both control volumes. We should choose the
control volume that allows the most straightforward evaluation of the forces.

Remember in applying the momentum equation that the force, ~F , represents all forces acting on the control volume.
Let us solve the problem using each of the control volumes.

CVI

The control volume has been selected so that the area of the left surface is equal to the
area of the right surface. Denote this area by A.

The control volume cuts through your hand. We denote the components of the reac-
tion force of your hand on the control volume as Rx and Ry and assume both to be
positive. (The force of the control volume on your hand is equal and opposite to Rx and
Ry.)

Atmospheric pressure acts on all surfaces of the control volume. Note that the pressure
in a free jet is ambient, i.e., in this case atmospheric. (The distributed force due to
atmospheric pressure has been shown on the vertical faces only.)

V

y

x

A

y

x

CVI

1

y

x

CVII

1 Ap

y
x

Ry
Rx

W

patmpatm

Nozzle

Plate
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The body force on the control volume is denoted as W.
Since we are looking for the horizontal force, we write the x component of the steady flow momentum equation

FSx 1FBx
5
X

CS
u ρ~V � ~A

There are no body forces in the x direction, so FBx
5 0, and

FSx 5
X

CS
u ρ~V � ~A

To evaluate FSx , we must include all surface forces acting on the control volume

FSx 5 patmA 2 patmA 1 Rx

force due to atmospheric
pressure acts to right
ðpositive directionÞ
on left surface

force due to atmospheric
pressure acts to left
ðnegative directionÞ
on right surface

force of your hand on
control volume
ðassumed positiveÞ

Consequently, FSx 5 Rx, and

Rx 5
X

CS
u ρ~V � ~A 5 u ρ~V � ~A 1 For top and bottom surfaces, u 5 0f gj

Rx 52u1 ρV1A1

fAt 1 , ρ~V1 � ~A1 5 ρð�V1A1Þ since
~V1 and ~A1 are 180� apart.

Note that u1 5 V1g

Rx 5215
m

s
3 999

kg

m3
3 15

m

s
3 0:01 m2 3

N � s2
kg �m fu1 5 15 m=sg

Rx 522:25 kN fRx acts opposite to positive direction assumed:g
The horizontal force on your hand is

Kx 52Rx 5 2:25 kN ß
fforce on your hand acts to the rightg Kx

CVII with Horizontal Forces Shown

The control volume has been selected so the areas of the left surface and of the right surface are equal to the area of
the plate. Denote this area by Ap.

The control volume is in contact with the plate over the entire plate surface. We denote the horizontal reaction
force from the plate on the control volume as Bx (and assume it to be positive).

Atmospheric pressure acts on the left surface of the control volume (and on the two horizontal surfaces).
The body force on this control volume has no component in the x direction.
Then the x component of the momentum equation,

FSx 5
X

CS
u ρ~V � ~A

yields

FSx 5 patm Ap 1Bx 5 u ρ~V � ~Aj1 52u1V1A1 522:25 kN

patm
Bx
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Then

Bx 52patm Ap 2 2:25 kN

To determine the net force on the plate, we need a free-body diagram of the plate:

P
Fx 5 0 52Bx 2 patmAp 1Rx

Rx 5 patmAp 1Bx

Rx 5 patmAp 1 ð2patmAp 2 2:25 kNÞ 522:25 kN

Then the horizontal force on your hand is Kx52Rx5 2.25 kN.
Note that the choice of CVII meant we needed an additional free-body diagram.

In general it is best to select the control volume so that the force sought
acts explicitly on the control volume.

patm

Bx

Ry

Rx

Notes:
ü This problem demonstrateshow thoughtful choice of thecontrol volume can simplifyuse of the momentumequation.ü The analysis would have been
greatly simplified if we hadworked in gage pressures (see
Example 4.6).ü For this problem the forcegenerated was entirely due to

the plate absorbing the jet’shorizontal momentum.

Example 4.5 TANK ON SCALE: BODY FORCE

A metal container 2 ft high, with an inside cross-sectional area of 1 ft2,
weighs 5 lbf when empty. The container is placed on a scale and water
flows in through an opening in the top and out through the two equal-area
openings in the sides, as shown in the diagram. Under steady flow con-
ditions, the height of the water in the tank is h5 1.9 ft.

A1 5 0:1ft2

~V 1 5210ĵ ft=s

A2 5 A3 5 0:1 ft2

Your boss claims that the scale will read the weight of the volume of water in the tank plus the tank weight, i.e., that
we can treat this as a simple statics problem. You disagree, claiming that a fluid flow analysis is required. Who is right,
and what does the scale indicate?

Given: Metal container, of height 2 ft and cross-sectional area A5 1 ft2,
weighs 5 lbf when empty. Container rests on scale. Under steady flow
conditions water depth is h5 1.9 ft. Water enters vertically at section 1 and
leaves horizontally through sections 2 and 3

A1 5 0:1 ft2

~V 1 5210ĵ ft=s

A2 5 A3 5 0:1 ft2

Find: Scale reading.

3

1

2

V1

h

y

x

Scale

V3 V2

3

1

2

V3

h

y

x

Wtank

WH2O

Ry

CV

V2

V1
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Solution:
Choose a control volume as shown; Ry is the force of the scale on the control volume (exerted on the control volume
through the supports) and is assumed positive.

The weight of the tank is designated Wtank; the weight of the water in the tank is WH2O.
Atmospheric pressure acts uniformly on the entire control surface, and therefore has no net effect on the control

volume. Because of this null effect we have not shown the pressure distribution in the diagram.

Governing equations: The general control volume momentum and mass conservation equations are Eqs. 4.17 and
4.12, respectively,

FS � FB �
CV

 V dV � 
CS

 V V · dA

� 0(1)

CV

 dV � 
CS

 V · dA � 0

� 0(1)

� �

� �

� �
� �

Note that we usually start with the simplest forms (based on the problem assumptions, e.g., steady flow) of the mass
conservation and momentum equations. However, in this problem, for illustration purposes, we start with the most
general forms of the equations.

Assumptions: (1) Steady flow (given).
(2) Incompressible flow.
(3) Uniform flow at each section where fluid crosses the CV boundaries.

We are only interested in the y component of the momentum equation

FSy 1FBy
5

Z
CS

v ρ~V � d~A ð1Þ

FSy 5 Ry fThere is no net force due to atmosphere pressure:g
FBy

52Wtank 2WH2O fBoth body forces act in negative y direction:g
WH2O 5 ρgV--- 5 γAh

Z
CS

v ρ~V � d~A 5

Z
A1

v ρ~V � d~A 5

Z
A1

vð2ρV1dA1Þ

5 v1ð2ρV1A1Þ
Using these results in Eq. 1 gives

Ry 2Wtank 2 γAh 5 v1ð2ρV1A1Þ

Note that v1 is the y component of the velocity, so that v152V1, where we recall that V15 10 ft/s is the magnitude of
velocity ~V 1. Hence, solving for Ry,

Ry 5 Wtank 1 γAh1 ρV2
1A1

5 5 lbf1 62:4
lbf

ft3
3 1 ft2 3 1:9 ft1 1:94

slug

ft3
3 100

ft2

s2
3 0:1 ft2 3

lbf � s2
slug � ft

5 5 lbf1 118:6 lbf1 19:4 lbf

Ry 5 143 lbf ß
Ry

~V � d~A is negative at 1
v ¼ 0 at sections 2 and 3

� �

We are assuming uniform
properties at 1

� �
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Note that this is the force of the scale on the control volume; it is also
the reading on the scale. We can see that the scale reading is due to: the
tank weight (5 lbf), the weight of water instantaneously in the tank
(118.6 lbf), and the force involved in absorbing the downward
momentum of the fluid at section 1 (19.4 lbf). Hence your boss is
wrong—neglecting the momentum results in an error of almost 15%.

This problem illustrates use of the
momentum equation including sig-
nificant body forces.

Example 4.6 FLOW THROUGH ELBOW: USE OF GAGE PRESSURES

Water flows steadily through the 90� reducing elbow shown in the diagram. At the inlet
to the elbow, the absolute pressure is 220 kPa and the cross-sectional area is 0.01 m2.
At the outlet, the cross-sectional area is 0.0025 m2 and the velocity is 16 m/s. The elbow
discharges to the atmosphere. Determine the force required to hold the elbow in place.

Given: Steady flow of water through 90� reducing elbow.

p1 5 220 kPa ðabsÞ A1 5 0:01 m2 ~V 2 5216 ĵm=s A2 5 0:0025 m2

Find: Force required to hold elbow in place.

Solution:
Choose a fixed control volume as shown. Note that we have several surface force computations: p1 on area A1 and
patm everywhere else. The exit at section 2 is to a free jet, and so at ambient (i.e., atmospheric) pressure. We can use
a simplification here: If we subtract patm from the entire surface (a null effect as far as forces are concerned) we can
work in gage pressures, as shown.

Note that since the elbow is anchored to the supply line, in addition to the reaction forces Rx and Ry (shown),
there would also be a reaction moment (not shown).

Governing equations:

t
F � FS � FB �

CV

 V dV � 
CS

 V V  ·  dA 

� 0(4)

t CV

 dV � 
CS

 V ·  dA � 0

� 0(4)

� �

� �

� �
� �

Assumptions: (1) Uniform flow at each section.
(2) Atmospheric pressure, patm5 101 kPa (abs).
(3) Incompressible flow.
(4) Steady flow (given).
(5) Neglect weight of elbow and water in elbow.

2

1

y

x

V2CV

p1 p1g

patm

patm

patm– =
W

Ry

Rx

Ry

Rx W

1

2

V1
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Once again (although we didn’t need to) we started with the most general form of the governing equations. Writing
the x component of the momentum equation results in

FSx 5

Z
CS

uρ~V � d~A 5

Z
A1

uρ~V � d~A fFBx
5 0 and u2 5 0g

p1gA1 1Rx 5

Z
A1

u ρ~V � d~A

so

Rx 52p1gA1 1

Z
A1

u ρ~V � d~A

52p1gA1 1 u1ð2ρV1A1Þ
Rx 52p1gA1 2 ρV2

1A1

Note that u1 is the x component of the velocity, so that u15V1. To find V1, use the mass conservation equation:

Z
CS

ρ~V � d~A 5

Z
A1

ρ~V � d~A1

Z
A2

ρ~V � d~A 5 0

‘ð2ρV1A1Þ1 ðρV2A2Þ 5 0

and

V1 5 V2
A2

A1
5 16

m

s
3

0:0025

0:01
5 4m=s

We can now compute Rx

Rx 52p1gA1 2 ρV2
1A1

521:193 105
N

m2
3 0:01 m2 2 999

kg

m3
3 16

m2

s2
3 0:01 m2 3

N � s2
kg �m

Rx 521:35 kN ß
Rx

Writing the y component of the momentum equation gives

FSy 1FBy
5 Ry 1FBy

5

Z
CS

v ρ~V � d~A 5

Z
A2

v ρ~V � d~A fv1 5 0g

or

Ry 52FBy
1

Z
A2

v ρ~V � d~A

52FBy
1 v2ðρV2A2Þ

Ry 52FBy
2 ρV2

2A2

Note that v2 is the y component of the velocity, so that v252V2, where V2 is the magnitude of the exit velocity.
Substituting known values

Ry 52FBy
12ρV2

2A2

52FBy
2 999

kg

m3
3 ð16Þ2 m

2

s2
3 0:0025 m2 3

N � s2
kg �m

52FBy
2 639 N ß

Ry

Neglecting FBy
gives

Ry 52639 N ß

Ry

This problem illustrates how using
gage pressures simplifies evaluation of
the surface forces in the momentum
equation.
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Example 4.7 FLOW UNDER A SLUICE GATE: HYDROSTATIC PRESSURE FORCE

Water in an open channel is held in by a sluice gate. Compare
the horizontal force of the water on the gate (a) when the gate is
closed and (b) when it is open (assuming steady flow, as shown).
Assume the flow at sections 1 and 2 is incompressible and
uniform, and that (because the streamlines are straight there)
the pressure distributions are hydrostatic.

Given: Flow under sluice gate. Width5w.

Find: Horizontal force (per unit width) on the closed and open
gate.

Solution:
Choose a control volume as shown for the open gate. Note that it is much simpler to work in gage pressures, as we
learned in Example 4.6.

The forces acting on the control volume include:

� Force of gravity W.
� Friction force Ff.
� Components Rx and Ry of reaction force from gate.
� Hydrostatic pressure distribution on vertical surfaces, assumption (6).
� Pressure distribution pb(x) along bottom surface (not shown).

Apply the x component of the momentum equation.

Governing equation:

FSx � FBx �
CV

 u dV � 
CS

 u      dA

� 0(2) � 0(3)

� �� �t
·

Assumptions: (1) Ff negligible (neglect friction on channel bottom).
(2) FBx

5 0:
(3) Steady flow.
(4) Incompressible flow (given).
(5) Uniform flow at each section (given).
(6) Hydrostatic pressure distributions at 1 and 2 (given).

Then

FSx 5 FR1
1FR2

1Rx 5 u1ð2ρV1wD1Þ1 u2ðρV2wD2Þ

21

Water

D1 = 3 m

V1 = 1 m/s
D2 = 0.429 m
V2 = 7 m/s

1

Water

D1 = 3 m

V1 = 1 m/s
D2 = 0.429 m
V2 = 7 m/s

W
Rx

p2(y)

p1(y)

Ff

Ry
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The surface forces acting on the CV are due to the pressure distributions and the unknown force Rx. From assumption
(6), we can integrate the gage pressure distributions on each side to compute the hydrostatic forces FR1

and FR2
,

FR1
5

ZD1

0

p1 dA 5 w

ZD1

0

ρgy dy 5 ρgw
y2

2






D1

0

5
1

2
ρgwD2

1

where y is measured downward from the free surface of location 1 , and

FR2
5

ZD2

0

p2 dA 5 w

ZD2

0

ρgy dy 5 ρgw
y2

2






D2

0

5
1

2
ρgwD2

2

where y is measured downward from the free surface of location 2 . (Note that we could have used the hydrostatic
force equation, Eq. 3.10b, directly to obtain these forces.)

Evaluating FSx gives

FSx 5 Rx 1
ρgw
2

ðD2
1 2D2

2Þ

Substituting into the momentum equation, with u15V1 and u25V2, gives

Rx 1
ρgw
2

ðD2
1 2D2

2Þ 52ρV2
1wD1 1 ρV2

2wD2

or

Rx 5 ρwðV2
2D2 2V2

1D1Þ2 ρgw
2

ðD2
1 2D2

2Þ

The second term on the right is the net hydrostatic force on the gate; the first term “corrects” this (and leads to a
smaller net force) for the case when the gate is open. What is the nature of this “correction”? The pressure in the
fluid far away from the gate in either direction is indeed hydrostatic, but consider the flow close to the gate: Because
we have significant velocity variations here (in magnitude and direction), the pressure distributions deviate sig-
nificantly from hydrostatic—for example, as the fluid accelerates under the gate there will be a significant pressure
drop on the lower left side of the gate. Deriving this pressure field would be a difficult task, but by careful choice of
our CV we have avoided having to do so!

We can now compute the horizontal force per unit width,

Rx

w
5 ρðV2

2D2 2V2
1D1Þ2 ρg

2
ðD2

1 2D2
2Þ

5 999
kg

m3
3 ð7Þ2ð0:429Þ2 ð1Þ2ð3Þ
h im2

s2
m3

N � s2
kg �m

2
1

2
3 999

kg

m3
3 9:81

m

s2
3 ½ð3Þ2 2 ð0:429Þ2�m2 3

N � s2
kg �m

Rx

w
5 18:0 kN=m2 43:2 kN=m

Rx

w
5225:2 kN=m

Rx is the external force acting on the control volume, applied to the CV by the gate. Therefore, the force of the water
on the gate is Kx, where Kx52Rx. Thus,

Kx

w
52

Rx

w
5 25:2 kN=m ß

Kx

w

This force can be compared to the force on the closed gate of 44.1 kN
(obtained from the second term on the right in the equation above, eval-
uated with D2 set to zero because for the closed gate there is no fluid on
the right of the gate)—the force on the open gate is significantly less as the
water accelerates out under the gate.

This problem illustrates the application
of the momentum equation to a control
volume for which the pressure is not
uniform on the control surface.
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Example 4.8 CONVEYOR BELT FILLING: RATE OF CHANGE OF MOMENTUM IN CONTROL VOLUME

A horizontal conveyor belt moving at 3 ft/s receives sand from a hopper. The sand falls vertically from the hopper to
the belt at a speed of 5 ft/s and a flow rate of 500 lbm/s (the density of sand is approximately 2700 lbm/cubic yard).
The conveyor belt is initially empty but begins to fill with sand. If friction in the drive system and rollers is negligible,
find the tension required to pull the belt while the conveyor is filling.

Given: Conveyor and hopper shown in sketch.

Find: Tbelt at the instant shown.

Solution: Use the control volume and coordinates shown. Apply the x component of the momentum equation.

Governing equations:

CV

 u dV � 
CS

 u V    dAFSx � FBx �

� 0(2)

CV

 dV � 
CS

 V dA � 0�  � � �� � � �t t
· ·

Assumptions: (1) FSx 5 Tbelt 5 T.
(2) FBx

5 0:

(3) Uniform flow at section 1 .
(4) All sand on belt moves with Vbelt5Vb.

Then

T 5
@

@t

Z
CV

uρ dV---1 u1ð2ρV1A1Þ1 u2ðρV2A2Þ

Since u15 0, and there is no flow at section 2 ,

T 5
@

@t

Z
CV

uρ dV---

From assumption (4), inside the CV, u5Vb5 constant, and hence

T 5 Vb

@

@t

Z
CV

ρ dV--- 5 Vb

@Ms

@t

where Ms is the mass of sand on the belt (inside the control volume). This result is perhaps not surprising—the
tension in the belt is the force required to increase the momentum inside the CV (which is increasing because even
though the velocity of the mass in the CV is constant, the mass is not). From the continuity equation,

@

@t

Z
CV

ρ dV--- 5
@

@t
Ms 52

Z
CS

ρ~V � d~A 5 _ms 5 500 lbm=s

Then

T 5 Vb _ms 5 3
ft

s
3 500

lbm

s
3

slug

32:2 lbm
3

lbf � s2
slug � ft

T 5 46:6 lbf ß
T

Hopper

Sand

1

2
Vbelt = 3 ft/s

Vsand = 5 ft/s

CV

Tbelt

y

x

This problem illustrates application of
the momentum equation to a control
volume in which the momentum is
changing.
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*Differential Control Volume Analysis

The control volume approach, as we have seen in the previous examples, provides
useful results when applied to a finite region.

If we apply the approach to a differential control volume, we can obtain differential
equations describing a flow field. In this section, we will apply the conservation of
mass and momentum equations to such a control volume to obtain a simple differ-
ential equation describing flow in a steady, incompressible, frictionless flow, and
integrate it along a streamline to obtain the famous Bernoulli equation.

Let us apply the continuity and momentum equations to a steady incompressible
flow without friction, as shown in Fig. 4.4. The control volume chosen is fixed in space
and bounded by flow streamlines, and is thus an element of a stream tube. The length
of the control volume is ds.

Because the control volume is bounded by streamlines, flow across the bounding
surfaces occurs only at the end sections. These are located at coordinates s and s1 ds,
measured along the central streamline.

Properties at the inlet section are assigned arbitrary symbolic values. Properties at
the outlet section are assumed to increase by differential amounts. Thus at s1 ds, the
flow speed is assumed to be Vs1 dVs, and so on. The differential changes, dp, dVs, and
dA, all are assumed to be positive in setting up the problem. (As in a free-body
analysis in statics or dynamics, the actual algebraic sign of each differential change will
be determined from the results of the analysis.)

Now let us apply the continuity equation and the s component of the momentum
equation to the control volume of Fig. 4.4.

a. Continuity Equation

Basic equation:
CV

 dV � 
CS

 V  dA � 0 

� 0(1)

� �� �t
· ð4:12Þ

Assumptions: (1) Steady flow.
(2) No flow across bounding streamlines.
(3) Incompressible flow, ρ5 constant.

Then

ð2ρVsAÞ1 fρðVs 1 dVsÞðA1 dAÞg 5 0

*This section may be omitted without loss of continuity in the text material.

Differential control volume

Streamlines

p + dp

p

Vs + dVs

Vs

A + dA

ρ

ρ
θ

FSb

ds

A

x
y

z

g

Fig. 4.4 Differential control volume for momentum analysis of flow through
a stream tube.
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so

ρðVs 1 dVsÞðA1 dAÞ 5 ρVsA ð4:19aÞ
On expanding the left side and simplifying, we obtain

Vs dA1A dVs 1 dA dVs 5 0

But dA dVs is a product of differentials, which may be neglected compared with Vs dA
or A dVs. Thus

Vs dA1A dVs 5 0 ð4:19bÞ

b. Streamwise Component of the Momentum Equation

Basic equation: FSs � FBs �
CV

 us dV � 
CS

 us V   dA

� 0(1)

� �� �t
· ð4:20Þ

Assumption: (4) No friction, so FSb
is due to pressure forces only.

The surface force (due only to pressure) will have three terms:

FSs 5 pA2 ðp1 dpÞðA1 dAÞ1 p1
dp

2

� �
dA ð4:21aÞ

The first and second terms in Eq. 4.21a are the pressure forces on the end faces of the
control surface. The third term is FSb

, the pressure force acting in the s direction on
the bounding stream surface of the control volume. Its magnitude is the product of the
average pressure acting on the stream surface, p1 1

2 dp, times the area component of
the stream surface in the s direction, dA. Equation 4.21a simplifies to

FSs 52Adp2
1

2
dp dA ð4:21bÞ

The body force component in the s direction is

FBs
5 ρgs dV--- 5 ρð2g sin θÞ A1

dA

2

� �
ds

But sin θ ds 5 dz, so that

FBs
52ρg A1

dA

2

� �
dz ð4:21cÞ

The momentum flux will beZ
CS

us ρ~V � d~A 5 Vsð2ρVsAÞ1 ðVs 1 dVsÞfρðVs 1 dVsÞðA1 dAÞg

since there is no mass flux across the bounding stream surfaces. The mass flux factors
in parentheses and braces are equal from continuity, Eq. 4.19a, soZ

CS

us ρ~V � d~A 5 Vsð2ρVsAÞ1 ðVs 1 dVsÞðρVsAÞ 5 ρVsA dVs ð4:22Þ

Substituting Eqs. 4.21b, 4.21c, and 4.22 into Eq. 4.20 (the momentum equation) gives

2A dp2
1

2
dp dA2 ρgA dz2

1

2
ρg dA dz 5 ρVsA dVs
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Dividing by ρA and noting that products of differentials are negligible compared with
the remaining terms, we obtain

2
dp

ρ
2 g dz 5 Vs dVs 5 d

V2
s

2

� �

or

dp

ρ
1 d

V2
s

2

� �
1 g dz 5 0 ð4:23Þ

Because the flow is incompressible, this equation may be integrated to obtain

P

ρ
þ V2

s

2
þ gz5 constant ð4:24Þ

or, dropping subscript s,

P

ρ
1
V2

s

2
1gz5 constant ð4:24Þ

This equation is subject to the restrictions:

1. Steady flow.

2. No friction.

3. Flow along a streamline.

4. Incompressible flow.

We have derived one form of perhaps the most famous (and misused) equation in
fluid mechanics—the Bernoulli equation. It can be used only when the four restric-
tions listed above apply, at least to reasonable accuracy! Although no real flow
satisfies all these restrictions (especially the second), we can approximate the behavior
of many flows with Eq. 4.24.

For example, the equation is widely used in aerodynamics to relate the pressure
and velocity in a flow (e.g., it explains the lift of a subsonic wing). It could also be used
to find the pressure at the inlet of the reducing elbow analyzed in Example 4.6 or to
determine the velocity of water leaving the sluice gate of Example 4.7 (both of these
flows approximately satisfy the four restrictions). On the other hand, Eq. 4.24 does not
correctly describe the variation of water pressure in pipe flow. According to it, for a
horizontal pipe of constant diameter, the pressure will be constant, but in fact the
pressure drops significantly along the pipe—we will need most of Chapter 8 to explain
this.

The Bernoulli equation, and the limits on its use, is so important we will derive it
again and discuss its limitations in detail in Chapter 6.

Example 4.9 NOZZLE FLOW: APPLICATION OF BERNOULLI EQUATION

Water flows steadily through a horizontal nozzle, discharging to the atmosphere. At the nozzle inlet the diameter is
D1; at the nozzle outlet the diameter is D2. Derive an expression for the minimum gage pressure required at the
nozzle inlet to produce a given volume flow rate, Q. Evaluate the inlet gage pressure if D1 5 3:0 in., D2 5 1:0 in.,
and the desired flow rate is 0.7 ft3/s.
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Given: Steady flow of water through a horizontal nozzle, discharging to the
atmosphere.

D1 5 3:0 in: D2 5 1:0 in: p2 5 patm

Find: (a) p1g as a function of volume flow rate, Q.
(b) p1g for Q 5 0:7 ft3=s:

Solution:

Governing equations:

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2

� 0(1)

� �� �t CV

 dV � 
CS

 V  dA � 0·

Assumptions: (1) Steady flow (given).
(2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.
(5) z1 5 z2:
(6) Uniform flow at sections 1 and 2 .

Apply the Bernoulli equation along a streamline between points 1 and 2 to evaluate p1. Then

p1g 5 p1 2 patm 5 p1 2 p2 5
ρ
2
ðV2

2 2V2
1Þ 5

ρ
2
V2

1

V2

V1

� �2

2 1

" #

Apply the continuity equation

ð2ρV1A1Þ1 ðρV2A2Þ 5 0 or V1A1 5 V2A2 5 Q

so that
V2

V1
5

A1

A2
and V1 5

Q

A1

Then

p1g 5
ρQ2

2A2
1

A1

A2

� �2

2 1

" #

Since A 5 πD2=4, then

p1g 5
8ρQ2

π2 D4
1

D1

D2

� �4

2 1

" #
ß

p1g

(Note that for a given nozzle the pressure required is proportional to the square of the flow rate—not surpising since
we have used Eq. 4.24, which shows that pBV2BQ2.) With D1 5 3:0 in., D2 5 1:0 in., and ρ 5 1:94 slug= ft3,

p1g 5
8

π2
3 1:94

slug

ft3
3

1

ð3Þ4in:4 3Q2½ð3:0Þ4 2 1� 1bf � s
2

slug � ft 3 144
in:2

ft2

p1g 5 224 Q2 lbf � s2
in:2 � ft6

With Q 5 0:7 ft3=s, then p1g 5 110 lbf=in:2 ß

p1g

D1

D2

CV

Streamline

This problem illustrates application
of the Bernoulli equation to a flow
where the restrictions of steady,
incompressible, frictionless flow along
a streamline are reasonable.
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Control Volume Moving with Constant Velocity

In the preceding problems, which illustrate applications of the momentum equation to
inertial control volumes, we have considered only stationary control volumes. Sup-
pose we have a control volume moving at constant speed. We can set up two coor-
dinate systems: XYZ, “absolute,” or stationary (and therefore inertial), coordinates,
and the xyz coordinates attached to the control volume (also inertial because the
control volume is not accelerating with respect to XYZ).

Equation 4.10, which expresses system derivatives in terms of control volume
variables, is valid for any motion of the control volume coordinate system xyz, pro-
vided that all velocities are measured relative to the control volume. To emphasize this
point, we rewrite Eq. 4.10 as

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ ~Vxyz � d~A ð4:25Þ

Since all velocities must be measured relative to the control volume, in using this
equation to obtain the momentum equation for an inertial control volume from the
system formulation, we must set

N 5 ~Pxyz and η 5 ~Vxyz

The control volume equation is then written as

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~Vxyz ρ dV---1
Z
CS

~Vxyz ρ~Vxyz � d~A ð4:26Þ

Equation 4.26 is the formulation of Newton’s second law applied to any inertial
control volume (stationary or moving with a constant velocity). It is identical to Eq.
4.17a except that we have included subscript xyz to emphasize that velocities must be
measured relative to the control volume. (It is helpful to imagine that the velocities
are those that would be seen by an observer moving with the control volume.)
Example 4.10 illustrates the use of Eq. 4.26 for a control volume moving at constant
velocity.

Example 4.10 VANE MOVING WITH CONSTANT VELOCITY

The sketch shows a vane with a turning angle of 60�. The vane moves at constant
speed, U 5 10 m=s, and receives a jet of water that leaves a stationary nozzle
with speed V 5 30 m=s. The nozzle has an exit area of 0.003 m2. Determine the
force components that act on the vane.

Given: Vane, with turning angle θ 5 60�, moves with constant velocity,
~U 5 10îm=s. Water from a constant area nozzle, A 5 0:003 m2, with velocity
~V 5 30îm=s, flows over the vane as shown.

Find: Force components acting on the vane.

Solution: Select a control volume moving with the vane at constant velocity, ~U , as shown by the dashed lines. Rx

and Ry are the components of force required to maintain the velocity of the control volume at 10îm=s.
The control volume is inertial, since it is not accelerating (U5 constant). Remember that all velocities must be

measured relative to the control volume in applying the basic equations.

UV

θ = 60°
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Governing equations:

~FS 1
~FB 5

@

@t

Z
CV

~Vxyzρ dV---1
Z
CS

~Vxyz ρ~Vxyz � d~A

@

@t

Z
CV

ρ dV---1
Z
CS

ρ~Vxyz � d~A 5 0

Assumptions: (1) Flow is steady relative to the vane.
(2) Magnitude of relative velocity along the vane is

constant: j~V 1j 5 j~V 2j 5 V2U.

(3) Properties are uniform at sections 1 and 2 .
(4) FBx

5 0:
(5) Incompressible flow.

The x component of the momentum equation is

FSx � FBx �
CV

 uxyz dV � 
CS

 uxyz Vxyz · dA

� 0(4)  � 0(1)

� �� �t

There is no net pressure force, since patm acts on all sides of the CV. Thus

Rx 5

Z
A1

uð2ρVdAÞ1
Z
A2

uðρVdAÞ 5 1 u1ð2ρV1A1Þ1 u2ðρV2A2Þ

(All velocities are measured relative to xyz.) From the continuity equationZ
A1

ð2ρVdAÞ1
Z
A2

ðρVdAÞ 5 ð2ρV1A1Þ1 ðρV2A2Þ 5 0

or

ρV1A1 5 ρV2A2

Therefore,

Rx 5 ðu2 2 u1ÞðρV1A1Þ
All velocities must be measured relative to the CV, so we note that

V1 5 V2U V2 5 V2U
u1 5 V2U u2 5 ðV2UÞcos θ

Substituting yields

Rx 5 ½ðV2UÞcos θ2 ðV2UÞ�ðρðV2UÞA1Þ 5 ðV2UÞðcos θ2 1ÞfρðV2UÞA1g

5 ð302 10Þm
s
3 ð0:502 1Þ3 999

kg

m3
ð302 10Þm

s
3 0:003 m2

0
@

1
A3

N � s2
kg �m

Rx 52599N fto the leftg
Writing the y component of the momentum equation, we obtain

FSy � FBy �
CV

 vxyz dV � 
CS

 vxyz Vxyz  dA

� 0(1)

� �� �t
·

U
V

θ = 60°

Rx

Ry

X

Y
1

2x

y

CV
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4.5 Momentum Equation for Control Volume
with Rectilinear Acceleration
For an inertial control volume (having no acceleration relative to a stationary frame of
reference), the appropriate formulation of Newton’s second law is given by Eq. 4.26,

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~Vxyz ρ dV---1
Z
CS

~Vxyz ρ~Vxyz � d~A ð4:26Þ

Not all control volumes are inertial; for example, a rocket must accelerate if it is to
get off the ground. Since we are interested in analyzing control volumes that may
accelerate relative to inertial coordinates, it is logical to ask whether Eq. 4.26 can be
used for an accelerating control volume. To answer this question, let us briefly review
the two major elements used in developing Eq. 4.26.

First, in relating the system derivatives to the control volume formulation (Eq. 4.25
or 4.10), the flow field, ~Vðx; y; z; tÞ, was specified relative to the control volume’s
coordinates x, y, and z. No restriction was placed on the motion of the xyz reference
frame. Consequently, Eq. 4.25 (or Eq. 4.10) is valid at any instant for any arbitrary
motion of the coordinates x, y, and z provided that all velocities in the equation are
measured relative to the control volume.

Second, the system equation

~F 5
d~P

dt

!
system

ð4:2aÞ

Denoting the mass of the CV as M gives

Ry 2Mg 5

Z
CS

vρ~V � d~A 5

Z
A2

vρ~V � d~A fv1 5 0g

5

Z
A2

vðρVdAÞ 5 v2ðρV2A2Þ 5 v2ðρV1A1Þ
5 ðV2UÞsin θfρðV2UÞA1g

5 ð302 10Þm
s
3 ð0:866Þ3 ð999Þ kg

n3
ð302 10Þm

s
3 0:003m2

0
@

1
A3

N � s2
kg �m

Ry 2Mg 5 1:04 kN fupwardg

Thus the vertical force is

Ry 5 1:04 kN1Mg fupwardg

Then the net force on the vane (neglecting the weight of the vane and
water within the CV) is

~R 520:599î1 1:04ĵ kN ß

~R

All velocities are
measured relative to
xyz:

8<
:

9=
;

fRecall ρV2A2 5 ρV1A1:g

This problem illustrates how to apply
the momentum equation for a control
volume in constant velocity motion by
evaluating all velocities relative to the
control volume.
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where the linear momentum of the system is given by

~Psystem 5

Z
MðsystemÞ

~Vdm 5

Z
V---ðsystemÞ

~V ρ dV--- ð4:2bÞ

is valid only for velocities measured relative to an inertial reference frame. Thus, if we
denote the inertial reference frame by XYZ, then Newton’s second law states that

~F 5
d~PXYZ

dt

!
system

ð4:27Þ

Since the time derivatives of ~PXYZ and ~Pxyz are not equal when the control volume
reference frame xyz is accelerating relative to the inertial reference frame, Eq. 4.26 is
not valid for an accelerating control volume.

To develop the momentum equation for a linearly accelerating control volume, it is
necessary to relate ~PXYZ of the system to ~Pxyz of the system. The system derivative
d~Pxyz=dt can then be related to control volume variables through Eq. 4.25. We begin by
writing Newton’s second law for a system, remembering that the acceleration must be
measured relative to an inertial reference frame that we have designatedXYZ. We write

~F 5
d~PXYZ

dt

!
system

5
d

dt

Z
MðsystemÞ

~VXYZdm 5

Z
MðsystemÞ

d~VXYZ

dt
dm ð4:28Þ

The velocities with respect to the inertial (XYZ) and the control volume coordi-
nates (xyz) are related by the relative-motion equation

~VXYZ 5 ~Vxyz 1 ~Vrf ð4:29Þ
where ~Vrf is the velocity of the control volume coordinates xyz with respect to the
“absolute” stationary coordinates XYZ.

Since we are assuming the motion of xyz is pure translation, without rotation,
relative to inertial reference frame XYZ, then

d~VXYZ

dt
5 ~aXYZ 5

d~Vxyz

dt
1

d~Vrf

dt
5 ~axyz 1~arf ð4:30Þ

where
~aXYZ is the rectilinear acceleration of the system relative to inertial reference frame

XYZ,
~axyz is the rectilinear acceleration of the system relative to noninertial reference

frame xyz (i.e., relative to the control volume), and
~arf is the rectilinear acceleration of noninertial reference frame xyz (i.e., of the

control volume) relative to inertial frame XYZ.

Substituting from Eq. 4.30 into Eq. 4.28 gives

~F 5

Z
MðsystemÞ

~arf dm1

Z
MðsystemÞ

d~Vxyz

dt
dm

or

~F 2

Z
MðsystemÞ

~arf dm 5
d~Pxyz

dt

!
system

ð4:31aÞ

where the linear momentum of the system is given by

~PxyzÞsystem 5

Z
MðsystemÞ

~Vxyzdm 5

Z
V---ðsystemÞ

~Vxyzρ dV--- ð4:31bÞ

and the force, ~F , includes all surface and body forces acting on the system.
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To derive the control volume formulation of Newton’s second law, we set

N 5 ~Pxyz and η 5 ~Vxyz

From Eq. 4.25, with this substitution, we obtain

d~Pxyz

dt

!
system

5
@

@t

Z
CV

~Vxyzρ dV---1
Z
CS

~Vxyzρ~Vxyz�d~A ð4:32Þ

Combining Eq. 4.31a (the linear momentum equation for the system) and Eq. 4.32
(the system�control volume conversion), and recognizing that at time t0 the system
and control volume coincide, Newton’s second law for a control volume accelerating,
without rotation, relative to an inertial reference frame is

~F 2

Z
CV

~arf ρ dV--- 5
@

@t

Z
CV

~Vxyz ρ dV---1
Z
CS

~Vxyz ρ~Vxyz�d~A

Since ~F 5 ~FS 1 ~FB, this equation becomes

~FS 1 ~FB 2

Z
CV

~arf ρ dV--- 5
@

@t

Z
CV

~Vxyz ρ dV---1
Z
CS

~Vxyz ρ~Vxyz � d~A ð4:33Þ

Comparing this momentum equation for a control volume with rectilinear accelera-
tion to that for a nonaccelerating control volume, Eq. 4.26, we see that the only dif-
ference is the presence of one additional term in Eq. 4.33. When the control volume is
not accelerating relative to inertial reference frame XYZ, then ~arf 5 0, and Eq. 4.33
reduces to Eq. 4.26.

The precautions concerning the use of Eq. 4.26 also apply to the use of Eq. 4.33.
Before attempting to apply either equation, one must draw the boundaries of the
control volume and label appropriate coordinate directions. For an accelerating control
volume, one must label two coordinate systems: one (xyz) on the control volume and
the other (XYZ) an inertial reference frame.

In Eq. 4.33, ~FS represents all surface forces acting on the control volume. Since the
mass within the control volume may vary with time, both the remaining terms on
the left side of the equation may be functions of time. Furthermore, the acceleration,
~arf , of the reference frame xyz relative to an inertial frame will in general be a
function of time.

All velocities in Eq. 4.33 are measured relative to the control volume. The
momentum flux, ~Vxyzρ~Vxyz � d~A, through an element of the control surface area, d~A,
is a vector. As we saw for the nonaccelerating control volume, the sign of the scalar
product, ρ~Vxyz � d~A, depends on the direction of the velocity vector, ~Vxyz, relative to
the area vector, d~A.

The momentum equation is a vector equation. As with all vector equations, it may be
written as three scalar component equations. The scalar components of Eq. 4.33 are

FSx 1FBx
2

Z
CV

arfx ρdV--- 5
@

@t

Z
CV

uxyz ρdV---1
Z
CS

uxyz ρ~Vxyz � d~A ð4:34aÞ

FSy 1FBy
2

Z
CV

arfy ρdV--- 5
@

@t

Z
CV

vxyz ρdV---1
Z
CS

vxyz ρ~Vxyz � d~A ð4:34bÞ

FSz 1FBz
2

Z
CV

arfz ρdV--- 5
@

@t

Z
CV

wxyz ρdV---1
Z
CS

wxyz ρ~Vxyz � d~A ð4:34cÞ
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We will consider two applications of the linearly accelerating control volume:
Example 4.11 will analyze an accelerating control volume in which the mass contained
in the control volume is constant; Example 4.12 will analyze an accelerating control
volume in which the mass contained varies with time.

Example 4.11 VANE MOVING WITH RECTILINEAR ACCELERATION

A vane, with turning angle θ 5 60�, is attached to a cart. The cart and vane, of mass M 5 75 kg, roll on a level track.
Friction and air resistance may be neglected. The vane receives a jet of water, which leaves a stationary nozzle
horizontally at V 5 35 m=s. The nozzle exit area is A 5 0:003 m2. Determine the velocity of the cart as a function of
time and plot the results.

Given: Vane and cart as sketched, with M5 75 kg.

Find: U(t) and plot results.

Solution: Choose the control volume and coordinate
systems shown for the analysis. Note that XY is a
fixed frame, while frame xy moves with the cart.
Apply the x component of the momentum equation.

Governing equation:

CV

 uxyz dV � 
CS

 uxyz Vxyz dAFSx � FBx � 
CV

 arfx dV �� � �
� 0(4)� 0(1) � 0(2)

�  ��
t

·

Assumptions: (1) FSx 5 0, since no resistance is present.
(2) FBx

5 0.
(3) Neglect the mass of water in contact with the vane compared to the cart mass.
(4) Neglect rate of change of momentum of liquid inside the CV.

@

@t

Z
CV

uxyz ρ dV---C0

(5) Uniform flow at sections 1 and 2 .
(6) Speed of water stream is not slowed by friction on the vane, so j~Vxyz1 j 5 j~Vxyz2 j.
(7) A2 5 A1 5 A.

Then, dropping subscripts rf and xyz for clarity (but remembering that all velocities are measured relative to the
moving coordinates of the control volume),

2

Z
CV

ax ρ dV--- 5 u1ð2ρV1A1Þ1 u2ðρV2A2Þ
5 ðV2UÞf2ρðV2UÞAg1 ðV2UÞcos θfρðV2UÞAg
52ρðV2UÞ2A1 ρðV2UÞ2Acos θ

For the left side of this equation we have

2

Z
CV

ax ρ dV--- 52axMCV 52axM 52
dU

dt
M

so that

2M
dU

dt
52ρðV2UÞ2A1 ρðV2UÞ2Acos θ

θ = 60°2

1
y

x
CV

U
M

= 999 kg/m3ρ
V = 35 m/s

A = 0.003 m2

X

Y
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or

M
dU

dt
5 ð12 cos θÞρðV2UÞ2 A

Separating variables, we obtain

dU

ðV2UÞ2 5
ð12 cos θÞρA

M
dt 5 bdt where b 5

ð12 cosθÞρA
M

Note that since V 5 constant, dU 52dðV2UÞ. Integrating between limits U 5 0 at t 5 0, and U 5 U at t 5 t,

Z U

0

dU

ðV2UÞ2 5

Z U

0

2dðV2UÞ
ðV2UÞ2 5

1

ðV2UÞ
	U
0

5

Z t

0

bdt 5 bt

or

1

ðV2UÞ 2
1

V
5

U

VðV2UÞ 5 bt

Solving for U, we obtain

U

V
5

Vbt

11Vbt

Evaluating Vb gives

Vb 5 V
ð12 cos θÞρA

M

Vb 5 35
m

s
3

ð12 0:5Þ
75 kg

3 999
kg

m3
3 0:003 m2 5 0:699 s21

Thus

U

V
5

0:699t

11 0:699t
ß

t in secondsÞ UðtÞð

Plot:
The graph was generated from an
Excel workbook. This workbook is

interactive: It allows one to see the
effect of different values of ρ, A, M,
and θ on U/V against time t, and also
to determine the time taken for the
cart to reach, for example, 95% of jet
speed.0

0

0.5

1.0

5 10

Time, t (s)

15 20

U___
V

Example 4.12 ROCKET DIRECTED VERTICALLY

A small rocket, with an initial mass of 400 kg, is to be launched vertically. Upon ignition the rocket consumes fuel
at the rate of 5 kg/s and ejects gas at atmospheric pressure with a speed of 3500 m/s relative to the rocket. Determine
the initial acceleration of the rocket and the rocket speed after 10 s, if air resistance is neglected.
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Given: Small rocket accelerates vertically from rest.
Initial mass, M0 5 400 kg.
Air resistance may be neglected.
Rate of fuel consumption, _me 5 5 kg=s.
Exhaust velocity, Ve 5 3500 m=s, relative to rocket, leaving at atmospheric pressure.

Find: (a) Initial acceleration of the rocket.
(b) Rocket velocity after 10 s.

Solution:
Choose a control volume as shown by dashed lines. Because the control volume is accel-
erating, define inertial coordinate system XY and coordinate system xy attached to the CV.
Apply the y component of the momentum equation.

Governing equation: FSy 1FBy
2

Z
CV

arfy ρ dV--- 5
@

@t

Z
CV

vxyz ρ dV---1
Z
CS

vxyz ρ~Vxyz � d~A

Assumptions: (1) Atmospheric pressure acts on all surfaces of the CV; since air resistance is neglected, FSy 5 0.
(2) Gravity is the only body force; g is constant.
(3) Flow leaving the rocket is uniform, and Ve is constant.

Under these assumptions the momentum equation reduces to

FBy
2

Z
CV

arfy ρ dV--- 5
@

@t

Z
CV

vxyz ρ dV---1
Z
CS

vxyz ρ~Vxyz � d~A ð1Þ

A B C D

Let us look at the equation term by term:

A FBy
52

Z
CV

gρ dV--- 52g

Z
CV

ρ dV--- 52gMCV fsince g is constantg

The mass of the CV will be a function of time because mass is leaving the CV at rate _me. To determine MCV as a
function of time, we use the conservation of mass equation

@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V � d~A 5 0

Then
@

@t

Z
CV

ρ dV--- 52

Z
CS

ρ~V � d~A 52

Z
CS

ðρVxyzdAÞ 52 _me

The minus sign indicates that the mass of the CV is decreasing with time. Since the mass of the CV is only a
function of time, we can write

dMCV

dt
52 _me

To find the mass of the CV at any time, t, we integrate

Z M

M0

dMCV 52

Z t

0

_me dt where at t 5 0; MCV 5 M0; and at t 5 t; MCV 5 M

Then, M2M0 52 _met, or M 5 M0 2 _met.
Substituting the expression for M into term A , we obtain

FBy
52

Z
CV

g ρ dV--- 52gMCV 52gðM0 2 _metÞ

B 2

Z
CV

arfy ρ dV---

X

Y

CV

y

x

Ve
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The acceleration, arfy , of the CV is that seen by an observer in the XY coordinate system. Thus arfy is not a function of
the coordinates xyz, and

2

Z
CV

arfy ρ dV--- 52arfy

Z
CV

ρ dV--- 52arfy MCV 52arfyðM0 2 _metÞ

C
@

@t

Z
CV

vxyz ρ dV---

This is the time rate of change of the y momentum of the fluid in the control volume measured relative to the control
volume.

Even though the y momentum of the fluid inside the CV, measured relative to the CV, is a large number, it does
not change appreciably with time. To see this, we must recognize that:

(1) The unburned fuel and the rocket structure have zero momentum relative to the rocket.
(2) The velocity of the gas at the nozzle exit remains constant with time as does the velocity at various points in the nozzle.

Consequently, it is reasonable to assume that

@

@t

Z
CV

vxyz ρ dV--- 	 0

D

Z
CS

vxyz ρ~Vxyz � d~A 5

Z
CS

vxyzðρVxyz dAÞ 52Ve

Z
CS

ðρVxyz dAÞ

The velocity vxyz (relative to the control volume) is 2Ve (it is in the negative y direction), and is a constant, so was
taken outside the integral. The remaining integral is simply the mass flow rate at the exit (positive because flow is out
of the control volume), Z

CS

ðρVxyzdAÞ 5 _me

and so Z
CS

vxyz ρ~Vxyz � d~A 52Ve _me

Substituting terms A through D into Eq. 1, we obtain

2gðM0 2 _metÞ2 arfyðM0 2 _metÞ 52Ve _me

or

arfy 5
Ve _me

M0 2 _met
2 g ð2Þ

At time t 5 0,

arfyÞt 5 0 5
Ve _me

M0
2 g 5 3500

m

s
3 5

kg

s
3

1

400 kg
2 9:81

m

s2

arfyÞt 5 0 5 33:9m=s2 ß

arfyÞt 5 0

The acceleration of the CV is by definition

arfy 5
dVCV

dt
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4.6Momentum Equation For Control Volume
With Arbitrary Acceleration (on the Web)

4.7*The Angular-Momentum Principle
Our next task is to derive a control volume form of the angular-momentum principle.
There are two obvious approaches we can use to express the angular-momentum
principle: We can use an inertial (fixed) XYZ control volume; we can also use a
rotating xyz control volume. For each approach we will: start with the principle in its
system form (Eq. 4.3a), then write the system angular momentum in terms of XYZ or
xyz coordinates, and finally use Eq. 4.10 (or its slightly different form, Eq. 4.25) to
convert from a system to a control volume formulation. To verify that these two
approaches are equivalent, we will use each approach to solve the same problem, in
Examples 4.14 and 4.15 (on the Web), respectively.

There are two reasons for the material of this section: We wish to develop a control
volume equation for each of the basic physical laws of Section 4.2; and we will need
the results for use in Chapter 10, where we discuss rotating machinery.

Equation for Fixed Control Volume

The angular-momentum principle for a system in an inertial frame is

~T 5
d~H

dt

!
system

ð4:3aÞ

where ~T5 total torque exerted on the system by its surroundings, and
~H5 angular momentum of the system.

Substituting from Eq. 2,

dVCV

dt
5

Ve _me

M0 2 _met
2 g

Separating variables and integrating gives

VCV 5

Z VCV

0

dVCV 5

Z t

0

Ve _medt

M0 2 _met
2

Z t

0

gdt 52Ve ln
M0 2 _met

M0

� 	
2 gt

At t 5 10 s,

VCV 523500
m

s
3 ln

350 kg

400 kg

2
4

3
52 9:81

m

s2
3 10 s

VCV 5 369m=s ß

VCVÞt 5 10 s

The velocity-time graph is shown
in an Excel workbook. This work-

book is interactive: It allows one to
see the effect of different values ofM0,
Ve, and _me on VCV versus time t. Also,
the time at which the rocket attains a
given speed, e.g., 2000 m/s, can be
determined.

*This section may be omitted without loss of continuity in the text material.
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~H 5

Z
MðsystemÞ

~r3 ~V dm 5

Z
V---ðsystemÞ

~r3 ~V ρ dV--- ð4:3bÞ

All quantities in the system equation must be formulated with respect to an inertial
reference frame. Reference frames at rest, or translating with constant linear velocity,
are inertial, and Eq. 4.3b can be used directly to develop the control volume form of
the angular-momentum principle.

The position vector, ~r, locates each mass or volume element of the system with
respect to the coordinate system. The torque, ~T , applied to a system may be written

~T 5 ~r3 ~Fs 1

Z
MðsystemÞ

~r3~g dm1 ~T shaft ð4:3cÞ

where ~Fs is the surface force exerted on the system.
The relation between the system and fixed control volume formulations is

dN

dt

�
system

5
@

@t

Z
CV

η ρ dV---1
Z
CS

η ρ~V � d~A ð4:10Þ

where

Nsystem 5

Z
MðsystemÞ

η dm

If we set N 5 ~H , then η 5 ~r3 ~V , and

d~H

dt

!
system

5
@

@t

Z
CV

~r3 ~V ρ dV---1
Z
CS

~r3 ~V ρ~V � d~A ð4:45Þ

Combining Eqs. 4.3a, 4.3c, and 4.45, we obtain

~r 3 ~Fs 1

Z
MðsystemÞ

~r 3 ~g dm1 ~T shaft 5
@

@t

Z
CV

~r 3 ~V ρ dV---1
Z
CS

~r 3 ~V ρ~V � d~A

Since the system and control volume coincide at time t0,

~T 5 ~TCV

and

~r3 ~Fs 1

Z
CV

~r3~g ρ dV---1 ~T shaft 5
@

@t

Z
CV

~r3 ~V ρ dV---1
Z
CS

~r3 ~V ρ~V � d~A ð4:46Þ

Equation 4.46 is a general formulation of the angular-momentum principle for an
inertial control volume. The left side of the equation is an expression for all the
torques that act on the control volume. Terms on the right express the rate of change
of angular momentum within the control volume and the net rate of flux of angular
momentum from the control volume. All velocities in Eq. 4.46 are measured relative
to the fixed control volume.

For analysis of rotating machinery, Eq. 4.46 is often used in scalar form by con-
sidering only the component directed along the axis of rotation. This application is
illustrated in Chapter 10.

The application of Eq. 4.46 to the analysis of a simple lawn sprinkler is illustrated
in Example 4.14. This same problem is considered in Example 4.15 (on the Web)
using the angular-momentum principle expressed in terms of a rotating control
volume.
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Example 4.14 LAWN SPRINKLER: ANALYSIS USING FIXED CONTROL VOLUME

A small lawn sprinkler is shown in the sketch at right. At an inlet
gage pressure of 20 kPa, the total volume flow rate of water through
the sprinkler is 7.5 liters per minute and it rotates at 30 rpm. The
diameter of each jet is 4 mm. Calculate the jet speed relative to each
sprinkler nozzle. Evaluate the friction torque at the sprinkler pivot.

Given: Small lawn sprinkler as shown.

Find: (a) Jet speed relative to each nozzle.
(b) Friction torque at pivot.

Solution: Apply continuity and angular momentum equations
using fixed control volume enclosing sprinkler arms.

Governing equations:

CV

 dV �  
CS

 V    dA � 0

� 0(1)

� ���t ·

~r3 ~Fs 1

Z
CV

~r3~g ρdV---1 ~Tshaft 5
@

@t

Z
CV

~r3 ~Vρ dV---1
Z
CS

~r3 ~V ρ~V � d~A ð1Þ

where all velocities are measured relative to the inertial coordinates XYZ.

Assumptions: (1) Incompressible flow.
(2) Uniform flow at each section.
(3) ~ω 5 constant:

From continuity, the jet speed relative to the nozzle is given by

Vrel 5
Q

2Ajet
5

Q

2

4

πD2
jet

5
1

2
3 7:5

L

min
3

4

π
1

ð4Þ2 mm2
3

m3

1000 L
3 106

mm2

m2
3

min

60 s

Vrel 5 4:97 m=s ß
Vrel

Consider terms in the angular momentum equation separately. Since atmospheric pressure acts on the entire control
surface, and the pressure force at the inlet causes no moment about O, ~r3 ~Fs 5 0. The moments of the body (i.e.,
gravity) forces in the two arms are equal and opposite and hence the second term on the left side of the equation is
zero. The only external torque acting on the CV is friction in the pivot. It opposes the motion, so

~T shaft 52Tf K̂ ð2Þ
Our next task is to determine the two angular momentum terms on the right side of Eq. 1. Consider the unsteady
term: This is the rate of change of angular momentum in the control volume. It is clear that although the position
~r and velocity ~V of fluid particles are functions of time in XYZ coordinates, because the sprinkler rotates at constant
speed the control volume angular momentum is constant in XYZ coordinates, so this term is zero; however, as an
exercise in manipulating vector quantities, let us derive this result. Before we can evaluate the control volume
integral, we need to develop expressions for the instantaneous position vector, ~r, and velocity vector, ~V (measured
relative to the fixed coordinate system XYZ) of each element of fluid in the control volume.OA lies in the XY plane;
AB is inclined at angle α to the XY plane; point Bu is the projection of point B on the XY plane.

We assume that the length, L, of the tip AB is small compared with the length, R, of the horizontal arm OA.
Consequently we neglect the angular momentum of the fluid in the tips compared with the angular momentum in the
horizontal arms.

Vrel
Vrel

ω

R = 150 mm

Q = 7.5 L/min
= 30 rpmω

α = 30°

psupply = 20 kPa (gage)

VrelVrel

Tf

ω

R = 150 mm

α = 30°

psupply = 20 kPa (gage)

CV

O

Z
Y

XO(Control volume
is fixed
wrt XYZ)

Q = 7.5 L/min
ω = 30 rpm
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Consider flow in the horizontal tube OA of length R. Denote the radial distance
from O by r. At any point in the tube the fluid velocity relative to fixed coordinates
XYZ is the sum of the velocity relative to the tube ~Vt and the tangential velocity
~ω3~r . Thus

~V 5 Î ðVt cos θ2 rω sin θÞ1 ĴðVt sin θ1 rω cos θÞ
(Note that θ is a function of time.) The position vector is

~r 5 Î r cos θ1 Ĵ r sin θ

and

~r3 ~V 5 K̂ðr2ω cos2θ1 r2ω sin2 θÞ 5 K̂r2ω

Then

Z
V---OA

~r3 ~V ρ dV--- 5
Z R

O

K̂r2ωρA dr 5 K̂
R3ω
3

ρA

and

@

@t

Z
V---OA

~r3 ~Vρ dV--- 5
@

@t
K̂

R3ω
3

ρA
� 	

5 0 ð3Þ

where A is the cross-sectional area of the horizontal tube. Identical results are obtained for the other horizontal tube
in the control volume. We have confirmed our insight that the angular momentum within the control volume does
not change with time.

Now we need to evaluate the second term on the right, the flux of momentum across the control surface. There
are three surfaces through which we have mass and therefore momentum flux: the supply line (for which~r3 ~V 5 0)
because ~r 5 0 and the two nozzles. Consider the nozzle at the end of branch OAB. For L{R, we have

~r jet 5 ~rB 	~rjr 5 R 5 ðÎr cos θ1 Ĵr sin θÞjr 5 R 5 ÎR cos θ1 ĴR sin θ

and for the instantaneous jet velocity ~Vj we have

~Vj 5 ~V rel 1 ~V tip 5 ÎVrel cos α sin θ2 ĴVrel cos α cos θ1 K̂Vrel sin α2 ÎωR sin θ1 ĴωR cos θ

~Vj 5 ÎðVrel cos α2ωRÞsin θ2 ĴðVrel cos α2ωRÞ cos θ1 K̂Vrel sin α

~rB 3 ~Vj 5 ÎRVrel sin α sin θ2~JRVrel sin α cos θ2 K̂RðVrel cos α2ωRÞðsin2 θ1 cos2 θÞ

~rB 3 ~Vj 5 ÎRVrel sin α sin θ2~JRVrel sin α cos θ2 K̂RðVrel cos α2ωRÞ

A
B

B'
α

θ

Isometric view Plan view
X

Y

Z

O

O

A

X
B'θ

θω

Y

r

r

θ

θ

Y

ω A

Vt

X
O

Plan view
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Equation for Rotating Control Volume (on the Web)

4.8The First Law of Thermodynamics
The first law of thermodynamics is a statement of conservation of energy. Recall that
the system formulation of the first law was

_Q2 _W 5
dE

dt

�
system

ð4:4aÞ

where the total energy of the system is given by

Esystem 5

Z
MðsystemÞ

e dm 5

Z
V---ðsystemÞ

e ρ dV--- ð4:4bÞ

The flux integral evaluated for flow crossing the control surface at location B is thenZ
CS

~r3 ~Vj ρ~V � d~A 5 ÎRVrel sin α sin θ2 ĴRVrel sin α cos θ2 K̂RðVrel cos α2ωRÞ
h i

ρ
Q

2

The velocity and radius vectors for flow in the left arm must be described in terms of the same unit vectors used for the
right arm. In the left arm the Î and Ĵ components of the cross product are of opposite sign, since sin (θ1π)52sin (θ)
and cos (θ1π)52cos (θ). Thus for the complete CV,Z

CS

~r3 ~Vj ρ~V � d~A 52K̂RðVrel cos α2ωRÞρQ ð4Þ

Substituting terms (2), (3), and (4) into Eq. 1, we obtain

2Tf K̂ 52K̂RðVrel cos α2ωRÞρQ

or
Tf 5 RðVrel cos α2ωRÞρQ

This expression indicates that when the sprinkler runs at constant speed the friction torque at the sprinkler pivot just
balances the torque generated by the angular momentum of the two jets.

From the data given,

ωR 5 30
rev

min
3 150 mm3 2π

rad

rev
3

min

60 s
3

m

1000mm
5 0:471 m=s

Substituting gives

Tf 5 150 mm3 4:97
m

s
3 cos 30� 2 0:471

m

s

0
@

1
A999

kg

m3
3 7:5

L

min

3
m3

1000 L
3

min

60 s
3

N � s3
kg �m 3

m

1000 mm

Tf 5 0:0718 N �m ß

Tf

This problem illustrates use of the
angular momentum principle for an
inertial control volume. Note that in
this example the fluid particle position
vector~r and velocity vector ~V are time-
dependent (through θ) in XYZ coordi-
nates. This problem will be solved
again using a noninertial (rotating)
xyz coordinate system in Example 4.15
(on the Web).
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and

e 5 u1
V2

2
1 gz

In Eq. 4.4a, the rate of heat transfer, _Q, is positive when heat is added to the system
from the surroundings; the rate of work, _W, is positive when work is done by the
system on its surroundings. (Note that some texts use the opposite notation for work.)

To derive the control volume formulation of the first law of thermodynamics, we set

N 5 E and η 5 e

in Eq. 4.10 and obtain

dE

dt

�
system

5
@

@t

Z
CV

e ρ dV---1
Z
CS

e ρ~V � d~A ð4:53Þ

Since the system and the control volume coincide at t0,

½ _Q2 _W�system 5 ½ _Q2 _W�control volume

In light of this, Eqs. 4.4a and 4.53 yield the control volume form of the first law of
thermodynamics,

_Q2 _W 5
@

@t

Z
CV

e ρ dV---1
Z
CS

e ρ~V � d~A ð4:54Þ

where

e 5 u1
V2

2
1 gz

Note that for steady flow the first term on the right side of Eq. 4.54 is zero.
Is Eq. 4.54 the form of the first law used in thermodynamics? Even for steady flow,

Eq. 4.54 is not quite the same form used in applying the first law to control volume
problems. To obtain a formulation suitable and convenient for problem solutions, let
us take a closer look at the work term, _W.

Rate of Work Done by a Control Volume

The term _W in Eq. 4.54 has a positive numerical value when work is done by the
control volume on the surroundings. The rate of work done on the control volume is
of opposite sign to the work done by the control volume.

The rate of work done by the control volume is conveniently subdivided into four
classifications,

_W 5 _Ws 1 _Wnormal 1 _Wshear 1 _Wother

Let us consider these separately:

1. Shaft Work

We shall designate shaft workWs and hence the rate of work transferred out through the
control surface by shaft work is designated _Ws. Examples of shaft work are the work
produced by the steam turbine (positive shaft work) of a power plant, and the work input
required to run the compressor of a refrigerator (negative shaft work).
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2. Work Done by Normal Stresses at the Control Surface

Recall that work requires a force to act through a distance. Thus, when a force, ~F , acts
through an infinitesimal displacement, d~s, the work done is given by

δW 5 ~F � d~s
To obtain the rate at which work is done by the force, divide by the time increment,
Δt, and take the limit as Δt - 0. Thus the rate of work done by the force, ~F , is

_W 5 lim
Δt-0

δW
Δt

5 lim
Δt-0

~F � d~s
Δt

or _W 5 ~F � ~V

We can use this to compute the rate of work done by the normal and shear stresses.
Consider the segment of control surface shown in Fig. 4.6. For an element of area d~A
we can write an expression for the normal stress force d~F normal: It will be given by the
normal stress σnn multiplied by the vector area element d~A (normal to the control
surface).

Hence the rate of work done on the area element is

d~F normal � ~V 5 σnn d~A � ~V
Since the work out across the boundaries of the control volume is the negative of the
work done on the control volume, the total rate of work out of the control volume due
to normal stresses is

_Wnormal 52

Z
CS

σnn d~A � ~V 52

Z
CS

σnn
~V � d~A

3. Work Done by Shear Stresses at the Control Surface

Just as work is done by the normal stresses at the boundaries of the control volume, so
may work be done by the shear stresses.

As shown in Fig. 4.6, the shear force acting on an element of area of the control
surface is given by

d~F shear 5 ~τ dA

where the shear stress vector, ~τ , is the shear stress acting in some direction in the
plane of dA.

The rate of work done on the entire control surface by shear stresses is given byZ
CS

~τ dA � ~V 5

Z
CS

~τ � ~VdA

Since the work out across the boundaries of the control volume is the negative of
the work done on the control volume, the rate of work out of the control volume due
to shear stresses is given by

_Wshear 52

Z
CS

~τ � ~V dA

dFshear =   dA
dA

τ

dFnormal =   nndA
Control surfaceNormal stress force

Shear stress force

σ

Fig. 4.6 Normal and shear stress forces.
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This integral is better expressed as three terms

_Wshear 52

Z
CS

~τ � ~V dA

52

Z
AðshaftsÞ

~τ � ~V dA2

Z
Aðsolid surfaceÞ

~τ � ~V dA2

Z
AðportsÞ

~τ � ~V dA

We have already accounted for the first term, since we included _Ws previously. At solid
surfaces, ~V 5 0, so the second term is zero (for a fixed control volume). Thus,

_Wshear 52

Z
AðportsÞ

~τ � ~V dA

This last term can be made zero by proper choice of control surfaces. If we choose a
control surface that cuts across each port perpendicular to the flow, then d ~A is parallel
to ~V . Since~τ is in the plane of dA,~τ is perpendicular to ~V . Thus, for a control surface
perpendicular to ~V ,

~τ � ~V 5 0 and _Wshear 5 0

4. Other Work

Electrical energy could be added to the control volume. Also electromagnetic energy,
e.g., in radar or laser beams, could be absorbed. In most problems, such contributions
will be absent, but we should note them in our general formulation.

With all of the terms in _W evaluated, we obtain

_W 5 _Ws 2

Z
CS

σnn
~V � d~A1 _Wshear 1 _Wother ð4:55Þ

Control Volume Equation

Substituting the expression for _W from Eq. 4.55 into Eq. 4.54 gives

_Q2 _Ws 1

Z
CS

σnn
~V � d~A2 _Wshear 2 _Wother 5

@

@t

Z
CV

e ρ dV---1
Z
CS

e ρ~V � d~A

Rearranging this equation, we obtain

_Q2 _Ws 2 _Wshear 2 _Wother 5
@

@t

Z
CV

e ρ dV---1
Z
CS

e ρ~V � d~A2

Z
CS

σnn
~V � d~A

Since ρ 5 1=v, where v is specific volume, thenZ
CS

σnn
~V � d~A 5

Z
CS

σnn v ρ~V � d~A

Hence

_Q2 _Ws 2 _Wshear 2 _Wother 5
@

@t

Z
CV

e ρ dV---1
Z
CS

ðe2σnnvÞ ρ~V � d~A

Viscous effects can make the normal stress, σnn, different from the negative of the
thermodynamic pressure, 2p. However, for most flows of common engineering
interest, σnn C 2p. Then

_Q2 _Ws 2 _Wshear 2 _Wother 5
@

@t

Z
CV

e ρ dV---1
Z
CS

ðe1 pvÞ ρ~V � d~A
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Finally, substituting e5 u1V2=21 gz into the last term, we obtain the familiar form
of the first law for a control volume,

_Q2 _Ws 2 _Wshear 2 _Wother 5
@

@t

Z
CV

e ρ dV---1
Z
CS

u1 pv1
V2

2
1 gz

� �
ρ~V � d~A ð4:56Þ

Each work term in Eq. 4.56 represents the rate of work done by the control volume on
the surroundings. Note that in thermodynamics, for convenience, the combination
u1 pv (the fluid internal energy plus what is often called the “flow work”) is usually
replaced with enthalpy, h � u1 pv (this is one of the reasons h was invented).

Example 4.16 COMPRESSOR: FIRST LAW ANALYSIS

Air at 14.7 psia, 70�F, enters a compressor with negligible velocity and is discharged at 50 psia, 100�F through a pipe
with 1 ft2 area. The flow rate is 20 lbm/s. The power input to the compressor is 600 hp. Determine the rate of heat
transfer.

Given: Air enters a compressor at 1 and leaves at 2 with
conditions as shown. The air flow rate is 20 lbm/s and the
power input to the compressor is 600 hp.

Find: Rate of heat transfer.

Solution:

Governing equations:

CV

 dV �    

CS

 V   dA � 0

� 0(1)

Q � Ws � Wshear �
CV

 e dV �  
CS

 (u � pv � � gz) V   dA

� 0(4) � 0(1)

V 2

2

�

� �

���
��

t

t

·

·

Assumptions: (1) Steady flow.
(2) Properties uniform over inlet and outlet sections.
(3) Treat air as an ideal gas, p5 ρRT.
(4) Area of CV at 1 and 2 perpendicular to velocity, thus _Wshear 5 0.
(5) z15 z2.
(6) Inlet kinetic energy is negligible.

Under the assumptions listed, the first law becomes

_Q2 _Ws 5

Z
CV

u1 pv1
V2

2
1 gz

� �
ρ~V � d~A

_Q2 _Ws 5

Z
CS

h1
V2

2
1 gz

� �
ρ~V � d~A

or

_Q 5 _Ws 1

Z
CS

h1
V2

2
1 gz

� �
ρ~V � d~A

1
2

p1 = 14.7 psia

T1 = 70°F

V1= 0

p2 = 50 psia

T2 = 100°F

A2 = 1 ft2

CV
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For uniform properties, assumption (2), we can write

� gz1)(� 1V1A1) � (h2 �Q � Ws � (h1 � 

�0(6)

V 1

2

2

� gz2)( 2V2A2)
V 2

2

2

For steady flow, from conservation of mass, Z
CS

ρ~V � d~A 5 0

Therefore, 2(ρ1V1A1)1 (ρ2V2A2)5 0, or ρ1V1A15 ρ2V2A25 _m. Hence we can write

Q � Ws � m [(h2 � h1) � � g(z2 � z1)]
�0(5)

V 2

2

2

Assume that air behaves as an ideal gas with constant cp. Then h22 h15 cp(T22T1), and

_Q 5 _Ws 1 _m cpðT2 2T1Þ1 V2
2

2

� 	

From continuity V2 5 _m=ρ2A2. Since p25 ρ2RT2,

V2 5
_m

A2

RT2

p2
5 20

lbm

s
3

1

1 ft2
3 53:3

ft � lbf
lbm�3R 3 5603R3

in:2

50 lbf
3

ft2

144 in:2

V2 5 82:9 ft=s

Note that power input is to the CV, so _Ws 52600 hp, and

_Q 5 _Ws 1 _mcp ðT2 2T1Þ1 _m
V2

2

2

_Q 52600 hp3 550
ft � lbf
hp � s 3

Btu

778 ft � lbf 1 20
lbm

s
3 0:24

Btu

lbm �� R 3 30�R

1 20
lbm

s
3

ð82:9Þ2
2

ft2

s2
3

slug

32:2 lbm
3

Btu

778 ft � lbf 3
lbf � s2
slug � ft

_Q 52277 Btu=sß

fheat rejectiong _Q

This problem illustrates use of the first
law of thermodynamics for a control
volume. It is also an example of the
care that must be taken with unit con-
versions for mass, energy, and power.

Example 4.17 TANK FILLING: FIRST LAW ANALYSIS

A tank of 0.1 m3 volume is connected to a high-pressure air line; both line and tank are initially at a uniform
temperature of 20�C. The initial tank gage pressure is 100 kPa. The absolute line pressure is 2.0 MPa; the line is large
enough so that its temperature and pressure may be assumed constant. The tank temperature is monitored by a fast-
response thermocouple. At the instant after the valve is opened, the tank temperature rises at the rate of 0.05�C/s.
Determine the instantaneous flow rate of air into the tank if heat transfer is neglected.
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Given: Air supply pipe and tank as shown. At t5 01, @T=@t 5 0:053C=s.

Find: _m at t5 01.

Solution:
Choose CV shown, apply energy equation.

Governing equation:

e � u � � gz

� 0(5) � 0(6)

V2

2

Q � Ws � Wshear � Wother �
CV

 e dV �  
CS

 (e � p  ) V   dA

� 0(1) � 0(2) � 0(3) � 0(4)

 �   ��� �
t

·

Assumptions: (1) _Q 5 0 (given).
(2) _Ws 5 0.
(3) _Wshear 5 0.
(4) _Wother 5 0.
(5) Velocities in line and tank are small.
(6) Neglect potential energy.
(7) Uniform flow at tank inlet.
(8) Properties uniform in tank.
(9) Ideal gas, p5 ρRT, du5 cvdT.

Then

@

@t

Z
CV

utankρ dV---1 ðu1 pvÞjlineð2ρVAÞ 5 0

This expresses the fact that the gain in energy in the tank is due to influx of fluid energy (in the form of enthalpy
h5 u1 pv) from the line. We are interested in the initial instant, when T is uniform at 20�C, so utank5 uline5 u, the
internal energy at T; also, pvline5RTline5RT, and

@

@t

Z
CV

u ρ dV---1 ðu1RTÞð2ρVAÞ 5 0

Since tank properties are uniform, @=@t may be replaced by d/dt, and

d

dt
ðuMÞ 5 ðu1RTÞ _m

(where M is the instantaneous mass in the tank and _m 5 ρVA is the mass flow rate), or

u
dM

dt
1M

du

dt
5 u _m1RT _m ð1Þ

Tank    = 0.1 m3

Initial conditions: T = 20°C
                          p = 100 kPa (gage)

V

Valve

High-pressure line

T = 20°C
p = 20 MPa

      (absolute)

CV
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4.9 The Second Law of Thermodynamics
Recall that the system formulation of the second law is

dS

dt

�
system

$
1

T
_Q ð4:5aÞ

where the total entropy of the system is given by

Ssystem 5

Z
MðsystemÞ

s dm 5

Z
V---ðsystemÞ

s ρ dV--- ð4:5bÞ

To derive the control volume formulation of the second law of thermodynamics, we set

N 5 S and η 5 s

The term dM/dt may be evaluated from continuity:

Governing equation:

@

@t

Z
CV

ρdV---1
Z
CS

ρ~V � d~A 5 0

dM

dt
1 ð2ρVAÞ 5 0 or

dM

dt
5 _m

Substituting in Eq. 1 gives

u _m1Mcv
dT

dt
5 u _m1RT _m

or

_m 5
McvðdT=dtÞ

RT
5

ρV---cvðdT=dtÞ
RT

ð2Þ

But at t5 0, ptank5 100 kPa (gage), and

ρ 5 ρtank 5
ptank
RT

5 ð1:001 1:01Þ105 N

m2
3

kg �K
287 N �m 3

1

293 K

5 2:39 kg=m3

Substituting into Eq. 2, we obtain

_m 5 2:39
kg

m3
3 0:1m3 3 717

N �m
kg �K 3 0:05

K

s

3
kg �K

287 N �m 3
1

293 K
3 1000

g

kg

_m 5 0:102 g=s ß

_m

This problem illustrates use of the first
law of thermodynamics for a control
volume. It is also an example of the
care that must be taken with unit con-
versions for mass, energy, and power.
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in Eq. 4.10 and obtain

dS

dt

�
system

5
@

@t

Z
CV

s ρ dV---1
Z
CS

s ρ~V � d~A ð4:57Þ

The system and the control volume coincide at t0; thus in Eq. 4.5a,

1

T
_Q

�
system

5
1

T
_QÞCV 5

Z
CS

1

T

_Q

A

 !
dA

In light of this, Eqs. 4.5a and 4.57 yield the control volume formulation of the second
law of thermodynamics

@

@t

Z
CV

s ρ dV---1
Z
CS

s ρ ~V � d~A$

Z
CS

1

T

_Q

A

 !
dA ð4:58Þ

In Eq. 4.58, the factor ð _Q=AÞ represents the heat flux per unit area into the control
volume through the area element dA. To evaluate the term

Z
CS

1

T

_Q

A

 !
dA

both the local heat flux, ð _Q=AÞ, and local temperature, T, must be known for each
area element of the control surface.

4.10 Summary and Useful Equations
In this chapter we wrote the basic laws for a system: mass conservation (or continuity), Newton’s second law, the angular-

momentum equation, the first law of thermodynamics, and the second law of thermodynamics. We then developed an equation

(sometimes called the Reynolds Transport Theorem) for relating system formulations to control volume formulations. Using this we

derived control volume forms of:

ü The mass conservation equation (sometimes called the continuity equation).
ü Newton’s second law (in other words, a momentum equation) for:

* An inertial control volume.
* A control volume with rectilinear acceleration.
* A control volume with arbitrary acceleration (on the Web).

ü The angular-momentum equation for:*
* A fixed control volume.
* A rotating control volume (on the Web).

ü The first law of thermodynamics (or energy equation).
ü The second law of thermodynamics.

We discussed the physical meaning of each term appearing in these control volume equations, and used the
equations for the solution of a variety of flow problems. In particular, we used a differential control volume* to
derive a famous equation in fluid mechanics—the Bernoulli equation—and while doing so learned about the
restrictions on its use in solving problems.

*These topics apply to a section that may be omitted without loss of continuity in the text material
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Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Continuity (mass conservation),
incompressible fluid:

Z
CS

~V � d~A 5 0
(4.13a) Page

105

Continuity (mass conservation),
incompressible fluid,
uniform flow:

X
CS

~V � ~A 5 0
(4.13b) Page

105

Continuity (mass conservation),
steady flow:

Z
CS

ρ~V � d~A 5 0
(4.15a) Page

106

Continuity (mass conservation),
steady flow, uniform flow:

X
CS
ρ~V � ~A 5 0

(4.15b) Page
106

Momentum (Newton’s
second law):

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~V ρ dV---1
Z
CS

~V ρ~V � d~A
(4.17a) Page

111

Momentum (Newton’s second
law), uniform flow: ~F 5 ~FS 1 ~FB 5

@

@t

Z
CV

~V ρ dV---1
X

CS
~Vρ~V � ~A

(4.17b) Page
111

Momentum (Newton’s second
law), scalar components: Fx 5 FSx 1FBx

5
@

@t

Z
CV

u ρ dV---1
Z
CS

u ρ~V � d~A

Fy 5 FSy 1FBy
5

@

@t

Z
CV

v ρ dV---1
Z
CS

v ρ~V � d~A

Fz 5 FSz 1FBz
5

@

@t

Z
CV

w ρ dV---1
Z
CS

w ρ~V � d~A

(4.18a)

(4.18b)

(4.18c)

Page
112

Momentum (Newton’s second
law), uniform flow, scalar
components:

Fx 5 FSx 1FBx
5

@

@t

Z
CV

u ρ dV---1
X

CS
u ρ~V � ~A

Fy 5 FSy 1FBy
5

@

@t

Z
CV

v ρ dV---1
X

CS
v ρ~V � ~A

Fz 5 FSz 1FBz
5

@

@t

Z
CV

w ρ dV---1
X

CS
w ρ~V � ~A

(4.18d)

(4.18e)

(4.18f)

Page
112

Bernoulli equation (steady,
incompressible, frictionless,
flow along a streamline):

p

ρ
1

V2

2
1 gz 5 constant

(4.24) Page
124

Momentum (Newton’s second
law), inertial control volume
(stationary or constant speed):

~F 5 ~FS 1 ~FB 5
@

@t

Z
CV

~Vxyz ρ dV---1
Z
CS

~Vxyz ρ~Vxyz � d~A
(4.26) Page

126

Momentum (Newton’s second
law), rectilinear acceleration of
control volume:

~FS 1 ~FB 2

Z
CV

~arf ρ dV--- 5
@

@t

Z
CV

~Vxyz ρ dV---
Z
CS

~Vxyz ρ~Vxyz � d~A
(4.33) Page

130

Angular-momentum principle:
~r3 ~Fs 1

Z
CV

~r3~g ρ dV---1 ~T shaft

5
@

@t

Z
CV

~r3 ~V ρ dV---1
Z
CS

~r3 ~V ρ~V � d~A

(4.46) Page
136
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First law of thermodynamics: _Q2 _Ws 2 _Wshear 2 _Wother

5
@

@t

Z
CV

e ρ dV---1
Z
CS

u1 pv1
V2

2
1 gz

� �
ρ~V � d~A

(4.56) Page
143

Second law of
thermodynamics:

@

@t

Z
CV

s ρ dV---1
Z
CS

s ρ ~V � d~A$

Z
CS

1

T

_Q

A

 !
dA

(4.58) Page
147

Problems
Basic Laws for a System

4.1 Amass of 5 lbm is released when it is just in contact with a
spring of stiffness 25 lbf/ft that is attached to the ground.
What is the maximum spring compression? Compare this to
the deflection if the mass was just resting on the compressed
spring. What would be the maximum spring compression if
the mass was released from a distance of 5 ft above the top
of the spring?

4.2 An ice-cube tray containing 250 mL of freshwater at 15�C
is placed in a freezer at 25�C. Determine the change in
internal energy (kJ) and entropy (kJ/K) of the water when it
has frozen.

4.3 A small steel ball of radius r = 1 mm is placed on top of a
horizontal pipe of outside radius R = 50 mm and begins to
roll under the influence of gravity. Rolling resistance and air
resistance are negligible. As the speed of the ball increases, it

Case Study

“Lab-on-a-Chip”

(a) (b) (c)

Mixing two fluids in a “lab-on-a-chip.”

An exciting new area in fluid mechanics is microfluidics,
applied to microelectromechanical systems (MEMS—the
technology of very small devices, generally ranging in
size from a micrometer to a millimeter). In particular, a lot
of research is being done in “lab-on-a-chip” technology,
which has many applications. An example of this is in
medicine, with devices for use in the immediate point-of-
care diagnosis of diseases, such as real-time detection of
bacteria, viruses, and cancers in the human body. In the
area of security, there are devices that continuously
sample and test air or water samples for biochemical
toxins and other dangerous pathogens such as those in
always-on early warning systems.

Because of the extremely small geometry, flows in
such devices will be very low Reynolds numbers and
therefore laminar; surface tension effects will also be
significant. In many common applications (for example,

typical water pipes and air conditioning ducts), laminar
flow would be desirable, but the flow is turbulent—it
costs more to pump a turbulent as opposed to a laminar
flow. In certain applications, turbulence is desirable
instead because it acts as a mixing mechanism. If you
couldn’t generate turbulence in your coffee cup, it would
take a lot of stirring before the cream and coffee were
sufficiently blended; if your blood flow never became
turbulent, you would not get sufficient oxygen to your
organs and muscles! In the lab-on-a-chip, turbulent flow
is usually desirable because the goal in these devices is
often to mix minute amounts of two or more fluids.
How do we mix fluids in such devices that are inher-

ently laminar? We could use complex geometries, or
relatively long channels (relying on molecular diffusion),
or some kind of MEM device with paddles. Research by
professors Goullet, Glasgow, and Aubry at the New Jer-
sey Institute of Technology instead suggests pulsing the
two fluids. Part a of the figure shows a schematic of two
fluids flowing at a constant rate (about 25 nL/s, average
velocity less than 2 mm/s, in ducts about 200 μm wide)
and meeting in a T junction. The two fluids do not mix
because of the strongly laminar nature of the flow. Part b
of the figure shows a schematic of an instant of a pulsed
flow, and part c shows an instant computed using a
computational fluid dynamics (CFD) model of the same
flow. In this case, the interface between the two fluid
samples is shown to stretch and fold, leading to good
nonturbulent mixing within 2 mm downstream of
the confluence (after about 1 s of contact). Such a
compact mixing device would be ideal for many of the
applications mentioned above.
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eventually leaves the surface of the pipe and becomes a
projectile. Determine the speed and location at which the
ball loses contact with the pipe.

4.4 A fully loaded Boeing 777-200 jet transport aircraft
weighs 325,000 kg. The pilot brings the 2 engines to full
takeoff thrust of 450 kN each before releasing the brakes.
Neglecting aerodynamic and rolling resistance, estimate the
minimum runway length and time needed to reach a takeoff
speed of 225 kph. Assume engine thrust remains constant
during ground roll.

4.5 A police investigation of tire marks showed that a car
traveling along a straight and level street had skidded to a
stop for a total distance of 200 ft after the brakes were
applied. The coefficient of friction between tires and pave-
ment is estimated to be μ = 0.7. What was the probable
minimum speed (mph) of the car when the brakes were
applied? How long did the car skid?

4.6 A high school experiment consists of a block of mass 2 kg
sliding across a surface (coefficient of friction μ = 0.6). If it is
given an initial velocity of 5 m/s, how far will it slide, and how
long will it take to come to rest? The surface is now rough-
ened a little, so with the same initial speed it travels a dis-
tance of 2 m. What is the new coefficient of friction, and how
long does it now slide?

4.7 A car traveling at 30 mph encounters a curve in the road.
The radius of the road curve is 100 ft. Find the maximum
speeds (mph) before losing traction, if the coefficient of friction
on a dry road is μdry = 0.7 and on a wet road is μwet = 0.3.

4.8 Air at 20�C and an absolute pressure of 1 atm is com-
pressed adiabatically in a piston-cylinder device, without
friction, to an absolute pressure of 4 atm in a piston-cylinder
device. Find the work done (MJ).

4.9 In an experiment with a can of soda, it took 2 hr to cool
from an initial temperature of 80�F to 45�F in a 35�F
refrigerator. If the can is now taken from the refrigerator and
placed in a room at 72�F, how long will the can take to reach
60�F? You may assume that for both processes the heat
transfer is modeled by _Q 	 kðT2TambÞ, where T is the can
temperature, Tamb is the ambient temperature, and k is a
heat transfer coefficient.

4.10 A block of copper of mass 5 kg is heated to 90�C and
then plunged into an insulated container containing 4 L of
water at 10�C. Find the final temperature of the system. For
copper, the specific heat is 385 J/kg �K, and for water the
specific heat is 4186 J/kg �K.

4.11 The average rate of heat loss from a person to the sur-
roundings when not actively working is about 85 W. Suppose
that in an auditorium with volume of approximately 3.5 3
105 m3, containing 6000 people, the ventilation system fails.
How much does the internal energy of the air in the audi-
torium increase during the first 15 min after the ventilation
system fails? Considering the auditorium and people as
a system, and assuming no heat transfer to the surroundings,
how much does the internal energy of the system change? How
do you account for the fact that the temperature of the air
increases? Estimate the rate of temperature rise under these
conditions.

Conservation of Mass

4.12 The velocity field in the region shown is given by
~V ¼ ðaĵþ byk̂Þ where a5 10m/s and b5 5 s21. For the 1m
3 1mtriangular control volume (depthw5 1mperpendicular
to the diagram), an element of area 1 may be represented
by d~A1 ¼ wdzĵ2wdyk̂ and an element of area 2 by
d~A2 ¼ 2wdyk̂.
(a) Find an expression for ~V � dA1.
(b) Evaluate

R
A1

~V � dA1.
(c) Find an expression for ~V � dA2.
(d) Find an expression for ~V ð~V � dA2Þ.
(e) Evaluate

R
A2

~V ð~V � dA2Þ.

y

z

Control
volume 1

2

P4.12

4.13 The shaded area shown is in a flowwhere the velocity field
is given by ~V ¼ axîþ byĵ; a 5 b 5 1 s21, and the coordinates
are measured in meters. Evaluate the volume flow rate and
the momentum flux through the shaded area (ρ 5 1 kg/m3).

x 

y 

5 m

4 m  

3 m  

z 

P4.13

4.14 The area shown shaded is in a flow where the velocity field
is given by ~V ¼ axîþ byĵþ ck̂; a 5 b 5 2 s21 and c 5 1 m/s.
Write a vector expression for an element of the shaded area.
Evaluate the integrals

R
A
~V � dA and

R
A
~V ð~V � d~AÞ over the

shaded area.

x

y

5 m

4 m

3 m

z

P4.14
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4.15 Obtain expressions for the volume flow rate and the
momentum flux through cross section 1 of the control
volume shown in the diagram.

h

V

CVu
1

x

y

Width = w

P4.15

4.16 For the flow of Problem 4.15, obtain an expression for
the kinetic energy flux,

R ðV2=2Þρ~V � d~A, through cross sec-
tion 1 of the control volume shown.

4.17 The velocity distribution for laminar flow in a long cir-
cular tube of radius R is given by the one-dimensional
expression,

~V 5 uî 5 umax 12
r

R

� �2� 	
î

For this profile obtain expressions for the volumeflow rate and
the momentum flux through a section normal to the pipe axis.

4.18 For the flow of Problem 4.17, obtain an expression for
the kinetic energy flux,

R ðV2=2Þρ~V � d~A, through a section
normal to the pipe axis.

4.19 A shower head fed by a 3/4-in. ID water pipe consists of
50 nozzles of 1/32-in. ID. Assuming a flow rate of 2.2 gpm, what
is the exit velocity (ft/s) of each jet of water? What is the
average velocity (ft/s) in the pipe?

4.20 A farmer is spraying a liquid through 10 nozzles, 1/8-in.
ID, at an average exit velocity of 10 ft/s. What is the average
velocity in the 1-in. ID head feeder? What is the system flow
rate, in gpm?

4.21 A cylindrical holding water tank has a 3 m ID and a
height of 3 m. There is one inlet of diameter 10 cm, an exit of
diameter 8 cm, and a drain. The tank is initially empty when
the inlet pump is turned on, producing an average inlet
velocity of 5 m/s. When the level in the tank reaches 0.7 m,
the exit pump turns on, causing flow out of the exit; the exit
average velocity is 3 m/s. When the water level reaches 2 m
the drain is opened such that the level remains at 2 m. Find
(a) the time at which the exit pump is switched on, (b) the
time at which the drain is opened, and (c) the flow rate into
the drain (m3/min).

4.22 A university laboratory that generates 15 m3/s of air
flow at design condition wishes to build a wind tunnel with
variable speeds. It is proposed to build the tunnel with a
sequence of three circular test sections: section 1 will have a
diameter of 1.5 m, section 2 a diameter of 1 m, and section 3
a diameter such that the average speed is 75 m/s.
(a) What will be the speeds in sections 1 and 2?
(b) What must the diameter of section 3 be to attain the

desired speed at design condition?

4.23 A wet cooling tower cools warm water by spraying it
into a forced dry-air flow. Some of the water evaporates in
this air and is carried out of the tower into the atmosphere;
the evaporation cools the remaining water droplets, which
are collected at the exit pipe (6 in. ID) of the tower.

Measurements indicate the warm water mass flow rate is
250,000 lb/hr, and the cool water (70�F) flows at an average
speed of 5 ft/s in the exit pipe. The moist air density is 0.065
lb/ft3. Find (a) the volume flow rate (ft3/s) and mass flow rate
(lb/hr) of the cool water, (b) the mass flow rate (lb/hr) of the
moist air, and (c) the mass flow rate (lb/hr) of the dry air.
Hint: Google “density of moist air” for information on
relating moist and dry air densities!

Warm
water 

CS

Cool
water 

Moist air

P4.23

4.24 Fluid with 65 lbm/ft3 density is flowing steadily through
the rectangular box shown. Given A15 0.5 ft2, A25 0.1 ft2,
A35 0.6 ft2, ~V 1 5 10î^ft=s, and ~V 2 5 20ĵ^ft=s, determine
velocity ~V 3.

60°
A1

A3

A2 x

y y

x A3 = 0.02 m2

A2 = 0.05 m2

V2 = 10 m/s

A1 = 0.1 m2

V1 = 3 m/s

P4.24 P4.25

4.25 Consider steady, incompressible flow through the
device shown. Determine the magnitude and direction of
the volume flow rate through port 3.

4.26 A rice farmer needs to fill her 150 m 3 400 m field with
water to a depth of 7.5 cm in 1 hr. How many 37.5-cm-
diameter supply pipes are needed if the average velocity in
each must be less than 2.5 m/s?

4.27 You are making beer. The first step is filling the glass
carboy with the liquid wort. The internal diameter of the
carboy is 15 in., and you wish to fill it up to a depth of 2 ft. If
your wort is drawn from the kettle using a siphon process
that flows at 3 gpm, how long will it take to fill?

4.28 In your kitchen, the sink is 2 ft by 18 in. by 12 in. deep.You
arefilling itwithwater at the rate of 4 gpm.How longwill it take
(in min) to half fill the sink? After this you turn off the faucet
and open the drain slightly so that the tank starts to drain at
1 gpm.What is the rate (in./min) atwhich thewater level drops?

4.29 Ventilation air specifications for classrooms require
that at least 8.0 L/s of fresh air be supplied for each person in
the room (students and instructor). A system needs to be
designed that will supply ventilation air to 6 classrooms, each
with a capacity of 20 students. Air enters through a central
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duct, with short branches successively leaving for each
classroom. Branch registers are 200 mm high and 500 mm
wide. Calculate the volume flow rate and air velocity enter-
ing each room. Ventilation noise increases with air velocity.
Given a supply duct 500 mm high, find the narrowest supply
duct that will limit air velocity to a maximum of 1.75 m/s.

4.30 You are trying to pump storm water out of your base-
ment during a storm. The pump can extract 27.5 gpm. The
water level in the basement is now sinking by about 4 in./hr.
What is the flow rate (gpm) from the storm into the base-
ment? The basement is 30 ft 3 20 ft.

4.31 In steady-state flow, downstream the density is 1 kg/m3,
the velocity is 1000 m/sec, and the area is 0.1 m2. Upstream, the
velocity is 1500 m/sec, and the area is 0.25 m2. What is
the density upstream?

4.32 In the incompressible flow through the device shown,
velocities may be considered uniform over the inlet and outlet
sections. The following conditions are known: A15 0.1 m2,
A25 0.2 m2, A35 0.15 m2, V15 10e2t/2 m/s, and V25

2 cos(2πt) m/s (t in seconds). Obtain an expression for the
velocity at section 3 , and plot V3 as a function of time. At
what instant does V3 first become zero? What is the total
mean volumetric flow at section 3 ?

2
1 3

Flow

Flow

P4.32

4.33 Oil flows steadily in a thin layer down an inclined plane.
The velocity profile is

u 5
ρg sin θ

μ
hy2

y2

2

� 	

Surface

θ

x

y

u

h

P4.33

Express the mass flow rate per unit width in terms of ρ, μ, g,
θ, and h.

4.34 Water enters a wide, flat channel of height 2h with a
uniform velocity of 2.5 m/s. At the channel outlet the veloc-
ity distribution is given by

u

umax

5 12
y

h

� �2

where y is measured from the centerline of the channel.
Determine the exit centerline velocity, umax.

4.35 Water flows steadily through a pipe of length L and
radius R5 75 mm. Calculate the uniform inlet velocity, U, if
the velocity distribution across the outlet is given by

u 5 umax 12
r2

R2

� 	

and umax5 3 m/s.

L

R
x

r
U

P4.35

4.36 Incompressible fluid flows steadily through a plane
diverging channel. At the inlet, of height H, the flow is
uniform with magnitude V1. At the outlet, of height 2H, the
velocity profile is

V2 5 Vm cos
πy
2H

� �
where y is measured from the channel centerline. Express Vm

in terms of V1.

4.37 The velocity profile for laminar flow in an annulus is
given by

uðrÞ 52
Δp

4μL
R2

o 2 r2 1
R2

o 2R2
i

lnðRi=RoÞ
ln
Ro

r

� 	

where Δp/L5210 kPa/m is the pressure gradient, μ is the
viscosity (SAE 10 oil at 20�C), and Ro5 5 mm and Ri5 1 mm
are the outer and inner radii. Find the volume flow rate, the
average velocity, and the maximum velocity. Plot the velocity
distribution.

Ri

u(r)r

Ro

P4.37

4.38 A two-dimensional reducing bend has a linear velocity
profile at section 1 . The flow is uniform at sections 2 and

3 . The fluid is incompressible and the flow is steady. Find
the maximum velocity, V1,max, at section 1 .

V1,max 

V2 � 1 m/s

h2 � 0.2

h1 � 0.5

V3 � 5 m/s
h3 � 0.15 m

3

2
1

30°

P4.38
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4.39 Water enters a two-dimensional, square channel of
constant width, h5 75.5 mm, with uniform velocity, U. The
channel makes a 90� bend that distorts the flow to produce
the linear velocity profile shown at the exit, with vmax5 2
vmin. Evaluate vmin, if U5 7.5 m/s.

Vmax

VminV

hU

x

y

P4.39, 4.80, 4.98

4.40 Viscous liquid from a circular tank,D5 300 mm in diam-
eter, drains through a long circular tube of radius R5 50 mm.
The velocity profile at the tube discharge is

u 5 umax 12
r

R

� �2� 	

Show that the average speed of flow in the drain tube is
V 5 1

2umax. Evaluate the rate of change of liquid level in the
tank at the instant when umax5 0.155 m/s.

4.41 A porous round tube withD5 60 mm carries water. The
inlet velocity is uniform with V15 7.0 m/s. Water flows
radially and axisymmetrically outward through the porous
walls with velocity distribution

v 5 V0 12
x

L

� �2� 	

where V05 0.03 m/s and L5 0.950 m. Calculate the mass
flow rate inside the tube at x5L.

4.42 A rectangular tank used to supply water for a Reynolds
flow experiment is 230 mm deep. Its width and length are
W5 150 mm and L5 230 mm. Water flows from the outlet
tube (inside diameter D5 6.35 mm) at Reynolds number
Re5 2000, when the tank is half full. The supply valve is
closed. Find the rate of change of water level in the tank at
this instant.

4.43 A hydraulic accumulator is designed to reduce pressure
pulsations in a machine tool hydraulic system. For the instant
shown, determine the rate at which the accumulator gains or
loses hydraulic oil.

D = 1.25 in.

V = 4.35 ft/sQ = 5.75 gpm

P4.43

4.44 A cylindrical tank, 0.3 m in diameter, drains through a
hole in its bottom. At the instant when the water depth is 0.6 m,
the flow rate from the tank is observed to be 4 kg/s. Determine
the rate of change of water level at this instant.

4.45 A tank of 0.4 m3 volume contains compressed air. A
valve is opened and air escapes with a velocity of 250 m/s
through an opening of 100 mm2 area. Air temperature
passing through the opening is 220�C and the absolute
pressure is 300 kPa. Find the rate of change of density of
the air in the tank at this moment.

4.46 Air enters a tank through an area of 0.2 ft2 with a
velocity of 15 ft/s and a density of 0.03 slug/ft3. Air leaves
with a velocity of 5 ft/s and a density equal to that in the tank.
The initial density of the air in the tank is 0.02 slug/ft3. The
total tank volume is 20 ft3 and the exit area is 0.4 ft2. Find
the initial rate of change of density in the tank.

4.47 A recent TV news story about lowering Lake Shafer
near Monticello, Indiana, by increasing the discharge
through the dam that impounds the lake, gave the following
information for flow through the dam:

Normal flow rate 290 cfs
Flow rate during draining of lake 2000 cfs

(The flow rate during draining was stated to be equivalent to
16,000 gal/s.) The announcer also said that during draining
the lake level was expected to fall at the rate of 1 ft every
8 hr. Calculate the actual flow rate during draining in gal/s.
Estimate the surface area of the lake.

4.48 A cylindrical tank, of diameter D 5 6 in., drains
through an opening, d 5 0.25 in., in the bottom of the tank.
The speed of the liquid leaving the tank is approximately
V ¼ ffiffiffiffiffiffiffiffi

2gy
p

where y is the height from the tank bottom to the
free surface. If the tank is initially filled with water to y0 5 3
ft, determine the water depths at t5 1 min, t5 2 min, and t5
3 min. Plot y (ft) versus t for the first three min.

4.49 For the conditions of Problem 4.48, estimate the times
required to drain the tank from initial depth to a depth y5 2 ft
(a change in depth of 1 ft), and from y5 2 ft to y5 1 ft (also a
change in depth of 1 ft). Can you explain the discrepancy in
these times? Plot the time to drain to a depth y 5 1 ft as a
function of opening sizes ranging from d 5 0.1 in. to 0.5 in.

4.50 A conical flask contains water to height H5 36.8 mm,
where the flask diameter is D5 29.4 mm. Water drains out
through a smoothly rounded hole of diameter d5 7.35 mm at
the apex of the cone. The flow speed at the exit is approxi-
mately V ¼ ffiffiffiffiffiffiffiffi

2gy
p

, where y is the height of the liquid free
surface above the hole. A stream of water flows into the top of
the flask at constant volume flow rate, Q5 3.75 3 1027 m3/hr.
Find the volume flow rate from the bottom of the flask.
Evaluate the direction and rate of change of water surface
level in the flask at this instant.

4.51 A conical funnel of half-angle θ5 15�, with maximum
diameter D5 70 mm and height H, drains through a hole
(diameter d5 3.12 mm) in its bottom. The speed of the liquid
leaving the funnel is approximately V ¼ ffiffiffiffiffiffiffiffi

2gy
p

, where y is
the height of the liquid free surface above the hole. Find the
rate of change of surface level in the funnel at the instant
when y5H/2.
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4.52 Water flows steadily past a porous flat plate. Constant
suction is applied along the porous section. The velocity
profile at section cd is

u

UN
5 3

y

δ

h i
2 2

y

δ

h i3=2
Evaluate the mass flow rate across section bc.

L = 2 m

V = –0.2j mm/s^ d
a

c

u δ = 1.5 mm

Width,
w = 1.5 m

y

x

U = 3 m/s
b

P4.52, P4.53

4.53 Consider incompressible steady flow of standard air in a
boundary layer on the length of porous surface shown.
Assume the boundary layer at the downstream end of the
surface has an approximately parabolic velocity profile,
u/UN5 2(y/δ)2 (y/δ)2. Uniform suction is applied along
the porous surface, as shown. Calculate the volume flow
rate across surface cd, through the porous suction surface,
and across surface bc.

4.54 A tank of fixed volume contains brine with initial
density, ρi, greater than water. Pure water enters the tank
steadily and mixes thoroughly with the brine in the tank. The
liquid level in the tank remains constant. Derive expressions
for (a) the rate of change of density of the liquid mixture
in the tank and (b) the time required for the density to reach
the value ρf, where ρi . ρf . ρH2O

.

min
•

ρ

mout
•

ρ

H2O

V = constant

P4.54

4.55 A conical funnel of half-angle θ 5 30� drains through a
small hole of diameter d 5 0.25 in. at the vertex. The speed
of the liquid leaving the funnel is approximately V ¼ ffiffiffiffiffiffiffiffi

2gy
p

,
where y is the height of the liquid free surface above the
hole. The funnel initially is filled to height y0 5 12 in. Obtain
an expression for the time, t, for the funnel to completely
drain, and evaluate. Find the time to drain from 12 in. to 6 in.
(a change in depth of 6 in.), and from 6 in. to completely
empty (also a change in depth of 6 in.). Can you explain the
discrepancy in these times? Plot the drain time t as a function
diameter d for d ranging from 0.25 in. to 0.5 in.

4.56 For the funnel of Problem 4.55, find the diameter d
required if the funnel is to drain in t 5 1 min. from an initial
depth y0 5 12 in. Plot the diameter d required to drain the
funnel in 1 min as a function of initial depth y0, for y0 ranging
from 1 in. to 24 in.

4.57 Over time, air seeps through pores in the rubber of high-
pressure bicycle tires. The saying is that a tire loses pressure at
the rate of “a pound [1 psi] a day.” The true rate of pressure
loss is not constant; instead, the instantaneous leakage mass
flow rate is proportional to the air density in the tire and to the
gage pressure in the tire, _m~ρp. Because the leakage rate is
slow, air in the tire is nearly isothermal. Consider a tire that
initially is inflated to 0.6 MPa (gage). Assume the initial rate
of pressure loss is 1 psi per day. Estimate how long it will take
for the pressure to drop to 500 kPa. How accurate is “a pound
a day” over the entire 30 day period? Plot the pressure as a
function of time over the 30 day period. Show the rule-of-
thumb results for comparison.

Momentum Equation for Inertial Control Volume

4.58 Evaluate the net rate of flux of momentum out through
the control surface of Problem 4.24.

4.59 For the conditions of Problem 4.34, evaluate the ratio of
the x-direction momentum flux at the channel outlet to that
at the inlet.

4.60 For the conditions of Problem 4.35, evaluate the ratio of
the x-direction momentum flux at the pipe outlet to that at
the inlet.

4.61 Evaluate the net momentum flux through the bend of
Problem 4.38, if the depth normal to the diagram is w 5 1 m.

4.62 Evaluate the net momentum flux through the channel
of Problem 4.39. Would you expect the outlet pressure to be
higher, lower, or the same as the inlet pressure? Why?

4.63 Water jets are being used more and more for metal
cutting operations. If a pump generates a flow of 1 gpm
through an orifice of 0.01 in. diameter, what is the average jet
speed? What force (lbf) will the jet produce at impact,
assuming as an approximation that the water sprays sideways
after impact?

4.64 Considering that in the fully developed region of a pipe,
the integral of the axial momentum is the same at all cross
sections, explain the reason for the pressure drop along
the pipe.

4.65 Find the force required to hold the plug in place at the
exit of the water pipe. The flow rate is 1.5 m3/s, and the
upstream pressure is 3.5 MPa.

F
0.2 m0.25 m

P4.65

4.66 A jet of water issuing from a stationary nozzle at 10 m/s
(Aj5 0.1 m2) strikes a turning vane mounted on a cart as
shown. The vane turns the jet through angle θ5 40�.
Determine the value of M required to hold the cart sta-
tionary. If the vane angle θ is adjustable, plot the mass, M,
needed to hold the cart stationary versus θ for 0 # θ # 180�.
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V
θ

M

V

P4.66 P4.67

4.67 A large tank of height h5 1 m and diameter D5 0.75 m
is affixed to a cart as shown. Water issues from the tank
through a nozzle of diameter d5 15 mm. The speed of the
liquid leaving the tank is approximately V 5

ffiffiffiffiffiffiffiffi
2gy

p
, where y

is the height from the nozzle to the free surface. Determine
the tension in the wire when y5 0.9 m. Plot the tension in the
wire as a function of water depth for 0 # y # 0.9 m.

4.68 A circular cylinder inserted across a stream of flowing
water deflects the stream through angle θ, as shown. (This is
termed the “Coanda effect.”) For a5 12.5 mm, b5 2.5 mm,
V5 3 m/s, and θ5 20�, determine the horizontal component
of the force on the cylinder caused by the flowing water.

V

V

θ

b

a

D

d

VV

P4.68 P4.69

4.69 A vertical plate has a sharp-edged orifice at its center.
A water jet of speed V strikes the plate concentrically.
Obtain an expression for the external force needed to hold
the plate in place, if the jet leaving the orifice also has speed
V. Evaluate the force for V5 15 ft/s, D5 4 in., and d5 1 in.
Plot the required force as a function of diameter ratio for a
suitable range of diameter d.

4.70 In a laboratory experiment, the water flow rate is to be
measured catching the water as it vertically exits a pipe into
an empty open tank that is on a zeroed balance. The tank is
10 m directly below the pipe exit, and the pipe diameter is
50 mm. One student obtains a flow rate by noting that after
60 s the volume of water (at 4�C) in the tank was 2 m3.
Another student obtains a flow rate by reading the instan-
taneous weight accumulated of 3150 kg indicated at the 60-s
point. Find the mass flow rate each student computes. Why
do they disagree? Which one is more accurate? Show that
the magnitude of the discrepancy can be explained by any
concept you may have.

4.71 A tank of water sits on a cart with frictionless wheels as
shown. The cart is attached using a cable to a massM5 10 kg,
and the coefficient of static friction of the mass with the
ground is μ 5 0.55. If the gate blocking the tank exit is
removed, will the resulting exit flow be sufficient to start the
tank moving? (Assume the water flow is frictionless, and that
the jet velocity is V ¼ ffiffiffiffiffiffiffiffi

2gh
p

, where h 5 2 m is the water

depth.) Find the massM that is just sufficient to hold the tank
in place.

D = 50 mm

10 kg

60°

Gate

2 m

P4.71

4.72 A gate is 1 m wide and 1.2 m tall and hinged at the
bottom. On one side the gate holds back a 1-m-deep body of
water. On the other side, a 5-cm diameter water jet hits the
gate at a height of 1 m. What jet speed V is required to hold
the gate vertical? What will the required speed be if the body
of water is lowered to 0.5 m?What will the required speed be
if the water level is lowered to 0.25 m?

Water jet

V

1 m

P4.72

4.73 A farmer purchases 675 kg of bulk grain from the local
co-op. The grain is loaded into his pickup truck from a
hopper with an outlet diameter of 0.3 m. The loading
operator determines the payload by observing the indicated
gross mass of the truck as a function of time. The grain flow
from the hopper ( _m 5 40 kg=s) is terminated when the
indicated scale reading reaches the desired gross mass. If
the grain density is 600 kg/m3, determine the true payload.

4.74 Water flows steadily through a fire hose and nozzle. The
hose is 75 mm inside diameter, and the nozzle tip is 25 mm
ID; water gage pressure in the hose is 510 kPa, and the
stream leaving the nozzle is uniform. The exit speed and
pressure are 32 m/s and atmospheric, respectively. Find the
force transmitted by the coupling between the nozzle and
hose. Indicate whether the coupling is in tension or
compression.

4.75 A shallow circular dish has a sharp-edged orifice at its
center. A water jet, of speed V, strikes the dish con-
centrically. Obtain an expression for the external force
needed to hold the dish in place if the jet issuing from the
orifice also has speed V. Evaluate the force for V5 5 m/s,
D5 100 mm, and d5 25 mm. Plot the required force as a
function of the angle θ (0 # θ # 90�) with diameter ratio as
a parameter for a suitable range of diameter d.
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θ = 45°V

V

D

V V

d

P4.75

4.76 Obtain expressions for the rate of change in mass of the
control volume shown, as well as the horizontal and vertical
forces required to hold it in place, in terms of p1, A1, V1, p2,
A2, V2, p3, A3, V3, p4, A4, V4, and the constant density ρ.

2 (Inlet)

5

12

1
1

5

3
4

121 (Inlet)

4 (Outlet)

3 (Outlet)

P4.76

4.77 A 180� elbow takes in water at an average velocity of 0.8
m/s and a pressure of 350 kPa (gage) at the inlet, where the
diameter is 0.2 m. The exit pressure is 75 kPa, and the diameter
is 0.04 m.What is the force required to hold the elbow in place?

4.78 Water is flowing steadily through the 180� elbow shown.
At the inlet to the elbow the gage pressure is 15 psi. The
water discharges to atmospheric pressure. Assume properties
are uniform over the inlet and outlet areas: A15 4 in.2,
A25 1 in.2, and V15 10 ft/s. Find the horizontal component
of force required to hold the elbow in place.

1

2

V1

P4.78

4.79 Water flows steadily through the nozzle shown,
discharging to atmosphere. Calculate the horizontal com-
ponent of force in the flanged joint. Indicate whether the
joint is in tension or compression.

θ = 30°

d = 15 cm

p = 15 kPa (gage)

D = 30 cm

V1 = 1.5 m/s

P4.79

4.80 Assume the bend of Problem 4.39 is a segment of a
larger channel and lies in a horizontal plane. The inlet
pressure is 170 kPa (abs), and the outlet pressure is 130 kPa
(abs). Find the force required to hold the bend in place.

4.81 A spray system is shown in the diagram. Water is sup-
plied at p5 1.45 psig, through the flanged opening of area
A5 3 in.2 The water leaves in a steady free jet at atmo-
spheric pressure. The jet area and speed are a5 1.0 in.2 and
V5 15 ft/s. The mass of the spray system is 0.2 lbm and it
contains V--- 5 12 in:3 of water. Find the force exerted on the
supply pipe by the spray system.

M = 0.2 lbm
    = 12 in.3V

Supply A = 3 in.2

p = 1.45 psig

V = 15 ft/s
a = 1 in.2

P4.81

4.82 A flat plate orifice of 2 in. diameter is located at the end
of a 4-in.-diameter pipe. Water flows through the pipe and
orifice at 20 ft3/s. The diameter of the water jet downstream
from the orifice is 1.5 in. Calculate the external force
required to hold the orifice in place. Neglect friction on the
pipe wall.

D = 4 in.

d = 1.5 in.

Q = 20 ft3/s

p = 200 psig

P4.82

4.83 The nozzle shown discharges a sheet of water through a
180� arc. The water speed is 15 m/s and the jet thickness is
30 mm at a radial distance of 0.3 m from the centerline of the
supply pipe. Find (a) the volume flow rate of water in the jet
sheet and (b) the y component of force required to hold the
nozzle in place.

R = 0.3 m

t = 0.03 m

V = 15 m/s

D = 0.2 m

Q

z

yx

P4.83
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4.84 At rated thrust, a liquid-fueled rocket motor consumes
80 kg/s of nitric acid as oxidizer and 32 kg/s of aniline as fuel.
Flow leaves axially at 180 m/s relative to the nozzle and at
110 kPa. The nozzle exit diameter is D5 0.6m. Calculate the
thrust produced by the motor on a test stand at standard sea-
level pressure.

4.85 A typical jet engine test stand installation is shown,
together with some test data. Fuel enters the top of the
engine vertically at a rate equal to 2 percent of the mass flow
rate of the inlet air. For the given conditions, compute the air
flow rate through the engine and estimate the thrust.

2
1

V2 = 1200 ft/s

p2 = patm

A1 = 64 ft2

V1 = 500 ft/s
p1 = –298 psfg

P4.85

4.86 Consider flow through the sudden expansion shown.
If the flow is incompressible and friction is neglected, show
that the pressure rise, Δp5p22p1, is given by

Δp

1
2 ρV

2

1

5 2
d

D

� �2

12
d

D

� �2
" #

Plot the nondimensional pressure rise versus diameter ratio
to determine the optimum value of d/D and the corre-
sponding value of the nondimensional pressure rise. Hint:
Assume the pressure is uniform and equal to p1 on the ver-
tical surface of the expansion.

V1

d

D

1 2

P4.86

4.87 A free jet of water with constant cross-section area
0.01 m2 is deflected by a hinged plate of length 2 m supported
by a spring with spring constant k 5 500 N/m and uncom-
pressed length x0 5 1 m. Find and plot the deflection angle θ
as a function of jet speed V. What jet speed has a deflection
of θ 5 5�?

Hinge

V

Spring:
k = 500 N/m
x0 = 1 m

P4.87

4.88 A conical spray head is shown. The fluid is water and
the exit stream is uniform. Evaluate (a) the thickness of the

spray sheet at 400 mm radius and (b) the axial force exerted
by the spray head on the supply pipe.

θ

θ = 30°

V = 10 m/s

Q = 0.03 m/s

p1 = 150 kPa (abs)

D = 300 mm

P4.88

4.89 A reducer in a piping system is shown. The internal
volume of the reducer is 0.2 m3 and its mass is 25 kg. Eval-
uate the total force that must be provided by the surrounding
pipes to support the reducer. The fluid is gasoline.

1 2

V1 = 3 m/s V2 = 12 m/s

p2 = 109 kPa (abs)p1 = 58.7 kPa (gage)

D = 0.4 m Reducer
d = 0.2 m

P4.89

4.90 A curved nozzle assembly that discharges to the atmo-
sphere is shown. The nozzle mass is 4.5 kg and its internal
volume is 0.002 m3. The fluid is water. Determine the reaction
force exerted by the nozzle on the coupling to the inlet pipe.

D2 = 2.5 cm

θ = 30°

V2

p1 = 125 kPa
D1 = 7.5 cm

V1 = 2 m/s

g

P4.90

4.91 Awater jet pump has jet area 0.1 ft2 and jet speed 100 ft/s.
The jet is within a secondary stream of water having speed
Vs5 10 ft/s. The total area of the duct (the sum of the jet and
secondary stream areas) is 0.75 ft2. The water is thoroughly
mixed and leaves the jet pump in a uniform stream. The
pressures of the jet and secondary stream are the same at
the pump inlet. Determine the speed at the pump exit and the
pressure rise, p2 2 p1.

1 2

Vs = 10 ft/s

Vj = 100 ft/s

P4.91
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4.92 A 30� reducing elbow is shown. The fluid is water.
Evaluate the components of force that must be provided by
the adjacent pipes to keep the elbow from moving.

g

Q = 0.11 m3/s

1

2p1 = 200 kPa (abs)
A1 = 0.0182 m2

p2 = 120 kPa (abs)

V2

30°

Internal volume,   = 0.006 m3V

Elbow mass, M = 10 kg

A2 = 0.0081 m2

P4.92

4.93 Consider the steady adiabatic flow of air through a
long straight pipe with 0.05 m2 cross-sectional area. At the
inlet, the air is at 200 kPa (gage), 60�C, and has a velocity of
150 m/s. At the exit, the air is at 80 kPa and has a velocity
of 300 m/s. Calculate the axial force of the air on the pipe.
(Be sure to make the direction clear.)

4.94 A monotube boiler consists of a 20 ft length of tubing
with 0.375 in. inside diameter. Water enters at the rate of 0.3
lbm/s at 500 psia. Steam leaves at 400 psig with 0.024 slug/ft3

density. Find the magnitude and direction of the force
exerted by the flowing fluid on the tube.

4.95 A gas flows steadily through a heated porous pipe of
constant 0.15 m2 cross-sectional area. At the pipe inlet, the
absolute pressure is 400 kPa, the density is 6 kg/m3, and the
mean velocity is 170 m/s. The fluid passing through the porous
wall leaves in a direction normal to the pipe axis, and the total
flow rate through the porous wall is 20 kg/s. At the pipe outlet,
the absolute pressure is 300 kPa and the density is 2.75 kg/m3.
Determine the axial force of the fluid on the pipe.

4.96 Water is discharged at a flow rateof 0.3m3/s fromanarrow
slot in a 200-mm-diameter pipe. The resulting horizontal two-
dimensional jet is 1 m long and 20 mm thick, but of nonuniform
velocity; the velocity at location 2 is twice that at location 1 .
The pressure at the inlet section is 50 kPa (gage). Calculate (a)
the velocity in the pipe and at locations 1 and 2 and (b) the
forces required at the coupling to hold the spray pipe in place.
Neglect the mass of the pipe and the water it contains.

Q = 0.3 m3

V1

V2 = 2V1

D = 200 mm

Thickness, t = 20 mm

P4.96

4.97 Water flows steadily through the square bend of Problem
4.39. Flow at the inlet is at p1 5 185 kPa (abs). Flow at the exit
is nonuniform, vertical, and at atmospheric pressure. The
mass of the channel structure is Mc 5 2.05 kg; the internal
volume of the channel is V--- 5 0:00355 m3. Evaluate the force
exerted by the channel assembly on the supply duct.

4.98 A nozzle for a spray system is designed to produce a
flat radial sheet of water. The sheet leaves the nozzle at V2 5
10 m/s, covers 180� of arc, and has thickness t 5 1.5 mm. The
nozzle discharge radius is R 5 50 mm. The water supply pipe
is 35 mm in diameter and the inlet pressure is p1 5 150 kPa
(abs). Evaluate the axial force exerted by the spray nozzle on
the coupling.

Water

p1
V2

R

Thickness, t

P4.98

4.99 A small round object is tested in a 0.75-m diameter
wind tunnel. The pressure is uniform across sections 1 and

2 . The upstream pressure is 30 mm H2O (gage), the
downstream pressure is 15 mm H2O (gage), and the mean air
speed is 12.5 m/s. The velocity profile at section 2 is linear;
it varies from zero at the tunnel centerline to a maximum at
the tunnel wall. Calculate (a) the mass flow rate in the wind
tunnel, (b) the maximum velocity at section 2 , and (c) the
drag of the object and its supporting vane. Neglect viscous
resistance at the tunnel wall.

Vmax

1 2

V

P4.99

4.100 The horizontal velocity in the wake behind an object
in an air stream of velocity U is given by

uðrÞ 5 U 12 cos2
πr
2

0
@

1
A

2
4

3
5 jrj# 1

uðrÞ 5 U jrj . 1

where r is the nondimensional radial coordinate, measured
perpendicular to the flow. Find an expression for the drag on
the object.

4.101 An incompressible fluid flows steadily in the entrance
region of a two-dimensional channel of height 2h 5 100 mm
and width w 5 25 mm. The flow rate is Q 5 0.025 m3/s. Find
the uniform velocity U1 at the entrance. The velocity dis-
tribution at a section downstream is

u

umax

¼ 12
y

h

� �2
Evaluate the maximum velocity at the downstream section.
Calculate the pressure drop that would exist in the channel if
viscous friction at the walls could be neglected.
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2h

2

y

x u

1

U1
= 750 kg/m3ρ

P4.101

4.102 An incompressible fluid flows steadily in the entrance
region of a circular tube of radius R 5 75 mm. The flow rate
is Q 5 0.1 m3/s. Find the uniform velocity U1 at the entrance.
The velocity distribution at a section downstream is

u

umax

¼ 12
r

R

� �2
Evaluate the maximum velocity at the downstream section.
Calculate the pressure drop that would exist in the channel if
viscous friction at the walls could be neglected.

1 2

r

z

U1
= 850 kg/m3ρ

R

u

P4.102

4.103 Air enters a duct, of diameter D 5 25.0 mm, through
a well-rounded inlet with uniform speed, U1 5 0.870 m/s.
At a downstream section where L 5 2.25 m, the fully
developed velocity profile is

uðrÞ
Uc

5 12
r

R

� �2
The pressure drop between these sections is p1 2 p2 5 1.92 N/
m2.Find the total forceof frictionexertedby the tubeon theair.

1 2

r
x

L = 2.25 m

U1 = 0.870 m/s D = 25.0 mm

P4.103

4.104 Consider the incompressible flow of fluid in a
boundary layer as depicted in Example 4.2. Show that the
friction drag force of the fluid on the surface is given by

Ff 5

Z δ

0

ρuðU2uÞw dy

Evaluate the drag force for the conditions of Example 4.2.

4.105 A fluid with density ρ 5 750 kg/m3 flows along a flat
plate of width 1 m. The undisturbed freestream speed isU0 5
10 m/s. At L 5 1 m downstream from the leading edge of the
plate, the boundary-layer thickness is δ 5 5 mm. The velocity
profile at this location is

u

U0

¼ 3

2

y

δ
2

1

2

y

δ

� �3

Plot the velocity profile. Calculate the horizontal component
of force required to hold the plate stationary.

4.106 Air at standard conditions flows along a flat plate. The
undisturbed freestream speed is U0 5 20 m/s. At L 5 0.4 m
downstream from the leading edge of the plate, the boundary-
layer thickness is δ 5 2 mm. The velocity profile at this
location is approximated as u/U0 5 y/δ. Calculate the hor-
izontal component of force per unit width required to hold the
plate stationary.

4.107 A sharp-edged splitter plate inserted part way into a flat
stream of flowing water produces the flow pattern shown.
Analyze the situation to evaluate θ as a function of α, where
0# α, 0.5. Evaluate the force needed to hold the splitter plate
in place. (Neglect any friction force between the water stream
and the splitter plate.) Plot both θ and Rx as functions of α.

θ

V

V

V

Splitter

α h

α h

h

P4.107

4.108 Gases leaving the propulsion nozzle of a rocket are
modeled as flowing radially outward from a point upstream
from the nozzle throat. Assume the speed of the exit flow, Ve,
has constant magnitude. Develop an expression for the axial
thrust, Ta, developed by flow leaving the nozzle exit plane.
Compare your result to the one-dimensional approximation,
T 5 _mVe. Evaluate the percent error for α 5 15�. Plot the
percent error versus α for 0 # α # 22.5�.

α

R

Ve

P4.108

4.109 When a plane liquid jet strikes an inclined flat plate, it
splits into two streams of equal speed but unequal thickness.
For frictionless flow there can be no tangential force on the
plate surface. Use this assumption to develop an expression
for h2/h as a function of plate angle, θ. Plot your results and
comment on the limiting cases, θ 5 0 and θ 5 90�.

θ
ρ

V

V

V

h3

h2

h

P4.109
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*4.110 Two large tanks containing water have small
smoothly contoured orifices of equal area. A jet of liquid
issues from the left tank. Assume the flow is uniform and
unaffected by friction. The jet impinges on a vertical flat
plate covering the opening of the right tank. Determine the
minimum value for the height, h, required to keep the plate
in place over the opening of the right tank.

Water Water

h
H = const.

Jet

A

P4.110

*4.111 A horizontal axisymmetric jet of air with 0.5 in.
diameter strikes a stationary vertical disk of 8 in. diameter.
The jet speed is 225 ft/s at the nozzle exit. A manometer
is connected to the center of the disk. Calculate (a) the
deflection, h, if the manometer liquid has SG 5 1.75 and
(b) the force exerted by the jet on the disk.

SG = 1.75hV = 225 ft/s

P4.111

*4.112 Students are playing around with a water hose.
When they point it straight up, the water jet just reaches one
of the windows of Professor Pritchard’s office, 10 m above.
If the hose diameter is 1 cm, estimate the water flow rate
(L/min). Professor Pritchard happens to come along and
places his hand just above the hose to make the jet spray
sideways axisymmetrically. Estimate the maximum pressure,
and the total force, he feels. The next day the students again
are playing around, and this time aim at Professor Fox’s
window, 15 m above. Find the flow rate (L/min) and the total
force and maximum pressure when he, of course, shows up
and blocks the flow.

*4.113 A uniform jet of water leaves a 15-mm-diameter
nozzle and flows directly downward. The jet speed at the
nozzle exit plane is 2.5 m/s. The jet impinges on a horizontal
disk and flows radially outward in a flat sheet. Obtain a
general expression for the velocity the liquid stream would
reach at the level of the disk. Develop an expression for the
force required to hold the disk stationary, neglecting the
mass of the disk and water sheet. Evaluate for h 5 3 m.

V0 = 2.5 m/s

d = 15 mmh

F

P4.113

*4.114 A 2-kg disk is constrained horizontally but is free to
move vertically. The disk is struck from below by a vertical
jet of water. The speed and diameter of the water jet are
10 m/s and 25 mm at the nozzle exit. Obtain a general
expression for the speed of the water jet as a function of
height, h. Find the height to which the disk will rise and
remain stationary.

V0 = 10 m/s

h
d = 25 mm

M = 2 kg

P4.114

*4.115 Water from a jet of diameter D is used to support
the cone-shaped object shown. Derive an expression for the
combinedmass of the coneandwater,M, that canbe supported
by the jet, in terms of parameters associated with a suitably
chosen control volume. Use your expression to calculate M
whenV05 10m/s,H5 1m,h5 0.8m,D5 50mm, and θ5 30�.
Estimate the mass of water in the control volume.

H

h

V0

D

θ = 30°

P4.115

*4.116 A stream of water from a 50-mm-diameter nozzle
strikes a curved vane, as shown. A stagnation tube connected
to a mercury-filled U-tube manometer is located in the
nozzle exit plane. Calculate the speed of the water leaving
the nozzle. Estimate the horizontal component of force
exerted on the vane by the jet. Comment on each assumption
used to solve this problem.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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Stagnation
tube

Fixed vane

Free
water jet

Open

Hg 0.75 m

Water

30°

50 mm dia.

P4.116

*4.117 A Venturi meter installed along a water pipe consists
of a convergent section, a constant-area throat, and a
divergent section. The pipe diameter isD 5 100 mm, and the
throat diameter is d 5 50 mm. Find the net fluid force acting
on the convergent section if the water pressure in the pipe is
200 kPa (gage) and the flow rate is 1000 L/min. For this
analysis, neglect viscous effects.

*4.118 A plane nozzle discharges vertically 1200 L/s per unit
width downward to atmosphere. The nozzle is supplied with
a steady flow of water. A stationary, inclined, flat plate,
located beneath the nozzle, is struck by the water stream.
The water stream divides and flows along the inclined plate;
the two streams leaving the plate are of unequal thickness.
Frictional effects are negligible in the nozzle and in the flow
along the plate surface. Evaluate the minimum gage pressure
required at the nozzle inlet.

h = 0.25 m

H = 7.5 m

V3

θ θ

Water

w = 0.25 mm

Nozzle

Q = 1200 L/s/m

V2= 20

W = 80 mm

V

V

= 30°

P4.118

*4.119 You turn on the kitchen faucet very slightly, so that a
very narrow stream of water flows into the sink. You notice
that it is “glassy” (laminar flow) and gets narrower and
remains “glassy” for about the first 50 mm of descent. When
you measure the flow, it takes three min to fill a 1-L bottle,
and you estimate the stream of water is initially 5 mm in
diameter. Assuming the speed at any cross section is uniform
and neglecting viscous effects, derive expressions for and plot
the variations of stream speed and diameter as functions of z
(take the origin of coordinates at the faucet exit). What are
the speed and diameter when it falls to the 50-mm point?

*4.120 In ancient Egypt, circular vessels filled with water
sometimes were used as crude clocks. The vessels were
shaped in such a way that, as water drained from the bottom,
the surface level dropped at constant rate, s. Assume that

water drains from a small hole of area A. Find an expression
for the radius of the vessel, r, as a function of the water level,
h. Obtain an expression for the volume of water needed so
that the clock will operate for n hours.

*4.121 A stream of incompressible liquid moving at low
speed leaves a nozzle pointed directly downward. Assume
the speed at any cross section is uniform and neglect viscous
effects. The speed and area of the jet at the nozzle exit are V0

and A0, respectively. Apply conservation of mass and the
momentum equation to a differential control volume of
length dz in the flow direction. Derive expressions for the
variations of jet speed and area as functions of z. Evaluate
the distance at which the jet area is half its original value.
(Take the origin of coordinates at the nozzle exit.)

*4.122 Incompressible fluid of negligible viscosity is pumped,
at total volume flow rate Q, through a porous surface into the
small gap between closely spaced parallel plates as shown.
The fluid has only horizontal motion in the gap. Assume uni-
form flow across any vertical section. Obtain an expression for
the pressure variation as a function of x. Hint: Apply con-
servation of mass and the momentum equation to a differential
control volume of thickness dx, located at position x.

L

V (x)

x

Q

P4.122

*4.123 Incompressible liquid of negligible viscosity is
pumped, at total volume flow rate Q, through two small
holes into the narrow gap between closely spaced parallel
disks as shown. The liquid flowing away from the holes has
only radial motion. Assume uniform flow across any vertical
section and discharge to atmospheric pressure at r 5 R.
Obtain an expression for the pressure variation and plot as a
function of radius. Hint: Apply conservation of mass and the
momentum equation to a differential control volume of
thickness dr located at radius r.

r

Q__
2

Q__
2

V(r)

R

P4.123

*4.124 The narrow gap between two closely spaced circular
plates initially is filled with incompressible liquid. At t 5 0 the
upper plate, initially h0 above the lower plate, begins to move
downward toward the lower plate with constant speed, V0,
causing the liquid to be squeezed from the narrow gap.
Neglecting viscous effects and assuming uniform flow in the
radial direction, develop an expression for the velocity field
between the parallel plates. Hint: Apply conservation of mass
to a control volume with the outer surface located at radius r.
Note that even though the speed of the upper plate is

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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constant, the flow is unsteady. For V0 5 0.01 m/s and h0 5 2
mm, find the velocity at the exit radius R 5 100 mm at t 5 0
and t 5 0.1 s. Plot the exit velocity as a function of time, and
explain the trend.

*4.125 Liquid falls vertically into a short horizontal rectan-
gular open channel of width b. The total volume flow rate,Q,
is distributed uniformly over area bL. Neglect viscous
effects. Obtain an expression for h1 in terms of h2, Q, and b.
Hint: Choose a control volume with outer boundary located
at x 5 L. Sketch the surface profile, h(x). Hint: Use a dif-
ferential control volume of width dx.

y

x

h1 h2

L
1 2

Q

Q

P4.125

*4.126 Design a clepsydra (Egyptian water clock)—a vessel
from which water drains by gravity through a hole in the
bottom and which indicates time by the level of the
remaining water. Specify the dimensions of the vessel and
the size of the drain hole; indicate the amount of water
needed to fill the vessel and the interval at which it must be
filled. Plot the vessel radius as a function of elevation.

4.127 A jet of water is directed against a vane, which could be a
blade in a turbine or in any other piece of hydraulic machinery.
The water leaves the stationary 40-mm-diameter nozzle with a
speed of 25 m/s and enters the vane tangent to the surface at
A. The inside surface of the vane at B makes angle θ 5 150�

with the x direction. Compute the force that must be applied to
maintain the vane speed constant at U 5 5 m/s.

y

x

B

A

V

U

θ

U

V
A

ρ θ

P4.127 P4.128, P4.131, P4.133, P4.145

4.128 Water from a stationary nozzle impinges on a moving
vane with turning angle θ5 120�. The vane moves away from
the nozzle with constant speed,U5 10 m/s, and receives a jet
that leaves the nozzle with speed V 5 30 m/s. The nozzle has
an exit area of 0.004 m2. Find the force that must be applied
to maintain the vane speed constant.

4.129 The circular dish, whose cross section is shown, has an
outside diameter of 0.20 m. A water jet with speed of 35 m/s
strikes the dish concentrically. The dish moves to the left at
15 m/s. The jet diameter is 20 mm. The dish has a hole at its
center that allows a stream of water 10 mm in diameter to
pass through without resistance. The remainder of the jet is
deflected and flows along the dish. Calculate the force
required to maintain the dish motion.

V = 35 m/s

θ = 40°

U = 15 m/s

d = 10 mm

D = 20 mm

P4.129

4.130 A freshwater jet boat takes in water through side vents
and ejects it through a nozzle of diameterD5 75 mm; the jet
speed is Vj. The drag on the boat is given by Fdrag ~ kV2,
where V is the boat speed. Find an expression for the
steady speed, V, in terms of water density ρ, flow rate
through the system of Q, constant k, and jet speed Vj. A jet
speed Vj 5 15 m/s produces a boat speed of V 5 10 m/s.
(a) Under these conditions, what is the new flow rate Q?
(b) Find the value of the constant k.
(c) What speed V will be produced if the jet speed is

increased to Vj 5 25 m/s?
(d) What will be the new flow rate?

4.131 A jet of oil (SG 5 0.8) strikes a curved blade that turns
the fluid through angle θ5 180�. The jet area is 1200 mm2 and
its speed relative to the stationary nozzle is 20 m/s. The blade
moves toward the nozzle at 10 m/s. Determine the force that
must be applied to maintain the blade speed constant.

4.132 The Canadair CL-215T amphibious aircraft is specially
designed to fight fires. It is the only production aircraft that
can scoop water—1620 gallons in 12 seconds—from any lake,
river, or ocean. Determine the added thrust required during
water scooping, as a function of aircraft speed, for a rea-
sonable range of speeds.

4.133 Consider a single vane, with turning angle θ, moving
horizontally at constant speed, U, under the influence of an
impinging jet as in Problem 4.128. The absolute speed of the
jet is V. Obtain general expressions for the resultant force
and power that the vane could produce. Show that the power
is maximized when U 5 V/3.

4.134 Water, in a 4-in. diameter jet with speed of 100 ft/s to the
right, is deflected by a cone that moves to the left at 45 ft/s.
Determine (a) the thickness of the jet sheet at a radius of 9 in.
and (b) the external horizontal force needed to move the cone.

VcVj

Cone

θ = 60°

V

P4.134

4.135 The circular dish, whose cross section is shown, has an
outside diameter of 0.15 m. A water jet strikes the dish
concentrically and then flows outward along the surface of
the dish. The jet speed is 45 m/s and the dish moves to the
left at 10 m/s. Find the thickness of the jet sheet at a radius of

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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75 mm from the jet axis. What horizontal force on the dish is
required to maintain this motion?

V = 45 m/s

θ = 40°

U = 10 m/s

d = 50 mm

P4.135

4.136 Consider a series of turning vanes struck by a con-
tinuous jet of water that leaves a 50-mm diameter nozzle at
constant speed, V 5 86.6 m/s. The vanes move with constant
speed, U 5 50 m/s. Note that all the mass flow leaving the jet
crosses the vanes. The curvature of the vanes is described by
angles θ1 5 30� and θ2 5 45�, as shown. Evaluate the nozzle
angle, α, required to ensure that the jet enters tangent to the
leading edge of each vane. Calculate the force that must be
applied to maintain the vane speed constant.

U

V
α θ1

θ2

P4.136, P4.137

4.137 Consider again the moving multiple-vane system
described in Problem 4.136. Assuming that a way could be
found to make α nearly zero (and thus, θ1 nearly 90�),
evaluate the vane speed, U, that would result in maximum
power output from the moving vane system.

4.138 A steady jet of water is used to propel a small cart along
a horizontal track as shown. Total resistance to motion of the
cart assembly is given by FD5 kU2, where k5 0.92 N � s2/m2.
Evaluate the acceleration of the cart at the instant when its
speed is U 5 10 m/s.

D = 25.0 mm

V = 30.0 m/s

θ = 30°

M = 15.0 kg

U = 10.0 m/s

P4.138, P4.140, P4.144

4.139 A plane jet of water strikes a splitter vane and divides
into two flat streams, as shown. Find the mass flow rate ratio,
_m2= _m3, required to produce zero net vertical force on the
splitter vane. If there is a resistive force of 16 N applied to
the splitter vane, find the steady speed U of the vane.

V = 25.0 m/s
m3
  •

m2
  •

θ = 30°

A = 7.85    10–5 m2 U = 10.0 m/s+

P4.139

Momentum Equation for Control Volume
with Rectilinear Acceleration

4.140 The hydraulic catapult of Problem 4.138 is accelerated
by a jet of water that strikes the curved vane. The cart moves
along a level track with negligible resistance. At any time its
speed is U. Calculate the time required to accelerate the cart
from rest to U 5 V/2.

4.141 A vane/slider assembly moves under the influence of a
liquid jet as shown. The coefficient of kinetic friction for
motion of the slider along the surface is μk 5 0.30. Calculate
the terminal speed of the slider.

V = 20 m/s

    = 999 kg/m3ρ

A = 0.005 m2
M = 30 kg

U

k = 0.30μ

P4.141, P4.143, P4.152, P4.153

4.142 A cart is propelled by a liquid jet issuing horizontally
from a tank as shown. The track is horizontal; resistance to
motion may be neglected. The tank is pressurized so that the
jet speed may be considered constant. Obtain a general
expression for the speed of the cart as it accelerates from
rest. If M0 5 100 kg, ρ 5 999 kg/m3, and A 5 0.005 m2, find
the jet speed V required for the cart to reach a speed of 1.5
m/s after 30 seconds. For this condition, plot the cart speed U

as a function of time. Plot the cart speed after 30 seconds as a
function of jet speed.

U

V
A

ρ

Initial mass, M0

P4.142, P4.184

4.143 For the vane/slider problem of Problem 4.141, find and
plot expressions for the acceleration and speed of the slider
as a function of time.

4.144 If the cart of Problem 4.138 is released at t 5 0, when
would you expect the acceleration to be maximum? Sketch
what you would expect for the curve of acceleration versus
time. What value of θ would maximize the acceleration at
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any time? Why? Will the cart speed ever equal the jet speed?
Explain briefly.

4.145 The acceleration of the vane/cart assembly of Problem
4.128 is to be controlled as it accelerates from rest by changing
the vane angle, θ. A constant acceleration, a 5 1.5 m/s2, is
desired. The water jet leaves the nozzle of areaA5 0.025 m2,
with speedV5 15m/s. The vane/cart assembly has amass of 55
kg; neglect friction. Determine θ at t 5 5 s. Plot θ(t) for the
given constant acceleration over a suitable range of t.

4.146 The wheeled cart shown rolls with negligible resis-
tance. The cart is to accelerate to the right at a constant rate
of 2.5 m/s2. This is to be accomplished by “programming” the
water jet speed, V(t), that hits the cart. The jet area remains
constant at 50 mm2. Find the initial jet speed, and the jet
speed and cart speeds after 2.5 s and 5 s. Theoretically, what
happens to the value of (V 2 U) over time?

   = 999 kg/m3ρ

A = 50 mm2

V (t)

120°

U
M =
5 kg

P4.146

4.147 A rocket sled, weighing 10,000 lbf and traveling 600
mph, is to be braked by lowering a scoop into a water trough.
The scoop is 6 in. wide. Determine the time required (after
lowering the scoop to a depth of 3 in. into the water) to bring
the sled to a speed of 20 mph. Plot the sled speed as a
function of time.

D

Rail

Water trough

30°

P4.147, P4.148

4.148 A rocket sled is to be slowed from an initial speed of
300 m/s by lowering a scoop into a water trough. The scoop is
0.3 m wide; it deflects the water through 150�. The trough is
800 m long. The mass of the sled is 8000 kg. At the initial
speed it experiences an aerodynamic drag force of 90 kN.
The aerodynamic force is proportional to the square of the
sled speed. It is desired to slow the sled to 100 m/s. Deter-
mine the depth D to which the scoop must be lowered into
the water.

4.149 Starting from rest, the cart shown is propelled by a
hydraulic catapult (liquid jet). The jet strikes the curved
surface and makes a 180� turn, leaving horizontally. Air and
rolling resistance may be neglected. If the mass of the cart
is 100 kg and the jet of water leaves the nozzle (of area
0.001 m2) with a speed of 35 m/s, determine the speed of the
cart 5 s after the jet is directed against the cart. Plot the cart
speed as a function of time.

A
V

ρ

1

Mass, M
U

P4.149, P4.150, P4.173

4.150 Consider the jet and cart of Problem 4.149 again, but
include an aerodynamic drag force proportional to the
square of cart speed, FD 5 kU2, with k 5 2.0 N � s2/m2.
Derive an expression for the cart acceleration as a function
of cart speed and other given parameters. Evaluate the
acceleration of the cart at U 5 10 m/s. What fraction is this
speed of the terminal speed of the cart?

4.151 A small cart that carries a single turning vane rolls on a
level track. The cart mass is M 5 5 kg and its initial speed is
U0 5 5 m/s. At t 5 0, the vane is struck by an opposing jet of
water, as shown. Neglect any external forces due to air or
rolling resistance. Determine the jet speed V required to
bring the cart to rest in (a) 1 s and (b) 2 s. In each case find
the total distance traveled.

D = 35 mm

U0 = 5 m/s
= 60°

U

θ

M = 5 kg

P4.151

4.152 Solve Problem 4.141 if the vane and slider ride on a
film of oil instead of sliding in contact with the surface.
Assume motion resistance is proportional to speed, FR 5 kU,
with k 5 7.5 N � s/m.

4.153 For the vane/slider problem of Problem 4.152, plot the
acceleration, speed, and position of the slider as functions of
time. (Consider numerical integration.)

4.154 A rectangular block of mass M, with vertical faces,
rolls without resistance along a smooth horizontal plane as
shown. The block travels initially at speed U0. At t 5 0 the
block is struck by a liquid jet and its speed begins to slow.
Obtain an algebraic expression for the acceleration of the
block for t . 0. Solve the equation to determine the time at
which U 5 0.

U

A

ρ
VMass, M

P4.154, P4.156

4.155 A rectangular block of mass M, with vertical faces,
rolls on a horizontal surface between two opposing jets as
shown. At t 5 0 the block is set into motion at speed U0.
Subsequently, it moves without friction parallel to the
jet axes with speed U(t). Neglect the mass of any liquid
adhering to the block compared with M. Obtain general
expressions for the acceleration of the block, a(t), and the
block speed, U(t).
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VV Mass, M

P4.155, P4.157

4.156 Consider the diagram of Problem 4.154. IfM5 100 kg,
ρ 5 999 kg/m3, and A 5 0.01 m2, find the jet speed V

required for the cart to be brought to rest after one second if
the initial speed of the cart is U0 5 5 m/s. For this condition,
plot the speed U and position x of the cart as functions of
time. What is the maximum value of x, and how long does
the cart take to return to its initial position?

4.157 Consider the statement and diagram of Problem 4.155.
Assume that at t5 0, when the block of massM5 5 kg is at x
5 0, it is set into motion at speed U0 5 10 m/s, to the right.
The water jets have speed V 5 20 m/s and area A 5 100
mm2. Calculate the time required to reduce the block speed
to U 5 2.5 m/s. Plot the block position x versus time.
Compute the final rest position of the block. Explain why it
comes to rest.

*4.158 A vertical jet of water impinges on a horizontal disk
as shown. The disk assembly mass is 30 kg. When the disk is
3 m above the nozzle exit, it is moving upward at U 5 5 m/s.
Compute the vertical acceleration of the disk at this instant.

V = 15 m/s

h = 3 m
A = 0.005 m2

M = 30 kgU = 5 m/s

P4.158, P4.159, P4.180

4.159 A vertical jet of water leaves a 75-mm diameter noz-
zle. The jet impinges on a horizontal disk (see Problem
4.158). The disk is constrained horizontally but is free to
move vertically. The mass of the disk is 35 kg. Plot disk mass
versus flow rate to determine the water flow rate required to
suspend the disk 3 m above the jet exit plane.

4.160 A rocket sled traveling on a horizontal track is slowed
by a retro-rocket fired in the direction of travel. The initial
speed of the sled is U0 5 500 m/s. The initial mass of the sled
is M0 5 1500 kg. The retro-rocket consumes fuel at the rate
of 7.75 kg/s, and the exhaust gases leave the nozzle at
atmospheric pressure and a speed of 2500 m/s relative to the
rocket. The retro-rocket fires for 20 s. Neglect aerodynamic
drag and rolling resistance. Obtain and plot an algebraic
expression for sled speed U as a function of firing time.
Calculate the sled speed at the end of retro-rocket firing.

4.161 A manned space capsule travels in level flight above
the Earth’s atmosphere at initial speed U0 5 8.00 km/s. The
capsule is to be slowed by a retro-rocket to U 5 5.00 km/s
in preparation for a reentry maneuver. The initial mass of
the capsule is M0 5 1600 kg. The rocket consumes fuel at
_m 5 8:0 kg=s, and exhaust gases leave at Ve 5 3000 m/s rela-
tive to the capsule and at negligible pressure. Evaluate the
duration of the retro-rocket firing needed to accomplish this.
Plot the final speed as a function of firing duration for a time
range 610% of this firing time.

4.162 A rocket sled accelerates from rest on a level track
with negligible air and rolling resistances. The initial mass of
the sled is M0 5 600 kg. The rocket initially contains 150 kg
of fuel. The rocket motor burns fuel at constant rate
_m 5 15 kg=s. Exhaust gases leave the rocket nozzle uni-
formly and axially at Ve 5 2900 m/s relative to the nozzle,
and the pressure is atmospheric. Find the maximum speed
reached by the rocket sled. Calculate the maximum accel-
eration of the sled during the run.

4.163 A rocket sled has mass of 5000 kg, including 1000 kg of
fuel. The motion resistance in the track on which the sled
rides and that of the air total kU, where k is 50 N � s/m and U
is the speed of the sled in m/s. The exit speed of the exhaust
gas relative to the rocket is 1750 m/s, and the exit pressure is
atmospheric. The rocket burns fuel at the rate of 50 kg/s.
(a) Plot the sled speed as a function of time.
(b) Find the maximum speed.
(c) What percentage increase in maximum speed would be

obtained by reducing k by 10 percent?

4.164 A rocket sled with initial mass of 900 kg is to be
accelerated on a level track. The rocket motor burns fuel at
constant rate _m 5 13:5 kg=s. The rocket exhaust flow is
uniform and axial. Gases leave the nozzle at 2750 m/s rela-
tive to the nozzle, and the pressure is atmospheric. Deter-
mine the minimum mass of rocket fuel needed to propel the
sled to a speed of 265 m/s before burnout occurs. As a first
approximation, neglect resistance forces.

4.165 A rocket motor is used to accelerate a kinetic energy
weapon to a speed of 3500 mph in horizontal flight. The exit
stream leaves the nozzle axially and at atmospheric pressure
with a speed of 6000 mph relative to the rocket. The rocket
motor ignites upon release of the weapon from an aircraft
flying horizontally at U0 5 600 mph. Neglecting air resis-
tance, obtain an algebraic expression for the speed reached
by the weapon in level flight. Determine the minimum
fraction of the initial mass of the weapon that must be fuel to
accomplish the desired acceleration.

4.166 A rocket sled with initial mass of 3 metric tons,
including 1 ton of fuel, rests on a level section of track. At t5
0, the solid fuel of the rocket is ignited and the rocket burns
fuel at the rate of 75 kg/s. The exit speed of the exhaust gas
relative to the rocket is 2500 m/s, and the pressure is atmo-
spheric. Neglecting friction and air resistance, calculate the
acceleration and speed of the sled at t 5 10 s.

4.167 A daredevil considering a record attempt—for the
world’s longest motorcycle jump—asks for your consulting

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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help: He must reach 875 km/hr (from a standing start on
horizontal ground) to make the jump, so he needs rocket
propulsion. The total mass of the motorcycle, the rocket
motor without fuel, and the rider is 375 kg. Gases leave the
rocket nozzle horizontally, at atmospheric pressure, with a
speed of 2510 m/s. Evaluate the minimum amount of rocket
fuel needed to accelerate the motorcycle and rider to the
required speed.

4.168 A “home-made” solid propellant rocket has an initial
mass of 20 lbm; 15 lbm of this is fuel. The rocket is directed
vertically upward from rest, burns fuel at a constant rate of
0.5 lbm/s, and ejects exhaust gas at a speed of 6500 ft/s
relative to the rocket. Assume that the pressure at the exit is
atmospheric and that air resistance may be neglected. Cal-
culate the rocket speed after 20 s and the distance traveled
by the rocket in 20 s. Plot the rocket speed and the distance
traveled as functions of time.

4.169 A large two-stage liquid rocket with mass of 30,000 kg is
to be launched from a sea-level launch pad. The main engine
burns liquid hydrogen and liquid oxygen in a stoichiometric
mixture at 2450 kg/s. The thrust nozzle has an exit diameter of
2.6 m. The exhaust gases exit the nozzle at 2270 m/s and an exit
plane pressure of 66 kPa absolute. Calculate the acceleration
of the rocket at liftoff. Obtain an expression for speed as a
function of time, neglecting air resistance.

4.170 Neglecting air resistance, what speed would a vertically
directed rocket attain in 5 s if it starts from rest, has initial
mass of 350 kg, burns 10 kg/s, and ejects gas at atmospheric
pressure with a speed of 2500 m/s relative to the rocket? What
would be the maximum velocity? Plot the rocket speed as a
function of time for the first minute of flight.

4.171 Inflate a toy balloon with air and release it. Watch as
the balloon darts about the room. Explain what causes the
phenomenon you see.

4.172 The vane/cart assembly of mass M 5 30 kg, shown in
Problem 4.128, is driven by a water jet. The water leaves the
stationary nozzle of area A5 0.02 m2, with a speed of 20 m/s.
The coefficient of kinetic friction between the assembly
and the surface is 0.10. Plot the terminal speed of the
assembly as a function of vane turning angle, θ, for 0# θ# π/
2. At what angle does the assembly begin to move if the
coefficient of static friction is 0.15?

4.173 Consider the vehicle shown in Problem 4.149. Starting
from rest, it is propelled by a hydraulic catapult (liquid jet).
The jet strikes the curved surface and makes a l80� turn,
leaving horizontally. Air and rolling resistance may be
neglected. Using the notation shown, obtain an equation for
the acceleration of the vehicle at any time and determine the
time required for the vehicle to reach U 5 V/2.

4.174 The moving tank shown is to be slowed by lowering a
scoop to pick up water from a trough. The initial mass and
speed of the tank and its contents are M0 and U0, respec-
tively. Neglect external forces due to pressure or friction and
assume that the track is horizontal. Apply the continuity
and momentum equations to show that at any instant
U5U0M0/M. Obtain a general expression for U/U0 as a
function of time.

U

Water trough

Tank initial
mass, M0

U
Initial

mass, M0
A

ρ
V

P4.174 P4.175

4.175 The tank shown rolls with negligible resistance along a
horizontal track. It is to be accelerated from rest by a liquid
jet that strikes the vane and is deflected into the tank. The
initial mass of the tank is M0. Use the continuity and
momentum equations to show that at any instant the mass of
the vehicle and liquid contents is M 5 M0V/(V 2 U). Obtain
a general expression for U/V as a function of time.

4.176 A model solid propellant rocket has a mass of 69.6 g,
of which 12.5 g is fuel. The rocket produces 5.75 N of thrust
for a duration of 1.7 s. For these conditions, calculate the
maximum speed and height attainable in the absence of air
resistance. Plot the rocket speed and the distance traveled as
functions of time.

4.177 A small rocket motor is used to power a “jet pack”
device to lift a single astronaut above the Moon’s surface.
The rocket motor produces a uniform exhaust jet with con-
stant speed, Ve 5 3000 m/s, and the thrust is varied by
changing the jet size. The total initial mass of the astronaut
and the jet pack is M0 5 200 kg, 100 kg of which is fuel and
oxygen for the rocket motor. Find (a) the exhaust mass flow
rate required to just lift off initially, (b) the mass flow rate
just as the fuel and oxygen are used up, and (c) the maximum
anticipated time of flight. Note that the Moon’s gravity is
about 17 percent of Earth’s.

*4.178 Several toy manufacturers sell water “rockets” that
consist of plastic tanks to be partially filled with water and
then pressurized with air. Upon release, the compressed air
forces water out of the nozzle rapidly, propelling the rocket.
You are asked to help specify optimum conditions for this
water-jet propulsion system. To simplify the analysis, con-
sider horizontal motion only. Perform the analysis and
design needed to define the acceleration performance of the
compressed air/water-propelled rocket. Identify the fraction
of tank volume that initially should be filled with compressed
air to achieve optimum performance (i.e., maximum speed
from the water charge). Describe the effect of varying the
initial air pressure in the tank.

Water

Air

Ac

Ae

Ve (t)

V0

h(t)
d

M

ρ

P4.178 P4.179

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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*4.179 A disk, of mass M, is constrained horizontally but is
free to move vertically. A jet of water strikes the disk from
below. The jet leaves the nozzle at initial speed V0. Obtain a
differential equation for the disk height, h(t), above the jet
exit plane if the disk is released from large height, H. (You
will not be able to solve this ODE, as it is highly nonlinear!)
Assume that when the disk reaches equilibrium, its height
above the jet exit plane is h0.
(a) Sketch h(t) for the disk released at t 5 0 from H . h0.
(b) Explain why the sketch is as you show it.

*4.180 Consider the configuration of the vertical jet
impinging on a horizontal disk shown in Problem 4.158.
Assume the disk is released from rest at an initial height of 2m
above the jet exit plane. Using a numerical method such as the
Euler method (see Section 5.5), solve for the subsequent
motion of this disk. Identify the steady-state height of the disk.

4.181 A small solid-fuel rocket motor is fired on a test stand.
The combustion chamber is circular, with 100 mm diameter.
Fuel, of density 1660 kg/m3, burns uniformly at the rate of
12.7 mm/s. Measurements show that the exhaust gases leave
the rocket at ambient pressure, at a speed of 2750 m/s. The
absolute pressure and temperature in the combustion chamber
are 7.0 MPa and 3610 K, respectively. Treat the combustion
products as an ideal gas with molecular mass of 25.8. Evaluate
the rate of change of mass and of linear momentum within the
rocket motor. Express the rate of change of linear momentum
within the motor as a percentage of the motor thrust.

*4.182 The capability of the Aircraft Landing Loads and
Traction Facility at NASA’s Langley Research Center is to
be upgraded. The facility consists of a rail-mounted carriage
propelled by a jet of water issuing from a pressurized tank.
(The setup is identical in concept to the hydraulic catapult of
Problem 4.138.) Specifications require accelerating the car-
riage with 49,000 kg mass to a speed of 220 knots in a dis-
tance of 122 m. (The vane turning angle is 170�.) Identify a
range of water jet sizes and speeds needed to accomplish this
performance. Specify the recommended operating pressure
for the water-jet system and determine the shape and esti-
mated size of tankage to contain the pressurized water.

*4.183 A classroom demonstration of linear momentum is
planned, using a water-jet propulsion system for a cart trav-
eling on a horizontal linear air track. The track is 5m long, and
the cart mass is 155 g. The objective of the design is to obtain
the best performance for the cart, using 1 L of water contained
in an open cylindrical tank made from plastic sheet with
density of 0.0819 g/cm2. For stability, the maximum height of
the water tank cannot exceed 0.5 m. The diameter of the
smoothly rounded water jet may not exceed 10 percent of the
tank diameter. Determine the best dimensions for the tank
and thewater jet bymodeling the systemperformance.Using a
numerical method such as the Euler method (see Section 5.5),
plot acceleration, velocity, and distance as functions of time.
Find the optimum dimensions of the water tank and jet
opening from the tank. Discuss the limitations on your ana-
lysis. Discuss how the assumptions affect the predicted per-
formance of the cart.Would the actual performance of the cart
be better orworse thanpredicted?Why?What factors account
for the difference(s)?

*4.184 Analyze the design and optimize the performance of
a cart propelled along a horizontal track by a water jet that
issues under gravity from an open cylindrical tank carried on
board the cart. (A water-jet-propelled cart is shown in the
diagram for Problem 4.142.) Neglect any change in slope of
the liquid free surface in the tank during acceleration.
Analyze the motion of the cart along a horizontal track,
assuming it starts from rest and begins to accelerate when
water starts to flow from the jet. Derive algebraic equations
or solve numerically for the acceleration and speed of the
cart as functions of time. Present results as plots of accel-
eration and speed versus time, neglecting the mass of the
tank. Determine the dimensions of a tank of minimum mass
required to accelerate the cart from rest along a horizontal
track to a specified speed in a specified time interval.

The Angular-Momentum Principle

*4.185 A large irrigation sprinkler unit, mounted on a cart,
discharges water with a speed of 40 m/s at an angle of 30� to the
horizontal. The 50-mm-diameter nozzle is 3mabove the ground.
The mass of the sprinkler and cart isM5 350 kg. Calculate the
magnitude of the moment that tends to overturn the cart. What
value ofVwill cause impendingmotion?Whatwill be the nature
of the impending motion? What is the effect of the angle of jet
inclinationon the results?For the caseof impendingmotion, plot
the jet velocity as a function of the angle of jet inclination over an
appropriate range of the angles.

30°

V

w = 1.5 m

P4.185

*4.186 The 90� reducing elbow of Example 4.6 discharges
to atmosphere. Section �2 is located 0.3 m to the right of
Section �1 . Estimate the moment exerted by the flange on
the elbow.

*4.187 Crude oil (SG 5 0.95) from a tanker dock flows
through a pipe of 0.25 m diameter in the configuration shown.
The flow rate is 0.58 m3/s, and the gage pressures are shown in
the diagram. Determine the force and torque that are exerted
by the pipe assembly on its supports.

Q = 0.58 m3/s

p = 345 kPa

p = 332 kPa

D = 0.25 m

L = 20 m

P4.187

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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*4.188 The simplified lawn sprinkler shown rotates in the
horizontal plane. At the center pivot, Q 5 15 L/min of water
enters vertically. Water discharges in the horizontal plane
from each jet. If the pivot is frictionless, calculate the torque
needed to keep the sprinkler from rotating. Neglecting the
inertia of the sprinkler itself, calculate the angular accel-
eration that results when the torque is removed.

d = 5 mm

R = 225 mm

P4.188, P4.189, P4.190

*4.189 Consider the sprinkler of Problem 4.188 again.
Derive a differential equation for the angular speed of the
sprinkler as a function of time. Evaluate its steady-state
speed of rotation if there is no friction in the pivot.

*4.190 Repeat Problem 4.189, but assume a constant
retarding torque in the pivot of 0.5 N �m. At what retarding
torque would the sprinkler not be able to rotate?

*4.191 Water flows in a uniform flow out of the 2.5-mm slots
of the rotating spray system, as shown. The flow rate is 3 L/s.
Find (a) the torque required to hold the system stationary
and (b) the steady-state speed of rotation after it is released.

300 mm

250 mm

Dia. = 25 mm

P4.191, P4.192

*4.192 If the same flow rate in the rotating spray system of
Problem 4.191 is not uniform but instead varies linearly from
a maximum at the outer radius to zero at the inner radius,
find (a) the torque required to hold it stationary and (b) the
steady-state speed of rotation.

*4.193 A single tube carrying water rotates at constant
angular speed, as shown. Water is pumped through the tube
at volume flow rate Q 5 13.8 L/min. Find the torque that
must be applied to maintain the steady rotation of the tube
using two methods of analysis: (a) a rotating control volume
and (b) a fixed control volume.

ω

d = 8.13 mm
Q

Q

= 33-1/3 rpm R = 300 mm

P4.193

*4.194 The lawn sprinkler shown is supplied with water
at a rate of 68 L/min. Neglecting friction in the pivot,
determine the steady-state angular speed for θ 5 30�. Plot
the steady-state angular speed of the sprinkler for 0 # θ
# 90�.

θ

R = 152 mm

d = 6.35 mm

P4.194

*4.195 A small lawn sprinkler is shown. The sprinkler operates
at a gage pressure of 140 kPa. The total flow rate of water
through the sprinkler is 4 L/min. Each jet discharges at 17 m/s
(relative to the sprinkler arm) in a direction inclined 30� above
the horizontal. The sprinkler rotates about a vertical axis. Fric-
tion in the bearing causes a torque of 0.18 N � m opposing
rotation. Evaluate the torque required to hold the sprinkler
stationary.

Vrel
ω

R = 200 mm

30°

P4.195, P4.196, P4.197

*4.196 In Problem 4.195, calculate the initial acceleration
of the sprinkler from rest if no external torque is applied and
the moment of inertia of the sprinkler head is 0.1 kg � m2

when filled with water.

*4.197 A small lawn sprinkler is shown (Problem 4.196). The
sprinkler operates at an inlet gage pressure of 140 kPa.
The total flow rate of water through the sprinkler is 4.0 L/
min. Each jet discharges at 17 m/s (relative to the sprinkler
arm) in a direction inclined 30� above the horizontal. The
sprinkler rotates about a vertical axis. Friction in the bearing
causes a torque of 0.18 N � m opposing rotation. Determine
the steady speed of rotation of the sprinkler and the
approximate area covered by the spray.

*4.198 When a garden hose is used to fill a bucket, water
in the bucket may develop a swirling motion. Why does
this happen? How could the amount of swirl be calculated
approximately?

*4.199 Water flows at the rate of 0.15 m3/s through a nozzle
assembly that rotates steadily at 30 rpm. The arm and
nozzle masses are negligible compared with the water inside.
Determine the torque required to drive the device and the
reaction torques at the flange.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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ω

θ = 30°
d = 0.05 m

L = 0.5 m

D = 0.1 m
Q = 0.15 m3/s

P4.199

*4.200 A pipe branches symmetrically into two legs of length
L, and the whole system rotates with angular speed ω around
its axis of symmetry. Each branch is inclined at angle α to the
axis of rotation. Liquid enters the pipe steadily, with zero
angular momentum, at volume flow rate Q. The pipe diameter,
D, is much smaller than L. Obtain an expression for the
external torque required to turn the pipe. What additional
torque would be required to impart angular acceleration _ω?

L

ω

α

D

Q__
2

Q__
2

Q

P4.200

*4.201 Liquid in a thin sheet, of width w and thickness h,
flows from a slot and strikes a stationary inclined flat plate, as
shown. Experiments show that the resultant force of the liquid
jet on the plate does not act through point O, where the jet
centerline intersects the plate. Determine the magnitude and
line of application of the resultant force as functions of θ.
Evaluate the equilibrium angle of the plate if the resultant
force is applied at point O. Neglect any viscous effects.

*4.202 For the rotating sprinkler of Example 4.14, what
value of α will produce the maximum rotational speed?
What angle will provide the maximum area of coverage by
the spray? Draw a velocity diagram (using an r, θ, z coor-
dinate system) to indicate the absolute velocity of the water
jet leaving the nozzle. What governs the steady rotational
speed of the sprinkler? Does the rotational speed of the
sprinkler affect the area covered by the spray? How would
you estimate the area? For fixed α, what might be done to
increase or decrease the area covered by the spray?

θ
ρ

V

V

V

h3

h2

h

Point O

P4.201

The First Law of Thermodynamics

4.203 Air at standard conditions enters a compressor at 75m/s
and leaves at an absolute pressure and temperature of 200 kPa
and345K, respectively, and speedV5 125m/s. Theflow rate is
1 kg/s. The cooling water circulating around the compressor
casing removes 18 kJ/kg of air. Determine the power required
by the compressor.

4.204 Compressed air is stored in a pressure bottle with a
volume of 100 L, at 500 kPa and 20�C. At a certain instant,
a valve is opened and mass flows from the bottle at _m 5 0.01
kg/s. Find the rate of change of temperature in the bottle at
this instant

4.205 A centrifugal water pump with a 0.1-m-diameter inlet
and a 0.1-m-diameter discharge pipehas a flow rate of 0.02m3/s.
The inlet pressure is 0.2m Hg vacuum and the exit pressure is
240 kPa. The inlet and outlet sections are located at the same
elevation.Themeasuredpower input is 6.75kW.Determine the
pump efficiency.

4.206 A turbine is supplied with 0.6 m3/s of water from a
0.3-m-diameter pipe; the discharge pipe has a 0.4 m diam-
eter. Determine the pressure drop across the turbine if it
delivers 60 kW.

4.207 Air enters a compressor at 14 psia, 80�F with negli-
gible speed and is discharged at 70 psia, 500�F with a speed
of 500 ft/s. If the power input is 3200 hp and the flow rate is
20 lbm/s, determine the rate of heat transfer.

4.208 Air is drawn from the atmosphere into a turbo-
machine. At the exit, conditions are 500 kPa (gage) and
130�C. The exit speed is 100 m/s and the mass flow rate is
0.8 kg/s. Flow is steady and there is no heat transfer. Com-
pute the shaft work interaction with the surroundings.

4.209 All major harbors are equipped with fire boats for
extinguishing ship fires. A 3-in.-diameter hose is attached to
the discharge of a 15-hp pump on such a boat. The nozzle
attached to the end of the hose has a diameter of 1 in. If the
nozzle discharge is held 10 ft above the surface of the water,
determine the volume flow rate through the nozzle,
the maximum height to which the water will rise, and the
force on the boat if the water jet is directed horizontally over
the stern.

4.210 A pump draws water from a reservoir through a
150-mm-diameter suction pipe and delivers it to a 75-mm-
diameter discharge pipe. The end of the suction pipe is 2 m
below the free surface of the reservoir. The pressure gage on
the discharge pipe (2 m above the reservoir surface) reads
170 kPa. The average speed in the discharge pipe is 3 m/s. If
the pump efficiency is 75 percent, determine the power
required to drive it.

4.211 The total mass of the helicopter-type craft shown is
1000 kg. The pressure of the air is atmospheric at the outlet.
Assume the flow is steady and one-dimensional. Treat the air
as incompressible at standard conditions and calculate, for a
hovering position, the speed of the air leaving the craft and
the minimum power that must be delivered to the air by the
propeller.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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4.5 m D

4.5 m D
4.25 m D

P4.211

4.212 Liquid flowing at high speed in a wide, horizontal open
channel under some conditions can undergo a hydraulic jump,
as shown. For a suitably chosen control volume, the flows
entering and leaving the jumpmaybe considered uniformwith

hydrostatic pressure distributions (seeExample 4.7). Consider
a channel of width w, with water flow atD1 5 0.6 m and V1 5

5 m/s. Show that in general,D2 5 D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8V2

1=gD1

q
2 1

h i
=2:

D1 = 0.6 m

V1 = 5 m/s
V2

D2

P4.212

Evaluate the change in mechanical energy through the
hydraulic jump. If heat transfer to the surroundings is neg-
ligible, determine the change in water temperature through
the jump.
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Differential Analysis
of Fluid Motion
5.1 Conservation of Mass

5.2 Stream Function for Two-Dimensional Incompressible Flow

5.3 Motion of a Fluid Particle (Kinematics)

5.4 Momentum Equation

5.5 Introduction to Computational Fluid Dynamics

5.6 Summary and Useful Equations

Case Study in Energy and the Environment

Wave Power: Aquamarine Oyster
Wave Energy Converter

Aquamarine Power, a wave energy company
located in Scotland, has developed an innovative
hydroelectric wave energy converter, known as Oyster;
a demonstration-scale model was installed in 2009 and
began producing power for homes in some regions of
Scotland. They eventually plan to have commercially

viable Oyster wave farms around the world, the first
planned for 2013. A farm of 20 Oyster devices would
provide enough energy to power 9000 homes, off-
setting carbon emissions of about 20,000 metric tons.
The Oyster device consists of a simple mechanical

hinged flap, as shown in the figure, connected to the
seabed at around a 10-m depth. As each wave passes
by, it forces the flap to move; the flap in turn drives
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In Chapter 4, we developed the basic equations in integral form for a control volume.
Integral equations are useful when we are interested in the gross behavior of a flow
field and its effect on various devices. However, the integral approach does not enable
us to obtain detailed point-by-point knowledge of the flow field. For example, the
integral approach could provide information on the lift generated by a wing; it could
not be used to determine the pressure distribution that produced the lift on the wing.

To see what is happening in a flow in detail, we need differential forms of
the equations of motion. In this chapter we shall develop differential equations for the
conservation of mass and Newton’s second law of motion. Since we are interested in
developing differential equations, we will need to analyze infinitesimal systems and
control volumes.

5.1 Conservation of Mass
In Chapter 2, we developed the field representation of fluid properties. The property
fields are defined by continuous functions of the space coordinates and time. The
density and velocity fields were related through conservation of mass in integral form
in Chapter 4 (Eq. 4.12). In this chapter we shall derive the differential equation for

hydraulic pistons to deliver high-pressure water, via a
pipeline, to an onshore electrical turbine. Oyster farms
using multiple devices are expected to be capable of
generating 100 MW or more.
Oyster has a number of advantages: It has good effi-

ciency and durability, and, with its low-cost operation,
maintenance, and manufacture, it is hoped it will
produce reliable cost-competitive electricity from the
waves for the first time. The device uses simple and
robust mechanical offshore component, combined with
proven conventional onshore hydroelectric compo-
nents. Designed with the notion that simple is best, less
ismore, it has aminimumofoffshore submergedmoving

parts; there are no underwater generators, power elec-
tronics, or gearboxes. The Oyster is designed to take
advantage of the more consistent waves found near the
shore; for durability, any excess energy from excep-
tionally largewaves simply spills over the topofOyster’s
flap. Its motion allows it to literally duck under such
waves. Aquamarine Power believes its device is com-
petitive with devices weighing up to five times as much,
and, with multiple pumps feeding a single onshore
generator, Oyster will offer good economies of scale.
As a final bonus, Oyster uses water instead of oil as its
hydraulic fluid for minimum environmental impact and
generates essentially no noise pollution.

Oyster® Wave
Energy Converter Hydroelectric

Power Conversion Plant

Seawater Piston

High-Pressure
Flow Line

A schematic of Aquamarine’s Oyster device (Picture courtesy of Aquamarine Power)
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conservation of mass in rectangular and in cylindrical coordinates. In both cases the
derivation is carried out by applying conservation of mass to a differential control
volume.

Rectangular Coordinate System

In rectangular coordinates, the control volume chosen is an infinitesimal cube with sides
of length dx, dy, dz as shown in Fig. 5.1. The density at the center, O, of the control
volume is assumed to be ρ and the velocity there is assumed to be ~V 5 îu1 ĵv1 k̂w.

To evaluate the properties at each of the six faces of the control surface, we use a
Taylor series expansion about point O. For example, at the right face,

ρÞx1dx=2 5 ρ1
@ρ
@x

� �
dx

2
1

@2ρ
@x2

� �
1

2!

dx

2

� �2

1 � � �

Neglecting higher-order terms, we can write

ρÞx1dx=2 5 ρ1
@ρ
@x

� �
dx

2

and

uÞx1dx=2 5 u1
@u

@x

� �
dx

2

where ρ, u, @ρ=@x, and @u=@x are all evaluated at point O. The corresponding terms at
the left face are

ρÞx2dx=2 5 ρ1
�
@ρ
@x

��
2

dx

2

�
5 ρ2

�
@ρ
@x

�
dx

2

uÞx2dx=2 5 u1

�
@u

@x

��
2

dx

2

�
5 u2

�
@u

@x

�
dx

2

We can write similar expressions involving ρ and v for the front and back faces and ρ
and w for the top and bottom faces of the infinitesimal cube dx dy dz. These can then
be used to evaluate the surface integral in Eq. 4.12 (recall that

R
CSρ~V �d~A is the net

flux of mass out of the control volume):

@

@t

Z
CV

ρdV---1
Z
CS

ρ~V �d~A 5 0 ð4:12Þ

dy

dz

dx

Control volume

x

y

z

Ow

v
u

Fig. 5.1 Differential control volume in rectangular
coordinates.

5.1 Conservation of Mass 173



Table 5.1 shows the details of this evaluation. Note: We assume that the velocity
components u, v, and w are positive in the x, y, and z directions, respectively; the area
normal is by convention positive out of the cube; and higher-order terms [e.g., (dx)2]
are neglected in the limit as dx, dy, and dz - 0.

The result of all this work is

@ρu
@x

1
@ρv
@x

1
@ρw
@x

� �
dx dy dz

This expression is the surface integral evaluation for our differential cube. To com-
plete Eq. 4.12, we need to evaluate the volume integral (recall that @=@t

R
CV ρdV--- is the

rate of change of mass in the control volume):

@

@t

Z
CV

ρdV----
@

@t
½ρdx dy dz� 5 @ρ

@t
dx dy dz

Hence, we obtain (after canceling dx dy dz) from Eq. 4.12 a differential form of the
mass conservation law

Table 5.1
Mass Flux Through the Control Surface of a Rectangular Differential Control Volume

Surface Evaluation of

Z
ρ~V �d~A

Left
ð2xÞ 52 ρ2

@ρ
@x

� �
dx

2

� �
u2

@u

@x

� �
dx

2

� �
dy dz 52ρu dy dz1

1

2
u

@ρ
@x

� �
1 ρ

@u

@x

� �� �
dx dy dz

Right
ð1xÞ 5 ρ1

@ρ
@x

� �
dx

2

� �
u1

@u

@x

� �
dx

2

� �
dy dz 5 ρu dy dz1

1

2
u

@ρ
@x

� �
1 ρ

@u

@x

� �� �
dx dy dz

Bottom
ð2yÞ 52 ρ2

@ρ
@y

� �
dy

2

� �
v2

@v
@y

� �
dy

2

� �
dx dz 52ρv dx dz1

1

2
v

@ρ
@y

� �
1 ρ

@v
@y

� �� �
dx dy dz

Top
ð1yÞ 5 ρ1

@ρ
@y

� �
dy

2

� �
v1

@v
@y

� �
dy

2

� �
dx dz 5 ρv dx dz1

1

2
v

@ρ
@y

� �
1 ρ

@v
@y

� �� �
dx dy dz

Back
ð2zÞ 52 ρ2

@ρ
@z

� �
dz

2

� �
w2

@w

@z

� �
dz

2

� �
dx dy 52ρw dx dy1

1

2
w

@ρ
@z

� �
1 ρ

@w

@z

� �� �
dx dy dz

Front
ð1zÞ 5 ρ1

@ρ
@z

� �
dz

2

� �
w1

@w

@z

� �
dz

2

� �
dx dy 5 ρw dx dy1

1

2
w

@ρ
@z

� �
1 ρ

@w

@z

� �� �
dx dy dz

Adding the results for all six faces,Z
CS

ρ~V �d~A 5 u
@ρ
@x

� �
1 ρ

@u

@x

� �� �
1 v

@ρ
@y

� �
1 ρ

@v
@y

� �� �
1 w

@ρ
@z

� �
1 ρ

@w

@z

� �� �� �
dx dy dz

or Z
CS

ρ~V �d~A 5
@ρu
@x

1
@ρv
@y

1
@ρw
@z

� �
dx dy dz
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@ρu
@x

1
@ρv
@y

1
@ρw
@z

1
@ρ
@t

5 0 ð5:1aÞ

Equation 5.1a is frequently called the continuity equation.
Since the vector operator, r, in rectangular coordinates, is given by

r 5 î
@

@x
1 ĵ

@

@y
1 k̂

@

@z

then

@ρu
@x

1
@ρv
@y

1
@ρw
@z

5 r�ρ~V

Note that the del operator r acts on ρ and ~V . Think of it asr�ðρ~VÞ. The conservation
of mass may be written as

r�ρ~V 1
@ρ
@t

5 0 ð5:1bÞ

Two flow cases for which the differential continuity equation may be simplified are
worthy of note.

For an incompressible fluid, ρ5 constant; density is neither a function of space
coordinates nor a function of time. For an incompressible fluid, the continuity
equation simplifies to

@u

@x
1

@v
@y

1
@w

@z
5 r� ~V 5 0 ð5:1cÞ

Thus the velocity field, ~Vðx; y; z; tÞ, for incompressible flow must satisfy r� ~V 5 0.
For steady flow, all fluid properties are, by definition, independent of time. Thus

@ρ=@t 5 0 and at most ρ5 ρ(x, y, z). For steady flow, the continuity equation can be
written as

@ρu
@x

1
@ρv
@y

1
@ρw
@z

5 r�ρ~V 5 0 ð5:1dÞ

(and remember that the del operator r acts on ρ and ~V).

Example 5.1 INTEGRATION OF TWO-DIMENSIONAL DIFFERENTIAL CONTINUITY EQUATION

For a two-dimensional flow in the xy plane, the x component of velocity is given by u5Ax. Determine a possible
y component for incompressible flow. How many y components are possible?

Given: Two-dimensional flow in the xy plane for which u5Ax.

Find: (a) Possible y component for incompressible flow.
(b) Number of possible y components.
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Solution:

Governing equation: r�ρ~V 1
@ρ
@t

5 0

For incompressible flow this simplifies to r� ~V 5 0. In rectangular coordinates

@u

@x
1

@v
@y

1
@w

@z
5 0

For two-dimensional flow in the xy plane, ~V 5 ~Vðx; yÞ. Then partial derivatives with respect to z are zero, and

@u

@x
1

@v
@y

5 0

Then
@v
@y

52
@u

@x
52A

which gives an expression for the rate of change of v holding x constant.
This equation can be integrated to obtain an expression for v. The result is

v 5

Z
@v
@y

dy1 f ðx; tÞ 52Ay1 f ðx; tÞ ß
v

{The function of x and t appears because we had a partial derivative of v
with respect to y.}

Any function f(x, t) is allowable, since @=@y f ðx; tÞ 5 0. Thus any
number of expressions for v could satisfy the differential continuity
equation under the given conditions. The simplest expression for v would
be obtained by setting f(x, t)5 0. Then v52Ay, and

~V 5 Axî2Ayĵ ß
V
-

This problem:
ü Shows use of the differential con-
tinuity equation for obtaining infor-
mation on a flow field.ü Demonstrates integration of a par-
tial derivative.ü Proves that the flow originally dis-
cussed in Example 2.1 is indeed
incompressible.

Example 5.2 UNSTEADY DIFFERENTIAL CONTINUITY EQUATION

A gas-filled pneumatic strut in an automobile suspension system behaves like a piston-cylinder apparatus. At one
instant when the piston isL5 0.15m away from the closed end of the cylinder, the gas density is uniformat ρ5 18 kg/m3

and the piston begins to move away from the closed end at V5 12 m/s. Assume as a simple model that the gas
velocity is one-dimensional and proportional to distance from the closed end; it varies linearly from zero at the
end to u5V at the piston. Find the rate of change of gas density at this instant. Obtain an expression for
the average density as a function of time.

Given: Piston-cylinder as shown.

Find: (a) Rate of change of density.
(b) ρ(t).

Solution:

Governing equation: r�ρ~V 1
@ρ
@t

5 0

L = 0.15 m

x

u = V x__
L

ρ = 18 kg/m3
V = 12 m/s
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Cylindrical Coordinate System

A suitable differential control volume for cylindrical coordinates is shown in Fig. 5.2.
The density at the center, O, of the control volume is assumed to be ρ and the velocity
there is assumed to be ~V 5 êrVr 1 êθVθ 1 k̂Vz, where êr, êθ, and k̂ are unit vectors in the
r, θ, and z directions, respectively, and Vr, Vθ, and Vz are the velocity components in
the r, θ, and z directions, respectively. To evaluate

R
CS ρ~V � d~A, we must consider the

mass flux through each of the six faces of the control surface. The properties at each of
the six faces of the control surface are obtained from a Taylor series expansion about
point O. The details of the mass flux evaluation are shown in Table 5.2. Velocity com-
ponentsVr,Vθ, andVz are all assumed to be in the positive coordinate directions and we
have again used the convention that the area normal is positive outwards on each face,
and higher-order terms have been neglected.

We see that the net rate of mass flux out through the control surface (the termR
CS ρ~V � d~A in Eq. 4.12) is given by

ρVr 1 r
@ρVr

@r
1

@ρVθ

@θ
1 r

@ρVz

@z

� �
dr dθ dz

In rectangular coordinates,
@ρu
@x

1
@ρv
@y

1
@ρw
@z

1
@ρ
@t

5 0

Since u5 u(x), partial derivatives with respect to y and z are zero, and

@ρu
@x

1
@ρ
@t

5 0

Then

@ρ
@t

52
@ρu
@x

52ρ
@u

@x
2 u

@ρ
@x

Since ρ is assumed uniform in the volume,
@ρ
@x

5 0, and
@ρ
@t

5
dρ
dt

52ρ
@u

@x
:

Since u 5 V
x

L
;
@u

@x
5

V

L
, then

dρ
dt

52ρ
V

L
. However, note that L5L01Vt.

Separate variables and integrate,Z ρ

ρ0

dρ
ρ

52

Z t

0

V

L
dt 5 2

Z t

0

V dt

L0 1Vt

ln
ρ
ρ0

5 ln
L0

L0 1Vt
and ρðtÞ 5 ρ0

1

11Vt=L0

� �
ß

ρðtÞ

At t5 0,

@ρ
@t

52ρ0
V

L
5218

kg

m3
3 12

m

s
3

1

0:15 m
521440 kg=ðm3 � sÞ ß

@ρ
@t

This problem demonstrates use of the
differential continuity equation for
obtaining the density variation with
time for an unsteady flow.The density-time graph is shown

in an Excel workbook. This
workbook is interactive: It allows one
to see the effect of different values of
ρ0, L, and V on ρ versus t. Also, the
time at which the density falls to any
prescribed value can be determined.
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The mass inside the control volume at any instant is the product of the mass per unit
volume, ρ, and the volume, rd θ dr dz. Thus the rate of change of mass inside the
control volume (the term @=@t

R
CV ρdV--- in Eq. 4.12) is given by

@ρ
@t

r dθ dr dz

In cylindrical coordinates the differential equation for conservation of mass is then

ρVr 1 r
@ρVr

@r
1

@ρVθ

@θ
1 r

@ρVz

@z
1 r

@ρ
@t

5 0

or

@ðrρVrÞ
@r

1
@ρVθ

@θ
1 r

@ρVz

@z
1 r

@ρ
@t

5 0

Dividing by r gives

1

r

@ðrρVrÞ
@r

1
1

r

@ðρVθÞ
@θ

1
@ðρVzÞ
@z

1
@ρ
@t

5 0 ð5:2aÞ

In cylindrical coordinates the vector operator r is given by

r 5 êr
@

@r
1 êθ

1

r

@

@θ
1 k̂

@

@z
ð3:19Þ

Equation 5.2a also may be written1 in vector notation as

r�ρ~V 1
@ρ
@t

5 0 ð5:1bÞ

For an incompressible fluid, ρ5 constant, and Eq. 5.2a reduces to

1

r

@ðrVrÞ
@r

1
1

r

@Vθ

@θ
1

@Vz

@z
5 r� ~V 5 0 ð5:2bÞ

θ θ
r

z

Vθ

Vz

Vr

O

θd dr

r

(a) Isometric view (b) Projection on r   planeθ

Fig. 5.2 Differential control volume in cylindrical
coordinates.

1To evaluate r � ρ~V in cylindrical coordinates, we must remember that

@êr
@θ

5 êθ and
@êθ
@θ

52êr
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Table 5.2
Mass Flux Through the Control Surface of a Cylindrical Differential Control Volume

Surface Evaluation of

Z
ρ~V � d~A

Inside
ð2rÞ 52 ρ2

@ρ
@r

� �
dr

2

� �
Vr 2

@Vr

@r

� �
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2

� �
r2
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2

� �
dθ dz 52ρVr rdθ dz1 ρVr
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2
dθ dz1 ρ

@Vr
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r
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2
dθ dz1Vr
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r
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2
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ð1rÞ 5 ρ1
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� �
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2

� �
Vr 1

@Vr
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� �
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2
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2
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2
dθ dz1 ρ

@Vr
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r
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2
dθ dz1Vr

@ρ
@r

� �
r
dr

2
dθ dz
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ð2θÞ 52 ρ2

@ρ
@θ

� �
dθ
2

� �
Vθ 2

@Vθ

@θ

� �
dθ
2

� �
dr dz 52ρVθ dr dz1 ρ

@Vθ

@θ

� �
dθ
2
dr dz1Vθ

@ρ
@θ

� �
dθ
2
dr dz

Back
ð1θÞ 5 ρ1

@ρ
@θ

� �
dθ
2

� �
Vθ 1

@Vθ

@θ

� �
dθ
2

� �
dr dz 5 ρVθ dr dz1 ρ

@Vθ

@θ

� �
dθ
2
dr dz1Vθ

@ρ
@θ

� �
dθ
2
dr dz

Bottom
ð2zÞ 52 ρ2

@ρ
@z

� �
dz

2

� �
Vz 2

@Vz

@z

� �
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2

� �
rdθ dr 52ρVzrdθ dr1 ρ

@Vz

@z

� �
dz

2
rdθ dr1Vz

@ρ
@z

� �
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2
rdθ dr
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ð1zÞ 5 ρ1

@ρ
@z

� �
dz

2

� �
Vz 1

@Vz

@z

� �
dz

2

� �
rdθ dr 5 ρVzrdθ dr1 ρ

@Vz

@z

� �
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2
rdθ dr1Vz

@ρ
@z

� �
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2
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Adding the results for all six faces,Z
CS

ρ~V � d~A 5 ρVr 1 r ρ
@Vr

@r

� �
1Vr

@ρ
@r

� �� �
1 ρ

@Vθ

@θ

� �
1Vθ

@ρ
@θ

� �� �
1 r ρ

@Vz

@z

� �
1Vz

@ρ
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� �� �� �
dr dθ dz

or Z
CS
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@ρVr
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1
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1 r
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� �
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Thus the velocity field, ~Vðx; y; z; tÞ, for incompressible flow must satisfy r� ~V 5 0. For
steady flow, Eq. 5.2a reduces to

1

r

@ðrρVrÞ
@r

1
1

r

@ðρVθÞ
@θ

1
@ðρVzÞ
@z

5 r�ρ~V 5 0 ð5:2cÞ

(and remember once again that the del operator r acts on ρ and ~V).
When written in vector form, the differential continuity equation (the mathemat-

ical statement of conservation of mass), Eq. 5.1b, may be applied in any coordinate
system. We simply substitute the appropriate expression for the vector operator r. In
retrospect, this result is not surprising since mass must be conserved regardless of our
choice of coordinate system.

*5.2 Stream Function for Two-Dimensional
Incompressible Flow
We already briefly discussed streamlines in Chapter 2, where we stated that they were
lines tangent to the velocity vectors in a flow at an instant

Example 5.3 DIFFERENTIAL CONTINUITY EQUATION IN CYLINDRICAL COORDINATES

Consider a one-dimensional radial flow in the rθ plane, given by Vr5 f(r) and Vθ5 0. Determine the conditions on
f(r) required for the flow to be incompressible.

Given: One-dimensional radial flow in the rθ plane: Vr5 f(r) and Vθ5 0.

Find: Requirements on f(r) for incompressible flow.

Solution:

Governing equation: r�ρ~V 1
@ρ
@t

5 0

For incompressible flow in cylindrical coordinates this reduces to Eq. 5.2b,

1

r

@

@r
ðrVrÞ1 1

r

@

@θ
Vθ 1

@Vz

@z
5 0

For the given velocity field, ~V5 ~VðrÞ:Vθ 5 0 and partial derivatives with respect to z are zero, so

1

r

@

@r
ðrVrÞ 5 0

Integrating with respect to r gives

rVr 5 constant

Thus the continuity equation shows that the radial velocity must be Vr5 f(r)5C/r for one-dimensional radial flow of
an incompressible fluid. This is not a surprising result: As the fluid moves outwards from the center, the volume flow
rate (per unit depth in the z direction) Q5 2πrV at any radius r is constant.

*This section may be omitted without loss of continuity in the text material.
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dy

dx streamline
5

v
u

���� ð2:8Þ

We can now develop a more formal definition of streamlines by introducing the
stream function, ψ. This will allow us to represent two entities—the velocity compo-
nents u(x, y, t) and v(x, y, t) of a two-dimensional incompressible flow—with a single
function ψ(x, y, t).

There are various ways to define the stream function. We start with the two-
dimensional version of the continuity equation for incompressible flow (Eq. 5.1c):

@u

@x
1

@v
@y

5 0 ð5:3Þ

We use what looks at first like a purely mathematical exercise (we will see a physical
basis for it later) and define the stream function by

u � @ψ
@y

and v �2
@ψ
@x ð5:4Þ

so that Eq. 5.3 is automatically satisfied for any ψ(x, y, t) we choose! To see this, use
Eq. 5.4 in Eq. 5.3:

@u

@x
1

@v
@y

5
@2ψ
@x@y

2
@2ψ
@y@x

5 0

Using Eq. 2.8, we can obtain an equation valid only along a streamline

udy2 vdx 5 0

or, using the definition of our stream function,

@ψ
@x

dx1
@ψ
@y

dy 5 0 ð5:5Þ

On the other hand, from a strictly mathematical point of view, at any instant in time t
the variation in a function ψ(x, y, t) in space (x, y) is given by

dψ 5
@ψ
@x

dx1
@ψ
@y

dy ð5:6Þ

Comparing Eqs. 5.5 and 5.6, we see that along an instantaneous streamline, dψ5 0; in
other words, ψ is a constant along a streamline. Hence we can specify individual
streamlines by their stream function values: ψ5 0, 1, 2, etc. What is the significance of
the ψ values? The answer is that they can be used to obtain the volume flow rate
between any two streamlines. Consider the streamlines shown in Fig. 5.3. We can
compute the volume flow rate between streamlines ψ1 and ψ2 by using line AB, BC,
DE, or EF (recall that there is no flow across a streamline).

Let us compute the flow rate by using line AB, and also by using line BC—they
should be the same!

For a unit depth (dimension perpendicular to the xy plane), the flow rate across
AB is

Q 5

Z y2

y1

u dy 5

Z y2

y1

@ψ
@y

dy

VIDEO

An Example of Streamlines/Streaklines.
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But along AB, x5 constant, and (from Eq. 5.6) dψ5 @ψ/@y dy. Therefore,

Q 5

Z y2

y1

@ψ
@y

dy 5

Z ψ2

ψ1

dψ 5 ψ2 2ψ1

For a unit depth, the flow rate across BC is

Q 5

Z x2

x1

vdx 52

Z x2

x1

@ψ
@x

dx

Along BC, y5 constant, and (from Eq. 5.6) dψ5 @ψ/@x dx. Therefore,

Q 52

Z x2

x1

@ψ
@x

dx 52

Z ψ1

ψ2

dψ 5 ψ2 2ψ1

Hence, whether we use line AB or line BC (or for that matter lines DE or DF), we
find that the volume flow rate (per unit depth) between two streamlines is given by the
difference between the two stream function values.2 (The derivations for lines AB and
BC are the justification for using the stream function definition of Eq. 5.4.) If
the streamline through the origin is designated ψ5 0, then the ψ value for any other
streamline represents the flow between the origin and that streamline. [We are free to
select any streamline as the zero streamline because the stream function is defined as a
differential (Eq. 5.3); also, the flow rate will always be given by a difference of ψ
values.] Note that because the volume flow between any two streamlines is constant,
the velocity will be relatively high wherever the streamlines are close together, and
relatively low wherever the streamlines are far apart—a very useful concept for
“eyeballing” velocity fields to see where we have regions of high or low velocity.

For a two-dimensional, incompressible flow in the rθ plane, conservation of mass,
Eq. 5.2b, can be written as

@ðrVrÞ
@r

1
@Vθ

@θ
5 0 ð5:7Þ

y

x
A (x1, y1)

C (x2, y2)B (x1, y2)

D

E
F

V

u

ψ3

ψ2

ψ1

v

Fig. 5.3 Instantaneous streamlines in a two-dimensional flow.

2For two-dimensional steady compressible flow in the xy plane, the stream function, ψ, can be defined such that

ρu � @ψ
@y

and ρv �2
@ψ
@x

The difference between the constant values of ψ defining two streamlines is then the mass flow rate (per unit

depth) between the two streamlines.
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Using a logic similar to that used for Eq. 5.4, the stream function, ψ(r, θ, t), then is
defined such that

Vr �
1

r

@ψ
@θ

and Vθ �2
@ψ
@r

ð5:8Þ

With ψ defined according to Eq. 5.8, the continuity equation, Eq. 5.7, is satisfied
exactly.

Example 5.4 STREAM FUNCTION FOR FLOW IN A CORNER

Given the velocity field for steady, incompressible flow in a corner (Example 2.1), ~V 5 Axî2Ayĵ, with A 5 0:3 s21,
determine the stream function that will yield this velocity field. Plot and interpret the streamline pattern in the first
and second quadrants of the xy plane.

Given: Velocity field, ~V 5 Axî2Ayĵ, with A5 0.3 s21.

Find: Stream function ψ and plot in first and second quadrants; interpret the results.

Solution:
The flow is incompressible, so the stream function satisfies Eq. 5.4.

From Eq. 5.4, u 5
@ψ
@y

and v 52
@ψ
@y

. From the given velocity field,

u 5 Ax 5
@ψ
@y

Integrating with respect to y gives

ψ 5

Z
@ψ
@y

dy1 f ðxÞ 5 Axy1 f ðxÞ ð1Þ

where f(x) is arbitrary. The function f(x) may be evaluated using the equation for v. Thus, from Eq. 1,

v 52
@ψ
@x

52Ay2
df

dx
ð2Þ

From the given velocity field, v52Ay. Comparing this with Eq. 2 shows that
df

dx
5 0, or f ðxÞ 5 constant. Therefore,

Eq. 1 becomes

ψ 5 Axy1 c ß

ψ

Lines of constant ψ represent streamlines in the flow field. The constant c may be chosen as any convenient value for
plotting purposes. The constant is chosen as zero in order that the streamline through the origin be designated as
ψ5ψ15 0. Then the value for any other streamline represents the flow between the origin and that streamline. With
c5 0 and A5 0.3 s21, then

ψ 5 0:3xy ðm3=s=mÞ
{This equation of a streamline is identical to the result (xy5 constant) obtained in Example 2.1.}

Separate plots of the streamlines in the first and second quadrants are presented below. Note that in quadrant 1,
u. 0, so ψ values are positive. In quadrant 2, u, 0, so ψ values are negative.

In the first quadrant, since u. 0 and v, 0, the flow is from left to right and down. The volume flow rate between
the streamline ψ5ψ1 through the origin and the streamline ψ5ψ2 is

Q12 5 ψ2 2ψ1 5 0:3m3=s=m
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5.3 Motion of a Fluid Particle (Kinematics)
Figure 5.4 shows a typical finite fluid element, within which we have selected an
infinitesimal particle of mass dm and initial volume dx dy dz, at time t, and as it (and
the infinitesimal particle) may appear after a time interval dt. The finite element has
moved and changed its shape and orientation. Note that while the finite element
has quite severe distortion, the infinitesimal particle has changes in shape limited to
stretching/shrinking and rotation of the element’s sides—this is because we are

In the second quadrant, since u, 0 and v, 0, the flow is from right to left
and down. The volume flow rate between streamlines ψ7 and ψ9 is

Q79 5 ψ9 2ψ7 5 ½21:22 ð20:6Þ�m3=s=m 520:6m3=s=m

The negative sign is consistent with flow having u, 0.

ψ9 = –1.2 m3/s/m

ψ9

ψ1 = 0

ψ8
ψ7
ψ6

ψ5

ψ1 = 0

ψ4
ψ3
ψ2

ψ8 = –0.9 m3/s/m
ψ7 = –0.6 m3/s/m
ψ6 = –0.3 m3/s/m

ψ5 = 1.2 m3/s/m
ψ4 = 0.9 m3/s/m
ψ3 = 0.6 m3/s/m
ψ2 = 0.3 m3/s/m

–4 –3 –2
x (m)

–1 0 0 1 2
x (m)

Quadrant 2 Quadrant 1

3 4
0

1

2

3

4

0

1

2

3

4

y (m)

As both the streamline spacing in the
graphs and the equation for ~V indi-
cate, the velocity is smallest near the
origin (a “corner”).There is an Excel workbook for

this problem that can be used
to generate streamlines for this and
many other stream functions.

Finite element & infinitesimal
particle at time t

Finite element &
infinitesimal particle

at time t + dt

dz

dx

z

x

y

dy

Fig. 5.4 Finite fluid element and infinitesimal particle at times t and t1 dt.

184 Chapter 5 Introduction to Differential Analysis of Fluid Motion



considering both an infinitesimal time step and particle, so that the sides remain
straight. We will examine the infinitesimal particle so that we will eventually obtain
results applicable to a point. We can decompose this particle’s motion into four
components: translation, in which the particle moves from one point to another;
rotation of the particle, which can occur about any or all of the x, y or z axes; linear
deformation, in which the particle’s sides stretch or contract; and angular deformation,
in which the angles (which were initially 90� for our particle) between the sides
change.

It may seem difficult by looking at Fig. 5.4 to distinguish between rotation and
angular deformation of the infinitesimal fluid particle. It is important to do so, because
pure rotation involves no deformation but angular deformation does and, as we
learned in Chapter 2, fluid deformation generates shear stresses. Figure 5.5 shows a
typical xy plane motion decomposed into the four components described above, and
as we examine each of these four components in turn we will see that we can dis-
tinguish between rotation and angular deformation.

Fluid Translation: Acceleration of a Fluid Particle
in a Velocity Field

The translation of a fluid particle is obviously connected with the velocity field
~V 5 ~Vðx; y; z; tÞ that we previously discussed in Section 2.2. We will need the accel-
eration of a fluid particle for use in Newton’s second law. It might seem that we could
simply compute this as ~a 5 @ ~V=@t. This is incorrect, because ~V is a field, i.e., it
describes the whole flow and not just the motion of an individual particle. (We can see
that this way of computing is incorrect by examining Example 5.4, in which particles
are clearly accelerating and decelerating so ~a 6¼ 0, but @ ~V=@t 5 0.)

The problem, then, is to retain the field description for fluid properties and obtain
an expression for the acceleration of a fluid particle as it moves in a flow field. Stated
simply, the problem is:

Given the velocity field; ~V 5 ~Vðx; y; z; tÞ; find the acceleration
of a fluid particle; ~ap:

y

x

y

x

Translation

y

x
Angular deformation

y

x
Rotation

y

x
Linear deformation

Fig. 5.5 Pictorial representation of the components of fluid motion.

VIDEO

Particle Motion in a Channel.

VIDEO

Particle Motion over a Cylinder.
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Consider a particle moving in a velocity field. At time t, the particle is at the
position x, y, z and has a velocity corresponding to the velocity at that point in space
at time t,

~Vp

i
t
5 ~Vðx; y; z; tÞ

At t1 dt, the particle has moved to a new position, with coordinates x1 dx, y1 dy,
z1 dz, and has a velocity given by

~Vp

i
t1dt

5 ~Vðx1 dx; y1 dy; z1 dz; t1 dtÞ

This is shown pictorially in Fig. 5.6.
The particle velocity at time t (position ~r) is given by ~Vp 5 ~Vðx; y; z; tÞ. Then d~Vp,

the change in the velocity of the particle, in moving from location~r to~r1 d~r, in time
dt, is given by the chain rule,

d~Vp 5
@ ~V

@x
dxp 1

@ ~V

@y
dyp 1

@ ~V

@z
dzp 1

@ ~V

@t
dt

The total acceleration of the particle is given by

~ap 5
d~Vp

dt
5

@ ~V

@x

dxp

dt
1

@ ~V

@y

dyp

dt
1

@ ~V

@z

dzp

dt
1

@ ~V

@t

Since

dxp

dt
5 u;

dyp

dt
5 v; and

dzp

dt
5 w;

we have

~ap 5
d~Vp

dt
5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
1

@ ~V

@t

To remind us that calculation of the acceleration of a fluid particle in a velocity field
requires a special derivative, it is given the symbol D~V=Dt. Thus

D~V

Dt
� ~ap 5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
1

@ ~V

@t
ð5:9Þ

The derivative, D/Dt, defined by Eq. 5.9, is commonly called the substantial derivative
to remind us that it is computed for a particle of “substance.” It often is called the
material derivative or particle derivative.

Particle at
time, t

Particle at
time, t + dt

Particle path

r + dr
r

y

x

z

Fig. 5.6 Motion of a particle
in a flow field.
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The physical significance of the terms in Eq. 5.9 is

~ap 5
D~V

Dt

total
acceleration

of a particle

5 u
@ ~V

@x
þ v

@ ~V

@y
þ w

@ ~V

@z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
convective
acceleration

1
@ ~V

@ t

local
acceleration

From Eq. 5.9 we recognize that a fluid particle moving in a flow field may undergo
acceleration for either of two reasons. As an illustration, refer to Example 5.4. This is a
steady flow in which particles are convected toward the low-velocity region (near the
“corner”), and thenaway to a high-velocity region. If a flowfield is unsteady a fluid particle
will undergoanadditional localacceleration, because thevelocityfield is a functionof time.

The convective acceleration may be written as a single vector expression using the
gradient operator r. Thus

u
@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
5 ð~V � rÞ~V

(We suggest that you check this equality by expanding the right side of the equation
using the familiar dot product operation.) Thus Eq. 5.9 may be written as

D~V

Dt
� ~ap 5 ð~V � rÞ~V 1

@ ~V

@t
ð5:10Þ

For a two-dimensional flow, say ~V 5 ~Vðx; y; tÞ, Eq. 5.9 reduces to

D~V

Dt
5 u

@ ~V

@x
1 v

@ ~V

@y
1

@ ~V

@t

For a one-dimensional flow, say ~V 5 ~Vðx; tÞ, Eq. 5.9 becomes

D~V

Dt
5 u

@ ~V

@x
1

@ ~V

@t

Finally, for a steady flow in three dimensions, Eq. 5.9 becomes

D~V

Dt
5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z

which, as we have seen, is not necessarily zero even though the flow is steady. Thus a
fluid particle may undergo a convective acceleration due to its motion, even in
a steady velocity field.

Equation 5.9 is a vector equation. As with all vector equations, it may be written in
scalar component equations. Relative to an xyz coordinate system, the scalar com-
ponents of Eq. 5.9 are written

axp 5
Du

Dt
5 u

@u

@x
1 v

@u

@y
1w

@u

@z
1

@u

@t
ð5:11aÞ

ayp 5
Dv
Dt

5 u
@v
@x

1 v
@v
@y

1w
@v
@z

1
@v
@t

ð5:11bÞ

azp 5
Dw

Dt
5 u

@w

@x
1 v

@w

@y
1w

@w

@z
1

@w

@t
ð5:11cÞ

CLASSIC VIDEO

Eulerian and Lagrangian Descriptions

in Fluid Mechanics.
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The components of acceleration in cylindrical coordinates may be obtained from
Eq. 5.10 by expressing the velocity, ~V , in cylindrical coordinates (Section 5.1) and
utilizing the appropriate expression (Eq. 3.19, on the Web) for the vector operator r.
Thus,3

arp 5 Vr

@Vr

@r
1

Vθ

r

@Vr

@θ
2

V2
θ

r
1Vz

@Vr

@z
1

@Vr

@t
ð5:12aÞ

aθp 5 Vr

@Vθ

@r
1

Vθ

r

@Vθ

@θ
1

VrVθ

r
1Vz

@Vθ

@z
1

@Vθ

@t
ð5:12bÞ

azp 5 Vr

@Vz

@r
1

Vθ

r

@Vz

@θ
1Vz

@Vz

@z
1

@Vz

@t
ð5:12cÞ

Equations 5.9, 5.11, and 5.12 are useful for computing the acceleration of a fluid
particle anywhere in a flow from the velocity field (a function of x, y, z, and t); this is
the Eulerian method of description, the most-used approach in fluid mechanics.

As an alternative (e.g., if we wish to track an individual particle’s motion in, for
example, pollution studies) we sometimes use the Lagrangian description of particle
motion, in which the acceleration, position, and velocity of a particle are specified as a
function of time only. Both descriptions are illustrated in Example 5.5.

Example 5.5 PARTICLE ACCELERATION IN EULERIAN AND LAGRANGIAN DESCRIPTIONS

Consider two-dimensional, steady, incompressible flow through the plane converging
channel shown. The velocity on the horizontal centerline (x axis) is given by
~V 5 V1½11 ðx=LÞ�î. Find an expression for the acceleration of a particle moving along the
centerline using (a) the Eulerian approach and (b) the Lagrangian approach. Evaluate
the acceleration when the particle is at the beginning and at the end of the channel.

Given: Steady, two-dimensional, incompressible flow through the converging channel shown.

~V 5 V1 11
x

L


 �
î on x axis

Find: (a) The acceleration of a particle moving along the centerline using the Eulerian
approach.

(b) The acceleration of a particle moving along the centerline using the La-
grangian approach.

(c) Evaluate the acceleration when the particle is at the beginning and at the end
of the channel.

Solution:
(a) The Eulerian approach

The governing equation for acceleration of a fluid particle is Eq. 5.9:

~apðx; y; z; tÞ 5 D~V

Dt
5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
1

@ ~V

@t
ð5:9Þ

y

x
V

x1 = 0
x2 = L

y

x
V

x1 = 0
x2 = L

3In evaluating ð~V �rÞ~V , recall that êr and êθ are functions of θ (see footnote 1 on p. 178).

188 Chapter 5 Introduction to Differential Analysis of Fluid Motion



In this case we are interested in the x component of acceleration (Eq. 5.11a):

axpðx; y; z; tÞ 5
Du

Dt
5 u

@u

@x
1 v

@u

@y
1w

@u

@z
1

@u

@t
ð5:11aÞ

On the x axis, v5w5 0 and u 5 V1 11
x

L


 �
, so for steady flow we obtain

axpðxÞ 5
Du

Dt
5 u

@u

@x
5 V1 11

x

L


 �V1

L

or

axpðxÞ 5
V2

1

L
11

x

L


 �
ß

axpðxÞ

This expression gives the acceleration of any particle that is at point x at an instant.

(b) The Lagrangian approach
In this approach we need to obtain the motion of a fluid particle as we would in particle mechanics; that is, we
need the position ~xpðtÞ, and then we can obtain the velocity ~VpðtÞ 5 d~xp=dt and acceleration ~apðtÞ 5 d~Vp=dt.
Actually, we are considering motion along the x axis, so we want xp(t), upðtÞ 5 dxp=dt, and axpðtÞ 5 dup=dt. We
are not given xp(t), but we do have

up 5
dxp
dt

5 V1 11
xp
L


 �
Separating variables, and using limits xp(t5 0)5 0 and xp(t5 t)5 xp,Z xp

0

dxp

11
xp
L


 � 5

Z 1

0

V1dt and L ln 11
xp
L


 �
5 V1t ð1Þ

We can then solve for xp(t):

xpðtÞ 5 LðeV1t=L 2 1Þ

The velocity and acceleration are then

upðtÞ 5
dxp

dt
5 V1e

V1t=L

and

axpðtÞ 5
dup

dt
5

V2
1

L
eV1t=L

ß

ð2Þ axpðtÞ

This expression gives the acceleration at any time t of the particle that was initially at x5 0.

(c) We wish to evaluate the acceleration when the particle is at x5 0 and x5L. For the Eulerian approach this is
straightforward:

azpðx 5 0Þ 5 V2
1

L
; axpðx 5 LÞ 5 2

V2
1

L
ß

axp

For the Lagrangian approach, we need to find the times at which x5 0 and x5L. Using Eq. 1, these are

tðxp 5 0Þ 5 L

V1
tðxp 5 LÞ 5 L

V1
lnð2Þ
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Fluid Rotation

A fluid particle moving in a general three-dimensional flow field may rotate about all
three coordinate axes. Thus particle rotation is a vector quantity and, in general,

~ω 5 îωx 1 ĵωy 1 k̂ωz

where ωx is the rotation about the x axis, ωy is the rotation about the y axis, and ωz is the
rotation about the z axis. The positive sense of rotation is given by the right-hand rule.

We now see how we can extract the rotation component of the particle motion.
Consider the xy plane view of the particle at time t. The left and lower sides of the
particle are given by the two perpendicular line segments oa and ob of lengths Δx
and Δy, respectively, shown in Fig. 5.7a. In general, after an interval Δt the particle
will have translated to some new position, and also have rotated and deformed.
A possible instantaneous orientation of the lines at time t1Δt is shown in Fig. 5.7b.

We need to be careful here with our signs for angles. Following the right-hand rule,
counterclockwise rotation is positive, and we have shown side oa rotating counter-
clockwise through angle Δα, but be aware that we have shown edge ob rotating at
a clockwise angle Δβ. Both angles are obviously arbitrary, but it will help visualize the
discussion if we assign values to these angles, e.g., let Δα5 6� and Δβ5 4�.

How do we extract from Δα and Δβ a measure of the particle’s rotation? The
answer is that we take an average of the rotations Δα and Δβ, so that the particle’s
rigid body counterclockwise rotation is 1

2(Δα2Δβ), as shown in Fig. 5.7c. The minus
sign is needed because the counterclockwise rotation of ob is 2Δβ. Using the
assigned values, the rotation of the particle is then 1

2(6
� 2 4�)5 1�. (Given the two

rotations, taking the average is the only way we can measure the particle’s rotation,
because any other approach would favor one side’s rotation over the other, which
doesn’t make sense.)

Then, from Eq. 2,

azpðt 5 0Þ 5 V2
1

L
; and

axp t 5
L

V1
lnð2Þ

0
@

1
A 5

V2
1

L
elnð2Þ 5 2

V2
1

L
ß

axp

Note that both approaches yield the same results for particle acceleration, as they should.

This problem illustrates use of the
Eulerian and Lagrangian descriptions
of the motion of a fluid particle.

b

o a

Δy

Δx

Δa Δh

Δb

Δj
1/2(Δa – Δb)

1/2(Δa – Δb)

1/2(Δa + Δb)

1/2(Δa + Δb)

(a) Original particle (b) Particle after time Δt (c) Rotational component (d) Angular deformation component

Fig. 5.7 Rotation and angular deformation of perpendicular line segments in a two-dimensional flow.
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Now we can determine from Δα and Δβ a measure of the particle’s angular
deformation, as shown in Fig. 5.7d. To obtain the deformation of side oa in Fig. 5.7d,
we use Fig. 5.7b and 5.7c: If we subtract the particle rotation 1

2(Δα2Δβ), in Fig. 5.7c,
from the actual rotation of oa, Δα, in Fig. 5.7b, what remains must be pure defor-
mation [Δα2 1

2(Δα2Δβ)5 1
2(Δα1Δβ), in Fig. 5.7d]. Using the assigned values, the

deformation of side oa is 6� 2 1
2(6

� 2 4�)5 5�. By a similar process, for side ob we end
with Δβ2 1

2(Δα2Δβ) 521
2(Δα1Δβ), or a clockwise deformation 1

2(Δα1Δβ), as
shown in Fig. 5.7d. The total deformation of the particle is the sum of the deforma-
tions of the sides, or (Δα1Δβ) (with our example values, 10�). We verify that this
leaves us with the correct value for the particle’s deformation: Recall that in Section
2.4 we saw that deformation is measured by the change in a 90� angle. In Fig. 5.7a we
see this is angle aob, and in Fig. 5.7d we see the total change of this angle is indeed
1
2(Δα1Δβ)1 1

2(Δα1Δβ)5 (Δα1Δβ).
We need to convert these angular measures to quantities obtainable from the flow

field. To do this, we recognize that (for small angles) Δα 5 Δη=Δx, and
Δβ 5 Δξ=Δy. But Δξ arises because, if in interval Δt point o moves horizontally
distance uΔt, then point b will have moved distance ðu1 ½@u=@y�ΔyÞΔt (using a
Taylor series expansion). Likewise, Δη arises because, if in interval Δt point o moves
vertically distance vΔt, then point a will have moved distance ðv1 ½@v=@x�ΔxÞΔt.
Hence,

Δξ 5 u1
@u

@y
Δy

� �
Δt2 uΔt 5

@u

@y
ΔyΔt

and

Δη 5 v1
@v
@x

Δx

� �
Δt2 vΔt 5

@v
@x

ΔxΔt

We can now compute the angular velocity of the particle about the z axis, ωz, by
combining all these results:

ωz 5 lim
Δt-0

1

2
ðΔα2ΔβÞ

Δt
5 lim

Δt-0

1

2

Δη
Δx

2
Δξ
Δy

� �
Δt

5 lim
Δt-0

1

2

@v
@x

Δx

Δx
Δt2

@u

@y

Δy

Δy
Δt

� �
Δt

ωz 5
1

2

@v
@x

2
@u

@y

� �

By considering the rotation of pairs of perpendicular line segments in the yz and xz
planes, one can show similarly that

ωx 5
1

2

@w

@y
2

@v
@z

� �
and ωy 5

1

2

@u

@z
2

@w

@x

� �

Then ~ω 5 îωx 1 ĵωy 1 k̂ωz becomes

~ω 5
1

2
î

@w

@y
2

@v
@z

� �
1 ĵ

@u

@z
2

@w

@x

� �
1 k̂

@v
@x

2
@u

@y

� �� �
ð5:13Þ

We recognize the term in the square brackets as

curl ~V 5 r3 ~V
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Then, in vector notation, we can write

~ω 5
1

2
r3 ~V ð5:14Þ

It is worth noting here that we should not confuse rotation of a fluid particle with flow
consisting of circular streamlines, or vortex flow. As we will see in Example 5.6, in
such a flow the particles could rotate as they move in a circular motion, but they do
not have to!

When might we expect to have a flow in which the particles rotate as they move
(~ω 6¼ 0)? One possibility is that we start out with a flow in which (for whatever
reason) the particles already have rotation. On the other hand, if we assumed the
particles are not initially rotating, particles will only begin to rotate if they experience
a torque caused by surface shear stresses; the particle body forces and normal
(pressure) forces may accelerate and deform the particle, but cannot generate a
torque. We can conclude that rotation of fluid particles will always occur for flows in
which we have shear stresses. We have already learned in Chapter 2 that shear
stresses are present whenever we have a viscous fluid that is experiencing angular
deformation (shearing). Hence we conclude that rotation of fluid particles only occurs
in viscous flows4 (unless the particles are initially rotating, as in Example 3.10).

Flows for which no particle rotation occurs are called irrotational flows. Although
no real flow is truly irrotational (all fluids have viscosity), it turns out that many flows
can be successfully studied by assuming they are inviscid and irrotational, because
viscous effects are often negligible. As we discussed in Chapter 1, and will again in
Chapter 6, much of aerodynamics theory assumes inviscid flow. We just need to be
aware that in any flow there will always be regions (e.g., the boundary layer for flow
over a wing) in which viscous effects cannot be ignored.

The factor of 1
2 can be eliminated from Eq. 5.14 by defining the vorticity, ~ζ , to be

twice the rotation,

~ζ � 2~ω 5 r3 ~V ð5:15Þ
The vorticity is a measure of the rotation of a fluid element as it moves in the flow
field. In cylindrical coordinates the vorticity is5

r3 ~V 5 êr
1

r

@Vz

@θ
2

@Vθ

@z

� �
1 êθ

@Vr

@z
2

@Vz

@r

� �
1 k̂

1

r

@rVθ

@r
2

1

r

@Vr

@θ

� �
ð5:16Þ

The circulation, Γ (which we will revisit in Example 6.12), is defined as the line
integral of the tangential velocity component about any closed curve fixed in the flow,

Γ 5

I
c

~V � d~s ð5:17Þ

where d~s is an elemental vector tangent to the curve and having length ds of the
element of arc; a positive sense corresponds to a counterclockwise path of integration
around the curve. We can develop a relationship between circulation and vorticity by
considering the rectangular circuit shown in Fig. 5.8, where the velocity components
at o are assumed to be (u, v), and the velocities along segments bc and ac can be
derived using Taylor series approximations.

4A rigorous proof using the complete equations of motion for a fluid particle is given in Li and Lam,

pp. 142�145.
5In carrying out the curl operation, recall that êr and êθ are functions of θ (see footnote 1 on p. 178).

CLASSIC VIDEO

Vorticity.
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For the closed curve oacb,

ΔΓ 5 uΔx1

�
v1

@v
@x

Δx

�
Δy2

�
u1

@u

@y
Δy

�
Δx2 vΔy

ΔΓ 5

�
@v
@x

2
@u

@y

�
ΔxΔy

ΔΓ 5 2ωzΔxΔy

Then,

Γ 5

I
c

~V � d~s 5

Z
A

2ωz dA 5

Z
A

ðr3 ~VÞz dA ð5:18Þ

Equation 5.18 is a statement of the Stokes Theorem in two dimensions. Thus the
circulation around a closed contour is equal to the total vorticity enclosed within it.

u +     Δyu___
y
∂
∂

v +     Δxv___
x
∂
∂

b c

a x

y

Δx

u

o

Δy

v

Fig. 5.8 Velocity components
on the boundaries of a fluid
element.

Example 5.6 FREE AND FORCED VORTEX FLOWS

Consider flow fields with purely tangential motion (circular streamlines): Vr5 0 and Vθ5 f(r). Evaluate the rotation,
vorticity, and circulation for rigid-body rotation, a forced vortex. Show that it is possible to choose f(r) so that flow is
irrotational, i.e., to produce a free vortex.

Given: Flow fields with tangential motion, Vr5 0 and Vθ5 f(r).

Find: (a) Rotation, vorticity, and circulation for rigid-body motion (a forced vortex).
(b) Vθ5 f(r) for irrotational motion (a free vortex).

Solution:

Governing equation: ~ζ 5 2~ω 5 r3 ~V ð5:15Þ
For motion in the rθ plane, the only components of rotation and vorticity are in the z direction,

ζz 5 2ωz 5
1

r

@rVθ

@r
2

1

r

@Vr

@θ

Because Vr5 0 everywhere in these fields, this reduces to ζz 5 2ωz 5
1

r

@rVθ

@r
:

(a) For rigid-body rotation, Vθ5ωr.

Then ωz 5
1

2

1

r

@rVθ

@r
5

1

2

1

r

@

@r
ωr2 5

1

2r
ð2ωrÞ 5 ω and ζz 5 2ω:

The circulation is Γ 5

I
c

~V � d~s 5

Z
A

2ωzdA: ð5:18Þ

Since ωz5ω5 constant, the circulation about any closed contour is given by Γ5 2ωA, where A is the area
enclosed by the contour. Thus for rigid-body motion (a forced vortex), the rotation and vorticity are constants;
the circulation depends on the area enclosed by the contour.

(b) For irrotational flow, ωz 5
1

r

@

@r
rVθ 5 0. Integrating, we find

rVθ 5 constant or Vθ 5 f ðrÞ 5 C

r
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Fluid Deformation

a. Angular Deformation

As we discussed earlier (and as shown in Fig. 5.7d), the angular deformation of a
particle is given by the sum of the two angular deformations, or in other words by
(Δα1Δβ).

We also recall that Δα 5 Δη=Δx;Δβ 5 Δξ=Δy, and Δξ and Δη are given by

Δξ 5 u1
@u

@y
Δy

� �
Δt2 uΔt 5

@u

@y
ΔyΔt

and

Δη 5 v1
@v
@x

Δx

� �
Δt2 vΔt 5

@v
@x

ΔxΔt

We can now compute the rate of angular deformation of the particle in the xy plane by
combining these results,

Rate of angular
deformation
in xy plane

5 lim
Δt-0

ðΔα1ΔβÞ
Δt

5 lim
Δt-0

Δη
Δx

1
Δξ
Δy

� �
Δt

Rate of angular
deformation
in xy plane

5 lim
Δt-0

@v
@x

Δx

Δx
Δt1

@u

@y

Δy

Δy
Δt

� �
Δt

5
@v
@x

1
@u

@y

� �
ð5:19aÞ

For this flow, the origin is a singular point where Vθ -N. The circulation for any contour enclosing the origin is

Γ 5

I
c

~V �d~s 5

Z 2π

0

C

r
r dθ 5 2πC

It turns out that the circulation around any contour not enclosing the singular point at the origin is zero.
Streamlines for the two vortex flows are shown below, along with the location and orientation at different
instants of a cross marked in the fluid that was initially at the 12 o’clock position. For the rigid-body motion
(which occurs, for example, at the eye of a tornado, creating the “dead” region at the very center), the cross
rotates as it moves in a circular motion; also, the streamlines are closer together as we move away from
the origin. For the irrotational motion (which occurs, for example, outside the eye of a tornado—in such a large
region viscous effects are negligible), the cross does not rotate as it moves in a circular motion; also, the
streamlines are farther apart as we move away from the origin.

Rigid-body motion Irrotational motion
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Similar expressions can be written for the rate of angular deformation of the particle
in the yz and zx planes,

Rate of angular deformation in yz plane 5
@w

@y
1

@v
@z

� �
ð5:19bÞ

Rate of angular deformation in zx plane 5
@w

@x
1

@u

@z

� �
ð5:19cÞ

We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shear
stress is given by the rate of deformation (du/dy) of the fluid particle,

τyx 5 μ
du

dy
ð2:15Þ

We will see shortly that we can generalize Eq. 2.15 to the case of three-dimensional
laminar flow; this will lead to expressions for three-dimensional shear stresses involving
the three rates of angular deformationgivenabove. (Eq. 2.15 is a special caseofEq. 5.19a.)

Calculation of angular deformation is illustrated for a simple flowfield inExample 5.7.

Example 5.7 ROTATION IN VISCOMETRIC FLOW

A viscometric flow in the narrow gap between large parallel
plates is shown. The velocity field in the narrow gap is given by
~V 5 Uðy=hÞî, where U5 4 mm/s and h5 4 mm. At t5 0 line
segments ac and bd are marked in the fluid to form a cross as
shown. Evaluate the positions of the marked points at t5 1.5 s
and sketch for comparison. Calculate the rate of angular defor-
mation and the rate of rotation of a fluid particle in this velocity
field. Comment on your results.

Given: Velocity field, ~V 5 Uðy=hÞî;U5 4 mm/s, and h5 4 mm. Fluid particles marked at t5 0 to form cross as
shown.

Find: (a) Positions of points au, bu, cu, and du at t5 1.5 s; plot.
(b) Rate of angular deformation.
(c) Rate of rotation of a fluid particle.
(d) Significance of these results.

Solution: For the given flow field v5 0, so there is no vertical motion. The velocity of each point stays constant, so
Δx5 uΔt for each point. At point b, u5 3 mm/s, so

Δxb 5 3
mm

s
3 1:5 s 5 4:5mm

Similarly, points a and c each move 3 mm, and point d moves 1.5 mm. Hence the plot at t5 1.5 s is

h

u = U   i^
y_
h

3

2

1

0
0 1 2 3 4

a (1,2)

d (2,1)

b (2,3)

c (3,2)
Lines marked

in fluid
at t = 0

U

x

y

U

3

2

1

0
0 1 2 3 4 5 6 7

a a'

d'

b'

c'

b
c

d

x

y

Lines at t = 1.5 s

CLASSIC VIDEO

Deformation of Continuous Media.
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b. Linear Deformation

During linear deformation, the shape of the fluid element, described by the angles at
its vertices, remains unchanged, since all right angles continue to be right angles (see
Fig. 5.5). The element will change length in the x direction only if @u/@x is other than
zero. Similarly, a change in the y dimension requires a nonzero value of @v/@y and a
change in the z dimension requires a nonzero value of @w/@z. These quantities
represent the components of longitudinal rates of strain in the x, y, and z directions,
respectively.

Changes in length of the sides may produce changes in volume of the element. The
rate of local instantaneous volume dilation is given by

Volume dilation rate 5
@u

@x
1

@v
@y

1
@w

@z
5 r� ~V ð5:20Þ

For incompressible flow, the rate of volume dilation is zero (Eq. 5.1c).

The rate of angular deformation is
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@y
1

@v
@x

5 U
1

h
1 0 5

U

h
5 4

mm

s
3

1

4mm
5 1 s21

ß

The rate of rotation is

ωz 5
1
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� �
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1

2
02
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� �
52
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3 4
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s
3
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4mm
520:5 s21

ß

ωz

In this problem we have a viscous flow,

and hence should have expected both

angular deformation and particle
rotation.

Example 5.8 DEFORMATION RATES FOR FLOW IN A CORNER

The velocity field ~V 5 Axî2Ayĵ represents flow in a “corner,” as shown in Example 5.4, where A5 0.3 s21 and the
coordinates are measured in meters. A square is marked in the fluid as shown at t5 0. Evaluate the new positions of
the four corner pointswhenpoint ahasmoved to x 5 3

2mafter τ seconds.Evaluate the rates of linear deformation in the
x and y directions. Compare area aubucudu at t5 τ with area abcd at t5 0. Comment on the significance of this result.

Given: ~V 5 Axî2Ayĵ; A 5 0:3 s2 1, x and y in meters.

Find: (a) Position of square at t5 τ when a is at

au at x 5 3
2 m:

(b) Rates of linear deformation.
(c) Area aubucudu compared with area abcd.
(d) Significance of the results.

Solution:
First we must find τ, so we must follow a fluid particle using a
Lagrangian description. Thus

u 5
dxp

dt
5 Axp;

dx

x
5 A dt; so

Z x

x0

dx

x
5

Z τ

0

Adt and ln
x

x0
5 Aτ

τ 5
ln x=x0

A
5

ln

�
3

2

�

0:3 s21
5 1:35 s

0
0

1

2

1 2

y

b (1,2) c (2,2)

a (1,1) d (2,1)

x

Square marked
at t = 0

VIDEO

Linear Deformation.

196 Chapter 5 Introduction to Differential Analysis of Fluid Motion



We have shown in this section that the velocity field can be used to find the
acceleration, rotation, angular deformation, and linear deformation of a fluid particle
in a flow field.

5.4Momentum Equation
A dynamic equation describing fluid motion may be obtained by applying Newton’s
second law to a particle. To derive the differential form of the momentum equation,
we shall apply Newton’s second law to an infinitesimal fluid particle of mass dm.

Recall that Newton’s second law for a finite system is given by

~F 5
d~P

dt

!
system

ð4:2aÞ

where the linear momentum, ~P, of the system is given by

~Psystem 5

Z
mass ðsystemÞ

~V dm ð4:2bÞ

In the y direction

v 5
dyp
dt

52Ayp
dy

y
52Adt

y

y0
5 e2Aτ

The point coordinates at τ are: The plot is:

Point t5 0 t5 τ

a (1, 1)
3

2
;
2

3

� �

b (1, 2)
3

2
;
4

3

� �

c (2, 2) 3;
4

3

� �

d (2, 1) 3;
2

3

� �

The rates of linear deformation are:

@u

@x
5

@

@x
Ax 5 A 5 0:3 s21 in the x direction

@v
@y

5
@

@y
2Ayð Þ 52A 520:3 s21 in the y direction

The rate of volume dilation is

r � ~V 5
@u

@x
1

@v
@y

5 A2A 5 0

Area abcd5 1 m2 and area aubucudu5 32
3

2

� �
4

3
2

2

3

� �
5 1 m2.

Notes:

ü Parallel planes remain parallel;
there is linear deformation but no
angular deformation.ü The flow is irrotational (@v/@x2 @u/
@y5 0).

ü Volume is conserved because the
two rates of linear deformation are
equal and opposite.ü The NCFMF video Flow Visualization
(see http://web.mit.edu/fluids/
www/Shapiro/ncfmf.html for free
online viewing of this film) uses
hydrogen bubble time-streak mark-
ers to demonstrate experimentally
that the area of a marked fluid
square is conserved in two-dimensional incompressible flow.The Excel workbook for thisproblem shows an animation of

this motion.
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Then, for an infinitesimal system of mass dm, Newton’s second law can be written

d~F 5 dm
d~V

dt

!
system

ð5:21Þ

Havingobtained anexpression for theaccelerationof a fluid element ofmassdm,moving
in a velocity field (Eq. 5.9), we can write Newton’s second law as the vector equation

d~F 5 dm
D~V

Dt
5 dm u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
1

@ ~V

@t

" #
ð5:22Þ

We now need to obtain a suitable formulation for the force, d~F , or its components,
dFx, dFy, and dFz, acting on the element.

Forces Acting on a Fluid Particle

Recall that the forces acting on a fluid element may be classified as body forces and
surface forces; surface forces include both normal forces and tangential (shear) forces.

We shall consider the x component of the force acting on a differential element of
mass dm and volume dV---5 dx dy dz. Only those stresses that act in the x direction will
give rise to surface forces in the x direction. If the stresses at the center of the dif-
ferential element are taken to be σxx, τyx, and τzx, then the stresses acting in the
x direction on all faces of the element (obtained by a Taylor series expansion about
the center of the element) are as shown in Fig. 5.9.

To obtain the net surface force in the x direction, dFSx , we must sum the forces in
the x direction. Thus,
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�
σxx 1

@σxx

@x

dx

2

�
dy dz2

�
σxx 2

@σxx

@x

dx

2

�
dy dz

1

�
τyx 1

@τyx
@y

dy

2

�
dx dz2

�
τyx 2

@τyx
@y

dy

2

�
dx dz

1

�
τzx 1

@τzx
@z

dz

2

�
dx dy2

�
τzx 2

@τzx
@z

dz

2

�
dx dy

y

x

z

zx +τ
∂τ
∂

     zx____
   z 

dz__
2

yx –
∂τ
∂
     yx____
   y 

dy__
2

τ

yx +
∂τ
∂
     yx____
   y 

dy__
2

τ

zx –
∂τ
∂
     zx____
   z 

dz__
2

τ

xx +
∂σ
∂
     xx____
   x 

dx__
2

σ
xx –
∂σ
∂
     xx____
   x 

dx__
2

σ

Fig. 5.9 Stresses in the x direction on an element of fluid.
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On simplifying, we obtain

dFSx 5
@σxx

@x
1

@τyx
@y

1
@τzx
@z

� �
dxdydz

When the force of gravity is the only body force acting, then the body force per unit
mass is ~g. The net force in the x direction, dFx, is given by

dFx 5 dFBx
1 dFSx 5 ρgx 1

@σxx
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1
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1
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� �
dxdydz ð5:23aÞ

We can derive similar expressions for the force components in the y and z directions:

dFy 5 dFBy
1 dFSy 5 ρgy 1
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1 dFSz 5 ρgz 1
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@σzz
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dxdydz ð5:23cÞ

Differential Momentum Equation

We have now formulated expressions for the components, dFx, dFy, and dFz, of the
force, d~F , acting on the element of mass dm. If we substitute these expressions
(Eqs. 5.23) for the force components into the x, y, and z components of Eq. 5.22, we
obtain the differential equations of motion,
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Equations 5.24 are the differential equations of motion for any fluid satisfying the
continuum assumption. Before the equations can be used to solve for u, v, and w,
suitable expressions for the stresses must be obtained in terms of the velocity and
pressure fields.

Newtonian Fluid: Navier�Stokes Equations

For a Newtonian fluid the viscous stress is directly proportional to the rate of shearing
strain (angular deformation rate). We saw in Chapter 2 that for one-dimensional
laminar Newtonian flow the shear stress is proportional to the rate of angular defor-
mation: τyx5 du/dy (Eq. 2.15). For a three-dimensional flow the situation is a bit more
complicated (among other things we need to use the more complicated expressions for
rate of angular deformation, Eq. 5.19). The stresses may be expressed in terms of
velocity gradients and fluid properties in rectangular coordinates as follows:6

6The derivation of these results is beyond the scope of this book. Detailed derivations may be found in Daily

and Harleman [2], Schlichting [3], and White [4].
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where p is the local thermodynamic pressure.7 Thermodynamic pressure is related to
the density and temperature by the thermodynamic relation usually called the
equation of state.

If these expressions for the stresses are introduced into the differential equations of
motion (Eqs. 5.24), we obtain
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These equations of motion are called the Navier�Stokes equations. The equations are
greatly simplified when applied to incompressible flow with constant viscosity. Under
these conditions the equations reduce to
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7Sabersky et al. [5] discuss the relation between the thermodynamic pressure and the average pressure

defined as p 5 2 ðσxx 1σyy 1σzzÞ=3.
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This form of the Navier�Stokes equations is probably (next to the Bernoulli equa-
tion) the most famous set of equations in fluid mechanics, and has been widely
studied. These equations, with the continuity equation (Eq. 5.1c), form a set of four
coupled nonlinear partial differential equations for u, v, w, and p. In principle, these
four equations describe many common flows; the only restrictions are that the fluid be
Newtonian (with a constant viscosity) and incompressible. For example, lubrication
theory (describing the behavior of machine bearings), pipe flows, and even the motion
of your coffee as you stir it are explained by these equations. Unfortunately, they are
impossible to solve analytically, except for the most basic cases [3], in which we have
simple boundaries and initial or boundary conditions! We will solve the equations for
such a simple problem in Example 5.9.

The Navier�Stokes equations for constant density and viscosity are given in
cylindrical coordinates in Appendix B; they have also been derived for spherical
coordinates [3]. We will apply the cylindrical coordinate form in solving Example 5.10.

In recent years computational fluid dynamics (CFD) computer applications (such
as Fluent [6] and STAR-CD [7]) have been developed for analyzing the Navier�
Stokes equations for more complicated, real-world problems. Although a detailed
treatment of the topic is beyond the scope of this text, we shall have a brief intro-
duction to CFD in the next section.

For the case of frictionless flow (μ5 0) the equations of motion (Eqs. 5.26 or Eqs.
5.27) reduce to Euler’s equation,

ρ
D~V

Dt
5 ρ~g2rp

We shall consider the case of frictionless flow in Chapter 6.

Example 5.9 ANALYSIS OF FULLY DEVELOPED LAMINAR FLOW DOWN AN INCLINED PLANE SURFACE

A liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness h. Simplify the
continuity and Navier�Stokes equations to model this flow field. Obtain expressions for the liquid velocity profile,
the shear stress distribution, the volume flow rate, and the average velocity. Relate the liquid film thickness to the
volume flow rate per unit depth of surface normal to the flow. Calculate the volume flow rate in a film ofwater h5 1mm
thick, flowing on a surface b5 1 m wide, inclined at θ 515� to the horizontal.

Given: Liquid flow down an inclined plane surface in a steady, fully developed laminar film of thickness h.

Find: (a) Continuity and Navier�Stokes equations simplified to model this flow field.
(b) Velocity profile.
(c) Shear stress distribution.
(d) Volume flow rate per unit depth of surface normal to diagram.
(e) Average flow velocity.
(f) Film thickness in terms of volume flow rate per unit depth of surface normal to diagram.
(g) Volume flow rate in a film of water 1 mm thick on a surface 1 m wide, inclined at 15� to the horizontal.
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Solution:
The geometry and coordinate system used to model the flow field are shown. (It is convenient to align one coordinate
with the flow down the plane surface.)

The governing equations written for incompressible flow with constant viscosity are
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The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The
assumptions are discussed in the order in which they are applied to simplify the equations.

Assumptions: (1) Steady flow (given).
(2) Incompressible flow; ρ5 constant.
(3) No flow or variation of properties in the z direction; w5 0 and @/@z5 0.
(4) Fully developed flow, so no properties vary in the x direction; @/@x5 0.

Assumption (1) eliminates time variations in any fluid property.
Assumption (2) eliminates space variations in density.
Assumption (3) states that there is no z component of velocity and no property variations in the z direction. All

terms in the z component of the Navier�Stokes equation cancel.
After assumption (4) is applied, the continuity equation reduces to @v/@y5 0. Assumptions (3) and (4) also

indicate that @v/@z5 0 and @v/@x5 0. Therefore v must be constant. Since v is zero at the solid surface, then v must
be zero everywhere.

The fact that v5 0 reduces the Navier�Stokes equations further, as indicated by (5) in Eqs 5.27a and 5.27b. The
final simplified equations are

0 5 ρgx 1μ
@2u

@y2
ð1Þ

0 5 ρgy 2
@p

@y
ß

ð2Þ

Since @u/@z5 0 (assumption 3) and @u/@x5 0 (assumption 4), then u is at most a function of y, and @2u/@y25 d2u/dy2,
and from Eq. 1, then

d2u

dy2
52

ρgx
μ

52ρg
sin θ
μ

y

x u

g

Width b = 1 m

h = 1 mm

θ = 15°

ð5:1cÞ

ð5:27aÞ

ð5:27bÞ

ð5:27cÞ
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Integrating,

du

dy
52ρg

sin θ
μ

y1 c1 ð3Þ

and integrating again,

u 52ρg
sin θ
μ

y2

2
1 c1y1 c2 ð4Þ

The boundary conditions needed to evaluate the constants are the no-slip condition at the solid surface (u5 0 at
y5 0) and the zero-shear-stress condition at the liquid free surface (du/dy5 0 at y5 h).

Evaluating Eq. 4 at y5 0 gives c25 0. From Eq. 3 at y5 h,

0 52ρg
sin θ
μ

h1 c1

or

c1 5 ρg
sin θ
μ

h

Substituting into Eq. 4 we obtain the velocity profile

u 52ρg
sin θ
μ

y2

2
1 ρg

sin θ
μ

hy

or

u 5 ρg
sin θ
μ

hy2
y2

2

� �
ß

uðyÞ

The shear stress distribution is (from Eq. 5.25a after setting @v/@x to zero, or alternatively, for one-dimensional flow,
from Eq. 2.15)

τyx 5 μ
du

dy
5 ρg sin θ ðh2 yÞ ß

τyxðyÞ

The shear stress in the fluid reaches its maximum value at the wall (y5 0); as we expect, it is zero at the free surface
(y5 h). At the wall the shear stress τyx is positive but the surface normal for the fluid is in the negative y direction;
hence the shear force acts in the negative x direction, and just balances the x component of the body force acting on
the fluid. The volume flow rate is

Q 5

Z
A

u dA 5

Z h

0

u bdy

where b is the surface width in the z direction. Substituting,

Q 5

Z h

0

ρg sin θ
μ

hy2
y2

2

� �
b dy 5 ρg

sin θ b
μ

hy2

2
2

y3

6

� �h
0

Q 5
ρg sin θ b

μ
h3

3
ß

ð5ÞQ

The average flow velocity is V5Q/A5Q/bh. Thus

V 5
Q

bh
5

ρg sin θ
μ

h2

3
ß

V
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Solving for film thickness gives

h 5
3μQ

ρg sin θ b

� �1=3
ß

ð6Þ h

A film of water h5 1 mm thick on a plane b5 1 m wide, inclined at θ5 15�,
would carry

Q 5 999
kg

m3
3 9:81

m

s2
3 sin ð153Þ3 1m3

m�s
1:003 1023 kg

3
ð0:001Þ3 m3

3
3 1000

L

m3

Q 5 0:846 L=s ß
Q

Notes:

ü This problem illustrates how the full
Navier�Stokes equations (Eqs.
5.27) can sometimes be reduced to a
set of solvable equations (Eqs. 1 and
2 in this problem).ü After integration of the simplified
equations, boundary (or initial)
conditions are used to complete the
solution.ü Once the velocity field is obtained,
other useful quantities (e.g., shear
stress, volume flow rate) can be
found.

ü Equations (5) and (6) show that
even for fairly simple problems the
results can be quite complicated:
The depth of the flow depends
in a nonlinear way on flow rate
(h~Q1/3).

Example 5.10 ANALYSIS OF LAMINAR VISCOMETRIC FLOW BETWEEN COAXIAL CYLINDERS

A viscous liquid fills the annular gap between vertical concentric cylinders. The inner cylinder is stationary, and the
outer cylinder rotates at constant speed. The flow is laminar. Simplify the continuity, Navier�Stokes, and tangential
shear stress equations to model this flow field. Obtain expressions for the liquid velocity profile and the shear stress
distribution. Compare the shear stress at the surface of the inner cylinder with that computed from a planar
approximation obtained by “unwrapping” the annulus into a plane and assuming a linear velocity profile across the
gap. Determine the ratio of cylinder radii for which the planar approximation predicts the correct shear stress at
the surface of the inner cylinder within 1 percent.

Given: Laminar viscometric flow of liquid in annular gap between vertical concentric cylinders. The inner cylinder
is stationary, and the outer cylinder rotates at constant speed.

Find: (a) Continuity and Navier�Stokes equations simplified to model this flow
field.

(b) Velocity profile in the annular gap.
(c) Shear stress distribution in the annular gap.
(d) Shear stress at the surface of the inner cylinder.
(e) Comparison with “planar” approximation for constant shear stress in the

narrow gap between cylinders.
(f) Ratio of cylinder radii for which the planar approximation predicts shear

stress within 1 percent of the correct value.

Solution:
The geometry and coordinate system used to model the flow field are shown. (The z
coordinate is directed vertically upward; as a consequence, gr5 gθ5 0 and gz 52g.)

θ

r

z

R1

R2ω
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The continuity, Navier�Stokes, and tangential shear stress equations (from Appendix B) written for incom-
pressible flow with constant viscosity are

r
(rvr) � z

(vz) � 01
r

(v ) ��
1
r

34

�
ðB:1Þ
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The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The
assumptions are discussed in the order in which they are applied to simplify the equations.

Assumptions: (1) Steady flow; angular speed of outer cylinder is constant.
(2) Incompressible flow; ρ5 constant.
(3) No flow or variation of properties in the z direction; vz5 0 and @/@z5 0.
(4) Circumferentially symmetric flow, so properties do not vary with θ, so @/@θ5 0.

Assumption (1) eliminates time variations in fluid properties.
Assumption (2) eliminates space variations in density.
Assumption (3) causes all terms in the z component of the Navier�Stokes equation (Eq. B.3c) to cancel, except

for the hydrostatic pressure distribution.
After assumptions (3) and (4) are applied, the continuity equation (Eq. B.1) reduces to

1

r

@

@r
ðrvrÞ 5 0

Because @/@θ5 0 and @/@z5 0 by assumptions (3) and (4), then
@

@r
-

d

dr
, so integrating gives

rvr 5 constant

Since vr is zero at the solid surface of each cylinder, then vr must be zero everywhere.
The fact that vr5 0 reduces the Navier�Stokes equations further, as indicated by cancellations (5). The final

equations (Eqs. B.3a and B.3b) reduce to
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2ρ
v2θ
r

52
@p

@r

0 5 μ
@

@r

1

r

@

@r
½rvθ�

� �� �
ß

But since @/@θ5 0 and @/@z5 0 by assumptions (3) and (4), then vθ is a function of radius only, and

d

dr

1

r

d

dr
½rvθ�

� �
5 0

Integrating once,

1

r

d

dr
½rvθ� 5 c1

or

d

dr
½rvθ� 5 c1r

Integrating again,

rvθ 5 c1
r2

2
1 c2 or vθ 5 c1

r

2
1 c2

1

r

Two boundary conditions are needed to evaluate constants c1 and c2. The boundary conditions are

vθ 5 ωR2 at r 5 R2 and
vθ 5 0 at r 5 R1

Substituting

ωR2 5 c1
R2

2
1 c2

1

R2

0 5 c1
R1

2
1 c2

1

R1

After considerable algebra

c1 5
2ω

12
R1

R2

� �2
and c2 5

2ω R2
1

12
R1

R2

� �2

Substituting into the expression for vθ,

vθ 5
ωr

12
R1

R2

� �2
2

ωR2
1=r

12
R1

R2

� �2
5

ωR1

12
R1

R2

� �2

r

R1
2

R1

r

� �
ß

vθðrÞ

The shear stress distribution is obtained from Eq. B.2 after using assumption (4):
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τrθ 5 μr
d

dr

�
vθ
r

�
5 μr

d

dr

(
ωR1

12

�
R1

R2

�2
�
1

R1
2

R1

r2

�)
5 μr

ωR1

12

�
R1

R2

�2 ð22Þ
�
2

R1

r3

�

τrθ 5 μ
2ωR2

1

12
R1

R2

� �2

1

r2
ß

τrθ

At the surface of the inner cylinder, r5R1, so

τsurface 5 μ
2ω

12
R1

R2

� �2 ß

τsurface

For a “planar” gap

τplanar 5 μ
Δv
Δy

5 μ
ω R2

R2 2R1

or

τplanar 5 μ
ω

12
R1

R2

ß

τplanar

Factoring the denominator of the exact expression for shear stress at the surface
gives

τsurface 5 μ
2ω

12
R1

R2

� �
11

R1

R2

� � 5 μ
ω

12
R1

R2

� 2

11
R1

R2

Thus

τsurface
τplanar

5
2

11
R1

R2

For 1 percent accuracy,

1:01 5
2

11
R1

R2

or

R1

R2
5

1

1:01
ð22 1:01Þ 5 0:980 ß

R1

R2

The accuracy criterion is met when the gap width is less than 2 percent of
the cylinder radius.

x

y

R1R2

R2ω

Notes:
ü This problem illustrates how the full
Navier�Stokes equations in cylin-
drical coordinates (Eqs. B.1 to B.3)
can sometimes be reduced to a set
of solvable equations.ü As in Example 5.9, after integration
of the simplified equations, bound-
ary (or initial) conditions are used to
complete the solution.ü Once the velocity field is obtained,
other useful quantities (in this prob-
lem, shear stress) can be found.The Excel workbook for thisproblem compares the vis-

cometer and linear velocity profiles. It
also allows one to derive the appro-
priate value of the viscometer outer
radius to meet a prescribed accuracy
of the planar approximation. We will
discuss the concentric cylinder�infinite parallel plates approximation
again in Chapter 8.
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*5.5 Introduction to Computational Fluid Dynamics
In this section we will discuss in a very basic manner the ideas behind computational
fluid dynamics (CFD). We will first review some very basic ideas in numerically solv-
ing an ordinary and a partial differential equation using a spreadsheet such as Excel,
with a couple of Examples. After studying these, the reader will be able to use the PC
to numerically solve a range of simple CFD problems. Then, for those with further
interest in CFD, we will review in more detail some concepts behind numerical
methods, particularly CFD; this review will highlight some of the advantages and
pitfalls of CFD. We will apply some of these concepts to a simple 1D model, but these
concepts are so fundamental that they are applicable to almost any CFD calculation.
As we apply the CFD solution procedure to the model, we’ll comment on the
extension to the general case. The goal is to enable the reader to apply the CFD
solution procedure to simple nonlinear equations.

The Need for CFD

As discussed in Section 5.4, the equations describing fluid flow can be a bit intimi-
dating. For example, even though we may limit ourselves to incompressible flows for
which the viscosity is constant, we still end up with the following equations:

@u

@x
1

@v
@y

1
@w

@z
5 0 ð5:1cÞ

ρ
@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρgx 2

@p

@x
1μ

@2u

@x2
1

@2u

@y2
1

@2u

@z2

� �
ð5:27aÞ

ρ
@v
@t

1 u
@v
@x

1 v
@v
@y

1w
@v
@z

� �
5 ρgy 2

@p

@y
1μ

@2v
@x2

1
@2v
@y2

1
@2v
@z2

� �
ð5:27bÞ

ρ
@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
5 ρgz 2

@p

@z
1μ

@2w

@x2
1

@2w

@y2
1

@2w

@z2

� �
ð5:27cÞ

Equation 5.1c is the continuity equation (mass conservation) and Eqs. 5.27 are the
Navier�Stokes equations (momentum), expressed in Cartesian coordinates. In prin-
ciple, we can solve these equations for the velocity field ~V 5 îu1 ĵv1 k̂w and
pressure field p, given sufficient initial and boundary conditions. Note that in general,
u, v, w, and p all depend on x, y, z, and t. In practice, there is no general analytic
solution to these equations, for the combined effect of a number of reasons (none of
which is insurmountable by itself):

1. They are coupled. The unknowns, u, v, w, and p, appear in all the equations (p is
not in Eq. 5.1c) and we cannot manipulate the equations to end up with a single
equation for any one of the unknowns. Hence we must solve for all unknowns
simultaneously.

2. They are nonlinear. For example, in Eq. 5.27a, the convective acceleration term,
u @u=@x1 v @u=@y1w @u=@z, has products of u with itself as well as with v and w.
The consequence of this is that we cannot take one solution to the equations and
combine it with a second solution to obtain a third solution. We will see in Chapter 6
that ifwe can limit ourselves to frictionless flow,we canderive linear equations,which
will allow us to do this combining procedure (you may wish to look at Table 6.3 for
some beautiful examples of this).

*This section may be omitted without loss of continuity in the text material.
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3. They are second-order partial differential equations. For example, in Eq. 5.27a, the
viscous term, μð@2u=@x2 1 @2u=@y2 1 @2u=@z2Þ, is second-order in u. These are
obviously of a different order of complexity (no pun intended) than, say, a first-
order ordinary differential equation.

These difficulties have led engineers, scientists, and mathematicians to adopt several
approaches to the solution of fluid mechanics problems.

For relatively simple physical geometries and boundary or initial conditions, the
equations can often be reduced to a solvable form. We saw two examples of this in
Examples 5.9 and 5.10 (for cylindrical forms of the equations).

If we can neglect the viscous terms, the resulting incompressible, inviscid flow can
often be successfully analyzed. This is the entire topic of Chapter 6.

Of course, most incompressible flows of interest do not have simple geometries and
are not inviscid; for these, we are stuck with Eqs. 5.1c and 5.27. The only option
remaining is to use numerical methods to analyze problems. It is possible to obtain
approximate computer-based solutions to the equations for a variety of engineering
problems. This is the main subject matter of CFD.

Applications of CFD

CFD is employed in a variety of applications and is now widely used in various
industries. To illustrate the industrial applications of CFD, we present below some
examples developed using FLUENT, a CFD software package from ANSYS, Inc.
CFD is used to study the flow field around vehicles including cars, trucks, airplanes,
helicopters, and ships. Figure 5.10 shows the paths taken by selected fluid particles
around a Formula 1 car. By studying such pathlines and other flow attributes, engi-
neers gain insights into how to design the car so as to reduce drag and enhance
performance. The flow through a catalytic converter, a device used to clean auto-
motive exhaust gases so that we can all breathe easier, is shown in Figure 5.11.
This image shows path lines colored by velocity magnitude. CFD helps engineers
develop more effective catalytic converters by allowing them to study how different
chemical species mix and react in the device. Figure 5.12 presents contours of static
pressure in a backward-inclined centrifugal fan used in ventilation applications.

Fig. 5.10 Pathlines around a Formula 1 car. (image courtesy of ANSYS,
Inc. ª 2008.)

Fig. 5.11 Flow through a catalytic converter.
(image courtesy of ANSYS, Inc. ª2008.)

VIDEO

Turbulent Flow in a Channel.

VIDEO

Flow Past a Cylinder.
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Fan performance characteristics obtained from the CFD simulations compared well
with results from physical tests.

CFD is attractive to industry since it is more cost-effective than physical testing.
However, we must note that complex flow simulations are challenging and error-
prone, and it takes a lot of engineering expertise to obtain realistic solutions.

Some Basic CFD/Numerical Methods Using a Spreadsheet

Before discussing CFD in a little more detail, we can gain insight into numerical
methods to solve some simple problems in fluid mechanics by using the spreadsheet.
These methods will show how the student may perform elementary CFD using the
PC. First, we consider solving the simplest form of a differential equation: a first-order
ordinary differential equation:

dy

dx
5 f ðx; yÞ yðx0Þ 5 y0 ð5:28Þ

where f(x,y) is a given function. We realize that graphically the derivative dy/dx is the
slope of the (as yet unknown) solution curve y(x). If we are at some point (xn, yn) on
the curve, we can follow the tangent at that point, as an approximation to actually
moving along the curve itself, to find a new value for y, yn+1, corresponding to a new x,
xn+1, as shown in Fig. 5.13. We have

dy

dx
5

yn1 1 2 yn
xn1 1 2 xn

If we choose a step size h5 xn+12 xn, then the above equation can be combined with
the differential equation, Eq. 5.28, to give

dy

dx
5

yn1 1 2 yn
h

5 f ðxn; ynÞ

or

yn1 1 5 yn 1 hf ðxn; ynÞ ð5:29aÞ
with

xn1 1 5 xn 1 h ð5:29bÞ
Equations 5.29 are the basic concept behind the famous Euler method for solving a
first-order ODE: A differential is replaced with a finite difference. (As we’ll see in the
next subsection, equations similar to Eqs. 5.29 could also have been derived more
formally as the result of a truncated Taylor series.) In these equations, yn+1 now
represents our best effort to find the next point on the solution curve. From Fig. 5.13,
we see that yn+1 is not on the solution curve but close to it; if we make the triangle

Fig. 5.12 Static pressure contours for flow through a
centrifugal fan. (image courtesy of ANSYS, Inc. ª 2008.)
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much smaller, by making the step size h smaller, then yn+1 will be even closer to the
desired solution. We can repeatedly use the two Euler iteration equations to start at
(x0, y0) and obtain (x1, y1), then (x2, y2), (x3, y3), and so on. We don’t end up with an
equation for the solution, but with a set of numbers; hence it is a numerical rather than
an analytic method. This is the Euler method approach.

This method is very easy to set up, making it an attractive approach, but it is
not very accurate: Following the tangent to a curve at each point, in an attempt to
follow the curve, is pretty crude! If we make the step size h smaller, the accuracy
of the method will generally increase, but obviously we then need more steps to
achieve the solution. It turns out that, if we use too many steps (if h is extremely
small), the accuracy of the results can actually decrease because, although each small
step is very accurate, we will now need so many of them that round-off errors can build
up. As with any numerical method, we are not guaranteed to get a solution or one that
is very accurate! The Euler method is the simplest but least accurate numerical method
for solving a first-order ODE; there are a number of more sophisticated ones available,
as discussed in any good numerical methods text [8, 9].

Let’s illustrate the method with an Example.

Example 5.11 THE EULER METHOD SOLUTION FOR DRAINING A TANK

A tank contains water at an initial depth y05 1 m. The tank diameter is D5 250 mm. A hole of diameter d5 2 mm
appears at the bottom of the tank. A reasonable model for the water level over time is

dy

dt
5 2

d

D

� �2 ffiffiffiffiffiffiffiffi
2gy

p
yð0Þ 5 y0

Using 11-point and 21-point Euler methods, estimate the water depth after t = 100 min, and
compute the errors compared to the exact solution

yexactðtÞ 5 ffiffiffiffiffi
y0

p
2

d

D

� �2 ffiffiffi
g

2

r
t

" #2

Plot the Euler and exact results.

Given: Water draining from a tank.

Find: Water depth after 100 min; plot of depth versus time; accuracy of results.

Solution: Use the Euler equations, Eq. (5.29).

Governing equations: yn1 1 5 yn 1 hf ðtn; ynÞ tn1 1 5 tn 1 h

with

f ðtn; ynÞ 5 2
d

D

� �2 ffiffiffiffiffiffiffiffiffi
2gyn

p
y0 5 1

(Note that in using Eqs. 5.29 we use t instead of x.)

y(t) 

xxn xn+1

y (x)

yn
h

yn+1

Fig. 5.13 The Euler method.
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This is convenient for solving using a spreadsheet such as Excel, as shown below. We obtain the following results:

Depth after 100 min 5 2 0:0021m ðEuler 11 pointÞ
5 0:0102m ðEuler 21 pointÞ
5 0:0224m ðExactÞ ß yð100minÞ

Error after 100 min 5 110% ðEuler 11 pointÞ
5 54% ðEuler 21 pointÞ ß Error

This Example shows a simple applica-
tion of the Euler method. Note that
although the errors after 100 min are
large for both Euler solutions, their
plots are reasonably close to the exact
solution.

The Excel workbook for thisproblem can be modified for
solving a variety of fluids problems
that involve first order ODEs.
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Another basic application of a numerical method to a fluid mechanics problem is
when we have two-dimensional, steady, incompressible, inviscid flow. These seem like
a severe set of restrictions on the flow, but analysis of flows with these assumptions
leads to very good predictions for real flows, for example, for the lift on a wing section.
This is the topic of Chapter 6, but for now we simply state that under many circum-
stances such flows can be modeled with the Laplace equation,

@2ψ
@x2

1
@2ψ
@y2

5 0

where ψ is the stream function. We leave out the steps here (they consist of
approximating each differential with a Taylor series), but a numerical approximation
of this equation is

ψi1 1; j 1ψi2 1; j

h2
1

ψi; j1 1 1ψi; j2 1

h2
2 4

ψi; j

h2
5 0

Here h is the step size in the x or y direction, and ψi,j is the value of ψ at the ith value
of x and jth value of y (see Fig. 5.14). Rearranging and simplifying,

ψi; j 5
1

4
ψi1 1; j 1ψi2 1; j 1ψi; j1 1 1ψi; j2 1


 �
ð5:30Þ

This equation indicates that the value of the stream function ψ is simply the average of
its four neighbors! To use this equation, we need to specify the values of the stream
function at all boundaries; Eq. 5.30 then allows computation of interior values.

Equation 5.30 is ideal for solving using a spreadsheet such as Excel. We again
consider an Example.

Example 5.12 NUMERICAL MODELING OF FLOW OVER A CORNER

Consider a two-dimensional steady, incompressible, inviscid flow in a channel in
which the area is reduced by half. Plot the streamlines.

Given: Flow in a channel in which the area is reduced by half.

Find: Streamline plot.

Solution: Use the numerical approximation of the Laplace equation.

x

y

hh

h

h

ψi,j ψi+1,jψi–1,j

ψi,j+1

ψi,j–1

Fig. 5.14 Scheme for discretizing
the Laplace equation.

5.5 Introduction to Computational Fluid Dynamics 213



Governing equation: ψi;j 5
1

4
ψi1 1; j 1ψi2 1; j 1ψi; j1 1 1ψi; j2 1


 �
This is again convenient for solving using a spreadsheet such as Excel. Each cell in the spreadsheet represents a
location in physical space, and the value in the cell represents the value of the stream function ψ at that location.
Referring to the figure, we assign values of zero to a range of cells that represent the bottom of the channel. We then
assign a value of 10 to a second range of cells to represent the top of the channel. (The choice of 10 is arbitrary for
plotting purposes; all it determines is the speed values, not the streamline shapes.) Next, we assign a uniform dis-
tribution of values at the left and right ends, to generate uniform flow at those locations. All inserted values are
shown in bold in the figure.

We can now enter formulas in the “interior” cells to compute the stream function. Instead of the above governing
equation, it is more intuitive to rephrase it as

ψ 5
1

4
ðψA 1ψR 1ψB 1ψLÞ

where ψA, ψR, ψB, and ψL represent the values stored in the cells Above, to the Right, Below, and to the Left of the
current cell. This formula is easy to enter— it is shown in cell C5 in the figure. Then it is copied into all interior cells,
with one caveat: The spreadsheet will indicate an error of circular calculation. This is a warning that you appear to be
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Examples 5.11 and 5.12 provide guidance in using the PC to solve some simple
CFD problems. We now turn to a somewhat more detailed description of some of the
concepts behind CFD.

The Strategy of CFD

Broadly, the strategy of CFD is to replace the continuous problem domain with a
discrete domain using a “grid” or “mesh.” In the continuous domain, each flow
variable is defined at every point in the domain. For instance, the pressure p in the
continuous 1D domain shown in Fig. 5.15 would be given as

p 5 pðxÞ; 0# x# 1

In the discrete domain, each flow variable is defined only at the grid points. So, in the
discrete domain in Fig. 5.15, the pressure would be defined only at the N grid points,

pi 5 pðxiÞ; i 5 1; 2; . . . ;N

We can extend this continuous-to-discrete conversion to two or three dimensions.
Figure 5.16 shows a 2D grid used for solving the flow over an airfoil. The grid points are
the locations where the grid lines cross. In a CFD solution, we would directly solve for the
relevant flowvariables only at the grid points. The values at other locations are determined
by interpolating the values at the grid points. The governing partial differential equations
and boundary conditions are defined in terms of the continuous variables p, ~V , and so on.
We can approximate these in the discrete domain in terms of the discrete variables pi, ~Vi,
and so on.Using this procedure,we endupwith a discrete system that consists of a large set
of coupled, algebraic equations in the discrete variables. Setting up the discrete systemand
solving it (which is a matrix inversion problem) involves a very large number of repetitive
calculations, a task made possible only with the advent of modern computers.

Continuous Domain
0 	 x 	 1

Discrete Domain
x = x1, x2, ... xN

x1 xi xNx = 0 x = 1

Grid
points

Fig. 5.15 Continuous and discrete domains for a one-dimensional problem.

making an error; for example, cell C5 needs cell C6 to compute, but cell C6 needs cell C5! Recall that each interior
cell value is the average of its neighbors. Circular math is usually not what we want, but in this case we do wish it to
occur. We need to switch on iteration in the spreadsheet. In the case of Excel,
it’s under menu item Tools/Options/Calculation. Finally, we need to
repeatedly iterate (in Excel, press the F9 key several times) until we have
convergence; the values in the interior cells will repeatedly update until the
variations in values is zero or trivial. After all this, the results can be
plotted (using a surface plot), as shown.

We can see that the streamlines look much as we would anticipate,
although in reality there would probably be flow separation at the corner.
Note also a mathematical artifact in that there is slight oscillations of
streamlines as they flow up the vertical surface; using a finer grid (by
using many more cells) would reduce this.

This Example shows a simple numer-
ical modeling of the Laplace equation.

The Excel workbook for thisproblem can be modified for
solving a variety of fluids problems
that involve the Laplace equation.
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Discretization Using the Finite-Difference Method

To keep the details simple, we will illustrate the process of going from the continuous
domain to the discrete domain by applying it to the following simple 1D equation:

du

dx
1 um 5 0; 0# x# 1; uð0Þ 5 1 ð5:31Þ

We’ll first consider the case where m5 1, which is the case when the equation is
linear.We’ll later consider thenonlinear casem5 2.Keep inmind that the aboveproblem
is an initial-value problem,while the numerical solution procedure below ismore suitable
for boundary-value problems. Most CFD problems are boundary-value problems.

We’ll derive a discrete representation of Eq. 5.31 with m5 1 on the rudimentary
grid shown in Fig. 5.17. This grid has four equally spaced grid points, withΔx5 1

3 being
the spacing between successive points. Since the governing equation is valid at any
grid point, we have

du

dx

� �
i

1 ui 5 0 ð5:32Þ

where the subscript i represents the value at grid point xi. In order to get an expression
for (du/dx)i in terms of u values at the grid points, we expand ui21 in a Taylor series:

ui21 5 ui 2
du

dx

� �
i

Δx1
d2u

dx2

� �
i

Δx2

2
2

d3u

dx3

� �
i

Δx3

6
1 � � �

x1 = 0 x4 = 1


x =

x2 = 1___
3

1___
3

x3 = 2___
3

Fig. 5.17 A simple 1D grid with four
grid points.

Fig. 5.16 Example of a grid used to
solve for the flow around an airfoil.
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Rearranging this gives

du

dx

� �
i

5
ui 2 ui21

Δx
1

d2u

dx2

� �
i

Δx

2
2

d3u

dx3

� �
i

Δx2

6
1 � � � ð5:33Þ

We’ll neglect the second-, third-, and higher-order terms on the right. Thus, the first
term on the right is the finite-difference representation for (du/dx)i we are seeking.
The error in (du/dx)i due to the neglected terms in the Taylor series is called the
truncation error. In general, the truncation error is the difference between the dif-
ferential equation and its finite-difference representation. The leading-order term in
the truncation error in Eq. 5.33 is proportional to Δx. Equation 5.33 is rewritten as

du

dx

� �
i

5
ui 2 ui21

Δx
1OðΔxÞ ð5:34Þ

where the last term is pronounced “order of delta x.” The notation O(Δx) has a
precise mathematical meaning, which we will not go into here. Instead, in the interest
of brevity, we’ll return to it briefly later when we discuss the topic of grid convergence.
Since the truncation error is proportional to the first power of Δx, this discrete
representation is termed first-order accurate.

Using Eq. 5.34 in Eq. 5.32, we get the following discrete representation for our
model equation:

ui 2 ui21

Δx
1 ui 5 0 ð5:35Þ

Note that we have gone from a differential equation to an algebraic equation! Though
we have not written it out explicitly, don’t forget that the error in this representation is
O(Δx).

This method of deriving the discrete equation using Taylor’s series expansions is
called the finite-difference method. Keep in mind that most industrial CFD software
packages use the finite-volume or finite-element discretization methods since they are
better suited to modeling flow past complex geometries. We will stick with the finite-
difference method in this text since it is the easiest to understand; the concepts dis-
cussed also apply to the other discretization methods.

Assembly of Discrete System and Application
of Boundary Conditions

Rearranging the discrete equation, Eq. 5.35, we get

2ui21 1 ð11ΔxÞui 5 0

Applying this equation at grid points i5 2, 3, 4 for the 1D grid in Fig. 5.17 gives

2u1 1 ð11ΔxÞu2 5 0 ð5:36aÞ

2u2 1 ð11ΔxÞu3 5 0 ð5:36bÞ

2u3 1 ð11ΔxÞu4 5 0 ð5:36cÞ
The discrete equation cannot be applied at the left boundary (i5 1) since ui215 u0 is
not defined. Instead, we use the boundary condition to get

u1 5 1 ð5:36dÞ
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Equations 5.36 form a system of four simultaneous algebraic equations in the four
unknowns u1, u2, u3, and u4. It’s convenient to write this system in matrix form:

1 0 0 0
21 11Δx 0 0
0 21 11Δx 0
0 0 21 11Δx

2
664

3
775

u1
u2
u3
u4

2
664

3
775 5

1
0
0
0

2
664

3
775 ð5:37Þ

In a general situation (e.g., 2D or 3D domains), we would apply the discrete equations
to the grid points in the interior of the domain. For grid points at or near the
boundary, we would apply a combination of the discrete equations and boundary
conditions. In the end, one would obtain a system of simultaneous algebraic equations
similar to Eqs. 5.36 and a matrix equation similar to Eq. 5.37, with the number of
equations being equal to the number of independent discrete variables. The process is
essentially the same as for the model equation above, with the details obviously being
much more complex.

Solution of Discrete System

The discrete system (Eq. 5.37) for our own simple 1D example can be easily inverted,
using any number of techniques of linear algebra, to obtain the unknowns at the grid
points. For Δx5 1

3, the solution is

u1 5 1 u2 5
3

4
u3 5

9

16
u4 5

27

64

The exact solution for Eq. 5.31 with m5 1 is easily shown to be

uexact 5 e2x

Figure 5.18 shows the comparison of the discrete solution obtained on the four-point
grid with the exact solution, using Excel. The error is largest at the right boundary,
where it is equal to 14.7 percent. [It also shows the results using eight points (N5 8,
Δx5 1

7) and sixteen points (N5 16, Δx5 1
15), which we discuss below.]

In a practical CFD application, we would have thousands, even millions, of
unknowns in the discrete system; if one were to use, say, a Gaussian elimination
procedure to invert the calculations, it would be extremely time-consuming even with
a fast computer. Hence a lot of work has gone into optimizing the matrix inversion in

0.9

0.8

1

0.7

0.6

0.5

0.4

0.3
0.2 0.4 0.6 0.8 10

N = 4
N = 8
N = 16
Exact solution

x

u

Fig. 5.18 Comparison of the numerical solution obtained on three
different grids with the exact solution.
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order to minimize the CPU time and memory required. The matrix to be inverted is
sparse; that is, most of the entries in it are zeros. The nonzero entries are clustered
around the diagonal since the discrete equation at a grid point contains only quantities
at the neighboring grid points, as shown in Eq. 5.37. A CFD code would store only the
nonzero values to minimize memory usage. It would also generally use an iterative
procedure to invert the matrix; the longer one iterates, the closer one gets to the true
solution for the matrix inversion. We’ll return to this idea a little later.

Grid Convergence

While developing the finite-difference approximation for the 1D model problem
(Eq. 5.37), we saw that the truncation error in our discrete system is O(Δx). Hence we
expect that as the number of grid points is increased and Δx is reduced, the error in
the numerical solution would decrease and the agreement between the numerical and
exact solutions would get better.

Let’s consider the effect of increasing the number of grid points N on the numerical
solution of the 1D problem. We’ll consider N5 8 and N5 16 in addition to the N5 4
case solved previously. We repeat the above assembly and solution steps on each of
these additional grids; instead of the 43 4 problem of Eq. 5.37, we end up with an 83 8
and a 16 3 16 problem, respectively. Figure 5.18 compares the results obtained (using
Excel) on the three grids with the exact solution. As expected, the numerical error
decreases as the number of grid points is increased (but this only goes so far—if we
make Δx too small, we start to get round-off errors accumulating to make the results
get worse!). When the numerical solutions obtained on different grids agree to within a
level of tolerance specified by the user, they are referred to as “grid-converged” solu-
tions. It is very important to investigate the effect of grid resolution on the solution in all
CFD problems. We should never trust a CFD solution unless we are convinced that the
solution is grid-converged to an acceptance level of tolerance (which will be problem
dependent).

Let ε be some aggregate measure of the error in the numerical solution obtained on
a specific grid. For the numerical solutions in Fig. 5.19, ε is, for instance, estimated as
the RMS of the difference between the numerical and exact solutions:

ε 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i 5 1

ðui 2 uiexactÞ2

N

vuuut

0.1

0.01

0.001
0.1 10.01

Actual error
Least squares fit


x

ε

Fig. 5.19 The variation of the aggregate
error ε with Δx.
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It’s reasonable to expect that

ε ~Δxn

Since the truncation error is O(Δx) for our discretization scheme, we expect n5 1 (or
more precisely, n - 1 as Δx - 0). The ε values for the three grids are plotted on a
logarithmic scale in Fig. 5.19. The slope of the least squares fit gives the value of n. For
Fig. 5.19, we get n5 0.92, which is quite close to 1. We expect that as the grid is refined
further and Δx becomes progressively smaller, the value of n will approach 1. For a
second-order scheme, we would expect n B 2; this means the discretization error will
decrease twice as fast on refining the grid.

Dealing with Nonlinearity

The Navier�Stokes equations (Eqs. 5.27) contain nonlinear convection terms; for
example, in Eq. 5.27a, the convective acceleration term, u@u=@x1 v@u=@y1w@u=@z,
has products of u with itself as well as with v and w. Phenomena such as turbulence
and chemical reaction introduce additional nonlinearities. The highly nonlinear na-
ture of the governing equations for a fluid makes it challenging to obtain accurate
numerical solutions for complex flows of practical interest.

We will demonstrate the effect of nonlinearity by setting m 5 2 in our simple 1D
example, Eq. 5.31:

du

dx
1 u2 5 0; 0# x# 1; uð0Þ 5 1

A first-order finite-difference approximation to this equation, analogous to that in Eq.
5.35 for m5 1, is

ui 2 ui21

Δx
1 u2i 5 0 ð5:38Þ

This is a nonlinear algebraic equation with the u2i term being the source of the
nonlinearity.

The strategy that is adopted to deal with nonlinearity is to linearize the equations
around a guess value of the solution and to iterate until the guess agrees with the
solution to a specified tolerance level. We’ll illustrate this on the above example. Let
ugi

be the guess for ui. Define

Δui 5 ui 2 ugi

Rearranging and squaring this equation gives

u2i 5 u2g i
1 2ug i

Δui 1 ðΔuiÞ2

Assuming that Δui � ugi
, we can neglect the ðΔuiÞ2 term to get

u2i � u2g i
1 2ug i

Δui 5 u2g i
1 2ug i

ðui 2 ugi
Þ

Thus

u2i � 2ug i
ui 2 u2g i

ð5:39Þ

The finite-difference approximation, Eq. 5.38, after linearization in ui, becomes

ui 2 ui21

Δx
1 2ugi

ui 2 u2g i
5 0 ð5:40Þ
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Since the error due to linearization is O(Δu2), it tends to zero as ug-u.
In order to calculate the finite-difference approximation, Eq. 5.40, we need guess

values ug at the grid points. We start with an initial guess value in the first iteration.
For each subsequent iteration, the u value obtained in the previous iteration is used as
the guess value. We continue the iterations until they converge. We’ll defer the dis-
cussion on how to evaluate convergence until a little later.

This is essentially the process used in CFD codes to linearize the nonlinear terms in
the conservation equations, with the details varying depending on the code. The
important points to remember are that the linearization is performed about a guess
and that it is necessary to iterate through successive approximations until the itera-
tions converge.

Direct and Iterative Solvers

We saw that we need to perform iterations to deal with the nonlinear terms in the
governing equations. We next discuss another factor that makes it necessary to carry
out iterations in practical CFD problems.

As an exercise, you can verify that the discrete equation system resulting from the
finite-difference approximation of Eq. 5.40, on our four-point grid, is

1 0 0 0
21 11 2Δxug2 0 0
0 21 11 2Δxug3 0
0 0 21 11 2Δxug4

2
664

3
775

u1
u2
u3
u4

2
664

3
775 5

1
Δxu2g2
Δxu2g3
Δxu2g4

2
6664

3
7775 ð5:41Þ

In a practical problem, one would usually have thousands to millions of grid points or
cells so that each dimension of the above matrix would be of the order of a million
(with most of the elements being zeros). Inverting such a matrix directly would take a
prohibitively large amount of memory, so instead the matrix is inverted using an
iterative scheme as discussed below.

Rearrange the finite-difference approximation, Eq. 5.40, at grid point i so that ui is
expressed in terms of the values at the neighboring grid points and the guess values:

ui 5
ui21 1Δx u2g i

11 2Δx ug i

If a neighboring value at the current iteration level is not available, we use the guess
value for it. Let’s say that we sweep from right to left on our grid; that is, we update u4,
then u3, and finally u2 in each iteration. In any iteration, ui21 is not available while
updating ui and so we use the guess value ugi2 1

for it instead:

ui 5
ugi2 1

1Δx u2g i

11 2Δx ug i

ð5:42Þ

Since we are using the guess values at neighboring points, we are effectively obtaining
only an approximate solution for the matrix inversion in Eq. 5.41 during each itera-
tion, but in the process we have greatly reduced the memory required for the inver-
sion. This trade-off is a good strategy since it doesn’t make sense to expend a great
deal of resources to do an exact matrix inversion when the matrix elements depend on
guess values that are continuously being refined. We have in effect combined
the iteration to handle nonlinear terms with the iteration for matrix inversion into a
single iteration process. Most importantly, as the iterations converge and ug - u, the
approximate solution for the matrix inversion tends towards the exact solution for
the inversion, since the error introduced by using ug instead of u in Eq. 5.42 also tends
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to zero. We arrive at the solution without explicitly forming the matrix system
(Eq. 5.41), which greatly simplifies the computer implementation.

Thus, iteration serves two purposes:

1. It allows for efficient matrix inversion with greatly reduced memory requirements.

2. It enables us to solve nonlinear equations.

In steady problems, a common and effective strategy used in CFD codes is to solve
the unsteady form of the governing equations and “march” the solution in time
until the solution converges to a steady value. In this case, each time step is effectively
an iteration, with the guess value at any time level being given by the solution at the
previous time level.

Iterative Convergence

Recall that as ug- u, the linearization and matrix inversion errors tend to zero. Hence
we continue the iteration process until some selected measure of the difference
between ug and u, referred to as the residual, is “small enough.”We could, for instance,
define the residual R as the RMS value of the difference between u and ug on the grid:

R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i 5 1

ðui 2 ugi
Þ2

N

vuuut
It’s useful to scale this residual with the average value of u in the domain. Scaling
ensures that the residual is a relative rather than an absolute measure. Scaling the
above residual by dividing by the average value of u gives

R 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i 5 1

ðui 2 ugi
Þ2

N

vuuut
0
BBBB@

1
CCCCA

NPN
i 5 1

ui

0
BBB@

1
CCCA 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

PN
i 5 1

ðui 2 ugi
Þ2

s

PN
i 5 1

ui

ð5:43Þ

In our nonlinear 1D example, we’ll take the initial guess at all grid points to be equal
to the value at the left boundary, that is, u

ð1Þ
g 5 1 (where ð1Þ signifies the first iteration).

In each iteration, we update ug, sweep from right to left on the grid updating, in turn,
u4, u3, and u2 using Eq. 5.42, and calculate the residual using Eq. 5.43. We’ll terminate
the iterations when the residual falls below 1029 (this is referred to as the convergence
criterion). The variation of the residual with iterations is shown in Fig. 5.20. Note that
a logarithmic scale is used for the ordinate. The iterative process converges to a level
smaller than 1029 in only six iterations. In more complex problems, many more
iterations would be necessary for achieving convergence.

The solution after two, four, and six iterations and the exact solution are shown in
Fig. 5.21. It can easily be verified that the exact solution is given by

uexact 5
1

x1 1

The solutions for four and six iterations are indistinguishable on the graph. This is
another indication that the solution has converged. The converged solution doesn’t
agree well with the exact solution because we are using a coarse grid for which the
truncation error is relatively large (we will repeat this problem with finer grids as
problems at the end of the chapter). The iterative convergence error, which is of order
1029, is swamped by the truncation error, which is of order 1021. So driving the
residual down to 1029 when the truncation error is of order 1021 is obviously a waste
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of computing resources. In an efficient calculation, both errors would be set at com-
parable levels, and less than a tolerance level that was chosen by the user. The
agreement between the numerical and exact solutions should get much better on
refining the grid, as was the linear case (for m5 1). Different CFD codes use slightly
different definitions for the residual. You should always read the documentation from
the application to understand how the residual is calculated.

Concluding Remarks

In this section we have introduced some simple ways of using a spreadsheet for the
numerical solution of two types of fluid mechanics problems. Examples 5.11 and 5.12
show how certain 1D and 2D flows may be computed. We then studied some concepts
in more detail, such as convergence criteria, involved with numerical methods and
CFD, by considering a first-order ODE. In our simple 1D example, the iterations
converged very rapidly. In practice, one encounters many instances when the iterative
process doesn’t converge or converges lethargically. Hence, it’s useful to know a priori
the conditions under which a given numerical scheme converges. This is determined
by performing a stability analysis of the numerical scheme. Stability analysis of
numerical schemes and the various stabilization strategies used to overcome non-
convergence are very important topics and necessary for you to explore if you decide
to delve further into the topic of CFD.
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Iterations = 4
Iterations = 6
Exact solution
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Fig. 5.21 Progression of the iterative solution.
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Fig. 5.20 Convergence history for the model
nonlinear problem.
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Many engineering flows are turbulent, characterized by large, nearly random fluc-
tuations invelocity andpressure inboth space and time.Turbulent flowsoftenoccur in the
limit of high Reynolds numbers. For most turbulent flows, it is not possible to resolve
the vast range of time and length scales, even with powerful computers. Instead, one
solves for a statistical average of the flow properties. In order to do this, it is necessary to
augment the governing equations with a turbulence model. Unfortunately, there is no
single turbulencemodel that is uniformly valid for all flows, somost CFD packages allow
you to choose from among several models. Before you use a turbulencemodel, you need
to understand its possibilities and limitations for the type of flow being considered.

In this brief introduction we have tried to explain some of the concepts behind CFD.
Because it is so difficult and time consuming to develop CFD code, most engineers
use commercial packages such as Fluent [6] and STAR-CD [7]. This introduction will
have hopefully indicated for you the complexity behind those applications, so that they
are not completely a “black box” of magic tricks.

VIDEO

Fully Turbulent Duct Flow.

5.6 Summary and Useful Equations
In this chapter we have:

ü Derived the differential form of the conservation of mass (continuity) equation in vector form as well as in rectangular and
cylindrical coordinates.

ü *Defined the stream function ψ for a two-dimensional incompressible flow and learned how to derive the velocity components
from it, as well as to find ψ from the velocity field.

ü Learned how to obtain the total, local, and convective accelerations of a fluid particle from the velocity field.
ü Presented examples of fluid particle translation and rotation, and both linear and angular deformation.
ü Defined vorticity and circulation of a flow.
ü Derived, and solved for simple cases, the Navier�Stokes equations, and discussed the physical meaning of each term.
ü *Been introduced to some basis ideas behind computational fluid dynamics.

We have also explored such ideas as how to determine whether a flow is incompressible by using the velocity field
and, given one velocity component of a two-dimensional incompressible flow field, how to derive the other velocity
component.

In this chapter we studied the effects of viscous stresses on fluid particle deformation and rotation; in the next
chapter we examine flows for which viscous effects are negligible.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Continuity equation (general, rectan-
gular coordinates):

@ρu
@x

1
@ρv
@y

1
@ρw
@z

1
@ρ
@t

5 0

r�ρ~V 1
@ρ
@t

5 0

(5.1a)

(5.1b)

Page 175

Continuity equation (incompressible,
rectangular coordinates):

@u

@x
1

@v
@y

1
@w

@z
5 r� ~V 5 0

(5.1c) Page 175

Continuity equation (steady, rectangu-
lar coordinates):

@ρu
@x

1
@ρv
@y

1
@ρw
@z

5 r�ρ~V 5 0
(5.1d) Page 175

Continuity equation (general, cylindri-
cal coordinates):

1

r

@ðrρVrÞ
@r

1
1

r

@ðρVθÞ
@θ

1
@ðρVzÞ
@z

1
@ρ
@t

5 0

r�ρ~V 1
@ρ
@t

5 0

(5.2a)

(5.1b)

Pages 178

*This section may be omitted without loss of continuity in the text material.
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Continuity equation (incompressible,
cylindrical coordinates):

1

r

@ðrVrÞ
@r

1
1

r

@Vθ

@θ
1

@Vz

@z
5 r� ~V 5 0

(5.2b) Page 178

Continuity equation (steady, cylindrical
coordinates):

1

r

@ðrρVrÞ
@r

1
1

r

@ðρVθÞ
@θ

1
@ðρVzÞ
@z

5 r�ρ~V 5 0
(5.2c) Page 180

Continuity equation (2D, incompressi-
ble, rectangular coordinates):

@u

@x
1

@v
@y

5 0
(5.3) Page 181

Stream function (2D, incompressible,
rectangular coordinates):

u � @ψ
@y

and v �2
@ψ
@x

(5.4) Page 181

Continuity equation (2D, incompressi-
ble, cylindrical coordinates):

@ðrVrÞ
@r

1
@Vθ

@θ
5 0

(5.7) Page 182

Stream function (2D, incompressible,
cylindrical coordinates): Vr � 1

r

@ψ
@θ

and Vθ �2
@ψ
@r

(5.8) Page 183

Particle acceleration (rectangular
coordinates):

D~V

Dt
� ~ap 5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
1

@ ~V

@t

(5.9) Page 186

Particle acceleration components in
rectangular coordinates: axp 5

Du

Dt
5 u

@u

@x
1 v

@u

@y
1w

@u

@z
1

@u

@t

ayp 5
Dv
Dt

5 u
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@x

1 v
@v
@y

1w
@v
@z

1
@v
@t

azp 5
Dw

Dt
5 u

@w

@x
1 v

@w

@y
1w

@w

@z
1

@w

@t

(5.11a)

(5.11b)

(5.11c)
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Particle acceleration components in
cylindrical coordinates: arp 5 Vr

@Vr

@r
1

Vθ

r

@Vr

@θ
2

V2
θ

r
1Vz

@Vr
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1

@Vr

@t

aθp 5 Vr

@Vθ
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1

Vθ

r

@Vθ

@θ
1

VrVθ

r
1Vz

@Vθ

@z
1

@Vθ

@t

azp 5 Vr

@Vz

@r
1

Vθ

r

@Vz

@θ
1Vz

@Vz

@z
1

@Vz

@t
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Navier�Stokes equations (incompressi-
ble, constant viscosity): ρ

@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �

5 ρgx 2
@p

@x
1μ

@2u

@x2
1

@2u

@y2
1

@2u

@z2

� �

ρ
@v
@t

1 u
@v
@x

1 v
@v
@y

1w
@v
@z

� �

5 ρgy 2
@p

@y
1μ

@2v
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1
@2v
@y2

1
@2v
@z2

� �

ρ
@w

@t
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� �

5 ρgz 2
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@z
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� �

(5.27a)

(5.27b)

(5.27c)
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Problems
Conservation of Mass

5.1 Which of the following sets of equations represent pos-
sible two-dimensional incompressible flow cases?
(a) u5 2x21 y22 x2y; v5 x31 x(y22 4y)
(b) u5 2xy2 x2y; v5 2xy2 y21 x2

(c) u5 x2t1 2y; v5 xt22 yt
(d) u5 (2x1 4y)xt; v523(x1 y)yt

5.2 Which of the following sets of equations represent pos-
sible three-dimensional incompressible flow cases?
(a) u5 2y21 2xz; v522yz1 6x2yz; w5 3x2z21 x3y4

(b) u5 xyzt; v =2 xyzt2; w5 z2(xt22 yt)
(c) u5 x21 2y1 z2; v5 x2 2y1 z; w522xz1 y21 2z

5.3 For a flow in the xy plane, the x component of velocity is
given by u5Ax(y2B), where A5 1 ft21 � s21, B5 6 ft, and x

Case Study

Olympic Swimming and Bobsledding

CFD simulation of water flow over typical female elite swimmer in
the glide position showing contours of shear stress. (Courtesy of
Speedo and Fluent Inc.)

Athletes in many competitive sports are using tech-
nology to gain an advantage. In recent years, Fast-
skins fabric has been developed by Speedo. This
material allows the lowest-drag racing swimwear in
the world to be developed. The fabric mimics the

rough denticles of sharks’ skin to reduce drag in key
areas of the body. (Shark scales are tiny compared
with those of most fishes and have a toothlike struc-
ture, called dermal denticles—literally, “tiny skin
teeth.” These denticles are nature’s way of reducing
drag on the shark.) Detailed design of swimsuits was
based on tests in a water flume and on computational
fluid dynamics (CFD) analyses. The figure shows an
example of the results obtained. To optimize the suits,
the results were used to guide the position of the
seams; gripper panels on the underside of the fore-
arms; and “vortex” riblets on the chest, shoulders,
and back of the suit—as well as the positioning of
different patches of fabric and fabric coatings.

The same technology is now being used to make
outfits for athletes in the bobsled and luge events in
the winter Olympics. The fabric has been modified,
based on wind tunnel tests, to reduce drag based on
the airflow direction unique to sledding sports. The
new outfits also eliminate most of the fabric vibration
(a major source of drag) found in other speed suits.

For both summer and winter sports, the ability to
perform experimental and theoretical fluid dynamics
analysis and make design changes based on these can
make the difference in speed of several percent—the
difference between silver and gold!

226 Chapter 5 Introduction to Differential Analysis of Fluid Motion

www.fluent.com
www.cd-adapco.com


and y are measured in feet. Find a possible y component for
steady, incompressible flow. Is it also valid for unsteady,
incompressible flow? Why? How many y components are
possible?

5.4 The three components of velocity in a velocity field are
given by u5Ax1By1Cz, v5Dx1Ey1Fz, and w5Gx1
Hy1 Jz. Determine the relationship among the coefficients
A through J that is necessary if this is to be a possible
incompressible flow field.

5.5 For a flow in the xy plane, the x component of velocity is
given by u5 3x2y2 y3. Determine a possible y component
for steady, incompressible flow. Is it also valid for unsteady,
incompressible flow? Why? How many possible y compo-
nents are there?

5.6 The x component of velocity in a steady, incompressible
flow field in the xy plane is u5A/x, where A5 2 m2/s, and x
is measured in meters. Find the simplest y component of
velocity for this flow field.

5.7 The y component of velocity in a steady, incompressible
flow field in the xy plane is v5Axy(x22 y2), where A5
3 m23�s21 and x and y are measured in meters. Find the
simplest x component of velocity for this flow field.

5.8 The y component of velocity in a steady incompressible
flow field in the xy plane is

v 5
2xy

ðx2 1 y2Þ2

Show that the simplest expression for the x component of
velocity is

u 5
1

ðx2 1 y2Þ 2
2y2

ðx2 1 y2Þ2

5.9 The x component of velocity in a steady incompressible
flow field in the xy plane is u5Aex/b cos(y/b), where
A5 10 m/s, b5 5 m, and x and y are measured in meters.
Find the simplest y component of velocity for this flow field.

5.10 A crude approximation for the x component of velocity
in an incompressible laminar boundary layer is a linear
variation from u5 0 at the surface (y5 0 ) to the freestream
velocity, U, at the boundary-layer edge (y5 δ). The equation
for the profile is u5Uy/δ, where δ5 cx1/2 and c is a constant.
Show that the simplest expression for the y component of
velocity is v5uy/4x. Evaluate the maximum value of the
ratio v/U, at a location where x5 0.5 m and δ5 5 mm.

5.11 A useful approximation for the x component of velocity
in an incompressible laminar boundary layer is a parabolic
variation from u5 0 at the surface (y5 0) to the freestream
velocity, U, at the edge of the boundary layer (y5 δ). The
equation for the profile is u/U5 2(y/δ)2 (y/δ)2, where δ5
cx1/2 and c is a constant. Show that the simplest expression
for the y component of velocity is

v
U

5
δ
x

1

2

y

δ


 �2

2
1

3

y

δ


 �3
� �

Plot v/U versus y/δ to find the location of themaximumvalue of
the ratio v/U. Evaluate the ratio where δ5 5mmand x5 0.5m.

5.12 A useful approximation for the x component of velocity
in an incompressible laminar boundary layer is a sinusoidal
variation from u5 0 at the surface (y5 0) to the freestream
velocity, U, at the edge of the boundary layer (y5 δ). The
equation for the profile is u5U sin(πy/2δ), where δ5 cx1/2

and c is a constant. Show that the simplest expression for the
y component of velocity is

v
U

5
1

π
δ
x

cos
π
2

y

δ
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π
2

y
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sin

π
2

y

δ
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2 1

h i
Plot u/U and v/U versus y/δ, and find the location of the
maximum value of the ratio v/U. Evaluate the ratio where
x5 0.5 m and δ5 5 mm.

5.13 A useful approximation for the x component of velocity
in an incompressible laminar boundary layer is a cubic var-
iation from u5 0 at the surface (y5 0) to the freestream
velocity, U, at the edge of the boundary layer (y5 δ). The
equation for the profile is u/U5 3

2 (y/δ)2 1
2(y/δ)

3, where
δ5 cx1/2 and c is a constant. Derive the simplest expression
for v/U, the y component of velocity ratio. Plot u/U and v/U
versus y/δ, and find the location of the maximum value of the
ratio v/U. Evaluate the ratio where δ5 5 mm and x5 0.5 m.

5.14 For a flow in the xy plane, the x component of velocity is
given by u5Ax2y2, where A5 0.3 m23 � s21, and x and y are
measured in meters. Find a possible y component for steady,
incompressible flow. Is it also valid for unsteady, incom-
pressible flow? Why? How many possible y components are
there? Determine the equation of the streamline for the
simplest y component of velocity. Plot the streamlines
through points (1, 4) and (2, 4).

5.15 The y component of velocity in a steady, incompressible
flow field in the xy plane is v52Bxy3, whereB5 0.2 m23 � s21,
and x and y are measured in meters. Find the simplest x com-
ponent of velocity for this flow field. Find the equation of
the streamlines for this flow.Plot the streamlines throughpoints
(1, 4) and (2, 4).

5.16 Consider a water stream from a jet of an oscillating lawn
sprinkler. Describe the corresponding pathline and
streakline.

5.17 Derive the differential form of conservation of mass in
rectangular coordinates by expanding the products of density
and the velocity components, ρu, ρv, and ρw, in a Taylor series
about a point O. Show that the result is identical to Eq. 5.1a.

5.18 Which of the following sets of equations represent
possible incompressible flow cases?
(a) Vr5U cos θ; Vθ52U sin θ
(b) Vr 52q/2πr; Vθ5K/2πr
(c) Vr5U cos θ [12 (a/r)2]; Vθ52U sin θ[11 (a/r)2]

5.19 Which of the following sets of equations represent(s)
possible incompressible flow cases?
(a) Vr52K/r; Vθ5 0
(b) Vr5 0; Vθ5K/r
(c) Vr52K cos θ/r2; Vθ52K sin θ/r2

5.20 For an incompressible flow in the rθ plane, the r com-
ponent of velocity is given as Vr5U cos θ.
(a) Determine a possible θ component of velocity.
(b) How many possible θ components are there?
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5.21 For an incompressible flow in the rθ plane, the r com-
ponent of velocity is given as Vr 52Λ cos θ/r2. Determine a
possible θ component of velocity. How many possible θ
components are there?

5.22 A viscous liquid is sheared between two parallel disks of
radius R, one of which rotates while the other is fixed. The
velocity field is purely tangential, and the velocity varies
linearly with z from Vθ5 0 at z5 0 (the fixed disk) to the
velocity of the rotating disk at its surface (z5 h). Derive an
expression for the velocity field between the disks.

5.23 Evaluate r�ρ~V in cylindrical coordinates. Use the defi-
nition of r in cylindrical coordinates. Substitute the velocity
vector and perform the indicated operations, using the hint in
footnote 1 on page 178. Collect terms and simplify; show that
the result is identical to Eq. 5.2c.

Stream Function for Two-Dimensional
Incompressible Flow

*5.24 A velocity field in cylindrical coordinates is given as
~V 5 êrA=r1 êθB=r, where A and B are constants with
dimensions of m2/s. Does this represent a possible incom-
pressible flow? Sketch the streamline that passes through the
point r05 1 m, θ5 90� if A5B5 1 m2/s, if A5 1 m2/s and
B5 0, and if B5 1 m2/s and A5 0.

*5.25 The velocity field for the viscometric flow of Example
5.7 is ~V 5 Uðy=hÞî. Find the stream function for this flow.
Locate the streamline that divides the total flow rate into two
equal parts.

*5.26 Determine the family of stream functions ψ that will
yield the velocity field ~V 5 2yð2x1 1Þî1 ½xðx1 1Þ2 2y2�ĵ.
*5.27 Does the velocity field of Problem 5.24 represent a
possible incompressible flow case? If so, evaluate and sketch
the stream function for the flow. If not, evaluate the rate of
change of density in the flow field.

*5.28 The stream function for a certain incompressible flow
field is given by the expression ψ52Ur sin θ1 qθ/2π. Obtain
an expression for the velocity field. Find the stagnation
point(s) where j~V j 5 0, and show that ψ5 0 there.

*5.29 Consider a flow with velocity components u5 z
(3x22 z2), v5 0, and w5 x(x22 3z2).
(a) Is this a one-, two-, or three-dimensional flow?
(b) Demonstrate whether this is an incompressible flow.
(c) If possible, derive a stream function for this flow.

*5.30 An incompressible frictionless flow field is specified by
the stream function ψ525Ax2 2Ay, where A5 2 m/s, and x
and y are coordinates in meters.
(a) Sketch the streamlines ψ5 0 and ψ5 5, and indicate the

direction of the velocity vector at the point (0, 0) on the
sketch.

(b) Determine the magnitude of the flow rate between the
streamlines passing through (2, 2) and (4, 1).

*5.31 A linear velocity profile was used to model flow in a
laminar incompressible boundary layer in Problem 5.10.
Derive the stream function for this flow field. Locate

streamlines at one-quarter and one-half the total volume
flow rate in the boundary layer.

*5.32 A parabolic velocity profile was used to model flow in
a laminar incompressible boundary layer in Problem 5.11.
Derive the stream function for this flow field. Locate
streamlines at one-quarter and one-half the total volume
flow rate in the boundary layer.

*5.33 Derive the stream function that represents the sinu-
soidal approximation used to model the x component of
velocity for the boundary layer of Problem 5.12. Locate
streamlines at one-quarter and one-half the total volume
flow rate in the boundary layer.

*5.34 A cubic velocity profile was used to model flow in a
laminar incompressible boundary layer in Problem 5.13.
Derive the stream function for this flow field. Locate
streamlines at one-quarter and one-half the total volume
flow rate in the boundary layer.

*5.35 A rigid-body motion was modeled in Example 5.6 by
the velocity field ~V 5 rωêθ. Find the stream function for this
flow. Evaluate the volume flow rate per unit depth between
r15 0.10 m and r25 0.12 m, if ω5 0.5 rad/s. Sketch the
velocity profile along a line of constant θ. Check the flow rate
calculated from the stream function by integrating the
velocity profile along this line.

*5.36 In a parallel one-dimensional flow in the positive
x direction, the velocity varies linearly from zero at y5 0 to
30 m/s at y5 1.5 m. Determine an expression for the stream
function, ψ. Also determine the y coordinate above which the
volume flow rate is half the total between y5 0 and y5 1.5 m.

*5.37 Example 5.6 showed that the velocity field for a free
vortex in the rθ plane is ~V 5 êθC=r. Find the stream function
for this flow. Evaluate the volume flow rate per unit depth
between r15 0.20 m and r25 0.24 m, if C5 0.3 m2/s. Sketch
the velocity profile along a line of constant θ. Check the flow
rate calculated from the stream function by integrating the
velocity profile along this line.

Motion of a Fluid Particle (Kinematics)

5.38 Consider the flow field given by ~V 5 xy2 î2 1
3 y

3 ĵ1 xyk̂.
Determine (a) the number of dimensions of the flow, (b) if it
is a possible incompressible flow, and (c) the acceleration of
a fluid particle at point (x, y, z)5 (1, 2, 3).

5.39 Consider the velocity field ~V 5 Aðx4 2 6x2y2 1 y4Þî1
Að4xy3 2 4x3yÞĵ in the xy plane, where A5 0.25 m23 � s21,
and the coordinates are measured in meters. Is this a possible
incompressible flow field? Calculate the acceleration of a
fluid particle at point (x, y)5 (2, 1).

5.40 Consider the flow field given by ~V 5 ax2yî2byĵ1 cz2k̂,
where a5 2 m22�s21, b5 2 s21, and c5 1 m21�s21. Deter-
mine (a) the number of dimensions of the flow, (b) if it is a
possible incompressible flow, and (c) the acceleration of a
fluid particle at point (x, y, z)5 (2, 1, 3).

5.41 The x component of velocity in a steady, incompressible
flow field in the xy plane is u5A(x5210x3y215xy4), where

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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A5 2 m24 � s21 and x is measured in meters. Find the sim-
plest y component of velocity for this flow field. Evaluate the
acceleration of a fluid particle at point (x, y)5 (1, 3).

5.42 The velocity field within a laminar boundary layer is
approximated by the expression

~V 5
AUy

x1=2
î1

AUy2

4x3=2
ĵ

In this expression, A5 141 m21/2, and U5 0.240 m/s is the
freestream velocity. Show that this velocity field represents a
possible incompressible flow. Calculate the acceleration of a
fluid particle at point (x, y)5 (0.5 m, 5 mm). Determine the
slope of the streamline through the point.

5.43 Wave flow of an incompressible fluid into a solid surface
follows a sinusoidal pattern. Flow is two-dimensional with
the x axis normal to the surface and y axis along the wall. The
x component of the flow follows the pattern

u 5 Ax sin
2πt
T

� �

Determine the y component of flow (v) and the convective
and local components of the acceleration vector.

5.44 The y component of velocity in a two-dimensional,
incompressible flow field is given by v52Axy, where v is in
m/s, x and y are in meters, and A is a dimensional constant.
There is no velocity component or variation in the z direc-
tion. Determine the dimensions of the constant, A. Find the
simplest x component of velocity in this flow field. Calculate
the acceleration of a fluid particle at point (x, y)5 (1, 2).

5.45 Consider the velocity field ~V 5 Ax=ðx2 1 y2Þî1Ay=
ðx2 1 y2Þĵ in the xy plane, where A5 10 m2/s, and x and y are
measured inmeters. Is this an incompressible flowfield?Derive
an expression for the fluid acceleration. Evaluate the velocity
and acceleration along the x axis, the y axis, and along a line
defined by y5 x. What can you conclude about this flow field?

5.46 An incompressible liquid with negligible viscosity flows
steadily through a horizontal pipe of constant diameter. In a
porous section of length L5 0.3 m, liquid is removed at
a constant rate per unit length, so the uniform axial velocity
in the pipe is u(x)5U(12 x/2L), where U5 5 m/s. Develop
an expression for the acceleration of a fluid particle along the
centerline of the porous section.

5.47 An incompressible liquid with negligible viscosity flows
steadily through a horizontal pipe. The pipe diameter linearly
varies from 4 in. to 1 in. over a length of 6 ft. Develop an
expression for the acceleration of a fluid particle along the
pipe centerline. Plot the centerline velocity and acceleration
versus position along the pipe, if the inlet centerline velocity
is 3 ft/s.

5.48 Consider the low-speed flow of air between parallel
disks as shown. Assume that the flow is incompressible and
inviscid, and that the velocity is purely radial and uniform at
any section. The flow speed is V5 15 m/s at R5 75 mm.
Simplify the continuity equation to a form applicable to this
flow field. Show that a general expression for the velocity
field is ~V 5 VðR=rÞêr for ri # r # R. Calculate the accel-
eration of a fluid particle at the locations r5 ri and r5R.

5.49 Solve Problem 4.123 to show that the radial velocity in
the narrow gap is Vr5Q/2πrh. Derive an expression for the
acceleration of a fluid particle in the gap.

5.50 As part of a pollution study, a model concentration c as
a function of position x has been developed,

cðxÞ 5 Aðe2 x=2a 2 e2 x=aÞ
where A5 33 1025 ppm (parts per million) and a5 3 ft. Plot
this concentration from x5 0 to x5 30 ft. If a vehicle with a
pollution sensor travels through the area at u5U5 70 ft/s,
develop an expression for the measured concentration rate
of change of c with time, and plot using the given data.
(a) At what location will the sensor indicate the most rapid

rate of change?
(b) What is the value of this rate of change?

5.51 After a rainfall the sediment concentration at a certain
point in a river increases at the rate of 100 parts per
million (ppm) per hour. In addition, the sediment con-
centration increases with distance downstream as a result of
influx from tributary streams; this rate of increase is 50 ppm
per mile. At this point the stream flows at 0.5 mph. A boat is
used to survey the sediment concentration. The operator
is amazed to find three different apparent rates of change of
sediment concentration when the boat travels upstream,
drifts with the current, or travels downstream. Explain phys-
ically why the different rates are observed. If the speed of
the boat is 2.5 mph, compute the three rates of change.

5.52 As an aircraft flies through a cold front, an onboard
instrument indicates that ambient temperaturedrops at the rate
of 0.7�F/min. Other instruments show an air speed of 400 knots
and a 2500 ft/min rate of climb. The front is stationary and
vertically uniform. Compute the rate of change of temperature
with respect to horizontal distance through the cold front.

5.53 An aircraft flies due north at 300 mph ground speed. Its
rate of climb is 3000 ft/min. The vertical temperature gra-
dient is23�F per 1000 ft of altitude. The ground temperature
varies with position through a cold front, falling at the rate of
1�F per mile. Compute the rate of temperature change
shown by a recorder on board the aircraft.

5.54 Wave flow of an incompressible fluid into a solid surface
follows a sinusoidal pattern. Flow is axisymmetric about the
z axis, which is normal to the surface. The z component of
the flow follows the pattern

R

ri

V = 15 m/s

P5.48
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Vz 5 Az sin
2πt
T

� �

Determine (a) the radial component of flow (Vr) and (b) the
convective and local components of the acceleration vector.

5.55 Expand ð~V �rÞ~V in rectangular coordinates by direct
substitution of the velocity vector to obtain the convective
acceleration of a fluid particle. Verify the results given in
Eqs. 5.11.

5.56 A steady, two-dimensional velocity field is given by
~V 5 Axî2Ayĵ; whereA 5 1 s21: Show that the streamlines
for this flow are rectangular hyperbolas, xy5C. Obtain a
general expression for the acceleration of a fluid particle in
this velocity field. Calculate the acceleration of fluid particles
at the points ðx; yÞ 5 ð12 ; 2Þ; ð1; 1Þ; and ð2; 1

2Þ; where x and
y are measured in meters. Plot streamlines that correspond
to C5 0, 1, and 2 m2 and show the acceleration vectors on
the streamline plot.

5.57 A velocity field is represented by the expression ~V 5

ðAx2BÞî2Ayĵ; where A5 0.2 s21, B5 0.6 m � s21, and the
coordinates are expressed in meters. Obtain a general
expression for the acceleration of a fluid particle in this velocity
field. Calculate the acceleration of fluid particles at points
ðx; yÞ 5 ð0; 4

3Þ; ð1; 2Þ; and (2, 4). Plot a few streamlines in the
xy plane. Show the acceleration vectors on the streamline plot.

5.58 A velocity field is represented by the expression ~V 5
ðAx2BÞî1Cyĵ1Dtk̂; where A5 2 s21, B5 4 m � s21, D5

5 m � s22, and the coordinates are measured in meters. Deter-
mine the proper value for C if the flow field is to be incom-
pressible. Calculate the acceleration of a fluid particle located at
point (x, y)5 (3, 2). Plot a few flow streamlines in the xy plane.

5.59 A linear approximate velocity profile was used in Prob-
lem 5.10 to model a laminar incompressible boundary layer
on a flat plate. For this profile, obtain expressions for the x
and y components of acceleration of a fluid particle in the
boundary layer. Locate the maximum magnitudes of the x
and y accelerations. Compute the ratio of the maximum x
magnitude to the maximum y magnitude for the flow con-
ditions of Problem 5.10.

5.60 A parabolic approximate velocity profile was used in
Problem 5.11 to model flow in a laminar incompressible
boundary layer on a flat plate. For this profile, find the x com-
ponentofacceleration,ax, of afluidparticlewithin theboundary
layer. Plot ax at location x5 0.8m, where δ5 1.2mm, for a flow
withU5 6m/s. Find themaximum value of ax at this x location.

5.61 Show that the velocity field of Problem 2.18 represents a
possible incompressible flow field. Determine and plot the
streamline passing through point (x, y)5 (2, 4) at t5 1.5 s.
For the particle at the same point and time, show on the plot
the velocity vector and the vectors representing the local,
convective, and total accelerations.

5.62 A sinusoidal approximate velocity profile was used in
Problem 5.12 to model flow in a laminar incompressible
boundary layer on a flat plate. For this profile, obtain an
expression for the x and y components of acceleration of a
fluid particle in the boundary layer. Plot ax and ay at location
x5 3 ft, where δ5 0.04 in., for a flow with U5 20 ft/s. Find
the maxima of ax and ay at this x location.

5.63 Air flows into the narrow gap, of height h, between
closely spaced parallel disks through a porous surface as
shown. Use a control volume, with outer surface located at
position r, to show that the uniform velocity in the r direction
is V5 v0r/2h. Find an expression for the velocity component
in the z direction (v0{V). Evaluate the components of
acceleration for a fluid particle in the gap.

v0

z
V (r)

r

P5.63

5.64 The velocity field for steady inviscid flow from left to
right over a circular cylinder, of radius R, is given by

~V 5 U cos θ 12
R

r

� �2
" #

êr 2U sin θ 11
R

r

� �2
" #

êθ

Obtain expressions for the acceleration of a fluid particle
moving along the stagnation streamline (θ5π) and for the
acceleration along the cylinder surface (r5R). Plot ar as a
function of r/R for θ5π, and as a function of θ for r5R; plot
aθ as a function of θ for r5R. Comment on the plots.
Determine the locations at which these accelerations reach
maximum and minimum values.

5.65 Air flows into the narrow gap, of height h, between
closely spaced parallel plates through a porous surface as
shown. Use a control volume, with outer surface located at
position x, to show that the uniform velocity in the x direc-
tion is u5 v0x/h. Find an expression for the velocity com-
ponent in the y direction. Evaluate the acceleration of a fluid
particle in the gap.

v0

y
u (x)

x

P5.65

5.66 Consider the incompressible flow of a fluid through
a nozzle as shown. The area of the nozzle is given by A5

A0(12 bx) and the inlet velocity varies according to U5
U0(0.51 0.5cos ωt) where A05 5 ft2, L5 20 ft, b5 0.02 ft21,
ω5 0.16 rad/s, and U05 20 ft/s. Find and plot the accelera-
tion on the centerline, with time as a parameter.

x
L

U

A0

P5.66

5.67 Consider again the steady, two-dimensional velocity
field of Problem 5.56. Obtain expressions for the particle
coordinates, xp5 f1(t) and yp5 f2(t), as functions of time and
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the initial particle position, (x0, y0) at t5 0. Determine
the time required for a particle to travel from initial position,
(x0, y0)5 (12, 2) to positions ðx; yÞ 5 ð1; 1Þ and ð2; 1

2Þ: Com-
pare the particle accelerations determined by differentiating
f1(t) and f2(t) with those obtained in Problem 5.56.

5.68 Consider the one-dimensional, incompressible flow
through the circular channel shown. The velocity at section

1 is given by U5U01U1 sin ωt, where U05 20 m/s,
U15 2 m/s, and ω5 0.3 rad/s. The channel dimensions are
L5 1 m, R15 0.2 m, and R25 0.1 m. Determine the particle
acceleration at the channel exit. Plot the results as a function
of time over a complete cycle. On the same plot, show the
acceleration at the channel exit if the channel is constant
area, rather than convergent, and explain the difference
between the curves.

L
x2

R2

x1

R1

P5.68

5.69 Which, if any, of the followingflowfields are irrotational?
(a) u5 2x21 y22 x2y; v5 x31 x(y22 2y)
(b) u5 2xy2 x21 y; v5 2xy2 y21 x2

(c) u5 xt1 2y; v5 xt22 yt
(d) u5 (x1 2y)xt; v52 (2x1 y)yt

5.70 Expand ð~V �rÞ~V in cylindrical coordinates by direct
substitution of the velocity vector to obtain the convective
acceleration of a fluid particle. (Recall the hint in footnote 1
on page 178.) Verify the results given in Eqs. 5.12.

5.71 Consider again the sinusoidal velocity profile used to
model the x component of velocity for a boundary layer in
Problem 5.12. Neglect the vertical component of velocity.
Evaluate the circulation around the contour bounded by
x5 0.4 m, x5 0.6 m, y5 0, and y5 8 mm. What would be the
results of this evaluation if it were performed 0.2 m further
downstream? Assume U5 0.5 m/s.

5.72 Consider the velocity field for flow in a rectangular
“corner,” ~V 5 Axî2Ayĵ; withA5 0.3 s21, as in Example 5.8.
Evaluate the circulation about the unit square of Example 5.8.

5.73 A flow is represented by the velocity field ~V 5 ðx7 2
21x5y2 1 35x3y4 2 7xy6Þî 1 ð7x6y 2 35x4y3 1 21x2y5 2 y7Þĵ.
Determine if the field is (a) a possible incompressible flow
and (b) irrotational.

5.74 Consider the two-dimensional flow field in which u5Ax2

and v5Bxy, where A5 1/2 ft21�s21, B521 ft21�s21, and the
coordinates are measured in feet. Show that the velocity field
represents a possible incompressible flow. Determine the
rotation at point (x, y)5 (1, 1). Evaluate the circulation about
the “curve” bounded by y5 0, x5 1, y5 1, and x5 0.

5.75 Consider the two-dimensional flow field in which u5Axy
and v5By2, where A 5 1m2 1 �s2 1; B 52 1

2m
2 1 � s2 1; and

the coordinates are measured in meters. Show that the velocity

field represents a possible incompressible flow. Determine the
rotation at point (x, y)5 (1, 1). Evaluate the circulation about
the “curve” bounded by y5 0, x5 1, y5 1, and x5 0.

*5.76 Consider a flowfield represented by the stream function
ψ5 3x5y2 10x3y31 3xy5. Is this a possible two-dimensional
incompressible flow? Is the flow irrotational?

*5.77 Consider the flow field represented by the stream
function ψ5 x62 15x4y21 15x2y42 y6. Is this a possible two-
dimensional, incompressible flow? Is the flow irrotational?

*5.78 Consider a velocity field for motion parallel to the x
axis with constant shear. The shear rate is du/dy5A, where
A5 0.1 s21. Obtain an expression for the velocity field, ~V .
Calculate the rate of rotation. Evaluate the stream function
for this flow field.

*5.79 Consider a flow field represented by the stream function
ψ52A/2(x21 y2), whereA5 constant. Is this a possible two-
dimensional incompressible flow? Is the flow irrotational?

*5.80 Consider the flow field represented by the stream func-
tionψ5Axy1Ay2, whereA5 1 s21. Show that this represents
apossible incompressibleflowfield.Evaluate the rotationof the
flow. Plot a few streamlines in the upper half plane.

*5.81 A flow field is represented by the stream function
ψ5 x22 y2. Find the corresponding velocity field. Show that
this flow field is irrotational. Plot several streamlines and
illustrate the velocity field.

*5.82 Consider the velocity field given by ~V 5 Ax2 î1Bxyĵ,
where A5 1 ft21�s21, B522 ft21�s21, and the coordinates
are measured in feet.
(a) Determine the fluid rotation.
(b) Evaluate the circulation about the “curve” bounded by

y5 0, x5 1, y5 1, and x5 0.
(c) Obtain an expression for the stream function.
(d) Plot several streamlines in the first quadrant.

*5.83 Consider the flow represented by the velocity field
~V 5 ðAyþ BÞîþAxĵ, where A5 10 s21, B5 10 ft/s, and the
coordinates are measured in feet.
(a) Obtain an expression for the stream function.
(b) Plot several streamlines (including the stagnation

streamline) in the first quadrant.
(c) Evaluate the circulation about the “curve” bounded by

y5 0, x5 1, y5 1, and x5 0.

5.84 Consider again the viscometric flow of Example 5.7.
Evaluate the average rate of rotationof apair of perpendicular
line segments oriented at645� from the x axis. Show that this
is the same as in the example.

5.85 Consider the pressure-driven flow between stationary
parallel plates separated by distance b. Coordinate y is mea-
sured from the bottom plate. The velocity field is given by
u5U(y/b)[12 (y/b)]. Obtain an expression for the circulation
about a closed contour of heighth and lengthL. Evaluatewhen
h5b/2 and when h5b. Show that the same result is obtained
from the area integral of the Stokes Theorem (Eq. 5.18).

*5.86 The velocity field near the core of a tornado can be
approximated as

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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~V 52
q

2πr
êr 1

K

2πr
êθ

Is this an irrotational flow field? Obtain the stream function
for this flow.

5.87 The velocity profile for fully developed flow in a circular
tube is Vz5Vmax[12 (r/R)2]. Evaluate the rates of linear and
angular deformation for this flow. Obtain an expression for
the vorticity vector, ~ζ :

5.88 Consider the pressure-driven flow between stationary
parallel plates separated by distance 2b. Coordinate y is
measured from the channel centerline. The velocity field is
given by u5 umax[12 (y/b)2]. Evaluate the rates of linear and
angular deformation. Obtain an expression for the vorticity
vector, ~ζ : Find the location where the vorticity is amaximum.

Momentum Equation

5.89 Consider a steady, laminar, fully developed, incom-
pressible flow between two infinite plates, as shown. The flow
is due to the motion of the left plate as well a pressure
gradient that is applied in the y direction. Given the condi-
tions that ~V 6¼ ~V ðzÞ, w5 0, and that gravity points in the
negative y direction, prove that u5 0 and that the pressure
gradient in the y direction must be constant.

V0

x

z

y

P5.89

5.90 Assume the liquid film in Example 5.9 is not isothermal,
but instead has the following distribution:

TðyÞ 5 T0 1 ðTw 2T0Þ 12
y

h


 �
where T0 and Tw are, respectively, the ambient temperature
and the wall temperature. The fluid viscosity decreases with
increasing temperature and is assumed to be described by

μ 5
μ0

11 aðT2T0Þ
with a. 0. In a manner similar to Example 5.9, derive an
expression for the velocity profile.

5.91 The x component of velocity in a laminar boundary
layer in water is approximated as u5U sin(πy/2δ), where
U5 3 m/s and δ5 2 mm. The y component of velocity is
much smaller than u. Obtain an expression for the net shear
force per unit volume in the x direction on a fluid element.
Calculate its maximum value for this flow.

5.92 A linear velocity profile was used to model flow in a
laminar incompressible boundary layer in Problem 5.10.
Express the rotation of a fluid particle. Locate the maximum
rate of rotation. Express the rate of angular deformation for a
fluid particle. Locate the maximum rate of angular deforma-
tion. Express the rates of linear deformation for a fluid

particle. Locate the maximum rates of linear deformation.
Express the shear force per unit volume in the x direction.
Locate the maximum shear force per unit volume; interpret
this result.

5.93 Problem 4.35 gave the velocity profile for fully devel-
oped laminar flow in a circular tube as u5umax[12 (r/R)2].
Obtain an expression for the shear force per unit volume
in the x direction for this flow. Evaluate its maximum value
for the conditions of Problem 4.35.

5.94 Assume the liquid film in Example 5.9 is horizontal (i.e.,
θ5 0�) and that the flow is driven by a constant shear stress
on the top surface (y5 h), τyx5C. Assume that the liquid
film is thin enough and flat and that the flow is fully devel-
oped with zero net flow rate (flow rateQ5 0). Determine the
velocity profile u(y) and the pressure gradient dp/dx.

5.95 Consider a planarmicrochannel of width h, as shown (it is
actually very long in the x direction and open at both ends).
ACartesian coordinate systemwith its origin positioned at the
center of the microchannel is used in the study. The micro-
channel is filled with a weakly conductive solution. When an
electric current is applied across the two conductive walls, the
current density, ~J , transmitted through the solution is parallel
to the y axis. The entire device is placed in a constantmagnetic
field, ~B, which is pointed outward from the plane (the z
direction), as shown. Interaction between the current density
and the magnetic field induces a Lorentz force of density
~J 3 ~B. Assume that the conductive solution is incompressible,
and since the sample volume is very small in lab-on-a-chip
applications, the gravitational body force is neglected. Under
steady state, the flow driven by the Lorentz force is described
by the continuity (Eq. 5.1a) and Navier�Stokes equations
(Eqs. 5.27), except the x, y, and z components of the latter have
extra Lorentz force components on the right. Assuming that
the flow is fully developed and the velocity field ~V is a function
of y only, find the three components of velocity.

Conductive wall

J
y

x h
B

Conductive wall

P5.95

5.96 The common thermal polymerase chain reaction (PCR)
process requires the cycling of reagents through three dis-
tinct temperatures for denaturation (90�94�C), annealing
(50�55�C), and extension (72�C). In continuous-flow PCR
reactors, the temperatures of the three thermal zones are
maintained as fixed while the reagents are cycled con-
tinuously through these zones. These temperature variations
induce significant variations in the fluid density, which under
appropriate conditions can be used to generate fluid motion.
The figure depicts a thermosiphon-based PCR device
(Chen et al., 2004, Analytical Chemistry, 76, 3707�3715).
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The closed loop is filled with PCR reagents. The plan of the
loop is inclined at an angle α with respect to the vertical.
The loop is surrounded by three heaters and coolers that
maintain different temperatures.
(a) Explain why the fluid automatically circulates in the

closed loop along the counterclockwise direction.
(b) What is the effect of the angle α on the fluid velocity?

y

α

50–55°C 90–94°C

72°C

Cooling section

Flow

P5.96

5.97 Electro-osmotic flow (EOF) is the motion of liquid
induced by an applied electric field across a charged capillary
tube or microchannel. Assume the channel wall is negatively
charged, a thin layer called the electric double layer (EDL)
forms in the vicinity of the channel wall in which the number
of positive ions is much larger than that of the negative ions.
The net positively charged ions in the EDL then drag the
electrolyte solution along with them and cause the fluid to
flow toward the cathode. The thickness of the EDL is typically
on the order of 10 nm. When the channel dimensions are
much larger than the thickness of EDL, there is a slip velocity,

y2
εζ
μ

~E, on the channel wall, where ε is the fluid permittivity,

ζ is the negative surface electric potential, ~E is the electric
field intensity, and μ is the fluid dynamic viscosity. Consider a
microchannel formed by two parallel plates. The walls of the
channel have a negative surface electric potential of ζ. The
microchannel is filled with an electrolyte solution, and the
microchannel ends are subjected to an electric potential dif-
ference that gives rise to a uniform electric field strength of E
along the x direction. The pressure gradient in the channel is
zero. Derive the velocity of the steady, fully developed elec-
tro-osmotic flow. Compare the velocity profile of the EOF to
that of pressure-driven flow. Calculate the EOF velocity using
ε5 7.083 10210 C�V21m21, ζ520.1 V, μ5 1023 Pa�s, and
E5 1000 V/m.

Negatively charged wall

y

x
h

E

Anode Cathode

Negatively charged wall
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Introduction to Computational Fluid Dynamics

*5.98 A tank contains water (20�C) at an initial depth y05

1m. The tank diameter isD5 250mm, and a tube of diameter
d5 3 mm and length L5 4 m is attached to the bottom of the
tank. For laminar flow a reasonable model for the water level
over time is

dy

dt
5 2

d4ρg
32D2μL

y yð0Þ 5 y0

Using Euler methods with time steps of 12 min and 6 min:
(a) Estimate the water depth after 120 min, and compute

the errors compared to the exact solution

yexactðtÞ 5 y0e
2

d4ρg
32D2μL

t

(b) Plot the Euler and exact results.

d

L

D
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*5.99 Use the Euler method to solve and plot

dy

dx
5 cosðxÞ yð0Þ 5 0

from x5 0 to x5π/2, using step sizes of π/48, π/96, and π/144.
Also plot the exact solution,

yðxÞ 5 sinðxÞ
and compute the errors at x5π/2 for the three Euler method
solutions.

*5.100 UseExcel to generate the solution ofEq. 5.31 form5 1
shown in Fig. 5.18. To do so, you need to learn how to perform
linear algebra in Excel. For example, forN5 4 you will end up
with the matrix equation of Eq. 5.37. To solve this equation for
the u values, you will have to compute the inverse of the 43 4
matrix, and then multiply this inverse into the 4 3 1 matrix on
the right of the equation. In Excel, to do array operations,
you must use the following rules: Pre-select the cells that will
contain the result; use the appropriate Excel array function

(look at Excel’s Help for details); press Ctrl1Shift1Enter,
not just Enter. For example, to invert the 4 3 4 matrix you
would: Pre-select a blank 4 3 4 array that will contain the
inverse matrix; type5minverse([array containing matrix to be
inverted]); press Ctrl1Shift1Enter. Tomultiply a 43 4 matrix
into a 4 3 1 matrix you would: Pre-select a blank 4 3 1 array
that will contain the result; type5mmult([array containing
43 4 matrix], [array containing 43 1 matrix]); press
Ctrl1Shift1Enter.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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*5.101 Following the steps to convert the differential equa-
tion Eq. 5.31 (for m5 1) into a difference equation (for
example, Eq. 5.37 for N5 4), solve

du

dx
1u 5 2cosð2xÞ 0# x# 1 uð0Þ 5 0

for N5 4, 8, and 16 and compare to the exact solution

uexact 5
2

5
cosð2xÞ1 4

5
sinð2xÞ2 2

5
e2 x

Hints: Follow the rules for Excel array operations as
described in Problem 5.100. Only the right side of the dif-
ference equations will change, compared to the solution
method of Eq. 5.31 (for example, only the right side of Eq.
5.37 needs modifying).

*5.102 Following the steps to convert the differential
equation Eq. 5.31 (for m5 1) into a difference equation (for
example, Eq. 5.37 for N5 4), solve

du

dx
1u 5 2x2 1 x 0# x# 1 uð0Þ 5 3

for N5 4, 8, and 16 and compare to the exact solution

uexact 5 2x2 2 3x1 3

Hint: Follow the hints provided in Problem 5.101.

*5.103 A 50-mm cube of mass M5 3 kg is sliding across an
oiled surface. The oil viscosity is μ5 0.45 N�s/m2, and the
thickness of the oil between the cube and surface is δ5 0.2mm.
If the initial speed of the block is u05 1 m/s, use the numerical
method that was applied to the linear form of Eq. 5.31 to
predict the cube motion for the first second of motion. Use
N5 4, 8, and 16 and compare to the exact solution

uexact 5 u0e
2 ðAμ=MδÞt

where A is the area of contact. Hint: Follow the hints pro-
vided in Problem 5.101.

*5.104 Use Excel to generate the solutions of Eq. 5.31 for
m5 2, as shown in Fig. 5.21.

*5.105 Use Excel to generate the solutions of Eq. 5.31 for
m5 2, as shown in Fig. 5.21, except use 16 points and as many
iterations as necessary to obtain reasonable convergence.

*5.106 Use Excel to generate the solutions of Eq. 5.31 for
m521, with u(0)5 3, using 4 and 16 points over the interval
from x5 0 to x5 3, with sufficient iterations, and compare to
the exact solution

uexact 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
92 2x

p

To do so, follow the steps described in “Dealing with Non-
linearity” section.

*5.107 An environmental engineer drops a pollution mea-
suring probe with a mass of 0.3 slugs into a fast moving river
(the speed of the water is U5 25 ft/s). The equation of
motion for your speed u is

M
du

dt
5 kðU2uÞ2

where k5 0.02 lbf�s2/ft2 is a constant indicating the drag of
the water. Use Excel to generate and plot the probe speed
versus time (for the first 10 s) using the same approach as the
solutions of Eq. 5.31 for m5 2, as shown in Fig 5.21, except
use 16 points and as many iterations as necessary to obtain
reasonable convergence. Compare your results to the exact
solution

uexact 5
kU2t

M1kUt

Hint: Use a substitution for (U2u) so that the equation of
motion looks similar to Eq. 5.31.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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6
Incompressible
Inviscid Flow
6.1 Momentum Equation for Frictionless Flow: Euler’s Equation

6.2 Euler’s Equations in Streamline Coordinates

6.3 Bernoulli Equation: Integration of Euler’s Equation Along a Streamline for Steady Flow

6.4 The Bernoulli Equation Interpreted as an Energy Equation

6.5 Energy Grade Line and Hydraulic Grade Line

6.6 Unsteady Bernoulli Equation: Integration of Euler’s Equation Along a Streamline (on the Web)

6.7 Irrotational Flow

6.8 Summary and Useful Equations

Case Study in Energy and the Environment

Wave Power: The Limpet
As we have discussed in previous Case

Studies in Energy and the Environment, ocean
waves contain a lot of energy; some regions of the world
have an energy density (energy per width of water flow)
of up to 75 kW/m in deep water, and up to 25 kW/m at
the shoreline. Many ideas are being explored (some of
which we have discussed earlier) for extracting this
energy, from tethered buoys to articulated mechanisms.

Technical issues are rapidly being resolved with many of
these devices, but the Achilles heel of each of them is
making the technologies work at a cost, for the power
produced, that the consumer is willing to pay. Long-
term, fossil fuels will become more expensive, and wave
power will fall in cost, but we are not yet at the cross-
over point. In the 1980s, wind power had the same
kind of difficulty, but after several countries initially
subsidized the industry, it is now becoming very
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In Chapter 5 we devoted a great deal of effort to deriving the differential equations
(Eqs. 5.24) that describe the behavior of any fluid satisfying the continuum assump-
tion. We also saw how these equations reduced to various particular forms—the most
well known being the Navier�Stokes equations for an incompressible, constant
viscosity fluid (Eqs. 5.27). Although Eqs. 5.27 describe the behavior of common fluids
(e.g., water, air, lubricating oil) for a wide range of problems, as we discussed in

cost-competitive. As with wind power, initial capital
costs typically account for more than 90 percent of the
cost of producing wave power; for fossil fuel plants the
fuel supply itself is an ongoing part of the cost. To
succeed, wave energy device developers have focused
on driving down the initial capital costs.
The Voith Hydro Wavegen Limited company has

been making big efforts in analyzing the costs and
benefits of wave power with their Limpet (Land
Installed Marine Powered Energy Transformer) device,
shown in the photograph. This device was designed
to be placed in onshore areas of high wave activity; in
the long term, such devices will be designed for the
higher-energy offshore regions. It is not a particularly
impressive-looking device, but it has some interesting
features. It looks like just a concrete block, but in fact
is hollow and open to the sea on the underside,
creating a trapped-air chamber; attached to it is an air
turbine. It works pretty much like the swimming pool
wave machine used at many amusement parks, except
it runs in reverse. In these machines, air is blown in
and out of a chamber beside the pool, which makes
the water outside bob up and down, causing waves.
For the Limpet, the arriving waves cause water in the
chamber to rise and fall, which in turn compresses and
expands the air trapped in the Limpet. If this is all we
had, we would just have a device in which the water
waves repeatedly compress and expand the trapped
air. The clever innovation of the Limpet device is that a

specially designed turbine is attached to the air
chamber, so that the air flows through it first one way
and then the other, extracting power. TheWells turbine
(developed by Professor Alan Wells of Queen’s Uni-
versity, Belfast) is a low-pressure air turbine that rotates
continuously in one direction in spite of the direction of
the air flow driving it. Its blades feature a symmetrical
airfoil with its plane of symmetry in the plane of rotation
and perpendicular to the air stream. Use of this bidir-
ectional turbine allows power to be extracted as the air
flows in andout of the chamber, avoiding theneed for an
expensive check valve system. The trade-off for the
bidirectional turbine is that its efficiency is lower than
that of a turbine with a constant air stream direction.
However, the turbine is very simple and rugged: The
blades are fixed onto the rotor and have no pitch-
adjusting mechanism or gearbox and make no contact
with the seawater. Turbines arediscussed in somedetail
in Chapter 10, and some design concepts behind airfoil
blade design in Chapter 9.

The whole device—concrete chamber, Wells tur-
bine, and associated electronics—is rugged, inexpen-
sive, and durable, so the goal of minimizing the initial
capital cost is close to being realized. The technology
used is called OSW (oscillating water column). A new
project involving the installation of 16 turbines into a
breakwater off the coast of Spain is being constructed
and is intended to supply green electricity to around
250 households with a rated power of nearly 300 kW.

Two views of Wavegen’s Limpet device (Pictures courtesy of Wavegen Ltd.)
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Chapter 5, they are unsolvable analytically except for the simplest of geometries and
flows. For example, even using the equations to predict the motion of your coffee as
you slowly stir it would require the use of an advanced computational fluid dynamics
computer application, and the prediction would take a lot longer to compute than the
actual stirring! In this chapter, instead of the Navier�Stokes equations, we will study
Euler’s equation, which applies to an inviscid fluid. Although truly inviscid fluids do
not exist, many flow problems (especially in aerodynamics) can be successfully ana-
lyzed with the approximation that μ5 0.

6.1Momentum Equation for Frictionless
Flow: Euler's Equation

Euler’s equation (obtained from Eqs. 5.27 after neglecting the viscous terms) is

ρ
D~V

Dt
5 ρ~g2rp ð6:1Þ

This equation states that for an inviscid fluid the change in momentum of a fluid
particle is caused by the body force (assumed to be gravity only) and the net pressure
force. For convenience we recall that the particle acceleration is

D~V

Dt
5

@ ~V

@t
1 ð~V � rÞ~V ð5:10Þ

In this chapter we will apply Eq. 6.1 to the solution of incompressible, inviscid flow
problems. In addition to Eq. 6.1 we have the incompressible form of the mass con-
servation equation,

r � ~V 5 0 ð5:1cÞ
Equation 6.1 expressed in rectangular coordinates is

ρ
@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρgx 2

@p

@x
ð6:2aÞ

ρ
@v
@t

1 u
@v
@x

1 v
@v
@y

1w
@v
@z

� �
5 ρgy 2

@p

@y
ð6:2bÞ

ρ
@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
5 ρgz 2

@p

@z
ð6:2cÞ

If the z axis is assumed vertical, then gx5 0, gy5 0, and gz52g, so ~g 52gk̂.
In cylindrical coordinates, the equations in component form, with gravity the only

body force, are

ρar 5 ρ
@Vr

@t
1Vr

@Vr

@r
1

Vθ

r

@Vr

@θ
1Vz

@Vr

@z
2

V2
θ

r

� �
5 ρgr 2
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@r
ð6:3aÞ

ρaθ 5 ρ
@Vθ

@t
1Vr

@Vθ
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1

Vθ

r

@Vθ

@θ
1Vz

@Vθ

@z
1

VrVθ
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� �
5 ρgθ 2
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r
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ρaz 5 ρ
@Vz
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1Vr

@Vz
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1

Vθ
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@Vz

@θ
1Vz

@Vz

@z

� �
5 ρgz 2
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@z
ð6:3cÞ
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If the z axis is directed vertically upward, then gr5 gθ5 0 and gz52g.
Equations 6.1, 6.2, and 6.3 apply to problems in which there are no viscous stresses.

Before continuing with the main topic of this chapter (inviscid flow), let’s consider for
a moment when we have no viscous stresses, other than when μ5 0. We recall from
previous discussions that, in general, viscous stresses are present when we have fluid
deformation (in fact this is how we initially defined a fluid); when we have no
fluid deformation, i.e., when we have rigid-body motion, no viscous stresses will be
present, even if μ 6¼ 0. Hence Euler’s equations apply to rigid-body motions as well as
to inviscid flows. We discussed rigid-body motion in detail in Section 3.7 as a special
case of fluid statics. As an exercise, you can show that Euler’s equations can be used to
solve Examples 3.9 and 3.10.

6.2 Euler's Equations in Streamline Coordinates
In Chapters 2 and 5 we pointed out that streamlines, drawn tangent to the velocity
vectors at every point in the flow field, provide a convenient graphical representation.
In steady flow a fluid particle will move along a streamline because, for steady flow,
pathlines and streamlines coincide. Thus, in describing the motion of a fluid particle in
a steady flow, in addition to using orthogonal coordinates x, y, z, the distance along a
streamline is a logical coordinate to use in writing the equations of motion.
“Streamline coordinates” also may be used to describe unsteady flow. Streamlines in
unsteady flow give a graphical representation of the instantaneous velocity field.

For simplicity, consider the flow in the yzplane shown in Fig. 6.1.Wewish towrite the
equations of motion in terms of the coordinate s, distance along a streamline, and
the coordinate n, distance normal to the streamline. The pressure at the center of the
fluid element is p. If we applyNewton’s second law in the direction s of the streamline, to
the fluid element of volume ds dn dx, then neglecting viscous forces we obtain

p2
@p

@s

ds

2

� �
dn dx2 p1

@p

@s

ds

2

� �
dn dx2 ρg sin β ds dn dx 5 ρas ds dn dx

where β is the angle between the tangent to the streamline and the horizontal, and as
is the acceleration of the fluid particle along the streamline. Simplifying the equation,
we obtain

2
@p

@s
2 ρg sin β 5 ρas

β

β

g

n s

z

y

R
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[ [p – ds dx
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∂
∂

p___
n

dn___
2

[ [p – dn dx
∂
∂
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s

ds___
2

[ [p + ds dx
∂
∂
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n
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2

[ [p + dn dx
∂
∂
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s
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2

Fig. 6.1 Fluid particle moving along a streamline.
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Since sin β 5 @z=@s; we can write

2
1

ρ
@p

@s
2 g

@z

@s
5 as

Along any streamline V5V(s, t), and the material or total acceleration of a fluid
particle in the streamwise direction is given by

as 5
DV

Dt
5

@V

@t
1V

@V

@s

Euler’s equation in the streamwise direction with the z axis directed vertically upward
is then

2
1

ρ
@p

@s
2 g

@z

@s
5

@V

@t
1V

@V

@s
ð6:4aÞ

For steady flow, and neglecting body forces, Euler’s equation in the streamwise
direction reduces to

1

ρ
@p

@s
52V

@V

@s
ð6:4bÞ

which indicates that (for an incompressible, inviscid flow) a decrease in velocity is
accompanied by an increase in pressure and conversely. This makes sense: The only
force experienced by the particle is the net pressure force, so the particle accelerates
toward low-pressure regions and decelerates when approaching high-pressure regions.

To obtain Euler’s equation in a direction normal to the streamlines, we apply
Newton’s second law in the n direction to the fluid element. Again, neglecting viscous
forces, we obtain

p2
@p

@n

dn

2

� �
ds dx2 p1

@p

@n

dn

2

� �
ds dx2 ρg cos β dn dx ds 5 ρandn dx ds

where β is the angle between the n direction and the vertical, and an is the acceleration
of the fluid particle in the n direction. Simplifying the equation, we obtain

2
@p

@n
2 ρg cos β 5 ρan

Since cos β 5 @z=@n; we write

2
1

ρ
@p

@n
2 g

@z

@n
5 an

The normal acceleration of the fluid element is toward the center of curvature of the
streamline, in the minus n direction; thus in the coordinate system of Fig. 6.1,
the familiar centripetal acceleration is written

an 52
V2

R

for steady flow, where R is the radius of curvature of the streamline at the point
chosen. Then, Euler’s equation normal to the streamline is written for steady flow as

1

ρ
@p

@n
1 g

@z

@n
5

V2

R
ð6:5aÞ
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For steady flow in a horizontal plane, Euler’s equation normal to a streamline
becomes

1

ρ
@p

@n
5

V2

R
ð6:5bÞ

Equation 6.5b indicates that pressure increases in the direction outward from the center
of curvature of the streamlines. This also makes sense: Because the only force
experienced by the particle is the net pressure force, the pressure field creates the
centripetal acceleration. In regions where the streamlines are straight, the radius of
curvature, R, is infinite so there is no pressure variation normal to straight streamlines.

Example 6.1 FLOW IN A BEND

The flow rate of air at standard conditions in a flat duct is to be determined by installing pressure taps across a
bend. The duct is 0.3 m deep and 0.1 m wide. The inner radius of the bend is 0.25 m. If the measured pressure
difference between the taps is 40 mm of water, compute the approximate flow rate.

Given: Flow through duct bend as shown.

p2 2 p1 5 ρH2O
gΔh

where Δh5 40 mm H2O. Air is at STP.

Find: Volume flow rate, Q.

Solution:
Apply Euler’s n component equation across flow streamlines.

Governing equation:
@p

@r
5

ρV2

r

Assumptions: (1) Frictionless flow.
(2) Incompressible flow.
(3) Uniform flow at measurement section.

For this flow, p5 p(r), so

@p

@r
5

dp

dr
5

ρV2

r

or

dp 5 ρV2 dr

r

Integrating gives

p2 2 p1 5 ρV2 ln r
�r2
r1
5 ρV2 ln

r2
r1

and hence

V 5
p2 2 p1

ρ lnðr2=r1Þ
� �1=2

r2

r1
V

r

Plan view of bend

0.1 m

0.3 mR = 0.25 m

1

2

Bend

Duct

Flow

CLASSIC VIDEO

Pressure Fields and Fluid Acceleration.
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6.3Bernoulli Equation: Integration of Euler's
Equation Along a Streamline for Steady Flow

Compared to the viscous-flow equivalents, the momentum or Euler’s equation for
incompressible, inviscid flow (Eq. 6.1) is simpler mathematically, but solution (in
conjunction with the mass conservation equation, Eq. 5.1c) still presents formidable
difficulties in all but the most basic flow problems. One convenient approach for a
steady flow is to integrate Euler’s equation along a streamline. We will do this below
using two different mathematical approaches, and each will result in the Bernoulli
equation. Recall that in Section 4.4 we derived the Bernoulli equation by starting with
a differential control volume; these two additional derivations will give us more
insight into the restrictions inherent in use of the Bernoulli equation.

*Derivation Using Streamline Coordinates

Euler’s equation for steady flow along a streamline (from Eq. 6.4a) is

2
1

ρ
@p

@s
2 g

@z

@s
5 V

@V

@s
ð6:6Þ

If a fluid particle moves a distance, ds, along a streamline, then

@p

@s
ds 5 dp the change in pressure along sð Þ

@z

@s
ds 5 dz the change in elevation along sð Þ

@V

@s
ds 5 dV the change in speed along sð Þ

Thus, after multiplying Eq. 6.6 by ds, we can write

But Δp 5 p2 2 p1 5 ρH2O
gΔh, so V 5

ρH2O
gΔh

ρ lnðr2=r1Þ
� �1=2

Substituting numerical values,

V 5 999
kg

m3
3 9:81

m

s2
3 0:04 m3

m3

1:23 kg
3

1

lnð0:35 m=0:25 mÞ

2
4

3
5
1=2

5 30:8 m=s

For uniform flow

Q 5 VA 5 30:8
m

s
3 0:1 m3 0:3m

Q 5 0:924 m3=s ß
Q

In this problem we assumed that the
velocity is uniform across the section.
In fact, the velocity in the bend
approximates a free vortex (irrota-
tional) profile in which V~ 1/r (where r
is the radius) instead of V5 const.
Hence, this flow-measurement device
could only be used to obtain approx-
imate values of the flow rate (see
Problem 6.32).
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2
dp

ρ
2 g dz 5 V dV or

dp

ρ
1V dV1 g dz 5 0 along sð Þ

Integration of this equation gives

Z
dp

ρ
1

V2

2
1 gz 5 constant ðalong sÞ ð6:7Þ

Before Eq. 6.7 can be applied, we must specify the relation between pressure and
density. For the special case of incompressible flow, ρ5 constant, and Eq. 6.7 becomes
the Bernoulli equation,

p

ρ
1

V2

2
1 gz 5 constant ð6:8Þ

Restrictions: (1) Steady flow.
(2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.

The Bernoulli equation is probably the most famous, and abused, equation in all of
fluid mechanics. It is always tempting to use because it is a simple algebraic equation
for relating the pressure, velocity, and elevation in a fluid. For example, it is used to
explain the lift of a wing: In aerodynamics the gravity term is usually negligible, so Eq.
6.8 indicates that wherever the velocity is relatively high (e.g., on the upper surface of
a wing), the pressure must be relatively low, and wherever the velocity is relatively
low (e.g., on the lower surface of a wing), the pressure must be relatively high, gen-
erating substantial lift. Equation 6.8 indicates that, in general (if the flow is not
constrained in some way), if a particle increases its elevation (z m) or moves into a
higher pressure region (p m), it will tend to decelerate (V k); this makes sense from
a momentum point of view (recall that the equation was derived from momentum
considerations). These comments only apply if the four restrictions listed are rea-
sonable. For example, Eq. 6.8 cannot be used to explain the pressure drop in a hor-
izontal constant diameter pipe flow: according to it, for z5 constant and V5 constant,
p5 constant! We cannot stress enough that you should keep the restrictions firmly in
mind whenever you consider using the Bernoulli equation! (In general, the Bernoulli
constant in Eq. 6.8 has different values along different streamlines.1)

*Derivation Using Rectangular Coordinates

The vector form of Euler’s equation, Eq. 6.1, also can be integrated along a stream-
line. We shall restrict the derivation to steady flow; thus, the end result of our effort
should be Eq. 6.7.

For steady flow, Euler’s equation in rectangular coordinates can be expressed as

D~V

Dt
5 u

@ ~V

@x
1 v

@ ~V

@y
1w

@ ~V

@z
5 ð~V � rÞ~V 52

1

ρ
rp2 gk̂ ð6:9Þ

For steady flow the velocity field is given by ~V 5 ~Vðx; y; zÞ: The streamlines are
lines drawn in the flow field tangent to the velocity vector at every point. Recall again
that for steady flow, streamlines, pathlines, and streaklines coincide. The motion of a

1For the case of irrotational flow, the constant has a single value throughout the entire flow field (Section 6.7).

*This section may be omitted without loss of continuity in the text material.
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particle along a streamline is governed by Eq. 6.9. During time interval dt the particle
has vector displacement d~s along the streamline.

If we take the dot product of the terms in Eq. 6.9 with displacement d~s along the
streamline, we obtain a scalar equation relating pressure, speed, and elevation along
the streamline. Taking the dot product of d~s with Eq. 6.9 gives

ð~V � rÞ~V � d~s 52
1

ρ
rp � d~s2 gk̂ � d~s ð6:10Þ

where

d~s 5 dx̂i1 dŷj1 dzk̂ ðalong sÞ
Now we evaluate each of the three terms in Eq. 6.10, starting on the right,

2
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ρ
rp � d~s 52

1

ρ

�̂
i
@p

@x
1 ĵ

@p

@y
1 k̂

@p

@z

�
� ½dx̂i1 dŷj1 dzk̂�

52
1

ρ

�
@p

@x
dx1

@p

@y
dy1

@p

@z
dz

�
ðalong sÞ

2
1

ρ
rp � d~s 52

1

ρ
dp ðalong sÞ

and

2gk̂ � d~s 52gk̂ � ½dx̂i1 dŷj1 dzk̂�
52g dz ðalong sÞ

Using a vector identity,2 we can write the third term as

ð~V � rÞ~V � d~s 5

�
1

2
rð~V � ~VÞ2 ~V 3 ðr3 ~VÞ

�
� d~s

5
n 1

2
rð~V � ~VÞ

o
� d~s2 f~V 3 ðr3 ~VÞg � d~s

The last term on the right side of this equation is zero, since ~V is parallel to d~s [recall
from vector math that ~V 3 ðr3 ~V Þ � d~s 52ðr3 ~VÞ3 ~V � d~s 52ðr3 ~VÞ � ~V 3 d~s].
Consequently,

ð~V � rÞ~V � d~s 5
1

2
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1

2
rðV2Þ � d~s ðalong sÞ
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� �

ð~V � rÞ~V � d~s 5
1

2
dðV2Þ ðalong sÞ

2The vector identity

ð~V � rÞ~V 5
1

2
rð~V � ~V Þ2 ~V 3 ðr3 ~V Þ

may be verified by expanding each side into components.
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Substituting these three terms into Eq. 6.10 yields

dp

ρ
1

1

2
dðV2Þ1 g dz 5 0 ðalong sÞ

Integrating this equation, we obtainZ
dp

ρ
1

V2

2
1 gz 5 constant ðalong sÞ

If the density is constant, we obtain the Bernoulli equation

p

ρ
1

V2

2
1 gz 5 constant

As expected, we see that the last two equations are identical to Eqs. 6.7 and 6.8
derived previously using streamline coordinates. The Bernoulli equation, derived
using rectangular coordinates, is still subject to the restrictions: (1) steady flow,
(2) incompressible flow, (3) frictionless flow, and (4) flow along a streamline.

Static, Stagnation, and Dynamic Pressures

The pressure, p, which we have used in deriving the Bernoulli equation, Eq. 6.8, is the
thermodynamic pressure; it is commonly called the static pressure. The static pressure
is the pressure experienced by the fluid particle as it moves (so it is something of a
misnomer!)—we also have the stagnation and dynamic pressures, which we will define
shortly. How do we measure the pressure in a fluid in motion?

In Section 6.2 we showed that there is no pressure variation normal to straight
streamlines. This fact makes it possible to measure the static pressure in a flowing fluid
using a wall pressure “tap,” placed in a region where the flow streamlines are straight,
as shown in Fig. 6.2a. The pressure tap is a small hole, drilled carefully in the wall, with
its axis perpendicular to the surface. If the hole is perpendicular to the duct wall and
free from burrs, accurate measurements of static pressure can be made by connecting
the tap to a suitable pressure-measuring instrument [1].

In a fluid stream far from a wall, or where streamlines are curved, accurate static
pressure measurements can be made by careful use of a static pressure probe, shown
in Fig. 6.2b. Such probes must be designed so that the measuring holes are placed
correctly with respect to the probe tip and stem to avoid erroneous results [2]. In use,
the measuring section must be aligned with the local flow direction. (In these figures, it
may appear that the pressure tap and small holes would allow flow to enter or leave or
otherwise be entrained by the main flow, but each of these is ultimately attached to a
pressure sensor or manometer and is therefore a dead-end, leading to no flow being
possible—see Example 6.2.)

Pressure
tap

Flow
streamlines

(a) Wall pressure tap (b) Static pressure probe

Flow
Small holes

Stem

To manometer or
pressure gage

Fig. 6.2 Measurement of static pressure.
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Static pressure probes, such as that shown in Fig 6.2b, and in a variety of other
forms, are available commercially in sizes as small as 1.5 mm ( 1

16 in.) in diameter [3].
The stagnation pressure is obtained when a flowing fluid is decelerated to zero

speed by a frictionless process. For incompressible flow, the Bernoulli equation can be
used to relate changes in speed and pressure along a streamline for such a process.
Neglecting elevation differences, Eq. 6.8 becomes

p

ρ
1

V2

2
5 constant

If the static pressure is p at a point in the flow where the speed is V, then the stag-
nation pressure, p0, where the stagnation speed, V0, is zero, may be computed from

� 0
p0 �
�

V 0

2
�

p
�

�
V 2

2

2

or

p0 5 p1
1

2
ρV2 ð6:11Þ

Equation 6.11 is a mathematical statement of the definition of stagnation pressure,
valid for incompressible flow. The term 1

2 ρV
2 generally is called the dynamic pressure.

Equation 6.11 states that the stagnation (or total) pressure equals the static pressure
plus the dynamic pressure. One way to picture the three pressures is to imagine you are
standing in a steady wind holding up your hand: The static pressure will be atmo-
spheric pressure; the larger pressure you feel at the center of your hand will be the
stagnation pressure; and the buildup of pressure (the difference between the stagnation
and static pressures) will be the dynamic pressure. Solving Eq. 6.11 for the speed,

V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0 2 pÞ

ρ

s
ð6:12Þ

Thus, if the stagnation pressure and the static pressure could be measured at a point,
Eq. 6.12 would give the local flow speed.

Stagnation pressure is measured in the laboratory using a probe with a hole that
faces directly upstream as shown in Fig. 6.3. Such a probe is called a stagnation
pressure probe, or pitot (pronounced pea-toe) tube. Again, the measuring section
must be aligned with the local flow direction.

We have seen that static pressure at a point can be measured with a static pressure
tap or probe (Fig. 6.2). If we knew the stagnation pressure at the same point, then
the flow speed could be computed from Eq. 6.12. Two possible experimental setups
are shown in Fig. 6.4.

In Fig. 6.4a, the static pressure corresponding to point A is read from the wall static
pressure tap. The stagnation pressure is measured directly at A by the total head tube,

Flow

To manometer or
pressure gage

Small hole

Fig. 6.3 Measurement of stagnation pressure.
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as shown. (The stem of the total head tube is placed downstream from the mea-
surement location to minimize disturbance of the local flow.)

Two probes often are combined, as in the pitot-static tube shown in Fig. 6.4b. The
inner tube is used to measure the stagnation pressure at point B, while the static
pressure at C is sensed using the small holes in the outer tube. In flow fields where the
static pressure variation in the streamwise direction is small, the pitot-static tube may
be used to infer the speed at point B in the flow by assuming pB5 pC and using
Eq. 6.12. (Note that when pB 6¼ pC, this procedure will give erroneous results.)

Remember that the Bernoulli equation applies only for incompressible flow (Mach
number M # 0.3). The definition and calculation of the stagnation pressure for
compressible flow will be discussed in Section 12.3.

Flow Flow
Total
head
tubeA

p p0

B

C

Static
pressure

holes

p0

p

(b) Pitot-static tube(a) Total head tube used
  with wall static tap

Fig. 6.4 Simultaneous measurement of stagnation and static pressures.

Example 6.2 PITOT TUBE

A pitot tube is inserted in an air flow (at STP) to measure the flow speed. The tube is inserted so that it points
upstream into the flow and the pressure sensed by the tube is the stagnation pressure. The static pressure is measured
at the same location in the flow, using a wall pressure tap. If the pressure difference is 30 mm of mercury, determine
the flow speed.

Given: A pitot tube inserted in a flow as shown. The flowing fluid is air and the manometer liquid is mercury.

Find: The flow speed.

Solution:

Governing equation:
p

ρ
1

V2

2
1 gz 5 constant

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Flow along a streamline.
(4) Frictionless deceleration along stagnation streamline.

Writing Bernoulli’s equation along the stagnation streamline (with Δz5 0) yields

p0
ρ

5
p

ρ
1

V2

2

p0 is the stagnation pressure at the tube opening where the speed has been reduced, without friction, to zero. Solving
for V gives

V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0 2 pÞ

ρair

s

Air flow

Mercury

30 mm
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Applications

The Bernoulli equation can be applied between any two points on a streamline
provided that the other three restrictions are satisfied. The result is

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2 ð6:13Þ

where subscripts 1 and 2 represent any two points on a streamline. Applications of
Eqs. 6.8 and 6.13 to typical flow problems are illustrated in Examples 6.3 through 6.5.

In some situations, the flow appears unsteady from one reference frame, but steady
from another, which translates with the flow. Since the Bernoulli equation was derived
by integrating Newton’s second law for a fluid particle, it can be applied in any inertial
reference frame (see the discussion of translating frames in Section 4.4). The proce-
dure is illustrated in Example 6.6.

From the diagram,

p0 2 p 5 ρHggh 5 ρH2O
ghSGHg

and

V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρH2O

ghSGHg

ρair

s

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 1000

kg

m3
3 9:81

m

s2
3 30 mm3 13:63

m3

1:23 kg
3

1 m

1000 mm

vuut
V 5 80:8 m=s ß

V

At T5 20�C, the speed of sound in air is 343 m/s. Hence, M5 0.236 and the assumption of incompressible
flow is valid.

This problem illustrates use of a pitot
tube to determine flow speed. Pitot (or
pitot-static) tubes are often placed on
the exterior of aircraft to indicate air
speed relative to the aircraft, and
hence aircraft speed relative to the air.

Example 6.3 NOZZLE FLOW

Air flows steadily at low speed through a horizontal nozzle (by definition a device for accelerating a flow), dis-
charging to atmosphere. The area at the nozzle inlet is 0.1 m2. At the nozzle exit, the area is 0.02 m2. Determine the
gage pressure required at the nozzle inlet to produce an outlet speed of 50 m/s.

Given: Flow through a nozzle, as shown.

Find: p12 patm.

Solution:

Governing equations:

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2 ð6:13Þ

Continuity for incompressible and uniform flow: X
CS

~V � ~A 5 0 ð4:13bÞ

1

2

CV

Streamline

p2 = patm
V2 = 50 m/s
A2 = 0.02 m2

A1 = 0.1 m2
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Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.
(5) z15 z2.
(6) Uniform flow at sections 1 and 2 .

The maximum speed of 50 m/s is well below 100 m/s, which corresponds to Mach number M � 0.3 in standard air.
Hence, the flow may be treated as incompressible.

Apply the Bernoulli equation along a streamline between points 1 and 2 to evaluate p1. Then

p1 2 patm 5 p1 2 p2 5
ρ
2
ðV2

2 2V2
1Þ

Apply the continuity equation to determine V1,

ð2ρV1A1Þ1 ðρV2A2Þ 5 0 or V1A1 5 V2A2

so that

V1 5 V2
A2

A1
5 50

m

s
3

0:02 m2

0:1 m2
5 10 m=s

For air at standard conditions, ρ5 1.23 kg/m3. Then

p1 2 patm 5
ρ
2
ðV2

2 2V2
1Þ

5
1

2
3 1:23

kg

m3

�
ð50Þ2 m

2

s2
2 ð10Þ2 m

2

s2

�
N � s2
kg �m

p1 2 patm 5 1:48 kPa ß
p1 2 patm

Example 6.4 FLOW THROUGH A SIPHON

AU-tube acts as a water siphon. The bend in the tube is 1 m above the water surface; the tube outlet is 7 m below the
water surface. The water issues from the bottom of the siphon as a free jet at atmospheric pressure. Determine (after
listing the necessary assumptions) the speed of the free jet and the minimum absolute pressure of the water in the
bend.

Given: Water flowing through a siphon as shown.

Find: (a) Speed of water leaving as a free jet.
(b) Pressure at point A (the minimum pressure point) in the flow.

Solution:

Governing equation:
p

ρ
1

V2

2
1 gz 5 constant

Assumptions: (1) Neglect friction.
(2) Steady flow.
(3) Incompressible flow.
(4) Flow along a streamline.
(5) Reservoir is large compared with pipe.

Apply the Bernoulli equation between points 1 and 2 .

1

2

A

8 m

z = 0

1 m
z

Notes:

ü This problem illustrates a typical
application of the Bernoulliequation.ü The streamlines must be straight

at the inlet and exit in order to
have uniform pressures at those
locations.
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p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2

Since areareservoir c areapipe, then V1 � 0. Also p15 p25 patm, so

gz1 5
V2

2

2
1 gz2 and V2

2 5 2gðz1 2 z2Þ

V2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðz1 2 z2Þ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 9:81

m

s2
3 7 m

s

5 11:7 m=s ß
V2

To determine the pressure at location A , we write the Bernoulli
equation between 1 and A .

p1
ρ

1
V2

1

2
1 gz1 5

pA
ρ

1
V2

A

2
1 gzA

Again V1 � 0 and from conservation of mass VA5V2. Hence

pA
ρ

5
p1
ρ

1 gz1 2
V2

2

2
2 gzA 5

p1
ρ

1 gðz1 2 zAÞ2
V2

2

2

pA 5 p1 1 ρgðz1 2 zAÞ2 ρ
V2

2

2

5 1:013 105
N

m2
1 999

kg

m3
3 9:81

m

s2
3 ð21mÞ N � s2

kg �m

2
1

2
3 999

kg

m3
3 ð11:7Þ2 m

2

s2
3

N � s2
kg �m

pA5 22.8 kPa (abs) or 278.5 kPa (gage) ß
pA

Notes:
ü This problem illustrates an applica-
tion of the Bernoulli equation that
includes elevation changes.

ü It is interesting to note that when
the Bernoulli equation applies
between a reservoir and a free jet
that it feeds at a location h below
the reservoir surface, the jet speed
will be V 5

ffiffiffiffiffiffiffiffiffi
2 gh

p
; this is the same

velocity a droplet (or stone) falling
without friction from the reservoir
level would attain if it fell a distance
h. Can you explain why?ü Always take care when neglecting
friction in any internal flow. In this
problem, neglecting friction is rea-
sonable if the pipe is smooth-
surfaced and is relatively short. In
Chapter 8 we will study frictional
effects in internal flows.

Example 6.5 FLOW UNDER A SLUICE GATE

Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Upstream from the gate, the water depth is
1.5 ft and the speed is negligible. At the vena contracta downstream from the gate, the flow streamlines are straight
and the depth is 2 in. Determine the flow speed downstream from the gate and the discharge in cubic feet per second
per foot of width.

Given: Flow of water under a sluice gate.

Find: (a) V2.
(b) Q in ft3/s/ft of width.

Solution:
Under the assumptions listed below, the flow satisfies all
conditions necessary to apply the Bernoulli equation. The
question is, what streamline do we use?

21

z D1 = 1.5 ft

Sluice gate

Vena contracta

V2
D2 = 2 in.

g

V1 – 0~
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Governing equation:
p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.
(5) Uniform flow at each section.
(6) Hydrostatic pressure distribution (at each location, pressure increases linearly with depth).

If we consider the streamline that runs along the bottom of the channel (z5 0), because of assumption 6 the
pressures at 1 and 2 are

p1 5 patm 1 ρgD1 and p2 5 patm 1 ρgD2

so that the Bernoulli equation for this streamline is

ðpatm 1 ρgD1Þ
ρ

1
V2

1

2
5

ðpatm 1 ρgD2Þ
ρ

1
V2

2

2

or

V2
1

2
1 gD1 5

V2
2

2
1 gD2 ð1Þ

On the other hand, consider the streamline that runs along the free surface on both sides and down the inner surface
of the gate. For this streamline

patm
ρ

1
V2

1

2
1 gD1 5

patm
ρ

1
V2

2

2
1 gD2

or

V2
1

2
1 gD1 5

V2
2

2
1 gD2 ð1Þ

We have arrived at the same equation (Eq. 1) for the streamline at the bottom and the streamline at the free surface,
implying the Bernoulli constant is the same for both streamlines. We will see in Section 6.6 that this flow is one of a
family of flows for which this is the case. Solving for V2 yields

V2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðD1 2D2Þ1V2

1

q
But V2

1 � 0, so

V2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðD1 2D2Þ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 32:2

ft

s2
3 1:5 ft2 2 in:3

ft

12 in:

0
@

1
A

vuuut
V2 5 9:27 ft=s ß

V2

For uniform flow, Q5VA5VDw, or

Q

w
5 VD 5 V2D2 5 9:27

ft

s
1 2 in:3

ft

12 in:
5 1:55 ft2=s

Q

w
5 1:55 ft3=s=foot of width ß

Q

w
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Example 6.6 BERNOULLI EQUATION IN TRANSLATING REFERENCE FRAME

A light plane flies at 150 km/hr in standard air at an altitude of 1000 m. Determine the stagnation pressure at the
leading edge of the wing. At a certain point close to the wing, the air speed relative to the wing is 60 m/s. Compute
the pressure at this point.

Given: Aircraft in flight at 150 km/hr at 1000 m altitude in standard air.

Find: Stagnation pressure, p0A, at point A and static pressure, pB, at point B.

Solution:
Flow is unsteady when observed from a fixed frame, that is, by an observer on the ground. However, an observer on
the wing sees the following steady flow:

At z5 1000 m in standard air, the temperature is 281 K and the speed of sound is 336 m/s. Hence at point B,
MB5VB/c5 0.178. This is less than 0.3, so the flow may be treated as incompressible. Thus the Bernoulli equation
can be applied along a streamline in the moving observer’s inertial reference frame.

Governing equation:
pair
ρ

1
V2

air

2
1 gzair 5

pA
ρ

1
V2

A

2
1 gzA 5

pB
ρ

1
V2

B

2
1 gzB

Assumptions: (1) Steady flow.
(2) Incompressible flow (V, 100 m/s).
(3) Frictionless flow.
(4) Flow along a streamline.
(5) Neglect Δz.

Values for pressure and density may be found from Table A.3. Thus, at 1000 m, p/pSL5 0.8870 and ρ/ρSL5 0.9075.
Consequently,

p 5 0:8870pSL 5 0:88703 1:013 105
N

m2
5 8:963 104 N=m2

and

ρ 5 0:9075ρSL 5 0:90753 1:23
kg

m3
5 1:12 kg=m3

Since the speed is VA5 0 at the stagnation point,

p0A 5 pair 1
1

2
ρV2

air

5 8:963 104
N

m2
1

1

2
3 1:12

kg

m3

�
150

km

hr
3 1000

m

km
3

hr

3600 s

�2

3
N � s2
kg �m

p0A 5 90:6 kPaðabsÞ ß
p0A

Vair = Vw = 150 km/hr
pair @ 1000 m

A
B VB = 60 m/s

Observer

Vair = 0
pair @ 1000 m

Vw = 150 km/hr
A B

VB = 60 m/s
(relative to wing)

Observer
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Cautions on Use of the Bernoulli Equation

In Examples 6.3 through 6.6, we have seen several situations where the Bernoulli
equation may be applied because the restrictions on its use led to a reasonable flow
model. However, in some situations you might be tempted to apply the Bernoulli
equation where the restrictions are not satisfied. Some subtle cases that violate the
restrictions are discussed briefly in this section.

Example 6.3 examined flow in a nozzle. In a subsonic nozzle (a converging section)
the pressure drops, accelerating a flow. Because the pressure drops and the walls
of the nozzle converge, there is no flow separation from the walls and the boundary
layer remains thin. In addition, a nozzle is usually relatively short so frictional effects
are not significant. All of this leads to the conclusion that the Bernoulli equation is
suitable for use for subsonic nozzles.

Sometimes we need to decelerate a flow. This can be accomplished using a subsonic
diffuser (a diverging section), or by using a sudden expansion (e.g., from a pipe into a
reservoir). In these devices the flow decelerates because of an adverse pressure gra-
dient. As we discussed in Section 2.6, an adverse pressure gradient tends to lead to
rapid growth of the boundary layer and its separation. Hence, we should be careful in
applying the Bernoulli equation in such devices—at best, it will be an approximation.
Because of area blockage caused by boundary-layer growth, pressure rise in actual
diffusers always is less than that predicted for inviscid one-dimensional flow.

The Bernoulli equation was a reasonable model for the siphon of Example 6.4
because the entrance was well rounded, the bends were gentle, and the overall length
was short. Flow separation, which can occur at inlets with sharp corners and in abrupt
bends, causes the flow to depart from that predicted by a one-dimensionalmodel and the
Bernoulli equation. Frictional effects would not be negligible if the tube were long.

Example 6.5 presented an open-channel flow analogous to that in a nozzle, for
which the Bernoulli equation is a good flow model. The hydraulic jump is an example
of an open-channel flow with adverse pressure gradient. Flow through a hydraulic
jump is mixed violently, making it impossible to identify streamlines. Thus the Ber-
noulli equation cannot be used to model flow through a hydraulic jump. We will see a
more detailed presentation of open channel flows in Chapter 11.

The Bernoulli equation cannot be applied through a machine such as a propeller,
pump, turbine, or windmill. The equation was derived by integrating along a stream

Solving for the static pressure at B, we obtain

pB 5 pair 1
1

2
ρðV2

air 2V2
BÞ

pB 5 8:963 104
N

m2
1

1

2
3 1:12

kg

m3

��
150

km

hr
3 1000

m

km
3

hr

3600 s

�2

2 ð60Þ2 m
2

s2

�
N � s2
kg �m

pB 5 88:6 kPaðabsÞ ß
pB

This problem gives a hint as to how a
wing generates lift. The incoming air has
a velocityVair 5 150 km=hr 5 41:7 m=s
and accelerates to 60 m/s on the upper
surface. This leads, through the
Bernoulli equation, to a pressure drop of
1 kPa (from89.6kPa to88.6kPa). It turns
out that the flow decelerates on the
lower surface, leading to a pressure rise
of about 1 kPa. Hence, the wing experi-
ences a net upward pressure difference
of about 2 kPa, a significant effect.

CLASSIC VIDEO

Flow Visualization.
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tube (Section 4.4) or a streamline (Section 6.3) in the absence of moving surfaces such
as blades or vanes. It is impossible to have locally steady flow or to identify stream-
lines during flow through a machine. Hence, while the Bernoulli equation may be
applied between points before a machine, or between points after a machine
(assuming its restrictions are satisfied), it cannot be applied through the machine. (In
effect, a machine will change the value of the Bernoulli constant.)

Finally, compressibility must be considered for flow of gases. Density changes caused
by dynamic compression due to motion may be neglected for engineering purposes if the
local Mach number remains below about M � 0.3, as noted in Examples 6.3 and 6.6.
Temperature changes can cause significant changes in density of a gas, even for low-speed
flow. Thus the Bernoulli equation could not be applied to air flow through a heating
element (e.g., of a hand-held hair dryer) where temperature changes are significant.

6.4The Bernoulli Equation Interpreted
as an Energy Equation

The Bernoulli equation, Eq. 6.8, was obtained by integrating Euler’s equation along a
streamline for steady, incompressible, frictionless flow. Thus Eq. 6.8 was derived from
the momentum equation for a fluid particle.

An equation identical in form to Eq. 6.8 (although requiring very different
restrictions) may be obtained from the first law of thermodynamics. Our objective in
this section is to reduce the energy equation to the form of the Bernoulli equation
given by Eq. 6.8. Having arrived at this form, we then compare the restrictions on the
two equations to help us understand more clearly the restrictions on the use of Eq. 6.8.

Consider steady flow in the absence of shear forces. We choose a control volume
bounded by streamlines along its periphery. Such a boundary, shown in Fig. 6.5, often
is called a stream tube.

Basic equation:

Q � Ws � Wshear � Wother �
CV

 e dV �    

CS

 (e � pv) V � dA

� 0(1) � 0(2) � 0(3)  � 0(4)

�  ���t ð4:56Þ

e 5 u1
V2

2
1 gz

Restrictions: (1) _Ws 5 0.
(2) _Wshear 5 0.
(3) _Wother 5 0.
(4) Steady flow.
(5) Uniform flow and properties at each section.

1

2

CV

Streamlines
Flow

Fig. 6.5 Flow through a stream tube.

CLASSIC VIDEO

Waves in Fluids and Stratified Flow.
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(Remember that here v represents the specific volume, and u represents the specific
internal energy, not velocity!) Under these restrictions, Eq. 4.56 becomes

u1 1 p1v1 1
V2

1

2
1 gz1

� �
ð2ρ1V1A1Þ1 u2 1 p2v2 1

V2
2

2
1 gz2

� �
ðρ2V2A2Þ2 _Q 5 0

From continuity, with restrictions (4) and (5):X
CS

ρ~V � ~A 5 0 ð4:15bÞ

or

ð2ρ1V1A1Þ1 ðρ2V2A2Þ 5 0

That is,

�m 5 ρ1V1A1 5 ρ2V2A2

Also

_Q 5
δQ
dt

5
δQ
dm

dm

dt
5

δQ
dm

�m

Thus, from the energy equation, after rearranging

p2v2 1
V2

2

2
1 gz2

� �
2 p1v1 1

V2
1

2
1 gz1

� �� �
�m 1 u2 2 u1 2

δQ
dm

� �
�m 5 0

or

p1v1 1
V2

1

2
1 gz1 5 p2v2 1

V2
2

2
1 gz2 1 u2 2 u1 2

δQ
dm

� �

Under the additional assumption (6) of incompressible flow, v15 v25 1/ρ and hence

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2 1 u2 2 u1 2

δQ
dm

� �
ð6:14Þ

Equation 6.14 would reduce to the Bernoulli equation if the term in parentheses were
zero. Thus, under the further restriction,

ð7Þ ðu2 2 u1 2
δQ
dm

Þ 5 0

the energy equation reduces to

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2

or

p

ρ
1

V2

2
1 gz 5 constant ð6:15Þ

Equation 6.15 is identical in form to the Bernoulli equation, Eq. 6.8. The Bernoulli
equationwas derived frommomentumconsiderations (Newton’s second law), and is valid
for steady, incompressible, frictionless flow along a streamline. Equation 6.15 was
obtained by applying the first law of thermodynamics to a stream tube control volume,
subject to restrictions 1 through 7 above. Thus the Bernoulli equation (Eq. 6.8) and the
identical form of the energy equation (Eq. 6.15) were developed from entirely different
models, coming fromentirelydifferentbasic concepts, and involvingdifferent restrictions.
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It looks likeweneeded restriction (7) to finally transform the energy equation into the
Bernoulli equation. In fact, we didn’t! It turns out that for an incompressible and fric-
tionless flow [restriction (6), and the fact we are looking only at flows with no shear
forces], restriction (7) is automatically satisfied, as we will demonstrate in Example 6.7.

For the steady, frictionless, and incompressible flow considered in this section, it is
true that the first law of thermodynamics reduces to the Bernoulli equation. Each term
in Eq. 6.15 has dimensions of energy per unit mass (we sometimes refer to the three
terms in the equation as the “pressure” energy, kinetic energy, and potential energy per
unit mass of the fluid). It is not surprising that Eq. 6.15 contains energy terms—after all,
we used the first law of thermodynamics in deriving it. How did we end up with
the same energy-like terms in the Bernoulli equation, which we derived from the
momentum equation? The answer is because we integrated the momentum equation
(which involves force terms) along a streamline (which involves distance), and by doing
so ended up with work or energy terms (work being defined as force times distance):
The work of gravity and pressure forces leads to a kinetic energy change (which came
from integrating momentum over distance). In this context, we can think of the Ber-
noulli equation as a mechanical energy balance—the mechanical energy (“pressure”
plus potential plus kinetic) will be constant. We must always bear in mind that for the
Bernoulli equation to be valid along a streamline requires an incompressible inviscid
flow, in addition to steady flow. It’s interesting that these two properties of the flow—its
compressibility and friction—are what “link” thermodynamic and mechanical energies.
If a fluid is compressible, any flow-induced pressure changes will compress or expand
the fluid, thereby doing work and changing the particle thermal energy; and friction, as
we know from everyday experience, always converts mechanical to thermal energy.
Their absence, therefore, breaks the link between the mechanical and thermal energies,
and they are independent—it’s as if they’re in parallel universes!

Example 6.7 INTERNAL ENERGY AND HEAT TRANSFER IN FRICTIONLESS INCOMPRESSIBLE FLOW

Consider frictionless, incompressible flow with heat transfer. Show that

u2 2 u1 5
δQ
dm

Given: Frictionless, incompressible flow with heat transfer.

Show: u2 2 u1 5
δQ
dm

.

Solution:
In general, internal energy can be expressed as u5 u(T, v). For incompressible flow, v5 constant, and u5 u(T). Thus
the thermodynamic state of the fluid is determined by the single thermodynamic property, T. For any process, the
internal energy change, u22 u1, depends only on the temperatures at the end states.

From the Gibbs equation, Tds5 du1 ρ dv, valid for a pure substance undergoing any process, we obtain

Tds 5 du

for incompressible flow, since dv5 0. Since the internal energy change, du, between specified end states, is inde-
pendent of the process, we take a reversible process, for which Tds5 d(δQ/dm)5 du. Therefore,

u2 2 u1 5
δQ
dm

ß
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In summary, when the conditions are satisfied for the Bernoulli equation to be
valid, we can consider separately the mechanical energy and the internal thermal
energy of a fluid particle (this is illustrated in Example 6.8); when they are not
satisfied, there will be an interaction between these energies, the Bernoulli equation
becomes invalid, and we must use the full first law of thermodynamics.

Example 6.8 FRICTIONLESS FLOW WITH HEAT TRANSFER

Water flows steadily from a large open reservoir through a short length of pipe and a nozzle with cross-sectional area
A5 0.864 in.2 A well-insulated 10 kW heater surrounds the pipe. Find the temperature rise of the water.

Given: Water flows from a large reservoir through the system shown and
discharges to atmospheric pressure. The heater is 10 kW; A45 0.864 in.2

Find: The temperature rise of the water between points 1 and 2 .

Solution:

Governing equations:
p

ρ
1

V2

2
1 gz 5 constant ð6:8ÞX

CS
~V � ~A 5 0 ð4:13bÞ

� gz) V � dA
V 2

2
Q � Ws � Wshear �

CV

 e dV �    

CS

 (u � pv � 

� 0(4) � 0(4)  � 0(1)

 �  �� �t
ð4:56Þ

Assumptions: (1) Steady flow.
(2) Frictionless flow.
(3) Incompressible flow.
(4) No shaft work, no shear work.
(5) Flow along a streamline.
(6) Uniform flow at each section [a consequence of assumption (2)].

Under the assumptions listed, the first law of thermodynamics for the CV shown becomes

_Q 5

Z
CS

�
u1 pv1

V2

2
1 gz

�
ρ~V � d~A

5

Z
A1

�
u1 pv1

V2

2
1 gz

�
ρ~V � d~A1

Z
A2

�
u1 pv1

V2

2
1 gz

�
ρ~V � d~A

For uniform properties at 1 and 2

_Q 52ðρV1A1Þ u1 1 p1v1
V2

1

2
1 gz1

� �
1 ðρV2A2Þ u2 1 p2v1

V2
2

2
1 gz2

� �

From conservation of mass, ρV1A1 5 ρV2A2 5 �m ; so

_Q 5 �m u2 2 u1 1
p2
ρ

1
V2

2

2
1 gz2

� �
2

p1
ρ

1
V2

1

2
1 gz1

� �� �

1
3

2

4
10 ft

Heater
CV

256 Chapter 6 Incompressible Inviscid Flow



6.5Energy Grade Line and Hydraulic Grade Line
We have learned that for a steady, incompressible, frictionless flow, we may use the
Bernoulli equation (Eq. 6.8), derived from the momentum equation, and also Eq.
6.15, derived from the energy equation:

p

ρ
1

V2

2
1 gz 5 constant ð6:15Þ

We also interpreted the three terms comprised of “pressure,” kinetic, and potential
energies to make up the total mechanical energy, per unit mass, of the fluid. If we
divide Eq. 6.15 by g, we obtain another form,

For frictionless, incompressible, steady flow, along a streamline,

p

ρ
1

V2

2
1 gz 5 constant

Therefore,

_Q 5 �mðu2 2 u1Þ
Since, for an incompressible fluid, u22 u15 c(T22T1), then

T2 2T1 5
_Q
�mc

From continuity,

�m 5 ρV4A4

To find V4, write the Bernoulli equation between the free surface at 3 and point 4 .

p3
ρ

1
V2

3

2
1 gz3 5

p4
ρ

1
V2

4

2
1 gz4

Since p35 p4 and V3 � 0, then

V4 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðz3 2 z4Þ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23 32:2

ft

s2
3 10 ft

r
5 25:4 ft=s

and

�m 5 ρV4A4 5 1:94
slug

ft3
3 25:4

ft

s
3 0:864 in:2 3

ft2

144 in:2
5 0:296 slug=s

Assuming no heat loss to the surroundings, we obtain

T2 2T1 5
_Q
�mc

5 10 kW3 3413
Btu

kW � hr 3
hr

3600 s

3
s

0:296 slug
3

slug

32:2 lbm
3

lbm �� R
1 Btu

T2 2T1 5 0:995 �R ß
T2 2T1

This problem illustrates that:ü In general, the first law of thermo-
dynamics and the Bernoulli equation
are independent equations.

ü For an incompressible, inviscid flow
the internal thermal energy is only
changed by a heat transfer process,
and is independent of the fluid
mechanics.
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p

ρg
1

V2

2g
1 z 5 H ð6:16aÞ

Here H is the total head of the flow; it measures the total mechanical energy in units of
meters or feet. We will learn in Chapter 8 that in a real fluid (one with friction) this head
will not be constant but will continuously decrease in value as mechanical energy is
converted to thermal; in this chapterH is constant.Wecangoone step furtherhereandget
a very useful graphical approach if we also define this to be the energy grade line (EGL),

EGL 5
p

ρg
1

V2

2g
1 z ð6:16bÞ

This can be measured using the pitot (total head) tube (shown in Fig. 6.3). Placing
such a tube in a flow measures the total pressure, p05 p1 1

2 ρV
2, so this will cause the

height of a column of the same fluid to rise to a height h 5 p0=ρg 5 p=ρg1V2=2g. If
the vertical location of the pitot tube is z, measured from some datum (e.g., the
ground), the height of column of fluid measured from the datum will then be
h1 z 5 p=ρg1V2=2g1 z 5 EGL 5 H. In summary, the height of the column,
measured from the datum, attached to a pitot tube directly indicates the EGL.

We can also define the hydraulic grade line (HGL),

HGL 5
p

ρg
1 z ð6:16cÞ

This can be measured using the static pressure tap (shown in Fig. 6.2a). Placing such a
tube in a flow measures the static pressure, p, so this will cause the height of a column
of the same fluid to rise to a height h 5 p=ρg. If the vertical location of the tap is also
at z, measured from some datum, the height of column of fluid measured from the
datum will then be h1 z 5 p=ρg1 z 5 HGL. The height of the column attached to a
static pressure tap thus directly indicates the HGL.

From Eqs. 6.16b and 6.16c we obtain

EGL2HGL 5
V2

2g
ð6:16dÞ

which shows that the difference between the EGL and HGL is always the dynamic
pressure term.

To see a graphical interpretation of the EGL and HGL, refer to the example shown
in Fig. 6.6, which shows frictionless flow from a reservoir, through a pipe reducer.

At all locations the EGL is the same because there is no loss of mechanical energy.
Station 1 is at the reservoir, and here the EGL andHGL coincide with the free surface:
in Eqs. 6.16b and 6.16c p5 0 (gage),V5 0, and z5 z1, soEGL15HGL15H5 z1; all of
themechanical energy is potential. (If we were to place a pitot tube in the fluid at station

1 , the fluid would of course just rise to the free surface level.)
At station 2 we have a pitot (total head) tube and a static head tap. The pitot

tube’s column indicates the correct value of the EGL (EGL15EGL25H), but
something changed between the two stations: The fluid now has significant kinetic
energy and has lost some potential energy (can you determine from the figure what
happened to the pressure?). From Eq. 6.16d, we can see that the HGL is lower than
the EGL by V2

2=2g; the HGL at station 2 shows this.
From station 2 to station 3 there is a reduction in diameter, so continuity requires

that V3.V2; hence the gap between the EGL and HGL increases further, as shown.
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Station 4 is at the exit (to the atmosphere). Here the pressure is zero (gage), so the
EGL consists entirely of kinetic and potential energy terms, and HGL45HGL3. We
can summarize two important ideas when sketching EGL and HGL curves:

1. The EGL is constant for incompressible, inviscid flow (in the absence of work
devices). We will see in Chapter 8 that work devices may increase or decrease the
EGL, and friction will always lead to a fall in the EGL.

2. The HGL is always lower than the EGL by distance V2=2g. Note that the value of
velocity V depends on the overall system (e.g., reservoir height, pipe diameter,
etc.), but changes in velocity only occur when the diameter changes.

6.6*Unsteady Bernoulli Equation: Integration
of Euler's Equation Along a Streamline

(on the Web)

6.7*Irrotational Flow
We have already discussed irrotational flows in Section 5.3. These are flows in which
the fluid particles do not rotate ð~ω 5 0Þ. We recall that the only stresses that can
generate particle rotation are shear stresses; hence, inviscid flows (i.e., those with zero

3

4

2

1

z1

z2

z3

z4

Hydraulic
grade

line (HGL)

Energy grade line (EGL)Free surface

V2
___
2g

2

V2
___
2g

4

Datum (z = 0)

V2

V4

Fig. 6.6 Energy and hydraulic grade lines for frictionless flow.

*These sections may be omitted without loss of continuity in the text material. (Note that Section 5.2

contains background material needed for study of Section 6.7.)
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shear stresses) will be irrotational, unless the particles were initially rotating. Using
Eq. 5.14, we obtain the irrotationality condition

r3 ~V 5 0 ð6:22Þ
leading to

@w

@y
2

@v
@z

5
@u

@z
2

@w

@x
5

@v
@x

2
@u

@y
5 0 ð6:23Þ

In cylindrical coordinates, from Eq. 5.16, the irrotationality condition requires that

1

r

@Vz

@θ
2

@Vθ

@z
5

@Vr

@z
2

@Vz

@r
5

1

r

@rVθ

@r
2

1

r

@Vr

@θ
5 0 ð6:24Þ

Bernoulli Equation Applied to Irrotational Flow

In Section 6.3, we integrated Euler’s equation along a streamline for steady, incom-
pressible, inviscid flow to obtain the Bernoulli equation

p

ρ
1

V2

2
1 gz 5 constant ð6:8Þ

Equation 6.8 can be applied between any two points on the same streamline. In
general, the value of the constant will vary from streamline to streamline.

If, in addition to being inviscid, steady, and incompressible, the flow field is also
irrotational (i.e., the particles had no initial rotation), so that r3 ~V 5 0 (Eq. 6.22),
we can show that Bernoulli’s equation can be applied between any and all points in
the flow. Then the value of the constant in Eq. 6.8 is the same for all streamlines. To
illustrate this, we start with Euler’s equation in vector form,

ð~V � rÞ~V 52
1

ρ
rp2 gk̂ ð6:9Þ

Using the vector identity

ð~V � rÞ~V 5
1

2
rð~V � ~VÞ2 ~V 3 ðr3 ~VÞ

we see for irrotational flow, where r3 ~V 5 0, that

ð~V � rÞ~V 5
1

2
rð~V � ~VÞ

and Euler’s equation for irrotational flow can be written as

1

2
rð~V � ~VÞ 5 1

2
rðV2Þ 52

1

ρ
rp2 gk̂ ð6:25Þ

Consider a displacement in the flow field from position ~r to position ~r1 d~r; the dis-
placement d~r is an arbitrary infinitesimal displacement in any direction, not neces-
sarily along a streamline. Taking the dot product of d~r 5 dx̂i1 dŷj1 dzk̂ with each of
the terms in Eq. 6.25, we have

1

2
rðV2Þ � d~r 52

1

ρ
rp � d~r2 gk̂ � d~r

and hence

1

2
dðV2Þ 52

dp

ρ
2 gdz
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or

dp

ρ
1

1

2
dðV2Þ1 gdz 5 0

Integrating this equation for incompressible flow gives

p

ρ
1

V2

2
1 gz 5 constant ð6:26Þ

Since d~r was an arbitrary displacement, Eq. 6.26 is valid between any two points (i.e.,
not just along a streamline) in a steady, incompressible, inviscid flow that is also
irrotational (see Example 6.5).

Velocity Potential

We were introduced in Section 5.2 to the notion of the stream function ψ for a two-
dimensional incompressible flow.

For irrotational flow we can introduce a companion function, the potential function
φ, defined by

~V 52rφ ð6:27Þ

Why this definition? Because it guarantees that any continuous scalar function φ(x, y,
z, t) automatically satisfies the irrotationality condition (Eq. 6.22) because of a fun-
damental identity:3

r3 ~V 52r3rφ 52curlðgrad φÞ � 0 ð6:28Þ
The minus sign (used in most textbooks) is inserted simply so that φ decreases in the
flow direction (analogous to the temperature decreasing in the direction of heat flow
in heat conduction). Thus,

u 52
@φ
@x

; v 52
@φ
@y

; and w 52
@φ
@z

ð6:29Þ

(You can check that the irrotationality condition, Eq. 6.22, is satisfied identically.)
In cylindrical coordinates,

r 5 êr
@

@r
1 êθ

1

r

@

@θ
1 k̂

@

@z
ð3:19Þ

From Eq. 6.27, then, in cylindrical coordinates

Vr 52
@φ
@r

Vθ 52
1

r

@φ
@θ

Vz 52
@φ
@z

ð6:30Þ

Becauser3rφ � 0 for all φ, the velocity potential exists only for irrotational flow.
Irrotationality may be a valid assumption for those regions of a flow in which

viscous forces are negligible. (For example, such a region exists outside the boundary
layer in the flow over a wing surface, and can be analyzed to find the lift produced by
the wing.) The theory for irrotational flow is developed in terms of an imaginary ideal
fluid whose viscosity is identically zero. Since, in an irrotational flow, the velocity field
may be defined by the potential function φ, the theory is often referred to as potential
flow theory.

VIDEO

An Example of Irrotational Flow.

3 That r3rð Þ � 0 can easily be demonstrated by expanding into components.

CLASSIC VIDEO

Vorticity.
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All real fluids possess viscosity, but there are many situations in which the
assumption of inviscid flow considerably simplifies the analysis and, at the same time,
gives meaningful results. Because of its relative simplicity and mathematical beauty,
potential flow has been studied extensively.4

Stream Function and Velocity Potential for Two-Dimensional,
Irrotational, Incompressible Flow: Laplace’s Equation

For a two-dimensional, incompressible, irrotational flow we have expressions for the
velocity components, u and v, in terms of both the stream function ψ, and the velocity
potential φ,

u 5
@ψ
@y

v 52
@ψ
@x

ð5:4Þ

u 52
@φ
@x

v 52
@φ
@y

ð6:29Þ

Substituting for u and v from Eq. 5.4 into the irrotationality condition,

@v
@x

2
@u

@y
5 0 ð6:23Þ

we obtain

@2ψ
@x2

1
@2ψ
@y2

5 r2ψ 5 0 ð6:31Þ

Substituting for u and v from Eq. 6.29 into the continuity equation,

@u

@x
1

@v
@y

5 0 ð5:3Þ

we obtain

@2φ
@x2

1
@2φ
@y2

5 r2φ 5 0 ð6:32Þ

Equations 6.31 and 6.32 are forms of Laplace’s equation—an equation that arises in
many areas of the physical sciences and engineering. Any function ψ or φ that satisfies
Laplace’s equation represents a possible two-dimensional, incompressible, irrota-
tional flow field.

Table 6.1 summarizes the results of our discussion of the stream function and
velocity potential for two dimensional flows.

The same rules (of when incompressibility and irrotationality apply, and with the
appropriate form of Laplace’s equation) are valid for the stream function and velocity
potential when expressed in cylindrical coordinates,

Vr 5
1

r

@ψ
@θ

and Vθ 52
@ψ
@r

ð5:8Þ

4Anyone interested in a detailed study of potential flow theory may find [4�6] of interest.
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and

Vr 52
@φ
@r

and Vθ 52
1

r

@φ
@θ

ð6:33Þ

In Section 5.2 we showed that the stream function ψ is constant along any
streamline. For ψ5 constant, dψ5 0 and

dψ 5
@ψ
@x

dx1
@ψ
@y

dy 5 0

The slope of a streamline—a line of constant ψ—is given by

dy

dx

�
ψ
52

@ψ=dx
@x=@y

52
2 v
u

5
v
u

ð6:34Þ

Along a line of constant φ, dφ5 0 and

dφ 5
@φ
@x

dx1
@φ
@y

dy 5 0

Consequently, the slope of a potential line — a line of constant φ — is given by

dy

dx

�
φ
52

@φ=@x
@φ=@y

52
u

v
ð6:35Þ

(The last equality of Eq. 6.35 follows from use of Eq. 6.29.)
Comparing Eqs. 6.34 and 6.35, we see that the slope of a constant ψ line at any

point is the negative reciprocal of the slope of the constant φ line at that point; this
means that lines of constant ψ and constant φ are orthogonal. This property of
potential lines and streamlines is useful in graphical analyses of flow fields.

Table 6.1
Definitions of ψ and φ, and Conditions Necessary for Satisfying Laplace’s Equation

Definition Always satisfies . . .

Satisfies Laplace equation . . .

@2ðÞ
@x2

1
@2ðÞ
@y2

5 r2ðÞ 5 0

Stream function ψ

u 5
@ψ
@y

v 52
@ψ
@x

. . . incompressibility:

@u

@x
1

@v
@y

5
@2ψ
@x@y

2
@2ψ
@y@x

� 0

. . . only if irrotational:

@v
@x

2
@u

@y
52

@2ψ
@x@x

2
@2ψ
@y@y

5 0

Velocity potential φ

u 52
@φ
@x

v 52
@φ
@y

. . . irrotationality:

@v
@x

2
@u

@y
52

@2φ
@x@y

2
@2φ
@y@x

� 0

. . . only if incompressible:

@u

@x
1

@v
@y

52
@2φ
@x@x

2
@2φ
@y@y

5 0

Example 6.10 VELOCITY POTENTIAL

Consider the flow field given by ψ5 ax22 ay2, where a5 3 s21. Show that the flow is irrotational. Determine the
velocity potential for this flow.

Given: Incompressible flow field with ψ5 ax22 ay2, where a5 3 s21.

Find: (a) Whether or not the flow is irrotational.
(b) The velocity potential for this flow.
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Elementary Plane Flows

The ψ and φ functions for five elementary two-dimensional flows—a uniform flow, a
source, a sink, a vortex, and a doublet—are summarized in Table 6.2. The ψ and φ
functions can be obtained from the velocity field for each elementary flow. (We saw in
Example 6.10 that we can obtain φ from u and v.)

Solution: If the flow is irrotational, r2ψ 5 0. Checking for the given flow,

r2ψ 5
@2

@x2
ðax2 2 ay2Þ1 @2

@y2
ðax2 2 ay2Þ 5 2a2 2a 5 0

so that the flow is irrotational. As an alternative proof, we can compute the fluid particle rotation (in the xy plane,
the only component of rotation is ωz):

2ωz 5
@v
@x

2
@u

@y
and u 5

@ψ
@y

v 52
@ψ
@x

then

u 5
@

@y
ðax2 2 ay2Þ 522ay and v 52

@

@x
ðax2 2 ay2Þ 522ax

so

2ωz 5
@v
@x

2
@u

@y
5

@

@x
ð22axÞ2 @

@y
ð22ayÞ 522a1 2a 5 0 ß

2ωz

Once again, we conclude that the flow is irrotational. Because it is irrotational, φ must exist, and

u 52
@φ
@x

and v 52
@φ
@y

Consequently, u 52
@φ
@x

522ay and
@φ
@x

5 2ay. Integrating with respect to x gives φ5 2axy1 f(y), where f(y) is an

arbitrary function of y. Then

v 522ax 52
@φ
@y

52
@

@x
½2axy1 f ðyÞ�

Therefore, 2 2ax 522ax2
@f ðyÞ
@y

522ax2
df

dy
; so

df

dy
5 0 and f5 constant. Thus

φ 5 2axy1 constantß φ

We also can show that lines of constant ψ and constant φ are orthogonal.

ψ 5 ax2 2 ay2 and φ 5 2axy

For ψ5 constant, dψ 5 0 5 2axdx2 2aydy; hence
dy

dx

�
ψ 5 c

5
x

y

For φ5 constant, dφ 5 0 5 2aydx1 2axdy; hence
dy

dx

�
φ 5 c

52
y

x

The slopes of lines of constant φ and constant ψ are negative reciprocals.
Therefore lines of constant φ are orthogonal to lines of constant ψ.

This problem illustrates the relations
among the stream function, velocity
potential, and velocity field.The stream function ψ andvelocity potential φ are shown in
the Excel workbook. By entering the
equations for ψ and φ, other fields can
be plotted.
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Table 6.2
Elementary Plane Flows

U U
x

y

Uniform Flow (positive x

direction)

u 5 U ψ 5 Uy
v 5 0 φ 52Ux

Γ5 0 around any closed
curve

y

x

ψ

φ

= c3

ψ = –c3

ψ = c2

ψ = –c2

ψ = c1

ψ = –c1

ψ = 0

=
 k

2

φ
=
 –

k 2

φ
=
 k

1

φ
=
 –

k 1

φ
=
 0

x

y r
θ

Source Flow (from origin)

Vr 5
q

2πr
ψ 5

q

2π
θ

Vθ 5 0 φ 52
q

2π
ln r

Origin is singular point
q is volume flow rate per unit
depth
Γ5 0 around any closed curve

y

x
φ = –k1

φ = –k2

ψ = c1

ψ = c2

ψ = c3

ψ = c4

ψ = c5

ψ = c6

ψ = c7

ψ = 0

y

x
r θ

Sink Flow (toward origin)

Vr52
q

2πr
ψ 52

q

2π
θ

Vθ 5 0 φ 5
q

2π
ln r

Origin is singular point
q is volume flow rate per unit
depth
Γ5 0 around any closed curve

y

x

φ = k1

φ = k2

ψ = –c1

ψ = –c2

ψ = –c3

ψ = –c4

ψ = –c5

ψ = –c6

ψ = –c7

ψ = 0

y

x

r
θ

Irrotational Vortex
(counterclockwise, center
at origin)

Vr 5 0 ψ 52
K

2π
ln r

Vθ 5
K

2πr
φ 52

K

2π
θ

Origin is singular point
K is strength of the vortex
Γ5K around any closed curve
enclosing origin
Γ5 0 around any closed curve
not enclosing origin

y

x
ψ = –c1

ψ = –c3

ψ = –c4

φ = –k1

φ = –k2

φ = –k3

φ = –k4

φ = –k5

φ = –k6

φ = –k7

φ = 0

ψ = –c2

(Continued)
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A uniform flow of constant velocity parallel to the x axis satisfies the continuity
equation and the irrotationality condition identically. In Table 6.2 we have shown the
ψ and φ functions for a uniform flow in the positive x direction.

For a uniform flow of constant magnitude V, inclined at angle α to the x axis,

ψ 5 ðV cos αÞy2 ðV sin αÞx
φ 52ðV sin αÞy2 ðV cos αÞx

A simple source is a flow pattern in the xy plane in which flow is radially outward
from the z axis and symmetrical in all directions. The strength, q, of the source is the
volume flow rate per unit depth. At any radius, r, from a source, the tangential
velocity, Vθ, is zero; the radial velocity, Vr, is the volume flow rate per unit depth, q,
divided by the flow area per unit depth, 2πr. Thus Vr5 q/2πr for a source. Knowing Vr

and Vθ, obtaining ψ and φ from Eqs. 5.8 and 6.33, respectively, is straightforward.
In a simple sink, flow is radially inward; a sink is a negative source. The ψ and φ

functions for a sink shown in Table 6.2 are the negatives of the corresponding func-
tions for a source flow.

The origin of either a sink or a source is a singular point, since the radial velocity
approaches infinity as the radius approaches zero. Thus, while an actual flow may
resemble a source or a sink for some values of r, sources and sinks have no exact
physical counterparts. The primary value of the concept of sources and sinks is that,
when combined with other elementary flows, they produce flow patterns that ade-
quately represent realistic flows.

A flow pattern in which the streamlines are concentric circles is a vortex; in a free
(irrotational) vortex, fluid particles do not rotate as they translate in circular paths
around the vortex center. There are a number of ways of obtaining the velocity field,
for example, by combining the equation of motion (Euler’s equation) and the
Bernoulli equation to eliminate the pressure. Here, though, for circular streamlines,
we have Vr5 0 and Vθ5 f(θ) only. We also have previously introduced the condition
of irrotationality in cylindrical coordinates,

1

r

@rVθ

@r
2

1

r

@Vr

@θ
5 0 ð6:24Þ

Hence, using the known forms of Vr and Vθ, we obtain

Table 6.2
Elementary Plane Flows (Continued )

y

x

r

θ

Doublet (center at origin)

Vr 52
Λ
r2
cos θ ψ 52

Λ sin θ
r

Vθ 52
Λ
r2
sin θ φ 52

Λ cos θ
r

Origin is singular point
Λ is strength of the doublet
Γ5 around any closed curve

ψ = –c2

ψ = –c3

ψ = 0

ψ = c3

ψ = c2

ψ = –c1

ψ = c1

φ = –k1φ = k1

φ = k2 φ = –k2

x

y

266 Chapter 6 Incompressible Inviscid Flow



1

r

dðrVθÞ
dr

5 0

Integrating this equation gives

Vθ r 5 constant

The strength, K, of the vortex is defined as K5 2πrVθ; the dimensions of K are L2/t
(volume flow rate per unit depth). Once again, knowing Vr and Vθ, obtaining ψ and φ
from Eqs. 5.8 and 6.33, respectively, is straightforward. The irrotational vortex is a
reasonable approximation to the flow field in a tornado (except in the region of the
origin; the origin is a singular point).

The final “elementary” flow listed in Table 6.2 is the doublet of strength Λ. This
flow is produced mathematically by allowing a source and a sink of numerically equal
strengths to merge. In the limit, as the distance, δs, between them approaches zero,
their strengths increase so the product qδs/2π tends to a finite value, Λ, which is
termed the strength of the doublet.

Superposition of Elementary Plane Flows

We saw earlier that both φ and ψ satisfy Laplace’s equation for flow that is both
incompressible and irrotational. Since Laplace’s equation is a linear, homogeneous
partial differential equation, solutions may be superposed (added together) to develop
more complex and interesting patterns of flow. Thus if ψ1 and ψ2 satisfy Laplace’s
equation, then so does ψ35ψ11ψ2. The elementary plane flows are the building
blocks in this superposition process. There is one note of caution: While Laplace’s
equation for the stream function, and the stream function-velocity field equations (Eq.
5.3) are linear, the Bernoulli equation is not; hence, in the superposition process we
will have ψ35ψ11ψ2, u35 u11 u2, and v35 v11 v2, but p3 6¼ p11 p2! We must use
the Bernoulli equation, which is nonlinear in V, to find p3.

We can add together elementary flows to try and generate recognizable flow pat-
terns. The simplest superposition approach is called the directmethod, in which we try
different combinations of elementary flows and see what kinds of flow patterns are
produced. This sounds like a random process, but with a little experience it becomes a
quite logical process. For example, look at some of the classic examples listed in
Table 6.3. The source and uniform flow combination makes sense—we would intui-
tively expect a source to partially push its way upstream, and to divert the flow around
it. The source, sink, and uniform flow (generating what is called a Rankine body) is
also not surprising—the entire flow out of the source makes its way into the sink,
leading to a closed streamline. Any streamline can be interpreted as a solid surface
because there is no flow across it; we can therefore pretend that this closed streamline
represents a solid. We could easily generalize this source-sink approach to any
number of sources and sinks distributed along the x axis, and as long as the sum of the
source and sink strengths added up to zero, we would generate a closed streamline
body shape. The doublet-uniform flow (with or without a vortex) generates a very
interesting result: flow over a cylinder (with or without circulation)! We first saw the
flow without circulation in Fig. 2.12a. The flow with a clockwise vortex produces a top-
to-bottom asymmetry. This is because in the region above the cylinder the velocities
due to the uniform flow and vortex are in the same overall direction and lead to a high
velocity; below the cylinder they are in opposite directions and therefore lead to a low
velocity. As we have learned, whenever velocities are high, streamlines will be close
together, and vice versa—explaining the pattern shown. More importantly, from the
Bernoulli equation we know that whenever the velocity is high the pressure will be
low, and vice versa—hence, we can anticipate that the cylinder with circulation will
experience a net upward force (lift) due to pressure. This approach, of looking at
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Table 6.3
Superposition of Elementary Plane Flows

Source and Uniform Flow (flow past a half-body)

y

x

r
P
V1

V2

V

θ

ψ 5 ψso 1ψuf 5 ψ1 1ψ2 5
q

2π
θ1Uy

ψ 5
q

2π
θ1Ur sin θ

φ 5 φso 1φuf 5 φ1 1φ2 52
q

2π
ln r2Ux

φ 52
q

2π
ln r2Ur cos θ

P

Source and Sink (equal strength, separation distance on x axis 5 2a)

y

x

V2

V1

r2
r1

r V

P

θ1 θ2
(a,0)(–a,0)

ψ 5 ψso 1ψsi 5 ψ1 1ψ2 5
q

2π
θ1 2

q

2π
θ2

ψ 5
q

2π
ðθ1 2 θ2Þ

φ 5 φso 1φsi 5 φ1 1φ2 52
q

2π
ln r1 1

q

2π
ln r2

φ 5
q

2π
ln

r2
r1

P

Source, Sink, and Uniform Flow (flow past a Rankine body)

y

x

V2

V3

V1

r2

r1
r

V
P

θ θ1
θ2

ψ 5 ψso 1ψsi 1ψuf 5 ψ1 1ψ2 1ψ3

5
q

2π
θ1 2

q

2π
θ2 1Uy

ψ 5
q

2π
ðθ1 2 θ2Þ1Ur sin θ

φ 5 φso 1φsi 1φuf 5 φ1 1φ2 1φ3

52
q

2π
ln r1 1

q

2π
ln r2 2Ux

φ 5
q

2π
ln

r2
r1

2Ur cos θ

P

Vortex (clockwise) and Uniform Flow

y

x

V1

V2P
r V
θ

ψ 5 ψv 1ψuf 5 ψ1 1ψ2 5
K

2π
ln r1Uy

ψ 5
K

2π
ln r1Ur sin θ

φ 5 φv 1φuf 5 φ1 1φ2 5
K

2π
θ2Ux

φ 5
K

2π
θ2Ur cos θ

P
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Table 6.3
Superposition of Elementary Plane Flows (Continued )

Doublet and Uniform Flow (flow past a cylinder)

y

x

V1

V2P

r V

θ

ψ 5 ψd 1ψuf 5 ψ1 1ψ2 52
Λ sin θ

r
1Uy

52
Λ sin θ

r
1Ur sin θ

ψ 5 U r2
Λ
Ur

0
@

1
Asin θ

ψ 5 Ur 12
a2

r2

0
@

1
Asin θ a 5

ffiffiffiffiffi
Λ
U

s

φ 5 φd 1φuf 5 φ1 1φ2 52
Λ cos θ

r
2Ux

52
Λ cos θ

r
2Ur cos θ

φ 52U r1
Λ
Ur

� �
cos θ 52Ur 11

a2

r2

� �
cos θ

P

Doublet, Vortex (clockwise), and Uniform Flow (flow past a cylinder with circulation)

y

x

V1 V2

V3P

r V
θ

ψ 5 ψd 1ψv 1ψuf 5 ψ1 1ψ2 1ψ3

52
Λ sin θ

r
1

K

2π
ln r1Uy

ψ 52
Λ sin θ

r
1

K

2π
ln r1Ur sin θ

ψ 5 Ur 12
a2

r2

0
@

1
Asin θ1

K

2π
ln r

φ 5 φd 1φv 1φuf 5 φ1 1φ2 1φ3

52
Λ cos θ

r
1

K

2π
θ2Ux

P

a 5

ffiffiffiffiffi
Λ
U

r
; K , 4πaU φ 52

Λ cos θ
r

1
K

2π
θ2Ur cos θ

φ 52Ur 11
a2

r2

0
@

1
Acos θ1

K

2π
θ

Source and Vortex (spiral vortex)

y

x

r

V

P

V1V2

θ

ψ 5 ψso 1ψv 5 ψ1 1ψ2 5
q

2π
θ2

K

2π
ln r

φ 5 φso 1φv 5 φ1 1φ2 52
q

2π
ln r2

K

2π
θ

P

(Continued)
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streamline patterns to see where we have regions of high or low velocity and hence
low or high pressure, is very useful. We will examine these last two flows in Examples
6.11 and 6.12. The last example in Table 6.3, the vortex pair, hints at a way to create
flows that simulate the presence of a wall or walls: for the y axis to be a stream-
line (and thus a wall), simply make sure that any objects (e.g., a source, a vortex) in
the positive x quadrants have mirror-image objects in the negative x quadrants; the y
axis will thus be a line of symmetry. For a flow pattern in a 90� corner, we need to
place objects so that we have symmetry with respect to both the x and y axes. For flow
in a corner whose angle is a fraction of 90� (e.g., 30�), we need to place objects in a
radially symmetric fashion.

Because Laplace’s equation appears in many engineering and physics applications,
it has been extensively studied. We saw in Example 5.12 that Laplace’s equation is
sometimes amenable to a fairly simple numerical solution using a spreadsheet. For
analytic solutions, one approach is to use conformal mapping with complex notation.
It turns out that any continuous complex function f(z) (where z5 x1 iy, and
i 5

ffiffiffiffiffiffi
21

p
) is a solution of Laplace’s equation, and can therefore represent both φ

and ψ. With this approach many elegant mathematical results have been derived
[7�10]. We mention only two: the circle theorem, which enables any given flow [e.g.,
from a source at some point (a, b)] to be easily transformed to allow for the presence
of a cylinder at the origin; and the Schwarz-Christoffel theorem, which enables a given
flow to be transformed to allow for the presence of virtually unlimited stepwise linear
boundaries (e.g., the presence on the x axis of the silhouette of a building).

Table 6.3
Superposition of Elementary Plane Flows (Continued )

Sink and Vortex

y

x

r

V P

V1

V2

θ

ψ 5 ψsi 1ψv 5 ψ1 1ψ2 52
q

2π
θ2

K

2π
ln r

φ 5 φsi 1φv 5 φ1 1φ2 5
q

2π
ln r2

K

2π
θ

P

Vortex Pair (equal strength, opposite rotation, separation distance on x axis5 2a)

y

x

r2
r1

1

V1

V2

PV

θ 2θ

(a,0)(–a,0)

ψ 5 ψv1 1ψv2 5 ψ1 1ψ2 52
K

2π
ln r1 1

K

2π
ln r2

ψ 5
K

2π
ln
r2
r1

φ 5 φv1 1φv2 5 φ1 1φ2 52
K

2π
θ1 1

K

2π
θ2

φ 5
K

2π
ðθ2 2 θ1Þ

P
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Much of this analytical work was done centuries ago, when it was called “hydro-
dynamics” instead of potential theory. A list of famous contributors includes Ber-
noulli, Lagrange, d’Alembert, Cauchy, Rankine, and Euler [11]. As we discussed in
Section 2.6, the theory immediately ran into difficulties: In an ideal fluid flow no body
experiences drag—the d’Alembert paradox of 1752—a result completely counter
to experience. Prandtl, in 1904, resolved this discrepancy by describing how real flows
may be essentially inviscid almost everywhere, but there is always a “boundary layer”
adjacent to the body. In this layer significant viscous effects occur, and the no-slip
condition is satisfied (in potential flow theory the no-slip condition is not satisfied).
Development of this concept, and the Wright brothers’ historic first human flight, led
to rapid developments in aeronautics starting in the 1900s. We will study boundary
layers in detail in Chapter 9, where we will see that their existence leads to drag on
bodies, and also affects the lift of bodies.

An alternative superposition approach is the inverse method in which distributions
of objects such as sources, sinks, and vortices are used to model a body [12]. It is called
inverse because the body shape is deduced based on a desired pressure distribution.
Both the direct and inverse methods, including three-dimensional space, are today
mostly analyzed using computer applications such as Fluent [13] and STAR-CD [14].

Example 6.11 FLOW OVER A CYLINDER: SUPERPOSITION OF DOUBLET AND UNIFORM FLOW

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet and a uniform flow represents
flow around a circular cylinder. Obtain the stream function and velocity potential for this flow pattern. Find the
velocity field, locate the stagnation points and the cylinder surface, and obtain the surface pressure distribution.
Integrate the pressure distribution to obtain the drag and lift forces on the circular cylinder.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet and
a uniform flow.

Find: (a) Stream function and velocity potential.
(b) Velocity field.
(c) Stagnation points.
(d) Cylinder surface.
(e) Surface pressure distribution.
(f) Drag force on the circular cylinder.
(g) Lift force on the circular cylinder.

Solution: Stream functions may be added because the flow field is incompressible and irrotational. Thus from Table
6.2, the stream function for the combination is

ψ 5 ψd 1ψuf 52
Λ sin θ

r
1Ur sin θ ß

ψ

The velocity potential is

φ 5 φd 1φuf 52
Λ cos θ

r
2Ur cos θ ß

φ

The corresponding velocity components are obtained using Eqs. 6.30 as

Vr 52
@φ
@r

52
Λ cos θ

r2
1U cos θ

Vθ 52
1

r

@φ
@θ

52
Λ sin θ
r2

2U sin θ
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The velocity field is

~V 5 Vrêr 1Vθêθ 5 2
Λ cos θ

r2
1U cos θ

� �
êr 1 2

Λ sin θ
r2

2U sin θ
� �

êθ ß

~V

Stagnation points are where ~V 5 Vrêr 1Vθêθ 5 0

Vr 52
Λ cos θ

r2
1U cos θ 5 cos θ U2

Λ
r2

� �

Thus Vr 5 0 when r 5

ffiffiffiffiffi
Λ
U

r
5 a: Also,

Vθ 52
Λ sin θ
r2

2U sin θ 52sin θ U1
Λ
r2

� �

Thus Vθ5 0 when θ5 0, π.
Stagnation points are ðr; θÞ 5 ða; 0Þ; ða;πÞ: ß

Stagnation points

Note that Vr5 0 along r5 a, so this represents flow around a circular cylinder, as shown in Table 6.3. Flow is
irrotational, so the Bernoulli equation may be applied between any two points. Applying the equation between a
point far upstream and a point on the surface of the cylinder (neglecting elevation differences), we obtain

pN
ρ

1
U2

2
5

p

ρ
1

V2

2

Thus,

p2 pN 5
1

2
ρðU2 2V2Þ

Along the surface, r5 a, and

V2 5 V2
θ 5 2

Λ
a2

2U

� �2

sin2θ 5 4U2 sin2θ

since Λ5Ua2. Substituting yields

p2 pN 5
1

2
ρðU2 2 4U2 sin2θÞ 5 1

2
ρU2ð12 4 sin2θÞ

or

p2 pN
1

2
ρU2

5 12 4 sin2 θ ß

Pressure
distribution

Drag is the force component parallel to the freestream flow direction.
The drag force is given by

FD 5

Z
A

2p dA cos θ 5

Z 2π

0

2pa dθ b cos θ

since dA5 a dθ b, where b is the length of the cylinder normal to the diagram.

Substituting p 5 pN 1
1

2
ρU2ð12 4 sin2 θÞ,

a

p dA

U

p
�

θ
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FD 5

Z 2π

0

2 pNab cos θ dθ1
Z 2π

0

2
1

2
ρU2ð12 4 sin2 θÞab cos θ dθ

52pN ab sin θ
�2π
0

2
1

2
ρU2ab sin θ

�2π
0

1
1

2
pU2ab

4

3
sin3 θ

�2π
0

FD 5 0ß
FD

Lift is the force component normal to the freestream flow direction. (By convention, positive lift is an upward force.)
The lift force is given by

FL 5

Z
A

p dAð2sin θÞ 52

Z 2π

0

pa dθ b sin θ

Substituting for p gives

FL 52

Z 2π

0

pNab sin θ dθ2
Z 2π

0

1

2
ρU2ð12 4 sin2 θÞab sin θ dθ

5 pNa b cos θ
�2π
0

1
1

2
ρU2ab cos θ

�2π
0

1
1

2
ρU2ab

�
4 cos3 θ

3
2 4 cos θ

�2π
0

FL 5 0 ß
FL

This problem illustrates:ü How elementary plane flows can be
combined to generate interesting
and useful flow patterns.ü d’Alembert’s paradox, that potential
flows over a body do not generate
drag.

The stream function and pres-
sure distribution are plotted in

the Excel workbook.

Example 6.12 FLOW OVER A CYLINDER WITH CIRCULATION: SUPERPOSITION OF DOUBLET,
UNIFORM FLOW, AND CLOCKWISE FREE VORTEX

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet, a uniform flow, and a free
vortex represents the flow around a circular cylinder with circulation. Obtain the stream function and velocity
potential for this flow pattern, using a clockwise free vortex. Find the velocity field, locate the stagnation points and
the cylinder surface, and obtain the surface pressure distribution. Integrate the pressure distribution to obtain the
drag and lift forces on the circular cylinder. Relate the lift force on the cylinder to the circulation of the free vortex.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet, a uniform flow,
and a clockwise free vortex.

Find: (a) Stream function and velocity potential.
(b) Velocity field.
(c) Stagnation points.
(d) Cylinder surface.
(e) Surface pressure distribution.
(f) Drag force on the circular cylinder.
(g) Lift force on the circular cylinder.
(h) Lift force in terms of circulation of the free vortex.

Solution:
Stream functions may be added because the flow field is incompressible and irrotational. From Table 6.2, the stream
function and velocity potential for a clockwise free vortex are
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ψfv 5
K

2π
ln r φfv 5

K

2π
θ

Using the results of Example 6.11, the stream function for the combination is

ψ 5 ψd 1ψuf 1ψfv

ψ 52
Λ sin θ

r
1Ur sin θ1

K

2π
ln r ß

ψ

The velocity potential for the combination is

φ 5 φd 1φuf 1φfv

φ 52
Λ cos θ

r
2Ur cos θ1

K

2π
θ ß

φ

The corresponding velocity components are obtained using Eqs. 6.30 as

Vr 52
@φ
@r

52
Λ cos θ

r2
1U cos θ ð1Þ

Vθ 52
1

r

@φ
@θ

52
Λ sin θ
r2

2U sin θ2
K

2πr
ð2Þ

The velocity field is

~V 5 Vr êr 1Vθ êθ

~V 5 2
Λ cos θ

r2
1U cos θ

� �
êr 1 2

Λ sin θ
r

2U sin θ2
K

2πr

� �
êθ ß

~V

Stagnation points are located where ~V 5 Vr êr 1Vθ êθ 5 0. From Eq. 1,

Vr 52
Λ cos θ

r2
1U cos θ 5 cos θ U2

Λ
r2

� �

Thus Vr5 0 when r 5
ffiffiffiffiffiffiffiffiffiffiffi
Λ=U

p
5 a ß

Cylinder surface

The stagnation points are located on r5 a. Substituting into Eq. 2 with r5 a,

Vθ 52
Λ sin θ
a2

2U sin θ2
K

2πa

52
Λ sin θ
Λ=U

2U sin θ2
K

2πa

Vθ 522U sin θ2
K

2πa

Thus Vθ5 0 along r5 a when

sin θ 52
K

4πUa
or θ 5 sin21 2K

4πUa

� �

Stagnation points: r5 a θ 5 sin2 1 2K

4πUa

� �
ß

Stagnation points

As in Example 6.11, Vr5 0 along r5 a, so this flow field once again represents flow around a circular cylinder, as
shown in Table 6.3. For K5 0 the solution is identical to that of Example 6.11.
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The presence of the free vortex (K. 0) moves the stagnation points below the center of the cylinder. Thus the
free vortex alters the vertical symmetry of the flow field. The flow field has two stagnation points for a range of vortex
strengths between K5 0 and K5 4πUa.

A single stagnation point is located at θ52π/2 when K5 4πUa.
Even with the free vortex present, the flow field is irrotational, so the Bernoulli equation may be applied between

any two points. Applying the equation between a point far upstream and a point on the surface of the cylinder we
obtain

pN
ρ

1
U2

2
1 gz 5

p

ρ
1

V2

2
1 gz

Thus, neglecting elevation differences,

p2 pN 5
1

2
ρ ðU2 2V2Þ 5 1

2
ρU2 12

U

V

� �2
" #

Along the surface r5 a and Vr5 0, so

V2 5 V2
θ 5 22U sin θ2

K

2πa

� �
2

and

V

U

� �2

5 4 sin2 θ 1
2K

πUa
sin θ1

K2

4π2U2a2

Thus

p 5 pN 1
1

2
ρU2 12 4 sin2θ2

2K

πUa
sinθ2

K2

4π2U2a2

� �
ß

pðθÞ

Drag is the force component parallel to the freestream flow direction. As in Example 6.11, the drag force is given by

FD 5

Z
A

2p dA cos θ 5

Z 2π

0

2pa dθb cos θ

since dA5 a dθ b, where b is the length of the cylinder normal to the diagram.
Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The

contribution of these terms to the drag force is

FDfv

1

2
ρU2

5

Z 2π

0

2K

πUa
sin θ1

K2

4π2U2a2

� �
ab cos θ dθ ð3Þ

FDfv

1

2
ρU2

5
2K

πUa
ab

sin2 θ
2

3
75
2π

0

1
K2

4π2U2a2
ab sin θ

�2π
0

5 0 ß

FD

Lift is the force component normal to the freestream flow direction. (Upward force is defined as positive lift.) The
lift force is given by

FL 5

Z
A

2p dA sin θ 5

Z 2π

0

2pa dθ bsin θ

p
�

V

θ

a

p

U
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Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The con-
tribution of these terms to the lift force is

FLfv

1

2
ρU2

5

Z 2π

0

2K

πUa
sin θ1

K2

4π2U2a2

0
@

1
Aab sin θ dθ

5
2K

πUa

Z 2π

0

ab sin2θdθ1
K2

4π2U2a2

Z 2π

0

ab sin θ dθ

5
2Kb

πU
θ
2
2

sin2 θ
4

2
4

3
5
2π

0

2
K2b

4π2U2a
cos θ

�2π
0

FLfv

1

2
ρU2

5
2Kb

πU
2π
2

2
4

3
5 5

2Kb

U

Then FLfv
5 ρUKb ß

FL

The circulation is defined by Eq. 5.18 as

Γ �
I

~V � d~s

On the cylinder surface, r5 a, and ~V 5 Vθ êθ; so

Γ 5

Z 2π

0

22U sin θ2
K

2πa

0
@

1
Aêθ � a dθ êθ

52

Z 2π

0

2Ua sin θ dθ2
Z 2π

0

K

2π
dθ

Γ 5 2K ß
Circulation

Substituting into the expression for lift,

FL 5 ρUKb 5 ρUð2ΓÞb 52ρU Γb

or the lift force per unit length of cylinder is

FL
b

52ρUΓ ß

FL
b

This problem illustrates:ü Once again d’Alembert’s paradox,
that potential flows do not generate
drag on a body.ü That the lift per unit length is2ρUΓ.
It turns out that this expression for
lift is the same for all bodies in an
ideal fluid flow, regardless of shape!The stream function and pres-

sure distribution are plotted in
the Excel workbook.

6.8 Summary and Useful Equations
In this chapter we have:

ü Derived Euler’s equations in vector form and in rectangular, cylindrical, and streamline coordinates.
ü Obtained Bernoulli’s equation by integrating Euler’s equation along a steady-flow streamline, and discussed its restrictions. We

have also seen how for a steady, incompressible flow through a stream tube the first law of thermodynamics reduces to the
Bernoulli equation if certain restrictions apply.
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ü Defined the static, dynamic, and stagnation (or total) pressures.
ü Defined the energy and hydraulic grade lines.
ü *Derived an unsteady flow Bernoulli equation, and discussed its restrictions.
ü *Observed that for an irrotational flow that is steady and incompressible, the Bernoulli equation applies between any two points

in the flow.
ü *Defined the velocity potential φ and discussed its restrictions.

Wehave also explored in detail two-dimensional, incompressible, and irrotational flows, and learned that for these flows:
the stream function ψ and the velocity potential φ satisfy Laplace’s equation; ψ and φ can be derived from the velocity
components, and vice versa, and the iso-lines of the stream function ψ and the velocity potential φ are orthogonal. We
explored for such flows how to combine potential flows to generate various flow patterns, and how to determine the
pressure distribution and lift and drag on, for example, a cylindrical shape.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

The Euler equation for
incompressible, inviscid
flow:

ρ
D~V

Dt
5 ρ~g2rp

(6.1) Page
237

The Euler equation
(rectangular
coordinates):

ρ
@u

@t
1 u

@u

@x
1 v

@u

@y
1w

@u

@z

� �
5 ρgx 2

@p

@x

ρ
@v
@t

1 u
@v
@x

1 v
@v
@y

1w
@v
@z

� �
5 ρgy 2

@p

@y

ρ
@w

@t
1 u

@w

@x
1 v

@w

@y
1w

@w

@z

� �
5 ρgz 2

@p

@z

(6.2a)

(6.2b)

(6.2c)

Page
237

The Euler equation
(cylindrical coordinates): ρar 5 ρ

@Vr

@t
1Vr

@Vr

@r
1

Vθ

r

@Vr

@θ
1Vz

@Vr

@z
2

V2
θ

r

� �
5 ρgr 2

@p

@r

ρaθ 5 ρ
@Vθ

@t
1Vr

@Vθ

@r
1

Vθ

r

@Vθ

@θ
1Vz

@Vθ

@z
1

VrVθ

r

� �
5 ρgθ 2

1

r

@p

@θ

ρaz 5 ρ
@Vz

@t
1Vr

@Vz

@r
1

Vθ

r

@Vz

@θ
1Vz

@Vz

@z

� �
5 ρgz 2

@p

@z

(6.3a)

(6.3b)

(6.3c)

Page
237

The Bernoulli equation
(steady, incompressible,
inviscid, along a
streamline):

p

ρ
1

V2

2
1 gz 5 constant

(6.8)
Page
242

Definition of total head
of a flow:

p

ρg
1

V2

2g
1 z 5 H (6.16a)

Page
258

Definition of energy
grade line (EGL): EGL 5

p

ρg
1

V2

2g
1 z (6.16b)

Page
258

Definition of hydraulic
grade line (HGL): HGL 5

p

ρg
1 z (6.16c)

Page
258

*These topics apply to sections that may be omitted without loss of continuity in the text material.
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Relation between EGL,
HGL, and dynamic
pressure:

EGL2HGL 5
V2

2g

(6.16d)
Page
258

The unsteady Bernoulli
equation (incompressi-
ble, inviscid, along a
streamline):

p1
ρ

1
V2

1

2
1 gz1 5

p2
ρ

1
V2

2

2
1 gz2 1

Z 2

1

@V

@t
ds

(6.21)
Page
W-16

Definition of stream
function (2D, incom-
pressible flow):

u 5
@ψ
@y

v 52
@ψ
@x

(5.4)
Page
262

Definition of velocity
potential (2D irrota-
tional flow):

u 52
@φ
@x

v 52
@φ
@y

(6.29)
Page
262

Definition of stream
function (2D, incom-
pressible flow, cylindrical
coordinates):

Vr 5
1

r

@ψ
@θ

and Vθ 52
@ψ
@r

(5.8)
Page
262

Definition of velocity
potential (2D irrota-
tional flow, cylindrical
coordinates):

Vr 52
@φ
@r

and Vθ 52
1

r

@φ
@θ

(6.33)
Page
263

Case Study

The Blended Wing-Body Aircraft

The X-48B prototype in the full-scale NASA tunnel. (Credit: Boeing/
Bob Ferguson)

Boeing Phantom Works has partnered with NASA and
the U.S. Air Force Research Laboratory to study an
advanced-concept, fuel-efficient, blended wing-body. It
is called a blended wing-body (BWB) because it looks

more like a modified triangular-shaped wing than tra-
ditional aircraft, which essentially consist of a tube and
wing with a tail. The concept of a BWB actually goes
back to the 1940s, but developments in composite
materials and fly-by-wire controls are making it more
feasible. Researchers have tested a 6.3-m wingspan
(8.5 percent scale) prototype of the X-48B, a BWB
aircraft that could have military and commercial appli-
cations. The next step is for NASA to flight-test a scale-
model variant called X-48C. The X-48C will be used to
examine how engines mounted to the rear and above
the body help to shield the ground from engine noise
on takeoff and approach. It also features tail fins for
additional noise shielding and for flight control.

The big difference between BWB aircraft and the tra-
ditional tube-and-wing aircraft, apart from the fact that
the tube is absorbed into the wing shape, is that it does
not have a tail. Traditional aircraft need a tail for stability
and control; theBWBuses a number of differentmultiple-
control surfaces and possibly tail fins to control the
vehicle. Therewill be a number of advantages to the BWB
if it proves feasible. Because the entire structure
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Problems
Euler’s Equation

6.1 Consider the flow field with velocity given by
~V 5 ½Aðy2 2 x2Þ2Bx�̂i1 ½2Axy1By�̂j;A5 1 ft21 � s21, B5 1
ft21 � s21; the coordinates are measured in feet. The density is
2 slug/ft3, and gravity acts in the negative y direction. Cal-
culate the acceleration of a fluid particle and the pressure
gradient at point (x, y)5 (1, 1).

6.2 An incompressible frictionless flow field is given by
~V ¼ ðAxþ ByÞîþ ðBx�AyÞĵ, whereA5 2 s21 andB5 2 s21,
and the coordinates are measured in meters. Find the magni-
tude anddirectionof the accelerationof afluidparticle at point
(x, y)5 (2, 2). Find the pressure gradient at the same point, if
~g ¼ �gĵ and the fluid is water.

6.3 A horizontal flow of water is described by the velocity
field ~V ¼ ð�Axþ BtÞîþ ðAyþ BtÞĵ, where A5 1 s21 and
B5 2 m/s2, x and y are in meters, and t is in seconds. Find
expressions for the local acceleration, the convective

acceleration, and the total acceleration. Evaluate these at point
(1, 2) at t5 5 seconds. Evaluaterp at the same point and time.

6.4 Avelocity field in a fluidwith density of 1000 kg/m3 is given
by ~V ¼ ð�Axþ ByÞtîþ ðAyþ BxÞtĵ, where A5 2 s22 and
B5 1 s22, x and y are inmeters, and t is in seconds. Body forces
are negligible. Evaluate rp at point (x, y)5 (1, 1) at t5 1 s.

6.5 Consider the flow field with velocity given by
~V 5 ½Aðx2 2 y2Þ2 3Bx�̂i2 ½2Axy2 3By�̂j, where A5 1 ft21 �
s21, B5 1 s21, and the coordinates are measured in feet. The
density is 2 slug/ft3 and gravity acts in the negative y direc-
tion. Determine the acceleration of a fluid particle and the
pressure gradient at point (x, y)5 (1, 1).

6.6 The x component of velocity in an incompressible flow
field is given by u5Ax, where A5 2 s21 and the coordinates
are measured in meters. The pressure at point (x, y)5 (0, 0)
is p05 190 kPa (gage). The density is ρ5 1.50 kg/m3 and the
z axis is vertical. Evaluate the simplest possible y component

generates lift, less power is needed for takeoff. Studies
have also shown that BWB designs can fit into the 80-m
(260-ft) envelope that is the current standard for airplane
maneuver at airports. A BWB could carry up to 1000
people, making such a future U.S. product a challenge to
Airbus’s A380 and future stretched versions.

Apart from possible fuel savings of up to 30 percent
due to improved streamlining, the interior of a

commercial BWB airplane would be radically different
from that of current airplanes. Passengers would enter a
room like a movie theater rather than a cramped half-
cylinder, there would be no windows (video screens
would be connected to external cameras instead),
and passengers would be seated in the large movie
theater�like room (because seating is not only in the
central core but also well out into the blended wings).
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of velocity. Calculate the fluid acceleration and determine
the pressure gradient at point (x, y)5 (2, 1). Find the pres-
sure distribution along the positive x axis.

6.7 Consider the flow field with velocity given by ~V 5

Ax sinð2πωtÞ̂i2Ay sinð2πωtÞ̂j, where A5 2 s21 and ω5 1 s21.
The fluid density is 2 kg/m3. Find expressions for the local
acceleration, the convective acceleration, and the total
acceleration. Evaluate these at point (1, 1) at t5 0, 0.5, and
1 seconds. Evaluate rp at the same point and times.

6.8 The velocity field for a plane source located distance
h5 1 m above an infinite wall aligned along the x axis is
given by

~V 5
q

2π½x2 1 ðy2hÞ2� ½x̂i1 ðy2 hÞ̂j �

1
q

2π½x2 1 ðy1hÞ2� ½x̂i1 ðy1hÞ̂j �

where q5 2 m3/s/m. The fluid density is 1000 kg/m3 and body
forces are negligible. Derive expressions for the velocity and
acceleration of a fluid particle that moves along the wall, and
plot from x5 0 to x5110h. Verify that the velocity and
acceleration normal to the wall are zero. Plot the pressure
gradient @p/@x along the wall. Is the pressure gradient along
the wall adverse (does it oppose fluid motion) or not?

y

x

h
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6.9 The velocity distribution in a two-dimensional steady
flow field in the xy plane is ~V 5 ðAx2BÞ̂i1 ðC2AyÞ̂j,
where A5 2 s21, B5 5 m � s21, and C5 3 m � s21; the coor-
dinates are measured in meters, and the body force dis-
tribution is ~g 52gk̂. Does the velocity field represent the
flow of an incompressible fluid? Find the stagnation point
of the flow field. Obtain an expression for the pressure gra-
dient in the flow field. Evaluate the difference in pressure
between point (x, y)5 (1, 3) and the origin, if the density is
1.2 kg/m3.

6.10 In a two-dimensional frictionless, incompressible
(ρ5 1500 kg/m3) flow, the velocity field in meters per second
is given by ~V ¼ ðAxþ ByÞîþ ðBx�AyÞĵ; the coordinates
are measured in meters, and A5 4 s21 and B5 2 s21. The
pressure is p05 200 kPa at point (x, y)5 (0, 0). Obtain an
expression for the pressure field, p(x, y) in terms of p0,A, and
B, and evaluate at point (x, y)5 (2, 2).

6.11 An incompressible liquid with a density of 1250 kg/m3

and negligible viscosity flows steadily through a horizontal
pipe of constant diameter. In a porous section of length L5
5m, liquid is removed at a constant rate per unit length so that
the uniform axial velocity in the pipe is uðxÞ ¼ Uð1� x=LÞ,
where U5 15 m/s. Develop expressions for and plot the
pressure gradient along the centerline. Evaluate the outlet

pressure if the pressure at the inlet to the porous section is
100 kPa (gage).

6.12 An incompressible liquid with a density of 900 kg/m3 and
negligible viscosity flows steadily through a horizontal pipe of
constant diameter. In a porous section of length L5 2 m,
liquid is removed at a variable rate along the length so that the
uniform axial velocity in the pipe is uðxÞ ¼ Ue�x=L, where
U5 20 m/s. Develop expressions for and plot the acceleration
of a fluid particle along the centerline of the porous section
and the pressure gradient along the centerline. Evaluate the
outlet pressure if the pressure at the inlet to the porous section
is 50 kPa (gage).

6.13 For the flow of Problem 4.123 show that the uniform
radial velocity is Vr5Q/2πrh. Obtain expressions for the r

component of acceleration of a fluid particle in the gap and
for the pressure variation as a function of radial distance
from the central holes.

6.14 The velocity field for a plane vortex sink is given by
~V 5 ð2q=2πrÞêr 1 ðK=2πrÞêθ, where q5 2 m3/s/m and
K5 1 m3/s/m. The fluid density is 1000 kg/m3. Find the
acceleration at (1, 0), (1, π/2), and (2, 0). Evaluate rp under
the same conditions.

6.15 An incompressible, inviscid fluid flows into a horizontal
round tube through its porous wall. The tube is closed at the
left end and the flow discharges from the tube to the atmo-
sphere at the right end. For simplicity, consider the x compo-
nent of velocity in the tube uniform across any cross section.
The density of the fluid is ρ, the tube diameter and length are
D and L, respectively, and the uniform inflow velocity is v0.
The flow is steady. Obtain an algebraic expression for the x
component of acceleration of a fluid particle located at posi-
tion x, in terms of v0, x, and D. Find an expression for the
pressure gradient, @p=@x, at position x. Integrate to obtain an
expression for the gage pressure at x5 0.

6.16 An incompressible liquid with negligible viscosity and
density ρ5 1.75 slug/ft3 flows steadily through a horizontal
pipe. The pipe cross-section area linearly varies from 15 in2 to
2.5 in2 over a length of 10 feet. Develop an expression for and
plot the pressure gradient and pressure versus position along
the pipe, if the inlet centerline velocity is 5 ft/s and inlet
pressure is 35 psi.What is the exit pressure?Hint:Use relation

u
@u

@x
¼ 1

2

@

@x
ðu2Þ

6.17 An incompressible liquid with negligible viscosity and
density ρ5 1250 kg/m3 flows steadily through a 5-m-long
convergent-divergent section of pipe for which the area
varies as

AðxÞ ¼ A0ð1þ e�x=a � e�x=2aÞ

where A05 0.25 m2 and a5 1.5 m. Plot the area for the first
5 m. Develop an expression for and plot the pressure gradient
and pressure versus position along the pipe, for the first 5 m,
if the inlet centerline velocity is 10 m/s and inlet pressure is
300 kPa. Hint: Use relation

u
@u

@x
¼ 1

2

@

@x
ðu2Þ
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6.18 A nozzle for an incompressible, inviscid fluid of density
ρ5 1000 kg/m3 consists of a converging section of pipe. At
the inlet the diameter is Di5 100 mm, and at the outlet the
diameter is Do5 20 mm. The nozzle length is L5 500 mm,
and the diameter decreases linearly with distance x along the
nozzle. Derive and plot the acceleration of a fluid particle,
assuming uniform flow at each section, if the speed at
the inlet is Vi5 1 m/s. Plot the pressure gradient through the
nozzle, and find its maximum absolute value. If the pressure
gradient must be no greater than 5 MPa/m in absolute value,
how long would the nozzle have to be?

6.19 A diffuser for an incompressible, inviscid fluid of den-
sity ρ5 1000 kg/m3 consists of a diverging section of pipe. At
the inlet the diameter is Di5 0.25 m, and at the outlet the
diameter is Do5 0.75 m. The diffuser length is L5 1 m, and
the diameter increases linearly with distance x along the
diffuser. Derive and plot the acceleration of a fluid particle,
assuming uniform flow at each section, if the speed at the
inlet is Vi5 5 m/s. Plot the pressure gradient through the
diffuser, and find its maximum value. If the pressure gradient
must be no greater than 25 kPa/m, how long would the dif-
fuser have to be?

6.20 Consider the flow of Problem 5.48. Evaluate the mag-
nitude and direction of the net pressure force that acts on the
upper plate between ri and R, if ri5R/2.

6.21 Consider again the flow field of Problem 5.65. Assume the
flow is incompressible with ρ5 1.23 kg/m3 and friction is neg-
ligible. Further assume the vertical air flow velocity is v05 15
mm/s, the half-width of the cavity isL5 22mm, and its height is
h5 1.2 mm. Calculate the pressure gradient at (x, y)5 (L, h).
Obtain an equation for the flow streamlines in the cavity.

6.22 A liquid layer separates two plane surfaces as shown.
The lower surface is stationary; the upper surface moves
downward at constant speed V. The moving surface has width
w, perpendicular to the plane of the diagram, and wc L. The
incompressible liquid layer, of density ρ, is squeezed from
between the surfaces. Assume the flow is uniform at any cross
section and neglect viscosity as a first approximation. Use a
suitably chosen control volume to show that u5Vx/b within
the gap, where b5b02Vt. Obtain an algebraic expression
for the acceleration of a fluid particle located at x. Determine
the pressure gradient, @p/@x, in the liquid layer. Find the
pressure distribution, p(x). Obtain an expression for the net
pressure force that acts on the upper (moving) flat surface.

x

L

b

u

y
V

Liquid
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6.23 A rectangular computer chip floats on a thin layer of air,
h5 0.5 mm thick, above a porous surface. The chip width is
b5 40 mm, as shown. Its length, L, is very long in the direction
perpendicular to thediagram.There isnoflow in thezdirection.
Assume flow in the x direction in the gap under the chip is
uniform. Flow is incompressible, and frictional effects may be

neglected. Use a suitably chosen control volume to show that
U(x)5qx/h in the gap. Find a general expression for the (2D)
accelerationofafluidparticle in the gap in termsofq,h,x, andy.
Obtain an expression for the pressure gradient @p/@x. Assum-
ing atmospheric pressure on the chip upper surface, find an
expression for the net pressure force on the chip; is it directed
upward or downward? Explain. Find the required flow rate q
(m3/s/m2) and themaximumvelocity, if themass per unit length
of the chip is 0.005kg/m. Plot the pressuredistribution as part of
your explanation of the direction of the net force.

b

Porous surface

U (x)

x

y

Uniform flow of air, q

h
"Chip"
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6.24 Heavy weights can be moved with relative ease on air
cushions by using a load pallet as shown. Air is supplied from
the plenum through porous surface AB. It enters the gap
vertically at uniform speed, q. Once in the gap, all air flows in
the positive x direction (there is no flow across the plane at
x5 0). Assume air flow in the gap is incompressible and
uniform at each cross section, with speed u(x), as shown in
the enlarged view. Although the gap is narrow (h { L),
neglect frictional effects as a first approximation. Use a
suitably chosen control volume to show that u(x)5qx/h in
the gap. Calculate the acceleration of a fluid particle in the
gap. Evaluate the pressure gradient, @p=@x, and sketch
the pressure distributionwithin the gap.Be sure to indicate the
pressure at x5L.

Air Load

Plenum

Air supply

q

BA

u (x)

x
L

h
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6.25 A velocity field is given by ~V 5 ½Ax3 1Bxy2 �̂i1
½Ay3 1Bx2y� ĵ; A5 0.2 m22 � s21, B is a constant, and the
coordinates are measured in meters. Determine the value and
units for B if this velocity field is to represent an incompres-
sible flow. Calculate the acceleration of a fluid particle at point
(x, y)5 (2, 1). Evaluate the component of particle acceleration
normal to the velocity vector at this point.

6.26 The y component of velocity in a two-dimensional
incompressible flow field is given by v52Axy, where v is in
m/s, the coordinates are measured in meters, and A5 1
m21 � s21. There is no velocity component or variation in the
z direction. Calculate the acceleration of a fluid particle at
point (x, y)5 (1, 2). Estimate the radius of curvature of the
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streamline passing through this point. Plot the streamline
and show both the velocity vector and the acceleration vec-
tor on the plot. (Assume the simplest form of the x compo-
nent of velocity.)

6.27 Consider the velocity field ~V 5A[x42 6x2y21 y4]î1B
[x3y2 xy3]ĵ; A5 2 m23 � s21, B is a constant, and the coor-
dinates are measured in meters. Find B for this to be an
incompressible flow. Obtain the equation of the streamline
through point (x, y)5 (1, 2). Derive an algebraic expression
for the acceleration of a fluid particle. Estimate the radius of
curvature of the streamline at (x, y)5 (1, 2).

6.28 The velocity field for aplanedoublet is given inTable 6.2.
Find an expression for the pressure gradient at any point (r, θ).

6.29 Air flow over a stationary circular cylinder of radius a is
modeled as a steady, frictionless, and incompressible flow
from right to left, given by the velocity field

~V ¼ U
a

r

� 	2

� 1

� �
cos θ êr þU

a

r

� 	2

þ 1

� �
sin θ êθ

Consider flow along the streamline forming the cylinder
surface, r5 a. Express the components of the pressure gra-
dient in terms of angle θ. Obtain an expression for the var-
iation of pressure (gage) on the surface of the cylinder. For
U5 75 m/s and a5 150 mm, plot the pressure distribution
(gage) and explain, and find the minimum pressure. Plot the
speed V as a function of r along the radial line θ5π/2 for
r. a (that is, directly above the cylinder), and explain.

6.30 To model the velocity distribution in the curved inlet
section of a water channel, the radius of curvature of the
streamlines is expressed asR5LR0/2y. As an approximation,
assume the water speed along each streamline is V5 10 m/s.
Find an expression for and plot the pressure distribution from
y5 0 to the tunnel wall at y5L/2, if the centerline pressure
(gage) is 50 kPa,L5 75 mm, andR05 0.2 m. Find the value of
V for which the wall static pressure becomes 35 kPa.

R

R0

y

x

L___
2
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6.31 Air at 20 psia and 100�F flows around a smooth corner
at the inlet to a diffuser. The air speed is 150 ft/s, and the
radius of curvature of the streamlines is 3 in. Determine
the magnitude of the centripetal acceleration experienced by
a fluid particle rounding the corner. Express your answer in
gs. Evaluate the pressure gradient, @p/@r.

6.32 Repeat Example 6.1, but with the somewhat more
realistic assumption that the flow is similar to a free vortex

(irrotational) profile, Vθ5 c/r (where c is a constant), as
shown in Fig. P6.32. In doing so, prove that the flow rate is
given by Q 5 k

ffiffiffiffiffiffiffi
Δp

p
, where k is

k 5 w ln
r2
r1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r22r

2
1

ρðr22 2 r21Þ

s

and w is the depth of the bend.

r1

Vθ

θ

r2
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6.33 The velocity field in a two-dimensional, steady, inviscid
flow field in the horizontal xy plane is given by
~V 5 ðAx1BÞ̂i 2 Aŷj, where A5 1 s21 and B5 2 m/s; x and
y are measured in meters. Show that streamlines for this flow
are given by (x1B/A)y5 constant. Plot streamlines passing
through points (x, y)5 (1, 1), (1, 2), and (2, 2). At point
(x, y)5 (1, 2), evaluate and plot the acceleration vector and
the velocity vector. Find the component of acceleration
along the streamline at the same point; express it as a vector.
Evaluate the pressure gradient along the streamline at the
same point if the fluid is air. What statement, if any, can you
make about the relative value of the pressure at points (1, 1)
and (2, 2)?

6.34 Using the analyses of Example 6.1 and Problem 6.32,
plot the discrepancy (percent) between the flow rates
obtained from assuming uniform flow and the free vortex
(irrotational) profile as a function of inner radius r1.

6.35 The x component of velocity in a two-dimensional,
incompressible flow field is given by u5Ax2; the coordi-
nates are measured in feet and A5 1 ft21 � s21. There is no
velocity component or variation in the z direction. Calcu-
late the acceleration of a fluid particle at point (x, y)5 (1,
2). Estimate the radius of curvature of the streamline
passing through this point. Plot the streamline and show
both the velocity vector and the acceleration vector on the
plot. (Assume the simplest form of the y component of
velocity.)

6.36 The x component of velocity in a two-dimensional
incompressible flow field is given by u 52Λðx2 2 y2Þ=
ðx2 1 y2Þ2, where u is in m/s, the coordinates are measured in
meters, and Λ5 2 m3 � s21. Show that the simplest form of the
y component of velocity is given by v 522Λxy=ðx2 1 y2Þ2.
There is no velocity component or variation in the z direc-
tion. Calculate the acceleration of fluid particles at points
(x, y)5 (0, 1), (0, 2), and (0, 3). Estimate the radius of cur-
vature of the streamlines passing through these points. What
does the relation among the three points and their radii of
curvature suggest to you about the flow field? Verify this by
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plotting these streamlines. [Hint: You will need to use an
integrating factor.]

6.37 The x component of velocity in a two-dimensional,
incompressible flow field is given by u5Axy; the coordi-
nates are measured in meters and A5 2 m21 � s21. There is
no velocity component or variation in the z direction.
Calculate the acceleration of a fluid particle at point
(x, y)5 (2, 1). Estimate the radius of curvature of the
streamline passing through this point. Plot the streamline
and show both the velocity vector and the acceleration
vector on the plot. (Assume the simplest form of the y
component of velocity.)

The Bernoulli Equation

6.38 Water flows at a speed of 25 ft/s. Calculate the dynamic
pressure of this flow. Express your answer in inches of
mercury.

6.39 Calculate the dynamic pressure that corresponds to a
speed of 100 km/hr in standard air. Express your answer in
millimeters of water.

6.40 Plot the speed of air versus the dynamic pressure
(in millimeters of mercury), up to a dynamic pressure of
250 mm Hg.

6.41 You present your open hand out of the window of an
automobile perpendicular to the airflow. Assuming for sim-
plicity that the air pressure on the entire front surface is
stagnation pressure (with respect to automobile coordi-
nates), with atmospheric pressure on the rear surface, esti-
mate the net force on your hand when driving at (a) 30 mph
and (b) 60 mph. Do these results roughly correspond with
your experience? Do the simplifications tend to make the
calculated force an over- or underestimate?

6.42 A jet of air from a nozzle is blown at right angles
against a wall in which two pressure taps are located. A
manometer connected to the tap directly in front of the
jet shows a head of 25 mm of mercury above atmospheric.
Determine the approximate speed of the air leaving the
nozzle if it is at 210�C and 200 kPa. At the second tap
a manometer indicates a head of 5 mm of mercury
above atmospheric; what is the approximate speed of the air
there?

6.43 A pitot-static tube is used to measure the speed of air at
standard conditions at a point in a flow. To ensure that the
flow may be assumed incompressible for calculations of
engineering accuracy, the speed is to be maintained at 100
m/s or less. Determine the manometer deflection, in milli-
meters of water, that corresponds to the maximum desirable
speed.

6.44 The inlet contraction and test section of a laboratory
wind tunnel are shown. The air speed in the test section is
U5 50 m/s. A total-head tube pointed upstream indicates
that the stagnation pressure on the test section centerline is
10 mm of water below atmospheric. The laboratory is main-
tained at atmospheric pressure and a temperature of 25�C.
Evaluate the dynamic pressure on the centerline of the wind
tunnel test section. Compute the static pressure at the same
point. Qualitatively compare the static pressure at the tunnel
wall with that at the centerline. Explain why the two may not
be identical.

Contraction
Test section

U = 50 m/sFlow

P6.44

6.45 Maintenance work on high-pressure hydraulic systems
requires special precautions. A small leak can result in a high-
speed jet of hydraulic fluid that can penetrate the skin and
cause serious injury (therefore troubleshooters are cautioned
to use a piece of paper or cardboard, not a finger, to search for
leaks). Calculate and plot the jet speed of a leak versus system
pressure, for pressures up to 40 MPa (gage). Explain how a
high-speed jet of hydraulic fluid can cause injury.

6.46 An open-circuit wind tunnel draws in air from the
atmosphere through a well-contoured nozzle. In the test
section, where the flow is straight and nearly uniform, a static
pressure tap is drilled into the tunnel wall. A manometer
connected to the tap shows that static pressure within the
tunnel is 45 mm of water below atmospheric. Assume that
the air is incompressible, and at 25�C, 100 kPa (abs). Cal-
culate the air speed in the wind-tunnel test section.

6.47 The wheeled cart shown in Problem 4.128 rolls with
negligible resistance. The cart is to accelerate to the right.
The jet speed is V5 40 m/s. The jet area remains constant at
A5 25 mm2. Neglect viscous forces between the water and
vane. When the cart attains speed U5 15 m/s, calculate the
stagnation pressure of the water leaving the nozzle with
respect to a fixed observer, the stagnation pressure of the
water jet leaving the nozzle with respect to an observer on
the vane, the absolute velocity of the jet leaving the vane
with respect to a fixed observer, and the stagnation pressure
of the jet leaving the vane with respect to a fixed observer.
How would viscous forces affect the latter stagnation pres-
sure, i.e., would viscous forces increase, decrease, or leave
unchanged this stagnation pressure? Justify your answer.

6.48 Water flows steadily up the vertical 1-in.-diameter pipe
and out the nozzle, which is 0.5 in. in diameter, discharging to
atmospheric pressure. The stream velocity at the nozzle exit
must be 30 ft/s. Calculate the minimum gage pressure
required at section 1 . If the device were inverted, what
would be the required minimum pressure at section 1 to
maintain the nozzle exit velocity at 30 ft/s?

2

1

Fl
ow

10 ft

V2
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6.49 Water flows in a circular duct. At one section the diam-
eter is 0.3m, the static pressure is 260 kPa (gage), the velocity is
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3 m/s, and the elevation is 10 m above ground level. At a sec-
tion downstream at ground level, the duct diameter is 0.15 m.
Find the gage pressure at the downstream section if frictional
effects may be neglected.

6.50 You are on a date. Your date runs out of gas unex-
pectedly. You come to your own rescue by siphoning gas from
another car. The height difference for the siphon is about 1 ft.
The hose diameter is 0.5 in. What is your gasoline flow rate?

6.51 You (a young person of legal drinking age) are making
homemade beer. As part of the process you have to siphon
the wort (the fermenting beer with sediment at the bottom)
into a clean tank using a 5-mm ID tubing. Being a young
engineer, you’re curious about the flow you can produce.
Find an expression for and plot the flow rate Q (liters per
minute) versus the differential in height h (millimeters)
between the wort free surface and the location of the hose
exit. Find the value of h for which Q5 2 L/min.

6.52 A tank at a pressure of 50 kPa (gage) gets a pinhole
rupture and benzene shoots into the air. Ignoring losses, to
what height will the benzene rise?

6.53 A can of Coke (you’re not sure if it’s diet or regular) has
a small pinhole leak in it. The Coke sprays vertically into the
air to a height of 0.5 m. What is the pressure inside the can of
Coke? (Estimate for both kinds of Coke.)

6.54 The water flow rate through the siphon is 5 L/s, its
temperature is 20�C, and the pipe diameter is 25 mm.
Compute the maximum allowable height, h, so that the
pressure at point A is above the vapor pressure of the water.
(Assume the flow is frictionless.)

A

h

D = 25 mm

Flow
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6.55 A stream of liquid moving at low speed leaves a nozzle
pointed directly downward. The velocity may be considered
uniform across the nozzle exit and the effects of friction may
be ignored. At the nozzle exit, located at elevation z0, the jet
velocity and area are V0 and A0, respectively. Determine the
variation of jet area with elevation.

6.56 Water flows from a very large tank through a 5-cm-
diameter tube. The dark liquid in the manometer is mercury.
Estimate the velocity in the pipe and the rate of discharge
from the tank. (Assume the flow is frictionless.)

75 cm
4 m

15 cm

5 cm

Flow

Mercury

P6.56

6.57 In a laboratory experiment, water flows radially out-
ward at moderate speed through the space between circular
plane parallel disks. The perimeter of the disks is open
to the atmosphere. The disks have diameterD5 150 mm and
the spacing between the disks is h5 0.8 mm. The measured
mass flow rate of water is �m 5 305 g/s. Assuming frictionless
flow in the space between the disks, estimate the theoretical
static pressure between the disks at radius r5 50 mm. In the
laboratory situation, where some friction is present, would
the pressure measured at the same location be above or
below the theoretical value? Why?

6.58 Consider frictionless, incompressible flow of air over
the wing of an airplane flying at 200 km/hr. The air
approaching the wing is at 65 kPa and 210�C. At a certain
point in the flow, the pressure is 60 kPa. Calculate the speed
of the air relative to the wing at this point and the absolute
air speed.

6.59 A speedboat on hydrofoils is moving at 20 m/s in a
freshwater lake. Each hydrofoil is 3 m below the surface.
Assuming, as an approximation, frictionless, incompres-
sible flow, find the stagnation pressure (gage) at the front
of each hydrofoil. At one point on a hydrofoil, the pressure
is 275 kPa (gage). Calculate the speed of the water rela-
tive to the hydrofoil at this point and the absolute water
speed.

6.60 A mercury barometer is carried in a car on a day when
there is no wind. The temperature is 20�C and the corrected
barometer height is 761 mm of mercury. One window is
open slightly as the car travels at 105 km/hr. The barometer
reading in the moving car is 5 mm lower than when the car
is stationary. Explain what is happening. Calculate the local
speed of the air flowing past the window, relative to the
automobile.

6.61 A fire nozzle is coupled to the end of a hose with inside
diameter D5 3 in. The nozzle is contoured smoothly and has
outlet diameter d5 1 in. The design inlet pressure for the
nozzle is p15 100 psi (gage). Evaluate the maximum flow
rate the nozzle could deliver.

6.62 A racing car travels at 235 mph along a straightaway.
The team engineer wishes to locate an air inlet on the body
of the car to obtain cooling air for the driver’s suit. The plan
is to place the inlet at a location where the air speed is
60 mph along the surface of the car. Calculate the static
pressure at the proposed inlet location. Express the pressure
rise above ambient as a fraction of the freestream dynamic
pressure.

6.63 Steady, frictionless, and incompressible flow from left to
right over a stationary circular cylinder, of radius a, is
represented by the velocity field

~V 5 U 12
a

r

� 	2
� �

cos θ êr 2U 11
a

r

� 	2
� �

sin θ êθ

Obtain an expression for the pressure distribution along the
streamline forming the cylinder surface, r5 a. Determine
the locations where the static pressure on the cylinder is
equal to the freestream static pressure.

6.64 The velocity field for a plane source at a distance h
above an infinite wall aligned along the x axis was given in
Problem 6.8. Using the data from that problem, plot the
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pressure distribution along the wall from x5210h to x5
110h (assume the pressure at infinity is atmospheric). Find
the net force on the wall if the pressure on the lower surface
is atmospheric. Does the force tend to pull the wall towards
the source, or push it away?

6.65 The velocity field for a plane doublet is given in Table
6.2. If Λ5 3 m3 � s21, the fluid density is ρ5 1.5 kg/m3, and
the pressure at infinity is 100 kPa, plot the pressure along the
x axis from x522.0 m to 20.5 m and x5 0.5 m to 2.0 m.

6.66 A smoothly contoured nozzle, with outlet diameter
d5 20 mm, is coupled to a straight pipe by means of flanges.
Water flows in the pipe, of diameter D5 50 mm, and the
nozzle discharges to the atmosphere. For steady flow and
neglecting the effects of viscosity, find the volume flow rate
in the pipe corresponding to a calculated axial force of 45.5 N
needed to keep the nozzle attached to the pipe.

6.67 A fire nozzle is coupled to the end of a hose with inside
diameter D5 75 mm. The nozzle is smoothly contoured and
its outlet diameter is d5 25 mm. The nozzle is designed to
operate at an inlet water pressure of 700 kPa (gage).
Determine the design flow rate of the nozzle. (Express your
answer in L/s.) Evaluate the axial force required to hold the
nozzle in place. Indicate whether the hose coupling is in
tension or compression.

6.68 Water flows steadily through a 3.25-in.-diameter pipe
and discharges through a 1.25-in.-diameter nozzle to atmo-
spheric pressure. The flow rate is 24.5 gpm. Calculate the
minimum static pressure required in the pipe to produce this
flow rate. Evaluate the axial force of the nozzle assembly on
the pipe flange.

6.69 Water flows steadily through the reducing elbow
shown. The elbow is smooth and short, and the flow accel-
erates; so the effect of friction is small. The volume flow rate
is Q5 2.5 L/s. The elbow is in a horizontal plane. Estimate
the gage pressure at section 1 . Calculate the x component
of the force exerted by the reducing elbow on the supply
pipe.

Supply pipe

Reducing elbow

d = 25 mmPlan viewx

y

D = 45 mm

p1

P6.69

6.70 A flow nozzle is a device for measuring the flow
rate in a pipe. This particular nozzle is to be used to
measure low-speed air flow for which compressibility may
be neglected. During operation, the pressures p1 and p2 are
recorded, as well as upstream temperature, T1. Find the
mass flow rate in terms ofΔp5 p2� p1 and T1, the gas constant
for air, and device diameters D1 and D2. Assume the flow is
frictionless. Will the actual flow be more or less than this pre-
dicted flow?Why?

Flow
D1 D2

P6.70

6.71 The branching of a blood vessel is shown. Blood at a
pressure of 140 mm Hg flows in the main vessel at 4.5 L/min.
Estimate the blood pressure in each branch, assuming that
blood vessels behave as rigid tubes, that we have frictionless
flow, and that the vessel lies in the horizontal plane. What is
the force generated at the branch by the blood? You may
approximate blood to have a density of 1060 kg/m3.

45°

60°

D1 = 1 cm

Q3

D3 = 3 mm

D2 = 5 mm

Q2 = 2 L/min

Q1 = 4.5 L/min
p1 = 140 mm Hg

P6.71

6.72 An object, with a flat horizontal lower surface, moves
downward into the jet of the spray system of Problem 4.81 with
speed U5 5 ft/s. Determine the minimum supply pressure
needed toproduce the jet leaving the spray systematV5 15 ft/s.
Calculate themaximumpressureexertedby the liquid jet on the
flat object at the instant when the object is h5 1.5 ft above
the jet exit. Estimate the force of thewater jet on the flat object.

6.73 A water jet is directed upward from a well-designed
nozzle of areaA15 600mm2; the exit jet speed isV15 6.3 m/s.
The flow is steady and the liquid stream does not break up.
Point 2 is located H5 1.55 m above the nozzle exit plane.
Determine the velocity in the undisturbed jet at point 2 .
Calculate the pressure that would be sensed by a stagnation
tube located there. Evaluate the force that would be exerted
on a flat plate placed normal to the stream at point 2 . Sketch
the pressure distribution on the plate.

6.74 Water flows out of a kitchen faucet of 1.25 cm diameter
at the rate of 0.1 L/s. The bottom of the sink is 45 cm below
the faucet outlet. Will the cross-sectional area of the fluid
stream increase, decrease, or remain constant between the
faucet outlet and the bottom of the sink? Explain briefly.
Obtain an expression for the stream cross section as a
function of distance y above the sink bottom. If a plate is
held directly under the faucet, how will the force required to
hold the plate in a horizontal position vary with height above
the sink? Explain briefly.

6.75 An old magic trick uses an empty thread spool and a
playing card. The playing card is placed against the bottom of
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the spool. Contrary to intuition, when one blows downward
through the central hole in the spool, the card is not blown
away. Instead it is “sucked” up against the spool. Explain.

6.76 Ahorizontal axisymmetric jet of air with 0.4 in. diameter
strikes a stationary vertical disk of 7.5 in. diameter. The jet
speed is 225 ft/s at the nozzle exit. A manometer is connected
to the center of the disk. Calculate (a) the deflection, if
the manometer liquid has SG5 1.75, (b) the force exerted by
the jet on the disk, and (c) the force exerted on the disk if it is
assumed that the stagnation pressure acts on the entire for-
ward surface of the disk. Sketch the streamline pattern and
plot the distribution of pressure on the face of the disk.

6.77 The tank, of diameterD, has a well-rounded nozzle with
diameter d. At t5 0, the water level is at height h0. Develop an
expression for dimensionless water height, h/h0, at any later
time. For D/d5 10, plot h/h0 as a function of time with h0 as
a parameter for 0.1 # h0 # 1 m. For h05 1 m, plot h/h0 as a
function of time withD/d as a parameter for 2# D/d # 10.

h0 h

H
Tank

diameter, D

Jet diameter, d

P6.77

6.78 The water level in a large tank is maintained at heightH
above the surrounding level terrain. A rounded nozzle
placed in the side of the tank discharges a horizontal jet.
Neglecting friction, determine the height h at which the
orifice should be placed so the water strikes the ground at
the maximum horizontal distance X from the tank. Plot jet
speed V and distance X as functions of h (0,h,H).

6.79 The flow over a Quonset hut may be approximated by
the velocity distribution of Problem 6.63 with 0 # θ # π.
During a storm the wind speed reaches 100 km/hr; the out-
side temperature is 5�C. A barometer inside the hut reads
720 mm of mercury; pressure pN is also 720 mm Hg. The hut
has a diameter of 6 m and a length of 18 m. Determine the
net force tending to lift the hut off its foundation.

Quonset hut

θ
R

U
p

�

P6.79

6.80 Many recreation facilities use inflatable “bubble”
structures. A tennis bubble to enclose four courts is shaped
roughly as a circular semicylinder with a diameter of 50 ft and
a length of 50 ft. The blowers used to inflate the structure
can maintain the air pressure inside the bubble at 0.75 in. of
water above ambient pressure. The bubble is subjected to a
wind that blows at 35 mph in a direction perpendicular to the

axis of the semicylindrical shape. Using polar coordinates,
with angle θmeasured from the ground on the upwind side of
the structure, the resulting pressure distribution may be
expressed as

p� pN
1

2
ρV2

N

¼ 1� 4 sin2 θ

where p is the pressure at the surface, pN the atmospheric
pressure, and Vw the wind speed. Determine the net vertical
force exerted on the structure.

6.81 High-pressure air forces a stream of water from a tiny,
rounded orifice, of area A, in a tank. The pressure is high
enough that gravity may be neglected. The air expands slowly,
so that the expansionmay be considered isothermal. The initial
volumeof air in the tank isV---0.At later instants the volumeofair
is V---(t); the total volume of the tank is V---t. Obtain an algebraic
expression for the mass flow rate of water leaving the tank.
Find an algebraic expression for the rate of change in mass of
the water inside the tank. Develop an ordinary differential
equation and solve for the watermass in the tank at any instant.
If V---05 5 m3, V---t5 10 m3, A5 25 mm2, and p05 1 MPa, plot
thewatermass in the tankversus time for the first fortyminutes.

6.82 Water flows at low speed through a circular tube with
inside diameter of 2 in. A smoothly contoured body of 1.5 in.
diameter is held in the end of the tube where the water dis-
charges to atmosphere. Neglect frictional effects and assume
uniformvelocityprofiles at each section.Determine thepressure
measured by the gage and the force required to hold the body.

F

V2

V2

V1 = 20 ft/s

P6.82

6.83 Repeat Problem 6.81 assuming the air expands so
rapidly that the expansion may be treated as adiabatic.

6.84 Describe the pressure distribution on the exterior of a
multistory building in a steady wind. Identify the locations of
the maximum and minimum pressures on the outside of the
building. Discuss the effect of these pressures on infiltration
of outside air into the building.

6.85 Imagine a garden hosewith a stream of water flowing out
through a nozzle. Explain why the end of the hose may be
unstable when held a half meter or so from the nozzle end.

6.86 An aspirator provides suction by using a stream of water
flowing through a venturi. Analyze the shape and dimensions
of such a device. Comment on any limitations on its use.

6.87 Atankwitha reentrantorificecalledaBordamouthpiece is
shown. The fluid is inviscid and incompressible. The reentrant
orifice essentially eliminates flow along the tank walls, so the
pressure there is nearly hydrostatic. Calculate the contraction
coefficient, Cc5Aj/A0. Hint: Equate the unbalanced hydro-
static pressure force and momentum flux from the jet.
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Unsteady Bernoulli Equation

*6.88 Apply the unsteady Bernoulli equation to the U-tube
manometer of constant diameter shown. Assume that the
manometer is initially deflected and then released. Obtain a
differential equation for l as a function of time.

l

l

P6.88

*6.89 Compressed air is used to accelerate water from a
tube. Neglect the velocity in the reservoir and assume the
flow in the tube is uniform at any section. At a particular
instant, it is known that V5 6 ft/s and dV/dt5 7.5 ft/s2. The
cross-sectional area of the tube is A5 32 in.2. Determine the
pressure in the tank at this instant.

L = 35 ftWaterh = 4.5 ft

p

P6.89, P6.90, P6.92

*6.90 If the water in the pipe in Problem 6.89 is initially at
rest and the air pressure is 3 psig, what will be the initial
acceleration of the water in the pipe?

*6.91 Consider the reservoir and disk flow system with the
reservoir level maintained constant. Flow between the disks
is started from rest at t5 0. Evaluate the rate of change of
volume flow rate at t5 0, if r15 50 mm.

C
r1

rC

R

h = 1.5 mm

H = 1 m

P6.91

*6.92 If the water in the pipe of Problem 6.89 is initially
at rest, and the air pressure is maintained at 1.5 psig, derive
a differential equation for the velocity V in the pipe as a
function of time, integrate, and plot V versus t for t5 0 to 5 s.

*6.93 Consider the tank of Problem 4.46. Using the Ber-
noulli equation for unsteady flow along a streamline, evalu-
ate the minimum diameter ratio, D/d, required to justify the
assumption that flow from the tank is quasi-steady.

*6.94 Two circular disks, of radius R, are separated by dis-
tance b. The upper disk moves toward the lower one at
constant speed V. The space between the disks is filled with a
frictionless, incompressible fluid, which is squeezed out as the
disks come together. Assume that, at any radial section, the
velocity is uniform across the gap width b. However, note that
b is a function of time. The pressure surrounding the disks is
atmospheric. Determine the gage pressure at r5 0.

Energy Grade Line And Hydraulic Grade Line

6.95 Carefully sketch the energy grade lines (EGL) and
hydraulic grade lines (HGL) for the system shown in Fig. 6.6
if the pipe is horizontal (i.e., the outlet is at the base of the
reservoir), and a water turbine (extracting energy) is located
at point 2 , or at point 3 . In Chapter 8 we will investigate
the effects of friction on internal flows. Can you anticipate
and sketch the effect of friction on the EGL and HGL for the
two cases?

6.96 Carefully sketch the energy grade lines (EGL) and
hydraulic grade lines (HGL) for the system shown in Fig. 6.6
if a pump (adding energy to the fluid) is located at point 2 ,
or at point 3 , such that flow is into the reservoir. In Chapter
8 we will investigate the effects of friction on internal flows.
Can you anticipate and sketch the effect of friction on the
EGL and HGL for the two cases?

Irrotational Flow

*6.97 Determine whether the Bernoulli equation can be
applied between different radii for the vortex flow fields
(a) ~V 5 ωr êθ and (b) ~V 5 êθ K=2πr:

*6.98 Consider a two-dimensional fluid flow: u5 ax+by and
v5 cx+ dy, where a, b, c and d are constant. If the flow is
incompressible and irrotational, find the relationships among
a, b, c, and d. Find the stream function and velocity potential
function of this flow.

*6.99 Consider the flow represented by the stream function
ψ5Ax2y, where A is a dimensional constant equal to 2.5
m21 � s21. The density is 1200 kg/m3. Is the flow rotational?
Can the pressure difference between points (x, y)5 (1, 4) and
(2, 1) be evaluated? If so, calculate it, and if not, explain why.

*6.100 The velocity field for a two-dimensional flow is
~V 5 ðAx� ByÞtı̂� ðBxþAyÞtĵ, where A5 1 s22 B5 2 s22,
t is in seconds, and the coordinates are measured in meters.
Is this a possible incompressible flow? Is the flow steady or
unsteady? Show that the flow is irrotational and derive an
expression for the velocity potential.

*6.101 Using Table 6.2, find the stream function and velocity
potential for a plane source, of strength q, near a 90� corner.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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The source is equidistant h from each of the two infinite
planes that make up the corner. Find the velocity distribution
along one of the planes, assuming p5p0 at infinity. By
choosing suitable values for q and h, plot the streamlines and
lines of constant velocity potential. (Hint: Use the Excel
workbook of Example 6.10.)

*6.102 The flow field for a plane source at a distance h

above an infinite wall aligned along the x axis is given by

~V 5
q

2π½x2 1 ðy2hÞ2� ½x̂i1 ðy2 hÞ̂j �

1
q

2π½x2 1 ðy1 hÞ2� ½x̂i1 ðy1hÞ̂j �

where q is the strength of the source. The flow is irrotational
and incompressible. Derive the stream function and velocity
potential. By choosing suitable values for q and h, plot the
streamlines and lines of constant velocity potential. (Hint:
Use the Excel workbook of Example 6.10.)

*6.103 Using Table 6.2, find the stream function and veloc-
ity potential for a plane vortex, of strength K, near a 90�

corner. The vortex is equidistant h from each of the two
infinite planes that make up the corner. Find the velocity
distribution along one of the planes, assuming p5p0 at
infinity. By choosing suitable values for K and h, plot the
streamlines and lines of constant velocity potential. (Hint:
Use the Excel workbook of Example Problem 6.10.)

*6.104 The stream function of a flow field is
ψ 5 Ax2y2By3, where A5 1 m21 � s21, B5 1

3 m
21 � s21, and

the coordinates are measured in meters. Find an expression
for the velocity potential.

*6.105 A flow field is represented by the stream function
ψ 5 x5 � 10x3y2 þ 5xy4. Find the corresponding velocity
field. Show that this flow field is irrotational and obtain the
potential function.

*6.106 The stream function of a flow field is
ψ ¼ Ax3 � Bxy2, where A5 1 m21 � s21 and B5 3 m21 � s21,
and coordinates are measured in meters. Find an expression
for the velocity potential.

*6.107 The stream function of a flow field is ψ ¼ Ax3þ
Bðxy2 þ x2 � y2Þ, where ψ, x, y, A, and B are all dimen-
sionless. Find the relation between A and B for this to be an
irrotational flow. Find the velocity potential.

*6.108 A flow field is represented by the stream function
ψ ¼ x5 � 15x4y2 þ 15x2y4 � y6. Find the corresponding
velocity field. Show that this flow field is irrotational and
obtain the potential function.

*6.109 Consider the flow field represented by the potential
function φ5Ax21Bxy2Ay2. Verify that this is an incom-
pressibleflowanddetermine thecorresponding streamfunction.

*6.110 Consider the flow field presented by the potential
function φ ¼ x5 � 10x3y2 þ 5xy4 � x2 þ y2. Verify that this is
an incompressible flow, and obtain the corresponding stream
function.

*6.111 Consider the flow field presented by the potential
function φ5 x6 2 15x4y2 1 15x2y4 2 y6. Verify that this is an
incompressible flow and obtain the corresponding stream
function.

*6.112 Show by expanding and collecting real and imaginary
terms that f5 z6 (where z is the complex number z5 x + iy)
leads to a valid velocity potential (the real part of f ) and a
corresponding stream function (the negative of the imagi-
nary part of f) of an irrotational and incompressible flow.
Then show that the real and imaginary parts of df/dz yield
2u and v, respectively.

*6.113 Show that any differentiable function f(z) of the
complex number z5 x + iy leads to a valid potential (the real
part of f) and a corresponding stream function (the negative
of the imaginary part of f) of an incompressible, irrotational
flow. To do so, prove using the chain rule that f(z)
automatically satisfies the Laplace equation. Then show that
df/dz =2u + iv.

*6.114 Consider the flow field represented by the velocity
potential φ5Ax1Bx22By2, where A5 1 m � s21,
B5 1 m21 � s21, and the coordinates are measured in meters.
Obtain expressions for the velocity field and the stream
function. Calculate the pressure difference between the ori-
gin and point (x, y)5 (1, 2).

*6.115 A flow field is represented by the potential function
φ 5 Ay3 2Bx2y, where A5 1/3m21 � s21, B5 1m21 � s21,
and the coordinates are measured in meters. Obtain an
expression for the magnitude of the velocity vector. Find the
stream function for the flow. Plot the streamlines and
potential lines, and visually verify that they are orthogonal.
(Hint: Use the Excel workbook of Example 6.10.)

*6.116 An incompressible flow field is characterized by the
stream function ψ5 3Ax2y2Ay3, where A5 1 m21 � s21.
Show that this flow field is irrotational. Derive the velocity
potential for the flow. Plot the streamlines and potential
lines, and visually verify that they are orthogonal. (Hint: Use
the Excel workbook of Example 6.10.)

*6.117 A certain irrotational flow field in the xy plane has
the stream function ψ5Bxy, where B5 0.25 s21, and the
coordinates are measured in meters. Determine the rate of
flow between points (x, y)5 (2, 2) and (3, 3). Find the
velocity potential for this flow. Plot the streamlines and
potential lines, and visually verify that they are orthogonal.
(Hint: Use the Excel workbook of Example 6.10.)

*6.118 The velocity distribution in a two-dimensional,
steady, inviscid flow field in the xy plane is
~V 5 ðAx1BÞ̂i1 ðC2AyÞ̂j; where A5 3 s21, B5 6 m/s,
C5 4 m/s, and the coordinates are measured in meters.
The body force distribution is ~B 52gk̂ and the density is
825 kg/m3. Does this represent a possible incompressible
flow field? Plot a few streamlines in the upper half plane.
Find the stagnation point(s) of the flow field. Is the flow
irrotational? If so, obtain the potential function. Evaluate
the pressure difference between the origin and point
(x, y, z)5 (2, 2, 2).

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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*6.119 Consider flow around a circular cylinder with free-
stream velocity from right to left and a counterclockwise free
vortex. Show that the lift force on the cylinder can be
expressed as FL52ρUΓ, as illustrated in Example 6.12.

*6.120 Consider the flow past a circular cylinder, of radius a,
used in Example 6.11. Show that Vr5 0 along the lines
(r, θ)5 (r, 6π/2). Plot Vθ/U versus radius for r $ a, along the
line (r, θ)5 (r, π/2). Find the distance beyond which
the influence of the cylinder is less than 1 percent of U.

*6.121 A crude model of a tornado is formed by combining a
sink, of strength q5 2800 m2/s, and a free vortex, of strength
K5 5600 m2/s. Obtain the stream function and velocity
potential for this flow field. Estimate the radius beyond
which the flow may be treated as incompressible. Find the
gage pressure at that radius.

*6.122 A source and a sink with strengths of equal magni-
tude, q5 3π m2/s, are placed on the x axis at x52a and x
5 a, respectively. A uniform flow, with speed U5 20 m/s, in
the positive x direction, is added to obtain the flow past a
Rankine body. Obtain the stream function, velocity poten-
tial, and velocity field for the combined flow. Find the value
of ψ 5 constant on the stagnation streamline. Locate the
stagnation points if a5 0.3 m.

*6.123 Consider again the flow past a Rankine body of
Problem 6.122. The half-width, h, of the body in the y
direction is given by the transcendental equation

h

a
5 cot

πUh

q

� �

Evaluate the half-width, h. Find the local velocity and the
pressure at points (x, y)5 (0, 6h). Assume the fluid density
is that of standard air.

*6.124 A flow field is formed by combining a uniform flow
in the positive x direction, with U5 10 m/s, and a counter-
clockwise vortex, with strength K5 16π m2/s, located at the
origin. Obtain the stream function, velocity potential, and
velocity field for the combined flow. Locate the stagnation
point(s) for the flow. Plot the streamlines and potential lines.
(Hint: Use the Excel workbook of Example 6.10.)

*6.125 Consider the flow field formed by combining a uni-
form flow in the positive x direction with a sink located at the
origin. Let U5 50 m/s and q5 90 m2/s. Use a suitably chosen
control volume to evaluate the net force per unit depth
needed to hold in place (in standard air) the surface shape
formed by the stagnation streamline.

*6.126 Consider the flow field formed by combining a uni-
form flow in the positive x direction and a source located at
the origin. Obtain expressions for the stream function,
velocity potential, and velocity field for the combined flow.
If U5 25 m/s, determine the source strength if the stagnation
point is located at x521m. Plot the streamlines and potential
lines. (Hint: Use the Excel workbook of Example 6.10.)

*6.127 Consider the flow field formed by combining a uni-
form flow in the positive x direction and a source located
at the origin. Let U5 30 m/s and q5 150 m2/s. Plot the ratio
of the local velocity to the freestream velocity as a function
of θ along the stagnation streamline. Locate the points on the
stagnation streamline where the velocity reaches its max-
imum value. Find the gage pressure there if the fluid density
is 1.2 kg/m3.
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7
Dimensional Analysis
and Similitude
7.1 Nondimensionalizing the Basic Differential Equations

7.2 Nature of Dimensional Analysis

7.3 Buckingham Pi Theorem

7.4 Determining the Π Groups

7.5 Significant Dimensionless Groups in Fluid Mechanics

7.6 Flow Similarity and Model Studies

7.7 Summary and Useful Equations

Case Study in Energy and the Environment

Ocean Current Power: The Vivace
We have so far presented Case Studies in

Energy and the Environment mostly on wave
power, but many developments are taking place in
ocean current power—actually, in the power available
wherever there is a current, such as in estuaries and
rivers, not just in the ocean. Plenty of power is avail-
able. Although ocean and river currents move slowly
compared to typical wind speeds, they carry a great
deal of energy because water is about 1000 times as
dense as air, and the energy flux in a current is directly

proportional to density. Hence water moving at 10 mph
exerts about the same amount of force as a 100-mph
wind. Ocean and river currents thus contain an enor-
mous amount of energy that can be captured and
converted to a usable form. For example, near the
surface of the Florida Straits Current, the relatively
constant extractable energy density is about 1 kW/m2

of flow area. It has been estimated that capturing just
1/1000th of the available energy from the Gulf Stream
could supply Florida with 35 percent of its electrical
needs.
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Ocean current energy is at an early stage of devel-
opment, and only a small number of prototypes and
demonstration units have so far been tested. A team
of young engineers at the University of Strathclyde in
Scotland recently did a survey of current develop-
ments. They found that perhaps the most obvious
approach is to use submerged turbines. The first fig-
ure shows a horizontal-axis turbine (which is similar to
a wind turbine) and a vertical-axis turbine. In each
case, columns, cables, or anchors are required to keep
the turbines stationary relative to the currents with
which they interact. For example, they may be teth-
ered with cables, in such a way that the current
interacts with the turbine to maintain its location and
stability; this is analogous to underwater kite flying in
which the turbine plays the role of kite and the ocean-
bottom anchor, the role of kite flyer. Turbines can
include venturi-shaped shrouds around the blades to
increase the flow speed and power output from the
turbine. In regions with powerful currents over a large
area, turbines could be assembled in clusters, similar
to wind turbine farms. Space would be needed
between the water turbines to eliminate wake-
interaction effects and to allow access by maintenance
vessels. The engineers at Strathclyde also discuss the
third device shown in the figure, an oscillating foil
design, in which a hydrofoil’s angle of attack would be
repeatedly adjusted to generate a lift force that is
upward, then downward. The mechanism and controls
would use this oscillating force to generate power. The
advantage of this design is that there are no rotating
parts that could become fouled, but the disadvantage
is that the control systems involved would be quite
complex.

For ocean current energy to be commercially suc-
cessful, a number of technical challenges need to be
addressed, including cavitation problems, prevention
of marine growth buildup on turbine blades, and cor-
rosion resistance. Environmental concerns include the

protection of wildlife (fish and marine mammals) from
turning turbine blades.
As the research in these types of turbines and foils

continues, engineers are also looking at alternative
devices. A good example is the work of Professor
Michael Bernitsas, of the Department of Naval Archi-
tecture and Marine Engineering at the University of
Michigan. He has developed a novel device, called the
Vivace Converter, which uses the well-known phe-
nomenon of vortex-induced vibrations to extract power
from a flowing current. We are all familiar with vortex-
induced vibrations, in which an object in a flow is
made to vibrate due to vortices shedding first from
one side and then the other side of the object’s rear.
For example, cables or wires often vibrate in the wind,
sometimes sufficiently to make noise (Aeolian tones);
many factory chimneys and car antennas have a spiral
surface built into them specifically to suppress this
vibration. Another famous example is the collapse of
the Tacoma Narrows Bridge in Washington State in
1940, which many engineers believe was due to
vortex-shedding of cross winds (a quite scary, but

The Vivace Converter (Courtesy Professor Michael Bernitsas)

A horizontal- and a vertical-axis turbine, and an oscillating foil device (Courtesy the University of Strathclyde)
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In previous chapters we have mentioned several instances in which we claim a
simplified flow exists. For example, we have stated that a flow with typical speed V will
be essentially incompressible if the Mach number, M � V/c (where c is the speed of
sound), is less than about 0.3 and that we can neglect viscous effects in most of a flow if
the Reynolds number, Re = ρVL/μ (L is a typical or “characteristic” size scale of the
flow), is “large.” We will also make extensive use of the Reynolds number based
on pipe diameter, D (Re = ρVD/μ), to predict with a high degree of accuracy whether
the pipe flow is laminar or turbulent. It turns out that there are many such interesting
dimensionless groupings in engineering science—for example, in heat transfer, the
value of the Biot number, Bi5 hL/k, of a hot body, size L and conductivity k, indi-
cates whether that body will tend to cool on the outside surface first or will basically
cool uniformly when it’s plunged into a cool fluid with convection coefficient h. (Can
you figure out what a high Bi number predicts?) How do we obtain these groupings,
and why do their values have such powerful predictive power?

The answers to these questions will be provided in this chapter when we introduce
the method of dimensional analysis. This is a technique for gaining insight into fluid
flows (in fact, into many engineering and scientific phenomena) before we do either
extensive theoretical analysis or experimentation; it also enables us to extract trends
from data that would otherwise remain disorganized and incoherent.

We will also discuss modeling. For example, how do we correctly perform tests on
the drag on a 3/8-scale model of an automobile in a wind tunnel to predict what the
drag would be on the full-size automobile at the same speed? Must we use the same
speed for model and full-size automobile? How do we scale up the measured model
drag to find the automobile drag?

7.1 Nondimensionalizing the Basic
Differential Equations
Before describing dimensional analysis let us see what we can learn from our previous
analytical descriptions of fluid flow. Consider, for example, a steady incompressible

fascinating, video of this can easily be found on the
Internet). Professor Bernitas has made a source of
energy from a phenomenon that is usually a nuisance
or a danger!
The figure shows a conceptualization of his device,

which consists of an assemblage of horizontal sub-
merged cylinders. As the current flows across these,
vortex shedding occurs, generating an oscillating up-
and-down force on each cylinder. Instead of the
cylinders being rigidly mounted, they are attached to a
hydraulic system designed in such a way that, as the
cylinders are forced up and down, they generate
power. Whereas existing turbine systems need a cur-
rent of about 5 knots to operate efficiently, the Vivace
can generate energy using currents that are as slow as
1 knot (most of the earth’s currents are slower than
3 knots). The device also does not obstruct views or

access on the water’s surface because it can be
installed on the river or ocean floor. It’s probable that
this new technology is gentler on aquatic life because
it is slow moving and mimics the natural vortex pat-
terns created by the movement of swimming fish. An
installation of 1 3 1.5 km (less than 1/2 mi2) in a
current of 3 knots could generate enough power for
100,000 homes. A prototype, funded by the U.S.
Department of Energy and the Office Naval Research,
is currently operating in the Marine Hydrodynamics
Laboratory at the University of Michigan. The phe-
nomenon of vortex shedding is discussed in Chapter 9;
the vortex flow meter, which exploits the phenomenon
to measure flow rate, is discussed in Chapter 8. We
will discuss airfoil design in Chapter 9 and concepts
behind the operation of turbines and propellers in
Chapter 10.
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two-dimensional flow of a Newtonian fluid with constant viscosity (already quite a list
of assumptions!). The mass conservation equation (Eq. 5.1c) becomes

@u

@x
1

@v
@y

5 0 ð7:1Þ

and the Navier�Stokes equations (Eqs. 5.27) reduce to
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As we discussed in Section 5.4, these equations form a set of coupled nonlinear partial
differential equations for u, v, and p, and are difficult to solve for most flows.
Equation 7.1 has dimensions of 1/time, and Eqs. 7.2 and 7.3 have dimensions of force/
volume. Let us see what happens when we convert them into dimensionless equations.
(Even if you did not study Section 5.4 you will be able to understand the following
material.)

To nondimensionalize these equations, divide all lengths by a reference length, L,
and all velocities by a reference speed, VN, which usually is taken as the freestream
velocity. Make the pressure nondimensional by dividing by ρV2

N (twice the freestream
dynamic pressure). Denoting nondimensional quantities with asterisks, we obtain

x* 5
x

L
, y* 5

y

L
, u* 5

u

VN
, v* 5

v
VN

, and p* 5
p

ρV2
N

ð7:4Þ

so that x5 x*L, y5 y*L, u5 u*VN, and so on. We can then substitute into Eqs. 7.1
through 7.3; below we show two representative substitutions:

u
@u

@x
5 u*VN

@ðu*VNÞ
@ðx*LÞ 5

V2
N

L
u*

@u*

@x*
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Using this procedure, the equations become
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Dividing Eq. 7.5 by VN/L and Eqs. 7.6 and 7.7 by ρV2
N/L gives

@u*

@x*
1

@v*
@y*

5 0 ð7:8Þ
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Equations 7.8, 7.9, and 7.10 are the nondimensional forms of our original equations
(Eqs. 7.1, 7.2, 7.3). As such, we can think about their solution (with appropriate
boundary conditions) as an exercise in applied mathematics. Equation 7.9 contains a
dimensionless coefficient μ/ρVNL (which we recognize as the inverse of the Reynolds
number) in front of the second-order (viscous) terms; Eq. 7.10 contains this and
another dimensionless coefficient, gL/V2

N (which we will discuss shortly) for the
gravity force term. We recall from the theory of differential equations that
the mathematical form of the solution of such equations is very sensitive to the values
of the coefficients in the equations (e.g., certain second-order partial differential
equations can be elliptical, parabolic, or hyperbolic depending on coefficient values).

These equations tell us that the solution, and hence the actual flow pattern they
describe, depends on the values of the two coefficients. For example, if μ/ρVNL is
very small (i.e., we have a high Reynolds number), the second-order differentials,
representing viscous forces, can be neglected, at least in most of the flow, and we end
up with a form of Euler’s equations (Eqs. 6.2). We say “in most of the flow” because
we have already learned that in reality for this case we will have a boundary layer in
which there is significant effect of viscosity; in addition, from a mathematical point of
view, it is always dangerous to neglect higher-order derivatives, even if their coeffi-
cients are small, because reduction to a lower-order equation means we lose a
boundary condition (specifically the no-slip condition). We can predict that if μ/ρVNL
is large or small, then viscous forces will be significant or not, respectively; if gLV2

N is
large or small, we can predict that gravity forces will be significant or not, respectively.
We can thus gain insight even before attempting a solution to the differential equa-
tions. Note that for completeness, we would have to apply the same non-
dimensionalizing approach to the boundary conditions of the problem, which often
introduce further dimensionless coefficients.

Writing nondimensional forms of the governing equations, then, can yield insight
into the underlying physical phenomena, and indicate which forces are dominant. If
we had two geometrically similar but different scale flows satisfying Eqs. 7.8, 7.9, and
7.10 (for example, a model and a prototype), the equations would only yield the same
mathematical results if the two flows had the same values for the two coefficients (i.e.,
had the same relative importance of gravity, viscous, and inertia forces). This non-
dimensional form of the equations is also the starting point in numerical methods,
which is very often the only way of obtaining their solution. Additional derivations
and examples of establishing similitude from the governing equations of a problem
are presented in Kline [1] and Hansen [2].

We will now see how the method of dimensional analysis can be used instead of the
above procedure to find appropriate dimensionless groupings of physical parameters.
As we have mentioned, using dimensionless groupings is very useful for experimental
measurements, and we will see in the next two sections that we can obtain them even
whenwe do not have the governing equations such as Eqs. 7.1, 7.2, and 7.3 to work from.

7.2 Nature of Dimensional Analysis
Most phenomena in fluid mechanics depend in a complex way on geometric and flow
parameters. For example, consider the drag force on a stationary smooth sphere
immersed in a uniform stream. What experiments must be conducted to determine the
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drag force on the sphere? To answer this question, we must specify what we believe
are the parameters that are important in determining the drag force. Clearly, we would
expect the drag force to depend on the size of the sphere (characterized by the
diameter, D), the fluid speed, V, and the fluid viscosity, μ. In addition, the density
of the fluid, ρ, also might be important. Representing the drag force by F, we can write
the symbolic equation

F 5 f ðD, V, ρ, μÞ
Although we may have neglected parameters on which the drag force depends, such
as surface roughness (or may have included parameters on which it does not depend),
we have set up the problem of determining the drag force for a stationary sphere in
terms of quantities that are both controllable and measurable in the laboratory.

We could set up an experimental procedure for finding the dependence of F on V,
D, ρ, and μ. To see how the drag, F, is affected by fluid speed, V, we could place a
sphere in a wind tunnel and measure F for a range of V values. We could then run
more tests in which we explore the effect on F of sphere diameter, D, by using dif-
ferent diameter spheres. We are already generating a lot of data: If we ran the wind
tunnel at, say, 10 different speeds, for 10 different sphere sizes, we’d have 100 data
points. We could present these results on one graph (e.g., we could plot 10 curves of F
vs. V, one for each sphere size), but acquiring the data would already be time con-
suming: If we assume each run takes 1

2 hour, we have already accumulated 50 hours of
work! We still wouldn’t be finished—we would have to book time using, say, a water
tank, where we could repeat all these runs for a different value of ρ and of μ. In
principle, we would next have to search out a way to use other fluids to be able to do
experiments for a range of ρ and μ values (say, 10 of each). At the end of the day
(actually, at the end of about 212 years of 40-hour weeks!) we would have performed
about 104 tests. Then we would have to try and make sense of the data: How do we
plot, say, curves of F vs. V, with D, ρ, and μ all being parameters? This is a daunting
task, even for such a seemingly simple phenomenon as the drag on a sphere!

Fortunately we do not have to do all this work. As we will see in Example 7.1, using
dimensional analysis, all the data for drag on a smooth sphere can be plotted as a
single relationship between two nondimensional parameters in the form

F

ρV2D2
5 f

ρVD
μ

� �

The form of the function f still must be determined experimentally, but the point
is that all spheres, in all fluids, for most velocities will fall on the same curve. Rather
than needing to conduct 104 experiments, we could establish the nature of the function
as accurately with only about 10 tests. The time saved in performing only 10 rather
than 104 tests is obvious. Even more important is the greater experimental con-
venience. No longer must we find fluids with 10 different values of density and vis-
cosity. Nor must we make 10 spheres of different diameters. Instead, only the
parameter ρVD/μ must be varied. This can be accomplished simply by using one
sphere (e.g., 1 in. diameter), in one fluid (e.g., air), and only changing the speed, for
example.

Figure 7.1 shows some classic data for flow over a sphere (the factors 1
2 and π/4 have

been added to the denominator of the parameter on the left to make it take the form of
a commonly used nondimensional group, the drag coefficient, CD, that we will discuss
in detail in Chapter 9). If we performed the experiments as outlined above, our results
would fall on the same curve, within experimental error. The data points represent
results obtained by various workers for several different fluids and spheres. Note that
we end up with a curve that can be used to obtain the drag force on a very wide range of
sphere/fluid combinations. For example, it could be used to obtain the drag on a hot-air
balloon due to a crosswind, or on a red blood cell (assuming it could be modeled as a

VIDEO

Flow Around a Sphere 1.

VIDEO

Flow Around a Sphere 2.
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sphere) as it moves through the aorta—in either case, given the fluid (ρ and μ), the
flow speed V, and the sphere diameter D, we could compute a value for ρVD/μ, then
read the corresponding value for CD, and finally compute the drag force F.

In Section 7.3 we introduce the Buckingham Pi theorem, a formalized procedure
for deducing the dimensionless groups appropriate for a given fluid mechanics or
other engineering problem. This section, and Section 7.4, may seem a bit difficult to
follow; we suggest you read them once, then study Examples 7.1, 7.2, and 7.3 to see
how practical and useful the method in fact is, before returning to the two sections for
a reread.

The Buckingham Pi theorem is a statement of the relation between a function
expressed in terms of dimensional parameters and a related function expressed in
terms of nondimensional parameters. The Buckingham Pi theorem allows us to
develop the important nondimensional parameters quickly and easily.

7.3 Buckingham Pi Theorem
In the previous section we discussed how the drag F on a sphere depends on the
sphere diameter D, fluid density ρ and viscosity μ, and fluid speed V, or

F 5 FðD, ρ, μ, VÞ
with theory or experiment being needed to determine the nature of function f. More
formally, we write

gðF, D, ρ, μ, VÞ 5 0

where g is an unspecified function, different from f. The Buckingham Pi theorem [4]
states that we can transform a relationship between n parameters of the form

gðq1, q2, . . . , qnÞ 5 0

into a corresponding relationship between n2m independent dimensionless Π
parameters in the form

GðΠ1, Π2, . . . , Πn2mÞ 5 0
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Fig. 7.1 Experimentally derived relation between the nondimensional parameters [3].
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or

Π1 5 G1ðΠ2, . . . , Πn2mÞ
where m is usually the minimum number, r, of independent dimensions (e.g., mass,
length, time) required to define the dimensions of all the parameters q1, q2, . . . , qn.
(Sometimes m 6¼ r; we will see this in Example 7.3.) For example, for the sphere
problem, we will see (in Example 7.1) that

gðF, D, ρ, μ, VÞ 5 0 or F 5 FðD, ρ, μ, VÞ
leads to

G
F

ρV2D2
,

μ
ρVD

� �
5 0 or

F

ρV2D2
5 G1

μ
ρVD

� �

The theorem does not predict the functional form ofG orG1. The functional relation
among the independent dimensionlessΠ parametersmust be determinedexperimentally.

The n2m dimensionless Π parameters obtained from the procedure are inde-
pendent. A Π parameter is not independent if it can be formed from any combination
of one or more of the other Π parameters. For example, if

Π5 5
2Π1

Π2Π3

or Π6 5
Π3=4

1

Π2
3

then neither Π5 nor Π6 is independent of the other dimensionless parameters.
Several methods for determining the dimensionless parameters are available. A

detailed procedure is presented in the next section.

7.4Determining the Π Groups
Regardless of the method to be used to determine the dimensionless parameters, one
begins by listing all dimensional parameters that are known (or believed) to affect the
given flow phenomenon. Some experience admittedly is helpful in compiling the list.
Students, who do not have this experience, often are troubled by the need to apply
engineering judgment in an apparent massive dose. However, it is difficult to go wrong
if a generous selection of parameters is made.

If you suspect that a phenomenon depends on a given parameter, include it. If your
suspicion is correct, experiments will show that the parameter must be included to get
consistent results. If the parameter is extraneous, an extra Π parameter may result, but
experiments will later show that it may be eliminated. Therefore, do not be afraid to
include all the parameters that you feel are important.

The six steps listed below (which may seem a bit abstract but are actually easy to
do) outline a recommended procedure for determining the Π parameters:

Step 1. List all the dimensional parameters involved. (Let n be the number of param-
eters.) If all of the pertinent parameters are not included, a relation may be
obtained, but it will not give the complete story. If parameters that actually
have no effect on the physical phenomenon are included, either the process
of dimensional analysis will show that these do not enter the relation sought,
or one or more dimensionless groups will be obtained that experiments will
show to be extraneous.

Step 2. Select a set of fundamental (primary) dimensions, e.g., MLt or FLt. (Note that
for heat transfer problems you may also need T for temperature, and in
electrical systems, q for charge.)
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Step 3. List the dimensions of all parameters in terms of primary dimensions. (Let r be
the number of primary dimensions.) Either force or mass may be selected as a
primary dimension.

Step 4. Select a set of r dimensional parameters that includes all the primary dimen-
sions. These parameters will all be combined with each of the remaining
parameters, one of those at a time, and so will be called repeating parameters.
No repeating parameter should have dimensions that are a power of the
dimensions of another repeating parameter; for example, do not include both
an area (L2) and a second moment of area (L4) as repeating parameters. The
repeating parameters chosen may appear in all the dimensionless groups
obtained; consequently, do not include the dependent parameter among those
selected in this step.

Step 5. Set up dimensional equations, combining the parameters selected in Step 4 with
each of the other parameters in turn, to form dimensionless groups. (There will
be n2m equations.) Solve the dimensional equations to obtain the n2m
dimensionless groups.

Step 6. Check to see that each group obtained is dimensionless. If mass was initially
selected as a primary dimension, it is wise to check the groups using force as a
primary dimension, or vice versa.

The functional relationship among the Π parameters must be determined experi-
mentally. The detailed procedure for determining the dimensionless Π parameters is
illustrated in Examples 7.1 and 7.2.

Example 7.1 DRAG FORCE ON A SMOOTH SPHERE

As noted in Section 7.2, the drag force, F, on a smooth sphere depends on the relative speed, V, the sphere diameter,
D, the fluid density, ρ, and the fluid viscosity, μ. Obtain a set of dimensionless groups that can be used to correlate
experimental data.

Given: F5 f(ρ, V, D, μ) for a smooth sphere.

Find: An appropriate set of dimensionless groups.

Solution:
(Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

1 F V D ρ μ n5 5 dimensional parameters

2 Select primary dimensions M, L, and t.

3 F V D ρ μ

ML

t2
L

t
L

M

L3

M

Lt
r5 3 primary dimensions

4 Select repeating parameters ρ, V, D. m5 r5 3 repeating parameters

5 Then n2m5 2 dimensionless groups will result. Setting up dimensional equations, we obtain

Π1 5 ρaVbDcF and
M

L3

� �a
L

t

� �b
ðLÞc ML

t2

� �
5 M0L0t0

Equating the exponents of M, L, and t results in

M : a1 1 5 0 a 521
L : 23a1 b1 c1 1 5 0 c 522
t : 2b2 2 5 0 b 522

9=
; Therefore, Π1 5

F

ρV2D2
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Similarly,

Π2 5 ρdVeDfμ and
M

L3

� �d
L

t

� �e

ðLÞf M

Lt

� �
5 M0L0t0

M : d1 1 5 0 d 521
L : 23d1 e1 f 2 1 5 0 f 521
t : 2e2 1 5 0 e 521

9=
; Therefore, Π2 5

μ
ρVD

6 Check using F, L, t dimensions

½Π1� 5 F

ρV2D2

� �
and F

L4

Ft2
t

L

� �2 1

L2
5 1

where [ ] means “has dimensions of,” and

½Π2� 5 μ
ρVD

� �
and

Ft

L2

L4

Ft2
t

L

1

L
5 1

The functional relationship is Π15 f(Π2), or

F

ρV2D2
5 f

μ
ρVD

� �

as noted before. The form of the function, f, must be determined
experimentally (see Fig. 7.1).

The Excel workbook for thisExample is convenient for com-
puting the values of a, b, and c for this
and other problems.

Example 7.2 PRESSURE DROP IN PIPE FLOW

The pressure drop, Δp, for steady, incompressible viscous flow through a straight horizontal pipe depends on the
pipe length, l, the average velocity, V, the fluid viscosity, μ, the pipe diameter,D, the fluid density, ρ, and the average
“roughness” height, e. Determine a set of dimensionless groups that can be used to correlate data.

Given: Δp5 f(ρ, V, D, l, μ, e) for flow in a circular pipe.

Find: A suitable set of dimensionless groups.

Solution:

(Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

1 Δp ρ μ V l D e n5 7 dimensional parameters

2 Choose primary dimensions M, L, and t.

3 Δp ρ μ V l D e

M

Lt2
M

L3

M

Lt

L

t
L L L r5 3 primary dimensions

4 Select repeating parameters ρ, V, D. m5 r5 3 repeating parameters
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5 Then n2m5 4 dimensionless groups will result. Setting up dimensional equations we have:

Π1 5 ρaV
b
DcΔp and

M

L3

� �a
L

t

� �b

ðLÞc M

Lt2

� �
5 M0L0t0

M : 0 5 a1 1
L : 0 523a1 b1 c2 1
t : 0 52b2 2

9=
;

a 521
b 522
c 5 0

Therefore, Π1 5 ρ21V
2 2

D0Δp 5
Δp

ρV
2

Π3 5 ρgV
h
Dil and

M

L3

� �g
L

t

� �h

ðLÞiL 5 M0L0t0

M : 0 5 g
L : 0 523g1 h1 i1 1
t : 0 52h

9=
;

g 5 0
h 5 0
i 521

Therefore, Π3 5
l

D

Π2 5 ρdV
e
Dfμ and

M

L3

� �d
L

t

� �e

ðLÞf M
Lt

5 M0L0t0

M : 0 5 d1 1
L : 0 523d1 e1 f 2 1
t : 0 52e2 1

9=
;

d 521
e 521
f 521

Therefore, Π2 5
μ

ρVD

Π4 5 ρjV
k
Dle and

M

L3

� �j
L

t

� �k

ðLÞlL 5 M0L0t0

M : 0 5 j
L : 0 523j1 k1 l1 1
t : 0 52k

9=
;

j 5 0
k 5 0
l 521

Therefore, Π4 5
e

D

6 Check, using F, L, t dimensions

Π1½ � 5 Δp

ρV
2

" #
and

F

L2

L4

Ft2
t2

L2
5 1 Π3½ � 5 l

D

� �
and

L

L
5 1

Π2½ � 5 μ
ρVD

� �
and

Ft

L2

L4

Ft2
t

L

1

L
5 1 ½Π4� 5 e

D

h i
and

L

L
5 1

Finally, the functional relationship is

Π1 5 f ðΠ2, Π3, Π4Þ
or

Δp

ρV
2
5 f

μ
ρVD

,
l

D
,
e

D

� �

Notes:
ü As we shall see when we study pipe
flow in detail in Chapter 8, this
relationship correlates the data
well.

ü Each Π group is unique (e.g., there
is only one possible dimensionless
grouping of μ, ρ, V, and D).

ü We can often deduce Π groups by
inspection, e.g., l/D is the obvious
unique grouping of lwith ρ,V, and D.The Excel workbook for Example

7.1 is convenient for computing
the values of a, b, and c for this
problem.

300 Chapter 7 Dimensional Analysis and Similitude



The procedure outlined above, wherem is taken equal to r (the fewest independent
dimensions required to specify the dimensions of all parameters involved), almost
always produces the correct number of dimensionless Π parameters. In a few cases,
trouble arises because the number of primary dimensions differs when variables are
expressed in terms of different systems of dimensions (e.g., MLt or FLt). The value of
m can be established with certainty by determining the rank of the dimensional
matrix; that rank is m. Although not needed in most applications, for completeness,
this procedure is illustrated in Example 7.3.

The n2m dimensionless groups obtained from the procedure are independent but
not unique. If a different set of repeating parameters is chosen, different groups result.
The repeating parameters are so named because they may appear in all the dimen-
sionless groups obtained. Based on experience, viscosity should appear in only one
dimensionless parameter. Therefore μ should not be chosen as a repeating parameter.

Whenwehavea choice, it usuallyworksoutbest to choosedensityρ (dimensionsM/L3

in theMLt system), speedV (dimensionsL/t), and characteristic lengthL (dimensionL)
as repeating parameters because experience shows this generally leads to a set of
dimensionless parameters that are suitable for correlating a wide range of experimental
data; in addition, ρ, V, andL are usually fairly easy to measure or otherwise obtain. The
values of the dimensionless parameters obtained using these repeating parameters
almost always have a very tangible meaning, telling you the relative strength of various
fluid forces (e.g., viscous) to inertia forces—wewill discuss several “classic” ones shortly.

It’s also worth stressing that, given the parameters you’re combining, we can often
determine the unique dimensional parameters by inspection. For example, if we had
repeating parameters ρ, V, and L and were combining them with a parameter Af,
representing the frontal area of an object, it’s fairly obvious that only the combination
Af /L

2 is dimensionless; experienced fluid mechanicians also know that ρV2 produces
dimensions of stress, so any time a stress or force parameter arises, dividing by ρV2 or
ρV2L2 will produce a dimensionless quantity.

We will find useful a measure of the magnitude of fluid inertia forces, obtained
from Newton’s second law, F5ma; the dimensions of inertia force are thus MLt�2.
Using ρ, V, and L to build the dimensions of ma leads to the unique combination
ρV2L2 (only ρ has dimension M, and only V2 will produce dimension t�2; L2 is then
required to leave us with MLt�2).

If n2m5 1, then a single dimensionless Π parameter is obtained. In this case, the
Buckingham Pi theorem indicates that the single Π parameter must be a constant.

Example 7.3 CAPILLARY EFFECT: USE OF DIMENSIONAL MATRIX

When a small tube is dipped into a pool of liquid, surface tension causes a meniscus
to form at the free surface, which is elevated or depressed depending on the
contact angle at the liquid-solid-gas interface. Experiments indicate that
the magnitude of this capillary effect, Δh, is a function of the tube diameter, D,
liquid specific weight, γ, and surface tension, σ. Determine the number of inde-
pendent Π parameters that can be formed and obtain a set.

Given: Δh5 f(D, γ, σ)

Find: (a) Number of independent Π parameters.
(b) One set of Π parameters.

Solution:
(Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

1 Δh D γ σ n 5 4 dimensional parameters

2 Choose primary dimensions (use bothM, L, t and F, L, t dimensions to illustrate the problem in determiningm).

Δh

D

Tube

Liquid
(Specific weight =   
Surface tension =   )

γ
σ
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3 (a) M, L, t

Δh D γ σ

L L
M

L2t2
M

t2

r5 3 primary dimensions

(b) F, L, t

Δh D γ σ

L L
F

L3

F

L

r5 2 primary dimensions

Thus for each set of primary dimensions we ask, “Is m equal to r?” Let us check each dimensional matrix to find out.
The dimensional matrices are

Δh D γ σ
M 0 0 1 1
L 1 1 22 0
t 0 0 22 22

Δh D γ σ
F 0 0 1 1
L 1 1 2 3 21

The rank of a matrix is equal to the order of its largest nonzero determinant.

0 1 1
1 22 0
0 22 22

������
������ 5 02 ð1Þð22Þ1 ð1Þð22Þ 5 0

22 0
22 22

����
���� 5 4 6¼ 0

‘ m 5 2
m 6¼ r

4 m5 2. Choose D, γ as repeating parameters.

5 n2m5 2 dimensionless groups will result.

Π1 5 DaγbΔh and

ðLÞa M

L2t2

0
@

1
A
b

ðLÞ 5 M0L0t0

M : b1 0 5 0
L : a2 2b1 1 5 0
t : 22b1 0 5 0

9=
; b 5 0

a 521

Therefore, Π1 5
Δh

D

Π2 5 Dcγdσ and

ðLÞc M

L2t2

0
@

1
A
d

M

t2
5 M0L0t0

M : d1 1 5 0
L : c2 2d 5 0
t : 22d2 2 5 0

9=
; d 521

c 522

Therefore, Π2 5
σ

D2γ

1 1
23 21

����
���� 5211 3 5 2 6¼ 0

‘ m 5 2
m 5 r

m5 2. Choose D, γ as repeating parameters.

n2m5 2 dimensionless groups will result.

Π1 5 Deγ fΔh and

ðLÞe F

L3

0
@

1
A
f

L 5 F0L0t0

F : f 5 0
L : e2 3f 1 1 5 0

	
e 521

Therefore, Π1 5
Δh

D

Π2 5 Dgγhσ and

ðLÞg F

L3

0
@

1
A
h

F

L
5 F0L0t0

F : h1 1 5 0
L : g2 3h2 1 5 0

	
h 521
g 522

Therefore, Π2 5
σ

D2γ
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7.5Significant Dimensionless Groups
in Fluid Mechanics

Over the years, several hundred different dimensionless groups that are important in
engineering have been identified. Following tradition, each such group has been given
the name of a prominent scientist or engineer, usually the one who pioneered its use.
Several are so fundamental and occur so frequently in fluid mechanics that we should
take time to learn their definitions. Understanding their physical significance also
gives insight into the phenomena we study.

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure,
gravity, surface tension, and compressibility. The ratio of any two forces will be dimen-
sionless. We have previously shown that the inertia force is proportional to ρV2 L2.

We can now compare the relative magnitudes of various fluid forces to the inertia
force, using the following scheme:

Viscous force B τA 5 μ
du

dy
A ~ μ

V

L
L2 5 μVL so

viscous

inertia
B

μVL
ρV2L2

5
μ

ρVL

Pressure force B ΔpA ~ ΔpL2 so
pressure

inertia
B

ΔpL2

ρV2L2
5

Δp

ρV2

Gravity force B mg ~ gρL3 so
gravity

inertia
B

gρL3

ρV2L2
5

gL

V2

6 Check, using F, L, t dimensions

½Π1� 5 Δh

D

2
4

3
5 and

L

L
5 1

½Π2� 5 σ
D2γ

2
4

3
5 and

F

L

1

L2

L3

F
5 1

Check, using M, L, t dimensions

½Π1� 5 Δh

D

2
4

3
5 and

L

L
5 1

½Π2� 5 σ
D2γ

2
4

3
5 and

M

t2
1

L2

L2t2

M
5 1

Therefore, both systems of dimensions yield the same dimensionless
Π parameters. The predicted functional relationship is

Π1 5 f ðΠ2Þ or
Δh

D
5 f

σ
D2γ

� �

Notes:
ü This result is reasonable on physical
grounds. The fluid is static; we
would not expect time to be an
important dimension.ü We analyzed this problem in Exam-
ple 2.3, where we found that
Δh5 4σcos(θ)/ρgD (θ is the contact
angle). Hence Δh/D is directly pro-
portional to σ/D2γ.ü The purpose of this problem is to
illustrate use of the dimensional
matrix to determine the required
number of repeating parameters.
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Surface tension B σL so
surface tension

inertia
B

σL
ρV2L2

5
σ

ρV2L

Compressibility
force B

EvA ~ EvL
2 so

compressibility force

inertia
B

EvL
2

ρV2L2
5

Ev

ρV2

All of the dimensionless parameters listed above occur so frequently, and are so
powerful in predicting the relative strengths of various fluid forces, that they (slightly
modified—usually by taking the inverse) have been given identifying names.

The first parameter, μ/ρVL, is by tradition inverted to the form ρVL/μ, and was
actually explored independently of dimensional analysis in the 1880s by Osborne
Reynolds, the British engineer, who studied the transition between laminar and tur-
bulent flow regimes in a tube. He discovered that the parameter (later named after him)

Re 5
ρVD

μ
5

VD

ν

is a criterion by which the flow regime may be determined. Later experiments have
shown that the Reynolds number is a key parameter for other flow cases as well. Thus,
in general,

Re 5
ρVL
μ

5
VL

ν
ð7:11Þ

where L is a characteristic length descriptive of the flow field geometry. The Reynolds
number is the ratio of inertia forces to viscous forces. Flows with “large”
Reynolds number generally are turbulent. Flows in which the inertia forces are “small”
compared with the viscous forces are characteristically laminar flows.

In aerodynamic and other model testing, it is convenient to modify the second
parameter, Δp/ρV2, by inserting a factor 1

2 to make the denominator represent the
dynamic pressure (the factor, of course, does not affect the dimensions). The ratio

Eu 5
Δp

1

2
ρV2

ð7:12Þ

is formed, where Δp is the local pressure minus the freestream pressure, and ρ and V
are properties of the freestream flow. This ratio has been named after Leonhard
Euler, the Swiss mathematician who did much early analytical work in fluid
mechanics. Euler is credited with being the first to recognize the role of pressure in
fluid motion; the Euler equations of Chapter 6 demonstrate this role. The Euler
number is the ratio of pressure forces to inertia forces. The Euler number is often
called the pressure coefficient, Cp.

In the study of cavitation phenomena, the pressure difference, Δp, is taken as
Δp5 p2 pv, where p is the pressure in the liquid stream, and pv is the liquid vapor
pressure at the test temperature. Combining these with ρ and V in the stream yields
the dimensionless parameter called the cavitation number,

Ca 5
p2 pv
1

2
ρV2

ð7:13Þ

The smaller the cavitation number, the more likely cavitation is to occur. This is
usually an unwanted phenomenon.

304 Chapter 7 Dimensional Analysis and Similitude



William Froude was a British naval architect. Together with his son, Robert
Edmund Froude, he discovered that the parameter

Fr 5
Vffiffiffiffiffiffi
gL

p ð7:14Þ

was significant for flows with free surface effects. Squaring the Froude number gives

Fr2 5
V2

gL

which may be interpreted as the ratio of inertia forces to gravity forces (it is the
inverse of the third force ratio, V2/gL, that we discussed above). The length, L, is
a characteristic length descriptive of the flow field. In the case of open-channel flow,
the characteristic length is the water depth; Froude numbers less than unity indicate
subcritical flow and values greater than unity indicate supercritical flow. We will have
much more to say on this in Chapter 11.

By convention, the inverse of the fourth force ratio, σ/ρV2L, discussed above, is
called the Weber number; it indicates the ratio of inertia to surface tension forces

We 5
ρV2L

σ
ð7:15Þ

The value of the Weber number is indicative of the existence of, and frequency of,
capillary waves at a free surface.

In the 1870s, the Austrian physicist Ernst Mach introduced the parameter

M 5
V

c
ð7:16Þ

where V is the flow speed and c is the local sonic speed. Analysis and experiments
have shown that the Mach number is a key parameter that characterizes compressi-
bility effects in a flow. The Mach number may be written

M 5
V

c
5

Vffiffiffiffiffiffi
dp

dρ

s 5
Vffiffiffiffiffi
Ev

ρ

s or M2 5
ρV2L2

EvL2
5

ρV2

Ev

which is the inverse of the final force ratio, Ev/ρV
2, discussed above, and can be

interpreted as a ratio of inertia forces to forces due to compressibility. For truly
incompressible flow (and note that under some conditions even liquids are quite
compressible), c5N so that M5 0.

Equations 7.11 through 7.16 are some of the most commonly used dimensionless
groupings in fluid mechanics because for any flow pattern they immediately (even
before performing any experiments or analysis) indicate the relative importance of
inertia, viscosity, pressure, gravity, surface tension, and compressibility.

7.6Flow Similarity and Model Studies
To be useful, a model test must yield data that can be scaled to obtain the forces,
moments, and dynamic loads that would exist on the full-scale prototype. What
conditions must be met to ensure the similarity of model and prototype flows?
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Perhaps the most obvious requirement is that the model and prototype must be
geometrically similar. Geometric similarity requires that the model and prototype
be the same shape, and that all linear dimensions of the model be related to corre-
sponding dimensions of the prototype by a constant scale factor.

A second requirement is that the model and prototype flows must be kinematically
similar. Two flows are kinematically similar when the velocities at corresponding
points are in the same direction and differ only by a constant scale factor. Thus two
flows that are kinematically similar also have streamline patterns related by a constant
scale factor. Since the boundaries form the bounding streamlines, flows that are
kinematically similar must be geometrically similar.

In principle, in order to model the performance in an infinite flow field correctly,
kinematic similarity would require that a wind tunnel of infinite cross section be used
to obtain data for drag on an object. In practice, this restriction may be relaxed
considerably, permitting use of equipment of reasonable size.

Kinematic similarity requires that the regimes of flow be the same for model and
prototype. If compressibility or cavitation effects, which may change even the quali-
tative patterns of flow, are not present in the prototype flow, they must be avoided in
the model flow.

When two flows have force distributions such that identical types of forces are
parallel and are related in magnitude by a constant scale factor at all corresponding
points, the flows are dynamically similar.

The requirements for dynamic similarity are the most restrictive. Kinematic simi-
larity requires geometric similarity; kinematic similarity is a necessary, but not suffi-
cient, requirement for dynamic similarity.

To establish the conditions required for complete dynamic similarity, all forces that
are important in the flow situation must be considered. Thus the effects of viscous
forces, of pressure forces, of surface tension forces, and so on, must be considered.
Test conditions must be established such that all important forces are related by the
same scale factor between model and prototype flows. When dynamic similarity exists,
data measured in a model flow may be related quantitatively to conditions in the
prototype flow. What, then, are the conditions that ensure dynamic similarity between
model and prototype flows?

The Buckingham Pi theorem may be used to obtain the governing dimensionless
groups for a flow phenomenon; to achieve dynamic similarity between geometrically
similar flows, we must make sure that each independent dimensionless group
has the same value in the model and in the prototype. Then not only will the
forces have the same relative importance, but also the dependent dimensionless group
will have the same value in the model and prototype.

For example, in considering the drag force on a sphere in Example 7.1, we began
with

F 5 f ðD, V, ρ, μÞ
The Buckingham Pi theorem predicted the functional relation

F

ρV2D2
5 f1

ρVD
μ

� �

In Section 7.5 we showed that the dimensionless parameters can be viewed as ratios of
forces. Thus, in considering a model flow and a prototype flow about a sphere (the flows
are geometrically similar), the flows also will be dynamically similar if the value of the
independent parameter, ρVD/μ, is duplicated between model and prototype, i.e., if

ρVD
μ

� �
model

5
ρVD
μ

� �
prototype

VIDEO

Geometric, Not Dynamic, Similarity:

Flow Past a Block 1.

VIDEO

Geometric, Not Dynamic, Similarity:

Flow Past a Block 2.
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Furthermore, if

Remodel 5 Reprototype

then the value of the dependent parameter, F/ρV 2D2, in the functional relationship,
will be duplicated between model and prototype, i.e.,

F

ρV2D2

� �
model

5
F

ρV2D2

� �
prototype

and the results determined from the model study can be used to predict the drag on
the full-scale prototype.

The actual force on the object caused by the fluid is not the same for the model and
prototype, but the value of its dimensionless group is. The two tests can be run using
different fluids, if desired, as long as the Reynolds numbers are matched. For
experimental convenience, test data can be measured in a wind tunnel in air and the
results used to predict drag in water, as illustrated in Example 7.4.

Example 7.4 SIMILARITY: DRAG OF A SONAR TRANSDUCER

The drag of a sonar transducer is to be predicted, based on wind tunnel test data. The prototype, a 1-ft diam-
eter sphere, is to be towed at 5 knots (nautical miles per hour) in seawater at 40�F. The model is 6 in. in diameter.
Determine the required test speed in air. If the drag of the model at these test conditions is 0.60 lbf, estimate the
drag of the prototype.

Given: Sonar transducer to be tested in a wind tunnel.

Find: (a) Vm.
(b) Fp.

Solution:
Since the prototype operates in water and the model test is to be performed in air, useful results can be expected only
if cavitation effects are absent in the prototype flow and compressibility effects are absent from the model test.
Under these conditions,

F

ρV2D2
5 f

ρVD
μ

� �

and the test should be run at

Remodel 5 Reprototype

to ensure dynamic similarity. For seawater at 40�F, ρ5 1.99 slug/ft3 and ν � 1.69 3 1025 ft2/s. At prototype
conditions,

Vp 5 5
nmi

hr
3 6080

ft

nmi
3

hr

3600 s
5 8:44 ft=s

Rep 5
VpDp

νp
5 8:44

ft

s
3 1 ft 3

s

1:693 1025 ft2
5 4:993 105

The model test conditions must duplicate this Reynolds number. Thus

Rem 5
VmDm

νm
5 4:993 105

Vp = 5 knots

Dp = 1 ft

Fp

Water at 40°F

Vm

Dm = 6 in.

Fm = 0.60 lbf

Air
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Incomplete Similarity

We have shown that to achieve complete dynamic similarity between geometrically
similar flows, it is necessary to duplicate the values of the independent dimensionless
groups; by so doing the value of the dependent parameter is then duplicated.

In the simplified situation of Example 7.4, duplicating the Reynolds number value
between model and prototype ensured dynamically similar flows. Testing in air
allowed the Reynolds number to be duplicated exactly (this also could have been
accomplished in a water tunnel for this situation). The drag force on a sphere actually
depends on the nature of the boundary-layer flow. Therefore, geometric similarity
requires that the relative surface roughness of the model and prototype be the same.
This means that relative roughness also is a parameter that must be duplicated
between model and prototype situations. If we assume that the model was constructed
carefully, measured values of drag from model tests could be scaled to predict drag for
the operating conditions of the prototype.

In many model studies, to achieve dynamic similarity requires duplication of sev-
eral dimensionless groups. In some cases, complete dynamic similarity between model
and prototype may not be attainable. Determining the drag force (resistance) of a
surface ship is an example of such a situation. Resistance on a surface ship arises from
skin friction on the hull (viscous forces) and surface wave resistance (gravity forces).
Complete dynamic similarity requires that both Reynolds and Froude numbers be
duplicated between model and prototype.

In general it is not possible to predict wave resistance analytically, so it must be
modeled. This requires that

Frm 5
Vm

ðgLmÞ1=2
5 Frp 5

Vp

ðgLpÞ1=2

For air at STP, ρ5 0.00238 slug/ft3 and ν5 1.57 3 1024 ft2/s. The wind tunnel
must be operated at

Vm 5 Rem
νm
Dm

5 4:993 105 3 1:57 3 1024 ft
2

s
3

1

0:5 ft

Vm 5 157 ft=s ß
Vm

This speed is low enough to neglect compressibility effects.
At these test conditions, the model and prototype flows are dynamically

similar. Hence

F

ρV2D2

�
m

5
F

ρV2D2

�
p

and

Fp 5 Fm
ρp
ρm

V2
p

V2
m

D2
p

D2
m

5 0:60 lbf 3
1:99

0:00238
3

ð8:44Þ2
ð157Þ2 3

1

ð0:5Þ2

Fp 5 5:8 lbf ß

Fp

If cavitation were expected—if the sonar probe were operated at high speed near the free surface
of the seawater—then useful results could not be obtained from a model test in air.

This problem:
ü Demonstrates the calculation of
prototype values from model test
data.

ü “Reinvented the wheel”: the results
for drag on a smooth sphere are very
well known, so we did not need to
do a model experiment but instead
could have simply read from the
graph of Fig. 7.1 the value ofCD 5 Fp= 1

2 ρV 2
p

π
4 D

2
p

� �
� 0:1, corre-

sponding to a Reynolds number of
4.99 3 105. Then Fp � 5.6 lbf can
easily be computed. We will have
more to say on drag coefficients in
Chapter 9.
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To match Froude numbers between model and prototype therefore requires a velocity
ratio of

Vm

Vp

5
Lm

Lp

� �1=2

to ensure dynamically similar surface wave patterns.
Hence for any model length scale, matching the Froude numbers determines the

velocity ratio. Only the kinematic viscosity can then be varied to match Reynolds
numbers. Thus

Rem 5
VmLm

νm
5 Rep 5

VpLp

νp

leads to the condition that

νm
νp

5
Vm

Vp

Lm

LP

If we use the velocity ratio obtained from matching the Froude numbers, equality of
Reynolds numbers leads to a kinematic viscosity ratio requirement of

νm
νp

5
Lm

Lp

� �1=2
Lm

Lp

5
Lm

Lp

� �3=2

If Lm=Lp 5 1
100 (a typical length scale for ship model tests), then νm/νp must be 1

1000.
Figure A.3 shows that mercury is the only liquid with kinematic viscosity less than that
of water. However, it is only about an order of magnitude less, so the kinematic
viscosity ratio required to duplicate Reynolds numbers cannot be attained.

We conclude that we have a problem: it is impossible in practice for this model/
prototype scale of 1

100 to satisfy both the Reynolds number and Froude number
criteria; at best we will be able to satisfy only one of them. In addition, water is the
only practical fluid for most model tests of free-surface flows. To obtain complete
dynamic similarity then would require a full-scale test. However, all is not lost: Model
studies do provide useful information even though complete similarity cannot be
obtained. As an example, Fig. 7.2 shows data from a test of a 1:80 scale model of a ship
conducted at the U.S. Naval Academy Hydromechanics Laboratory. The plot displays
“resistance coefficient” data versus Froude number. The square points are calculated
from values of total resistance measured in the test. We would like to obtain the
corresponding total resistance curve for the full-scale ship.

If you think about it, we can only measure the total drag (the square data points).
The total drag is due to both wave resistance (dependent on the Froude number) and
friction resistance (dependent on the Reynolds number), and it’s not possible to
determine experimentally how much each contributes. We cannot use the total drag
curve of Fig. 7.2 for the full-scale ship because, as we have discussed above, we can
never set up the model conditions so that its Reynolds number and Froude number
match those of the full-scale ship. Nevertheless, we would like to extract from Fig. 7.2
the corresponding total drag curve for the full-scale ship. In many experimental
situations we need to use a creative “trick” to come up with a solution. In this case, the
experimenters used boundary-layer theory (which we discuss in Chapter 9) to predict
the viscous resistance component of the model (shown as diamonds in Fig. 7.2);
then they estimated the wave resistance (not obtainable from theory) by simply
subtracting this theoretical viscous resistance from the experimental total resistance,
point by point (shown as circles in Fig. 7.2).

Using this clever idea (typical of the kind of experimental and analytical
approaches experimentalists need to employ), Fig. 7.2 therefore gives the wave
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resistance of the model as a function of Froude number. It is also valid for the full-
scale ship, because wave resistance depends only on the Froude number! We can now
build a graph similar to Fig. 7.2 valid for the full-scale ship: Simply compute from
boundary-layer theory the viscous resistance of the full-scale ship and add this to the
wave resistance values, point by point. The result is shown in Fig. 7.3. The wave
resistance points are identical to those in Fig. 7.2; the viscous resistance points are
computed from theory (and are different from those of Fig. 7.2); and the predicted
total resistance curve for the full-scale ship is finally obtained.
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Fig. 7.3 Resistance of full-scale ship predicted from model test
results. (Data from U.S. Naval Academy Hydromechanics Labora-
tory, courtesy of Professor Bruce Johnson.)
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Fig. 7.2 Data from test of 1:80 scale model of U.S. Navy guided
missile frigate Oliver Hazard Perry (FFG-7). (Data from U.S. Naval
Academy Hydromechanics Laboratory, courtesy of Professor Bruce
Johnson.)
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In this example, incomplete modeling was overcome by using analytical compu-
tations; the model experiments modeled the Froude number, but not the Reynolds
number.

Because the Reynolds number cannot be matched for model tests of surface ships,
the boundary-layer behavior is not the same for model and prototype. The model
Reynolds number is only (Lm/Lp)

3/2 as large as the prototype value, so the extent of
laminar flow in the boundary layer on the model is too large by a corresponding
factor. The method just described assumes that boundary-layer behavior can be
scaled. To make this possible, the model boundary layer is “tripped” or “stimulated”
to become turbulent at a location that corresponds to the behavior on the full-scale
vessel. “Studs” were used to stimulate the boundary layer for the model test results
shown in Fig. 7.2.

A correction sometimes is added to the full-scale coefficients calculated from
model test data. This correction accounts for roughness, waviness, and unevenness
that inevitably are more pronounced on the full-scale ship than on the model. Com-
parisons between predictions from model tests and measurements made in full-scale
trials suggest an overall accuracy within 65 percent [5].

As we will see in Chapter 11, the Froude number is an important parameter in the
modeling of rivers and harbors. In these situations it is not practical to obtain com-
plete similarity. Use of a reasonable model scale would lead to extremely small water
depths, so that viscous forces and surface tension forces would have much larger
relative effects in the model flow than in the prototype. Consequently, different length
scales are used for the vertical and horizontal directions. Viscous forces in the deeper
model flow are increased using artificial roughness elements.

Emphasis on fuel economy has made reduction of aerodynamic drag important for
automobiles, trucks, and buses. Most work on development of low-drag configurations

is done using model tests. Traditionally, automobile models have been built to 3
8 scale,

at which a model of a full-size automobile has a frontal area of about 0.3 m2. Thus

testing can be done in a wind tunnel with test section area of 6 m2 or larger. At 3
8 scale,

a wind speed of about 150 mph is needed to model a prototype automobile traveling
at the legal speed limit. Thus there is no problem with compressibility effects, but the
scale models are expensive and time-consuming to build.

A large wind tunnel (test section dimensions are 5.4 m high, 10.4 m wide, and
21.3 m long; maximum air speed is 250 km/hr with the tunnel empty) is used by
General Motors to test full-scale automobiles at highway speeds. The large test sec-
tion allows use of production autos or of full-scale clay mockups of proposed auto
body styles. Many other vehicle manufacturers are using comparable facilities; Fig. 7.4
shows a full-size sedan under test in the Volvo wind tunnel. The relatively low speed
permits flow visualization using tufts or “smoke” streams.1 Using full-size “models,”
stylists and engineers can work together to achieve optimum results.

It is harder to achieve dynamic similarity in tests of trucks and buses; models must
be made to smaller scale than those for automobiles.2 A large scale for truck and bus
testing is 1:8. To achieve complete dynamic similarity by matching Reynolds numbers
at this scale would require a test speed of 440 mph. This would introduce unwanted
compressibility effects, and model and prototype flows would not be kinematically
similar. Fortunately, trucks and buses are “bluff” objects. Experiments show that
above a certain Reynolds number, their nondimensional drag becomes independent

1A mixture of liquid nitrogen and steam may be used to produce “smoke” streaklines that evaporate and do

not clog the fine mesh screens used to reduce the turbulence level in a wind tunnel. Streaklines may be made

to appear “colored” in photos by placing a filter over the camera lens. This and other techniques for flow

visualization are detailed in Reference [6] and Merzkirch [7].
2The vehicle length is particularly important in tests at large yaw angles to simulate crosswind behavior.

Tunnel blockage considerations limit the acceptable model size. See Reference [8] for recommended

practices.
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of Reynolds number [8]. (Figure 7.1 actually shows an example of this—for a sphere,
the dimensionless drag is approximately constant for 2000,Re, 2 3 105.) Although
similarity is not complete, measured test data can be scaled to predict prototype drag
forces. The procedure is illustrated in Example 7.5.

Fig. 7.4 Full-scale automobile under test in Volvo wind tunnel, using smoke streaklines for flow visualization.
(Photograph courtesy of Volvo Cars of North America, Inc.)

Example 7.5 INCOMPLETE SIMILARITY: AERODYNAMIC DRAG ON A BUS

The following wind tunnel test data from a 1:16 scale model of a bus are available:

Air Speed (m/s) 18.0 21.8 26.0 30.1 35.0 38.5 40.9 44.1 46.7
Drag Force (N) 3.10 4.41 6.09 7.97 10.7 12.9 14.7 16.9 18.9

Using the properties of standard air, calculate and plot the dimensionless aerodynamic drag coefficient,

CD 5
FD

1

2
ρV2A

versus Reynolds number Re 5 ρVw=μ, where w is model width. Find the minimum test speed above which CD

remains constant. Estimate the aerodynamic drag force and power requirement for the prototype vehicle at 100 km/
hr. (The width and frontal area of the prototype are 8 ft and 84 ft2, respectively.)

Given: Data from a wind tunnel test of a model bus. Prototype dimensions are width of 8 ft and frontal area of
84 ft2. Model scale is 1:16. Standard air is the test fluid.

Find: (a) Aerodynamic drag coefficient, CD 5 FD=
1
2 ρV

2A, versus Reynolds number, Re 5 ρVw=μ; plot.
(b) Speed above which CD is constant.
(c) Estimated aerodynamic drag force and power required for the full-scale vehicle at 100 km/hr.
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Solution:
The model width is

wm 5
1

16
wp 5

1

16
3 8 ft3 0:3048

m

ft
5 0:152 m

The model area is

Am 5
1

16

� �2
Ap 5

1

16

� �2
3 84 ft2 3 ð0:305Þ2 m

2

ft2
5 0:0305 m2

The aerodynamic drag coefficient may be calculated as

CD 5
FD

1

2
ρV2A

5 23FDðNÞ3 m3

1:23 kg
3

s2

ðVÞ2 m2
3

1

0:0305 m2
3

kg � m
N � s2

CD 5
53:3 FDðNÞ
½Vðm=sÞ�2

The Reynolds number may be calculated as

Re 5
ρVw
μ

5
Vw

ν
5 V

m

s
3 0:152 m3

s

1:463 1025 m2

Re 5 1:043 104 Vðm=sÞ
The calculated values are plotted in the following figure:

The plot shows that the model drag coefficient becomes constant at CDm � 0.46 above Rem5 4 3 105, which cor-
responds to an air speed of approximately 40 m/s. Since the drag coefficient is independent of Reynolds number
above Re � 4 3 105, then for the prototype vehicle (Re � 4.5 3 106), CD � 0.46. The drag force on the full-scale
vehicle is

FDp
5 CD

1

2
ρV2

pAp

5
0:46

2
3 1:23

kg

m3
100

km

hr
3 1000

m

km
3

hr

3600 s

0
@

1
A
2

3 84 ft2 3 ð0:305Þ2 m
2

ft2
3

N � s2
kg �m

FDp
5 1:71 kN ß

FDp

0.6
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0 1 2

Model Reynolds number, Rem (× 10−5)
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el
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g
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fi
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ß
CDm

versus Rem
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For additional details on techniques and applications of dimensional analysis
consult [9�12].

Scaling with Multiple Dependent Parameters

In some situations of practical importance there may be more than one dependent
parameter. In such cases, dimensionless groups must be formed separately for each
dependent parameter.

As an example, consider a typical centrifugal pump. The detailed flow pattern
within a pump changes with volume flow rate and speed; these changes affect the
pump’s performance. Performance parameters of interest include the pressure rise (or
head) developed, the power input required, and the machine efficiency measured
under specific operating conditions.3 Performance curves are generated by varying an
independent parameter such as the volume flow rate. Thus the independent variables
are volume flow rate, angular speed, impeller diameter, and fluid properties.
Dependent variables are the several performance quantities of interest.

Finding dimensionless parameters begins from the symbolic equations for the
dependence of head, h (energy per unit mass, L2/t2), and power, 3, on the indepen-
dent parameters, given by

h 5 g1ðQ, ρ, ω, D, μÞ
and

3 5 g2ðQ, ρ, ω, D, μÞ
Straightforward use of the Pi theorem gives the dimensionless head coefficient and
power coefficient as

h

ω2D2
5 f1

Q

ωD3
,

ρωD2

μ

� �
ð7:17Þ

The corresponding power required to overcome aerodynamic drag is

3p 5 FDp
Vp

5 1:713 103 N3 100
km

hr
3 1000

m

km

3
hr

3600 s
3

W � s
N �m

3p 5 47:5 kW ß

3p

This problem illustrates a common
phenomenon in aerodynamics: Above a
certain minimum Reynolds number the
drag coefficient of an object usually
approaches a constant—that is,
becomes independent of the Reynolds
number. Hence, in these situations we
do not have to match the Reynolds
numbers of the model and prototype in
order for them to have the same drag
coefficient—a considerable advantage.
However, the SAE Recommended
Practices [8] suggests Re $ 2 3 106

for
truck and bus testing.

3Efficiency is defined as the ratio of power delivered to the fluid divided by input power, η53/3in. For

incompressible flow, we will see in Chapter 8 that the energy equation reduces to 35 ρQh (when “head” h

is expressed as energy per unit mass) or to 35 ρgQH (when headH is expressed as energy per unit weight).
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and

3

ρω3D5
5 f2

Q

ωD3
,

ρωD2

μ

� �
ð7:18Þ

The dimensionless parameter Q=ωD3 in these equations is called the flow co-
efficient. The dimensionless parameter ρωD2=μ ð~ρVD=μÞ is a form of Reynolds
number.

Head and power in a pump are developed by inertia forces. Both the flow pattern
within a pump and the pump performance change with volume flow rate and speed of
rotation. Performance is difficult to predict analytically except at the design point
of the pump, so it is measured experimentally. Typical characteristic curves plotted
from experimental data for a centrifugal pump tested at constant speed are shown
in Fig. 7.5 as functions of volume flow rate. The head, power, and efficiency curves in
Fig. 7.5 are smoothed through points calculated from measured data. Maximum
efficiency usually occurs at the design point.

Complete similarity in pump performance tests would require identical flow
coefficients and Reynolds numbers. In practice, it has been found that viscous effects
are relatively unimportant when two geometrically similar machines operate under
“similar” flow conditions. Thus, from Eqs. 7.17 and 7.18, when

Q1

ω1D
3
1

5
Q2

ω2D
3
2

ð7:19Þ

it follows that

h1

ω2
1D

2
1

5
h2

ω2
2D

2
2

ð7:20Þ

and

31

ρ1ω3
1D

5
1

5
32

ρ2ω3
2D

5
2

ð7:21Þ

The empirical observation that viscous effects are unimportant under similar flow
conditions allows use of Eqs. 7.19 through 7.21 to scale the performance charac-
teristics of machines to different operating conditions, as either the speed or diameter
is changed. These useful scaling relationships are known as pump or fan “laws.” If
operating conditions for one machine are known, operating conditions for any geo-
metrically similar machine can be found by changing D and ω according to Eqs. 7.19
through 7.21. (More details on dimensional analysis, design, and performance curves
for fluid machinery are presented in Chapter 10.)
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Fig. 7.5 Typical characteristic curves for
centrifugal pump tested at constant speed.
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Another useful pumpparameter can be obtained by eliminating themachine diameter

from Eqs. 7.19 and 7.20. If we designateΠ1 5 Q=ωD3 and Π2 5 h=ω2D2, then the ratio

Π1=2
1 =Π3=4

2 is another dimensionless parameter; this parameter is the specific speed, Ns,

Ns 5
ωQ1=2

h3=4
ð7:22aÞ

The specific speed, as defined in Eq. 7.22a, is a dimensionless parameter (provided
that the head, h, is expressed as energy per unit mass). You may think of specific speed
as the speed required for a machine to produce unit head at unit volume flow rate. A
constant specific speed describes all operating conditions of geometrically similar
machines with similar flow conditions.

Although specific speed is a dimensionless parameter, it is common practice to use
a convenient but inconsistent set of units in specifying the variables ω and Q, and to
use the energy per unit weightH in place of energy per unit mass h in Eq. 7.22a. When
this is done the specific speed,

Nscu 5
ωQ1=2

H3=4
ð7:22bÞ

is not a unitless parameter and its magnitude depends on the units used to calculate it.
Customary units used in U.S. engineering practice for pumps are rpm for ω, gpm for
Q, and feet (energy per unit weight) for H. In these customary U.S. units, “low”
specific speed means 500,Nscu, 4000 and “high” means 10,000,Nscu, 15,000.
Example 7.6 illustrates use of the pump scaling laws and specific speed parameter.
More details of specific speed calculations and additional examples of applications to
fluid machinery are presented in Chapter 10.

Example 7.6 PUMP “LAWS”

A centrifugal pump has an efficiency of 80 percent at its design-point specific speed of 2000 (units of rpm, gpm,
and feet). The impeller diameter is 8 in. At design-point flow conditions, the volume flow rate is 300 gpm of water at
1170 rpm. To obtain a higher flow rate, the pump is to be fitted with a 1750 rpm motor. Use the pump “laws” to find
the design-point performance characteristics of the pump at the higher speed. Show that the specific speed remains
constant for the higher operating speed. Determine the motor size required.

Given: Centrifugal pump with design specific speed of 2000 (in rpm, gpm, and feet units). Impeller diameter is
D5 8 in. At the pump’s design-point flow conditions, ω5 1170 rpm and Q5 300 gpm, with water.

Find: (a) Performance characteristics,
(b) specific speed, and
(c) motor size required, for similar flow conditions at 1750 rpm.

Solution: From pump “laws,” Q=ωD3 5 constant, so

Q2 5 Q1
ω2

ω1

D2

D1

� �3
5 300 gpm

1750

1170

� �
ð1Þ3 5 449 gpm ß

Q2

The pump head is not specified at ω15 1170 rpm, but it can be calculated from the specific speed, Nscu 5 2000. Using
the given units and the definition of Nscu ,

Nscu 5
ωQ1=2

H3=4
so H1 5

ω1Q
1=2
1

Nscu

 !4=3
5 21:9 ft
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Comments on Model Testing

While outlining the procedures involved in model testing, we have tried not to imply
that testing is a simple task that automatically gives results that are easily interpreted,
accurate, and complete. As in all experimental work, careful planning and execution
are needed to obtain valid results. Models must be constructed carefully and accu-
rately, and they must include sufficient detail in areas critical to the phenomenon
being measured. Aerodynamic balances or other force measuring systems must be
aligned carefully and calibrated correctly. Mounting methods must be devised that
offer adequate rigidity and model motion, yet do not interfere with the phenomenon
being measured. References [13�15] are considered the standard sources for details
of wind tunnel test techniques. More specialized techniques for water impact testing
are described in Waugh and Stubstad [16].

Experimental facilities must be designed and constructed carefully. The quality
of flow in a wind tunnel must be documented. Flow in the test section should be
as nearly uniform as possible (unless the desire is to simulate a special profile
such as an atmospheric boundary layer), free from angularity, and with little swirl. If
they interfere with measurements, boundary layers on tunnel walls must be
removed by suction or energized by blowing. Pressure gradients in a wind tunnel
test section may cause erroneous drag-force readings due to pressure variations in
the flow direction.

Special facilities are needed for unusual conditions or for special test requirements,
especially to achieve large Reynolds numbers. Many facilities are so large or spe-
cialized that they cannot be supported by university laboratories or private industry.
A few examples include [17�19]:

Then H/ω2D25 constant, so

H2 5 H1
ω2

ω1

� �2
D2

D1

� �2
5 21:9 ft

1750

1170

� �2
ð1Þ2 5 49:0 ft ß

H2

The pump output power is 315 ρgQ1H1, so at ω15 1170 rpm,

31 5 1:94
slug

ft3
3 32:2

ft

s2
3 300

gal

min
3 21:9 ft3

ft3

7:48 gal
3

min

60 s
3

lbf � s2
slug � ft 3

hp � s
550 ft � lbf

31 5 1:66 hp

But 3=ρω3D5 5 constant, so

32 5 31
ρ2
ρ1

� �
ω2

ω1

� �3
D2

D1

� �5
5 1:66 hpð1Þ 1750

1170

� �3

ð1Þ5 5 5:55 hp ß

32

The required input power may be calculated as

3in 5
32

η
5

5:55 hp

0:80
5 6:94 hp ß

3in

Thus a 7.5-hp motor (the next larger standard size) probably would be
specified.

The specific speed at ω25 1750 rpm is

Nscu 5
ωQ1=2

H3=4
5

1750ð449Þ1=2
ð49:0Þ3=4

5 2000 ß
Nscu

This problem illustrates application of
the pump “laws” and specific speed to
scaling of performance data. Pump and
fan “laws” are used widely in industry
to scale performance curves for fam-
ilies of machines from a single perfor-
mance curve, and to specify drive
speed and power in machineapplications.
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� National Full-Scale Aerodynamics Complex, NASA, Ames Research Center,
Moffett Field, California.
Two wind tunnel test sections, powered by a 125,000 hp electric drive system:
� 40 ft high and 80 ft wide (12 3 24 m) test section, maximum wind speed of
300 knots.

� 80 ft high and 120 ft wide (24 3 36 m) test section, maximum wind speed of
137 knots.

� U.S. Navy, David Taylor Research Center, Carderock, Maryland.
� High-Speed Towing Basin 2968 ft long, 21 ft wide, and 16 ft deep. Towing carriage
can travel at up to 100 knots while measuring drag loads to 8000 lbf and side loads
to 2000 lbf.

� 36 in. variable-pressure water tunnel with 50 knot maximum test speed at pres-
sures between 2 and 60 psia.

� Anechoic Flow Facility with quiet, low-turbulence air flow in 8 ft square by 21 ft-
long open-jet test section. Flow noise at maximum speed of 200 ft/s is less than
that of conversational speech.

� U.S. Army Corps of Engineers, Sausalito, California.
� San Francisco Bay and Delta Model with slightly more than 1 acre in area, 1:1000
horizontal scale and 1:100 vertical scale, 13,500 gpm of pumping capacity, use of
fresh and salt water, and tide simulation.

� NASA, Langley Research Center, Hampton, Virginia.
� National Transonic Facility (NTF) with cryogenic technology (temperatures as
low as 2300�F) to reduce gas viscosity, raising Reynolds number by a factor of 6,
while halving drive power.

7.7 Summary and Useful Equations
In this chapter we have:

ü Obtained dimensionless coefficients by nondimensionalizing the governing differential equations of a problem.
ü Stated the Buckingham Pi theorem and used it to determine the independent and dependent dimensionless parameters from the

physical parameters of a problem.
ü Defined a number of important dimensionless groups: the Reynolds number, Euler number, cavitation number, Froude number,

Weber number, and Mach number, and discussed their physical significance.

We have also explored some ideas behind modeling: geometric, kinematic, and dynamic similarity, incomplete
modeling, and predicting prototype results from model tests.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Reynolds number (inertia to viscous):
Re 5

ρVL
μ

5
VL

ν
(7.11) Page 304

Euler number (pressure to inertia):
Eu 5

Δp

1

2
ρV2

(7.12) Page 304

Cavitation number: Ca 5
p2 pv
1

2
ρV2

(7.13) Page 304
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Froude number (inertia to gravity):
Fr 5

Vffiffiffiffiffiffi
gL

p
(7.14) Page 305

Weber number (inertia to surface tension):
We 5

ρV2L

σ
(7.15) Page 305

Mach number (inertia to compressibility):
M 5

V

c

(7.16) Page 305

Centrifugal pump specific speed
(in terms of head h): Ns 5

ωQ1=2

h3=4

(7.22a) Page 316

Centrifugal pump specific speed
(in terms of head H): Nscu 5

ωQ1=2

H3=4

(7.22b) Page 316
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Problems
Nondimensionalizing the Basic Differential Equations

Many of the Problems in this chapter involve obtaining the Π
groups that characterize a problem. The Excel workbook used
in Example 7.1 is useful for performing the computations
involved. To avoid needless duplication, the computer symbol
will only be used next to Problems when they have an addi-
tional benefit (e.g., for graphing).

7.1 The propagation speed of small-amplitude surface waves
in a region of uniform depth is given by

c2 5
σ
ρ
2π
λ

1
gλ
2π

� �
tanh

2πh
λ

where h is depth of the undisturbed liquid and λ is wave-
length. Using L as a characteristic length and V0 as a char-
acteristic velocity, obtain the dimensionless groups that
characterize the equation.

7.2 The equation describing small-amplitude vibration of a
beam is

ρA
@2y

@t2
1EI

@4y

@x4
5 0

where y is the beam deflection at location x and time t, ρ and
E are the density and modulus of elasticity of the beam
material, respectively, and A and I are the beam cross-sec-
tion area and second moment of area, respectively. Use the
beam length L, and frequency of vibration ω, to non-
dimensionalize this equation. Obtain the dimensionless
groups that characterize the equation.

7.3 The slope of the free surface of a steady wave in one-
dimensional flow in a shallow liquid layer is described by the
equation

@h

@x
52

u

g

@u

@x

Use a length scale, L, and a velocity scale, V0, to non-
dimensionalize this equation. Obtain the dimensionless groups
that characterize this flow.

7.4 One-dimensional unsteady flow in a thin liquid layer is
described by the equation

@u

@t
1 u

@u

@x
52g

@h

@x

Use a length scale, L, and a velocity scale, V0, to nondimen-
sionalize this equation. Obtain the dimensionless groups that
characterize this flow.

7.5 A two-dimensional steady flow in a viscous liquid is
described by the equation:

u
@u

@x
¼ �g

@h

@x
þ μ

ρ
@2u

@x2
þ @2u

@y2

� �

Use a length scale, L, and a velocity scale, V0, to non-
dimensionalize this equation. Obtain the dimensionless
groups that characterize this flow.

7.6 In atmospheric studies the motion of the earth’s atmo-
sphere can sometimes be modeled with the equation

D~V

Dt
1 2~Ω3 ~V 52

1

ρ
rp

where ~V is the large-scale velocity of the atmosphere across
the Earth’s surface, rp is the climatic pressure gradient, and
~Ω is the Earth’s angular velocity. What is the meaning of the
term ~Ω3 ~V? Use the pressure difference, Δp, and typical
length scale, L (which could, for example, be the magnitude
of, and distance between, an atmospheric high and low,
respectively), to nondimensionalize this equation. Obtain the
dimensionless groups that characterize this flow.

7.7 By using order of magnitude analysis, the continuity and
Navier�Stokes equations can be simplified to the Prandtl
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boundary-layer equations. For steady, incompressible, and
two-dimensional flow, neglecting gravity, the result is

@u

@x
1

@v
@y

5 0

u
@u

@x
1 v

@u

@y
52

1

ρ
@p

@x
1 ν

@2u

@y2

Use L and V0 as characteristic length and velocity, respec-
tively. Nondimensionalize these equations and identify the
similarity parameters that result.

7.8 An unsteady, two-dimensional, compressible, inviscid
flow can be described by the equation

@2ψ
@t2

1
@

@t
ðu2 1 v2Þ1 ðu2 2 c2Þ @

2ψ
@x2

1 ðv2 2 c2Þ @
2ψ
@y2

1 2uv
@2ψ
@x@y

5 0

where ψ is the stream function, u and v are the x and y
components of velocity, respectively, c is the local speed of
sound, and t is the time. Using L as a characteristic length
and c0 (the speed of sound at the stagnation point) to non-
dimensionalize this equation, obtain the dimensionless
groups that characterize the equation.

7.9 The equation describing motion of fluid in a pipe due to an
applied pressure gradient, when the flow starts from rest, is
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Use the average velocity V, pressure drop Δp, pipe length L,
and diameter D to nondimensionalize this equation. Obtain
the dimensionless groups that characterize this flow.

Determining the Π Groups

7.10 Experiments show that the pressure drop for flow
through an orifice plate of diameter d mounted in a length of
pipe of diameter D may be expressed as Δp 5 p1 2p2 5

f ðρ, μ, V, d, DÞ. You are asked to organize some experi-
mental data. Obtain the resulting dimensionless parameters.

7.11 At relatively high speeds the drag on an object is inde-
pendent of fluid viscosity. Thus the aerodynamic drag force,
F, on an automobile, is a function only of speed, V, air
density ρ, and vehicle size, characterized by its frontal area
A. Use dimensional analysis to determine how the drag force
F depends on the speed V.

7.12 At very low speeds, the drag on an object is independent
of fluid density. Thus the drag force, F, on a small sphere is a
function only of speed, V, fluid viscosity, μ, and sphere
diameter, D. Use dimensional analysis to determine how the
drag force F depends on the speed V.

7.13 The drag force on the International Space Station
depends on the mean free path of the molecules λ (a length),
the density ρ, a characteristic length L, and the mean speed
of the air molecules c. Find a nondimensional form of this
functional relationship.

7.14 We saw in Chapter 3 that the buoyant force, FB, on a body
submerged in a fluid is directly proportional to the specific

weight of the fluid, γ. Demonstrate this using dimensional
analysis, by starting with the buoyant force as a function of the
volume of the body and the specific weight of the fluid.

7.15 When an object travels at supersonic speeds, the aero-
dynamic drag force F acting on the object is a function of the
velocity V, air density ρ, object size (characterized by some
reference area A), and the speed of sound c (note that all of
the variables except c were considered when traveling at
subsonic speeds as in Problem 7.11). Develop a functional
relationship between a set of dimensionless variables to
describe this problem.

7.16 The speed, V, of a free-surface wave in shallow liquid is
a function of depth, D, density, ρ, gravity, g, and surface
tension, σ. Use dimensional analysis to find the functional
dependence of V on the other variables. Express V in the
simplest form possible.

7.17 The wall shear stress, τw, in a boundary layer depends on
distance from the leading edge of the body, x, the density, ρ,
and viscosity, μ, of the fluid, and the freestream speed of
the flow, U. Obtain the dimensionless groups and express the
functional relationship among them.

7.18 The boundary-layer thickness, δ, on a smooth flat plate
in an incompressible flow without pressure gradients
depends on the freestream speed, U, the fluid density, ρ, the
fluid viscosity, μ, and the distance from the leading edge of
the plate, x. Express these variables in dimensionless form.

7.19 If an object is light enough it can be supported on the
surface of a fluid by surface tension. Tests are to be done to
investigate this phenomenon. The weight, W, supportable in
this way depends on the object’s perimeter, p, and the fluid’s
density, ρ, surface tension σ, and gravity, g. Determine the
dimensionless parameters that characterize this problem.

7.20 The speed, V, of a free-surface gravity wave in deep
water is a function of wavelength, λ, depth,D, density, ρ, and
acceleration of gravity, g. Use dimensional analysis to find
the functional dependence of V on the other variables.
Express V in the simplest form possible.

7.21 The mean velocity, u, for turbulent flow in a pipe or a
boundary layer may be correlated using the wall shear stress,
τw, distance from the wall, y, and the fluid properties, ρ and μ.
Use dimensional analysis to find one dimensionless parameter
containing u and one containing y that are suitable for orga-
nizing experimental data. Show that the result may be written

u

u*
5 f

yu*
ν

� �

where u*5 (τw/ρ)
1/2 is the friction velocity.

7.22 The energy released during an explosion, E, is a func-
tion of the time after detonation t, the blast radius R at time
t, and the ambient air pressure p, and density ρ. Determine,
by dimensional analysis, the general form of the expression
for E in terms of the other variables.

7.23 Capillary waves are formed on a liquid free surface as a
result of surface tension. They have short wavelengths. The
speed of a capillary wave depends on surface tension, σ,
wavelength, λ, and liquid density, ρ. Use dimensional anal-
ysis to express wave speed as a function of these variables.
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7.24 Measurements of the liquid height upstream from an
obstruction placed in an open-channel flow can be used to
determine volume flow rate. (Such obstructions, designed
and calibrated to measure rate of open-channel flow, are
called weirs.) Assume the volume flow rate, Q, over a weir is
a function of upstream height, h, gravity, g, and channel
width, b. Use dimensional analysis to find the functional
dependence of Q on the other variables.

7.25 The torque, T, of a handheld automobile buffer is a
function of rotational speed, ω, applied normal force, F,
automobile surface roughness, e, buffing paste viscosity,μ, and
surface tension, σ. Determine the dimensionless param-
eters that characterize this problem.

7.26 The power, 3, used by a vacuum cleaner is to be cor-
related with the amount of suction provided (indicated by
the pressure drop, Δp, below the ambient room pressure). It
also depends on impeller diameter, D, and width, d, motor
speed, ω, air density, ρ, and cleaner inlet and exit widths, di
and do, respectively. Determine the dimensionless param-
eters that characterize this problem.

7.27 The load-carrying capacity, W, of a journal bearing is
known to depend on its diameter, D, length, l, and clearance,
c, in addition to its angular speed, ω, and lubricant viscosity,
μ. Determine the dimensionless parameters that characterize
this problem.

7.28 The time, t, for oil to drain out of a viscosity calibration
container depends on the fluid viscosity, μ, and density, ρ, the
orifice diameter, d, and gravity, g. Use dimensional analysis
to find the functional dependence of t on the other variables.
Express t in the simplest possible form.

7.29 The power per unit cross-sectional area, E, transmitted
by a sound wave is a function of wave speed, V, medium
density, ρ, wave amplitude, r, and wave frequency, n.
Determine, by dimensional analysis, the general form of the
expression for E in terms of the other variables.

7.30 You are asked to find a set of dimensionless parameters
to organize data from a laboratory experiment, in which
a tank is drained through an orifice from initial liquid level
h0. The time, τ, to drain the tank depends on tank diameter,
D, orifice diameter, d, acceleration of gravity, g, liquid den-
sity, ρ, and liquid viscosity, μ. How many dimensionless
parameters will result? How many repeating variables must
be selected to determine the dimensionless parameters?
Obtain the Π parameter that contains the viscosity.

7.31 A continuous belt moving vertically through a bath of
viscous liquid drags a layer of liquid, of thickness h, along
with it. The volume flow rate of liquid, Q, is assumed to
depend on μ, ρ, g, h, and V, where V is the belt speed. Apply
dimensional analysis to predict the form of dependence of Q
on the other variables.

7.32 The power, 3, required to drive a fan is believed to
depend on fluid density, ρ, volume flow rate, Q, impeller
diameter,D, and angular velocity, ω. Use dimensional analysis
to determine the dependence of 3 on the other variables.

7.33 In a fluid mechanics laboratory experiment a tank of
water, with diameter D, is drained from initial level h0. The
smoothly rounded drain hole has diameter d. Assume the

mass flow rate from the tank is a function of h, D, d, g, ρ, and
μ, where g is the acceleration of gravity and ρ and μ are fluid
properties. Measured data are to be correlated in dimen-
sionless form. Determine the number of dimensionless
parameters that will result. Specify the number of repeat-
ing parameters that must be selected to determine the
dimensionless parameters. Obtain the Π parameter that
contains the viscosity.

7.34 Cylindrical water tanks are frequently found on the tops
of tall buildings. When a tank is filled with water, the bottom
of the tank typically deflects under the weight of the water
inside. The deflection δ is a function of the tank diameter D,
the height of water h, the thickness of the tank bottom d, the
specific weight of the water γ, and the modulus of elasticity
of the tank material E. Determine the functional relationship
among these parameters using dimensionless groups.

7.35 Small droplets of liquid are formed when a liquid jet
breaks up in spray and fuel injection processes. The resulting
droplet diameter, d, is thought to depend on liquid density,
viscosity, and surface tension, as well as jet speed, V, and
diameter, D. How many dimensionless ratios are required to
characterize this process? Determine these ratios.

7.36 The sketch shows an air jet discharging vertically.
Experiments show that a ball placed in the jet is suspended in
a stable position. The equilibrium height of the ball in the jet
is found to depend on D, d, V, ρ, μ, and W, where W is the
weight of the ball. Dimensional analysis is suggested to
correlate experimental data. Find the Π parameters that
characterize this phenomenon.
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7.37 The diameter, d, of the dots made by an ink jet printer
depends on the ink viscosity, μ, density, ρ, and surface ten-
sion, σ, the nozzle diameter, D, the distance, L, of the nozzle
from the paper surface, and the ink jet velocity, V. Use
dimensional analysis to find the Π parameters that char-
acterize the ink jet’s behavior.

7.38 The diameter, d, of bubbles produced by a bubble-
making toy depends on the soapy water viscosity, μ, density, ρ,
and surface tension, σ, the ring diameter,D, and the pressure
differential, Δp, generating the bubbles. Use dimensional
analysis to find the Π parameters that characterize this
phenomenon.

7.39 The terminal speed V of shipping boxes sliding down an
incline on a layer of air (injected through numerous pinholes
in the incline surface) depends on the box mass, m, and base
area, A, gravity, g, the incline angle, θ, the air viscosity, μ,
and the air layer thickness, δ. Use dimensional analysis to
find the Π parameters that characterize this phenomenon.
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7.40 The length of the wake w behind an airfoil is a function
of the flow speed V, chord length L, thickness t, and fluid
density ρ and viscosity μ. Find the dimensionless parameters
that characterize this phenomenon.

7.41 A washing machine agitator is to be designed. The
power, 3, required for the agitator is to be correlated with
the amount of water used (indicated by the depth, H, of the
water). It also depends on the agitator diameter,D, height, h,
maximum angular velocity, ωmax, and frequency of oscilla-
tions, f, and water density, ρ, and viscosity, μ. Determine the
dimensionless parameters that characterize this problem.

7.42 Choked-flow nozzles are often used to meter the flow of
gases through piping systems. The mass flow rate of gas is
thought to depend on nozzle area A, pressure p, and tem-
perature T upstream of the meter, and the gas constant R.
Determine how many independent Π parameters can be
formed for this problem. State the functional relationship for
the mass flow rate in terms of the dimensionless parameters.

7.43 The time, t, for a flywheel, with moment of inertia, I, to
reach angular velocity, ω, from rest, depends on the applied
torque, T, and the following flywheel bearing properties: the
oil viscosity, μ, gap, δ, diameter, D, and length, L. Use
dimensional analysis to find the Π parameters that char-
acterize this phenomenon.

7.44 A large tank of liquid under pressure is drained through
a smoothly contoured nozzle of area A. The mass flow rate is
thought to depend on nozzle area, A, liquid density, ρ, dif-
ference in height between the liquid surface and nozzle, h,
tank gage pressure, Δp, and gravitational acceleration, g.
Determine how many independent Π parameters can be
formed for this problem. Find the dimensionless parameters.
State the functional relationship for the mass flow rate in
terms of the dimensionless parameters.

7.45 Spin plays an important role in the flight trajectory of
golf, Ping-Pong, and tennis balls. Therefore, it is important to
know the rate at which spin decreases for a ball in flight. The
aerodynamic torque, T, acting on a ball in flight, is thought
to depend on flight speed, V, air density, ρ, air viscosity, μ, ball
diameter, D, spin rate (angular speed), ω, and diameter of
the dimples on the ball, d. Determine the dimensionless
parameters that result.

7.46 The ventilation in the clubhouse on a cruise ship is
insufficient to clear cigarette smoke (the ship is not yet com-
pletely smoke-free). Tests are to be done to see if a larger
extractor fan will work. The concentration of smoke, c (par-
ticles per cubic meter) depends on the number of smokers, N,
the pressure drop produced by the fan, Δp, the fan diameter,
D, motor speed, ω, the particle and air densities, ρp, and ρ,
respectively, gravity, g, and air viscosity, μ. Determine the
dimensionless parameters that characterize this problem.

7.47 The mass burning rate of flammable gas _m is a function
of the thickness of the flame δ, the gas density ρ, the thermal
diffusivity α, and the mass diffusivity D. Using dimensional
analysis, determine the functional form of this dependence in
terms of dimensionless parameters. Note that α and D have
the dimensions L2/t.

7.48 The power loss, 3, in a journal bearing depends on
length, l, diameter, D, and clearance, c, of the bearing, in

addition to its angular speed, ω. The lubricant viscosity and
mean pressure are also important. Obtain the dimensionless
parameters that characterize this problem. Determine the
functional form of the dependence of 3 on these parameters.

7.49 In a fan-assisted convection oven, the heat transfer rate
to a roast, _Q (energy per unit time), is thought to depend on
the specific heat of air, cp, temperature difference, Θ, a
length scale, L, air density, ρ, air viscosity, μ, and air speed,
V. How many basic dimensions are included in these vari-
ables? Determine the number of Π parameters needed to
characterize the oven. Evaluate the Π parameters.

7.50 The thrust of a marine propeller is to be measured during
“open-water” tests at a variety of angular speeds and forward
speeds (“speeds of advance”). The thrust, FT, is thought to
depend on water density, ρ, propeller diameter, D, speed of
advance, V, acceleration of gravity, g, angular speed, ω,
pressure in the liquid, p, and liquid viscosity, μ. Develop a set
of dimensionless parameters to characterize the performance
of the propeller. (One of the resulting parameters, gD/V2, is
known as the Froude speed of advance.)

7.51 The rate dT/dt at which the temperature T at the center
of a rice kernel falls during a food technology process is
critical—too high a value leads to cracking of the kernel, and
too low a value makes the process slow and costly. The rate
depends on the rice specific heat, c, thermal conductivity, k,
and size, L, as well as the cooling air specific heat, cp, density,
ρ, viscosity, μ, and speed, V. How many basic dimensions are
included in these variables? Determine the Π parameters for
this problem.

7.52 The power, 3, required to drive a propeller is known to
depend on the following variables: freestream speed, V,
propeller diameter, D, angular speed, ω, fluid viscosity, μ,
fluid density, ρ, and speed of sound in the fluid, c. How many
dimensionless groups are required to characterize this
situation? Obtain these dimensionless groups.

7.53 The fluid velocity u at any point in a boundary layer
depends on the distance y of the point above the surface, the
free-stream velocity U and free-stream velocity gradient
dU/dx, the fluid kinematic viscosity ν, and the boundary layer
thickness δ. How many dimensionless groups are required to
describe this problem? Find: (a) two Π groups by inspection,
(b) oneΠ that is a standard fluid mechanics group, and (c) any
remaining Π groups using the Buckingham Pi theorem.
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7.54 When a valve is closed suddenly in a pipe with flowing
water, a water hammer pressure wave is set up. The very
high pressures generated by such waves can damage the pipe.
The maximum pressure, pmax, generated by water hammer is
a function of liquid density, ρ, initial flow speed, U0, and
liquid bulk modulus, Ev. How many dimensionless groups
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are needed to characterize water hammer? Determine the
functional relationship among the variables in terms of
the necessary Π groups.

Flow Similarity and Model Studies

7.55 The designers of a large tethered pollution-sampling
balloon wish to know what the drag will be on the balloon for
the maximum anticipated wind speed of 5 m/s (the air is
assumed to be at 20�C). A 1

20-scale model is built for testing
in water at 20�C. What water speed is required to model the
prototype? At this speed the model drag is measured to be
2 kN. What will be the corresponding drag on the prototype?

7.56 An airship is to operate at 20 m/s in air at standard
conditions. A model is constructed to 1

20-scale and tested in a
wind tunnel at the same air temperature to determine drag.
What criterion should be considered to obtain dynamic
similarity? If the model is tested at 75 m/s, what pressure
should be used in the wind tunnel? If the model drag force is
250 N, what will be the drag of the prototype?

7.57 To match the Reynolds number in an air flow and a
water flow using the same size model, which flow will require
the higher flow speed? How much higher must it be?

7.58 An ocean-going vessel is to be powered by a rotating
circular cylinder. Model tests are planned to estimate the
power required to rotate the prototype cylinder. A dimen-
sional analysis is needed to scale the power requirements
from model test results to the prototype. List the parameters
that should be included in the dimensional analysis. Perform
a dimensional analysis to identify the important dimension-
less groups.

7.59 Measurements of drag force are made on a model auto-
mobile in a towing tank filled with fresh water. The model
length scale is 1

5 that of the prototype. State the conditions
required to ensure dynamic similarity between the model and
prototype. Determine the fraction of the prototype speed in air
at which the model test should be made in water to ensure
dynamically similar conditions. Measurements made at various
speeds show that the dimensionless force ratio becomes con-
stant at model test speeds above Vm5 4 m/s. The drag force
measured during a test at this speed is FDm

5 182 N. Calculate
the drag force expected on the prototype vehicle operating at
90 km/hr in air.

7.60 On a cruise ship, passengers complain about the noise
emanating from the ship’s propellers (probably due to tur-
bulent flow effects between the propeller and the ship). You
have been hired to find out the source of this noise. You will
study the flow pattern around the propellers and have
decided to use a 1:9-scale water tank. If the ship’s propellers
rotate at 100 rpm, estimate the model propeller rotation
speed if (a) the Froude number or (b) the Reynolds number
is the governing dimensionless group. Which is most likely to
lead to the best modeling?

7.61 A 1
5-scale model of a torpedo is tested in a wind tunnel to

determine the drag force. The prototype operates in water,
has 533 mm diameter, and is 6.7 m long. The desired oper-
ating speed of the prototype is 28 m/s. To avoid compressi-
bility effects in the wind tunnel, the maximum speed is

limited to 110 m/s. However, the pressure in the wind tunnel
can be varied while holding the temperature constant at
20�C. At what minimum pressure should the wind tunnel be
operated to achieve a dynamically similar test? At dynami-
cally similar test conditions, the drag force on the model is
measured as 618 N. Evaluate the drag force expected on the
full-scale torpedo.

7.62 The drag of an airfoil at zero angle of attack is a
function of density, viscosity, and velocity, in addition to a
length parameter. A 1:5-scale model of an airfoil was tested
in a wind tunnel at a speed of 130 ft/s, temperature of 59�F,
and 5 atmospheres absolute pressure. The prototype airfoil
has a chord length of 6 ft and is to be flown in air at standard
conditions. Determine the Reynolds number at which the
wind tunnel model was tested and the corresponding pro-
totype speed at the same Reynolds number.

7.63 Consider a smooth sphere, of diameter D, immersed in
a fluid moving with speed V. The drag force on a 10-ft-
diameter weather balloon in air moving at 5 ft/s is to be
calculated from test data. The test is to be performed in
water using a 2-in.-diameter model. Under dynamically
similar conditions, the model drag force is measured as
0.85 lbf. Evaluate the model test speed and the drag force
expected on the full-scale balloon.

7.64 An airplane wing, with chord length of 1.5 m and span
of 9 m, is designed to move through standard air at a speed of
7.5 m/s. A 1

10-scale model of this wing is to be tested in a
water tunnel. What speed is necessary in the water tunnel to
achieve dynamic similarity? What will be the ratio of forces
measured in the model flow to those on the prototype wing?

7.65 The fluid dynamic characteristics of a golf ball are to be
tested using a model in a wind tunnel. Dependent param-
eters are the drag force, FD, and lift force, FL, on the ball.
The independent parameters should include angular speed,
ω, and dimple depth, d. Determine suitable dimensionless
parameters and express the functional dependence among
them. A golf pro can hit a ball at V = 75 m/s and ω =
8100 rpm. To model these conditions in a wind tunnel with a
maximum speed of 25 m/s, what diameter model should be
used? How fast must the model rotate? (The diameter of a
U.S. golf ball is 4.27 cm.)

7.66 A water pump with impeller diameter 24 in. is to be
designed to move 15 ft3/s when running at 750 rpm. Testing is
performed on a 1:4 scale model running at 2400 rpm using air
(68�F) as the fluid. For similar conditions (neglecting Rey-
nolds number effects), what will be the model flow rate? If
the model draws 0.1 hp, what will be the power requirement
of the prototype?

7.67 A model test is performed to determine the flight
characteristics of a Frisbee. Dependent parameters are drag
force, FD, and lift force, FL. The independent parameters
should include angular speed, ω, and roughness height, h.
Determine suitable dimensionless parameters, and express
the functional dependence among them. The test (using air)
on a 1:7-scale model Frisbee is to be geometrically, kine-
matically, and dynamically similar to the prototype.
The wind tunnel test conditions are Vm = 140 ft/s and ωm =
5000 rpm. What are the corresponding values of Vp and ωp?
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7.68 A model hydrofoil is to be tested at 1:20 scale. The test
speed is chosen to duplicate the Froude number corre-
sponding to the 60-knot prototype speed. To model cavita-
tion correctly, the cavitation number also must be
duplicated. At what ambient pressure must the test be run?
Water in the model test basin can be heated to 130�F,
compared to 45�F for the prototype.

7.69 SAE 10W oil at 77�F flowing in a 1-in.-diameter hor-
izontal pipe, at an average speed of 3 ft/s, produces a pressure
drop of 7 psi (gage) over a 500-ft length. Water at 60�F flows
through the same pipe under dynamically similar conditions.
Using the results of Example 7.2, calculate the average speed
of the water flow and the corresponding pressure drop.

7.70 In some speed ranges, vortices are shed from the rear of
bluff cylinders placed across a flow. The vortices alternately
leave the top and bottom of the cylinder, as shown, causing
an alternating force normal to the freestream velocity. The
vortex shedding frequency, f, is thought to depend on ρ, d, V,
and μ. Use dimensional analysis to develop a functional
relationship for f. Vortex shedding occurs in standard air on
two cylinders with a diameter ratio of 2. Determine the
velocity ratio for dynamic similarity, and the ratio of vortex
shedding frequencies.
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7.71 A 1
8-scale model of a tractor-trailer rig is tested in a

pressurized wind tunnel. The rig width, height, and length
are W5 0.305 m, H5 0.476 m, and L5 2.48 m, respectively.
At wind speed V5 75.0 m/s, the model drag force is FD5
128 N. (Air density in the tunnel is ρ5 3.23 kg/m3.)
Calculate the aerodynamic drag coefficient for the model.
Compare the Reynolds numbers for the model test and for
the prototype vehicle at 55 mph. Calculate the aerodynamic
drag force on the prototype vehicle at a road speed of
55 mph into a headwind of 10 mph.

7.72 On a cruise ship, passengers complain about the amount
of smoke that becomes entrained behind the cylindrical
smoke stack. You have been hired to study the flow pattern
around the stack, and have decided to use a 1:15 scale model
of the 15-ft smoke stack. What range of wind tunnel speeds
could you use if the ship speed for which the problem occurs
is 12 to 24 knots?

7.73 The aerodynamic behavior of a flying insect is to be
investigated in a wind tunnel using a 1:8-scale model. If the
insect flaps its wings 60 times per second when flying at 1.5
m/s, determine the wind tunnel air speed and wing oscillation
required for dynamic similarity. Do you expect that this
would be a successful or practical model for generating an
easily measurable wing lift? If not, can you suggest a dif-
ferent fluid (e.g., water, or air at a different pressure or
temperature) that would produce a better modeling?

7.74 A model test of a tractor-trailer rig is performed in a
wind tunnel. The drag force, FD, is found to depend on frontal
area A, wind speed V, air density ρ, and air viscosity μ. The

model scale is 1:4; frontal area of the model is 7 ft2. Obtain a
set of dimensionless parameters suitable to characterize
the model test results. State the conditions required to obtain
dynamic similarity between model and prototype flows.
When tested at wind speed V = 300 ft/s in standard air, the
measured drag force on the model was FD = 550 lbf.
Assuming dynamic similarity, estimate the aerodynamic drag
force on the full-scale vehicle at V = 75 ft/s. Calculate the
power needed to overcome this drag force if there is no wind.

7.75 Tests are performed on a 1:10-scale boat model. What
must be the kinematic viscosity of the model fluid if friction
and wave drag phenomena are to be correctly modeled?
The full-size boat will be used in a freshwater lake where the
average water temperature is 50�F.

7.76 Your favorite professor likes mountain climbing, so there
is always a possibility that the professor may fall into a cre-
vasse in some glacier. If that happened today, and the pro-
fessor was trapped in a slowly moving glacier, you are curious
to know whether the professor would reappear at the down-
stream drop-off of the glacier during this academic year.
Assuming ice is a Newtonian fluid with the density of glyc-
erine but a million times as viscous, you decide to build a
glycerin model and use dimensional analysis and similarity to
estimate when the professor would reappear. Assume the real
glacier is 15 m deep and is on a slope that falls 1.5 m in a
horizontal distance of 1850 m. Develop the dimensionless
parameters and conditions expected to govern dynamic simi-
larity in this problem. If the model professor reappears in the
laboratory after 9.6 hours, when should you return to the end
of the real glacier to provide help to your favorite professor?

7.77 An automobile is to travel through standard air at
60 mph. To determine the pressure distribution, a 1

5-scale
model is to be tested in water. What factors must be con-
sidered to ensure kinematic similarity in the tests? Deter-
mine the water speed that should be used. What is the
corresponding ratio of drag force between prototype and
model flows? The lowest pressure coefficient is Cp521.4 at
the location of the minimum static pressure on the surface.
Estimate the minimum tunnel pressure required to avoid
cavitation, if the onset of cavitation occurs at a cavitation
number of 0.5.

7.78 A 1:50-scale model of a submarine is to be tested in a
towing tank under two conditions: motion at the free surface
and motion far below the surface. The tests are performed in
freshwater. On the surface, the submarine cruises at 24
knots. At what speed should the model be towed to ensure
dynamic similarity? Far below the surface, the sub cruises at
0.35 knot. At what speed should the model be towed to
ensure dynamic similarity? What must the drag of the model
be multiplied by under each condition to give the drag of the
full-scale submarine?

7.79 A wind tunnel is being used to study the aerodynamics
of a full-scale model rocket that is 12 in. long. Scaling for
drag calculations are based on the Reynolds number. The
rocket has an expected maximum velocity of 120 mph. What
is the Reynolds number at this speed? Assume ambient air is
at 68�F. The wind tunnel is capable of speeds up to 100 mph;
so an attempt is made to improve this top speed by varying
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the air temperature. Calculate the equivalent speed for the
wind tunnel using air at 40�F and 150�F. Would replacing air
with carbon dioxide provide higher equivalent speeds?

7.80 Consider water flow around a circular cylinder, of diam-
eter D and length l. In addition to geometry, the drag force
is known to depend on liquid speed, V, density, ρ, and vis-
cosity, μ. Express drag force, FD, in dimensionless form as a
function of all relevant variables. The static pressure dis-
tribution on a circular cylinder, measured in the laboratory,
can be expressed in terms of the dimensionless pressure
coefficient; the lowest pressure coefficient is Cp522.4
at the location of the minimum static pressure on the
cylinder surface. Estimate the maximum speed at which
a cylinder could be towed in water at atmospheric pressure,
without causing cavitation, if the onset of cavitation occurs at
a cavitation number of 0.5.

7.81 A circular container, partially filled with water, is
rotated about its axis at constant angular speed, ω. At any
time, τ, from the start of rotation, the speed, Vθ, at distance r
from the axis of rotation, was found to be a function of τ, ω,
and the properties of the liquid. Write the dimensionless
parameters that characterize this problem. If, in another
experiment, honey is rotated in the same cylinder at the
same angular speed, determine from your dimensionless
parameters whether honey will attain steady motion as
quickly as water. Explain why the Reynolds number would
not be an important dimensionless parameter in scaling the
steady-state motion of liquid in the container.

7.82 A 1
10-scale model of a tractor-trailer rig is tested in a

wind tunnel. The model frontal area is Am5 0.1 m2. When
tested at Vm5 75 m/s in standard air, the measured drag
force is FD5 350 N. Evaluate the drag coefficient for the
model conditions given. Assuming that the drag coefficient is
the same for model and prototype, calculate the drag force
on a prototype rig at a highway speed of 90 km/hr. Deter-
mine the air speed at which a model should be tested to
ensure dynamically similar results if the prototype speed is
90 km/hr. Is this air speed practical? Why or why not?

7.83 It is recommended in [8] that the frontal area of a model
be less than 5 percent of the wind tunnel test section area and
Re5Vw/ν. 2 3 106, where w is the model width. Further,
the model height must be less than 30 percent of the test
section height, and the maximum projected width of the
model at maximum yaw (20�) must be less than 30 percent
of the test section width. The maximum air speed should be
less than 300 ft/s to avoid compressibility effects. A model of
a tractor-trailer rig is to be tested in a wind tunnel that has a
test section 1.5 ft high and 2 ft wide. The height, width, and
length of the full-scale rig are 13 ft 6 in., 8 ft, and 65 ft,
respectively. Evaluate the scale ratio of the largest model
that meets the recommended criteria. Assess whether an
adequate Reynolds number can be achieved in this test
facility.

7.84 The power, 3, required to drive a fan is assumed
to depend on fluid density ρ, volume flow rate Q, impeller
diameter D, and angular speed ω. If a fan with D1 = 8 in.
delivers Q1 = 15 ft3/s of air at ω1 = 2500 rpm, what
size diameter fan could be expected to deliverQ2 = 88 ft3/s of

air at ω2 = 1800 rpm, provided they were geometrically and
dynamically similar?

7.85 Over a certain range of air speeds, V, the lift, FL, pro-
duced by a model of a complete aircraft in a wind tunnel
depends on the air speed, air density, ρ, and a characteristic
length (the wing base chord length, c5 150 mm). The fol-
lowing experimental data is obtained for air at standard
atmospheric conditions:

V (m/s) 10 15 20 25 30 35 40 45 50

FL (N) 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54

Plot the lift versus speed curve. By using Excel to perform a
trendline analysis on this curve, generate and plot data for
the lift produced by the prototype, which has a wing base
chord length of 5 m, over a speed range of 75 m/s to 250 m/s.

7.86 The pressure rise, Δp, of a liquid flowing steadily
through a centrifugal pump depends on pump diameter D,
angular speed of the rotor ω, volume flow rateQ, and density
ρ. The table gives data for the prototype and for a geomet-
rically similar model pump. For conditions corresponding to
dynamic similarity between the model and prototype pumps,
calculate the missing values in the table.

Variable Prototype Model

Δp 52.5 kPa

Q 0.0928 m3/min

ρ 800 kg/m3 999 kg/m3

ω 183 rad/s 367 rad/s

D 150 mm 50 mm

7.87 Tests are performed on a 3-ft-long ship model in a water
tank. Results obtained (after doing some data analysis) are
as follows:

V (ft/s) 10 20 30 40 50 60 70

DWave (lbf) 0 0.028 0.112 0.337 0.674 0.899 1.237

DFriction (lbf) 0.022 0.079 0.169 0.281 0.45 0.618 0.731

The assumption is that wave drag is done using the Froude
number and friction drag by the Reynolds number. The full-
size ship will be 150 ft long when built. Estimate the total
drag when it is cruising at 15 knots and at 20 knots in a
freshwater lake.

7.88 A centrifugal water pump running at speed ω = 800 rpm
has the following data for flow rate,Q, and pressure head,Δp.

Q (ft3/min) 0 50 75 100 120 140 150 165

Δp (psf) 7.54 7.29 6.85 6.12 4.80 3.03 2.38 1.23

The pressure head is a function of the flow rate, speed,
impeller diameter D, and water density ρ. Plot the pressure
head versus flow rate curve. Find the two Π parameters for
this problem, and, from the above data, plot one against the
other. By using Excel to perform a trendline analysis on this
latter curve, generate and plot data for pressure head versus
flow rate for impeller speeds of 600 rpm and 1200 rpm.

7.89 An axial-flow pump is required to deliver 0.75 m3/s of
water at a head of 15 J/kg. The diameter of the rotor is 0.25 m,
and it is to be driven at 500 rpm.The prototype is to bemodeled
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on a small test apparatus having a 2.25 kW, 1000 rpm power
supply. For similar performance between the prototype and
the model, calculate the head, volume flow rate, and diameter
of the model.

7.90 A model propeller 1 m in diameter is tested in a wind
tunnel. Air approaches the propeller at 50 m/s when it
rotates at 1800 rpm. The thrust and torque measured under
these conditions are 100 N and 10 N �m, respectively. A
prototype 8 times as large as the model is to be built. At a
dynamically similar operating point, the approach air speed
is to be 130 m/s. Calculate the speed, thrust, and torque
of the prototype propeller under these conditions, neglecting
the effect of viscosity but including density.

7.91 Consider again Problem 7.51. Experience shows that for
ship-size propellers, viscous effects on scaling are small.
Also, when cavitation is not present, the nondimensional
parameter containing pressure can be ignored. Assume that
torque, T, and power, 3, depend on the same parameters as
thrust. For conditions under which effects of μ and p can be
neglected, derive scaling “laws” for propellers, similar to the
pump “laws” of Section 7.6, that relate thrust, torque, and
power to the angular speed and diameter of the propeller.

7.92 Water drops are produced by a mechanism that it is
believed follows the pattern dp = D(We)23/5. In this formula,
dp is the drop size, D is proportional to a length scale, and
We is the Weber number. In scaling up, if the large-scale
characteristic length scale was increased by a factor of 20
and the large-scale velocity decreased by a factor of 5, how
would the small- and large-scale drops differ from each other
for the same material, for example, water?

7.93 Closed-circuit wind tunnels can produce higher speeds
than open-circuit tunnels with the same power input because
energy is recovered in the diffuser downstream from the

test section. The kinetic energy ratio is a figure of merit
defined as the ratio of the kinetic energy flux in the test
section to the drive power. Estimate the kinetic energy ratio
for the 40 ft 3 80 ft wind tunnel at NASA-Ames described
on page 318.

7.94 A 1:16 model of a 60-ft-long truck is tested in a wind
tunnel at a speed of 250 ft/s, where the axial static pressure
gradient is 20.07 lbf/ft2 per foot. The frontal area of the
prototype is 110 ft2. Estimate the horizontal buoyancy cor-
rection for this situation. Express the correction as a fraction
of the measured CD, of CD = 0.85.

7.95 Frequently one observes a flag on a pole flapping in the
wind. Explain why this occurs.

7.96 A 1:16 model of a bus is tested in a wind tunnel in
standard air. The model is 152 mm wide, 200 mm high, and
762 mm long. The measured drag force at 26.5 m/s wind
speed is 6.09 N. The longitudinal pressure gradient in the
wind tunnel test section is 211.8 N/m2/m. Estimate the cor-
rection that should be made to the measured drag force to
correct for horizontal buoyancy caused by the pressure gra-
dient in the test section. Calculate the drag coefficient for the
model. Evaluate the aerodynamic drag force on the proto-
type at 100 km/hr on a calm day.

7.97 Explore the variation in wave propagation speed given
by the equation of Problem 7.1 for a free-surface flow
of water. Find the operating depth to minimize the speed of
capillary waves (waves with small wavelength, also called
ripples). First assume wavelength is much smaller than water
depth. Then explore the effect of depth. What depth do you
recommend for a water table used to visualize compressible-
flow wave phenomena? What is the effect of reducing sur-
face tension by adding a surfactant?
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8.12 Traversing Methods

8.13 Summary and Useful Equations

Case Study in Energy and the Environment

Wind Power: The FloDesign
Wind Turbine

We are all now familiar with the ubiquitous
three-bladed wind turbines that are being used to
generate increasing amounts of power. The technol-
ogy is already quite mature, so new developments will
be incremental: improved blade designs, better con-
trols, and composite materials to allow larger turbines.
The largest in the world, being built by a Norwegian
team, will be 533 ft tall with a rotor diameter of 475 ft,
and it will generate about 10 MW, sufficient for more
than 2000 homes. Bearing in mind that the Empire
State Building is 1250 ft tall, this wind turbine will
be huge—so big it must be installed offshore.

Engineers are still investigating alternatives to these
designs. FloDesign Wind Turbine, a spin-off from the
aerospace company FloDesign based in Wilbraham,
Massachusetts, is developing a prototype that,
according to CEO Stanley Kowalski III, will be up to
three times more efficient than conventional wind

turbines. From the front, the wind turbine looks some-
thing like the air intake of a jet engine (not surprisingly,
considering FloDesign’s history). The shaped cowlings
shown in the figure guide the air into spinning vortices
as it exits the device, accelerating the flow and causing
a significant pressure drop. The incoming wind first
meets a set of fixed stator blades, which direct it onto
the rotor blades to extract power from the flow. The
exiting air hence has lower energy and velocity than
the air flowing around the turbine, but the device’s
shroud is so shaped that the relatively fast-moving
outside air is blendedwith the exiting air in the area just
behind the rotors, creating a low-pressure region
behind the turbine blades. This is where the device has
an advantage over conventional turbines; the induced
low-pressure region actually draws air into the device
at an increased rate, generating more power. This idea
is not new, but past attempts to build similar turbines
were limited by the fact that such a turbine had to be
very precisely aligned with the wind’s direction (within

Two views of the FloDesign Wind Turbine (Pictures courtesy of FloDesign Wind Turbine)
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Flows completely bounded by solid surfaces are called internal flows. Thus internal
flows include many important and practical flows such as those through pipes, ducts,
nozzles, diffusers, sudden contractions and expansions, valves, and fittings.

Internal flows may be laminar or turbulent. Some laminar flow cases may be solved
analytically. In the case of turbulent flow, analytical solutions are not possible, and we
must rely heavily on semi-empirical theories and on experimental data. The nature of
laminar and turbulent flows was discussed in Section 2.6. For internal flows, the flow
regime (laminar or turbulent) is primarily a function of the Reynolds number.

In this chapter we will only consider incompressible flows; hence we will study the
flow of liquids as well as gases that have negligible heat transfer and for which
the Mach number M, 0.3; a value of M5 0.3 in air corresponds to a speed of
approximately 100 m/s. Following a brief introduction, this chapter is divided into the
following parts:

Part A: Part A discusses fully developed laminar flow of a Newtonian fluid between
parallel plates and in a pipe. These two cases can be studied analytically.

Part B: Part B is about laminar and turbulent flows in pipes and ducts. The laminar
flow analysis follows from Part A; the turbulent flow (which is the most
common) is too complex to be analyzed, so experimental data will be used to
develop solution techniques.

Part C: Part C is a discussion of methods of flow measurement.

8.1 Introduction
Laminar versus Turbulent Flow

As discussed previously in Section 2.6, the pipe flow regime (laminar or turbulent) is
determined by the Reynolds number, Re 5 ρVD=μ. One can demonstrate, by the
classic Reynolds experiment, the qualitative difference between laminar and turbulent
flows. In this experiment water flows from a large reservoir through a clear tube. A
thin filament of dye injected at the entrance to the tube allows visual observation of
the flow. At low flow rates (low Reynolds numbers) the dye injected into the flow
remains in a single filament along the tube; there is little dispersion of dye because the
flow is laminar. A laminar flow is one in which the fluid flows in laminae, or layers;
there is no macroscopic mixing of adjacent fluid layers.

about 4�); this device will work at angles of up to 20� off
the wind.
Theoretically (as we’ll learn in Chapter 10), conven-

tional wind turbines capture amaximum of 59.3 percent
of the wind energy. The new design generates as
much power as a conventional wind turbine with
blades twice as big. The smaller blade size of the
new design means the FloDesign Wind Turbine could
be packed closer together than conventional tur-
bines, increasing the amount of power that can be
generated per acre of land. Because its blades are
lighter and smaller, the design starts spinning and
generating power at lower wind speeds, and it is
more tolerant of unstable wind patterns, making it

excellent for windy regions where large turbines
cannot be used, such as in cities. Smaller blades can
also be allowed to spin faster, reducing the need for
expensive gearboxes that conventional wind turbines
must use to connect slow-moving rotors to a high-
speed generator. With fewer gears and other moving
parts, the company claims it can reduce the number
of components by up to 75 percent, reducing costs
and making maintenance easier.

FloDesign has already built a small prototype for
wind-tunnel tests. Their next step is to build a 12-ft-
diameter, 10-kW system for field tests. The prototype
will be finished in 2010, with commercial wind turbines
to follow.

VIDEO

The Reynolds Transition Experiment.

VIDEO

Variable Viscosity Experiment

(Animation).

VIDEO

Variable Viscosity Experiment: Pressure

Drop.
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As the flow rate through the tube is increased, the dye filament eventually becomes
unstable and breaks up into a random motion throughout the tube; the line of dye is
stretched and twisted into myriad entangled threads, and it quickly disperses
throughout the entire flow field. This behavior of turbulent flow is caused by small,
high-frequency velocity fluctuations superimposed on the mean motion of a turbulent
flow, as illustrated earlier in Fig. 2.15; the mixing of fluid particles from adjacent layers
of fluid results in rapid dispersion of the dye. We mentioned in Chapter 2 an everyday
example of the difference between laminar and turbulent flow—when you gently turn
on the kitchen faucet (not aerated). For very low flow rates, the water exits smoothly
(indicating laminar flow in the pipe); for higher flow rates, the flow is churned up
(turbulent flow).

Under normal conditions, transition to turbulence occurs at Re � 2300 for flow in
pipes: For water flow in a 1-in. diameter pipe, this corresponds to an average speed of
0.3 ft/s. With great care to maintain the flow free from disturbances, and with smooth
surfaces, experiments have been able to maintain laminar flow in a pipe to a Reynolds
number of about 100,000! However, most engineering flow situations are not so
carefully controlled, so we will take Re � 2300 as our benchmark for transition to
turbulence. Transition Reynolds numbers for some other flow situations are given in
the Examples. Turbulence occurs when the viscous forces in the fluid are unable to
damp out random fluctuations in the fluid motion (generated, for example, by
roughness of a pipe wall), and the flow becomes chaotic. For example, a high-viscosity
fluid such as motor oil is able to damp out fluctuations more effectively than a low
viscosity fluid such as water and therefore remains laminar even at relatively high flow
rates. On the other hand, a high-density fluid will generate significant inertia forces
due to the random fluctuations in the motion, and this fluid will transition to turbu-
lence at a relatively low flow rate.

The Entrance Region

Figure 8.1 illustrates laminar flow in the entrance region of a circular pipe. The flow
has uniform velocity U0 at the pipe entrance. Because of the no-slip condition at the
wall, we know that the velocity at the wall must be zero along the entire length of
the pipe. A boundary layer (Section 2.6) develops along the walls of the channel.
The solid surface exerts a retarding shear force on the flow; thus the speed of the fluid
in the neighborhood of the surface is reduced. At successive sections along the pipe in
this entry region, the effect of the solid surface is felt farther out into the flow.

For incompressible flow, mass conservation requires that, as the speed close to the
wall is reduced, the speed in the central frictionless region of the pipe must increase
slightly to compensate; for this inviscid central region, then, the pressure (as indicated
by the Bernoulli equation) must also drop somewhat.

Sufficiently far from the pipe entrance, the boundary layer developing on the pipe wall
reaches the pipe centerline and the flow becomes entirely viscous. The velocity profile
shape then changes slightly after the inviscid core disappears. When the profile shape no
longer changes with increasing distance x, the flow is called fully developed. The distance

Entrance length Fully developed
velocity profile

D
u

x

r
U0

Fig. 8.1 Flow in the entrance region of a pipe.

CLASSIC VIDEO

Turbulence.

VIDEO

Laminar Pipe Flow: Velocity Profile.

VIDEO

Pipe Flow: Laminar.

VIDEO

Pipe Flow: Transitional.

VIDEO

Pipe Flow: Turbulent.
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downstream from the entrance to the location at which fully developed flow begins is
called the entrance length. The actual shape of the fully developed velocity profile
depends on whether the flow is laminar or turbulent. In Fig. 8.1 the profile is shown
qualitatively for a laminar flow. Although the velocity profiles for some fully developed
laminar flows can be obtained by simplifying the complete equations of motion from
Chapter 5, turbulent flows cannot be so treated.

For laminar flow, it turns out that entrance length, L, is a function of Reynolds
number,

L

D
C 0:06

ρVD

μ
ð8:1Þ

where V � Q=A is the average velocity (because flow rate Q5AV5AU0, we have
V5U0). Laminar flow in a pipe may be expected only for Reynolds numbers less than
2300. Thus the entrance length for laminar pipe flow may be as long as

LC 0:06 ReD# ð0:06Þð2300ÞD 5 138D

or nearly 140 pipe diameters. If the flow is turbulent, enhanced mixing among fluid
layers causes more rapid growth of the boundary layer. Experiments show that the
mean velocity profile becomes fully developed within 25 to 40 pipe diameters from
the entrance. However, the details of the turbulent motion may not be fully developed
for 80 or more pipe diameters. We are now ready to study laminar internal flows (Part
A), as well as laminar and turbulent flows in pipes and ducts (Part B). For these we
will be focusing on what happens after the entrance region, i.e., fully developed flows.

Part A Fully Developed Laminar Flow
In this section we consider a few classic examples of fully developed laminar flows.
Our intent is to obtain detailed information about the velocity field because
knowledge of the velocity field permits calculation of shear stress, pressure drop,
and flow rate.

8.2 Fully Developed Laminar Flow
Between Infinite Parallel Plates
The flow between parallel plates is appealing because the geometry is the simplest
possible, but why would there be a flow at all? The answer is that flow could be
generated by applying a pressure gradient parallel to the plates, or by moving one
plate parallel with respect to the other, or by having a body force (e.g., gravity)
parallel to the plates, or by a combination of these driving mechanisms. We will
consider all of these possibilities.

Both Plates Stationary

Fluid in high-pressure hydraulic systems (such as the brake system of an automobile)
often leaks through the annular gap between a piston and cylinder. For very small
gaps (typically 0.005 mm or less), this flow field may be modeled as flow between
infinite parallel plates, as indicated in the sketch of Fig. 8.2. To calculate the leakage
flow rate, we must first determine the velocity field.

CLASSIC VIDEO

Turbulence.

VIDEO

Fully-Developed Pipe Flow.

332 Chapter 8 Internal Incompressible Viscous Flow



Let us consider the fully developed laminar flow between horizontal infinite par-
allel plates. The plates are separated by distance a, as shown in Fig. 8.3. The plates are
considered infinite in the z direction, with no variation of any fluid property in this
direction. The flow is also assumed to be steady and incompressible. Before starting
our analysis, what do we know about the flow field? For one thing we know that the
x component of velocity must be zero at both the upper and lower plates as a result
of the no-slip condition at the wall. The boundary conditions are then

at y 5 0 u 5 0
at y 5 a u 5 0

Since the flow is fully developed, the velocity cannot vary with x and, hence, depends
on y only, so that u 5 uðyÞ. Furthermore, there is no component of velocity in either
the y or z direction ðv 5 w 5 0Þ. In fact, for fully developed flow only the pressure can
and will change (in a manner to be determined from the analysis) in the x direction.

This is an obvious case for using the Navier�Stokes equations in rectangular
coordinates (Eqs. 5.27). Using the above assumptions, these equations can be greatly
simplified and then solved using the boundary conditions (see Problem 8.17). In this
section we will instead take a longer route—using a differential control volume—to
bring out some important features of the fluid mechanics.

For our analysis we select a differential control volume of size dV--- 5 dx dy dz, and
apply the x component of the momentum equation.

Cylinder

Piston

Fluid in gap

Fig. 8.2 Piston-cylinder approximated as parallel
plates.

Differential
control
volumedx
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x
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Fig. 8.3 Control volume for analysis of laminar flow between stationary infinite
parallel plates.
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Basic equation:

FSx � FBx � t �CV

 u dV � �
CS

 u V � dA

� 0(3)   � 0(1)

 �  �� � ð4:18aÞ

Assumptions: (1) Steady flow (given)
(2) Fully developed flow (given)
(3) FBx

5 0 (given)

The very nature of fully developed flow is that the velocity profile is the same at all
locations along the flow; hence there is no change in momentum. Equation 4.18a
then reduces to the simple result that the sum of the surface forces on the control
volume is zero,

FSx 5 0 ð8:2Þ

The next step is to sum the forces acting on the control volume in the x direction. We
recognize that normal forces (pressure forces) act on the left and right faces and
tangential forces (shear forces) act on the top and bottom faces.

If the pressure at the center of the element is p, then the pressure force on the left
face is

dFL 5 p2
@p

@x

dx

2

� �
dy dz

and the pressure force on the right face is

dFR 52 p1
@p

@x

dx

2

� �
dy dz

If the shear stress at the center of the element is τyx, then the shear force on the
bottom face is

dFB 52 τyx 2
dτyx
dy

dy

2

� �
dx dz

and the shear force on the top face is

dFT 5 τyx 1
dτyx
dy

dy

2

� �
dx dz

Note that in expanding the shear stress, τyx, in a Taylor series about the center of the
element, we have used the total derivative rather than a partial derivative. We did this
because we recognized that τyx is only a function of y, since u 5 uðyÞ.

Using the four surface forces dFL, dFR, dFB, and dFT in Eq. 8.2, this equation
simplifies to

@p

@x
5

dτyx
dy

ð8:3Þ

This equation states that because there is no change in momentum, the net pressure
force (which is actually 2@p=@x) balances the net friction force (which is actually
2dτyx=dy). Equation 8.3 has an interesting feature: The left side is at most a function
of x only (this follows immediately from writing the y component of the momentum
equation); the right side is at most a function of y only (the flow is fully developed, so
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it does not change with x). Hence, the only way the equation can be valid for all x and
y is for each side to in fact be constant:

dτyx
dy

5
@p

@x
5 constant

Integrating this equation, we obtain

τyx 5
@p

@x

� �
y1 c1

which indicates that the shear stress varies linearly with y. We wish to find the velocity
distribution. To do so, we need to relate the shear stress to the velocity field. For a
Newtonian fluid we can use Eq. 2.15 because we have a one-dimensional flow [or we
could have started with the full stress equation (Eq. 5.25a) and simplified],

τyx 5 μ
du

dy
ð2:15Þ

so we get

μ
du

dy
5

@p

@x

� �
y1 c1

Integrating again

u 5
1

2μ
@p

@x

� �
y2 1

c1
μ

y1 c2 ð8:4Þ

It is interesting to note that if we had started with the Navier�Stokes equations
(Eqs. 5.27) instead of using a differential control volume, after only a few steps (i.e.,
simplifying and integrating twice) we would have obtained Eq. 8.4 (see Problem 8.17).
To evaluate the constants, c1 and c2, we must apply the boundary conditions. At y5 0,
u5 0. Consequently, c25 0. At y5 a, u5 0. Hence

0 5
1

2μ
@p

@x

� �
a2 1

c1
μ

a

This gives

c1 52
1

2

@p

@x

� �
a

and hence,

u 5
1

2μ
@p

@x

� �
y2 2

1

2μ
@p

@x

� �
ay 5

a2

2μ
@p

@x

� �
y

a

� �2
2

y

a

� �� �
ð8:5Þ

At this point we have the velocity profile. This is key to finding other flow properties,
as we next discuss.

Shear Stress Distribution

The shear stress distribution is given by

τyx 5
@p

@x

� �
y1 c1 5

@p

@x

� �
y2

1

2

@p

@x

� �
a 5 a

@p

@x

� �
y

a
2

1

2

� �
ð8:6aÞ
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Volume Flow Rate

The volume flow rate is given by

Q 5

Z
A

~V � d~A

For a depth l in the z direction,

Q 5

Z a

0

ul dy or
Q

l
5

Z a

0

1

2μ
@p

@x

� �
ðy2 2 ayÞ dy

Thus the volume flow rate per unit depth is given by

Q

l
52

1

12μ
@p

@x

� �
a3 ð8:6bÞ

Flow Rate as a Function of Pressure Drop

Since @p/@x is constant, the pressure varies linearly with x and

@p

@x
5

p2 2 p1
L

5
2Δp

L

Substituting into the expression for volume flow rate gives

Q

l
52

1

12μ
2Δp

L

� �
a3 5

a3Δp

12μL
ð8:6cÞ

Average Velocity

The average velocity magnitude, V, is given by

V 5
Q

A
52

1

12μ
@p

@x

� �
a3l

la
52

1

12μ
@p

@x

� �
a2 ð8:6dÞ

Point of Maximum Velocity

To find the point of maximum velocity, we set du/dy equal to zero and solve for the
corresponding y. From Eq. 8.5

du

dy
5

a2

2μ
@p

@x

� �
2y

a2
2

1

a

� �

Thus,

du

dy
5 0 at y 5

a

2

At

y 5
a

2
; u 5 umax 52

1

8μ
@p

@x

� �
a2 5

3

2
V ð8:6cÞ

Transformation of Coordinates

In deriving the above relations, the origin of coordinates, y 5 0, was taken at the bottom
plate.We could just as easily have taken the origin at the centerline of the channel. If we
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denote the coordinates with origin at the channel centerline as x, yu, the boundary
conditions are u50 at yu56a=2.

To obtain the velocity profile in terms of x, yu, we substitute y5yu1a=2 into Eq. 8.5.
The result is

u 5
a2

2μ
@p

@x

� �
yu
a

� �2
2

1

4

" #
ð8:7Þ

Equation 8.7 shows that the velocity profile for laminar flow between stationary
parallel plates is parabolic, as shown in Fig. 8.4.

Since all stresses were related to velocity gradients through Newton’s law of
viscosity, and the additional stresses that arise as a result of turbulent fluctuations
have not been accounted for, all of the results in this section are valid for laminar flow
only. Experiments show that laminar flow between stationary parallel plates becomes
turbulent for Reynolds numbers (defined as Re5 ρ~Va/μ) greater than approximately
1400. Consequently, the Reynolds number should be checked after using Eqs. 8.6 to
ensure a valid solution.

1_
2

1_
2–

0

0 1

y'___
a

u____
umax

u_______=
a2
__
8μ

p__
x

∂
∂– (   )

x

y'

y
a

u

Fig. 8.4 Dimensionless velocity profile for fully developed
laminar flow between infinite parallel plates.

Example 8.1 LEAKAGE FLOW PAST A PISTON

A hydraulic system operates at a gage pressure of 20 MPa and 55�C. The
hydraulic fluid is SAE 10W oil. A control valve consists of a piston 25 mm in
diameter, fitted to a cylinder with a mean radial clearance of 0.005 mm.
Determine the leakage flow rate if the gage pressure on the low-pressure side
of the piston is 1.0 MPa. (The piston is 15 mm long.)

Given: Flow of hydraulic oil between piston and cylinder, as shown. Fluid is
SAE 10W oil at 55�C.

Find: Leakage flow rate, Q.

Solution:
The gap width is very small, so the flow may be modeled as flow between
parallel plates. Equation 8.6c may be applied.

Governing equation: Q

l
5

a3Δp

12μL
ð8:6cÞ

a = 0.005 mm

D = 25 mm

p1 = 20 MPa (gage)

p2 = 1.0 MPa (gage)

L = 15 mm
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Upper Plate Moving with Constant Speed, U

The second basic way to generate flow between infinite parallel plates is to have one
plate move parallel to the other, either with or without an applied pressure gradient.
We will next analyze this problem for the case of laminar flow.

Such a flow commonly occurs, for example, in a journal bearing (a commonly used
type of bearing, e.g., the main crankshaft bearings in the engine of an automobile). In
such a bearing, an inner cylinder, the journal, rotates inside a stationary member. At
light loads, the centers of the two members essentially coincide, and the small
clearance gap is symmetric. Since the gap is small, it is reasonable to “unfold” the
bearing and to model the flow field as flow between infinite parallel plates, as indi-
cated in the sketch of Fig. 8.5.

Let us now consider a case where the upper plate is moving to the right with
constant speed, U. All we have done in going from a stationary upper plate to a
moving upper plate is to change one of the boundary conditions. The boundary
conditions for the moving plate case are

u 5 0 at y 5 0
u 5 U at y 5 a

Assumptions: (1) Laminar flow.
(2) Steady flow.
(3) Incompressible flow.
(4) Fully developed flow.

(Note L=a 5 15=0:005 5 3000!)

The plate width, l, is approximated as l 5 πD. Thus

Q 5
πDa3Δp

12μL

For SAE 10W oil at 55�C, μ 5 0:018 kg=ðm � sÞ, from Fig. A.2, Appendix A. Thus

Q 5
π
12

3 25 mm3 ð0:005Þ3 mm3 3 ð202 1Þ106 N

m2
3

m � s
0:018 kg

3
1

15 mm
3

kg �m
N � s2

Q 5 57:6 mm3=s ß

Q

To ensure that flow is laminar, we also should check the Reynolds number.

V 5
Q

A
5

Q

πDa
5 57:6

mm3

s
3

1

π
3

1

25 mm
3

1

0:005 mm
3

m

103 mm
5 0:147 m=s

and

Re 5
ρVa

μ
5

SGρH2O
Va

μ

For SAE 10W oil, SG 5 0:92, from Table A.2, Appendix A. Thus

Re 5 0:923 1000
kg

m3
3 0:147

m

s
3 0:005 mm3

m � s
0:018 kg

3
m

103 mm
5 0:0375

Thus flow is surely laminar, since Re{1400.
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Since only the boundary conditions have changed, there is no need to repeat the entire
analysis of the previous section. The analysis leading to Eq. 8.4 is equally valid for the
moving plate case. Thus the velocity distribution is given by

u 5
1

2μ
@p

@x

� �
y2 1

c1
μ

y1 c2 ð8:4Þ

and our only task is to evaluate constants c1 and c2 by using the appropriate boundary
conditions. [Note once again that using the full Navier�Stokes equations (Eqs. 5.27)
would have led very quickly to Eq. 8.4.]

At y 5 0; u 5 0: Consequently; c2 5 0:
At y 5 a; u 5 U: Consequently;

U 5
1

2μ
@p

@x

� �
a2 1

c1
μ

a and thus c1 5
Uμ
a

2
1

2

@p

@x

� �
a

Hence,

u 5
1

2μ

�
@p

@x

�
y2 1

Uy

a
2

1

2μ

�
@p

@x

�
ay 5

Uy

a
1

1

2μ

�
@p

@x

�
ðy2 2 ayÞ

u 5
Uy

a
1

a2

2μ
@p

@x

� �
y

a

� �
2 2

y

a

� �h i
ð8:8Þ

It is reassuring to note that Eq. 8.8 reduces to Eq. 8.5 for a stationary upper plate (set
U 5 0). From Eq. 8.8, for zero pressure gradient (for @p=@x 5 0) the velocity varies
linearly with y. This was the case treated earlier in Chapter 2; this linear profile is
called a Couette flow, after a 19th-century physicist.

We can obtain additional information about the flow from the velocity distribution
of Eq. 8.8.

Shear Stress Distribution

The shear stress distribution is given by τyx 5 μðdu=dyÞ,

τyx 5 μ
U

a
1

a2

2

@p

@x

� �
2y

a2
2

1

a

� �
5 μ

U

a
1 a

@p

@x

� �
y

a
2

1

2

� �
ð8:9aÞ

Volume Flow Rate

The volume flow rate is given by Q 5
R
A
~V � d~A. For depth l in the z direction

Q 5

Z a

0

ul dy or
Q

l
5

Z a

0

Uy

a
1

1

2μ
@p

@x

� �
ðy2 2 ayÞ

� �
dy

Fluid
in gap

Bearing

Bearing

Journal

Fig. 8.5 Journal bearing approximated as
parallel plates.
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Thus the volume flow rate per unit depth is given by

Q

l
5

Ua

2
2

1

12μ
@p

@x

� �
a3 ð8:9bÞ

Average Velocity

The average velocity magnitude, V, is given by

V 5
Q

A
5 l

Ua

2
2

1

12μ
@p

@x

� �
a3

� ��
la 5

U

2
2

1

12μ
@p

@x

� �
a2 ð8:9cÞ

Point of Maximum Velocity

To find the point of maximum velocity, we set du/dy equal to zero and solve for the
corresponding y. From Eq. 8.8

du

dy
5

U

a
1

a2

2μ
@p

@x

� �
2y

a2
2

1

a

� �
5

U

a
1

a

2μ
@p

@x

� �
2

y

a

� �
2 1

h i

Thus,

du

dy
5 0 at y 5

a

2
2

U=a

ð1=μÞð@p=@xÞ
There is no simple relation between the maximum velocity, umax, and the mean
velocity, V, for this flow case.

Equation 8.8 suggests that the velocity profile may be treated as a combination of a
linear and a parabolic velocity profile; the last term in Eq. 8.8 is identical to that in
Eq. 8.5. The result is a family of velocity profiles, depending on U and (1/μ)(@p/@x);
three profiles are sketched in Fig. 8.6. (As shown in Fig. 8.6, some reverse flow—flow
in the negative x direction—can occur when @p/@x. 0.)

Again, all of the results developed in this section are valid for laminar flow only.
Experiments show that this flow becomes turbulent (for @p/@x5 0) at a Reynolds
number of approximately 1500, where Re5 ρUa/μ for this flow case. Not much
information is available for the case where the pressure gradient is not zero.

p___
x∂

∂
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x∂

∂
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x∂

∂
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1.0
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a
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U

3.02.01.00

u a

U

x

y

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite
parallel plates: upper plate moving with constant speed, U.
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Example 8.2 TORQUE AND POWER IN A JOURNAL BEARING

A crankshaft journal bearing in an automobile engine is lubricated by SAE 30 oil at 210�F. The bearing diameter is
3 in., the diametral clearance is 0.0025 in., and the shaft rotates at 3600 rpm; it is 1.25 in. long. The bearing is under no
load, so the clearance is symmetric. Determine the torque required to turn the journal and the power dissipated.

Given: Journal bearing, as shown. Note that the gap width, a, is half the
diametral clearance. Lubricant is SAE 30 oil at 210�F. Speed is 3600 rpm.

Find: (a) Torque, T.
(b) Power dissipated.

Solution:
Torqueon the journal is caused byviscous shear in theoil film.The gapwidth is
small, so the flow may be modeled as flow between infinite parallel plates:

Governing equation:
p
xyx � � � � a ( � ])[U

a

� 0(6)

y
a

1
2

ð8:9aÞ

Assumptions: (1) Laminar flow.
(2) Steady flow.
(3) Incompressible flow.
(4) Fully developed flow.
(5) Infinite width (L=a 5 1:25=0:00125 5 1000, so this is a reasonable assumption).
(6) @p=@x 5 0 (flow is symmetric in the actual bearing at no load).

Then

τyx 5 μ
U

a
5 μ

ωR
a

5 μ
ωD
2a

For SAE 30 oil at 210�F (99�C), μ 5 9:63 l023N � s=m2ð2:013 1024 lbf � s=ft2Þ, from Fig. A.2, Appendix A. Thus,

τyx 5 2:013 1024 lbf � s
ft2

3 3600
rev

min
3 2π

rad

rev
3

min

60 s
3 3 in:3

1

2
3

1

0:00125 in:

τyx 5 90:9 lbf=ft2

The total shear force is given by the shear stress times the area. It is applied to the journal surface. Therefore,
for the torque

T 5 FR 5 τyxπDLR 5
π
2
τyxD2L

5
π
2
3 90:9

lbf

ft2
3 ð3Þ2 in:2 3 ft2

144 in:2
3 1:25 in:

T 5 11:2 in: � lbf ß
T

D = 3 in.L = 1.25 in. a =          in.0.0025______
2

ω

a u

U

y

x
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We have seen how steady, one-dimensional laminar flows between two plates can be
generated by applying apressure gradient, bymovingoneplatewith respect to the other,
or by having both driving mechanisms present. To finish our discussion of this type of
flow,Example 8.3 examines a gravity-driven steady, one-dimensional laminar flowdown
a vertical wall. Once again, the direct approach would be to start with the two-
dimensional rectangular coordinate form of the Navier�Stokes equations (Eqs. 5.27;
see Problem 8.44); instead we will use a differential control volume.

The power dissipated in the bearing is

_W 5 FU 5 FRω 5 Tω
5 11:2 in: � lbf3 3600

rev

min
3

min

60 s
3 2π

rad

rev
3

ft

12 in:
3

hp � s
550 ft � lbf

_W 5 0:640 hp ß

_W

To ensure laminar flow, check the Reynolds number.

Re 5
ρUa

μ
5

SGρH2O
Ua

μ
5

SGρH2O
ωRa

μ

Assume, as an approximation, the specific gravity of SAE 30 oil is the same
as that of SAE 10W oil. From Table A.2, Appendix A, SG 5 0:92. Thus

Re 5 0:923 1:94
slug

ft3
3

ð3600Þ2π
60

rad

s
3 1:5 in:3 0:00125 in:

3
ft2

2:013 1024 lbf � s 3
ft2

144 in:2
3

lbf � s2
slug � ft

Re 5 43:6

Therefore, the flow is laminar, since Re { 1500.

In this problem we approximated the
circular-streamline flow in a small
annular gap as a linear flow between
infinite parallel plates. As we saw in
Example 5.10, for the small value of the
gap width a to radius R ratio a/R (in
this problem ,1%), the error in shear
stress is about 1

2 of this ratio. Hence,
the error introduced is insignificant—
much less than the uncertainty asso-
ciated with obtaining a viscosity for
the oil.

Example 8.3 LAMINAR FILM ON A VERTICAL WALL

A viscous, incompressible, Newtonian liquid flows in steady, laminar flow down a vertical wall. The thickness, δ, of
the liquid film is constant. Since the liquid free surface is exposed to atmospheric pressure, there is no pressure
gradient. For this gravity-driven flow, apply the momentum equation to differential control volume dx dy dz to
derive the velocity distribution in the liquid film.

Given: Fully developed laminar flow of incompressible,
Newtonian liquid down a vertical wall; thickness, δ, of the
liquid film is constant and @p=@x 5 0.

Find: Expression for the velocity distribution in the film.

Solution:
The x component of the momentum equation for a control
volume is

FSx 1FBx
5

@

@t

Z
CV

u ρ dV---1
Z
CS

u ρ~V � d~A ð4:18aÞ

Differential
control
volume

y

x

dx

dy

δ

g

τ yxL
dx dz τ yxR

τ yx
dx dz

  g dx dy dzρ

342 Chapter 8 Internal Incompressible Viscous Flow



Under the conditions given we are dealing with a steady, incompressible, fully developed laminar flow.

For steady flow,
@

@t

Z
CV

u ρ dV--- 5 0

For fully developed flow,

Z
CS

u ρ~V � d~A 5 0

Thus the momentum equation for the present case reduces to

FSx 1FBx
5 0

The body force, FBx
, is given by FBx

5 ρg dV--- 5 ρg dx dy dz. The only surface forces acting on the differential
control volume are shear forces on the vertical surfaces. (Since we have a free-surface flow, with straight streamlines,
the pressure is atmospheric throughout; no net pressure forces act on the control volume.)

If the shear stress at the center of the differential control volume is τyx, then,

shear stress on left face is τyxL 5 τyx 2
dτyx
dy

dy

2

� �

and

shear stress on right face is τyxR 5 τyx 1
dτyx
dy

dy

2

� �

The direction of the shear stress vectors is taken consistent with the sign convention of Section 2.3. Thus on the left
face, a minus y surface, τyxL acts upward, and on the right face, a plus y surface, τyxR acts downward.

The surface forces are obtained by multiplying each shear stress by the area over which it acts. Substituting into
FSx 1FBx

5 0, we obtain

2τyxL dx dz1 τyxR dx dz1 ρg dx dy dz 5 0

or

2 τyx 2
dτyx
dy

dy

2

� �
dx dz1 τyx 1

dτyx
dy

dy

2

� �
dx dz1 ρg dx dy dz 5 0

Simplifying gives

dτyx
dy

1 ρg 5 0 or
dτyx
dy

52ρg

Since

τyx 5 μ
du

dy
then μ

d2u

dy2
52ρg and

d2u

dy2
52

ρg
μ

Integrating with respect to y gives

du

dy
52

ρg
μ
y1 c1

Integrating again, we obtain

u 52
ρg
μ

y2

2
1 c1y1 c2

To evaluate constants c1 and c2, we apply appropriate boundary conditions:

(i) y 5 0; u 5 0 (no-slip)

(ii) y 5 δ;
du

dy
5 0 (neglect air resistance, i.e., assume zero shear stress at free surface)

From boundary condition (i), c25 0

8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates 343



8.3 Fully Developed Laminar Flow in a Pipe
Asafinal example of fully developed laminarflow, let us consider fully developed laminar
flow in a pipe. Here the flow is axisymmetric. Consequently it is most convenient to work
in cylindrical coordinates. This is yet another casewherewe could use theNavier�Stokes
equations, this time in cylindrical coordinates (Eqs. B.3). Instead we will again take the
longer route—using a differential control volume—to bring out some important features
of the fluid mechanics. The development will be very similar to that for parallel plates in
the previous section; cylindrical coordinates just make the analysis a little trickier
mathematically. Since the flow is axisymmetric, the control volume will be a differential
annulus, as shown in Fig. 8.7. The control volume length is dx and its thickness is dr.

For a fully developed steady flow, the x component of the momentum equation
(Eq. 4.18a), when applied to the differential control volume, once again reduces to

FSx 5 0

The next step is to sum the forces acting on the control volume in the x direction. We
know that normal forces (pressure forces) act on the left and right ends of the control
volume, and that tangential forces (shear forces) act on the inner and outer cylindrical
surfaces.

From boundary condition (ii), 0 52
ρg
μ
δ1 c1 or c1 5

ρg
μ
δ

Hence,

u 52
ρg
μ

y2

2
1

ρg
μ

δy or u 5
ρg
μ
δ2

y

δ

� �
2

1

2

y

δ

� �2� �
ß

uðyÞ

Using the velocity profile it can be shown that:

the volume flow rate isQ=l 5
ρg
3μ

δ3

the maximum velocity isUmax 5
ρg
2μ

δ2

the average velocity is V 5
ρg
3μ

δ2

Flow in the liquid film is laminar for Re 5 Vδ=ν # 1000 ½1�:

Notes:
ü This problem is a special case
(θ5 90�) of the inclined plate flow
analyzed in Example 5.9 that we
solved using the Navier�Stokes
equations.ü This problem and Example 5.9
demonstrate that use of the differ-
ential control volume approach or
the Navier�Stokes equations leads
to the same result.

VIDEO

Laminar Flow Exiting from a Tube.
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Fig. 8.7 Differential control volume for analysis of fully developed laminar flow in a pipe.
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If the pressure at the left face of the control volume is p, then the pressure force on
the left end is

dFL 5 p2πr dr

The pressure force on the right end is

dFR 52 p1
@p

@x
dx

� �
2πr dr

If the shear stress at the inner surface of the annular control volume is τrx, then the
shear force on the inner cylindrical surface is

dFI 52τrx2πr dx

The shear force on the outer cylindrical surface is

dFO 5 τrx 1
dτrx
dr

dr

� �
2π ðr1 drÞdx

The sum of the x components of force, dFL, dFR, dFI, and dFO, acting on the
control volume must be zero. This leads to the condition that

2
@p

@x
2πr dr dx1 τrx2π dr dx1

dτrx
dr

2πr dr dx 5 0

Dividing this equation by 2πr dr dx and solving for @p/@x gives

@p

@x
5

τrx
r

1
dτrx
dr

5
1

r

dðrτrxÞ
dr

Comparing this to the corresponding equation for parallel plates (Eq. 8.3) shows the
mathematical complexity introduced because we have cylindrical coordinates.
The left side of the equation is at most a function of x only (the pressure is uniform at
each section); the right side is at most a function of r only (because the flow is fully
developed). Hence, the only way the equation can be valid for all x and r is for both
sides to in fact be constant:

1

r

dðrτrxÞ
dr

5
@p

@x
5 constant or

dðrτrxÞ
dr

5 r
@p

@x

We are not quite finished, but already we have an important result: In a constant
diameter pipe, the pressure drops uniformly along the pipe length (except for the
entrance region).

Integrating this equation, we obtain

rτrx 5
r2

2

@p

@x

� �
1 c1

or

τrx 5
r

2

@p

@x

� �
1

c1
r

ð8:10Þ

Since τrx 5 μdu=dr, we have

μ
du

dr
5

r

2

@p

@x

� �
1

c1
r
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and

u 5
r2

4μ
@p

@x

� �
1

c1
μ
ln r1 c2 ð8:11Þ

We need to evaluate constants c1 and c2. However, we have only the one boundary
condition that u5 0 at r5R.What dowe do?Before throwing in the towel, let us look at
the solution for the velocity profile given by Eq. 8.11. Although we do not know the
velocity at the pipe centerline,wedoknow fromphysical considerations that the velocity
must be finite at r5 0. The only way that this can be true is for c1 to be zero. (We could
have also concluded that c15 0 from Eq. 8.10—which would otherwise yield an infinite
stress at r5 0.) Thus, from physical considerations, we conclude that c15 0, and hence

u 5
r2

4μ
@p

@x

� �
1 c2

The constant, c2, is evaluated by using the available boundary condition at the pipe
wall: at r5R, u5 0. Consequently,

0 5
R2

4μ
@p

@x

� �
1 c2

This gives

c2 52
R2

4μ
@p

@x

� �

and hence

u 5
r2

4μ
@p

@x

� �
2

R2

4μ
@p

@x

� �
5

1

4μ
@p

@x

� �
ðr2 2R2Þ

or

u 52
R2

4μ
@p

@x

� �
12

r

R

� �2� �
ð8:12Þ

Since we have the velocity profile, we can obtain a number of additional features of
the flow.

Shear Stress Distribution

The shear stress is

τrx 5 μ
du

dr
5

r

2

@p

@x

� �
ð8:13aÞ

Volume Flow Rate

The volume flow rate is

Q 5

Z
A

~V � d~A 5

Z R

0

u2πr dr 5
Z R

0

1

4μ

�
@p

@x

�
ðr2 2R2Þ2πr dr

Q 52
πR4

8μ

�
@p

@x

� ð8:13bÞ
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Flow Rate as a Function of Pressure Drop

We proved that in fully developed flow the pressure gradient, @p=@x, is constant.
Therefore, @p=@x 5 ðp2 2 p1Þ=L 52Δp=L. Substituting into Eq. 8.13b for the
volume flow rate gives

Q 52
πR4

8μ
2Δp

L

� �
5

πΔpR4

8μL
5

πΔpD4

128μL
ð8:13cÞ

for laminar flow in a horizontal pipe. Note thatQ is a sensitive function ofD;QBD4,
so, for example, doubling the diameter D increases the flow rate Q by a factor of 16.

Average Velocity

The average velocity magnitude, V, is given by

V 5
Q

A
5

Q

πR2
52

R2

8μ
@p

@x

� �
ð8:13dÞ

Point of Maximum Velocity

To find the point of maximum velocity, we set du/dr equal to zero and solve for the
corresponding r. From Eq. 8.12

du

dr
5

1

2μ
@p

@x

� �
r

Thus,

du

dr
5 0 at r 5 0

At r5 0,

u 5 umax 5 U 52
R2

4μ
@p

@x

� �
5 2V ð8:13eÞ

The velocity profile (Eq. 8.12) may be written in terms of the maximum (centerline)
velocity as

u

U
5 12

r

R

� �2
ð8:14Þ

The parabolic velocity profile, given by Eq. 8.14 for fully developed laminar pipe
flow, was sketched in Fig. 8.1.

Example 8.4 CAPILLARY VISCOMETER

A simple and accurate viscometer can be made from a length of capillary tubing. If the flow rate and pressure drop
are measured, and the tube geometry is known, the viscosity of a Newtonian liquid can be computed from Eq. 8.13c.
A test of a certain liquid in a capillary viscometer gave the following data:

Flow rate: 880 mm3/s Tube length: 1 m

Tube diameter: 0.50 mm Pressure drop: 1.0 MPa

Determine the viscosity of the liquid.
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Part B Flow in Pipes and Ducts
In this section we will be interested in determining the factors that affect the pressure
in an incompressible fluid as it flows in a pipe or duct (we will refer to “pipe” but imply
“duct,” too). If we ignore friction for a moment (and assume steady flow and consider
a streamline in the flow), the Bernoulli equation from Chapter 6 applies,

p

ρ
1

V2

2
1 gz 5 constant ð6:8Þ

From this equation we can see what tends to lead to a pressure decrease along the
streamline in this frictionless flow: a reduction of area at some point in the pipe
(causing an increase in the velocity V), or the pipe having a positive incline (so
z increases). Conversely, the pressure will tend to increase if the flow area is increased
or the pipe slopes downward. We say “tends to” because one factor may counteract
another; for example, we may have a downward sloping pipe (tending to increase
pressure) with a reduction in diameter (tending to decrease pressure).

Given: Flow in a capillary viscometer.
The flow rate is Q 5 880 mm3=s.

Find: The fluid viscosity.

Solution:

Equation 8.13c may be applied.

Governing equation: Q 5
πΔpD4

128μL
ð8:13cÞ

Assumptions: (1) Laminar flow.
(2) Steady flow.
(3) Incompressible flow.
(4) Fully developed flow.
(5) Horizontal tube.

Then

μ 5
πΔpD4

128LQ
5

π
128

3 1:03 106
N

m2
3 ð0:50Þ4 mm4 3

s

880 mm3
3

1

1m
3

m

103 mm

μ 5 1:743 1023 N � s=m2
ß

μ

Check the Reynolds number. Assume the fluid density is similar to that of water, 999 kg/m3. Then

V 5
Q

A
5

4Q

πD2
5

4

π
3 880

mm3

s
3

1

ð0:50Þ2 mm2
3

m

103 mm
5 4:48m=s

and Re 5
ρVD

μ
5 999

kg

m3
3 4:48

m

s
3 0:50 mm

3
m2

1:743 1023 N � s 3
m

103 mm
3

N � s2
kg �m

Re 5 1290

Consequently, since Re , 2300, the flow is laminar.

Flow
CV

L = 1 m

D = 0.5 mm

1 2

Δp = p1 – p2 = 1.0 MPa

This problem is a little oversimplified.
To design a capillary viscometer the
entrance length, liquid temperature,
and kinetic energy of the flowing liquid
would all need to be considered.
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In reality, flows in pipes and ducts experience significant friction and are often
turbulent, so the Bernoulli equation does not apply (it doesn’t even make sense to use
V; instead we will use V, to represent the average velocity at a section along the pipe).
We will learn that, in effect, friction effects lead to a continual reduction in the value
of the Bernoulli constant of Eq. 6.8 (this represents a “loss” of mechanical energy).
We have already seen that, in contrast to the Bernoulli equation, for laminar flow
there is a pressure drop even for a horizontal, constant diameter pipe; in this section
we will see that turbulent flows experience an even larger pressure drop. We will need
to replace the Bernoulli equation with an energy equation that incorporates the
effects of friction.

In summary, we can state that three factors tend to reduce the pressure in a pipe
flow: a decrease in pipe area, an upward slope, and friction. For now we will focus on
pressure loss due to friction and so will analyze pipes that are of constant area and that
are horizontal.

We have already seen in the previous section that for laminar flow we can theo-
retically deduce the pressure drop. Rearranging Eq. 8.13c to solve for the pressure
drop Δp,

Δp 5
128μLQ
πD4

We would like to develop a similar expression that applies for turbulent flows, but we
will see that this is not possible analytically; instead, we will develop expressions based
on a combination of theoretical and experimental approaches. Before proceeding, we
note that it is conventional to break losses due to friction into two categories: major
losses, which are losses due to friction in the constant-area sections of the pipe; and
minor losses (sometimes larger than “major” losses), which are losses due to valves,
elbows, and so on (and we will treat the pressure drop at the entrance region as a
minor loss term).

Since circular pipes are most common in engineering applications, the basic anal-
ysis will be performed for circular geometries. The results can be extended to other
geometries by introducing the hydraulic diameter, which is treated in Section 8.7.
(Open channel flows will be treated in Chapter 11, and compressible flow in ducts will
be treated in Chapter 13.)

8.4Shear Stress Distribution in Fully
Developed Pipe Flow

We consider again fully developed flow in a horizontal circular pipe, except now we
may have laminar or turbulent flow. In Section 8.3 we showed that a force balance
between friction and pressure forces leads to Eq. 8.10:

τrx 5
r

2

@p

@x

� �
1

c1
r

ð8:10Þ

Because we cannot have infinite stress at the centerline, the constant of integration c1
must be zero, so

τrx 5
r

2

@p

@x
ð8:15Þ

Equation 8.15 indicates that for both laminar and turbulent fully developed flows the
shear stress varies linearly across the pipe, from zero at the centerline to a maximum at
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the pipe wall. The stress on the wall, τw (equal and opposite to the stress in the fluid at
the wall), is given by

τw 52 τrx½ �r 5 R 52
R

2

@p

@x
ð8:16Þ

For laminar flow we used our familiar stress equation τrx5μ du/dr in Eq. 8.15 to
eventually obtain the laminar velocity distribution. This led to a set of usable equa-
tions, Eqs. 8.13, for obtaining various flow characteristics; e.g., Eq. 8.13c gave a
relationship for the flow rate Q, a result first obtained experimentally by Jean Louis
Poiseuille, a French physician, and independently by Gotthilf H. L. Hagen, a German
engineer, in the 1850s [2].

Unfortunately there is no equivalent stress equation for turbulent flow, so we
cannot replicate the laminar flow analysis to derive turbulent equivalents of Eqs. 8.13.
All we can do in this section is indicate some classic semi-empirical results [3].

As we discussed in Section 2.6, and illustrated in Fig. 2.17, turbulent flow is repre-
sented at each point by the time-mean velocity u plus (for a two-dimensional flow)
randomly fluctuating velocity components uu and vu in the x and y directions (in this
context y is the distance inwards from the pipe wall). These components continuously
transfer momentum between adjacent fluid layers, tending to reduce any velocity
gradient present. This effect shows up as an apparent stress, first introduced by
Osborne Reynolds, and called the Reynolds stress.1 This stress is given by 2ρuuvu,
where the overbar indicates a time average. Hence, we find

τ 5 τlam 1 τturb 5 μ
du

dy
2 ρuuvu ð8:17Þ

Do not misunderstand the minus sign in Eq. 8.17—it turns out that uu and vu are
negatively correlated, so that τturb 52ρuuvu is positive. In Fig. 8.8, experimental
measurements of the Reynolds stress for fully developed turbulent pipe flow at two
Reynolds numbers are presented; ReU 5 UD=ν, where U is the centerline velocity.
The turbulent shear stress has been nondimensionalized with the wall shear stress.
Recall that Eq. 8.15 showed that the shear stress in the fluid varies linearly from τw
at the pipe wall (y/R - 0) to zero at the centerline (y/R5 1); from Fig. 8.8 we see that
the Reynolds stress has almost the same trend, so that the friction is almost all due to
Reynolds stress. What Fig. 8.8 doesn’t show is that close to the wall (y/R- 0)
the Reynolds stress drops to zero. This is because the no-slip condition holds, so not

ReU

500,000
50,000

1.00.80.60.4
Dimensionless distance from wall,  

0.20
0

0.2

0.4

0.6

0.8

1.0

____
–   u'v'_____

τw  

ρ

y___
R

Fig. 8.8 Turbulent shear stress (Reynolds stress) for fully developed
turbulent flow in a pipe. (Data from Laufer [5].)

1TheReynolds stress terms arise from consideration of the complete equations ofmotion for turbulent flow [4].
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only does the mean velocity u-0, but also the fluctuating velocity components uu and
vu-0 (the wall tends to suppress the fluctuations). Hence, the turbulent stress,
τturb 52ρuuvu-0, as we approach the wall, and is zero at the wall. Since the Reynolds
stress is zero at the wall, Eq. 8.17 shows that the wall shear is given by
τw 5 μðdu=dyÞy 5 0. In the region very close to the wall, called the wall layer, viscous
shear is dominant. In the region between the wall layer and the central portion of the
pipe both viscous and turbulent shear are important.

8.5Turbulent Velocity Profiles in Fully
Developed Pipe Flow

Except for flows of very viscous fluids in small diameter ducts, internal flows generally
are turbulent. As noted in the discussion of shear stress distribution in fully developed
pipe flow (Section 8.4), in turbulent flow there is no universal relationship between the
stress field and the mean velocity field. Thus, for turbulent flows we are forced to rely
on experimental data.

Dividing Eq. 8.17 by ρ gives

τ
ρ

5 ν
du

dy
2 uuvu ð8:18Þ

The term τ/ρ arises frequently in the consideration of turbulent flows; it has dimen-
sions of velocity squared. In particular, the quantity ðτw=ρÞ1=2 is called the friction
velocity and is denoted by the symbol u*. It is a constant for a given flow.

The velocity profile for fully developed turbulent flow through a smooth pipe is
shown in Fig. 8.9. The plot is semilogarithmic; u=u* is plotted against log(yu*=ν). The
nondimensional parameters u=u* and yu*=ν arise from dimensional analysis if one
reasons that the velocity in the neighborhood of the wall is determined by the con-
ditions at the wall, the fluid properties, and the distance from the wall. It is simply
fortuitous that the dimensionless plot of Fig. 8.9 gives a fairly accurate representation
of the velocity profile in a pipe away from the wall; note the small deviations in the
region of the pipe centerline.

ReU = 5	104

ReU = 5	105

(Solid points are centerline values)
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Fig. 8.9 Turbulent velocity profile for fully developed flow in a smooth pipe.
(Data from Laufer [5].)

VIDEO

The Glen Canyon Dam: A Turbulent Pipe

Flow.
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In the region very close to the wall where viscous shear is dominant, the mean
velocity profile follows the linear viscous relation

u15
u

u*
5

yu*
ν

5y1 ð8:19Þ

where y is distance measured from the wall (y 5 R2 r; R is the pipe radius), and u is
mean velocity. Equation 8.19 is valid for 0# y1# 5�7; this region is called the viscous
sublayer.

For values of yu*=ν . 30, the data are quite well represented by the semiloga-
rithmic curve-fit equation

u

u*
5 2:5 ln

yu*
ν

1 5:0 ð8:20Þ

In this region both viscous and turbulent shear are important (although turbulent
shear is expected to be significantly larger). There is considerable scatter in the
numerical constants of Eq. 8.20; the values given represent averages over many
experiments [6]. The region between y1 5 527 and y1 5 30 is referred to as the
transition region, or buffer layer.

If Eq. 8.20 is evaluated at the centerline (y 5 R and u 5 U) and the general
expression of Eq. 8.20 is subtracted from the equation evaluated at the centerline, we
obtain

U2 u

u*
5 2:5 ln

R

y
ð8:21Þ

where U is the centerline velocity. Equation 8.21, referred to as the defect law, shows
that the velocity defect (and hence the general shape of the velocity profile in the
neighborhood of the centerline) is a function of the distance ratio only and does not
depend on the viscosity of the fluid.

The velocity profile for turbulent flow through a smooth pipe may also be
approximated by the empirical power-law equation

u

U
5

y

R

� �1=n
5 12

r

R

� �1=n
ð8:22Þ

where the exponent, n, varies with the Reynolds number. In Fig. 8.10 the data of
Laufer [5] are shown on a plot of ln y/R versus ln u=U. If the power-law profile were
an accurate representation of the data, all data points would fall on a straight line of
slope n. Clearly the data for ReU 5 53 104 deviate from the best-fit straight line in the
neighborhood of the wall.

Hence the power-law profile is not applicable close to the wall (y=R, 0:04). Since
the velocity is low in this region, the error in calculating integral quantities such as
mass, momentum, and energy fluxes at a section is relatively small. The power-law
profile gives an infinite velocity gradient at the wall and hence cannot be used in
calculations of wall shear stress. Although the profile fits the data close to the cen-
terline, it fails to give zero slope there. Despite these shortcomings, the power-law
profile is found to give adequate results in many calculations.

Data from Hinze [7] suggest that the variation of power-law exponent n with
Reynolds number (based on pipe diameter, D, and centerline velocity, U) for fully
developed flow in smooth pipes is given by

n 521:71 1:8 logReU ð8:23Þ
for ReU . 23 104.

VIDEO

Computer Simulation: Turbulent Channel

Flow 1.

VIDEO

Computer Simulation: Turbulent Channel

Flow 2.

VIDEO

Computer Simulation: Turbulent Channel

Flow 3.
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Since the average velocity is V 5 Q=A, and

Q 5

Z
A

~V � d~A

the ratio of the average velocity to the centerline velocity may be calculated for the
power-law profiles of Eq. 8.22 assuming the profiles to be valid from wall to centerline.
The result is

V

U
5

2n2

ðn1 1Þð2n1 1Þ ð8:24Þ

From Eq. 8.24, we see that as n increases (with increasing Reynolds number) the ratio
of the average velocity to the centerline velocity increases; with increasing Reynolds
number the velocity profile becomes more blunt or “fuller” (for n 5 6; V=U 5 0:79
and for n 5 10; V=U 5 0:87). As a representative value, 7 often is used for the
exponent; this gives rise to the term “a one-seventh power profile” for fully developed
turbulent flow:

u

U
5

y

R

� �1=7
5 12

r

R

� �1=7
Velocity profiles for n 5 6 and n 5 10 are shown in Fig. 8.11. The parabolic profile for
fully developed laminar flow is included for comparison. It is clear that the turbulent
profile has a much steeper slope near the wall. This is consistent with our discussion
leading to Eq. 8.17—the fluctuating velocity components uu and vu continuously
transfer momentum between adjacent fluid layers, tending to reduce the velocity
gradient.

8.6Energy Considerations in Pipe Flow
We have so far used the momentum and conservation of mass equations, in control
volume form, to discuss viscous flow. It is obvious that viscous effects will have an
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Fig. 8.10 Power-law velocity profiles for fully developed
turbulent flow in a smooth pipe. (Data from Laufer [5].)
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important effect on energy considerations. In Section 6.5 we discussed the Energy
Grade Line (EGL),

EGL 5
p

ρg
1

V2

2g
1 z ð6:16bÞ

and saw that this is a measure of the total mechanical energy (“pressure,” kinetic and
potential, per unit mass) in a flow. We can expect that instead of being constant
(which it was for inviscid flow), the EGL will continuously decrease in the direction of
flow as friction “eats” the mechanical energy (Examples 8.9 and 8.10 have sketches
of such EGL—and HGL—curves; you may wish to preview them). We can now
consider the energy equation (the first law of thermodynamics) to obtain information
on the effects of friction.

Consider, for example, steady flow through the piping system, including a reducing
elbow, shown in Fig. 8.12. The control volume boundaries are shown as dashed lines.
They are normal to the flow at sections 1 and 2 and coincide with the inside surface
of the pipe wall elsewhere.

Basic equation:

Q � Ws � Wshear �Wother � t  CV

 e  dV �  
CS

 (e � pv) V � dA

� 0(1) � 0(2) � 0(1) � 0(3)

 � �� � ð4:56Þ

e 5 u1
V2

2
1 gz

CV
g

z

y

x

2

1

Flow

Fig. 8.12 Control volume and coordinates for
energy analysis of flow through a 90� reducing elbow.
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Fig. 8.11 Velocity profiles for fully
developed pipe flow.
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Assumptions: (1) _Ws 5 0; _Wother 5 0.
(2) _Wshear 5 0 (although shear stresses are present at the walls of the

elbow, the velocities are zero there, so there is nopossibility ofwork).
(3) Steady flow.
(4) Incompressible flow.
(5) Internal energy and pressure uniform across sections 1 and 2 .

Under these assumptions the energy equation reduces to

_Q 5 �mðu2 2 u1Þ1 �m p2
ρ

2
p1
ρ

0
@

1
A1 �mgðz2 2 z1Þ

1

Z
A2

V2
2

2
ρV2 dA2 2

Z
A1

V2
1

2
ρV1 dA1

ð8:25Þ

Note that we have not assumed the velocity to be uniform at sections 1 and 2 , since
we know that for viscous flows the velocity at a cross-section cannot be uniform.
However, it is convenient to introduce the average velocity into Eq. 8.25 so that we
can eliminate the integrals. To do this, we define a kinetic energy coefficient.

Kinetic Energy Coefficient

The kinetic energy coefficient, α, is defined such thatZ
A

V2

2
ρV dA 5 α

Z
A

V
2

2
ρVdA 5 α �m V

2

2
ð8:26aÞ

or

α 5

Z
A

ρV3dA

�mV
2

ð8:26bÞ

We can think of α as a correction factor that allows us to use the average velocity V in
the energy equation to compute the kinetic energy at a cross section.

For laminar flow in a pipe (velocity profile given by Eq. 8.12), α 5 2:0.
In turbulent pipe flow, the velocity profile is quite flat, as shown in Fig. 8.11. We can

use Eq. 8.26b together with Eqs. 8.22 and 8.24 to determine α. Substituting the power-
law velocity profile of Eq. 8.22 into Eq. 8.26b, we obtain

α 5
U

V

� �3
2n2

ð31 nÞð31 2nÞ ð8:27Þ

Equation 8.24 gives V=U as a function of the power-law exponent n; combining this
with Eq. 8.27 leads to a fairly complicated expression in n. The overall result is that in
the realistic range of n, from n5 6 to n5 10 for high Reynolds numbers, α varies from
1.08 to 1.03; for the one-seventh power profile (n5 7), α5 1.06. Because α is rea-
sonably close to unity for high Reynolds numbers, and because the change in kinetic
energy is usually small compared with the dominant terms in the energy equation, we
shall almost always use the approximation α 5 1 in our pipe flow calculations.

Head Loss

Using the definition of α, the energy equation (Eq. 8.25) can be written

_Q 5 �mðu2 2 u1Þ1 �m p2
ρ

2
p1
ρ

� �
1 �mgðz2 2 z1Þ1 �m α2V

2

2

2
2

α1V
2

1

2

 !
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Dividing by the mass flow rate gives

δQ
dm

5 u2 2 u1 1
p2
ρ

2
p1
ρ

1 gz2 2 gz1 1
α2V

2

2

2
2

α1V
2

1

2

Rearranging this equation, we write

p1
ρ

1α1
V

2

1

2
1 gz1

 !
2

p2
ρ

1α2
V

2

2

2
1 gz2

 !
5 ðu2 2 u1Þ2 δQ

dm
ð8:28Þ

In Eq. 8.28, the term

p

ρ
1α

V
2

2
1 gz

 !

represents the mechanical energy per unit mass at a cross section. (Compare it to the
EGL expression, Eq. 6.16b, for computing “mechanical” energy, which we discussed
at the beginning of this section. The differences are that in the EGL we divide by g to
obtain the EGL in units of feet or meters, and here αV

2
allows for the fact that in a

pipe flow we have a velocity profile, not a uniform flow.) The term u2 2 u1 2 δQ=dm is
equal to the difference in mechanical energy per unit mass between sections 1 and

2 . It represents the (irreversible) conversion of mechanical energy at section 1 to
unwanted thermal energy (u22u1) and loss of energy via heat transfer ð2δQ=dmÞ. We
identify this group of terms as the total energy loss per unit mass and designate it by
the symbol hlT . Then

p1
ρ

1α1
V

2

1

2
1 gz1

 !
2

p2
ρ

1α2
V

2

2

2
1 gz2

 !
5 hlT ð8:29Þ

The dimensions of energy per unit mass FL/M are equivalent to dimensions of L2/t2.
Equation 8.29 is one of the most important and useful equations in fluid mechanics. It
enables us to compute the loss of mechanical energy caused by friction between two
sections of a pipe. We recall our discussion at the beginning of Part B, where we dis-
cussed what would cause the pressure to change. We hypothesized a frictionless flow
(i.e., described by the Bernoulli equation, or Eq. 8.29 with α 5 1 and hlT 5 0) so that
the pressure could only change if the velocity changed (if the pipe had a change in
diameter), or if the potential changed (if the pipe was not horizontal). Now, with
friction, Eq. 8.29 indicates that the pressure will change even for a constant-area
horizontal pipe—mechanical energy will be continuously changed into thermal energy.

As the empirical science of hydraulics developed during the 19th century, it was
common practice to express the energy balance in terms of energy per unit weight
of flowing liquid (e.g., water) rather than energy per unit mass, as in Eq. 8.29. When
Eq. 8.29 is divided by the acceleration of gravity, g, we obtain

p1
ρg

1α1
V

2

1

2g
1 z1

 !
2

p2
ρg

1α2
V

2

2

2g
1 z2

 !
5

hlT
g

5 HlT ð8:30Þ

Each term in Eq. 8.30 has dimensions of energy per unit weight of flowing fluid. Then
the net dimensions of HlT 5 hlT=g are ðL2=t2Þðt2=LÞ 5 L, or feet of flowing liquid.
Since the term head loss is in common use, we shall use it when referring to either HlT

(with dimensions of energy per unit weight or length) or hlT 5 gHlT (with dimensions
of energy per unit mass).

Equation 8.29 (or Eq. 8.30) can be used to calculate the pressure difference
between any two points in a piping system, provided the head loss, hlT (or HlT ), can be
determined. We shall consider calculation of head loss in the next section.
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8.7Calculation of Head Loss
Total head loss, hlT , is regarded as the sum of major losses, hl, due to frictional effects
in fully developed flow in constant-area tubes, and minor losses, hlm , resulting from
entrances, fittings, area changes, and so on. Consequently, we consider the major and
minor losses separately.

Major Losses: Friction Factor

The energy balance, expressed by Eq. 8.29, can be used to evaluate the major head
loss. For fully developed flow through a constant-area pipe, hlm 5 0, and
α1 ðV2

1=2Þ 5 α2 ðV2

2=2Þ; Eq. 8.29 reduces to

p1 2 p2
ρ

5 gðz2 2 z1Þ1 hl ð8:31Þ

If the pipe is horizontal, then z2 5 z1 and

p1 2 p2
ρ

5
Δp

ρ
5 hl ð8:32Þ

Thus the major head loss can be expressed as the pressure loss for fully developed flow
through a horizontal pipe of constant area.

Since head loss represents the energy converted by frictional effects from
mechanical to thermal energy, head loss for fully developed flow in a constant-area
duct depends only on the details of the flow through the duct. Head loss is inde-
pendent of pipe orientation.

a. Laminar Flow

In laminar flow, we saw in Section 8.3 that the pressure drop may be computed
analytically for fully developed flow in a horizontal pipe. Thus, from Eq. 8.13c,

Δp 5
128μLQ
πD4

5
128μLVðπD2=4Þ

πD4
5 32

L

D

μV
D

Substituting in Eq. 8.32 gives

hl 5 32
L

D

μV
ρD

5
L

D

V
2

2
64

μ
ρVD

� �
5

64

Re

� �
L

D

V
2

2
ð8:33Þ

(We shall see the reason for writing hl in this form shortly.)

b. Turbulent Flow

In turbulent flow we cannot evaluate the pressure drop analytically; we must resort to
experimental results and use dimensional analysis to correlate the experimental data.
In fully developed turbulent flow, the pressure drop, Δp, caused by friction in a
horizontal constant-area pipe is known to depend on pipe diameter, D, pipe length, L,
pipe roughness, e, average flow velocity, V, fluid density, ρ, and fluid viscosity, μ. In
functional form

Δp 5 ΔpðD; L; e; V; ρ; μÞ
We applied dimensional analysis to this problem in Example 7.2. The results were a
correlation of the form
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Δp

ρV
2
5 f

μ
ρVD

;
L

D
;

e

D

� �

We recognize that μ=ρVD 5 1=Re, so we could just as well write

Δp

ρV
2
5 φ Re;

L

D
;

e

D

� �

Substituting from Eq. 8.32, we see that

hl

V
2
5 φ Re;

L

D
;

e

D

� �

Although dimensional analysis predicts the functional relationship, we must obtain
actual values experimentally.

Experiments show that the nondimensional head loss is directly proportional toL/D.
Hence we can write

hl

V
2
5

L

D
φ1 Re;

e

D

� �

Since the function, φ1, is still undetermined, it is permissible to introduce a constant
into the left side of the above equation. By convention the number 1

2 is introduced into
the denominator so that the left side of the equation is the ratio of the head loss to the
kinetic energy per unit mass of flow. Then

hl
1
2V

2
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L

D
φ2 Re;

e

D

� �

The unknown function, φ2ðRe; e=DÞ, is defined as the friction factor, f,

f � φ2 Re;
e

D

� �

and

hl 5 f
L

D

V
2

2
ð8:34Þ

or

Hl 5 f
L

D

V
2

2g
ð8:35Þ

The friction factor2 is determined experimentally. The results, published by L. F.
Moody [8], are shown in Fig. 8.13.

To determine head loss for fully developed flow with known conditions, the Rey-
nolds number is evaluated first. Roughness, e, is obtained from Table 8.1. Then the
friction factor, f, can be read from the appropriate curve in Fig. 8.13, at the known
values of Re and e/D. Finally, head loss can be found using Eq. 8.34 or Eq. 8.35.

2The friction factor defined by Eq. 8.34 is the Darcy friction factor. The Fanning friction factor, less fre-

quently used, is defined in Problem 8.95.
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Several features of Fig. 8.13 require some discussion. The friction factor for laminar
flow may be obtained by comparing Eqs. 8.33 and 8.34:

hl 5
64

Re

� �
L

D

V
2

2
5 f

L

D

V
2

2

Table 8.1
Roughness for Pipes of Common Engineering Materials

Pipe

Roughness, e

Feet Millimeters

Riveted steel 0.003�0.03 0.9�9
Concrete 0.001�0.01 0.3�3
Wood stave 0.0006�0.003 0.2�0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Asphalted cast iron 0.0004 0.12
Commercial steel or wrought iron 0.00015 0.046
Drawn tubing 0.000005 0.0015

Source: Data from Moody [8].
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Fig. 8.13 Friction factor for fully developed flow in circular pipes. (Data from Moody [8], used by permission.)
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Consequently, for laminar flow

f laminar 5
64

Re
ð8:36Þ

Thus, in laminar flow, the friction factor is a function of Reynolds number only; it
is independent of roughness. Although we took no notice of roughness in deriving
Eq. 8.33, experimental results verify that the friction factor is a function only of
Reynolds number in laminar flow.

The Reynolds number in a pipe may be changed most easily by varying the average
flow velocity. If the flow in a pipe is originally laminar, increasing the velocity until the
critical Reynolds number is reached causes transition to occur; the laminar flow gives
way to turbulent flow. The effect of transition on the velocity profile was discussed in
Section 8.5. Figure 8.11 shows that the velocity gradient at the tube wall is much larger
for turbulent flow than for laminar flow. This change in velocity profile causes the wall
shear stress to increase sharply, with the same effect on the friction factor.

As the Reynolds number is increased above the transition value, the velocity
profile continues to become fuller, as noted in Section 8.5. For values of relative
roughness e/D # 0.001, the friction factor at first tends to follow the smooth pipe
curve, along which friction factor is a function of Reynolds number only. However, as
the Reynolds number increases, the velocity profile becomes still fuller. The size
of the thin viscous sublayer near the tube wall decreases. As roughness elements begin
to poke through this layer, the effect of roughness becomes important, and the friction
factor becomes a function of both the Reynolds number and the relative roughness.

At very large Reynolds number, most of the roughness elements on the tube wall
protrude through the viscous sublayer; the drag and, hence, the pressure loss, depend
only on the size of the roughness elements. This is termed the “fully rough” flow
regime; the friction factor depends only on e/D in this regime.

For values of relative roughness e=D$ 0:001, as the Reynolds number is increased
above the transition value, the friction factor is greater than the smooth pipe value. As
was the case for lower values of e/D, the value of Reynolds number at which the flow
regime becomes fully rough decreases with increasing relative roughness.

To summarize the preceding discussion, we see that as Reynolds number is
increased, the friction factor decreases as long as the flow remains laminar. At tran-
sition, f increases sharply. In the turbulent flow regime, the friction factor decreases
gradually and finally levels out at a constant value for large Reynolds number.

Bear in mind that the actual loss of energy is hl (Eq. 8.34), which is proportional to f
and V

2
. Hence, for laminar flow hl~V (because f 5 64=Re, and Re~V); for the

transition region there is a sudden increase in hl; for the fully rough zone hl~V
2

(because f � const.), and for the rest of the turbulent region hl increases at a rate
somewhere between V and V

2
. We conclude that the head loss always increases with

flow rate, and more rapidly when the flow is turbulent.
To avoid having to use a graphical method for obtaining f for turbulent flows,

various mathematical expressions have been fitted to the data. The most widely used
formula for friction factor is from Colebrook [9],

1ffiffiffi
f

p 522:0 log
e=D

3:7
1

2:51

Re
ffiffiffi
f

p
 !

ð8:37Þ

Equation 8.37 is implicit in f, but these days most scientific calculators have an
equation-solving feature that can be easily used to find f for a given roughness ratio e/D
and Reynolds number Re (and some calculators have the Colebrook equation itself
built in!). Certainly a spreadsheet such as Excel, or other mathematical computer
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applications, can also be used (there is an Excel add-in for computing f for laminar
and turbulent flows available on the Web site). Even without using these automated
approaches, Eq. 8.37 is not difficult to solve for f—all we need to do is iterate.
Equation 8.37 is quite stable—almost any initial guess value for f in the right side will,
after very few iterations, lead to a converged value for f to three significant figures.
From Fig. 8.13, we can see that for turbulent flows f, 0.1; hence f5 0.1 would make a
good initial value. Another strategy is to use Fig. 8.13 to obtain a good first estimate;
then usually one iteration using Eq. 8.37 yields a good value for f. As an alternative,
Haaland [10] developed the following equation,

1ffiffiffi
f

p 521:8 log
e=D

3:7

� �1:11
1

6:9

Re

" #

as an approximation to the Colebrook equation; for Re. 3000, it gives results within
about 2 percent of the Colebrook equation, without the need to iterate.

For turbulent flow in smooth pipes, the Blasius correlation, valid for Re# l05, is

f 5
0:316

Re0:25
ð8:38Þ

When this relation is combined with the expression for wall shear stress (Eq. 8.16), the
expression for head loss (Eq. 8.32), and the definition of friction factor (Eq. 8.34), a
useful expression for the wall shear stress is obtained as

τw 5 0:0332ρV
2 ν

RV

� �0:25
ð8:39Þ

This equation will be used later in our study of turbulent boundary-layer flow over a
flat plate (Chapter 9).

All of the e values given in Table 8.1 are for new pipes, in relatively good condition.
Over long periods of service, corrosion takes place and, particularly in hard water
areas, lime deposits and rust scale form on pipe walls. Corrosion can weaken pipes,
eventually leading to failure. Deposit formation increases wall roughness appreciably,
and also decreases the effective diameter. These factors combine to cause e/D to
increase by factors of 5 to 10 for old pipes (see Problem 10.63). An example is shown
in Fig. 8.14.

Curves presented in Fig. 8.13 represent average values for data obtained from
numerous experiments. The curves should be considered accurate within approxi-
mately 610 percent, which is sufficient for many engineering analyses. If more
accuracy is needed, actual test data should be used.

Minor Losses

The flow in a piping system may be required to pass through a variety of fittings,
bends, or abrupt changes in area. Additional head losses are encountered, primarily as
a result of flow separation. (Energy eventually is dissipated by violent mixing in
the separated zones.) These losses will be minor (hence the term minor losses) if the
piping system includes long lengths of constant-area pipe. Depending on the device,
minor losses traditionally are computed in one of two ways, either

hlm 5 K
V

2

2
ð8:40aÞ
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where the loss coefficient, K, must be determined experimentally for each situation, or

hlm 5 f
Le

D

V
2

2
ð8:40bÞ

where Le is an equivalent length of straight pipe.
For flow through pipe bends and fittings, the loss coefficient, K, is found to vary

with pipe size (diameter) in much the same manner as the friction factor, f, for flow
through a straight pipe. Consequently, the equivalent length, Le/D, tends toward a
constant for different sizes of a given type of fitting.

Experimental data for minor losses are plentiful, but they are scattered among a
variety of sources. Different sources may give different values for the same flow
configuration. The data presented here should be considered as representative for
some commonly encountered situations; in each case the source of the data is
identified.

a. Inlets and Exits

A poorly designed inlet to a pipe can cause appreciable head loss. If the inlet has
sharp corners, flow separation occurs at the corners, and a vena contracta is formed.
The fluid must accelerate locally to pass through the reduced flow area at the vena
contracta. Losses in mechanical energy result from the unconfined mixing as the flow
stream decelerates again to fill the pipe. Three basic inlet geometries are shown in
Table 8.2. From the table it is clear that the loss coefficient is reduced significantly
when the inlet is rounded even slightly. For a well-rounded inlet (r=D$0:15) the
entrance loss coefficient is almost negligible. Example 8.9 illustrates a procedure for
experimentally determining the loss coefficient for a pipe inlet.

The kinetic energy per unit mass, αV
2
=2, is completely dissipated by mixing when

flow discharges from a duct into a large reservoir or plenum chamber. The situation
corresponds to flow through an abrupt expansion with AR 5 0 (Fig. 8.15). The minor
loss coefficient thus equals α, which as we saw in the previous section we usually set

Fig. 8.14 Pipe section removed after 40 years of service as a water line, showing
formation of scale. (Photo courtesy of Alan T. McDonald.)

362 Chapter 8 Internal Incompressible Viscous Flow



to 1 for turbulent flow. No improvement in minor loss coefficient for an exit is possible;
however, addition of a diffuser can reduce V

2
=2 and therefore hlm considerably (see

Example 8.10).

b. Enlargements and Contractions

Minor loss coefficients for sudden expansions and contractions in circular ducts are
given in Fig. 8.15. Note that both loss coefficients are based on the larger V2/2. Thus
losses for a sudden expansion are based on V

2

1=2, and those for a contraction are based
on V

2

2=2.
Losses caused by area change can be reduced somewhat by installing a nozzle or

diffuser between the two sections of straight pipe.Data for nozzles are given inTable 8.3.
Note that the final column (data for the included angle θ5 180�) agrees with the data of
Fig. 8.15.

Losses in diffusers depend on a number of geometric and flow variables. Diffuser
data most commonly are presented in terms of a pressure recovery coefficient, Cp,
defined as the ratio of static pressure rise to inlet dynamic pressure,

Cp � p2 2 p1
1
2 ρV

2

1

ð8:41Þ

Table 8.2
Minor Loss Coefficients for Pipe Entrances

Entrance Type Minor Loss Coefficient, Ka

r
D

Reentrant

Square-edged

Rounded

0.78

0.5

r=D 0:02 0:06 $ 0:15

K 0:28 0:15 0:04

aBased on hlm5K(V2/2), where V is the mean velocity in the pipe.

Source: Data from Reference [11].
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Fig. 8.15 Loss coefficients for flow through sudden area changes.
(Data from Streeter [1].)
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This shows what fraction of the inlet kinetic energy shows up as a pressure rise. It is
not difficult to show (using the Bernoulli and continuity equations; see Problem 8.201)
that the ideal (frictionless) pressure recovery coefficient is given by

Cpi 5 12
1

AR2
ð8:42Þ

where AR is the area ratio. Hence, the ideal pressure recovery coefficient is a function
only of the area ratio. In reality a diffuser typically has turbulent flow, and the static
pressure rise in the direction of flow may cause flow separation from the walls if the
diffuser is poorly designed; flow pulsations can even occur. For these reasons
the actual Cp will be somewhat less than indicated by Eq. 8.42. For example, data for
conical diffusers with fully developed turbulent pipe flow at the inlet are presented in
Fig. 8.16 as a function of geometry. Note that more tapered diffusers (small diver-
gence angle φ or large dimensionless length N/R1) are more likely to approach the
ideal constant value for Cp. As we make the cone shorter, for a given fixed area ratio
we start to see a drop in Cp—we can consider the cone length at which this starts to
happen the optimum length (it is the shortest length for which we obtain the max-
imum coefficient for a given area ratio—closest to that predicted by Eq. 8.42). We can
relate Cp to the head loss. If gravity is neglected, and α15α25 1.0, the head loss
equation, Eq. 8.29, reduces to
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From continuity, A1V1 5 A2V2, so

hlm 5
V

2

1

2
12

A1

A2

� �2
2Cp

" #

Table 8.3
Loss Coefficients (K) for Gradual Contractions: Round and Rectangular Ducts

Included Angle, θ, Degrees

A2/A1 10 15�40 50�60 90 120 150 180

θ
Flow

A1

A2 0.50 0.05 0.05 0.06 0.12 0.18 0.24 0.26
0.25 0.05 0.04 0.07 0.17 0.27 0.35 0.41
0.10 0.05 0.05 0.08 0.19 0.29 0.37 0.43

Note: Coefficients are based on hlm 5 Kð~V 2

2=2Þ.
Source: Data from ASHRAE [12].
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or

hlm 5
V

2

1

2
12

1

ðARÞ2
 !

2Cp

" #
ð8:43Þ

The frictionless result (Eq. 8.42) is obtained from Eq. 8.43 if hlm 5 0. We can combine
Eqs. 8.42 and 8.43 to obtain an expression for the head loss in terms of the actual and
ideal Cp values:

hlm 5 ðCpi 2CpÞV
2

1

2
ð8:44Þ

Performance maps for plane wall and annular diffusers [14] and for radial diffusers
[15] are available in the literature.

Diffuser pressure recovery is essentially independent of Reynolds number for inlet
Reynolds numbers greater than 7.5 3 104 [16]. Diffuser pressure recovery with uni-
form inlet flow is somewhat better than that for fully developed inlet flow. Perfor-
mance maps for plane wall, conical, and annular diffusers for a variety of inlet flow
conditions are presented in [17].

Since static pressure rises in the direction of flow in a diffuser, flow may separate
from the walls. For some geometries, the outlet flow is distorted. For wide angle dif-
fusers, vanes or splitters can be used to suppress stall and improve pressure
recovery [18].

c. Pipe Bends

The head loss of a bend is larger than for fully developed flow through a straight
section of equal length. The additional loss is primarily the result of secondary flow,
and is represented most conveniently by an equivalent length of straight pipe. The
equivalent length depends on the relative radius of curvature of the bend, as shown in
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Fig. 8.16 Pressure recovery for conical diffusers with fully developed turbulent
pipe flow at inlet. (Data from Cockrell and Bradley [13].)
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Fig. 8.17a for 90� bends. An approximate procedure for computing the resistance of
bends with other turning angles is given in [11].

Because they are simple and inexpensive to construct in the field, miter bends often
are used in large pipe systems. Design data for miter bends are given in Fig. 8.17b.
Note that you get what you pay for: From Fig. 8.17a the equivalent length for pipe
bends varies from about 10 to about 40 diameters; for the cheaper 90� miter bend of
Fig. 8.17b we get a much larger equivalent length of 60 diameters.

d. Valves and Fittings

Losses for flow through valves and fittings also may be expressed in terms of an
equivalent length of straight pipe. Some representative data are given in Table 8.4.

All resistances are given for fully open valves; losses increase markedly when
valves are partially open. Valve design varies significantly among manufacturers.
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Fig. 8.17 Representative total resistance (Le/D) for (a) 90
� pipe bends and flanged elbows,

and (b) miter bends. (Data from Reference [11].)

Table 8.4
Representative Dimensionless Equivalent Lengths (Le/D) for Valves and
Fittings

Fitting Type Equivalent Length,a Le/D

Valves (fully open)
Gate valve 8
Globe valve 340
Angle valve 150
Ball valve 3
Lift check valve: globe lift 600

angle lift 55
Foot valve with strainer: poppet disk 420

hinged disk 75
Standard elbow: 90� 30

45� 16
Return bend, close pattern 50
Standard tee: flow through run 20

flow through branch 60

aBased on hlm 5 f ðLe=DÞðV2
=2Þ.

Source: Data from Reference [11].
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Whenever possible, resistances furnished by the valve supplier should be used if
accurate results are needed.

Fittings in a piping system may have threaded, flanged, or welded connections. For
small diameters, threaded joints are most common; large pipe systems frequently have
flanged or welded joints.

In practice, insertion losses for fittings and valves vary considerably, depending on
the care used in fabricating the pipe system. If burrs from cutting pipe sections are
allowed to remain, they cause local flow obstructions, which increase losses
appreciably.

Although the losses discussed in this section were termed “minor losses,” they can
be a large fraction of the overall system loss. Thus a system for which calculations are
to be made must be checked carefully to make sure all losses have been identified and
their magnitudes estimated. If calculations are made carefully, the results will be of
satisfactory engineering accuracy. You may expect to predict actual losses within
610 percent.

We include here one more device that changes the energy of the fluid—except this
time the energy of the fluid will be increased, so it creates a “negative energy loss.”

Pumps, Fans, and Blowers in Fluid Systems

In many practical flow situations (e.g., the cooling system of an automobile engine, the
HVAC system of a building), the driving force for maintaining the flow against fric-
tion is a pump (for liquids) or a fan or blower (for gases). Here we will consider
pumps, although all the results apply equally to fans and blowers. We generally
neglect heat transfer and internal energy changes of the fluid (we will incorporate
them later into the definition of the pump efficiency), so the first law of thermo-
dynamics applied across the pump is

_Wpump 5 �m p

ρ
1

V
2

2
1 gz

 !
discharge

2
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ρ
1
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2
1 gz

 !
suction

2
4
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We can also compute the head Δhpump (energy/mass) produced by the pump,

Δhpump 5
_Wpump

�m 5
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2
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2
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 !
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ð8:45Þ

In many cases the inlet and outlet diameters (and therefore velocities) and elevations
are the same or negligibly different, so Eq. 8.45 simplifies to

Δhpump 5
Δppump

ρ
ð8:46Þ

It is interesting to note that a pump adds energy to the fluid in the form of a gain in
pressure—the everyday, invalid perception is that pumps add kinetic energy to the
fluid. (It is true that when a pump-pipe system is first started up, the pump does work
to accelerate the fluid to its steady speed; this is when a pump driven by an electric
motor is most in danger of burning out the motor.)

The idea is that in a pump-pipe system the head produced by the pump (Eq. 8.45 or
8.46) is needed to overcome the head loss for the pipe system. Hence, the flow rate in
such a system depends on the pump characteristics and the major and minor losses of
the pipe system. We will learn in Chapter 10 that the head produced by a given pump
is not constant, but varies with flow rate through the pump, leading to the notion of
“matching” a pump to a given system to achieve the desired flow rate.
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A useful relation is obtained from Eq. 8.46 if we multiply by �m 5 ρQ (Q is the flow
rate) and recall that �mΔhpump is the power supplied to the fluid,

_Wpump 5 QΔppump ð8:47Þ

We can also define the pump efficiency:

η 5
_Wpump

_Win

ð8:48Þ

where _Wpump is the power reaching the fluid, and _Win is the power input (usually
electrical) to the pump.

We note that, when applying the energy equation (Eq. 8.29) to a pipe system, we
may sometimes choose points 1 and 2 so that a pump is included in the system. For
these cases we can simply include the head of the pump as a “negative loss”:

p1
ρ

1α1
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2

2
1 gz2

 !
5 hlT 2Δhpump ð8:49Þ

Noncircular Ducts

The empirical correlations for pipe flow also may be used for computations involving
noncircular ducts, provided their cross sections are not too exaggerated. Thus ducts of
square or rectangular cross section may be treated if the ratio of height to width is less
than about 3 or 4.

The correlations for turbulent pipe flow are extended for use with noncircular
geometries by introducing the hydraulic diameter, defined as

Dh � 4A

P
ð8:50Þ

in place of the diameter, D. In Eq. 8.50, A is cross-sectional area, and P is wetted
perimeter, the length of wall in contact with the flowing fluid at any cross-section. The
factor 4 is introduced so that the hydraulic diameter will equal the duct diameter for a
circular cross section. For a circular duct, A 5 πD2=4 and P 5 πD, so that

Dh 5
4A

P
5

4
π
4

� �
D2

πD
5 D

For a rectangular duct of width b and height h, A 5 bh and P 5 2ðb1 hÞ, so

Dh 5
4bh

2ðb1 hÞ
If the aspect ratio, ar, is defined as ar 5 h=b, then

Dh 5
2h

11 ar

for rectangular ducts. For a square duct, ar5 1 and Dh5 h.
As noted, the hydraulic diameter concept can be applied in the approximate range

1
4 , ar, 4. Under these conditions, the correlations for pipe flow give acceptably
accurate results for rectangular ducts. Since such ducts are easy and cheap to fabricate
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from sheet metal, they are commonly used in air conditioning, heating, and ventilating
applications. Extensive data on losses for air flow are available (e.g., see [12, 19]).

Losses caused by secondary flows increase rapidly for more extreme geometries, so
the correlations are not applicable to wide, flat ducts, or to ducts of triangular or other
irregular shapes. Experimental data must be used when precise design information is
required for specific situations.

8.8Solution of Pipe Flow Problems
Section 8.7 provides us with a complete scheme for solving many different pipe flow
problems. For convenience we collect together the relevant computing equations.

The energy equation, relating the conditions at any two points 1 and 2 for a single-
path pipe system, is
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5 hlT 5
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hlm ð8:29Þ

This equation expresses the fact that there will be a loss of mechanical energy
(“pressure,” kinetic and/or potential) in the pipe. Recall that for turbulent flows α � 1.
Note that by judicious choice of points 1 and 2 we can analyze not only the entire pipe
system, but also just a certain section of it that we may be interested in. The total head
loss is given by the sum of the major and minor losses. (Remember that we can also
include “negative losses” for any pumps present between points 1 and 2. The relevant
form of the energy equation is then Eq. 8.49.)

Each major loss is given by

hl 5 f
L

D

V
2

2
ð8:34Þ

where the friction factor is obtained from

f 5
64

Re
for laminar flow ðRe , 2300Þ ð8:36Þ

or
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for turbulent flow ðRe$ 2300Þ ð8:37Þ

and Eqs. 8.36 and 8.37 are presented graphically in the Moody chart (Fig. 8.13).
Each minor loss is given either by

hlm 5 K
V

2

2
ð8:40aÞ

where K is the device loss coefficient, or

hlm 5 f
Le

D

V
2

2
ð8:40bÞ

where Le is the additional equivalent length of pipe.
We also note that the flow rate Q is related to the average velocity V at each pipe

cross section by

Q 5 π
D2

4
V

We will apply these equations first to single-path systems.
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Single-Path Systems

In single-path pipe problems we generally know the system configuration (type of pipe
material and hence pipe roughness, the number and type of elbows, valves, and other
fittings, etc., and changes of elevation), as well as the fluid (ρ and μ) we will be
working with. Although not the only possibilities, usually the goal is to determine one
of the following:

(a) The pressure drop Δp, for a given pipe (L and D), and flow rate Q.

(b) The pipe length L, for a given pressure drop Δp, pipe diameterD, and flow rateQ.

(c) The flow rate Q, for a given pipe (L and D), and pressure drop Δp.

(d) The pipe diameterD, for a given pipe length L, pressure dropΔp, and flow rateQ.

Each of these cases often arises in real-world situations. For example, case (a) is a
necessary step in selecting the correct size pump to maintain the desired flow rate in
a system—the pump must be able to produce the system Δp at the specified flow rate
Q. (We will discuss this in more detail in Chapter 10.) Cases (a) and (b) are com-
putationally straightforward; we will see that cases (c) and (d) can be a little tricky to
evaluate. We will discuss each case, and present an Example for each. The Examples
present solutions as you might do them using a calculator, but there is also an Excel
workbook for each. (Remember that the Web site has an Excel add-in that once
installed will automatically compute f from Re and e/D!) The advantage of using a
computer application such as a spreadsheet is that we do not have to use either the
Moody chart (Fig. 8.13) or solve the implicit Colebrook equation (Eq. 8.37) to obtain
turbulent friction factors—the application can find them for us! In addition, as we’ll
see, cases (c) and (d) involve significant iterative calculations that can be avoided by
use of a computer application. Finally, once we have a solution using a computer
application, engineering “what-ifs” become easy, e.g., if we double the head produced
by a pump, how much will the flow rate in a given system increase?

a. Find Δp for a Given L, D, and Q

These types of problems are quite straightforward—the energy equation (Eq. 8.29)
can be solved directly forΔp 5 ðp1 2 p2Þ in terms of known or computable quantities.
The flow rate leads to the Reynolds number (or numbers if there is a diameter
change) and hence the friction factor (or factors) for the flow; tabulated data can be
used for minor loss coefficients and equivalent lengths. The energy equation can then
be used to directly obtain the pressure drop. Example 8.5 illustrates this type of
problem.

b. Find L for a Given Δp, D, and Q

These types of problems are also straightforward—the energy equation (Eq. 8.29) can
be solved directly for L in terms of known or computable quantities. The flow rate
again leads to the Reynolds number and hence the friction factor for the flow.
Tabulated data can be used for minor loss coefficients and equivalent lengths. The
energy equation can then be rearranged and solved directly for the pipe length.
Example 8.6 illustrates this type of problem.

c. Find Q for a Given Δp, L, and D

These types of problems require either manual iteration or use of a computer appli-
cation such as Excel. The unknown flow rate or velocity is needed before the Reynolds
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number and hence the friction factor can be found. To manually iterate we first solve the
energy equation directly for V in terms of known quantities and the unknown friction
factor f. To start the iterative process we make a guess for f (a good choice is to take a
value from the fully turbulent region of the Moody chart because many practical flows
are in this region) and obtain a value for V. Then we can compute a Reynolds number
and hence obtain a new value for f. We repeat the iteration process f- V-Re-f until
convergence (usually only two or three iterations are necessary). A much quicker
procedure is to use a computer application. For example, spreadsheets (such as Excel)
have built-in solving features for solving one or more algebraic equations for one or
more unknowns. Example 8.7 illustrates this type of problem.

d. Find D for a Given Δp, L, and Q

These types of problems arise, for example, when we have designed a pump-pipe
system and wish to choose the best pipe diameter—the best being the minimum
diameter (for minimum pipe cost) that will deliver the design flow rate. We need to
manually iterate, or use a computer application such as Excel. The unknown diameter
is needed before the Reynolds number and relative roughness, and hence the friction
factor, can be found. To manually iterate we could first solve the energy equation
directly for D in terms of known quantities and the unknown friction factor f, and
then iterate from a starting guess for f in a way similar to case (c) above: f-D-Re
and e=D-f . In practice this is a little unwieldy, so instead to manually find a solution
we make successive guesses for D until the corresponding pressure drop Δp (for the
given flow rate Q) computed from the energy equation matches the design Δp. As in
case (c) a much quicker procedure is to use a computer application. For example,
spreadsheets (such as Excel) have built-in solving features for solving one or more
algebraic equations for one or more unknowns. Example 8.8 illustrates this type of
problem.

In choosing a pipe size, it is logical to work with diameters that are available
commercially. Pipe is manufactured in a limited number of standard sizes. Some data
for standard pipe sizes are given in Table 8.5. For data on extra strong or double extra
strong pipes, consult a handbook, e.g., [11]. Pipe larger than 12 in. nominal diameter is
produced in multiples of 2 in. up to a nominal diameter of 36 in. and in multiples of 6
in. for still larger sizes.

Table 8.5
Standard Sizes for Carbon Steel, Alloy Steel, and Stainless Steel Pipe

Nominal Pipe Size (in.) Inside Diameter (in.) Nominal Pipe Size (in.) Inside Diameter (in.)

1
8 0.269 2 1

2 2.469
1
4 0.364 3 3.068
3
8 0.493 4 4.026
1
2 0.622 5 5.047
3
4 0.824 6 6.065

1 1.049 8 7.981
1 1
2 1.610 10 10.020

2 2.067 12 12.000

Source: Data from Reference [11].
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Example 8.5 PIPE FLOW INTO A RESERVOIR: PRESSURE DROP UNKNOWN

A 100-m length of smooth horizontal pipe is attached to a large reservoir. A pump is attached to the end of the pipe
to pump water into the reservoir at a volume flow rate of 0.01 m3/s. What pressure (gage) must the pump produce at
the pipe to generate this flow rate? The inside diameter of the smooth pipe is 75 mm.

Given: Water is pumped at 0.01 m3/s through a 75-mm-
diameter smooth pipe, with L5 100 m, into a constant-level
reservoir of depth d5 10 m.

Find: Pump pressure, p1, required to maintain the flow.

Solution:

Governing equations:

p1
ρ

1α1
V

2

1

2
1 gz1

 !
2

p2
ρ

1α2
V

2

2

2
1 gz2

 !
5 hlT 5 hl 1 hlm

ð8:29Þ

where

hl 5 f
L

D

V
2

2
ð8:34Þ and hlm 5 K

V
2

2
ð8:40aÞ

For the given problem, p15 ppump and p25 0 (gage), so Δp5 p12 p25 ppump, V1 5 V, V2 � 0, K (exit loss)5 1.0,
and α1 � 1.0. If we set z15 0, then z25 d. Simplifying Eq. 8.29 gives

Δp

ρ
1

V
2

2
2 gd 5 f

L

D

V
2

2
1

V
2

2
ð1Þ

The left side of the equation is the loss of mechanical energy between points 1 and 2 ; the right side is the major and
minor losses that contributed to the loss. Solving for the pressure drop, Δp5 ppump,

ppump 5 Δp 5 ρ gd1 f
L

D

V
2

2

 !

Everything on the right side of the equation is known or can be readily computed. The flow rate Q leads to V,

V 5
Q

A
5

4Q

πD2
5

4

π
3 0:01

m3

s
3

1

ð0:075Þ2 m2
5 2:26 m=s

This in turn [assuming water at 20�C, ρ5 999 kg/m3, and μ5 1.0 3 1023 kg/(m � s)] leads to the Reynolds number

Re 5
ρVD

μ
5 999

kg

m3
3 2:26

m

s
3 0:075 m3

m � s
1:03 1023kg

5 1:703 105

For turbulent flow in a smooth pipe (e5 0), from Eq. 8.37, f5 0.0162. Then

d = 10 m

z

L = 100 m

Pump

D = 75 mm

CV

2

1
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ppump 5 Δp 5 ρ gd1 f
L

D

V
2

2

0
@

1
A

5 999
kg

m3
9:81

m

s2
3 10 m1 0:0162ð Þ3 100 m

0:075 m
3

ð2:26Þ2m2

2 s2

0
@

1
A3

N � s2
kg �m

ppump 5 1:533 105 N=m2 ðgageÞ
Hence,

ppump 5 153 kPa ðgageÞ ß

ppump

This problem illustrates the method for
manually calculating pressure drop.

The Excel workbook for thisproblem automatically computes
Re and f from the given data. It then
solves Eq. 1 directly for pressure ppump

without having to explicitly solve for it
first. The workbook can be easily used
to see, for example, how the pump
pressure ppump required to maintain
flow Q is affected by changing the
diameter D; it is easily editable for
other case (a) type problems.

Example 8.6 FLOW IN A PIPELINE: LENGTH UNKNOWN

Crude oil flows through a level section of the Alaskan pipeline at a rate of 1.6 million barrels per day (1 barrel5
42 gal). The pipe inside diameter is 48 in.; its roughness is equivalent to galvanized iron. The maximum allowable
pressure is 1200 psi; the minimum pressure required to keep dissolved gases in solution in the crude oil is 50 psi.
The crude oil has SG5 0.93; its viscosity at the pumping temperature of 140�F is μ5 3.5 3 1024 lbf � s/ft2. For these
conditions, determine the maximum possible spacing between pumping stations. If the pump efficiency is 85 percent,
determine the power that must be supplied at each pumping station.

Given: Flow of crude oil through horizontal section of Alaskan pipeline.

D5 48 in. (roughness of galvanized iron), SG5 0.93, μ5 3.5 3 1024 lbf � s/ft2
Find: (a) Maximum spacing, L.

(b) Power needed at each pump station.

Solution:
As shown in the figure, we assume that the Alaskan pipeline is made up of repeating pump-pipe sections. We can draw
two control volumes: CV1, for the pipe flow (state 2 to state 1 ); CV2, for the pump (state 1 to state 2 ).

First we apply the energy equation for steady, incompressible pipe flow to CV1.

Governing equations:

� 2 � gz2
( ) � (p2 V 2

2

2

� 1 � gz1
 ) � hlT � hl � hlm

p1 V 1

2

2

� �
ð8:29Þ

where

hl 5 f
L

D

V
2

2
ð8:34Þ and hlm 5 K

V
2

2
ð8:40aÞ

1
2 1

CV1

L

p1 ≥ 50 psigp2 ≤ 1200 psig

Q = 1.6 Mbpd
CV2

p = 0.85η
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Assumptions: (1) α1V
2

1 5 α2V
2

2.
(2) Horizontal pipe, z15 z2.
(3) Neglect minor losses.
(4) Constant viscosity.

Then, using CV1

Δp 5 p2 2 p1 5 f
L

D
ρ
V

2

2
ð1Þ

or

L 5
2D

f

Δp

ρV
2
where f 5 f ðRe; e=DÞ

Q 5 1:63 106
bbl

day
3 42

gal

bbl
3

ft3

7:48 gal
3

day

24 hr
3

hr

3600 s
5 104 ft3=s

so

V 5
Q

A
5 104

ft3

s
3

4

πð4Þ2ft2 5 8:27 ft=s

Re 5
ρVD

μ
5 ð0:93Þ1:94 slug

ft3
3 8:27

ft

s
3 4 ft3

ft2

3:53 1024 lbf � s 3
lbf � s2
slug � ft

Re 5 1:713 105

From Table 8.1, e5 0.0005 ft and hence e/D5 0.00012. Then from Eq. 8.37, f5 0.017 and thus

L 5
2

0:017
3 4 ft3 ð12002 50Þ lbf

in:2
3

ft3

ð0:93Þ1:94 slug
3

s2

ð8:27Þ2 ft2

3 144
in:2

ft2
3

slug � ft
lbf � s2 5 6:323 105ft

L 5 632; 000ft ð120 miÞ ß
L

To find the pumping power we can apply the first law of thermodynamics to CV2. This control volume consists
only of the pump, and we saw in Section 8.7 that this law simplifies to

_Wpump 5 QΔppump ð8:47Þ

and the pump efficiency is

η 5
_Wpump

_Win

ð8:48Þ

We recall that _Wpump is the power reaching the fluid, and _Win is the power input. Because we have a repeating system
the pressure rise through the pump (i.e., from state 1 to state 2 ) equals the pressure drop in the pipe (i.e., from
state 2 to state 1 ),

Δppump 5 Δp
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so that

_Wpump 5 QΔppump 5 104
ft3

s
3

ð12002 50Þlbf
in:2

3
144 in:2

ft2

3
hp � s

550ft � lbf � 31; 300 hp

and the required power input is

_Win: 5
_Wpump

η
5

31300 hp

0:85
5 36; 800 hp ß

_Wneeded

This problem illustrates the method for
manually calculating pipe length L.

The Excel workbook for thisproblem automatically computes
Re and f from the given data. It then
solves Eq. 1 directly for L without
having to explicitly solve for it first.
The workbook can be easily used to
see, for example, how the flow rate Q
depends on L; it may be edited for
other case (b) type problems.

Example 8.7 FLOW FROM A WATER TOWER: FLOW RATE UNKNOWN

A fire protection system is supplied from a water tower and standpipe 80 ft tall. The longest pipe in the system is
600 ft and is made of cast iron about 20 years old. The pipe contains one gate valve; other minor losses may be
neglected. The pipe diameter is 4 in. Determine the maximum rate of flow (gpm) through this pipe.

Given: Fire protection system, as shown.

Find: Q, gpm.

Solution:

Governing equations:

� 1 � gz1
( ) � (
 0(2)

p1 V 1

2

2

� 2 � gz2


≈

) � hlT � hl � hlm

p2 V 2

2

2

� �
ð8:29Þ

where

hl 5 f
L

D

V
2

2
ð8:34Þ and hlm 5 f

Le

D

V
2

2
ð8:40bÞ

Assumptions: (1) p15 p25 patm
(2) V15 0, and α2 C 1.0.

Then Eq. 8.29 can be written as

gðz1 2 z2Þ2 V
2

2

2
5 hlT 5 f

L

D
1

Le

D

� �
V

2

2

2
ð1Þ

For a fully open gate valve, from Table 8.4, Le/D5 8. Thus

gðz1 2 z2Þ 5 V
2

2

2
f

L

D
1 8

� �
1 1

� �

1

2

CV Gate valve

Q

z
D = 4 in.

h = 80 ft

Lpipe = 600 ft
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To manually iterate, we solve for V2 and obtain

V2 5
2gðz1 2 z2Þ

f ðL=D1 8Þ1 1

� �1=2
ð2Þ

To be conservative, assume the standpipe is the same diameter as the horizontal pipe. Then

L

D
5

600 ft1 80 ft

4 in:
3

12 in:

ft
5 2040

Also

z1 2 z2 5 h 5 80 ft

To solve Eq. 2 manually we need to iterate. To start, we make an estimate for f by assuming the flow is fully turbulent
(where f is constant). This value can be obtained from solving Eq. 8.37 using a calculator or from Fig. 8.13. For a
large value of Re (e.g., 108), and a roughness ratio e/D � 0.005 (e5 0.00085 ft for cast iron is obtained from Table 8.1,
and doubled to allow for the fact that the pipe is old), we find that f � 0.03. Thus a first iteration for V2 from Eq. 2 is

V2 5 23 32:2
ft

s2
3 80 ft3

1

0:03ð20401 8Þ1 1

� �1=2
5 9:08 ft=s

Now obtain a new value for f:

Re 5
ρVD

μ
5

VD

ν
5 9:08

ft

s
3

ft

3
3

s

1:213 1025 ft2
5 2:503 105

For e/D5 0.005, f5 0.0308 from Eq. 8.37. Thus we obtain

V2 5 23 32:2
ft

s2
3 80 ft3

1

0:0308 ð20401 8Þ1 1

� �1=2
5 8:97 ft=s

The values we have obtained for V2 (9.08 ft/s and 8.97 ft/s) differ by less than
2%—an acceptable level of accuracy. If this accuracy had not been achieved we
would continue iterating until this, or any other accuracy we desired, was
achieved (usually only one or two more iterations at most are necessary for
reasonable accuracy). Note that instead of starting with a fully rough value
for f, we could have started with a guess value for V2 of, say, 1 ft/s or 10 ft/s.
The volume flow rate is

Q 5 V2A 5 V2
πD2

4
5 8:97

ft

s
3

π
4

�
1

3

�2
ft2

3 7:48
gal

ft3
3 60

s

min

Q 5 351 gpm ß
Q

This problem illustrates the method for
manually iterating to calculate flow
rate.

The Excel workbook for thisproblem automatically iterates
to solve for the flow rate Q. It solves
Eq. 1 without having to obtain the
explicit equation (Eq. 2) for V2 (or Q)
first. The workbook can be easily used
to perform numerous “what-ifs” that
would be extremely time-consuming
to do manually, e.g., to see how Q is
affected by changing the roughness e/
D. For example, it shows that replac-
ing the old cast-iron pipe with a new
pipe (e/D � 0.0025) would increase
the flow rate from 351 gpm to about
386 gpm, a 10% increase! The work-
book can be modified to solve other
case (c) type problems.

Example 8.8 FLOW IN AN IRRIGATION SYSTEM: DIAMETER UNKNOWN

Spray heads in an agricultural spraying system are to be supplied with water through 500 ft of drawn aluminum
tubing from an engine-driven pump. In its most efficient operating range, the pump output is 1500 gpm at a discharge
pressure not exceeding 65 psig. For satisfactory operation, the sprinklers must operate at 30 psig or higher pressure.
Minor losses and elevation changes may be neglected. Determine the smallest standard pipe size that can be used.
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Given: Water supply system, as shown.

Find: Smallest standard D.

Solution:
Δp, L, and Q are known. D is unknown, so iteration is needed to determine the minimum standard diameter that
satisfies the pressure drop constraint at the given flow rate. The maximum allowable pressure drop over the length,
L, is

Δpmax 5 p1max
2 p2min

5 ð652 30Þ psi 5 35 psi

Governing equations:

hlT
� hl � hlm

 � f

� 0(3)

L
D

V 2

2

2

� 1 � gz1( ) � (p1 V 1

2

2

� 2 � gz2) � hlT

p2 V 2

2

2

� �
ð8:29Þ

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) hlT 5 hl; i:e:; hlm 5 0.
(4) z15 z2.
(5) V1 5 V2 5 V;α1Cα2.

Then

Δp 5 p1 2 p2 5 f
L

D

ρV
2

2
ð1Þ

Equation 1 is difficult to solve for D because both V and f depend on D! The best approach is to use a computer
application such as Excel to automatically solve for D. For completeness here we show the manual iteration pro-
cedure. The first step is to express Eq. 1 and the Reynolds number in terms of Q instead of V (Q is constant but V
varies with D). We have V 5 Q=A 5 4Q=πD2 so that

Δp 5 f
L

D

ρ
2

4Q

πD2

� �2
5

8 fLρQ2

π2D5
ð2Þ

The Reynolds number in terms of Q is

Re 5
ρVD

μ
5

VD

ν
5

4Q

πD2

D

ν
5

4Q

πνD

Finally, Q must be converted to cubic feet per second.

Q 5 1500
gal

min
3

min

60 s
3

ft3

7:48 gal
5 3:34 ft3=s

For an initial guess, take nominal 4 in. (4.026 in. i.d.) pipe:

1 2

D

Q = 1500 gpm

p2 ≥ 30 psigp1  ≤ 65 psig

CV

L = 500 ft
Pump
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We have solved Examples 8.7 and 8.8 by iteration (manual, or using Excel). Several
specialized forms of friction factor versus Reynolds number diagrams have been
introduced to solve problems of this type without the need for iteration. For examples
of these specialized diagrams, see Daily and Harleman [20] and White [21].

Examples 8.9 and 8.10 illustrate the evaluation of minor loss coefficients and the
application of a diffuser to reduce exit kinetic energy from a flow system.

Re 5
4Q

πνD
5

4

π
3 3:34

ft3

s
3

s

1:213 1025 ft2
3

1

4:026 in:
3 12

in:

ft
5 1:063 106

For drawn tubing, e5 5 3 1026 ft (Table 8.1) and hence e/D5 1.5 3 1025, so f C 0.012 (Eq. 8.37), and

Δp 5
8fLρQ2

π2D5
5

8

π2
3 0:0123 500ft3 1:94

slug

ft3
3 ð3:34Þ2 ft

6

s2

3
1

ð4:026Þ5 in:5
3 1728

in:3

ft3
3

lbf � s2
slug � ft

Δp 5 172 lbf=in:2 .Δpmax

Since this pressure drop is too large, try D5 6 in. (actually 6.065 in. i.d.):

Re 5
4

π
3 3:34

ft3

s
3

s

1:213 1025 ft2
3

1

6:065 in:
3 12

in:

ft
5 6:953 105

For drawn tubing with D5 6 in., e/D5 1.0 3 1025, so f C 0.013 (Eq. 8.37), and

Δp 5
8

π2
3 0:0133 500 ft3 1:94

slug

ft3
3 ð3:34Þ2 ft

6

s2

3
1

ð6:065Þ5 in:5
3 ð12Þ3 in:

3

ft3
3

lbf � s2
slug � ft

Δp 5 24:0 lbf=in:2 ,Δpmax

Since this is less than the allowable pressure drop, we should check a 5 in.
(nominal) pipe. With an actual i.d. of 5.047 in.,

Re 5
4

π
3 3:34

ft3

s
3

s

1:213 1025 ft2
3

1

5:047 in:
3 12

in:

ft
5 8:363 105

For drawn tubing withD5 5 in., e/D5 1.23 1025, so fC 0.0122 (Eq. 8.37),
and

Δp 5
8

π2
3 0:01223 500 ft3 1:94

slug

ft3
3 ð3:34Þ2 ft

6

s2

3
1

ð5:047Þ5 in:5
3 ð12Þ3 in:

3

ft3
3

lbf � s2
slug � ft

Δp 5 56:4 lbf=in:2 .Δpmax

Thus the criterion for pressure drop is satisfied for a
minimum nominal diameter of 6 in. pipe. ß

D

This problem illustrates the method for
manually iterating to calculate pipe
diameter.

The Excel workbook for thisproblem automatically iterates
to solve for the exact pipe diameter D
that satisfies Eq. 1, without having to
obtain the explicit equation (Eq. 2) for
D first. Then all that needs to be done
is to select the smallest standard pipe
size that is equal to or greater than
this value. For the given data, D5
5.58 in., so the appropriate pipe size is
6 in. The workbook can be used to
perform numerous “what-ifs” that
would be extremely time-consuming
to do manually, e.g., to see how the
required D is affected by changing the
pipe length L. For example, it shows
that reducing L to 250 ft would allow
5 in. (nominal) pipe to be used. The
workbook can be modified for solving
other case (d) type problems.
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Example 8.9 CALCULATION OF ENTRANCE LOSS COEFFICIENT

Hamilton [22] reports results of measurements made to determine entrance losses for flow from a reservoir to a pipe
with various degrees of entrance rounding. A copper pipe 10 ft long, with 1.5 in. i.d., was used for the tests. The
pipe discharged to atmosphere. For a square-edged entrance, a discharge of 0.566 ft3/s wasmeasuredwhen the reservoir
level was 85.1 ft above the pipe centerline. From these data, evaluate the loss coefficient for a square-edged entrance.

Given: Pipe with square-edged entrance discharging from reservoir as
shown.

Find: Kentrance.

Solution:
Apply the energy equation for steady, incompressible pipe flow.

Governing equations:

� 1 � gz1 �

� 0

p1 V 1

2

2

� 2 � gz2 � hlT

p2 V 2

2

2

� �

 0(2)≈

hlT 5 f
L

D

V
2

2

2
1Kentrance

V
2

2

2

Assumptions: (1) p15 p25 patm.

(2) V1 � 0.
Substituting for hlT and dividing by g gives z1 5 h 5 α2

V
2

2

2g
1 f

L

D

V
2

2

2g
1Kentrance

V
2

2

2g
or

Kentrance 5
2gh

V
2

2

2 f
L

D
2α2 ð1Þ

The average velocity is

V2 5
Q

A
5

4Q

πD2

V2 5
4

π
3 0:566

ft3

s
3

1

ð1:5Þ2 in:2
3 1:44

in:2

ft2
5 46:1 ft=s

Assume T5 70�F, so ν5 1.05 3 1025 ft2/s (Table A.7). Then

Re 5
VD

ν
5 46:1

ft

s
3 1:5 in:3

s

1:053 1025 ft2
3

ft

12 in:
5 5:493 105

For drawn tubing, e5 5 3 1026 ft (Table 8.1), so e/D5 0.000,04 and f5 0.0135 (Eq. 8.37).
In this problem we need to be careful in evaluating the kinetic energy correction factor α2, as it is a significant

factor in computing Kentrance from Eq. 1. We recall from Section 8.6 and previous Examples that we have usually
assumed α � 1, but here we will compute a value from Eq. 8.27:

α 5
U

V

� �
3 2n2

ð31 nÞð31 2nÞ ð8:27Þ

To use this equation we need values for the turbulent power-law coefficient n and the ratio of centerline to mean
velocity U/V. For n, from Section 8.5

n 521:71 1:8 logðReUÞ � 8:63 ð8:23Þ

Entrance

D = 1.5 in.

Q = 0.566 ft3/s
L = 10 ft

1

2

CV

h = 85.1 ft

z
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where we have used the approximation ReU � ReV : For V=U, we have

V

U
5

2n2

ðn1 1Þð2n1 1Þ 5 0:847 ð8:24Þ

Using these results in Eq. 8.27 we find α5 1.04. Substituting into Eq. 1, we obtain

Kentrance 5 23 32:2
ft

s2
3 85:1ft3

s2

ð46:1Þ2 ft2
2 ð0:0135Þ 10 ft

1:5 in:
3 12

in:

ft
2 1:04

Kentrance 5 0:459 ß

Kentrance

This coefficient compares favorably with that shown in Table 8.2. The hydraulic and energy grade lines are shown
below. The large head loss in a square-edged entrance is due primarily to separation at the sharp inlet corner and
formation of a vena contracta immediately downstream from the corner. The effective flow area reaches a minimum
at the vena contracta, so the flow velocity is a maximum there. The flow expands again following the vena contracta
to fill the pipe. The uncontrolled expansion following the vena contracta is responsible for most of the head loss. (See
Example 8.12.)

Rounding the inlet corner reduces the extent of separation significantly.
This reduces the velocity increase through the vena contracta and conse-
quently reduces the head loss caused by the entrance. A “well-rounded” inlet
almost eliminates flow separation; the flow pattern approaches that shown in
Fig. 8.1. The added head loss in a well-rounded inlet compared with fully
developed flow is the result of higher wall shear stresses in the entrance
length.

Entrance
Local velocity reaches a maximum

at the vena contracta.

z1

Hydraulic grade line
Exit

Energy grade line
0.459

V 2___
2g

2
_

V 2___
2g

2
_

V 2___
2g

2
_f L__

D

100

50

0E
le

va
ti
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, 

ft

This problem:
ü Illustrates a method for obtaining
the value of a minor loss coefficient
from experimental data.ü Shows how the EGL and HGL lines
first introduced in Section 6.5 for
inviscid flow are modified by the
presence of major and minor losses.
The EGL line continuously drops as
mechanical energy is consumed—
quite sharply when, for example, we
have a square-edged entrance
loss; the HGL at each location is
lower than the EGL by an amount
equal to the local dynamic head
V

2
=2g—at the vena contracta, for

example, the HGL experiences a
large drop, then recovers.

Example 8.10 USE OF DIFFUSER TO INCREASE FLOW RATE

Water rights granted to each citizen by the Emperor of Rome gave permission to attach to the public water main
a calibrated, circular, tubular bronze nozzle [23]. Some citizens were clever enough to take unfair advantage of a
law that regulated flow rate by such an indirect method. They installed diffusers on the outlets of the nozzles to
increase their discharge. Assume the static head available from the main is z05 1.5 m and the nozzle exit diameter
is D5 25 mm. (The discharge is to atmospheric pressure.) Determine the increase in flow rate when a diffuser with
N/R15 3.0 and AR5 2.0 is attached to the end of the nozzle.
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Given: Nozzle attached to water main as shown.

Find: Increase in discharge when diffuser with N/R1 5 3.0 and AR 5 2.0 is
installed.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Governing equation:
p0
ρ

1α0
V

2

0

2
1 gz0 5

p1
ρ

1α1
V

2

1

2
1 gz1 1 hlT ð8:29Þ

Assumptions: (1) V0 � 0.
(2) α1 � 1.

For the nozzle alone,

� 0 � gz0 �

 0(1) � 0

p0 V 0

2

2

 1(2)

� 1 � gz1 � hlT

p1 V 1

2

2

� �

≈ ≈

hlT 5 Kentrance
V

2

1

2

Thus

gz0 5
V

2

1

2
1Kentrance

V
2

1

2
5 ð11KentranceÞV

2

1

2
ð1Þ

Solving for the velocity and substituting the value of Kentrance � 0.04 (from Table 8.2),

V1 5

ffiffiffiffiffiffiffiffiffiffi
2gz0
1:04

r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1:04
3 9:81

m

s2
3 1:5 m

r
5 5:32 m/s

Q 5 V1A1 5 V1
πD2

1

4
5 5:32

m

s
3

π
4
3 ð0:025Þ2 m2 5 0:00261 m3/s ß

Q

For the nozzle with diffuser attached,

� 0 � gz0 �

 0(1) � 0

p0 V0

2

2

� 2 � gz2 � hlT

p2 V 2

2

2

� �

≈  1(2)≈

hlT 5 Kentrance
V

2

1

2
1Kdiffuser

V
2

1

2

or

gz0 5
V

2

2

2
1 ðKentrance 1KdiffuserÞV

2

1

2
ð2Þ

From continuity V1A1 5 V2A2, so

V2 5 V1
A1

A2
5 V1

1

AR

and Eq. 2 becomes

gz0 5
1

ðARÞ2 1Kentrance 1Kdiffuser

" #
V

2

1

2
ð3Þ

Figure 8.16 gives data for Cp 5
p2 2 p1
1
2 ρV

2

1

for diffusers.

1.5 m
25 mm

0

1

V1

z0 = 1.5 m z

CV

_

0

1 2

V2

z0 = 1.5 m

CV

z
_
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To obtain Kdiffuser, apply the energy equation from 1 to 2 .

22

� 1 � gz1 �
p1 V 1

2

2V 1

2
� 2 � gz2 � Kdiffuser

p2 V 2

2� �

Solving, with α2 � 1, we obtain

Kdiffuser 5 12 2
V

2

2

V
2

1

2
p2 2 p1
1
2 ρV

2

1

5 12
A1

A2

� �2

2Cp 5 12
1

ðARÞ2 2Cp

From Fig. 8.16, Cp5 0.45, so

Kdiffuser 5 12
1

ð2:0Þ2 2 0:45 5 0:752 0:45 5 0:3

Solving Eq. 3 for the velocity and substituting the values of Kentrance and Kdiffuser, we obtain

V
2

1 5
2gz0

0:251 0:041 0:3

so

V1 5

ffiffiffiffiffiffiffiffiffiffi
2gz0
0:59

r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

0:59
3 9:81

m

s2
3 1:5 m

r
5 7:06 m=s

and

Qd 5 V1A1 5 V1
πD2

1

4
5 7:06

m

s
3

π
4
3 ð0:025Þ2 m2 5 0:00347 m3=s ß

Qd

The flow rate increase that results from adding the diffuser is

ΔQ

Q
5

Qd 2Q

Q
5

Qd

Q
2 1 5

0:00347

0:00261
2 1 5 0:330 or 33 percentß

ΔQ

Q

Addition of the diffuser significantly increases the flow rate! There are two ways to explain this.
First, we can sketch the EGL and HGL curves—approximately to scale—as shown below. We can see that, as

required, the HGL at the exit is zero for both flows (recall that the HGL is the sum of static pressure and potential
heads). However, the pressure rises through the diffuser, so the pressure at the diffuser inlet will be, as shown, quite
low (below atmospheric). Hence, with the diffuser, the Δp driving force for the nozzle is much larger than that for
the bare nozzle, leading to a much greater velocity, and flow rate, at the nozzle exit plane—it is as if the diffuser acted
as a suction device on the nozzle.

Second, we can examine the energy equations for the two flows (for the bare nozzle Eq. 1, and for the nozzle with
diffuser Eq. 3). These equations can be rearranged to yield equations for the velocity at the nozzle exit,

V1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gz0

11Kentrance

s
ðbare nozzleÞ V1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gz0

1

ðARÞ2 1Kdiffuser 1Kentrance

vuuut ðnozzle1 diffuserÞ

Comparing these two expressions, we see that the diffuser introduces an extra term (its loss coefficient Kdiffuser5 0.3)
to the denominator, tending to reduce the nozzle velocity, but on the other hand we replace the term 1 (representing
loss of the bare nozzle exit plane kinetic energy) with 1/(AR)25 0.25 (representing a smaller loss, of the diffuser exit
plane kinetic energy). The net effect is that we replace 1 in the denominator with 0.251 0.35 0.55, leading to a net
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*Multiple-Path Systems

Many real-world pipe systems (e.g., the pipe network that supplies water to the
apartments in a large building) consist of a network of pipes of various diameters
assembled in a complicated configuration that may contain parallel and series con-
nections. As an example, consider part of a system as shown in Fig. 8.18. Water is
supplied at some pressure from a manifold at point 1, and flows through the com-
ponents shown to the drain at point 5. Some water flows through pipes A, B, C, andD,
constituting a series of pipes (and pipe B has a lower flow rate than the others); some
flows through A, E, F or G, H, C, and D (F and G are parallel), and these two main
branches are in parallel. We analyze this type of problem in a similar way to how we
analyze DC resistor circuits in electrical theory: by applying a few basic rules to the
system. The electrical potential at each point in the circuit is analogous to the HGL
(or static pressure head if we neglect gravity) at corresponding points in the system.
The current in each resistor is analogous to the flow rate in each pipe section. We have
the additional difficulty in pipe systems that the resistance to flow in each pipe is a
function of the flow rate (electrical resistors are usually considered constant).

The simple rules for analyzing networks can be expressed in various ways. We will
express them as follows:

1. The net flow out of any node (junction) is zero.

2. Each node has a unique pressure head (HGL).

increase in the nozzle velocity. The resistance to flow introduced by adding the diffuser is more than made up by the
fact that we “throw away” much less kinetic energy at the exit of the device (the exit velocity for the bare nozzle is
5.32 m/s, whereas for the diffuser it is 1.77 m/s).

Water Commissioner Frontinus standardized conditions for all Romans in 97 A.D. He required that the tube
attached to the nozzle of each customer’s pipe be the same diameter for at least 50 lineal feet from the public water
main (see Problem 8.157).
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*This section may be omitted without loss of continuity in the text material.
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For example, in Fig. 8.18 rule 1 means that the flow into node 2 from pipe A must
equal the sum of outflows to pipes B and E. Rule 2 means that the pressure head at
node 7 must be equal to the head at node 6 less the losses through pipe F or pipe G, as
well as equal to the head at node 3 plus the loss in pipe H.

These rules apply in addition to all the pipe-flow constraints we have discussed (e.g.,
for Re$ 2300 the flow will be turbulent, and the fact that we may have significant minor
losses from features such as sudden expansions). We can anticipate that the flow in pipe
F (diameter 1 in.) will be a good deal less than the flow in pipe G (diameter 1.5 in), and
the flow through branch E will be larger than that through branch B (why?).

The problems that arise with pipe networks can be as varied as those we discussed
when studying single-path systems, but the most common involve finding the flow
delivered to each pipe, given an applied pressure difference. We examine this case in
Example 8.11. Obviously, pipe networks are much more difficult and time-consuming to
analyze than single-path problems, almost always requiring iterative solution methods,
and in practice are usually only solved using the computer. A number of computer
schemes for analyzing networks have been developed [24], and many engineering
consulting companies use proprietary software applications for such analysis. A spread-
sheet such as Excel is also very useful for setting up and solving such problems.

1

2

3

5

4

7

6

A

C

D

E

A:
B:
C:
D:
E:
F:
G:
H:

GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 2 in.

Fig. 8.18 Schematic of part of a pipe network.

Example 8.11 FLOW RATES IN A PIPE NETWORK

In the section of a cast-iron water pipe network shown in Fig. 8.18, the static pressure head (gage) available at point
1 is 100 ft of water, and point 5 is a drain (atmospheric pressure). Find the flow rates (gpm) in each pipe.

Given: Pressure head h1�5 of 100 ft across pipe network.

Find: The flow rate in each pipe.

Solution:

Governing equations:

For each pipe section,

� 1 � gz1( ) � (
� 0(1) � 0(1) � 0(2)

p1 V 1

2

2

� 2 � gz2 �) � hlT
� hl �   hlm

p2 V 2

2

2

� �

ð8:29Þ

1

2

3

5

4

7

6

A

C

D

E

A:
B:
C:
D:
E:
F:
G:
H:

GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 2 in.
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where

hl 5 f
L

D

V
2

2
ð8:34Þ

and f is obtained from either Eq. 8.36 (laminar) or Eq. 8.37 (turbulent). For the cast-iron pipe, Table 8.1 gives a
roughness for cast iron of e5 0.00085 ft.

Assumptions: (1) Ignore gravity effects.
(2) Ignore minor losses.

(Assumption 2 is applied to make the analysis clearer—minor losses can be incorporated easily later.)

In addition we have mathematical expressions for the basic rules

1. The net flow out of any node (junction) is zero.

2. Each node has a unique pressure head (HGL).

We can apply basic rule 1 to nodes 2 and 6:

Node 2 : QA 5 QB 1QE ð1Þ Node 6 : QE 5 QF 1QG ð2Þ
and we also have the obvious constraints

QA 5 QC ð3Þ QA 5 QD ð4Þ QE 5 QH ð5Þ
We can apply basic rule 2 to obtain the following pressure drop constraints:

h125 : h 5 hA 1 hB 1 hC 1 hD ð6Þ h223 : hB 5 hE 1 hF 1 hH ð7Þ h627 : hF 5 hG ð8Þ
This set of eight equations (as well as Eqs. 8.29 and 8.34 for each pipe section!) must be solved iteratively. If we were
to manually iterate, we would use Eqs. 3, 4, and 5 to immediately reduce the number of unknowns and equations to
five (QA, QB, QE, QF, QG). There are several approaches to the iteration, one of which is:

1. Make a guess for QA, QB, and QF.

2. Eqs. 1 and 2 then lead to values for QE and QG.

3. Eqs. 6, 7, and 8 are finally used as a check to see if rule 2 (for unique pressure heads at the nodes) is satisfied.

4. If any of Eqs. 6, 7, or 8 are not satisfied, use knowledge of pipe flow to adjust the values of QA, QB, or QF.

5. Repeat steps 2 through 5 until convergence occurs.

An example of applying step 4 would be if Eq. 8 were not satisfied. Suppose hF. hG; then we would have selected
too large a value for QF, and would reduce this slightly, and recompute all flow rates and heads.

This iterative process is obviously quite unrealistic for manual calculation (remember that obtaining each head
loss h from each Q involves a good amount of calculation). Fortunately, we can use a spreadsheet such as Excel to
automate all these calculations—it will simultaneously solve for all eight unknowns automatically! The first step is
to set up one worksheet for each pipe section for computing the pipe head h given the flow rate Q. A typical such
worksheet is shown below:

In these worksheets, knowingL,D, and e, a given flow rateQ is used to computeV,Re, f, and finally h fromL,D, and e.
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The next step is to set up a calculation page that collects together the flow rates and corresponding head losses for all
of the pipe sections, and then use these to check whether Eqs. 1 through 8 are satisfied. Shown below is this page with
initial guess values of 0.1 ft3/s for each of the flow rates. The logic of the workbook is that the eight values entered for
QA throughQH determine all the other values—that is, hA through hH, and the values of the constraint equations. The
absolute errors for each of the constraint equations are shown, as well as their sum. We can then use Excel’s Solver
feature (repeatedly as necessary) to minimize the total error (currently 735%) by varying QA through QH.

The final results obtained by Excel are:
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PART C Flow Measurement
Throughout this text we have referred to the flow rate Q or average velocity V in a
pipe. The question arises: How does one measure these quantities? We will address
this question by discussing the various types of flow meters available.

The choice of a flow meter is influenced by the accuracy required, range, cost,
complication, ease of reading or data reduction, and service life. The simplest and
cheapest device that gives the desired accuracy should be chosen.

8.9Direct Methods
The most obvious way to measure flow rate in a pipe is the direct method—simply
measure the amount of fluid that accumulates in a container over a fixed time period!
Tanks can be used to determine flow rate for steady liquid flows by measuring the
volume or mass of liquid collected during a known time interval. If the time interval is
long enough to be measured accurately, flow rates may be determined precisely in
this way.

Compressibility must be considered in volume measurements for gas flows. The
densities of gases generally are too small to permit accurate direct measurement of
mass flow rate. However, a volume sample often can be collected by displacing a
“bell,” or inverted jar over water (if the pressure is held constant by counterweights).
If volume or mass measurements are set up carefully, no calibration is required; this is
a great advantage of direct methods.

In specialized applications, particularly for remote or recording uses, positive dis-
placement flow meters may be specified, in which the fluid moves a component such as
a reciprocating piston or oscillating disk as it passes through the device. Common
examples include household water and natural gas meters, which are calibrated to
read directly in units of product, or gasoline metering pumps, which measure total
flow and automatically compute the cost. Many positive-displacement meters are
available commercially. Consult manufacturers’ literature or References (e.g., [25])
for design and installation details.

8.10Restriction Flow Meters for Internal Flows
Most restriction flow meters for internal flow (except the laminar flow element, dis-
cussed shortly) are based on acceleration of a fluid stream through some form of
nozzle, as shown schematically in Fig. 8.19. The idea is that the change in velocity

The flow rates are:

QA 5 QC 5 QD 5 167 gpm
QBðgpmÞ 5 72 gpm
QEðgpmÞ 5 QHðgpmÞ 5 95 gpm
QFðgpmÞ 5 24 gpm
QGðgpmÞ 5 71 gpm

This problem illustrates use of Excel to
solve a set of coupled, nonlinear
equations for unknown flow rates.The Excel workbook for thisproblem can be modified for
solving a variety of other multiple-
path systems.
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leads to a change in pressure. ThisΔp can be measured using a pressure gage (electronic
or mechanical) or a manometer, and the flow rate inferred using either a theoretical
analysis or an experimental correlation for the device. Flow separation at the sharp edge
of the nozzle throat causes a recirculation zone to form, as shown by the dashed lines
downstream from the nozzle. The mainstream flow continues to accelerate from the
nozzle throat to form a vena contracta at section 2 and then decelerates again to fill
the duct. At the vena contracta, the flow area is a minimum, the flow streamlines are
essentially straight, and the pressure is uniform across the channel section.

The theoretical flow rate may be related to the pressure differential between sec-
tions 1 and 2 by applying the continuity and Bernoulli equations. Then empirical
correction factors may be applied to obtain the actual flow rate.

Basic equations:

We will need mass-conservation, X
CS

~V � ~A 5 0 ð4:13bÞ

[we can use this instead of Eq. 4.12, because of assumption (5) below] and the
Bernoulli equation,

22

� � gz1 �
p1 V 1

2
� � gz2

p2 V 2

2� � ð6:8Þ

which we can use if assumption (4) is valid. For the short section of pipe considered,
this is reasonable.

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Flow along a streamline.
(4) No friction.
(5) Uniform velocity at sections 1 and 2 .
(6) No streamline curvature at sections 1 or 2 , so pressure is

uniform across those sections.
(7) z1 5 z2.

Then, from the Bernoulli equation,

p1 2 p2 5
ρ
2
ðV2

2 2V2
1Þ 5

ρV2
2

2
12

V1

V2

� �2
" #

and from continuity

ð2ρV1A1Þ1 ðρV2A2Þ 5 0

or

V1A1 5 V2A2 so
V1

V2

� �2

5
A2

A1

� �2

D2D1 Dt V2V1

21

CV

Flow

Fig. 8.19 Internal flow through a generalized nozzle, showing control volume
used for analysis.
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Substituting gives

p1 2 p2 5
ρV2

2

2
12

A2

A1

� �2
" #

Solving for the theoretical velocity, V2,

V2 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp1 2 p2Þ

ρ½12 ðA2=A1Þ2�

s
ð8:51Þ

The theoretical mass flow rate is then given by

�m theoretical 5 ρV2A2

5 ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp1 2 p2Þ

ρ½12 ðA2=A1Þ2�

vuut A2

or

�m theoretical 5
A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 ðA2=A1Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρðp1 2 p2Þ
p

ð8:52Þ

Equation 8.52 shows that, under our set of assumptions, for a given fluid (ρ) and flow
meter geometry (A1 and A2), the flow rate is directly proportional to the square root
of the pressure drop across the meter taps,

�m theoretical ~
ffiffiffiffiffiffiffi
Δp

p
which is the basic idea of these devices. This relationship limits the flow rates that can
be measured accurately to approximately a 4:1 range.

Several factors limit the utility of Eq. 8.52 for calculating the actual mass flow rate
through a meter. The actual flow area at section 2 is unknown when the vena con-
tracta is pronounced (e.g., for orifice plates when Dt is a small fraction of D1). The
velocity profiles approach uniform flow only at large Reynolds numbers. Frictional
effects can become important (especially downstream from the meter) when the
meter contours are abrupt. Finally, the location of pressure taps influences the dif-
ferential pressure reading.

The theoretical equation is adjusted for Reynolds number and diameter ratioDt/D1

by defining an empirical discharge coefficient C such that, replacing Eq. 8.52, we have

�mactual 5
CAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 ðAt=A1Þ2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρðp1 2 p2Þ
p

ð8:53Þ

Letting β 5 Dt=D1, then ðAt=A1Þ2 5 ðDt=D1Þ4 5 β4, so

�m actual 5
CAtffiffiffiffiffiffiffiffiffiffiffiffiffi
12 β4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p
ð8:54Þ

In Eq. 8.54, 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12β4

p
is the velocity-of-approach factor. The discharge coefficient and

velocity-of-approach factor frequently are combined into a single flow coefficient,

K � Cffiffiffiffiffiffiffiffiffiffiffiffiffi
12β4

p ð8:55Þ

In terms of this flow coefficient, the actual mass flow rate is expressed as

�mactual 5 KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p
ð8:56Þ
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For standardized metering elements, test data [25, 26] have been used to develop
empirical equations that predict discharge and flow coefficients from meter bore, pipe
diameter, and Reynolds number. The accuracy of the equations (within specified
ranges) usually is adequate so that the meter can be used without calibration. If the
Reynolds number, pipe size, or bore diameter fall outside the specified range of
the equation, the coefficients must be measured experimentally.

For the turbulent flow regime (pipe Reynolds number greater than 4000) the dis-
charge coefficient may be expressed by an equation of the form [25]

C 5 CN 1
b

RenD1

ð8:57Þ

The corresponding form for the flow-coefficient equation is

K 5 KN 1
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

12β4
p b

RenD1

ð8:58Þ

In Eqs. 8.57 and 8.58, subscript N denotes the coefficient at infinite Reynolds number;
constants b and n allow for scaling to finite Reynolds numbers. Correlating equations and
curves of coefficients versus Reynolds number are given in the next three subsections,
following a general comparison of the characteristics of specific metering elements.

As we have noted, selection of a flow meter depends on factors such as cost, accu-
racy, need for calibration, and ease of installation and maintenance. Some of these
factors are compared for orifice plate, flow nozzle, and venturimeters in Table 8.6. Note
that a high head loss means that the running cost of the device is high—it will consume a
lot of the fluid energy. A high initial cost must be amortized over the life of the device.
This is an example of a common cost calculation for a company (and an individual!)—
between a high initial but low running cost, or low initial but high running cost.

Flow meter coefficients reported in the literature have been measured with fully
developed turbulent velocity distributions at the meter inlet (Section 1 ). If a flow
meter is to be installed downstream from a valve, elbow, or other disturbance,
a straight section of pipe must be placed in front of the meter. Approximately
10 diameters of straight pipe are required for venturi meters, and up to 40 diameters
for orifice plate or flow nozzle meters. When a meter has been properly installed, the
flow rate may be computed from Eq. 8.54 or 8.56, after choosing an appropriate value
for the empirical discharge coefficient, C, or flow coefficient, K, defined in Eqs. 8.53
and 8.55, respectively. Some design data for incompressible flow are given in the next
few sections. The same basic methods can be extended to compressible flows, but
these will not be treated here. For complete details, see Miller [25] or Bean [26].

Table 8.6
Characteristics of Orifice, Flow Nozzle, and Venturi Flow Meters

Flow Meter Type Diagram Head Loss Initial Cost

Orifice

D1 Dt

D2

D2

Flow

D1

D1

Flow

Flow

High Low

Flow Nozzle Intermediate Intermediate

Venturi Low High
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The Orifice Plate

The orifice plate (Fig. 8.20) is a thin plate that may be clamped between pipe flanges.
Since its geometry is simple, it is low in cost and easy to install or replace. The sharp edge
of the orifice will not foul with scale or suspended matter. However, suspended matter
can build up at the inlet side of a concentric orifice in a horizontal pipe; an eccentric
orifice may be placed flush with the bottom of the pipe to avoid this difficulty. The pri-
mary disadvantages of the orifice are its limited capacity and the high permanent head
loss caused by the uncontrolled expansion downstream from the metering element.

Pressure taps for orifices may be placed in several locations, as shown in Fig. 8.20
(see [25] or [26] for additional details). Since the location of the pressure taps influ-
ences the empirically determined flow coefficient, one must select handbook values of
C or K consistent with the location of pressure taps.

The correlating equation recommended for a concentric orifice with corner taps [25] is

C 5 0:59591 0:0312β2:1 2 0:184β8 1
91:71β2:5

Re0:75D1

ð8:59Þ

Equation 8.59 is the form of Eq. 8.57 for the discharge coefficient C for the orifice
plate; it predicts orifice discharge coefficients within 60.6 percent for 0.2,β, 0.75
and for 104 ,ReD1

, 107. Some flow coefficients calculated from Eq. 8.59 and 8.55 are
presented in Fig. 8.21.

A similar correlating equation is available for orifice plates with D and D/2 taps.
Flange taps require a different correlation for every line size. Pipe taps, located at 2 1

2
and 8 D, no longer are recommended for accurate work.

Example 8.12, which appears later in this section, illustrates the application of flow
coefficient data to orifice sizing.

The Flow Nozzle

Flow nozzles may be used as metering elements in either plenums or ducts, as shown
in Fig. 8.22; the nozzle section is approximately a quarter ellipse. Design details and
recommended locations for pressure taps are given in [26].

The correlating equation recommended for an ASME long-radius flow nozzle [25] is

C 5 0:99752
6:53β0:5

Re0:5D1

ð8:60Þ

Equation 8.60 is the form of Eq. 8.57 for the discharge coefficient C for the flow
nozzle; it predicts discharge coefficients for flow nozzles within 62:0 percent for

Corner taps

D D__
2

D and     taps

Flow

1 in. 1 in.

Flange taps

D
2

Fig. 8.20 Orifice geometry and pressure tap locations [25].
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0.25,β, 0.75 for 104 ,ReD1
, 107. Some flow coefficients calculated from Eq. 8.60

and Eq. 8.55 are presented in Fig. 8.23. (K can be greater than one when the velocity-
of-approach factor exceeds one.)

a. Pipe Installation

For pipe installation, K is a function of β and ReD1
. Figure 8.23 shows that K is

essentially independent of Reynolds number for ReD1
. 106. Thus at high flow rates,

the flow rate may be computed directly using Eq. 8.56. At lower flow rates, where K is
a weak function of Reynolds number, iteration may be required.

b. Plenum Installation

For plenum installation, nozzles may be fabricated from spun aluminum, molded
fiberglass, or other inexpensive materials. Thus they are simple and cheap to make
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Fig. 8.21 Flow coefficients for concentric orifices with corner taps.
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FlowD2
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(b) In plenum

~
Flow

D2D1

p1 p2

V1

(a) In duct

Flow nozzle

_

Fig. 8.22 Typical installations of nozzle flow meters.
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and install. Since the plenum pressure is equal to p2, the location of the downstream
pressure tap is not critical. Meters suitable for a wide range of flow rates may be made
by installing several nozzles in a plenum. At low flow rates, most of them may be
plugged. For higher flow rates, more nozzles may be used.

For plenum nozzles β 5 0, which is outside the range of applicability of Eq. 8.58.
Typical flow coefficients are in the range, 0.95,K, 0.99; the larger values apply at
high Reynolds numbers. Thus the mass rate of flow can be computed within
approximately 62 percent using Eq. 8.56 with K 5 0:97.

The Venturi

Venturi meters, as sketched in Table 8.6, are generally made from castings and
machined to close tolerances to duplicate the performance of the standard design. As
a result, venturi meters are heavy, bulky, and expensive. The conical diffuser section
downstream from the throat gives excellent pressure recovery; therefore, overall head
loss is low. Venturi meters are also self-cleaning because of their smooth internal
contours.

Experimental data show that discharge coefficients for venturi meters range from
0.980 to 0.995 at high Reynolds numbers (ReD1

. 23 105). Thus C 5 0:99 can be used
to measure mass flow rate within about 61 percent at high Reynolds number [25].
Consult manufacturers’ literature for specific information at Reynolds numbers
below 105.

The orifice plate, flow nozzle, and venturi all produce pressure differentials pro-
portional to the square of the flow rate, according to Eq. 8.56. In practice, a meter size
must be chosen to accommodate the highest flow rate expected. Because the rela-
tionship of pressure drop to flow rate is nonlinear, the range of flow rate that can be
measured accurately is limited. Flow meters with single throats usually are considered
only for flow rates over a 4:1 range [25].
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Fig. 8.23 Flow coefficients for ASME long-radius flow nozzles.
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The unrecoverable loss in head across a metering element may be expressed as a
fraction of the differential pressure, Δp, across the element. Pressure losses are dis-
played as functions of diameter ratio in Fig. 8.24 [25]. Note that the venturi meter has
a much lower permanent head loss than the orifice (which has the highest loss) or
nozzle, confirming the trends we summarized in Table 8.6.

The Laminar Flow Element

The laminar flow element3 is designed to produce a pressure differential directly
proportional to flow rate. The idea is that the laminar flow element (LFE) contains a
metering section in which the flow passes through a large number of tubes or passages
(these often look like a bunch of straws) that are each narrow enough that the flow
through them is laminar, regardless of the flow conditions in the main pipe (recall
that Retube 5 ρVtubeDtube=μ, so if Dtube is made small enough we can ensure that
Retube ,Recrit � 2300). For each laminar flow tube we can apply the results of
Section 8.3, specifically

Qtube 5
πD4

tube

128μLtube
Δp~Δp ð8:13cÞ

so the flow rate in each tube is a linear function of the pressure drop across the device.
The flow rate in the whole pipe will be the sum of each of these tube flows, and so will
also be a linear function of pressure drop. Usually this linear relation is provided in a
calibration from the manufacturer, and the LFE can be used over a 10:1 range of flow
rates. The relationship between pressure drop and flow rate for laminar flow also
depends on viscosity, which is a strong function of temperature. Therefore, the fluid
temperature must be known to obtain accurate metering with an LFE.

A laminar flow element costs approximately as much as a venturi, but it is much
lighter and smaller. Thus the LFE is becoming widely used in applications where
compactness and extended range are important.
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Fig. 8.24 Permanent head loss produced by various flow meter-
ing elements [25].

3Patented and manufactured by Meriam Instrument Co., 10920 Madison Ave., Cleveland, Ohio 44102.
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Example 8.12 FLOW THROUGH AN ORIFICE METER

An air flow rate of 1 m3/s at standard conditions is expected in a 0.25-m diameter duct. An orifice meter is used to
measure the rate of flow. The manometer available to make the measurement has a maximum range of 300 mm of
water. What diameter orifice plate should be used with corner taps? Analyze the head loss if the flow area at the vena
contracta is A2 5 0:65At. Compare with data from Fig. 8.24.

Given: Flow through duct and orifice as shown.

Find: (a) Dt.
(b) Head loss between sections 1 and 2 .
(c) Degree of agreement with data from Fig. 8.24.

Solution:

The orifice plate may be designed using Eq. 8.56 and data from Fig. 8.21.

Governing equation: �mactual 5 KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p
ð8:56Þ

Assumptions: (1) Steady flow.
(2) Incompressible flow.

Since At=A1 5 ðDt=D1Þ2 5 β2,

�m actual 5 Kβ2 A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p
or

Kβ2 5
�mactual

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p 5
ρQ

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p 5
Q

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2 ðp1 2 p2Þ
s

5
Q

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2gρH2O
Δh

s

5 1
m3

s
3

4

π
1

ð0:25Þ2 m2

1

2
3 1:23

kg

m3
3

s2

9:81 m
3

m3

999 kg
3

1

0:30 m

2
4

3
5
1=2

Kβ2 5 0:295 or K 5
0:295

β2
ð1Þ

Since K is a function of both β (Eq. 1) and ReD1
(Fig. 8.21), we must iterate to find β. The duct Reynolds number is

ReD1
5

ρV1D1

μ
5

ρ ðQ=A1ÞD1

μ
5

4Q

πνD1

ReD1
5

4

π
3 1

m3

s
3

s

1:463 1025m2
3

1

0:25m
5 3:493 105

Guess β 5 0:75. From Fig. 8.21, K should be 0.72. From Eq. 1,

K 5
0:295

ð0:75Þ2 5 0:524

DtD1 = 0.25 m

321

AirQ = 1 m3/s

(p1 – p2)max = 300 mm H2O
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Thus our guess for β is too large. Guess β 5 0:70. From Fig. 8.21, K should be 0.69. From Eq. 1,

K 5
0:295

ð0:70Þ2 5 0:602

Thus our guess for β is still too large. Guess β 5 0:65. From Fig. 8.21, K should be 0.67. From Eq. 1,

K 5
0:295

ð0:65Þ2 5 0:698

There is satisfactory agreement with βC 0:66 and

Dt 5 βD1 5 0:66ð0:25 mÞ 5 0:165 m ß
Dt

To find the permanent head loss for this device, we could simply use the diameter ratio β � 0.66 in Fig. 8.24; but instead
we will find it from the given data. To evaluate the permanent head loss, apply Eq. 8.29 between sections 1 and 3 .

Governing equation:
2

� 1 � gz1( ) � (p1 V 1

2

2

� 3 � gz3) � hlT

p3 V 3

2� �
ð8:29Þ

Assumptions: (3) α1V
2

1 5 α3V
2

3.
(4) Neglect Δz.

Then

hlT 5
p1 2 p3

ρ
5

p1 2 p2 2 ðp3 2 p2Þ
ρ

ð2Þ

Equation 2 indicates our approach: We will find p1 2 p3 by using p1 2 p2 5 300 mmH2O, and obtain a value for
p32 p2 by applying the x component of the momentum equation to a control volume between sections 2 and 3 .

Governing equation: ð4:18aÞ

Assumptions: (5) FBx
5 0

(6) Uniform flow at sections 2 and 3 .
(7) Pressure uniform across duct at sections 2 and 3 .
(8) Neglect friction force on CV.

Then, simplifying and rearranging,

ðp2 2 p3ÞA1 5 u2ð2ρV2A2Þ1 u3ðρV3A3Þ 5 ðu3 2 u2ÞρQ 5 ðV3 2V2ÞρQ
or

p3 2 p2 5 ðV2 2V3Þ ρQ
A1

2 3

A2 = Avena contracta

FlowA1x

y

CV
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8.11Linear Flow Meters
The disadvantage of restriction flow meters (except the LFE) is that the measured
output (Δp) is not linear with the flow rateQ. Several flow meter types produce outputs
that are directly proportional to flow rate. These meters produce signals without the
need to measure differential pressure. The most common linear flow meters are dis-
cussed briefly in the following paragraphs.

Float meters may be used to indicate flow rate directly for liquids or gases. An
example is shown in Fig. 8.25 In operation, the ball or float is carried upward in the
tapered clear tube by the flowing fluid until the drag force and float weight are in
equilibrium. Such meters (often called rotameters) are available with factory cali-
bration for a number of common fluids and flow rate ranges.

A free-running vaned impeller may be mounted in a cylindrical section of tube
(Fig. 8.26) to make a turbine flow meter. With proper design, the rate of rotation of the
impeller may be made closely proportional to volume flow rate over a wide range.

Rotational speed of the turbine element can be sensed using a magnetic or
modulated carrier pickup external to the meter. This sensing method therefore
requires no penetrations or seals in the duct. Thus turbine flow meters can be used

Now V3 5 Q=A1, and

V2 5
Q

A2
5

Q

0:65At

5
Q

0:65β2 A1

Thus,

p3 2 p2 5
ρQ2

A2
1

1

0:65 β2
2 1

2
4

3
5

p3 2 p2 5 1:23
kg

m3
3 ð1Þ2 m

6

s2
3

42

π2

1

ð0:25Þ4 m4

1

0:65ð0:66Þ2 2 1

2
4

3
5 N � s2

kg �m
p3 2 p2 5 1290 N=m2

The diameter ratio, β, was selected to give maximum manometer deflection at maximum flow rate. Thus

p1 2 p2 5 ρH2O
gΔh 5 999

kg

m3
3 9:81

m

s2
3 0:30 m3

N � s2
kg �m 5 2940 N=m2

Substituting into Eq. 2 gives

hlT 5
p1 2 p3

ρ
5

p1 2 p2 2 ðp3 2 p2Þ
ρ

hlT 5 ð29402 1290Þ N

m2
3

m3

1:23 kg
5 1340 N �m=kg ß

hlT

To compare with Fig. 8.24, express the permanent pressure loss as a frac-
tion of the meter differential

p1 2 p3
p1 2 p2

5
ð29402 1290ÞN=m2

2940 N=m2
5 0:561

The fraction from Fig. 8.24 is about 0.57. This is satisfactory agreement!

This problem illustrates flow meter
calculations and shows use of the
momentum equation to compute the
pressure rise in a sudden expansion.
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safely to measure flow rates in corrosive or toxic fluids. The electrical signal can be
displayed, recorded, or integrated to provide total flow information.

An interesting device is the vortex flow meter. This device takes advantage of the
fact that a uniform flow will generate a vortex street when it encounters a bluff body
such as a cylinder perpendicular to the flow. A vortex street is a series of alternating
vortices shed from the rear of the body; the alternation generates an oscillating
sideways force on, and therefore oscillation of, the cylinder (the classic example of
this being the “singing” of telephone wires in a high wind). It turns out that the
dimensionless group characterizing this phenomenon is the Strouhal number,
St 5 fL=V (f is the vortex shedding frequency, L is the cylinder diameter, and V is
the freestream velocity), and it is approximately constant (St � 0:21). Hence we have
a device for which V ~ f. Measurement of f thus directly indicates the velocity ~V
(however, the velocity profile does affect the shedding frequency so calibration is
required). The cylinder used in a flow meter is usually quite short in length—10 mm
or less—and placed perpendicular to the flow (and for some devices is not a cylinder
at all but some other small bluff object). The oscillation can be measured using a
strain gage or other sensor. Vortex flow meters can be used over a 20:1 range of flow
rates [25].

The electromagnetic flow meter uses the principle of magnetic induction. A
magnetic field is created across a pipe. When a conductive fluid passes through the
field, a voltage is generated at right angles to the field and velocity vectors. Elec-

trodes placed on a pipe diameter are used to detect the resulting signal voltage. The
signal voltage is proportional to the average axial velocity when the profile is
axisymmetric.

Magnetic flow meters may be used with liquids that have electrical conductivities
above 100 microsiemens per meter (1 siemen5 1 ampere per volt). The minimum flow
speed should be above about 0.3 m/s, but there are no restrictions on Reynolds
number. The flow rate range normally quoted is 10:1 [25].

Ultrasonic flow meters also respond to average velocity at a pipe cross section. Two
principal types of ultrasonic meters are common: Propagation time is measured for
clean liquids, and reflection frequency shift (Doppler effect) is measured for flows
carrying particulates. The speed of an acoustic wave increases in the flow direction
and decreases when transmitted against the flow. For clean liquids, an acoustic path
inclined to the pipe axis is used to infer flow velocity. Multiple paths are used to
estimate the volume flow rate accurately.

Doppler effect ultrasonic flow meters depend on reflection of sonic waves (in the
MHz range) from scattering particles in the fluid. When the particles move at flow
speed, the frequency shift is proportional to flow speed; for a suitably chosen path,
output is proportional to volume flow rate. One or two transducers may be used; the
meter may be clamped to the outside of the pipe. Ultrasonic meters may require
calibration in place. Flow rate range is 10:1 [25].

Water
(gph)
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40

Fig. 8.25 Float-type
variable-area flow meter.
(Courtesy of Dwyer
Instrument Co., Michigan
City, Indiana.)

Fig. 8.26 Turbine flow meter. (Courtesy of Potter Aeronautical Corp., Union, New Jersey.)
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8.12Traversing Methods
In situations such as in air handling or refrigeration equipment, it may be impractical
or impossible to install fixed flow meters. In such cases it may be possible to obtain
flow rate data using traversing techniques.

To make a flow rate measurement by traverse, the duct cross section is con-
ceptually subdivided into segments of equal area. The velocity is measured at the
center of each area segment using a pitot tube, a total head tube, or a suitable
anemometer. The volume flow rate for each segment is approximated by the product
of the measured velocity and the segment area. The flow rate through the entire duct
is the sum of these segmental flow rates. Details of recommended procedures for flow
rate measurements by the traverse method are given in [27].

Use of pitot or pitot-static tubes for traverse measurements requires direct access to
the flow field. Pitot tubes give uncertain results when pressure gradients or streamline
curvature are present, and their response times are slow. Two types of anemometers—
thermal anemometers and laser Doppler anemometers (LDAs)—overcome these
difficulties partially, although they introduce new complications.

Thermal anemometers use tiny elements (either hot-wire or hot-film elements) that
are heated electrically. Sophisticated electronic feedback circuits are used to maintain
the temperature of the element constant and to sense the input heating rate needed to
do this. The heating rate is related to the local flow velocity by calibration (a higher
velocity leads to more heat transfer). The primary advantage of thermal anemometers
is the small size of the sensing element. Sensors as small as 0.002 mm in diameter and
0.1 mm long are available commercially. Because the thermal mass of such tiny ele-
ments is extremely small, their response to fluctuations in flow velocity is rapid.
Frequency responses to the 50 kHz range have been quoted [28]. Thus thermal
anemometers are ideal for measuring turbulence quantities. Insulating coatings may
be applied to permit their use in conductive or corrosive gases or liquids.

Because of their fast response and small size, thermal anemometers are used
extensively for research. Numerous schemes have been published for treating the
resulting data [29]. Digital processing techniques, including fast Fourier transforms,
can be applied to the signals to obtain mean values and moments, and to analyze
frequency content and correlations.

Fig. 8.27 A 2-component Laser Doppler Anemometer Probe
Volume. (Courtesy Dr. Frank W. Chambers, Oklahoma State
University)

VIDEO

Flow Visualization: Laser Induced

Fluorescence.

VIDEO

Laser Doppler Anemometry (Animation).
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Laser Doppler anemometers are becoming widely used for specialized applications
where direct physical access to the flow field is difficult or impossible. One or more
laser beams are focused to a small volume in the flow at the location of interest (as
shown in Fig 8.27). Laser light is scattered from particles that are present in the flow
(dust or particulates) or introduced for this purpose. A frequency shift is caused by the
local flow speed (Doppler effect). Scattered light and a reference beam are collected
by receiving optics. The frequency shift is proportional to the flow speed; this rela-
tionship may be calculated, so there is no need for calibration. Since velocity is
measured directly, the signal is unaffected by changes in temperature, density, or
composition in the flow field. The primary disadvantages of LDAs are that the optical
equipment is expensive and fragile, and that extremely careful alignment is needed (as
the authors can attest).

8.13 Summary and Useful Equations
In this chapter we have:

ü Defined many terms used in the study of internal incompressible viscous flow, such as: the entrance length, fully developed flow,
the friction velocity, Reynolds stress, the kinetic energy coefficient, the friction factor, major and minor head losses, and hydraulic
diameter.

ü Analyzed laminar flow between parallel plates and in pipes and observed that we can obtain the velocity distribution analytically,
and from this derive: the average velocity, the maximum velocity and its location, the flow rate, the wall shear stress, and the
shear stress distribution.

ü Studied turbulent flow in pipes and ducts and learned that semi-empirical approaches are needed, e.g., the power-law velocity
profile.

ü Written the energy equation in a form useful for analyzing pipe flows.
ü Discussed how to incorporate pumps, fans, and blowers into a pipe flow analysis.
ü Described various flow measurement devices: direct measurement, restriction devices (orifice plate, nozzle, and venturi), linear

flow meters (rotameters, various electromagnetic or acoustic devices, and the vortex flow meter), and traversing devices (pitot
tubes and laser-Doppler anemometers).

We have learned that pipe and duct flow problems often need iterative solution—the flow rate Q is not a linear
function of the driving force (usually Δp), except for laminar flows (which are not common in practice). *We have
also seen that pipe networks can be analyzed using the same techniques as a single-pipe system, with the addition of a
few basic rules, and that in practice a computer application such as Excel is needed to solve all but the simplest
networks.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Velocity profile for pressure-driven
laminar flow between stationary parallel
plates:

u 5
a2

2μ
@p

@x

� �
y

a

� �2
2

y

a

� �� � (8.5) Page
335

Flow rate for pressure-driven laminar
flow between stationary parallel plates:

Q

l
52

1

12μ
2Δp

L

� �
a3 5

a3 Δp

12μL

(8.6c) Page
336

*This topic applies to a section that may be omitted without loss of continuity in the text material.
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Velocity profile for pressure-driven
laminar flow between stationary parallel
plates (centered coordinates):

u 5
a2

2μ
@p

@x

� �
yu
a

� �2

2
1

4

" # (8.7) Page
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Velocity profile for pressure-driven
laminar flow between parallel plates
(upper plate moving):

u 5
Uy

a
1

a2

2μ
@p

@x

� �
y

a

� �2
2

y

a

� �� � (8.8) Page
339

Flow rate for pressure-driven laminar
flow between parallel plates (upper plate
moving):

Q

l
5

Ua

2
2

1

12μ
@p

@x

� �
a3

(8.9b) Page
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Velocity profile for laminar flow in a
pipe: u 52

R2

4μ
@p

@x

� �
12

r

R

� �2� � (8.12) Page
346

Flow rate for laminar flow in a pipe:
Q 52

πR4

8μ
2Δp

L

� �
5

πΔpR4

8μL
5

πΔpD4

128μL

(8.13c) Page
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Velocity profile for laminar flow in a pipe
(normalized form):

u

U
5 12

r

R

� �2 (8.14) Page
347

Velocity profile for turbulent flow in
a smooth pipe (power-law equation):

u

U
5

y

R

� �1=n
5 12

r

R

� �1=n (8.22) Page
352

Head loss equation:
p1
ρ

1α1
V

2

1

2
1 gz1

 !
2

p2
ρ

1α2
V

2

2

2
1 gz2

 !
5 hlT

(8.29) Page
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Major head loss equation:
hl 5 f

L

D

V
2

2

(8.34) Page
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Friction factor (laminar flow):
f laminar 5

64

Re

(8.36) Page
360

Friction factor (turbulent flow—
Colebrook equation):

1ffiffiffi
f

p 522:0 log
e=D

3:7
1

2:51

Re
ffiffiffi
f

p
 !

(8.37) Page
360

Minor loss using loss coefficient K:
hlm 5 K

V
2

2

(8.40a) Page
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Minor loss using equivalent length Le:
hlm 5 f

Le

D

V
2

2

(8.40b) Page
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Diffuser pressure recovery coefficient:
Cp � p2 2 p1

1
2 ρV

2

1

(8.41) Page
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Ideal diffuser pressure recovery
coefficient: Cpi 5 12

1

AR2

(8.42) Page
364

Head loss in diffuser in terms of pressure
recovery coefficients: hlm 5 ðCpi 2CpÞV

2

1

2

(8.44) Page
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Pump work:
_Wpump 5 QΔppump

(8.47) Page
368
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Pump efficiency:
η 5

_Wpump

_Win

(8.48) Page
368

Hydraulic diameter:
Dh � 4A

P

(8.50) Page
368

Mass flow rate equation for a flow meter
(in terms of discharge coefficient C):

�mactual 5
CAtffiffiffiffiffiffiffiffiffiffiffiffiffi
12β4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p (8.54) Page
389

Mass flow rate equation for a flow meter
(in terms of flow coefficient K):

�m actual 5 KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1 2 p2Þ

p (8.56) Page
389

Discharge coefficient (as a function of Re):
C 5 CN 1

b

RenD1

(8.57) Page
390

Flow coefficient (as a function of Re):
K 5 KN 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
12β4

p b

RenD1

(8.58) Page
390

References
1. Streeter, V. L., ed., Handbook of Fluid Dynamics. New
York: McGraw-Hill, 1961.
2. Rouse, H., and S. Ince, History of Hydraulics. New York:
Dover, 1957.
3. Moin, P., and J. Kim, “Tackling Turbulence with Super-
computers,” Scientific American, 276, 1, January 1997, pp. 62�68.
4. Panton, R. L., Incompressible Flow, 2nd ed. New York:
Wiley, 1996.
5. Laufer, J., “The Structure of Turbulence in Fully Devel-
oped Pipe Flow,” U.S. National Advisory Committee for
Aeronautics (NACA), Technical Report 1174, 1954.
6. Tennekes, H., and J. L. Lumley, A First Course in Turbu-

lence. Cambridge, MA: The MIT Press, 1972.
7. Hinze, J. O., Turbulence, 2nd ed. New York: McGraw-Hill,
1975.
8. Moody, L. F., “Friction Factors for Pipe Flow,” Transac-
tions of the ASME, 66, 8, November 1944. pp. 671�684.
9. Colebrook, C. F., “Turbulent Flow in Pipes, with Particular
Reference to the Transition Region between the Smooth and
Rough Pipe Laws,” Journal of the Institution of Civil Engi-
neers, London, 11, 1938�39, pp. 133�156.
10. Haaland, S. E., “Simple and Explicit Formulas for the
Friction Factor in Turbulent Flow,” Transactions of ASME,
Journal of Fluids Engineering, 103, 1983, pp. 89�90.
11. “Flow of Fluids Through Valves, Fittings, and Pipe,” New
York: Crane Company, Technical Paper No. 410, 1982.
12. ASHRAE Handbook—Fundamentals. Atlanta, GA:
American Society of Heating, Refrigerating, and Air Con-
ditioning Engineers, Inc., 1981.
13. Cockrell, D. J., and C. I. Bradley, “The Response of
Diffusers to Flow Conditions at Their Inlet,” Paper No. 5,
Symposium on Internal Flows, University of Salford, Salford,
England, April 1971. pp. A32�A41.

14. Sovran,G., andE.D.Klomp, “ExperimentallyDetermined
Optimum Geometries for Rectilinear Diffusers with Rectan-
gular, Conical, or Annular Cross-Sections,” in Fluid Mechanics
of Internal Flows, G. Sovran, ed. Amsterdam: Elsevier, 1967.
15. Feiereisen, W. J., R. W. Fox, and A. T. McDonald, “An
Experimental Investigation of Incompressible Flow Without
Swirl inR-RadialDiffusers,”Proceedings, Second International
Japan Society of Mechanical Engineers Symposium on Fluid
Machinery and Fluidics, Tokyo, Japan, September 4�9, 1972.
pp. 81�90.
16. McDonald, A. T., and R. W. Fox, “An Experimental
Investigation of Incompressible Flow in Conical Diffusers,”
International Journal of Mechanical Sciences, 8, 2, February
1966. pp. 125�139.
17. Runstadler, P. W., Jr., “Diffuser Data Book,” Hanover,
NH: Creare, Inc., Technical Note 186, 1975.
18. Reneau, L. R., J. P. Johnston, and S. J. Kline, “Perfor-
mance and Design of Straight, Two-Dimensional Diffusers,”
Transactions of the ASME, Journal of Basic Engineering, 89D,
1, March 1967. pp. 141�150.
19. Aerospace Applied Thermodynamics Manual. New York:
Society of Automotive Engineers, 1969.
20. Daily, J. W., and D. R. F. Harleman, Fluid Dynamics.
Reading, MA: Addison-Wesley, 1966.
21. White, F. M., Fluid Mechanics, 6th ed. New York:
McGraw-Hill, 2007.
22. Hamilton, J. B., “The Suppression of Intake Losses by
Various Degrees of Rounding,” University of Washington,
Seattle, WA, Experiment Station Bulletin 51, 1929.
23. Herschel, C., The Two Books on the Water Supply of the
City of Rome, from Sextus Julius Frontinus (ca. 40�103 A.D.).
Boston, 1899.

402 Chapter 8 Internal Incompressible Viscous Flow



24. Lam, C. F., and M. L. Wolla, “Computer Analysis of
Water Distribution Systems: Part 1, Formulation of Equa-
tions,” Proceedings of the ASCE, Journal of the Hydraulics
Division, 98, HY2, February 1972. pp. 335�344.
25. Miller, R. W., Flow Measurement Engineering Handbook.
3rd ed. New York: McGraw Hill, 1996.
26. Bean, H. S., ed., Fluid Meters, Their Theory and Application.
New York: American Society of Mechanical Engineers, 1971.
27. ISO 7145, Determination of Flowrate of Fluids in Closed
Conduits or Circular Cross Sections—Method of Velocity
Determination at One Point in the Cross Section, ISO UDC
532.57.082.25:532.542, 1st ed. Geneva: International Standards
Organization, 1982.

28. Goldstein, R. J., ed., Fluid Mechanics Measurements, 2nd
ed. Washington, D.C.: Taylor & Francis, 1996.
29. Bruun, H. H., Hot-Wire Anemometry—Principles and
Signal Analysis. New York: Oxford University Press, 1995.
30. Bruus, H., Theoretical Microfluidics (Oxford University
Press, 2007).
31. Swamee, P. K., and A. K. Jain, “Explicit Equations for
Pipe-Flow Problems,” Proceedings of the ASCE, Journal of the
Hydraulics Division, 102, HY5, May 1976. pp. 657�664.
32. Potter, M. C., and J. F. Foss, Fluid Mechanics. New York:
Ronald, 1975.

Problems
Laminar versus Turbulent Flow

8.1 Air at 100�C enters a 125-mm-diameter duct. Find the
volume flow rate at which the flow becomes turbulent. At
this flow rate, estimate the entrance length required to
establish fully developed flow.

8.2 Consider incompressible flow in a circular channel. Derive
general expressions for Reynolds number in terms of (a) vol-
ume flow rate and tube diameter and (b) mass flow rate and
tubediameter.TheReynoldsnumber is 1800 in a sectionwhere
the tube diameter is 10mm. Find theReynolds number for the
same flow rate in a section where the tube diameter is 6 mm.

Case Study

The Fountains at the Bellagio in Las Vegas

The fountains at the Bellagio in Las Vegas.

Any visitor to Las Vegas will be familiar with the water
fountains at the Bellagio hotel. These are a set of high-
powered water jets designed and built by the WET
Design Company that are choreographed to vary in
their strength and direction to selected pieces of music.

WET developed many innovations to make the
fountains. Traditional fountains use pumps and pipes,

which must be matched for optimum flow (one of the
topics we discussed in this chapter). Many of WET’s
designs use compressed air instead of water pumps,
which allows energy to be continuously generated and
accumulated, ready for instant output. This innovative
use of compressed air allowed the fountains to
become a reality—with the traditional systems of
pipes or pumps, a fountain such as the Bellagio’s
would be impractical and expensive. For example, it
would be difficult to obtain the 240-foot heights the
fountains achieve without expensive, large, and noisy
water pumps. The “Shooter” that WET developed
works on the principle of introducing a large bubble of
compressed air into the piping, which forces trapped
water through a nozzle at high pressure. The ones
installed at the Bellagio are able to shoot about
75 gallons per second of water over 240 feet in the air.
In addition to providing a spectacular effect, they
require only about 1/10th the energy of traditional
water pumps to produce the same effect. Other air-
powered devices produce pulsing water jets, achieving
a maximum height of 125 feet. In addition to their
power, these innovations lead to a saving of 80 per-
cent or more in energy costs and have project con-
struction costs that are about 50 percent less than
traditional pipe-pump fountains.
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8.3 Air at 40�C flows in a pipe system in which diameter is
decreased in two stages from 25 mm to 15 mm to 10 mm.
Each section is 2 m long. As the flow rate is increased, which
section will become turbulent first? Determine the flow rates
at which one, two, and then all three sections first become
turbulent. At each of these flow rates, determine which
sections, if any, attain fully developed flow.

D1 = 25 mm D2 = 15 mm D3 = 10 mm 

P8.3

8.4 For flow in circular tubes, transition to turbulence usually
occurs around Re � 2300. Investigate the circumstances
under which the flows of (a) standard air and (b) water at
15�C become turbulent. On log-log graphs, plot: the average
velocity, the volume flow rate, and the mass flow rate, at
which turbulence first occurs, as functions of tube diameter.

Laminar Flow between Parallel Plates

8.5 For the laminar flow in the section of pipe shown inFig. 8.1,
sketch the expected wall shear stress, pressure, and centerline
velocity as functions of distance along the pipe. Explain sig-
nificant features of the plots, comparing them with fully
developed flow. Can the Bernoulli equation be applied any-
where in the flow field? If so, where? Explain briefly.

8.6 An incompressible fluid flows between two infinite sta-
tionary parallel plates. The velocity profile is given by u 5
umax ðAy2 1By1CÞ, where A, B, and C are constants and y

is measured upward from the lower plate. The total gap
width is h units. Use appropriate boundary conditions to
express the magnitude and units of the constants in terms
of h. Develop an expression for volume flow rate per unit
depth and evaluate the ratio V=umax.

8.7 The velocity profile for fully developed flow between
stationary parallel plates is given by u 5 aðh2=42 y2Þ, where
a is a constant, h is the total gap width between plates, and y

is the distance measured from the center of the gap. Deter-
mine the ratio V=umax.

8.8 A fluid flows steadily between two parallel plates. The
flow is fully developed and laminar. The distance between
the plates is h.
(a) Derive an equation for the shear stress as a function of y.

Sketch this function.
(b) Forμ 5 2:43 102 5 lbf � s=ft2; @p=@x 524:0 lbf=ft2=ft,

and h 5 0:05 in., calculate the maximum shear stress,
in lbf/ft2.

8.9 Oil is confined in a 4-in.-diameter cylinder by a piston
having a radial clearance of 0.001 in. and a length of 2 in. A
steady force of 4500 lbf is applied to the piston. Assume the
properties of SAE 30 oil at 120�F. Estimate the rate at which
oil leaks past the piston.

8.10 A viscous oil flows steadily between stationary parallel
plates. The flow is laminar and fully developed. The total gap
width between the plates is h 5 5 mm. The oil viscosity is

0.5 N � s/m2 and the pressure gradient is 21000 N/m2/m. Find
the magnitude and direction of the shear stress on the upper
plate and the volume flow rate through the channel, per
meter of width.

8.11 Viscous oil flows steadily between parallel plates. The
flow is fully developed and laminar. The pressure gradient is
1.25 kPa/m and the channel half-width is h 5 1:5 mm. Cal-
culate the magnitude and direction of the wall shear stress
at the upper plate surface. Find the volume flow rate through
the channel (μ 5 0:50 N � s=m2).

8.12 A large mass is supported by a piston of diameter
D5 4 in. and length L5 4 in. The piston sits in a cylinder
closed at the bottom, and the gap a5 0.001 in. between the
cylinder wall and piston is filled with SAE 10 oil at 68�F.
The piston slowly sinks due to the mass, and oil is forced out
at a rate of 0.1 gpm. What is the mass (slugs)?

L

a

D

M

P8.12, P8.16

8.13 A high pressure in a system is created by a small piston-
cylinder assembly. The piston diameter is 6 mm and it
extends 50 mm into the cylinder. The radial clearance
between the piston and cylinder is 0.002 mm. Neglect elastic
deformations of the piston and cylinder caused by pressure.
Assume the fluid properties are those of SAE 10W oil at
35�C. When the pressure in the cylinder is 600 MPa, estimate
the leakage rate.

8.14 A hydraulic jack supports a load of 9000 kg. The fol-
lowing data are given:

Diameter of piston 100 mm
Radial clearance between piston and cylinder 0.05 mm
Length of piston 120 mm

Estimate the rate of leakage of hydraulic fluid past the pis-
ton, assuming the fluid is SAE 30 oil at 30�C.

8.15 A hydrostatic bearing is to support a load of 1000 lbf/ft
of length perpendicular to the diagram. The bearing is sup-
plied with SAE 10W-30 oil at 212�F and 35 psig through the
central slit. Since the oil is viscous and the gap is small,
the flow may be considered fully developed. Calculate (a) the
required width of the bearing pad, (b) the resulting pressure
gradient, dp/dx, and (c) the gap height, if the flow rate is
Q5 2.5 gal/hr/ft.

Q

x
y

W

h

P8.15
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8.16 The basic component of a pressure gage tester consists
of a piston-cylinder apparatus as shown. The piston, 6 mm
in diameter, is loaded to develop a pressure of known mag-
nitude. (The piston length is 25 mm.) Calculate the mass,
M, required to produce 1.5 MPa (gage) in the cylinder.
Determine the leakage flow rate as a function of radial
clearance, a, for this load if the liquid is SAE 30 oil at 20�C.
Specify the maximum allowable radial clearance so the
vertical movement of the piston due to leakage will be less
than 1 mm/min.

8.17 In Section 8.2 we derived the velocity profile between
parallel plates (Eq. 8.5) by using a differential control
volume. Instead, following the procedure we used in
Example 5.9, derive Eq. 8.5 by starting with the Navier�
Stokes equations (Eqs. 5.27). Be sure to state all
assumptions.

8.18 Consider the simple power-law model for a non-
Newtonian fluid given by Eq. 2.16. Extend the analysis of
Section 8.2 to show that the velocity profile for fully devel-
oped laminar flow of a power-law fluid between stationary
parallel plates separated by distance 2h may be written

u 5
h

k

Δp

L

� �1=n nh

n1 1
12

y

h

� �ðn11Þ=n� �

where y is the coordinatemeasured from the channel centerline.
Plot the profiles u=Umax versus y/h for n 5 0:7, 1.0, and 1.3.

8.19 Viscous liquid, at volume flow rate Q, is pumped
through the central opening into the narrow gap between the
parallel disks shown. The flow rate is low, so the flow is
laminar, and the pressure gradient due to convective accel-
eration in the gap is negligible compared with the gradient
caused by viscous forces (this is termed creeping flow).
Obtain a general expression for the variation of average
velocity in the gap between the disks. For creeping flow,
the velocity profile at any cross section in the gap is the same
as for fully developed flow between stationary parallel plates.
Evaluate the pressure gradient, dp/dr, as a function of
radius. Obtain an expression for p(r). Show that the net force
required to hold the upper plate in the position shown is

F 5
3μQR2

h3
12

R0

R

� �2
" #

Oil supply R0

R

h

P8.19

8.20 A sealed journal bearing is formed from concentric
cylinders. The inner and outer radii are 25 and 26 mm, the
journal length is 100 mm, and it turns at 2800 rpm. The gap is
filled with oil in laminar motion. The velocity profile is linear

across the gap. The torque needed to turn the journal is 0.2
N �m. Calculate the viscosity of the oil. Will the torque
increase or decrease with time? Why?

8.21 Using the profile of Problem 8.18, show that the flow
rate for fully developed laminar flow of a power-law fluid
between stationary parallel plates may be written as

Q 5
h

k

Δp

L

� �1=n 2nwh2

2n1 1

Here w is the plate width. In such an experimental setup the
following data on applied pressure difference Δp and flow
rate Q were obtained:

Δp (kPa) 10 20 30 40 50 60 70 80 90 100

Q (L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25

Determine if the fluid is pseudoplastic or dilatant, and obtain
an experimental value for n.

8.22 Consider fully developed laminar flow between infinite
parallel plates separated by gap width d5 0.2 in. The upper
plate moves to the right with speedU25 5 ft/s; the lower plate
moves to the left with speedU15 2 ft/s. The pressure gradient
in the direction of flow is zero. Develop an expression for the
velocity distribution in the gap. Find the volume flow rate per
unit depth (gpm/ft) passing a given cross section.

8.23 Water at 60�C flows between two large flat plates. The
lower plate moves to the left at a speed of 0.3 m/s; the upper
plate is stationary. The plate spacing is 3 mm, and the flow is
laminar. Determine the pressure gradient required to pro-
duce zero net flow at a cross section.

8.24 Two immiscible fluids are contained between infinite
parallel plates. The plates are separated by distance 2h, and
the two fluid layers are of equal thickness h5 5 mm. The
dynamic viscosity of the upper fluid is four times that of
the lower fluid, which is μlower5 0.1 N � s/m2. If the plates are
stationary and the applied pressure gradient is 250 kPa/m,
find the velocity at the interface. What is the maximum
velocity of the flow? Plot the velocity distribution.

8.25 Two immiscible fluids are contained between infinite
parallel plates. The plates are separated by distance 2h, and
the two fluid layers are of equal thickness h; the dynamic
viscosity of the upper fluid is three times that of the lower
fluid. If the lower plate is stationary and the upper plate
moves at constant speed U 5 20 ft=s, what is the velocity at
the interface? Assume laminar flows, and that the pressure
gradient in the direction of flow is zero.

8.26 The record-read head for a computer disk-drive
memory storage system rides above the spinning disk on a
very thin film of air (the film thickness is 0.25 μm). The head
location is 25 mm from the disk centerline; the disk spins at
8500 rpm. The record-read head is 5 mm square. For stan-
dard air in the gap between the head and disk, determine
(a) the Reynolds number of the flow, (b) the viscous shear
stress, and (c) the power required to overcome viscous shear.

8.27 The dimensionless velocity profile for fully developed
laminar flow between infinite parallel plates with the upper
plate moving at constant speedU is shown in Fig. 8.6. Find the
pressure gradient @p/@x at which (a) the upper plate and
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(b) the lower plate experience zero shear stress, in terms of
U, a, and μ. Plot the dimensionless velocity profiles for these
cases.

8.28 Consider steady, fully developed laminar flow of a
viscous liquid down an inclined surface. The liquid layer is of
constant thickness, h. Use a suitably chosen differential
control volume to obtain the velocity profile. Develop an
expression for the volume flow rate.

8.29 Consider steady, incompressible, and fully developed
laminar flow of a viscous liquid down an incline with no
pressure gradient. The velocity profile was derived in
Example 5.9. Plot the velocity profile. Calculate the kine-
matic viscosity of the liquid if the film thickness on a 30�

slope is 0.8 mm and the maximum velocity is 15.7 mm/s.

8.30 Two immiscible fluids of equal density are flowing down
a surface inclined at a 60� angle. The two fluid layers are of
equal thickness h5 10 mm; the kinematic viscosity of the
upper fluid is 1/5th that of the lower fluid, which is νlower5
0.01 m2/s. Find the velocity at the interface and the velocity at
the free surface. Plot the velocity distribution.

8.31 The velocity distribution for flow of a thin viscous film
down an inclined plane surface was developed in Example
5.9. Consider a film 7 mm thick, of liquid with SG5 1.2 and
dynamic viscosity of 1.60 N � s/m2. Derive an expression for
the shear stress distribution within the film. Calculate the
maximum shear stress within the film and indicate its direc-
tion. Evaluate the volume flow rate in the film, in mm3/s per
millimeter of surface width. Calculate the film Reynolds
number based on average velocity.

8.32 Consider fully developed flow between parallel plates
with the upper plate moving at U5 5 ft/s; the spacing
between the plates is a5 0.1 in. Determine the flow rate per
unit depth for the case of zero pressure gradient. If the fluid
is air, evaluate the shear stress on the lower plate and plot
the shear stress distribution across the channel for the zero
pressure gradient case. Will the flow rate increase or
decrease if the pressure gradient is adverse? Determine the
pressure gradient that will give zero shear stress at y5 0.25a.
Plot the shear stress distribution across the channel for the
latter case.

8.33 Glycerin at 59�F flows between parallel plates with gap
width b5 0.1 in. The upper plate moves with speed U5 2 ft/s
in the positive x direction. The pressure gradient is @p/@x5
250 psi/ft. Locate the point of maximum velocity and
determine its magnitude (let y5 0 at the bottom plate).
Determine the volume of flow (gal/ft) that passes a given
cross section (x5 constant) in 10 s. Plot the velocity and
shear stress distributions.

8.34 The velocity profile for fully developed flow of castor
oil at 20�C between parallel plates with the upper plate
moving is given by Eq. 8.8. Assume U5 1.5 m/s and a5 5
mm. Find the pressure gradient for which there is no net flow
in the x direction. Plot the expected velocity distribution and
the expected shear stress distribution across the channel for
this flow. For the case where u5 1/2U at y/a5 0.5, plot the
expected velocity distribution and shear stress distribution
across the channel. Comment on features of the plots.

8.35 The velocity profile for fully developed flow of carbon
tetrachloride at 68�F between parallel plates (gap a5
0.05 in.), with the upper plate moving, is given by Eq. 8.8.
Assuming a volume flow rate per unit depth is 1.5 gpm/ft for
zero pressure gradient, find U. Evaluate the shear stress on
the lower plate. Would the volume flow rate increase or
decrease with a mild adverse pressure gradient? Calculate
the pressure gradient that will give zero shear stress at
y/a5 0.25. Plot the velocity distribution and the shear stress
distribution for this case.

8.36 Free-surface waves begin to form on a laminar liquid
film flowing down an inclined surface whenever the Rey-
nolds number, based on mass flow per unit width of film, is
larger than about 33. Estimate the maximum thickness of a
laminar film of water that remains free from waves while
flowing down a vertical surface.

8.37 Microchips are supported on a thin air film on a smooth
horizontal surface during one stage of the manufacturing
process. The chips are 11.7 mm long and 9.35 mm wide and
have a mass of 0.325 g. The air film is 0.125 mm thick. The
initial speed of a chip is V0 5 1:75 mm=s; the chip slows as
the result of viscous shear in the air film. Analyze the chip
motion during deceleration to develop a differential equa-
tion for chip speed V versus time t. Calculate the time
required for a chip to lose 5 percent of its initial speed. Plot
the variation of chip speed versus time during deceleration.
Explain why it looks as you have plotted it.

8.38 A viscous-shear pump is made from a stationary
housing with a close-fitting rotating drum inside. The clear-
ance is small compared with the diameter of the drum, so
flow in the annular space may be treated as flow between
parallel plates. Fluid is dragged around the annulus by vis-
cous forces. Evaluate the performance characteristics of the
shear pump (pressure differential, input power, and effi-
ciency) as functions of volume flow rate. Assume that the
depth normal to the diagram is b.

R

a

ω

P8.38, P8.40

8.39 The clamping force to hold a part in a metal-turning
operation is provided by high-pressure oil supplied by a pump.
Oil leaks axially through an annular gap with diameter D,
length L, and radial clearance a. The inner member of the
annulus rotates at angular speed ω. Power is required both to
pump the oil and to overcome viscous dissipation in the annular
gap.Develop expressions in terms of the specified geometry for
the pump power, 3p, and the viscous dissipation power, 3v.
Show that the total power requirement is minimized when the
radial clearance, a, is chosen such that3v 5 33p.
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8.40 The efficiency of the viscous-shear pump of Fig. P8.39 is
given by

η 5 6q
ð12 2qÞ
ð42 6qÞ

where q 5 Q=abRω is a dimensionless flow rate (Q is the
flow rate at pressure differential Δp, and b is the depth
normal to the diagram). Plot the efficiency versus dimen-
sionless flow rate, and find the flow rate for maximum effi-
ciency. Explain why the efficiency peaks, and why it is zero at
certain values of q.

8.41 Automotive design is tending toward all-wheel drive to
improve vehicle performance and safety when traction is
poor. An all-wheel drive vehicle must have an interaxle
differential to allow operation on dry roads. Numerous
vehicles are being built using multiplate viscous drives for
interaxle differentials. Perform the analysis and design
needed to define the torque transmitted by the differential
for a given speed difference, in terms of the design para-
meters. Identify suitable dimensions for a viscous differential
to transmit a torque of 150 N �m at a speed loss of 125 rpm,
using lubricant with the properties of SAE 30 oil. Discuss
how to find the minimum material cost for the viscous dif-
ferential, if the plate cost per square meter is constant.

8.42 An inventor proposes to make a “viscous timer” by
placing a weighted cylinder inside a slightly larger cylinder
containing viscous liquid, creating a narrow annular gap
close to the wall. Analyze the flow field created when the
apparatus is inverted and the mass begins to fall under
gravity. Would this system make a satisfactory timer? If so,
for what range of time intervals? What would be the effect of
a temperature change on measured time?

8.43 A journal bearing consists of a shaft of diameter D5 35
mm and length L5 50 mm (moment of inertia I5 0.125
kg �m2) installed symmetrically in a stationary housing such
that the annular gap is δ5 1 mm. The fluid in the gap has
viscosity μ5 0.1 N � s/m2. If the shaft is given an initial
angular velocity of ω5 500 rpm, determine the time for the
shaft to slow to 100 rpm. On another day, an unknown fluid
is tested in the same way, but takes 10 minutes to slow from
500 to 100 rpm. What is its viscosity?

8.44 In Example 8.3 we derived the velocity profile for
laminar flow on a vertical wall by using a differential control
volume. Instead, following the procedure we used in
Example 5.9, derive the velocity profile by starting with the
Navier�Stokes equations (Eqs. 5.27). Be sure to state all
assumptions.

8.45 A continuous belt, passing upward through a chemical
bath at speed U0, picks up a liquid film of thickness h, density
ρ, and viscosity μ. Gravity tends to make the liquid drain
down, but the movement of the belt keeps the liquid from
running off completely. Assume that the flow is fully devel-
oped and laminar with zero pressure gradient, and that the
atmosphere produces no shear stress at the outer surface of
the film. State clearly the boundary conditions to be satisfied
by the velocity at y5 0 and y5 h. Obtain an expression for
the velocity profile.

8.46 A wet paint film of uniform thickness, δ, is painted on
a vertical wall. The wet paint can be approximated as a
Bingham fluid with a yield stress, τy, and density, ρ. Derive
an expression for the maximum value of δ that can be sus-
tained without having the paint flow down the wall. Calculate
the maximum thickness for lithographic ink whose yield
stress τy5 40 Pa and density is approximately 1000 kg/m3.

8.47 When dealing with the lubrication of bearings, the
governing equation describing pressure is the Reynolds
equation, generally written in 1D as

d

dx

h3

μ
dp

dx

� �
þ 6U

dh

dx
¼ 0

where h is the step height and U is the velocity of the lower
surface. Step bearings have a relatively simple design and are
used with low-viscosity fluids such as water, gasoline, and
solvents. The minimum film thickness in these applications is
quite small. The step height must be small enough for good
load capacity, yet large enough for the bearing to accom-
modate some wear without losing its load capacity by
becoming smooth and flat. Beginning with the 1D equation
for fluid motion in the x direction, show that the pressure
distribution in the step bearing is as shown, where

ps ¼ 6μðh2 � h1Þ
h31
L1

þ h32
L2

L1

L1

L2

h1

h2

pS

U

p

x
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Laminar Flow in a Pipe

8.48 Consider first water and then SAE 10W lubricating oil
flowing at 40�C in a 6-mm-diameter tube. Determine the
maximum flow rate (and the corresponding pressure gradient,
@p/@x) for each fluid at which laminar flowwould be expected.

g

p = patm

h

dx

dy

U0

x

y
Bath

Belt

P8.45
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8.49 For fully developed laminar flow in a pipe, determine
the radial distance from the pipe axis at which the velocity
equals the average velocity.

8.50 Using Eq. A.3 in Appendix A for the viscosity of water,
find the viscosity at 220�C and 120�C. Plot the viscosity over
this range. Find the maximum laminar flow rate (L/hr) in a
7.5-mm-diameter tube at these temperatures. Plot the max-
imum laminar flow rate over this temperature range.

8.51 A hypodermic needle, with inside diameter d 5 0:005 in.
and length L 5 1 in., is used to inject saline solution with
viscosity five times that of water. The plunger diameter is
D 5 0:375 in.; the maximum force that can be exerted by a
thumb on the plunger is F 5 7:5 lbf. Estimate the volume flow
rate of saline that can be produced.

8.52 In engineering science, there are often analogies to be
made between disparate phenomena. For example, the
applied pressure difference, Δp, and corresponding volume
flow rate, Q, in a tube can be compared to the applied DC
voltage, V, across and current, I, through an electrical
resistor, respectively. By analogy, find a formula for the
“resistance” of laminar flow of fluid of viscosity, μ, in a tube
length of L and diameter D, corresponding to electrical
resistance, R. For a tube 250 mm long with inside diameter
7.5 mm, find the maximum flow rate and pressure difference
for which this analogy will hold for (a) kerosene and (b) castor
oil (both at 40�C). When the flow exceeds this maximum, why
does the analogy fail?

8.53 Consider fully developed laminar flow in the annulus
between two concentric pipes. The outer pipe is stationary,
and the inner pipe moves in the x direction with speed V.
Assume the axial pressure gradient is zero (@p=@x 5 0).
Obtain a general expression for the shear stress, τ, as a
function of the radius, r, in terms of a constant, C1. Obtain a
general expression for the velocity profile, u(r), in terms of
two constants, C1 and C2. Obtain expressions for C1 and C2.

r

x

ri

ro

V

P8.53

8.54 Consider fully developed laminar flow in a circular pipe.
Use a cylindrical control volume as shown. Indicate the
forces acting on the control volume. Using the momentum
equation, develop an expression for the velocity distribution.

CV

r

dx

R
x

r

P8.54

8.55 Consider fully developed laminar flow in the annular
space formed by the two concentric cylinders shown in the
diagram for Problem 8.53, but with pressure gradient, @p/@x,
and the inner cylinder stationary. Let r0 5 R and ri 5 kR.
Show that the velocity profile is given by

u 52
R2

4μ
@p

@x
12

r

R

� �2
1

12 k2

lnð1=kÞ
� �

ln
r

R

� �

Obtain an expression for the location of the maximum veloc-
ity as a function of k. Plot the location of maximum velocity
(α 5 r=R) as a function of radius ratio k. Compare the lim-
iting case, k - 0, with the corresponding expression for flow
in a circular pipe.

8.56 For the flow of Problem 8.55 show that the volume flow
rate is given by

Q 52
πR4

8μ
@p

@x
ð12k4Þ2 ð12 k2Þ2

lnð1=kÞ

" #

Find an expression for the average velocity. Compare the
limiting case, k - 0, with the corresponding expression for
flow in a circular pipe.

8.57 It has been suggested in the design of an agricultural
sprinkler that a structural member be held in place by a wire
placed along the centerline of a pipe; it is surmised that a
relatively small wire would have little effect on the pressure
drop for a given flow rate. Using the result of Problem
8.56, derive an expression giving the percentage change in
pressure drop as a function of the ratio of wire diameter to
pipe diameter for laminar flow. Plot the percentage change
in pressure drop as a function of radius ratio k for 0.001 #
k # 0.10.

8.58 Consider fully developed pressure-driven flow in a
cylindrical tube of radius, R, and length, L5 10 mm, with
flow generated by an applied pressure gradient,Δp. Tests are
performed with room temperature water for various values
of R, with a fixed flow rate of Q5 10 μL/min. The hydraulic
resistance is defined as Rhyd5Δp/Q (by analogy with the
electrical resistance Relec5ΔV/I, where ΔV is the electrical
potential drop and I is the electric current). Calculate the
required pressure gradient and hydraulic resistance for
the range of tube radii listed in the table. Based on the
results, is it appropriate to use a pressure gradient to pump
fluids in microchannels, or should some other driving
mechanism be used?

R (mm) Δp (Pa) Rhyd (Pa � s/m3)

1

1021

1022

1023

1024

8.59 The figure schematically depicts a conical diffuser,
which is designed to increase pressure and reduce kinetic
energy. We assume the angle α is small (α, 10�) so that
tan α � α and re5 ri + αl, where ri is the radius at the diffuser
inlet, re is the radius at the exit, and l is the length of the
diffuser. The flow in a diffuser is complex, but here we
assume that each layer of fluid in the diffuser flow is laminar,
as in a cylindrical tube with constant cross-sectional area.
Based on reasoning similar to that in Section 8.3, the pres-
sure difference Δp between the ends of a cylindrical pipe is
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Δp ¼ 8μ
π

Q

Zx
0

1

r4
dx

where x is the location in the diffuser, μ is the fluid dynamic
viscosity, and Q is the flow rate. The equation above is
applicable to flows in a diffuser assuming that the inertial
force and exit effects are negligible. Derive the hydraulic
resistance, Rhyd5Δp/Q, of the diffuser.

lri

re

x

a
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8.60 Consider blood flow in an artery. Blood is non-
Newtonian; the shear stress versus shear rate is described by
the Casson relationship:

ffiffiffi
τ

p ¼ ffiffiffiffi
τc

p þ
ffiffiffiffiffiffiffiffiffi
μ
du

dr

s
; for τ $ τc

τ ¼ 0 for τ, τc

8><
>:

where τc is the critical shear stress, and μ is a constant having
the same dimensions as dynamic viscosity. The Casson
relationship shows a linear relationship between

ffiffiffi
τ

p
andffiffiffiffiffiffiffiffiffiffiffiffiffi

du=dr
p

, with intercept
ffiffiffiffi
τc

p
and slope

ffiffiffi
μ

p
. The Casson

relationship approaches Newtonian behavior at high values
of deformation rate. Derive the velocity profile of steady
fully developed blood flow in an artery of radius R. Deter-
mine the flow rate in the blood vessel. Calculate the flow rate
due to a pressure gradient dp/dx52100 Pa/m, in an artery of
radius R5 1 mm, using the following blood data: μ5 3.5 cP,
τc5 0.05 dynes/cm2.

8.61 Using Eq. 2.16, derive the velocity profile, flow rate, and
average velocity of a non-Newtonian fluid in a circular tube.
For a flow rate ofQ5 1 μL/min and R5 1 mm, with k having
a value of unity in standard SI units, compare the required
pressure gradients for n5 0.5, 1.0, and l.5. Which fluid
requires the smallest pump for the same pipe length?

8.62 The classic Poiseuille flow (Eq. 8.12), is for no-slip
conditions at the walls. If the fluid is a gas, and when the
mean free path, l (the average distance a molecule travels
before collision with another molecule), is comparable to the
length-scale L of the flow, slip will occur at the walls, and
the flow rate and velocity will be increased for a given
pressure gradient. In Eq. 8.11, c1 will still be zero, but c2 must
satisfy the slip condition u ¼ l @u=@r at r5R. Derive the
velocity profile and flow rate of gas flow in a micro- or
nanotube which has such a slip velocity on the wall. Calcu-
late the flow rate when R5 10m, μ5 1.84 3 1025 N � s/m2,
the mean free path l5 68 nm, and 2@p/@x5 1.0 3 106 Pa/m.

8.63 The following solution:

u ¼ u0 1� y2

a2
� z2

b2

� �

can be used as a model for the velocity profile of fully
developed pressure-driven flow in a channel with an elliptic
cross section. The center of the ellipse is (y, z)5 (0, 0), and
the major axis of length a and the minor axis of length b are
parallel to the y axis and z axes, respectively. The axial
pressure gradient, @p/@x, is constant. Based on the Navier�
Stokes equations, determine the maximum velocity u0 in
terms of a, b, viscosity μ, and @p/@x. Letting (ρ, φ) be the
radial and azimuthal polar coordinates, respectively, of a unit
disk (0 # ρ # 1 and 0 # φ # 2π), the coordinates (y, z) and
the velocity u(y, z) can be expressed as functions of (ρ, φ):

yðρ;φÞ ¼ aρ cos φ zðρ;φÞ ¼ bρ sin φ uðρ;φÞ ¼ u0ð1� ρ2Þ

The flow rate is Q ¼ R uðy; zÞdydz ¼ ab
R 2π
0

R 1
0 ρuðρ;φÞdρdφ.

Derive the flow rate of fully developed pressure-driven flow
in an elliptic pipe. Compare the flow rates in a channel with
an elliptic cross section with a5 1.5R and b5R and in a pipe
of radius R with the same pressure gradient.

8.64 For pressure-driven, steady, fully developed laminar
flow of an incompressible fluid through a straight channel of
length L, we can define the hydraulic resistance as Rhyd5
Δp/Q, where Δp is the pressure drop and Q is the flow rate
(analogous to the electrical resistance Relec5ΔV/I, whereΔV
is the electrical potential drop and I is the electric current).
The following table summarizes the hydraulic resistance of
channels with different cross sectional shapes [30]:

Shape Formula for Rhyd

Computed
Rhyd

Circle

a 8μL
πa4

Ellipse

ab 4μL½1þ ðb=aÞ2�
πab3

Triangle

aa

a

320μLffiffiffi
3

p
a4

Two plates

h w

12μL
h3w

Rectangle

h w

12μL
h3w½1� 0:63ðh=wÞ�

Square

h
h

12μL
0:37h4

Calculate the hydraulic resistance of a straight channel with the
listed cross-sectional shapes using the following parameters:
μ5 1 mPa � s (water), L5 10 mm, a5 100 μm, b5 33 μm,
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h5 100 μm, andw5 300 μm. Based on the calculated hydraulic
resistance, which shape is the most energy efficient to pump
water?

8.65 In a food industry plant, two immiscible fluids are
pumped through a tube such that fluid 1 (μ15 0.5 N � s/m2)
forms an inner core and fluid 2 (μ25 5 N � s/m2) forms an
outer annulus. The tube has D5 5 mm diameter and length
L5 5 m. Derive and plot the velocity distribution if the
applied pressure difference, Δp, is 5 MPa.

8.66 A horizontal pipe carries fluid in fully developed tur-
bulent flow. The static pressure difference measured
between two sections is 750 psi. The distance between the
sections is 15 ft, and the pipe diameter is 3 in. Calculate
the shear stress, τw, that acts on the walls.

8.67 One end of a horizontal pipe is attached using glue to a
pressurized tank containing liquid, and the other has a cap
attached. The inside diameter of the pipe is 3 in., and the
tank pressure is 30 psig. Find the force the glue must with-
stand with the cap on, and the force it must withstand when
the cap is off and the liquid is discharging to atmosphere.

8.68 Kerosene is pumped through a smooth tube with
inside diameter D 5 30 mm at close to the critical Reynolds
number. The flow is unstable and fluctuates between laminar
and turbulent states, causing the pressure gradient to
intermittently change from approximately 24.5 kPa/m to
211 kPa/m. Which pressure gradient corresponds to laminar,
and which to turbulent, flow? For each flow, compute the
shear stress at the tube wall, and sketch the shear stress
distributions.

8.69 The pressure drop between two taps separated in
the streamwise direction by 30 ft in a horizontal, fully
developed channel flow of water is 1 psi. The cross section of
the channel is a 1 in:3 9 1

2 in. rectangle. Calculate the aver-
age wall shear stress.

8.70 A liquid drug, with the viscosity and density of water, is to
be administered through a hypodermic needle. The inside
diameter of the needle is 0.25 mm and its length is 50 mm.
Determine (a) themaximumvolumeflowrate forwhich theflow
will be laminar, (b) the pressure drop required to deliver the
maximum flow rate, and (c) the corresponding wall shear stress.

8.71 The “pitch-drop” experiment has been running con-
tinuously at the University of Queensland since 1927 (http://
www.physics.uq.edu.au/physics_museum/pitchdrop.shtml).
In this experiment, a funnel pitch is being used to measure
the viscosity of pitch. Flow averages at about one drop—per

decade! Viscosity is calculated using the volume flow rate
equation

Q ¼ V---

t
¼ πD4ρg

128μ
1þ h

L

� �

where D is the diameter of the flow from the funnel, h is
the depth to the pitch in the main body of the funnel, L is the
length of the funnel stem, and t is the elapsed time. Compare
this equation with Eq. 8.13c using hydrostatic force instead
of a pressure gradient. After the 6th drop in 1979, they
measured that it took 17,708 days for 4.7 3 1025 m3 of pitch
to fall. Given the measurements D5 9.4 mm, h5 75 mm,

L5 29 mm, and ρpitch5 1.1 3 103 kg/m3, what is the viscosity
of the pitch?

Turbulent Velocity Profiles in Fully Developed Pipe Flow

8.72 Consider the empirical “power-law” profile for turbu-
lent pipe flow, Eq. 8.22. For n5 7 determine the value of r/R
at which u is equal to the average velocity, V. Plot the results
over the range 6 # n # 10 and compare with the case of fully
developed laminar pipe flow, Eq. 8.14.

8.73 Laufer [5] measured the following data for mean velocity
in fully developed turbulent pipe flow at ReU 5 50; 000:

u=U 0.996 0.981 0.963 0.937 0.907 0.866 0.831
y/r 0.898 0.794 0.691 0.588 0.486 0.383 0.280

u=U 0.792 0.742 0.700 0.650 0.619 0.551
y/R 0.216 0.154 0.093 0.062 0.041 0.024

In addition, Laufer measured the following data for mean
velocity in fully developed turbulent pipe flow at
ReU 5 500; 000:

u=U 0.997 0.988 0.975 0.959 0.934 0.908
y/R 0.898 0.794 0.691 0.588 0.486 0.383

u=U 0.874 0.847 0.818 0.771 0.736 0.690
y/R 0.280 0.216 0.154 0.093 0.062 0.037

Using Excel’s trendline analysis, fit each set of data to the
“power-law” profile for turbulent flow, Eq. 8.22, and obtain a
value of n for each set. Do the data tend to confirm the
validity of Eq. 8.22? Plot the data and their corresponding
trendlines on the same graph.

8.74 Equation 8.23 gives the power-law velocity profile
exponent, n, as a function of centerline Reynolds number,
ReU, for fully developed turbulent flow in smooth pipes.
Equation 8.24 relates mean velocity, V, to centerline veloc-
ity, U, for various values of n. Prepare a plot of V=U as a
function of Reynolds number, ReV .

8.75 A momentum coefficient, β, is defined byZ
A

u ρu dA 5 β
Z
A

V ρu dA 5 β �mV

Evaluate β for a laminar velocity profile, Eq. 8.14, and for a
“power-law” turbulent velocity profile, Eq. 8.22. Plot β as a
function of n for turbulent power-law profiles over the range
6 # n # 10 and compare with the case of fully developed
laminar pipe flow.

Energy Considerations in Pipe Flow

8.76 Consider fully developed laminar flow of water between
stationary parallel plates. The maximum flow speed, plate
spacing, and width are 20 ft/s, 0.075 in. and 1.25 in., respec-
tively. Find the kinetic energy coefficient, α.

8.77 Consider fully developed laminar flow in a circular tube.
Evaluate the kinetic energy coefficient for this flow.

8.78 Show that the kinetic energy coefficient,α, for the “power
law” turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27.
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Plot α as a function of ReV , for ReV 5 13 104 to 1 3 107.
When analyzing pipe flow problems it is common practice to
assume α � 1. Plot the error associated with this assumption
as a function of ReV , for ReV 5 13 104 to 1 3 107.

8.79 Measurements are made for the flow configuration
shown in Fig. 8.12. At the inlet, section 1 , the pressure is
70 kPa (gage), the average velocity is 1.75 m/s, and the ele-
vation is 2.25 m. At the outlet, section 2 , the pressure,
average velocity, and elevation are 45 kPa (gage), 3.5 m/s,
and 3 m, respectively. Calculate the head loss in meters.
Convert to units of energy per unit mass.

8.80 Water flows in a horizontal constant-area pipe; the pipe
diameter is 75 mm and the average flow speed is 5 m/s. At
the pipe inlet, the gage pressure is 275 kPa, and the outlet is
at atmospheric pressure. Determine the head loss in the pipe.
If the pipe is now aligned so that the outlet is 15 m above the
inlet, what will the inlet pressure need to be to maintain
the same flow rate? If the pipe is now aligned so that the
outlet is 15 m below the inlet, what will the inlet pressure
need to be to maintain the same flow rate? Finally, how
much lower than the inlet must the outlet be so that the same
flow rate is maintained if both ends of the pipe are at
atmospheric pressure (i.e., gravity feed)?

8.81 For the flow configuration of Fig. 8.12, it is known that
the head loss is 1 m. The pressure drop from inlet to outlet is
50 kPa, the velocity doubles from inlet to outlet, and the
elevation increase is 2 m. Compute the inlet water velocity.

Calculation of Head Loss

8.82 For a given volume flow rate and piping system, will the
pressure loss be greater for hot water or cold water? Explain.

8.83 Consider the pipe flow from the water tower of
Example 8.7. After another 5 years the pipe roughness has
increased such that the flow is fully turbulent and f5 0.035.
Find by how much the flow rate is decreased.

8.84 Consider the pipe flow from the water tower of Prob-
lem 8.83. To increase delivery, the pipe length is reduced
from 600 ft to 450 ft (the flow is still fully turbulent and
f5 0.035). What is the flow rate?

8.85 Water flows from a horizontal tube into a large tank.
The tube is located 2.5 m below the free surface of water in
the tank. The head loss is 2 J/kg. Compute the average flow
speed in the tube.

8.86 The average flow speed in a constant-diameter section
of the Alaskan pipeline is 2.5 m/s. At the inlet, the pressure is
8.25 MPa (gage) and the elevation is 45 m; at the outlet, the
pressure is 350 kPa (gage) and the elevation is 115 m. Cal-
culate the head loss in this section of pipeline.

8.87 At the inlet to a constant-diameter section of the
Alaskan pipeline, the pressure is 8.5 MPa and the elevation is
45 m; at the outlet the elevation is 115 m. The head loss in
this section of pipeline is 6.9 kJ/kg. Calculate the outlet
pressure.

8.88 Water flows at 10 L/min through a horizontal 15-mm-
diameter tube. The pressure drop along a 20-m length of
tube is 85 kPa. Calculate the head loss.

8.89 Laufer [5] measured the following data for mean
velocity near the wall in fully developed turbulent pipe flow
at ReU 5 50; 000 ðU 5 9:8 ft=s and R 5 4:86 in:Þ in air:

u=U 0.343 0.318 0.300 0.264 0.228 0.221 0.179 0.152 0.140

y=R 0.0082 0.0075 0.0071 0.0061 0.0055 0.0051 0.0041 0.0034 0.0030

Plot the data and obtain the best-fit slope, du=dy. Use this to
estimate the wall shear stress from τw 5 μ du=dy. Compare
this value to that obtained using the friction factor f com-
puted using (a) the Colebrook formula (Eq. 8.37), and
(b) the Blasius correlation (Eq. 8.38).

8.90 Water is pumped at the rate of 0.075 m3/s from a
reservoir 20 m above a pump to a free discharge 35 m above
the pump. The pressure on the intake side of the pump is
150 kPa and the pressure on the discharge side is 450 kPa.
All pipes are commercial steel of 15 cm diameter. Determine
(a) the head supplied by the pump and (b) the total head loss
between the pump and point of free discharge.

1 3

4

2

z1 = 20 m

p3 = 450 kPa

p2 = 150 kPa

D = 15 cm
(Elbows are flanged) Free discharge

z4 = 35 m

P8.90

8.91 A smooth, 75-mm-diameter pipe carries water (65�C)
horizontally. When the mass flow rate is 0.075 kg/s, the
pressure drop is measured to be 7.5 Pa per 100 m of pipe.
Based on these measurements, what is the friction factor?
What is the Reynolds number? Does this Reynolds number
generally indicate laminar or turbulent flow? Is the flow
actually laminar or turbulent?

8.92 A small-diameter capillary tube made from drawn
aluminum is used in place of an expansion valve in a home
refrigerator. The inside diameter is 0.5 mm. Calculate the
corresponding relative roughness. Comment on whether
this tube may be considered “smooth” with regard to fluid
flow.

8.93 The Colebrook equation (Eq. 8.37) for computing the
turbulent friction factor is implicit in f. An explicit expres-
sion [31] that gives reasonable accuracy is

f0 5 0:25 log
e=D

3:7
1

5:74

Re0:9

� �� �22

Compare the accuracy of this expression for f with Eq. 8.37
by computing the percentage discrepancy as a function of
Re and e/D, for Re 5 104 to 108, and e/D5 0, 0.0001, 0.001,
0.01, and 0.05. What is the maximum discrepancy for these
Re and e/D values? Plot f against Re with e/D as a parameter.

8.94 Using Eqs. 8.36 and 8.37, generate the Moody chart of
Fig. 8.13.
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8.95 The Moody diagram gives the Darcy friction factor, f, in
terms of Reynolds number and relative roughness. The
Fanning friction factor for pipe flow is defined as

fF 5
τw

1
2 ρV

2

where τw is the wall shear stress in the pipe. Show that the
relation between the Darcy and Fanning friction factors for
fully developed pipe flow is given by f 5 4fF .

8.96 We saw in Section 8.7 that instead of the implicit
Colebrook equation (Eq. 8.37) for computing the turbulent
friction factor f, an explicit expression that gives reasonable
accuracy is

1ffiffiffi
f

p 521:8 log
e=D

3:7

� �1:11

1
6:9

Re

" #

Compare the accuracy of this expression for f with Eq. 8.37
by computing the percentage discrepancy as a function of
Re and e/D, for Re 5 104 to 108, and e/D5 0, 0.0001, 0.001,
0.01, and 0.05. What is the maximum discrepancy for these
Re and e/D values? Plot f against Re with e/D as a
parameter.

8.97 Water flows at 25 L/s through a gradual contraction,
in which the pipe diameter is reduced from 75 mm to 37.5 mm,
with a 150� included angle. If the pressure before the con-
traction is 500 kPa, estimate the pressure after the contraction.
Recompute the answer if the included angle is changed to
180� (a sudden contraction).

8.98 Water flows through a 25-mm-diameter tube that
suddenly enlarges to a diameter of 50 mm. The flow rate
through the enlargement is 1.25 Liter/s. Calculate the pres-
sure rise across the enlargement. Compare with the value for
frictionless flow.

8.99 Water flows through a 2-in.-diameter tube that sud-
denly contracts to 1 in. diameter. The pressure drop across
the contraction is 0.5 psi. Determine the volume flow rate.

8.100 Air at standard conditions flows through a sudden
expansion in a circular duct. The upstream and downstream
duct diameters are 75 mm and 225 mm, respectively. The
pressure downstream is 5 mm of water higher than that
upstream. Determine the average speed of the air
approaching the expansion and the volume flow rate.

8.101 In an undergraduate laboratory, you have been
assigned the task of developing a crude flow meter for
measuring the flow in a 45-mm-diameter water pipe system.
You are to install a 22.5-mm-diameter section of pipe and a
water manometer to measure the pressure drop at the sud-
den contraction. Derive an expression for the theoretical
calibration constant k in Q ¼ k

ffiffiffiffiffiffiffi
Δh

p
, where Q is the volume

flow rate in L/min, and Δh is the manometer deflection in
mm. Plot the theoretical calibration curve for a flow rate
range of 10 to 50 L/min. Would you expect this to be a
practical device for measuring flow rate?

8.102 Water flows from a larger pipe, diameterD15 100mm,
into a smaller one, diameterD25 50mm, bywayof a reentrant
device. Find the head loss between points 1 and 2 .

8.103 Flow through a sudden contraction is shown. The
minimum flow area at the vena contracta is given in terms of
the area ratio by the contraction coefficient [32],

Cc 5
Ac

A2
5 0:621 0:38

A2

A1

� �3

The loss in a sudden contraction is mostly a result of the vena
contracta: The fluid accelerates into the contraction, there is
flow separation (as shown by the dashed lines), and the vena
contracta acts as a miniature sudden expansion with sig-
nificant secondary flow losses. Use these assumptions to
obtain and plot estimates of the minor loss coefficient for a
sudden contraction, and compare with the data presented in
Fig. 8.15.

A1 A2

Ac

Flow
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8.104 Water flows from the tank shown through a very short
pipe. Assume the flow is quasi-steady. Estimate the flow rate
at the instant shown. How could you improve the flow system
if a larger flow rate were desired?

h = 1 m

A = 350 mm2

Flow

At = 3500 mm2

P8.104

8.105 Consider again flow through the elbow analyzed in
Example 4.6. Using the given conditions, calculate the minor
head loss coefficient for the elbow.

8.106 Air flows out of a clean room test chamber through a
150-mm-diameter duct of length L. The original duct had
a square edged entrance, but this has been replaced with a
well-rounded one. The pressure in the chamber is 2.5 mm of
water above ambient. Losses from friction are negligible
compared with the entrance and exit losses. Estimate the
increase in volume flow rate that results from the change in
entrance contour.

D1 D2

1

2

P8.102
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8.107 A water tank (open to the atmosphere) contains water
to a depth of 5 m. A 25-mm-diameter hole is punched in the
bottom. Modeling the hole as square-edged, estimate the
flow rate (L/s) exiting the tank. If you were to stick a short
section of pipe into the hole, by how much would the flow
rate change? If instead you were to machine the inside of the
hole to give it a rounded edge (r5 5 mm), by how much
would the flow rate change?

8.108 A conical diffuser is used to expand a pipe flow from a
diameter of 100 mm to a diameter of 150 mm. Find the
minimum length of the diffuser if we want a loss coefficient
(a) Kdiffuser # 0:2, (b) Kdiffuser # 0:35.

8.109 A conical diffuser of length 6 in. is used to expand a
pipe flow from a diameter of 2 in. to a diameter of 3.5 in. For
a water flow rate of 750 gal/min, estimate the static pressure
rise. What is the approximate value of the loss coefficient?

8.110 Space has been found for a conical diffuser 0.45 m
long in the clean room ventilation system described in
Problem 8.106. The best diffuser of this size is to be used.
Assume that data from Fig. 8.16 may be used. Determine
the appropriate diffuser angle and area ratio for this
installation and estimate the volume flow rate that will be
delivered after it is installed.

8.111 By applying the basic equations to a control volume
starting at the expansion and ending downstream, analyze
flow through a sudden expansion (assume the inlet pressure
p1 acts on the area A2 at the expansion). Develop an
expression for and plot the minor head loss across the
expansion as a function of area ratio, and compare with
the data of Fig. 8.15.

8.112 Water at 45�C enters a shower head through a circular
tube with 15.8 mm inside diameter. The water leaves in 24
streams, each of 1.05 mm diameter. The volume flow rate is
5.67 L/min. Estimate the minimum water pressure needed at
the inlet to the shower head. Evaluate the force needed to
hold the shower head onto the end of the circular tube.
Indicate clearly whether this is a compression or a tension
force.

8.113 Analyze flow through a sudden expansion to obtain an
expression for the upstream average velocity V1 in terms of
the pressure change Δp 5 p2 2 p1, area ratio AR, fluid
density ρ, and loss coefficient K. If the flow were frictionless,
would the flow rate indicated by a measured pressure change
be higher or lower than a real flow, and why? Conversely, if
the flow were frictionless, would a given flow generate a
larger or smaller pressure change, and why?

8.114 Water discharges to atmosphere from a large reservoir
through a moderately rounded horizontal nozzle of 25mm
diameter. The free surface is 2.5 m above the nozzle exit
plane. Calculate the change in flow rate when a short section
of 50-mm-diameter pipe is attached to the end of the nozzle
to form a sudden expansion. Determine the location and
estimate the magnitude of the minimum pressure with the
sudden expansion in place. If the flow were frictionless (with
the sudden expansion in place), would the minimum pressure
be higher, lower, or the same? Would the flow rate be higher,
lower, or the same?

8.115 Water flows steadily from a large tank through a length
of smooth plastic tubing, then discharges to atmosphere. The
tubing inside diameter is 3.18 mm, and its length is 15.3 m.
Calculate the maximum volume flow rate for which flow in
the tubing will remain laminar. Estimate the water level
in the tank below which flow will be laminar (for laminar
flow, α 5 2 and Kent 5 1:4).

8.116 You are asked to compare the behavior of fully
developed laminar flow and fully developed turbulent flow in
a horizontal pipe under different conditions. For the same
flow rate, which will have the larger centerline velocity?
Why? If the pipe discharges to atmosphere, what would you
expect the trajectory of the discharge stream to look like (for
the same flow rate)? Sketch your expectations for each case.
For the same flow rate, which flow would give the larger wall
shear stress? Why? Sketch the shear stress distribution τ/τw
as a function of radius for each flow. For the same Reynolds
number, which flow would have the larger pressure drop per
unit length? Why? For a given imposed pressure differential,
which flow would have the larger flow rate? Why?

Most of the remaining problems in this chapter involve deter-
mination of the turbulent friction factor f from the Reynolds
number Re and dimensionless roughness e/D. For approximate
calculations, f can be read from Fig. 8.13; a more accurate
approach is to use this value (or some other value, even f5 1) as
the first value for iterating in Eq. 8.37. The most convenient
approach is to use solution of Eq. 8.37 programmed into (or
built-into) your calculator, or programmed into an Excel

workbook. Hence, most of the remaining problems benefit from
use of Excel. To avoid needless duplication, the computer
symbol will only be used next to remaining problems in this
chapter when it has an additional benefit (e.g., for iterating to a
solution, or for graphing).

8.117 Estimate the minimum level in the water tank of
Problem 8.115 such that the flow will be turbulent.

8.118 A laboratory experiment is set up to measure pressure
drop for flow of water through a smooth tube. The tube
diameter is 15.9 mm, and its length is 3.56 m. Flow enters
the tube from a reservoir through a square-edged entrance.
Calculate the volume flow rate needed to obtain turbulent
flow in the tube. Evaluate the reservoir height differential
required to obtain turbulent flow in the tube.

8.119 A benchtop experiment consists of a reservoir with a
500-mm-long horizontal tube of diameter 7.5 mm attached to
its base. The tube exits to a sink. A flow of water at 10�C is
to be generated such that the Reynolds number is 10,000.
What is the flow rate? If the entrance to the tube is square-
edged, how deep should the reservoir be? If the entrance to
the tube is well-rounded, how deep should the reservoir be?

8.120 As discussed in Problem 8.52, the applied pressure
difference, Δp, and corresponding volume flow rate, Q, for
laminar flow in a tube can be compared to the applied DC
voltage V across, and current I through, an electrical resistor,
respectively. Investigate whether or not this analogy is valid
for turbulent flow by plotting the “resistance” Δp/Q as a
function of Q for turbulent flow of kerosene (at 40�C) in
a tube 250 mm long with inside diameter 7.5 mm.
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8.121 Plot the required reservoir depth of water to create
flow in a smooth tube of diameter 10 mm and length 100 m,
for a flow rate range of 1 L/min through 10 L/min.

8.122 Oil with kinematic viscosity ν5 7.5 3 1024 ft2/s flows
at 45 gpm in a 100-ft-long horizontal drawn-tubing pipe of
1 in. diameter. By what percentage ratio will the energy loss
increase if the same flow rate is maintained while the pipe
diameter is reduced to 0.75 in.?

8.123 A water system is used in a laboratory to study flow in
a smooth pipe. The water is at 10�C. To obtain a reasonable
range, the maximum Reynolds number in the pipe must be
100,000. The system is supplied from an overhead constant-
head tank. The pipe system consists of a square-edged
entrance, two 45� standard elbows, two 90� standard elbows,
and a fully open gate valve. The pipe diameter is 7.5 mm, and
the total length of pipe is 1 m. Calculate the minimum height
of the supply tank above the pipe system discharge to reach
the desired Reynolds number. If a pressurized chamber is
used instead of the reservoir, what will be the required
pressure?

8.124 Water from a pump flows through a 9-in.-diameter
commercial steel pipe for a distance of 4 miles from the
pump discharge to a reservoir open to the atmosphere.
The level of the water in the reservoir is 50 ft above the pump
discharge, and the average speed of the water in the pipe is
10 ft/s. Calculate the pressure at the pump discharge.

Pump

1

50 ft

P8.124

8.125 Water is to flow by gravity from one reservoir to a
lower one through a straight, inclined galvanized iron pipe.
The pipe diameter is 50 mm, and the total length is 250 m.
Each reservoir is open to the atmosphere. Plot the required
elevation difference Δz as a function of flow rate Q, for Q
ranging from 0 to 0.01 m3/s. Estimate the fraction of Δz due
to minor losses.

8.126 A 5-cm-diameter potable water line is to be run
through a maintenance room in a commercial building.
Three possible layouts for the water line are proposed, as
shown. Which is the best option, based on minimizing losses?
Assume galvanized iron, and a flow rate of 350 L/min.

5.25 m

2.5 m

(a) Two miter bends (b) A standard elbow (c) Three standard elbows
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8.127 In an air-conditioning installation, a flow rate of 1750
cfm of air at 50�F is required. A smooth sheet metal duct of
rectangular section (0.75 ft by 2.5 ft) is to be used. Determine

the pressure drop (inches of water) for a 1000-ft horizontal
duct section.

8.128 A system for testing variable-output pumps consists of
the pump, four standard elbows, and an open gate valve
forming a closed circuit as shown. The circuit is to absorb the
energy added by the pump. The tubing is 75-mm-diameter
cast iron, and the total length of the circuit is 20-m. Plot the
pressure difference required from the pump for water flow
rates Q ranging from 0.01 m3/s to 0.06 m3/s.

Gate Valve

Pump

P8.128

8.129 A pipe friction experiment is to be designed, using
water, to reach a Reynolds number of 100,000. The system
will use 5-cm smooth PVC pipe from a constant-head tank to
the flow bench and 20 m of smooth 2.5-cm PVC line
mounted horizontally for the test section. The water level
in the constant-head tank is 0.5 m above the entrance to the
5-cm PVC line. Determine the required average speed of
water in the 2.5-cm pipe. Estimate the feasibility of using a
constant-head tank. Calculate the pressure difference
expected between taps 5 m apart in the horizontal test
section.

8.130 Two reservoirs are connected by three clean cast-iron
pipes in series, L1 5 600 m, D1 5 0:3m, L2 5 900 m,
D2 5 0:4 m, L3 5 1500 m, and D3 5 0:45 m. When the dis-
charge is 0.11 m3/s of water at 15�C, determine the difference
in elevation between the reservoirs.

8.131 Consider flow of standard air at 1250 ft3/min. Compare
the pressure drop per unit length of a round duct with that
for rectangular ducts of aspect ratio 1, 2, and 3. Assume
that all ducts are smooth, with cross-sectional areas of 1 ft2.

8.132 Data were obtained from measurements on a vertical
section of old, corroded, galvanized iron pipe of 50 mm
inside diameter. At one section the pressure was p15 750 kPa
(gage); at a second section, 40 m lower, the pressure
was p25 250 kPa (gage). The volume flow rate of water was
0.015 m3/s. Estimate the relative roughness of the pipe. What
percentage savings in pumping power would result if the pipe
were restored to its new, clean relative roughness?

8.133 Water, at volume flow rate Q 5 0:75 ft3=s, is delivered
by a fire hose and nozzle assembly. The hose (L 5 250 ft,
D 5 3 in., and e/D5 0.004) is made up of four 60-ft sections
joined by couplings. The entrance is square-edged; the minor
loss coefficient for each coupling is Kc5 0.5, based on
mean velocity through the hose. The nozzle loss coefficient is
Kn5 0.02, based on velocity in the exit jet, of D2 5 1 in.
diameter. Estimate the supply pressure required at this
flow rate.

8.134 Flow in a tube may alternate between laminar and
turbulent states for Reynolds numbers in the transition zone.
Design a bench-top experiment consisting of a constant-head
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cylindrical transparent plastic tank with depth graduations,
and a length of plastic tubing (assumed smooth) attached at
the base of the tank through which the water flows to a
measuring container. Select tank and tubing dimensions so
that the system is compact, but will operate in the transition
zone range. Design the experiment so that you can easily
increase the tank head from a low range (laminar flow)
through transition to turbulent flow, and vice versa. (Write
instructions for students on recognizing when the flow is
laminar or turbulent.) Generate plots (on the same graph) of
tank depth against Reynolds number, assuming laminar or
turbulent flow.

8.135 A small swimming pool is drained using a garden hose.
The hose has 20 mm inside diameter, a roughness height
of 0.2 mm, and is 30 m long. The free end of the hose is
located 3 m below the elevation of the bottom of the pool.
The average velocity at the hose discharge is 1.2 m/s. Esti-
mate the depth of the water in the swimming pool. If the flow
were inviscid, what would be the velocity?

8.136 When you drink you beverage with a straw, you need
to overcome both gravity and friction in the straw. Estimate
the fraction of the total effort you put into quenching
your thirst of each factor, making suitable assumptions about
the liquid and straw properties, and your drinking rate (for
example, how long it would take you to drink a 12-oz drink if
you drank it all in one go (quite a feat with a straw). Is the
flow laminar or turbulent? (Ignore minor losses.)

Solution of Pipe Flow Problems

8.137 The hose in Problem 8.135 is replaced with a larger-
diameter hose, diameter 25 mm (same length and rough-
ness). Assuming a pool depth of 1.5 m, what will be the new
average velocity and flow rate?

8.138 What flow rate (gpm) will be produced in a 75-mm-
diameter water pipe for which there is a pressure drop of 425
kPa over a 200-m length? The pipe roughness is 2.5 mm. The
water is at 0�C.

8.139 A compressed air drill requires 0.25 kg/s of air at 650
kPa (gage) at the drill. The hose from the air compressor
to the drill is 40 mm inside diameter. The maximum com-
pressor discharge gage pressure is 670 kPa; air leaves the
compressor at 40�C. Neglect changes in density and any
effects of hose curvature. Calculate the longest hose that may
be used.

8.140 You recently bought a house and want to improve the
flow rate of water on your top floor. The poor flow rate is due
to three reasons: The city water pressure at the water meter
is poor (p5 200 kPa gage); the piping has a small diameter
(D5 1.27 cm) and has been crudded up, increasing its
roughness (e/D5 0.05); and the top floor of the house is 15 m
higher than the water meter. You are considering two
options to improve the flow rate: Option 1 is replacing all the
piping after the water meter with new smooth piping with a
diameter of 1.9 cm; and option 2 is installing a booster pump
while keeping the original pipes. The booster pump has an
outlet pressure of 300 kPa. Which option would be more
effective? Neglect minor losses.

p = 200 kPa p = 200 kPa
p = 300 kPa

7 m 7 m

15 m

1 m
D = 1.9 cm

e/D = 0
D = 1.27 cm
e/D = 0.05

Booster
pump

Option 1 Option 2

Water
meter

Water
meter

15 m

1 m
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8.141 The students of Phi Gamma Delta are putting a kiddy
pool on a porch attached to the second story of their house
and plan to fill it with water from a garden hose. The kiddy
pool has a diameter of 5 ft, and is 2.5 ft deep. The porch is 18
ft above the faucet. The garden hose is very smooth on the
inside, has a length of 50 ft, and a diameter of 5/8 in. If
the water pressure at the faucet is 60 psi, how long will it take
to fill the pool? Neglect minor losses.

8.142 Gasoline flows in a long, underground pipeline at a
constant temperature of 15�C. Two pumping stations at the
same elevation are located 13 km apart. The pressure drop
between the stations is 1.4 MPa. The pipeline is made from
0.6-m-diameter pipe. Although the pipe is made from com-
mercial steel, age and corrosion have raised the pipe
roughness to approximately that for galvanized iron. Com-
pute the volume flow rate.

8.143 Water flows steadily in a horizontal 125-mm-diameter
cast-iron pipe. The pipe is 150 m long and the pressure drop
between sections 1 and 2 is 150 kPa. Find the volume flow
rate through the pipe.

8.144 Water flows steadily in a 125-mm-diameter cast-iron
pipe 150 m long. The pressure drop between sections 1
and 2 is 150 kPa, and section 2 is located 15 m above
section 1 . Find the volume flow rate.

8.145 Two open standpipes of equal diameter are connected
by a straight tube, as shown. Water flows by gravity from one
standpipe to the other. For the instant shown, estimate the
rate of change of water level in the left standpipe.

V

Δh = 2.5 m

d = 75 mm
e = 0.3 mm

L = 4 m

Water

Water

1

2

D = 0.75 mD = 0.75 m

_
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8.146 Two galvanized iron pipes of diameter D are con-
nected to a large water reservoir, as shown. Pipe A has length
L and pipe B has length 2L. Both pipes discharge to atmo-
sphere. Which pipe will pass the larger flow rate? Justify
(without calculating the flow rate in each pipe). Compute the
flow rates if H5 10 m, D5 50 mm, and L5 10 m.

H

DD

2LL

Pipe A Pipe B

P8.146, P8.161

8.147 Galvanized iron drainpipes of diameter 50 mm are
located at the four corners of a building, but three of them
become clogged with debris. Find the rate of downpour (cm/
min) at which the single functioning drainpipe can no longer
drain the roof. The building roof area is 500 m2, and the
height is 5 m. Assume the drainpipes are the same height as
the building, and that both ends are open to atmosphere.
Ignore minor losses.

8.148 Amining engineer plans to do hydraulic mining with a
high-speed jet of water. A lake is located H5 300 m above
the mine site. Water will be delivered through L5 900 m of
fire hose; the hose has inside diameter D5 75 mm and
relative roughness e/D5 0.01. Couplings, with equivalent
length Le5 20 D, are located every 10 m along the hose. The
nozzle outlet diameter is d5 25 mm. Its minor loss coeffi-
cient is K5 0.02 based on outlet velocity. Estimate the
maximum outlet velocity that this system could deliver.
Determine the maximum force exerted on a rock face by this
water jet.

8.149 Investigate the effect of tube roughness on flow rate
by computing the flow generated by a pressure difference
Δp5 100 kPa applied to a length L5 100 m of tubing, with
diameter D5 25 mm. Plot the flow rate against tube relative
roughness e/D for e/D ranging from 0 to 0.05 (this could
be replicated experimentally by progressively roughening
the tube surface). Is it possible that this tubing could be
roughened so much that the flow could be slowed to a
laminar flow rate?

8.150 Investigate the effect of tube length on water flow rate
by computing the flow generated by a pressure difference
Δp5 100 kPa applied to a length L of smooth tubing, of
diameter D5 25 mm. Plot the flow rate against tube length
for flow ranging from low speed laminar to fully turbulent.

8.151 For the pipe flow into a reservoir of Example 8.5
consider the effect of pipe roughness on flow rate, assuming
the pressure of the pump is maintained at 153 kPa. Plot the
flow rate against pipe roughness ranging from smooth (e5 0)
to very rough (e5 3.75 mm). Also consider the effect of pipe
length (again assuming the pump always produces 153 kPa)
for smooth pipe. Plot the flow rate against pipe length for
L5 100 m through L5 1000 m.

8.152 Water for a fire protection system is supplied from a
water tower through a 150-mm cast-iron pipe.A pressure gage
at a fire hydrant indicates 600 kPa when no water is flowing.
The total pipe length between the elevated tank and the
hydrant is 200 m. Determine the height of the water tower
above the hydrant. Calculate the maximum volume flow rate
that can be achievedwhen the system is flushed by opening the
hydrant wide (assume minor losses are 10 percent of major
losses at this condition). When a fire hose is attached to the
hydrant, the volume flow rate is 0.75 m3/min. Determine
the reading of the pressure gage at this flow condition.

8.153 The siphon shown is fabricated from 50-mm-i.d.
drawn aluminum tubing. The liquid is water at 15�C. Com-
pute the volume flow rate through the siphon. Estimate the
minimum pressure inside the tube.

0.6 m

2.5 m

R = 0.45 m
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8.154 A large open water tank has a horizontal cast iron
drainpipe of diameter D5 1 in. and length L5 2 ft attached
at its base. If the depth of water is h5 3 ft, find the flow rate
(gpm) if the pipe entrance is (a) reentrant, (b) square-edged,
and (c) rounded (r5 0.2 in.).

8.155 Repeat Problem 8.154, except now the pipe is vertical,
as shown.

L

h

D

P8.155

8.156 A tank containing 30 m3 of kerosene is to be emptied
by a gravity feed using a drain hose of diameter 15 mm,
roughness 0.2 mm, and length 1 m. The top of the tank is
open to the atmosphere and the hose exits to an open
chamber. If the kerosene level is initially 10 m above the
drain exit, estimate (by assuming steady flow) the initial
drainage rate. Estimate the flow rate when the kerosene level
is down to 5 m, and then down to 1 m. Based on these three
estimates, make a rough estimate of the time it took to drain
to the 1-m level.

416 Chapter 8 Internal Incompressible Viscous Flow



8.157 Consider again the Roman water supply discussed in
Example 8.10. Assume that the 50 ft length of horizontal
constant-diameter pipe required by law has been installed.
The relative roughness of the pipe is 0.01. Estimate the flow
rate of water delivered by the pipe under the inlet conditions
of the example. What would be the effect of adding the same
diffuser to the end of the 50 ft pipe?

8.158 You are watering your lawn with an old hose. Because
lime deposits have built up over the years, the 0.75-in.-i.d.
hose now has an average roughness height of 0.022 in. One
50-ft length of the hose, attached to your spigot, delivers
15 gpm of water (60�F). Compute the pressure at the spigot,
in psi. Estimate the delivery if two 50-ft lengths of the hose
are connected. Assume that the pressure at the spigot varies
with flow rate and the water main pressure remains constant
at 50 psig.

8.159 In Example 8.10 we found that the flow rate from a
water main could be increased (by as much as 33 percent)
by attaching a diffuser to the outlet of the nozzle installed
into the water main. We read that the Roman water
commissioner required that the tube attached to the noz-
zle of each customer’s pipe be the same diameter for at
least 50 feet from the public water main. Was the com-
missioner overly conservative? Using the data of the
problem, estimate the length of pipe (with e/D5 0.01) at
which the system of pipe and diffuser would give a flow
rate equal to that with the nozzle alone. Plot the volume
flow ratio Q/Qi as a function of L/D, where L is the
length of pipe between the nozzle and the diffuser, Qi is
the volume flow rate for the nozzle alone, and Q is the
actual volume flow rate with the pipe inserted between
nozzle and diffuser.

8.160 Your boss, from the “old school,” claims that for pipe
flow the flow rate, Q~

ffiffiffiffiffiffiffi
Δp

p
, where Δp is the pressure dif-

ference driving the flow. You dispute this, so perform some
calculations. You take a 1-in.-diameter commercial steel pipe
and assume an initial flow rate of 1.25 gal/min of water. You
then increase the applied pressure in equal increments and
compute the new flow rates so you can plot Q versus Δp, as
computed by you and your boss. Plot the two curves on the
same graph. Was your boss right?

8.161 For Problem 8.146, what would the diameter of the
pipe of length 2L need to be to generate the same flow as
the pipe of length L?

8.162 A hydraulic press is powered by a remote high-
pressure pump. The gage pressure at the pump outlet is 3000
psi, whereas the pressure required for the press is 2750 psi
(gage), at a flow rate of 0.02 ft3/s. The press and pump are
connected by 165 ft of smooth, drawn steel tubing. The fluid
is SAE 10W oil at 100�F. Determine the minimum tubing
diameter that may be used.

8.163 A pump is located 4.5 m to one side of, and 3.5 m
above a reservoir. The pump is designed for a flow rate of
6 L/s. For satisfactory operation, the static pressure at the
pump inlet must not be lower than 26 m of water gage.
Determine the smallest standard commercial steel pipe that
will give the required performance.

90°
elbows

Pump4.5 mm

3.5 m

Q = 6 L/s

Water
5°C
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8.164 Determine the minimum size smooth rectangular duct
with an aspect ratio of 3 that will pass 1 m3/s of 10�C air with
a head loss of 25 mm of water per 100 m of duct.

8.165 A new industrial plant requires a water flow rate of 5.7
m3/min. The gage pressure in the water main, located in the
street 50 m from the plant, is 800 kPa. The supply line will
require installation of 4 elbows in a total length of 65 m. The
gage pressure required in the plant is 500 kPa. What size
galvanized iron line should be installed?

8.166 Air at 40�F flows in a horizontal square cross-section
duct made from commercial steel. The duct is 1000 ft long.
What size (length of a side) duct is required to convey 1500
cfm of air with a pressure drop of 0.75 in. H2O?

8.167 Investigate the effect of tube diameter on water flow
rate by computing the flow generated by a pressure differ-
ence, Δp 5 100 kPa, applied to a length L 5 100 m of
smooth tubing. Plot the flow rate against tube diameter for a
range that includes laminar and turbulent flow.

8.168 What diameter water pipe is required to handle 0.075
m3/s and a 500 kPa pressure drop? The pipe length is 175 m,
and roughness is 2.5 mm.

8.169 A large reservoir supplies water for a community. A
portion of the water supply system is shown. Water is
pumped from the reservoir to a large storage tank before
being sent on to the water treatment facility. The system is
designed to provide 1310 L/s of water at 20�C. From B to C
the system consists of a square-edged entrance, 760 m of
pipe, three gate valves, four 45� elbows, and two 90�

elbows. Gage pressure at C is 197 kPa. The system
between F and G contains 760 m of pipe, two gate valves,
and four 90� elbows. All pipe is 508 mm diameter, cast
iron. Calculate the average velocity of water in the pipe,
the gage pressure at section F, the power input to the
pump (its efficiency is 80 percent), and the wall shear stress
in section FG.

Pump z = 104 m
H

G
FC

z = 91 m

z = 152 m

z = 174 m

B

A
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8.170 An air-pipe friction experiment consists of a smooth
brass tube with 63.5 mm inside diameter; the distance
between pressure taps is 1.52 m. The pressure drop is indi-
cated by a manometer filled with Meriam red oil. The cen-
terline velocity U is measured with a pitot cylinder. At one
flow condition, U 5 23:1 m=s and the pressure drop is
12.3 mm of oil. For this condition, evaluate the Reynolds
number based on average flow velocity. Calculate the friction
factor and compare with the value obtained from Eq. 8.37
(use n5 7 in the power-law velocity profile).

*8.171 Oil has been flowing from a large tank on a hill to a
tanker at the wharf. The compartment in the tanker is nearly
full and an operator is in the process of stopping the flow. A
valve on the wharf is closed at a rate such that 1 MPa is
maintained in the line immediately upstream of the valve.
Assume:

Length of line from tank to valve 3 km
Inside diameter of line 200 mm
Elevation of oil surface in tank 60 m
Elevation of valve on wharf 6 m
Instantaneous flow rate 2.5 m3/min
Head loss in line (exclusive of valve being
closed) at this rate of flow

23 m of oil

Specific gravity of oil 0.88

Calculate the initial instantaneous rate of change of volume
flow rate.

*8.172 Problem 8.171 describes a situation in which flow in a
long pipeline from a hilltop tank is slowed gradually to avoid
a large pressure rise. Expand this analysis to predict and plot
the closing schedule (valve loss coefficient versus time)
needed to maintain the maximum pressure at the valve at or
below a given value throughout the process of stopping the
flow from the tank.

8.173 A pump draws water at a steady flow rate of 25 lbm/s
through a piping system. The pressure on the suction side
of the pump is22.5 psig. The pump outlet pressure is 50 psig.
The inlet pipe diameter is 3 in.; the outlet pipe diameter is
2 in. The pump efficiency is 70 percent. Calculate the power
required to drive the pump.

8.174 The pressure rise across a water pump is 35 psi when
the volume flow rate is 500 gpm. If the pump efficiency is 80
percent, determine the power input to the pump.

8.175 A 125-mm-diameter pipeline conveying water at 10�C
contains 50 m of straight galvanized pipe, 5 fully open gate
valves, 1 fully open angle valve, 7 standard 90� elbows, 1
square-edged entrance from a reservoir, and 1 free discharge.
The entrance conditions are p15 150 kPa and z15 15 m, and
exit conditions are p25 0 kPa and z25 30 m. A centrifugal
pump is installed in the line to move the water. What pres-
sure rise must the pump deliver so that the volume flow rate
will be Q5 50 L/s?

8.176 Cooling water is pumped from a reservoir to rock
drills on a construction job using the pipe system shown. The
flow rate must be 600 gpm and water must leave the spray
nozzle at 120 ft/s. Calculate the minimum pressure needed at

the pump outlet. Estimate the required power input if the
pump efficiency is 70 percent.

Gate valve, open

Pump

Pipe, D = 4 in.
(aluminum)

Total length: L = 700 ft
Joints: 15, each with

Kjoint = 1

Vj = 120 ft/s

400 ft

P8.176

8.177 You are asked to size a pump for installation in
the water supply system of the Willis Tower (formerly the
Sears Tower) in Chicago. The system requires 100 gpm of
water pumped to a reservoir at the top of the tower 340 m
above the street. City water pressure at the street-level pump
inlet is 400 kPa (gage). Piping is to be commercial steel.
Determine the minimum diameter required to keep the
average water velocity below 3.5 m/s in the pipe. Calculate
the pressure rise required across the pump. Estimate the
minimum power needed to drive the pump.

8.178 Air conditioning on a university campus is provided by
chilled water (10�C) pumped through a main supply pipe.
The pipe makes a loop 5 km in length. The pipe diameter is
0.75 m and the material is steel. The maximum design
volume flow rate is 0.65 m3/s. The circulating pump is driven
by an electric motor. The efficiencies of pump and motor are
ηp5 85 percent and ηm5 85 percent, respectively. Electricity
cost is 14b/(kW � hr). Determine (a) the pressure drop, (b)
the rate of energy addition to the water, and (c) the daily cost
of electrical energy for pumping.

8.179 A fire nozzle is supplied through 100 m of 3.5-cm-
diameter, smooth, rubber-lined hose. Water from a hydrant
is supplied to a booster pump on board the pumper truck at
350 kPa (gage). At design conditions, the pressure at the
nozzle inlet is 700 kPa (gage), and the pressure drop along
the hose is 750 kPa per 100 m of length. Determine (a) the
design flow rate, (b) the nozzle exit velocity, assuming no
losses in the nozzle, and (c) the power required to drive the
booster pump, if its efficiency is 70 percent.

8.180 Heavy crude oil (SG5 0.925 and ν 5 1.0 3 1024m2/s)
is pumped through a pipeline laid on flat ground. The line is
made from steel pipe with 600 mm i.d. and has a wall
thickness of 12 mm. The allowable tensile stress in the pipe
wall is limited to 275 MPa by corrosion considerations. It is
important to keep the oil under pressure to ensure that gases
remain in solution. The minimum recommended pressure
is 500 kPa. The pipeline carries a flow of 400,000 barrels
(in the petroleum industry, a “barrel” is 42 gal) per day.
Determine the maximum spacing between pumping stations.
Compute the power added to the oil at each pumping station.

8.181 The volume flow rate through a water fountain on a
college campus is 0.075 m3/s. Each water stream can rise to a
height of 10 m. Estimate the daily cost to operate the

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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fountain. Assume that the pump motor efficiency is 85 per-
cent, the pump efficiency is 85 percent, and the cost of
electricity is 14b/(kW � hr).
8.182 Petroleum products are transported over long dis-
tances by pipeline, e.g., the Alaskan pipeline (see Example
8.6). Estimate the energy needed to pump a typical petro-
leum product, expressed as a fraction of the throughput
energy carried by the pipeline. State and critique your
assumptions clearly.

8.183 The pump testing system of Problem 8.128 is run with
a pump that generates a pressure difference given by Δp 5

7502 153 104Q2 where Δp is in kPa, and the generated flow
rate is Q m3/s. Find the water flow rate, pressure difference,
and power supplied to the pump if it is 70 percent efficient.

8.184 A water pump can generate a pressure difference
Δp (psi) given by Δp5 1452 0.1 Q2, where the flow rate is
Q ft3/s. It supplies a pipe of diameter 20 in., roughness 0.5 in.,
and length 2500 ft. Find the flow rate, pressure difference,
and the power supplied to the pump if it is 70 percent effi-
cient. If the pipe were replaced with one of roughness
0.25 in., how much would the flow increase, and what would
the required power be?

8.185 A square cross-section duct (0.35 m 3 0.35 m 3 175
m) is used to convey air (ρ5 1.1 kg/m3) into a clean room in
an electronics manufacturing facility. The air is supplied by a
fan and passes through a filter installed in the duct. The duct
friction factor is f5 0.003, the filter has a loss coefficient of
K5 3. The fan performance is given by Δp5 22502 250Q2
150Q2, where Δp (Pa) is the pressure generated by the fan
at flow rate Q (m3/s). Determine the flow rate delivered to
the room.

8.186 The head versus capacity curve for a certain fan may
be approximated by the equation H 5 302 1027Q2, where
H is the output static head in inches of water and Q is the air
flow rate in ft3/min. The fan outlet dimensions are 8 3 16 in.
Determine the air flow rate delivered by the fan into a 200 ft
straight length of 8 3 16 in. rectangular duct.

*8.187 The water pipe system shown is constructed from
galvanized iron pipe. Minor losses may be neglected. The
inlet is at 400 kPa (gage), and all exits are at atmospheric
pressure. Find the flow rates Q0, Q1, Q2, Q3, and Q4.

L0 = 400 m
D0 = 75 mm

L1 = 300 m
D1 = 50 mm

L2 = 150 m
D2 = 50 mm

L3 = 150 m
D3 = 35 mm

L4 = 100 m
D4 = 75 mm

Q0

Q3

Q1

Q2

P8.187, P8.188

*8.188 Find flow rates Q0, Q1, Q2, andQ4 if pipe 3 becomes
blocked.

*8.189 A cast-iron pipe system consists of a 500-ft section of
water pipe, after which the flow branches into two 300-ft
sections. The two branches then meet in a final 250-ft section.

Minor losses may be neglected. All sections are 1.5-in. diam-
eter, except one of the two branches, which is 1-in. diameter.
If the applied pressure across the system is 100 psi, find
the overall flow rate and the flow rates in each of the two
branches.

*8.190 A swimming pool has a partial-flow filtration system.
Water at 75�F is pumped from the pool through the system
shown. The pump delivers 30 gpm. The pipe is nominal 3/4-
in. PVC (i.d.5 0.824 in.). The pressure loss through the filter
is approximately Δp 5 0:6Q2, where Δp is in psi and Q is in
gpm. Determine the pump pressure and the flow rate
through each branch of the system.

Filter patm

Total length:
40 ft

Total length:
20 ft

10'
From

pool

P8.190

8.191 Why does the shower temperature change when a
toilet is flushed? Sketch pressure curves for the hot and cold
water supply systems to explain what happens.

Flow Meters

8.192 A square-edged orifice with corner taps and a water
manometer are used to meter compressed air. The following
data are given:

Inside diameter of air line 150 mm
Orifice plate diameter 100 mm
Upstream pressure 600 kPa
Temperature of air 25�C
Manometer deflection 750 mm

H2O

Calculate the volume flow rate in the line, expressed in cubic
meters per hour.

8.193 Water at 65�C flows through a 75-mm-diameter orifice
installed in a 150-mm-i.d. pipe. The flow rate is 20 L/s.
Determine the pressure difference between the corner taps.

8.194 A smooth 200-m pipe, 100 mm diameter connects two
reservoirs (the entrance and exit of the pipe are sharp-
edged). At the midpoint of the pipe is an orifice plate with
diameter 40 mm. If the water levels in the reservoirs differ by
30 m, estimate the pressure differential indicated by the
orifice plate and the flow rate.

8.195 A venturi meter with a 3-in.-diameter throat is placed
in a 6-in.-diameter line carrying water at 75�F. The pressure
drop between the upstream tap and the venturi throat is 12 in.
of mercury. Compute the rate of flow.

8.196 Consider a horizontal 2 in. 3 1 in. venturi with water
flow. For a differential pressure of 25 psi, calculate the
volume flow rate (gpm).

8.197 Gasoline flows through a 2 3 1 in. venturi meter. The
differential pressure is 380 mm of mercury. Find the volume
flow rate.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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8.198 Air flows through the venturi meter described in
Problem 8.195. Assume that the upstream pressure is 60 psi,
and that the temperature is everywhere constant at 68�F.
Determine the maximum possible mass flow rate of air for
which the assumption of incompressible flow is a valid
engineering approximation. Compute the corresponding
differential pressure reading on a mercury manometer.

8.199 Air flow rate in a test of an internal combustion
engine is to be measured using a flow nozzle installed in a
plenum. The engine displacement is 1.6 liters, and its max-
imum operating speed is 6000 rpm. To avoid loading the
engine, the maximum pressure drop across the nozzle should
not exceed 0.25 m of water. The manometer can be read to
60.5 mm of water. Determine the flow nozzle diameter
that should be specified. Find the minimum rate of air flow
that can be metered to 62 percent using this setup.

8.200 Water at 10�C flows steadily through a venturi. The
pressure upstream from the throat is 200 kPa (gage). The throat
diameter is 50 mm; the upstream diameter is 100 mm. Estimate
themaximumflowrate thisdevicecanhandlewithoutcavitation.

8.201 Derive Eq. 8.42, the pressure loss coefficient for a
diffuser assuming ideal (frictionless) flow.

8.202 Consider a flow nozzle installation in a pipe. Apply
the basic equations to the control volume indicated, to show
that the permanent head loss across the meter can be
expressed, in dimensionless form, as the head loss coefficient,

Cl 5
p1 2p3
p1 2p2

5
12A2=A1

11A2=A1

Plot Cl as a function of diameter ratio, D2/D1.

321

Flow CV
y

x

P8.202

8.203 Drinking straws are to be used to improve the air flow
in a pipe-flow experiment. Packing a section of the air pipe
with drinking straws to form a “laminar flow element” might
allow the air flow rate to be measured directly, and simul-
taneously would act as a flow straightener. To evaluate this
idea, determine (a) the Reynolds number for flow in each
drinking straw, (b) the friction factor for flow in each straw,
and (c) the gage pressure at the exit from the drinking
straws. (For laminar flow in a tube, the entrance loss coef-
ficient is Kent 5 1:4 and α 5 2:0.) Comment on the utility of
this idea.

Straws (d = 3 mm)

L = 230 mm D = 63.5 mm

Q = 100 m3/hr

P8.203

8.204 In some western states, water for mining and irriga-
tion was sold by the “miner’s inch,” the rate at which water
flows through an opening in a vertical plank of 1 in.2 area, up
to 4 in. tall, under a head of 6 to 9 in. Develop an equation to
predict the flow rate through such an orifice. Specify clearly
the aspect ratio of the opening, thickness of the plank, and
datum level for measurement of head (top, bottom, or
middle of the opening). Show that the unit of measure varies
from 38.4 (in Colorado) to 50 (in Arizona, Idaho, Nevada,
and Utah) miner’s inches equal to 1 ft3/s.

8.205 The volume flow rate in a circular duct may be
measured by “pitot traverse,” i.e., by measuring the velocity
in each of several area segments across the duct, then sum-
ming. Comment on the way such a traverse should be set up.
Quantify and plot the expected error in measurement of flow
rate as a function of the number of radial locations used in
the traverse.
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External flows are flows over bodies immersed in an unbounded fluid. The flow over a
sphere (Fig. 2.14b) and the flow over a streamlined body (Fig. 2.16) are examples of
external flows, which were discussed qualitatively in Chapter 2. More interesting
examples are the flow fields around such objects as airfoils (Fig. 9.1), automobiles, and
airplanes. Our objective in this chapter is to quantify the behavior of viscous,
incompressible fluids in external flow.

A number of phenomena that occur in external flow over a body are illustrated in the
sketch of viscous flow at high Reynolds number over an airfoil (Fig. 9.1). The freestream
flow divides at the stagnation point and flows around the body. Fluid at the surface takes
on thevelocity of thebodyas a result of theno-slip condition.Boundary layers formonboth
theupper and lower surfacesof thebody. (Theboundary-layer thicknessonboth surfaces in
Fig. 9.1 is exaggerated greatly for clarity.) The flow in the boundary layers initially is

Case Study in Energy and the Environment

Wind Power: The Magenn Air
Rotor System (MARS)

In Chapter 8’s Case Study in Energy and the
Environment, we looked at an alternative to the three-
bladed wind turbine farms that are cropping up all over
theworld. In this Case Studywe look at a second unique
idea for wind power, the Magenn Air Rotor System
(MARS). Magenn Power is a company that’s been in
business several decades and that began designing the
Magnus Spherical Airship in 1978. The founder of
Magenn Power, Fred Ferguson, patented the Magnus
Airship in the 1980s. This unique airship generates extra
lift due to the Magnus effect. We will discuss the Mag-
nus effect in this chapter, but for now we simply state
that the effect is one in which a lift force is generated
whenever a sphere or cylinder rotates in a cross flow;
the classic example is in golf, where a ball hit with
backspin will travel much further due to the lift gener-
ated by the spin. The airship was a large spherical
envelope filled with helium to achieve static, buoyant
lift. It was designed to rotate as it moved so that
Magnus lift was generated. With Magnus lift, as we’ll
learn in this chapter, the faster the spin or the vehicle’s
forward motion, the larger the Magnus lift.
The MARS shown in the rendering is a high-altitude

lighter-than-air, tethered device that rotates about a
horizontal axis in response to wind; it is essentially
a horizontal-axis Savonius type of wind turbine (see
Figure P9.97 in the problem set). Buoyancy is provided
by the helium contained in the device, but its rotation
also generates lift via the Magnus effect. The extra lift
allows the device to be stabilized in flight, keeping it
precisely located, and prevents downwind drift on its
tether; the stronger the wind is, the greater the
Magnus lift. Rotation of the MARS drives a generator
inside the device, and the electrical power travels
down the tether to a transformer at a ground station.

The MARS has a number of advantages over con-
ventional three-blade wind turbines. Magenn Power
believes it will develop power less expensively and will
have time-averaged output much closer to its rated
capacity than the capacity factor typical with conven-
tional designs; it is also operable over a wide range of
wind speeds (2 m/s to greater than about 30 m/s).
It’s thought the efficiency will be 25 to 60 percent.
MARS wind farms could be placed closer to demand
centers than conventional wind turbines, reducing
power transmission line initial costs and operation
losses. The devices can be raised to a high altitude,
where the winds are stronger; altitudes from about
100 m to about 300 m above ground level are possible,
without having to build expensive infrastructure. MARS
are mobile, and could be very useful in emergency
situations and in disaster relief. The 10 to 25 kW pro-
totype shown in the figure is now undergoing tests.

An example of the MARS device (Picture courtesy of Magenn Power)
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laminar. Transition to turbulent flow occurs at some distance from the stagnation point,
depending on freestream conditions, surface roughness, and pressure gradient. The
transition points are indicated by “T” in the figure. The turbulent boundary layer fol-
lowing transition grows more rapidly than the laminar layer. A slight displacement of the
streamlines of the external flow is caused by the thickening boundary layers on the sur-
face. In a region of increasing pressure (an adverse pressure gradient—so called because it
opposes the fluid motion, tending to decelerate the fluid particles) flow separation may
occur. Separation points are indicated by “S” in the figure. Fluid that was in the boundary
layers on the body surface forms the viscous wake behind the separation points.

This chapter has two parts. PartA is a review of boundary-layer flows.Herewe discuss
in a littlemoredetail the ideas introduced inChapter 2, and thenapply thefluidmechanics
concepts we have learned to analyze the boundary layer for flow along a flat plate—the
simplest possible boundary layer, because the pressure field is constant. We will be
interested in seeing how the boundary-layer thickness grows, what the surface friction
will be, and so on. We will explore a classic analytical solution for a laminar boundary
layer, and see that we need to resort to approximate methods when the boundary layer
is turbulent (and we will also be able to use these approximate methods for laminar
boundary layers, to avoid using the somewhat difficult analytical method). This will
conclude our introduction to boundary layers, except we will briefly discuss the effect of
pressure gradients (present for all body shapes except flat plates) on boundary-layer
behavior.

In Part B we will discuss the force on a submerged body, such as the airfoil of
Fig. 9.1. We will see that this force results from both shear and pressure forces acting
on the body surface, and that both of these are profoundly affected by the fact that we
have a boundary layer, especially when this causes flow separation and a wake.
Traditionally the force a body experiences is decomposed into the component parallel
to the flow, the drag, and the component perpendicular to the flow, the lift. Because
most bodies do have a point of separation and a wake, it is difficult to use analysis to
determine the force components, so we will present approximate analyses and
experimental data for various interesting body shapes.

Part A Boundary Layers

9.1The Boundary-Layer Concept
The concept of a boundary layer was first introduced by Ludwig Prandtl [1], a German
aerodynamicist, in 1904.

LBL

LBL
TBL

TBL
T

T

S

S
Viscous wake

Streamlines

Stagnation point

U–Uniform velocity field upstream

LBL– Laminar boundary layer
TBL– Turbulent boundary layer

T– Transition
S– Separation point

Airfoil

Fig. 9.1 Details of viscous flow around an airfoil.

VIDEO

Flow around an Airfoil.

VIDEO

Flow Separation on an Airfoil.
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Prior to Prandtl’s historic breakthrough, the science of fluid mechanics had been
developing in two rather different directions. Theoretical hydrodynamics evolved
from Euler’s equation of motion for a nonviscous fluid (Eq. 6.1, published by Leon-
hard Euler in 1755). Since the results of hydrodynamics contradicted many experi-
mental observations (especially, as we saw in Chapter 6, that under the assumption of
inviscid flow no bodies experience drag!), practicing engineers developed their own
empirical art of hydraulics. This was based on experimental data and differed sig-
nificantly from the purely mathematical approach of theoretical hydrodynamics.

Although the complete equations describing the motion of a viscous fluid (the
Navier�Stokes equations, Eqs. 5.26, developed by Navier, 1827, and independently by
Stokes, 1845) were known prior to Prandtl, the mathematical difficulties in solving
these equations (except for a few simple cases) prohibited a theoretical treatment of
viscous flows. Prandtl showed [1] that many viscous flows can be analyzed by dividing
the flow into two regions, one close to solid boundaries, the other covering the rest
of the flow. Only in the thin region adjacent to a solid boundary (the boundary layer)
is the effect of viscosity important. In the region outside of the boundary layer, the
effect of viscosity is negligible and the fluid may be treated as inviscid.

The boundary-layer concept provided the link that had been missing between
theory and practice (for one thing, it introduced the theoretical possibility of drag!).
Furthermore, the boundary-layer concept permitted the solution of viscous flow
problems that would have been impossible through application of the Navier�Stokes
equations to the complete flow field.1 Thus the introduction of the boundary-layer
concept marked the beginning of the modern era of fluid mechanics.

The development of a boundary layer on a solid surface was discussed in Section 2.6. In
the boundary layer both viscous and inertia forces are important. Consequently, it is not
surprising that the Reynolds number (which represents the ratio of inertia to viscous
forces) is significant in characterizing boundary-layer flows. The characteristic length used
in the Reynolds number is either the length in the flow direction over which the boundary
layer has developed or some measure of the boundary-layer thickness.

As is true for flow in a duct, flow in a boundary layer may be laminar or turbulent.
There is no unique value of Reynolds number at which transition from laminar to
turbulent flow occurs in a boundary layer. Among the factors that affect boundary-
layer transition are pressure gradient, surface roughness, heat transfer, body forces,
and freestream disturbances. Detailed consideration of these effects is beyond the
scope of this book.

In many real flow situations, a boundary layer develops over a long, essentially flat
surface. Examples include flow over ship and submarine hulls, aircraft wings, and
atmospheric motions over flat terrain. Since the basic features of all these flows
are illustrated in the simpler case of flow over a flat plate, we consider this first.
The simplicity of the flow over an infinite flat plate is that the velocity U outside the
boundary layer is constant, and therefore, because this region is steady, inviscid, and
incompressible, the pressure will also be constant. This constant pressure is the
pressure felt by the boundary layer—obviously the simplest pressure field possible.
This is a zero pressure gradient flow.

A qualitative picture of the boundary-layer growth over a flat plate is shown in
Fig. 9.2. The boundary layer is laminar for a short distance downstream from
the leading edge; transition occurs over a region of the plate rather than at a single
line across the plate. The transition region extends downstream to the location where
the boundary-layer flow becomes completely turbulent.

For incompressible flow over a smooth flat plate (zero pressure gradient), in the
absence of heat transfer, transition from laminar to turbulent flow in the boundary
layer can be delayed to a Reynolds number, Rex 5 ρUx/μ, greater than one million if

1Today, computer solutions of the Navier�Stokes equations are common.
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external disturbances are minimized. (The length x is measured from the leading
edge.) For calculation purposes, under typical flow conditions, transition usually is
considered to occur at a length Reynolds number of 500,000. For air at standard
conditions, with freestream velocity U 5 30 m/s, this corresponds to x � 0.24 m. In the
qualitative picture of Fig. 9.2, we have shown the turbulent boundary layer growing
faster than the laminar layer. In later sections of this chapter we shall show that this is
indeed true.

In the next section we discuss various ways to quantify the thickness of a boundary
layer.

9.2Boundary-Layer Thicknesses
The boundary layer is the region adjacent to a solid surface in which viscous stresses are
present, as opposed to the free stream where viscous stresses are negligible. These
stresses are present because we have shearing of the fluid layers, i.e., a velocity gra-
dient, in the boundary layer. As indicated in Fig. 9.2, both laminar and turbulent
layers have such gradients, but the difficulty is that the gradients only asymptotically
approach zero as we reach the edge of the boundary layer. Hence, the location of the
edge, i.e., of the boundary-layer thickness, is not very obvious—we cannot simply
define it as where the boundary-layer velocity u equals the freestream velocity U.
Because of this, several boundary-layer definitions have been developed: the dis-
turbance thickness δ, the displacement thickness δ*, and the momentum thickness θ.
(Each of these increases as we move down the plate, in a manner we have yet to
determine.)

The most straightforward definition is the disturbance thickness, δ. This is usually
defined as the distance from the surface at which the velocity is within 1 percent of the
free stream, u � 0.99U (as shown in Fig. 9.3b). The other two definitions are based on
the notion that the boundary layer retards the fluid, so that the mass flux and
momentum flux are both less than they would be in the absence of the boundary layer.
We imagine that the flow remains at uniform velocity U, but the surface of the plate is
moved upwards to reduce either the mass or momentum flux by the same amount that
the boundary layer actually does. The displacement thickness, δ*, is the distance the
plate would be moved so that the loss of mass flux (due to reduction in uniform flow
area) is equivalent to the loss the boundary layer causes. The mass flux if we had no
boundary layer would be

RN
0 ρU dy w, where w is the width of the plate perpendicular

to the flow. The actual flow mass flux is
RN
0 ρu dy w. Hence, the loss due to the

boundary layer is
RN
0 ρðU2 uÞ dy w. If we imagine keeping the velocity at a constant

U, and instead move the plate up a distance δ* (as shown in Fig. 9.3a), the loss of mass
flux would be ρUδ* w. Setting these losses equal to one another gives

ρUδ*w 5

Z N

0

ρðU2 uÞ dy w

U

U

U

Laminar
Transition

Turbulent

Fig. 9.2 Boundary layer on a flat plate (vertical thickness exaggerated greatly). VIDEO

Laminar and Turbulent Boundary Layers.

VIDEO

Growth of the Boundary Layer.

VIDEO

Effect of Viscosity on Boundary Layer

Growth.
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For incompressible flow, ρ 5 constant, and

δ* 5

Z N

0

12
u

U

� �
dy �

Z δ

0

12
u

U

� �
dy ð9:1Þ

Since u � U at y 5 δ, the integrand is essentially zero for y $ δ. Application of the
displacement-thickness concept is illustrated in Example 9.1.

The momentum thickness, θ, is the distance the plate would be moved so that the
loss of momentum flux is equivalent to the loss the boundary layer actually causes.
The momentum flux if we had no boundary layer would be

RN
0 ρuU dy w (the actual

mass flux is
RN
0 ρu dy w, and the momentum per unit mass flux of the uniform flow is

U itself). The actual momentum flux of the boundary layer is
RN
0 ρu2 dy w. Hence, the

loss of momentum in the boundary layer is
RN
0 ρuðU2 uÞ dy w. If we imagine keeping

the velocity at a constant U, and instead move the plate up a distance θ (as shown in
Fig. 9.3c), the loss of momentum flux would be

R θ
0 ρUU dy w 5 ρU2 θw. Setting these

losses equal to one another gives

ρU2θ 5

Z N

0

ρuðU2 uÞ dy

and

θ 5

Z N

0

u

U
12

u

U

� �
dy �

Z δ

0

u

U
12

u

U

� �
dy ð9:2Þ

Again, the integrand is essentially zero for y $ δ.
The displacement and momentum thicknesses, δ* and θ, are integral thicknesses,

because their definitions, Eqs. 9.1 and 9.2, are in terms of integrals across the
boundary layer. Because they are defined in terms of integrals for which the integrand
vanishes in the freestream, they are appreciably easier to evaluate accurately
from experimental data than the boundary-layer disturbance thickness, δ. This fact,
coupled with their physical significance, accounts for their common use in specifying
boundary-layer thickness.

We have seen that the velocity profile in the boundary layer merges into the local
freestream velocity asymptotically. Little error is introduced if the slight difference
between velocities at the edge of the boundary layer is ignored for an approximate
analysis. Simplifying assumptions usually made for engineering analyses of boundary-
layer development are:

1. u - U at y 5 δ
2. @u/@y - 0 at y 5 δ
3. v { U within the boundary layer

(in mass flux)

U

U

U U

U

U

u

0.99 U

δ∗
δ

δ

θ

θ

(in
momentum

flux)

(a) Displacement thickness, δ* (b) Disturbance thickness, (c) Momentum thickness, 

Fig. 9.3 Boundary-layer thickness definitions.
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Results of the analyses developed in the next two sections show that the boundary
layer is very thin compared with its development length along the surface. Therefore it
is also reasonable to assume:

4. Pressure variation across the thin boundary layer is negligible. The freestream
pressure distribution is impressed on the boundary layer.

Example 9.1 BOUNDARY LAYER IN CHANNEL FLOW

A laboratory wind tunnel has a test section that is 305 mm square. Boundary-layer velocity profiles are measured at
two cross-sections and displacement thicknesses are evaluated from the measured profiles. At section 1 , where the
freestream speed is U1 5 26 m/s, the displacement thickness is δ*1 5 1.5 mm. At section 2 , located downstream from
section 1 , δ*2 5 2.1 mm. Calculate the change in static pressure between sections 1 and 2 . Express the result as a
fraction of the freestream dynamic pressure at section 1 . Assume standard atmosphere conditions.

Given: Flow of standard air in laboratory wind tunnel. Test section is L 5 305 mm square. Displacement thick-
nesses are δ*1 5 1.5 mm and δ*2 5 2.1 mm. Freestream speed is U1 5 26 m/s.

Find: Change in static pressure between sections 1 and 2 . (Express as a fraction of freestream dynamic pressure
at section 1 .)

Solution:
The idea here is that at each location the boundary-layer displacement thickness effectively reduces the area of
uniform flow, as indicated in the following figures: Location 2 has a smaller effective flow area than location 1
(because δ*2 . δ*1). Hence, from mass conservation the uniform velocity at location 2 will be higher. Finally, from the
Bernoulli equation the pressure at location 2 will be lower than that at location 1 .

Apply the continuity and Bernoulli equations to freestream flow outside the boundary-layer displacement thickness,
where viscous effects are negligible.

Governing equations:

t CV
 dV  �

CS
 V �  dA � 0

� 0(1)

� �

p1 1� � gz1 �
V 2

2�
p2 2� � gz2

V 2

2�

��

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Flow uniform at each section outside δ*.

U U

δ*

δ*

(a) Actual velocity profile (b) Hypothetical velocity profile (c) Cross section of
wind tunnel

L – 2

δ*L – 2

ð4:12Þ

ð4:24Þ
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9.3 Laminar Flat-Plate Boundary Layer:
Exact Solution (on the Web)

9.4 Momentum Integral Equation
Blasius’ exact solution, discussed in Section 9.3 (on the Web), analyzed a laminar
boundary layer on a flat plate. Even this simplest case (i.e., constant freestream velocity
U and pressure p, laminar flow) involved a rather subtlemathematical transformation of
two differential equations. The solution was based on the insight that the laminar
boundary-layer velocity profile is self-similar—only its scale changes as we move along
the plate. Numerical integration was necessary to obtain results for the boundary-layer
thickness δ(x), velocity profile u/U versus y/δ, and wall shear stress τw(x).

We would like to obtain a method for analyzing the general case—that is, for
laminar and turbulent boundary layers, for which the freestream velocity U(x)
and pressure p(x) are known functions of position along the surface x (such as on the
curved surface of an airfoil or on the flat but divergent surfaces of a flow diffuser).
The approach is one in which we will again apply the basic equations to a control
volume. The derivation, from the mass conservation (or continuity) equation and the
momentum equation, will take several pages.

Consider incompressible, steady, two-dimensional flow over a solid surface. The
boundary-layer thickness, δ, grows in some manner with increasing distance, x.

(4) Flow along a streamline between sections 1 and 2 .
(5) No frictional effects in freestream.
(6) Negligible elevation changes.

From the Bernoulli equation we obtain

p1 2 p2 5
1

2
ρ V2

2 2V2
1

� �
5

1

2
ρ U2

2 2U2
1

� �
5

1

2
ρU2

1

U2

U1

� �2

2 1

" #

or
p1 2 p2
1
2 ρU

2
1

5
U2

U1

� �2

2 1

From continuity, V1 A1 5 U1 A1 5 V2 A2 5 U2 A2, so U2=U1 5 A1=A2,
where A 5 (L 2 2δ*)2 is the effective flow area. Substituting gives

p1 2 p2
1

2
ρU2

1

5
A1

A2

� �2

2 1 5
ðL2 2δ*1Þ2
ðL2 2δ*2Þ2

" #2

2 1

p1 2 p2
1

2
ρU2

1

5
3052 2ð1:5Þ
3052 2ð2:1Þ

2
4

3
5
4

2 1 5 0:0161 or

p1 2 p2
1

2
ρU2

1

5 1:61 percent ß

p1 2 p2
1

2
ρU2

1

Notes:

ü This problem illustrates a basic
application of the displacement-
thickness concept. It is somewhat
unusual in that, because the flow is
confined, the reduction in flow area
caused by the boundary layer leads
to the result that the pressure in the
inviscid flow region drops (if only
slightly). In most applications the
pressure distribution is determined
from the inviscid flow and then
applied to the boundary layer.

ü We saw a similar phenomenon in
Section 8.1, where we discovered
that the centerline velocity at the
entrance of a pipe increases due to
the boundary layer “squeezing” the
effective flow area.
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For our analysis we choose a differential control volume, of length dx, width w, and
height δ(x), as shown in Fig. 9.4. The freestream velocity is U(x).

We wish to determine the boundary-layer thickness, δ, as a function of x. There will
be mass flow across surfaces ab and cd of differential control volume abcd. What
about surface bc? Surface bc is not a streamline (we showed this in Example 9.2, on
the Web); it is the imaginary boundary that separates the viscous boundary layer
and the inviscid freestream flow. Thus there will be mass flow across surface bc. Since
control surface ad is adjacent to a solid boundary, there will not be flow across ad.
Before considering the forces acting on the control volume and the momentum fluxes
through the control surface, let us apply the continuity equation to determine the mass
flux through each portion of the control surface.

a. Continuity Equation

Basic equation:

CV
 dV  �

CS

� 0(1)

�
t � �  V �  dA � 0� ð4:12Þ

Assumptions: (1) Steady flow.
(2) Two-dimensional flow.

Then Z
CS

ρ~V � d~A 5 0

Hence
�mab 1

�mbc 1
�mcd 5 0

or
�mbc 52 �mab 2

�mcd

Now let us evaluate these terms for the differential control volume of width w:

Surface Mass Flux

ab Surface ab is located at x. Since the flow is two-dimensional (no variation with
z), the mass flux through ab is

�mab 52

Z δ

0

ρu dy

� 	
w

cd Surface cd is located at x1 dx. Expanding �m in a Taylor series about location x,
we obtain

�mx1dx 5 �mx 1
@ �m
@x



x

dx

y

x

CV

a

b
c

d

(x)δ

U(x)

dx

Fig. 9.4 Differential control volume in a boundary
layer.
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and hence

�mcd 5

Z δ

0

ρu dy1
@

@x

Z δ

0

ρu dy

� 

dx

� 	
w

bc Thus for surface bc we obtain, from the continuity equation and the above
results,

�mbc 52
@

@x

Z δ

0

ρu dy

� 

dx

� 	
w

(Note that the velocity u and boundary-layer thickness δ, the upper limit on the
integral, both depend on x.)

Now let us consider the momentum fluxes and forces associated with control
volume abcd. These are related by the momentum equation.

b. Momentum Equation

Apply the x component of the momentum equation to control volume abcd:

Basic equation:

FSx � FBx �
CV

 u dV  �
CS

 u V � dA

� 0(3)  � 0(1)

 �  �
t � � ð4:18aÞ

Assumption: (3) FBx
5 0.

Then

FSx 5 mfab 1mfbc 1mfcd

where mf represents the x component of momentum flux.
To apply this equation to differential control volume abcd, we must obtain

expressions for the x momentum flux through the control surface and also the surface
forces acting on the control volume in the x direction. Let us consider the momentum
flux first and again consider each segment of the control surface.

Surface Momentum Flux (mf)

ab Surface ab is located at x. Since the flow is two-dimensional, the x momentum
flux through ab is

mfab 52

Z δ

0

u ρu dy

� 	
w

cd Surface cd is located at x 1 dx. Expanding the x momentum flux (mf) in a
Taylor series about location x, we obtain

mfx1dx 5 mfx 1
@mf

@x



x

dx

or

mfcd 5

Z δ

0

u ρu dy1
@

@x

Z δ

0

u ρu dy

� 

dx

� 	
w
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bc Since the mass crossing surface bc has velocity component U in the x direction,
the x momentum flux across bc is given by

mfbc 5 U �mbc

mfbc 52U
@

@x

Z δ

0

ρu dy

� 

dx

� 	
w

From the above we can evaluate the net x momentum flux through the control
surface asZ

CS

u ρ~V � d~A 5 2

Z δ

0

u ρu dy

� 	
w1

Z δ

0

u ρu dy

� 	
w

1
@

@x

Z δ

0

u ρu dy

� 

dx

8<
:

9=
;w2U

@

@x

Z δ

0

ρu dy

� 

dx

8<
:

9=
;w

Collecting terms, we find thatZ
CS

u ρ~V � d~A 5
@

@x

Z δ

0

u ρu dy

� 

dx2U

@

@x

Z δ

0

ρu dy

� 

dx

� 	
w

Now that we have a suitable expression for the x momentum flux through the control
surface, let us consider the surface forces acting on the control volume in the
x direction. (For convenience the differential control volume has been redrawn in
Fig. 9.5.) Note that surfaces ab, bc, and cd all experience normal forces (i.e., pressure)
that generate force in the x direction. In addition, a shear force acts on surface ad.
Since, by definition of the boundary layer, the velocity gradient goes to zero at the
edge of the boundary layer, the shear force acting along surface bc is negligible.

Surface Force

ab If the pressure at x is p, then the force acting on surface ab is given by

Fab 5 pwδ

[The boundary layer is very thin; its thickness has been greatly exaggerated in
all the sketches we have made. Because it is thin, pressure variations in the
y direction may be neglected, and we assume that within the boundary layer,
p5 p(x) only.]

cd Expanding in a Taylor series, the pressure at x 1 dx is given by

px1dx 5 p1
dp

dx



x

dx

The force on surface cd is then given by

Fcd 52 p1
dp

dx



x

dx

� �
wðδ1 dδÞ

bc The average pressure acting over surface bc is

p1
1

2

dp

dx



x

dx

Then the x component of the normal force acting over bc is given by

Fbc 5 p1
1

2

dp

dx



x

dx

� �
wdδ

ad The average shear force acting on ad is given by

Fad 52 τw 1
1

2
dτw

� �
w dx

dδ

δ

c

b

da

dx

Fig. 9.5 Differential control
volume.
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Summing these x components, we obtain the total force acting in the x direction on
the control volume,

FSx � {�

� 0
dp
dx

dx � dx d � w dx �1
2

dp
dx

τ

� 0

d w dx} w1
2

τ

where we note that dx dδ { δ dx and dτw { τw, and so neglect the second and fourth
terms.

Substituting the expressions, for
R
CS u ρ~V � d~A and FSx into the x momentum

equation (Eq. 4.18a), we obtain

2
dp

dx
δ dx2 τw dx

� 	
w 5

@

@x

Z δ

0

u ρu dy

� 

dx2U

@

@x

Z δ

0

ρu dy

� 

dx

� 	
w

Dividing this equation by w dx gives

2δ
dp

dx
2 τw 5

@

@x

Z δ

0

u ρu dy2U
@

@x

Z δ

0

ρu dy ð9:16Þ

Equation 9.16 is a “momentum integral” equation that gives a relation between the x
components of the forces acting in a boundary layer and the x momentum flux.

The pressure gradient, dp/dx, can be determined by applying the Bernoulli equa-
tion to the inviscid flow outside the boundary layer: dp/dx 5 2ρU dU/dx. If we
recognize that δ 5

R δ
0 dy; then Eq. 9.16 can be written as

τw 52
@

@x

Z δ

0

u ρu dy1U
@

@x

Z δ

0

ρu dy1
dU

dx

Z δ

0

ρU dy

Since

U
@

@x

Z δ

0

ρu dy 5
@

@x

Z δ

0

ρuU dy2
dU

dx

Z δ

0

ρu dy

we have

τw 5
@

@x

Z δ

0

ρuðU2 uÞ dy1 dU

dx

Z δ

0

ρðU2 uÞ dy

and

τw 5
@

@x
U2

Z δ

0

ρ
u

U
12

u

U

� �
dy1U

dU

dx

Z δ

0

ρ 12
u

U

� �
dy

Using the definitions of displacement thickness, δ* (Eq. 9.1), and momentum thick-
ness, θ (Eq. 9.2), we obtain

τw
ρ

5
d

dx
ðU2θÞ1 δ*U

dU

dx
ð9:17Þ

Equation 9.17 is the momentum integral equation. This equation will yield an ordinary
differential equation for boundary-layer thickness δ as a function of x. Where does δ
appear in Eq. 9.17? It appears in the upper limits of the integrals that define δ* and θ!
All we need to do is provide a suitable expression for the velocity profile u/U and
somehow relate the wall stress τw to other variables—not necessarily easy tasks! Once
the boundary-layer thickness is determined, expressions for the momentum thickness,
displacement thickness, and wall shear stress can then be obtained.
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Equation 9.17 was obtained by applying the basic equations (continuity and
x momentum) to a differential control volume. Reviewing the assumptions we made
in the derivation, we see that the equation is restricted to steady, incompressible, two-
dimensional flow with no body forces parallel to the surface.

We have not made any specific assumption relating the wall shear stress, τw, to the
velocity field. Thus Eq. 9.17 is valid for either a laminar or turbulent boundary-layer
flow. In order to use this equation to estimate the boundary-layer thickness as a
function of x, we must first:

1. Obtain a first approximation to the freestream velocity distribution, U(x). This is
determined from inviscid flow theory (the velocity that would exist in the absence
of a boundary layer) and depends on body shape.

2. Assume a reasonable velocity-profile shape inside the boundary layer.

3. Derive an expression for τw using the results obtained from item 2.

To illustrate the application of Eq. 9.17 to boundary-layer flows, we consider first the
case of flow with zero pressure gradient over a flat plate (Section 9.5)—the results we
obtain for a laminar boundary layer can then be compared to the exact Blasius results.
The effects of pressure gradients in boundary-layer floware then discussed in Section 9.6.

9.5Use of the Momentum Integral Equation for
Flow with Zero Pressure Gradient

For the special case of a flat plate (zero pressure gradient) the freestream pressure p
and velocity U are both constant, so for item 1 we have U(x) 5 U 5 constant.

The momentum integral equation then reduces to

τw 5 ρU2 dθ
dx

5 ρU2 d

dx

Z δ

0

u

U
12

u

U

� �
dy ð9:18Þ

The velocity distribution, u/U, in the boundary layer is assumed to be similar for all
values of x and normally is specified as a function of y/δ. (Note that u/U is dimen-
sionless and δ is a function of x only.) Consequently, it is convenient to change the
variable of integration from y to y/δ. Defining

η 5
y

δ

we get

dy 5 δ dη

and the momentum integral equation for zero pressure gradient is written

τw 5 ρU2 dθ
dx

5 ρU2 dδ
dx

Z 1

0

u

U
12

u

U

� �
dη ð9:19Þ

We wish to solve this equation for the boundary-layer thickness as a function of x.
To do this, we must satisfy the remaining items:

2. Assume a velocity distribution in the boundary layer—a functional relationship of
the form

u

U
5 f

y

δ

� �
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a. The assumed velocity distribution should satisfy the following approximate
physical boundary conditions:

at y 5 0; u 5 0

at y 5 δ; u 5 U

at y 5 δ;
@u

@y
5 0

b. Note that once we have assumed a velocity distribution, from the definition of
the momentum thickness (Eq. 9.2), the numerical value of the integral in Eq.
9.19 is simply Z 1

0

u

U
12

u

U

� �
dη 5

θ
δ
5 constant 5 β

and the momentum integral equation becomes

τw 5 ρU2 dδ
dx

β

3. Obtain an expression for τw in terms of δ. This will then permit us to solve for δ(x),
as illustrated below.

Laminar Flow

For laminar flow over a flat plate, a reasonable assumption for the velocity profile is a
polynomial in y:

u 5 a1 by1 cy2

The physical boundary conditions are:

at y 5 0; u 5 0

at y 5 δ; u 5 U

at y 5 δ;
@u

@y
5 0

Evaluating constants a, b, and c gives

u

U
5 2

y

δ

� �
2

y

δ

� �2

5 2η2 η2 ð9:20Þ

Equation 9.20 satisfies item 2. For item 3, we recall that the wall shear stress is given by

τw 5 μ
@u

@y

�
y50

Substituting the assumed velocity profile, Eq. 9.20, into this expression for τw gives

τw 5 μ
@u

@y



y50

5 μ
U @ðu=UÞ
δ@ðy=δÞ



y=δ50

5
μU
δ

dðu=UÞ
dη



η50

or

τw 5
μU
δ

d

dη
ð2η2 η2Þ



η50

5
μU
δ

ð22 2ηÞ


η50

5
2μU
δ
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Note that this shows that the wall stress τw is a function of x, since the boundary-layer
thickness δ5 δ(x). Now that we have completed items 1, 2, and 3, we can return to the
momentum integral equation

τw 5 ρU2 dδ
dx

Z 1

0

u

U
12

u

U

� �
dη ð9:19Þ

Substituting for τw and u/U, we obtain

2μU
δ

5 ρU2 dδ
dx

Z 1

0

ð2η2 η2Þð12 2η1 η2Þ dη

or

2μU
δρU2

5
dδ
dx

Z 1

0

ð2η2 5η2 1 4η3 2 η4Þ dη

Integrating and substituting limits yields

2μ
δρU

5
2

15

dδ
dx

or δ dδ 5
15μ
ρU

dx

which is a differential equation for δ. Integrating again gives

δ2

2
5

15μ
ρU

x1 c

If we assume that δ 5 0 at x 5 0, then c 5 0, and thus

δ 5

ffiffiffiffiffiffiffiffiffiffiffi
30μx
ρU

s

Note that this shows that the laminar boundary-layer thickness δ grows as
ffiffiffi
x

p
; it has a

parabolic shape. Traditionally this is expressed in dimensionless form:

δ
x

5

ffiffiffiffiffiffiffiffiffi
30μ
ρUx

s
5

5:48ffiffiffiffiffiffiffiffi
Rex

p ð9:21Þ

Equation 9.21 shows that the ratio of laminar boundary-layer thickness to dis-
tance along a flat plate varies inversely with the square root of length Reynolds
number. It has the same form as the exact solution derived from the complete dif-
ferential equations of motion by H. Blasius in 1908. Remarkably, Eq. 9.21 is only in
error (the constant is too large) by about 10 percent compared with the exact
solution (Section 9.3 on the Web). Table 9.2 summarizes corresponding results
calculated using other approximate velocity profiles and lists results obtained from
the exact solution. (The only thing that changes in the analysis when we choose a
different velocity profile is the value of β in τw 5 ρU2dδ=dxβ in item 2b on page 434.)
The shapes of the approximate profiles may be compared readily by plotting u/U
versus y/δ.

Once we know the boundary-layer thickness, all details of the flow may be
determined. The wall shear stress, or “skin friction,” coefficient is defined as

VIDEO

Examples of Boundary Layer Growth.
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Cf � τw
1
2 ρU

2
ð9:22Þ

Substituting from the velocity profile and Eq. 9.21 gives

Cf 5
τw

1
2 ρU2

5
2μðU=δÞ
1
2 ρU2

5
4μ
ρUδ

5 4
μ

ρUx

x

δ
5 4

1

Rex

ffiffiffiffiffiffiffiffi
Rex

p
5:48

Finally,

Cf 5
0:730ffiffiffiffiffiffiffiffi
Rex

p ð9:23Þ

Once the variation of τw is known, the viscous drag on the surface can be evaluated by
integrating over the area of the flat plate, as illustrated in Example 9.3.

Equation 9.21 can be used to calculate the thickness of the laminar boundary layer
at transition. At Rex 5 5 3 105, with U 5 30 m/s, for example, x 5 0.24 m for air at
standard conditions. Thus

δ
x

5
5:48ffiffiffiffiffiffiffiffi
Rex

p 5
5:48ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
53 105

p 5 0:00775

and the boundary-layer thickness is

δ 5 0:00775x 5 0:00775ð0:24 mÞ 5 1:86 mm

The boundary-layer thickness at transition is less than 1 percent of the develop-
ment length, x. These calculations confirm that viscous effects are confined to a very
thin layer near the surface of a body.

The results in Table 9.2 indicate that reasonable results may be obtained with a
variety of approximate velocity profiles.

Table 9.2
Results of the Calculation of Laminar Boundary-Layer Flow over a Flat Plate at Zero Incidence
Based on Approximate Velocity Profiles

Velocity Distribution
u

U
5 f

y

δ

� �
5 f ðηÞ β � θ

δ
δ*
δ

H � δ*
θ

Constant a in
δ
x
5

affiffiffiffiffiffiffiffi
Rex

p
Constant b in

Cf 5
bffiffiffiffiffiffiffiffi
Rex

p

f(η) 5 η 1

6

1

2

3.00 3.46 0.577

f(η) 5 2η 2 η2 2

15

1

3

2.50 5.48 0.730

f ðηÞ 5 3

2
η2

1

2
η3 39

280

3

8

2.69 4.64 0.647

f(η) 5 2η 2 2η3 1 η4 37

315

3

10

2.55 5.84 0.685

f ðηÞ 5 sin
π
2
η

� �
42π
2π

π2 2

π
2.66 4.80 0.654

Exact 0.133 0.344 2.59 5.00 0.664
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Example 9.3 LAMINAR BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE
SOLUTION USING SINUSOIDAL VELOCITY PROFILE

Consider two-dimensional laminar boundary-layer flow along a flat plate. Assume the velocity profile in the
boundary layer is sinusoidal,

u

U
5 sin

π
2

y

δ

� �
Find expressions for:

(a) The rate of growth of δ as a function of x.
(b) The displacement thickness, δ*, as a function of x.
(c) The total friction force on a plate of length L and width b.

Given: Two-dimensional, laminar boundary-layer flow along a flat plate. The boundary-layer velocity profile is

u

U
5 sin

π
2

y

δ

� �
for 0# y# δ

and

u

U
5 1 for y. δ

Find: (a) δ(x). (b) δ*(x).
(c) Total friction force on a plate of length L and width b.

Solution:
For flat plate flow, U 5 constant, dp/dx 5 0, and

τw 5 ρU2 dθ
dx

5 ρU2 dδ
dx

Z 1

0

u

U
12

u

U

� �
dη ð9:19Þ

Assumptions: (1) Steady flow.
(2) Incompressible flow.

Substituting
u

U
5 sin

π
2
η into Eq. 9.19, we obtain

τw 5 ρU2 dδ
dx

Z 1

0

sin
π
2
η 12 sin

π
2
η

0
@

1
Adη 5 ρU2 dδ

dx

Z 1

0

sin
π
2
η2 sin2

π
2
η

0
@

1
A dη

5 ρU2 dδ
dx

2

π
2cos

π
2
η2

1

2

π
2
η1

1

4
sin πη

2
4

3
5
1

0

5 ρU2 dδ
dx

2

π
01 12

π
4
1 01 02 0

2
4

3
5

τw 5 0:137ρU2 dδ
dx

5 βρU2 dδ
dx

; β 5 0:137

Now

τw 5 μ
@u

@y



y50

5 μ
U

δ
@ðu=UÞ
@ ðy=δÞ



y50

5 μ
U

δ
π
2
cos

π
2
η

#
η50

5
πμU
2δ

Therefore,

τw 5
πμU
2δ

5 0:137ρU2 dδ
dx

Separating variables gives

δ dδ 5 11:5
μ
ρU

dx

y

x
(x)δ
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Integrating, we obtain

δ2

2
5 11:5

μ
ρU

x1 c

But c 5 0, since δ 5 0 at x 5 0, so

δ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23:0

xμ
ρU

r

or

δ
x

5 4:80

ffiffiffiffiffiffiffiffiffi
μ

ρUx

r
5

4:80ffiffiffiffiffiffiffiffi
Rex

p ß
δðxÞ

The displacement thickness, δ*, is given by

δ* 5 δ
Z 1

0

12
u

U

0
@

1
Adη

5 δ
Z 1

0

12 sin
π
2
η

0
@

1
Adη 5 δ η1

2

π
cos

π
2
η

2
4

3
5
1

0

δ* 5 δ 12 01 02
2

π

2
4

3
5 5 δ 12

2

π

2
4

3
5

Since, from part (a),

δ
x

5
4:80ffiffiffiffiffiffiffiffi
Rex

p

then

δ*
x

5 12
2

π

� �
4:80ffiffiffiffiffiffiffiffi
Rex

p 5
1:74ffiffiffiffiffiffiffiffi
Rex

p ß
δ*ðxÞ

The total friction force on one side of the plate is given by

F 5

Z
Ap

τw dA

Since dA 5 b dx and 0 # x # L, then

F 5

Z L

0

τwb dx 5

Z L

0

ρU2 dθ
dx

b dx 5 ρU2b

Z θL

0

dθ 5 ρU2bθL

θL 5

Z δL

0

u

U
12

u

U

0
@

1
Ady 5 δL

Z 1

0

u

U
12

u

U

0
@

1
Adη 5 βδL

From part (a), β 5 0:137 and δL 5
4:80Lffiffiffiffiffiffiffiffi
ReL

p ; so

F 5
0:658ρU2bLffiffiffiffiffiffiffiffi

ReL
p ß

F

This problem illustrates application of
the momentum integral equation to the
laminar boundary layer on a flat plate.

The Excel workbook for thisExample plots the growth of δ
and δ* in the boundary layer, and the
exact solution (Eq. 9.13 on the Web). It
also shows wall shear stress dis-
tributions for the sinusoidal velocity
profile and the exact solution.
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Turbulent Flow

For the flat plate, we still have for item 1 that U 5 constant. As for the laminar
boundary layer, we need to satisfy item 2 (an approximation for the turbulent velocity
profile) and item 3 (an expression for τw) in order to solve Eq. 9.19 for δ(x):

τw 5 ρU2 dδ
dx

Z 1

0

u

U
12

u

U

� �
dη ð9:19Þ

Details of the turbulent velocity profile for boundary layers at zero pressure gradient
are very similar to those for turbulent flow in pipes and channels. Data for turbulent
boundary layers plot on the universal velocity profile using coordinates of u=u* versus
yu*/ν, as shown in Fig. 8.9. However, this profile is rather complex mathematically for
easy use with the momentum integral equation. The momentum integral equation is
approximate; hence, an acceptable velocity profile for turbulent boundary layers on
smooth flat plates is the empirical power-law profile. An exponent of 1

7 is typically used
to model the turbulent velocity profile. Thus

u

U
5

y

δ

� �1=7

5 η1=7 ð9:24Þ

However, this profile does not hold in the immediate vicinity of the wall, since at the
wall it predicts du/dy 5 N. Consequently, we cannot use this profile in the definition
of τw to obtain an expression for τw in terms of δ as we did for laminar boundary-layer
flow. For turbulent boundary-layer flow we adapt the expression developed for
pipe flow,

τw 5 0:0332ρV
2 ν
RV

� 
0:25
ð8:39Þ

For a 1
7-power profile in a pipe, Eq. 8.24 gives V=U 5 0:817. Substituting V 5 0:817U

and R 5 δ into Eq. 8.39, we obtain

τw 5 0:0233ρU2 ν
Uδ

� �1=4

ð9:25Þ

Substituting for τw and u/U into Eq. 9.19 and integrating, we obtain

0:0233
ν
Uδ

� �1=4

5
dδ
dx

Z 1

0

η1=7 ð12 η1=7Þ dη 5
7

72

dδ
dx

Thus we obtain a differential equation for δ:

δ1=4 dδ 5 0:240
ν
U

� �1=4

dx

Integrating gives

4

5
δ5=4 5 0:240

ν
U

� �1=4

x1 c

If we assume that δ C 0 at x 5 0 (this is equivalent to assuming turbulent flow from
the leading edge), then c 5 0 and

δ 5 0:382
ν
U

� �1=5

x4=5
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Note that this shows that the turbulent boundary-layer thickness δ grows as x4=5; it
grows almost linearly (recall that δ grows more slowly, as

ffiffiffi
x

p
, for the laminar

boundary layer). Traditionally this is expressed in dimensionless form:

δ
x

5 0:382
ν
Ux

� �1=5

5
0:382

Re
1=5
x

ð9:26Þ

Using Eq. 9.25, we obtain the skin friction coefficient in terms of δ:

Cf 5
τw

1
2 ρU

2
5 0:0466

ν
Uδ

� �1=4

Substituting for δ, we obtain

Cf 5
τw

1
2 ρU

2
5

0:0594

Re
1=5
x

ð9:27Þ

Experiments show that Eq. 9.27 predicts turbulent skin friction on a flat plate very
well for 5 3 105 , Rex , 107. This agreement is remarkable in view of the approx-
imate nature of our analysis.

Application of the momentum integral equation for turbulent boundary-layer flow
is illustrated in Example 9.4.

Example 9.4 TURBULENT BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE
SOLUTION USING 1

7-POWER VELOCITY PROFILE

Water flows at U 5 1 m/s past a flat plate with L 5 1 m in the flow direction. The boundary layer is tripped so it
becomes turbulent at the leading edge. Evaluate the disturbance thickness, δ, displacement thickness, δ*, and wall
shear stress, τw, at x 5 L. Compare with laminar flow maintained to the same position. Assume a 1

7-power turbulent
velocity profile.

Given: Flat-plate boundary-layer flow; turbulent flow from the leading edge. Assume 1
7-power velocity profile.

Find: (a) Disturbance thickness, δL.
(b) Displacement thickness, δ*L.
(c) Wall shear stress, τw(L).
(d) Comparison with results for laminar flow from the leading edge.

Solution:
Apply results from the momentum integral equation.

Governing equations:

δ
x

5
0:382

Re
1=5
x

ð9:26Þ

δ* 5

Z N

0

12
u

U

� �
dy ð9:1Þ

Cf 5
τw

1
2 ρU2

5
0:0594

Re
1=5
x

ð9:27Þ

At x 5 L, with ν 5 1.00 3 1026 m2/s for water (T 5 20�C),

ReL 5
UL

ν
5 1

m

s
3 1m3

s

1026 m2
5 106

U = 1 m/s

L = 1 m

x

δ
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Summary of Results for Boundary-Layer Flow
with Zero Pressure Gradient

Useof themomentum integral equation is anapproximate technique topredict boundary-
layer development; the equation predicts trends correctly. Parameters of the laminar
boundary layer vary asRe21=2

x ; those for the turbulent boundary layer vary asRe21=5
x . Thus

the turbulent boundary layer develops more rapidly than the laminar boundary layer.

From Eq. 9.26,

δL 5
0:382

Re
1=5
L

L 5
0:382

ð106Þ1=5
3 1m 5 0:0241 m or δL 5 24:1mm ß

δL

Using Eq. 9.1, with u/U 5 (y/δ)1/7 5 η1/7, we obtain

δ*L 5

Z N

0

12
u

U

0
@

1
Ady 5 δL

Z 1

0

u

U

0
@

1
Ad

y

δ

0
@

1
A 5 δL

Z 1

0

12 η1=7
� �

dη 5 δL η2
7

8
η8=7

2
4

3
5
1

0

δ*L 5
δL
8

5
24:1mm

8
5 3:01 mm ß

δ*L

From Eq. 9.27,

Cf 5
0:0594

ð106Þ1=5
5 0:00375

τw 5 Cf

1

2
ρU2 5 0:003753

1

2
3 999

kg

m3
3 ð1Þ2 m

2

s2
3

N � s2
kg �m

τw 5 1:87 N=m2
ß

τwðLÞ

For laminar flow, use Blasius solution values. From Eq. 9.13 (on the Web),

δL 5
5:0ffiffiffiffiffiffiffiffi
ReL

p L 5
5:0

ð106Þ1=2
3 1m 5 0:005 m or 5:00 mm

From Example 9.2, δ*/δ 5 0.344, so

δ* 5 0:344 δ 5 0:3443 5:0mm 5 1:72 mm

From Eq. 9.15, Cf 5
0:664ffiffiffiffiffiffiffiffi
Rex

p ; so

τw 5 Cf

1

2
ρU2 5

0:664ffiffiffiffiffiffiffi
106

p 3
1

2
3 999

kg

m3
3 ð1Þ2 m

2

s2
3

N � s2
kg �m 5 0:332 N=m2

Comparing values at x 5 L, we obtain

Disturbance thickness;
δturbulent
δlaminar

5
24:1 mm

5:00 mm
5 4:82

Displacement thickness;
δ*turbulent
δ*laminar

5
3:01 mm

1:72 mm
5 1:75

Wall shear stress;
τw; turbulent
τw; laminar

5
1:87 N=m2

0:332 N=m2
5 5:63

This problem illustrates application of
the momentum integral equation to the
turbulent boundary layer on a flat
plate. Compared to a laminar boundary
layer, it is clear that the turbulent
boundary layer grows much more
rapidly—because the turbulent wall
stress is significantly greater than the
laminar wall stress.The Excel workbook for thisExample plots the 1

7-power-law
turbulent boundary layer (Eq. 9.26)
and the laminar boundary layer
(Eq. 9.13 on the Web). It also shows
the wall stress distributions for
both cases.
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Laminar and turbulent boundary layers were compared in Example 9.4. Wall shear
stress is much higher in the turbulent boundary layer than in the laminar layer. This is
the primary reason for the more rapid development of turbulent boundary layers.

The agreement we have obtained with experimental results shows that use of the
momentum integral equation is an effective approximate method that gives us con-
siderable insight into the general behavior of boundary layers.

9.6 Pressure Gradients in Boundary-Layer Flow
The boundary layer (laminar or turbulent) with a uniform flow along an infinite flat
plate is the easiest one to study because the pressure gradient is zero—the fluid
particles in the boundary layer are slowed only by shear stresses, leading to boundary-
layer growth. We now consider the effects caused by a pressure gradient, which will be
present for all bodies except, as we have seen, a flat plate.

A favorable pressure gradient is one in which the pressure decreases in the flow
direction (i.e., @p/@x , 0); it is called favorable because it tends to overcome the
slowing of fluid particles caused by friction in the boundary layer. This pressure
gradient arises when the freestream velocity U is increasing with x, for example, in
the converging flow field in a nozzle. On the other hand, an adverse pressure gradient
is one in which pressure increases in the flow direction (i.e., @p/@x . 0); it is called
adverse because it will cause fluid particles in the boundary-layer to slow down at a
greater rate than that due to boundary-layer friction alone. If the adverse pressure
gradient is severe enough, the fluid particles in the boundary layer will actually be
brought to rest. When this occurs, the particles will be forced away from the body
surface (a phenomenon called flow separation) as they make room for following
particles, ultimately leading to a wake in which flow is turbulent. Examples of this are
when the walls of a diffuser diverge too rapidly and when an airfoil has too large an
angle of attack; both of these are generally very undesirable!

This description, of the adverse pressure gradient and friction in the boundary layer
together forcing flow separation, certainly makes intuitive sense; the question arises
whether we can more formally see when this occurs. For example, can we have flow
separation and a wake for uniform flow over a flat plate, for which @p/@x 5 0? We can
gain insight into this question by considering when the velocity in the boundary layer
will become zero. Consider the velocity u in the boundary layer at an infinitesimal
distance Δy above the plate. This will be

uy 5 Δy 5 u0 1
@u

@y

�
y 5 0

Δy 5
@u

@y

�
y 5 0

Δy

where u0 5 0 is the velocity at the surface of the plate. It is clear that uy5Δy will be
zero (i.e., separation will occur) only when @u/@y)y50 5 0. Hence, we can use this as
our litmus test for flow separation. We recall that the velocity gradient near the
surface in a laminar boundary layer, and in the viscous sublayer of a turbulent
boundary layer, was related to the wall shear stress by

τw 5 μ
@u

@y

�
y 5 0

Further, we learned in the previous section that the wall shear stress for the flat plate
is given by

τwðxÞ
ρU2

5
constantffiffiffiffiffiffiffiffi

Rex
p

VIDEO

Flow Separation: Sudden Expansion.

VIDEO

Flow Separation: Airfoil.
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for a laminar boundary layer and

τwðxÞ
ρU2

5
constant

Re1=5x

for a turbulent boundary layer. We see that for the flow over a flat plate, the wall
stress is always τw . 0. Hence, @u/@y)y50 . 0 always; and therefore, finally, uy5Δy . 0
always. We conclude that for uniform flow over a flat plate the flow never separates,
and we never develop a wake region, whether the boundary layer is laminar or tur-
bulent, regardless of plate length.

We conclude that flow will not separate for flow over a flat plate, when @p/@x 5 0.
Clearly, for flows in which @p/@x , 0 (whenever the freestream velocity is increasing),
we can be sure that there will be no flow separation; for flows in which @p/@x . 0 (i.e.,
adverse pressure gradients) we could have flow separation. We should not conclude
that an adverse pressure gradient always leads to flow separation and a wake; we have
only concluded that it is a necessary condition for flow separation to occur.

To illustrate these results consider the variable cross-sectional flow shown in Fig. 9.6.
Outside the boundary layer the velocity field is one in which the flow accelerates
(Region 1), has a constant velocity region (Region 2), and then a deceleration region
(Region 3). Corresponding to these, the pressure gradient is favorable, zero, and
adverse, respectively, as shown. (Note that the straight wall is not a simple flat plate—it
has these various pressure gradients because the flow above the wall is not a uniform
flow.) From our discussions above, we conclude that separation cannot occur in Region
1 or 2, but can (as shown) occur in Region 3. Could we avoid flow separation in a device
like this? Intuitively, we can see that if we make the divergent section less severe, we
may be able to eliminate flow separation. In other words, we may eliminate flow
separation if we make the adverse pressure gradient @p/@x small enough. The final
question remaining is how small the adverse pressure gradient needs to be to accom-
plish this. This, and a more rigorous proof that we must have @p/@x . 0 for a chance of
flow separation, is beyond the scope of this text [3]. We conclude that flow separation is
possible, but not guaranteed, when we have an adverse pressure gradient.

The nondimensional velocity profiles for laminar and turbulent boundary-layer
flow over a flat plate are shown in Fig. 9.7a. The turbulent profile is much fuller (more
blunt) than the laminar profile. At the same freestream speed, the momentum flux
within the turbulent boundary layer is greater than within the laminar layer (Fig. 9.7b).
Separation occurs when the momentum of fluid layers near the surface is reduced to zero
by the combined action of pressure and viscous forces. As shown in Fig. 9.7b, the
momentum of the fluid near the surface is significantly greater for the turbulent profile.

Region 3Region 2Region 1

 p___
x

∂
∂

 u__
y

∂
∂

< 0  p___
x

∂
∂ = 0

 p___
x

∂
∂ > 0

y

x

(x)δ Backflow

Separation point:
y=0

= 0

Fig. 9.6 Boundary-layer flow with pressure gradient (boundary-layer thick-
ness exaggerated for clarity).
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Consequently, the turbulent layer is better able to resist separation in an adverse pres-
sure gradient. We shall discuss some consequences of this behavior in Section 9.7.

Adverse pressure gradients cause significant changes in velocity profiles for both
laminar and turbulent boundary-layer flows. Approximate solutions for nonzero
pressure gradient flow may be obtained from the momentum integral equation

τw
ρ

5
d

dx
ðU2θÞ1 δ*U

dU

dx
ð9:17Þ

Expanding the first term, we can write

τw
ρ

5 U2 dθ
dx

1 ðδ*1 2θÞU dU

dx

or

τw
ρU2

5
Cf

2
5

dθ
dx

1 ðH1 2Þ θ
U

dU

dx
ð9:28Þ

where H 5 δ*/θ is a velocity-profile “shape factor.” The shape factor increases in an
adverse pressure gradient. For turbulent boundary-layer flow,H increases from 1.3 for
a zero pressure gradient to approximately 2.5 at separation. For laminar flow with
zero pressure gradient, H 5 2.6; at separation H 5 3.5.

The freestream velocity distribution, U(x), must be known before Eq. 9.28 can be
applied. Since dp/dx 5 2ρU dU/dx, specifying U(x) is equivalent to specifying the
pressure gradient. We can obtain a first approximation for U(x) from ideal flow theory
for an inviscid flow under the same conditions. As pointed out in Chapter 6, for
frictionless irrotational flow (potential flow), the stream function, ψ, and the velocity
potential, φ, satisfy Laplace’s equation. These can be used to determine U(x) over the
body surface.

Much effort has been devoted to calculation of velocity distributions over bodies
of known shape (the “direct” problem) and to the determination of body shapes
to produce a desired pressure distribution (the “inverse” problem). Smith and
co-workers [6] have developed calculation methods that use singularities distributed
over the body surface to solve the direct problem for two-dimensional or axisym-
metric body shapes. A type of finite-element method that uses singularities defined on
discrete surface panels (the “panel” method [7]) recently has gained increased
popularity for application to three-dimensional flows. Recall also that in Section 5.5
we briefly reviewed some basic ideas of CFD (Computational Fluid Dynamics).

1.0

0
1.0

Laminar
Laminar

Turbulent Turbulent

u__
U

y__

(a) Velocity profiles

δ
y__
δ

1.0

0
1.0

(b) Momentum-flux profiles

(  )2u__
U

Fig. 9.7 Nondimensional profiles for flat plate boundary-layer flow.
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Once the velocity distribution, U(x), is known, Eq. 9.28 can be integrated to
determine θ(x), if H and Cf can be correlated with θ. A detailed discussion of various
calculation methods for flows with nonzero pressure gradient is beyond the scope of
this book. Numerous solutions for laminar flows are given in Kraus [8]. Calculation
methods for turbulent boundary-layer flow based on the momentum integral equation
are reviewed in Rotta [9].

Because of the importance of turbulent boundary layers in engineering flow
situations, the state of the art of calculation schemes is advancing rapidly. Numerous
calculation schemes have been proposed [10, 11]; most such schemes for turbulent
flow use models to predict turbulent shear stress and then solve the boundary-layer
equations numerically [12, 13]. Continuing improvement in size and speed of com-
puters is beginning to make possible the solution of the full Navier�Stokes equations
using numerical methods [14, 15].

Part B Fluid Flow About Immersed Bodies
Whenever there is relative motion between a solid body and the viscous fluid sur-
rounding it, the body will experience a net force ~F . The magnitude of this force
depends on many factors—certainly the relative velocity ~V , but also the body shape
and size, and the fluid properties (ρ, μ, etc.). As the fluid flows around the body, it will
generate surface stresses on each element of the surface, and it is these that lead to the
net force. The surface stresses are composed of tangential stresses due to viscous
action and normal stresses due to the local pressure. We might be tempted to think
that we can analytically derive the net force by integrating these over the body sur-
face. The first step might be: Given the shape of the body (and assuming that the
Reynolds number is high enough that we can use inviscid flow theory), compute
the pressure distribution. Then integrate the pressure over the body surface to
obtain the contribution of pressure forces to the net force ~F . (As we discussed in
Chapter 6, this step was developed very early in the history of fluid mechanics; it led to
the result that no bodies experience drag!) The second step might be: Use this
pressure distribution to find the surface viscous stress τw (at least in principle, using,
for example, Eq. 9.17). Then integrate the viscous stress over the body surface to
obtain its contribution to the net force ~F . This procedure sounds conceptually
straightforward, but in practice is quite difficult except for the simplest body shapes.
In addition, even if possible, it leads to erroneous results in most cases because it takes
no account of a very important consequence of the existence of boundary layers—flow
separation. This causes a wake, which not only creates a low-pressure region usually
leading to large drag on the body, but also radically changes the overall flow field and
hence the inviscid flow region and pressure distribution on the body.

For these reasons we must usually resort to experimental methods to determine the
net force for most body shapes (although CFD approaches are improving rapidly).
Traditionally the net force ~F is resolved into the drag force, FD, defined as the
component of the force parallel to the direction of motion, and the lift force, FL (if it
exists for a body), defined as the component of the force perpendicular to the
direction of motion. In Sections 9.7 and 9.8 we will examine these forces for a number
of different body shapes.

9.7Drag
Drag is the component of force on a body acting parallel to the direction of relative
motion. In discussing the need for experimental results in fluid mechanics (Chapter 7),
we considered the problem of determining the drag force, FD, on a smooth sphere of

VIDEO

Flow about a Sports Car.
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diameter d, moving through a viscous, incompressible fluid with speed V; the fluid
density and viscosity were ρ and μ, respectively. The drag force, FD, was written in the
functional form

FD 5 f1ðd;V;μ; ρÞ
Application of the Buckingham Pi theorem resulted in two dimensionless Π param-
eters that were written in functional form as

FD
ρV2 d2

5 f2
ρVd
μ

� �

Note that d2 is proportional to the cross-sectional area (A 5 πd2/4) and therefore we
could write

FD
ρV2 A

5 f3
ρVd
μ

� �
5 f3ðReÞ ð9:29Þ

Although Eq. 9.29 was obtained for a sphere, the form of the equation is valid for
incompressible flow over any body; the characteristic length used in the Reynolds
number depends on the body shape.

The drag coefficient, CD, is defined as

CD � FD
1
2 ρV2 A

ð9:30Þ

The number 1
2 has been inserted (as was done in the defining equation for the friction

factor) to form the familiar dynamic pressure. Then Eq. 9.29 can be written as

CD 5 f ðReÞ ð9:31Þ

We have not considered compressibility or free-surface effects in this discussion of
the drag force. Had these been included, we would have obtained the functional form

CD 5 f ðRe; Fr; MÞ

At this point we shall consider the drag force on several bodies for which Eq. 9.31 is
valid. The total drag force is the sum of friction drag and pressure drag. However, the
drag coefficient is a function only of the Reynolds number.

We now consider the drag force and drag coefficient for a number of bodies,
starting with the simplest: a flat plate parallel to the flow (which has only friction
drag); a flat plate normal to the flow (which has only pressure drag); and cylinders and
spheres (the simplest 2D and 3D bodies, which have both friction and pressure drag).
We will also briefly discuss streamlining.

Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow

This flow situation was considered in detail in Section 9.5. Since the pressure gradient
is zero (and in any event the pressure forces are perpendicular to the plate
and therefore do not contribute to drag), the total drag is equal to the friction
drag. Thus

FD 5

Z
plate surface

τw dA
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and

CD 5
FD

1
2 ρV

2 A
5

Z
PS

τw dA

1

2
ρV2 A

ð9:32Þ

where A is the total surface area in contact with the fluid (i.e., the wetted area). The
drag coefficient for a flat plate parallel to the flow depends on the shear stress dis-
tribution along the plate.

For laminar flow over a flat plate, the shear stress coefficient was given by

Cf 5
τw

1
2 ρU

2
5

0:664ffiffiffiffiffiffiffiffi
Rex

p ð9:15Þ

The drag coefficient for flow with freestream velocity V, over a flat plate of length L
and width b, is obtained by substituting for τw from Eq. 9.15 into Eq. 9.32. Thus

CD 5
1

A

Z
A

0:664 Re20:5
x dA 5

1

bL

Z L

0

0:664
V

ν

0
@

1
A

20:5

x20:5bdx

5
0:664

L

ν
V

0
@

1
A

0:5

x0:5

0:5

2
4

3
5
L

0

5 1:33
ν
VL

0
@

1
A

0:5

CD 5
1:33ffiffiffiffiffiffiffiffi
ReL

p ð9:33Þ

Assuming the boundary layer is turbulent from the leading edge, the shear stress
coefficient, based on the approximate analysis of Section 9.5, is given by

Cf 5
τw

1
2 ρU

2
5

0:0594

Re
1=5
x

ð9:27Þ

Substituting for τw from Eq. 9.27 into Eq. 9.32, we obtain

CD 5
1

A

Z
A

0:0594 Re20:2
x dA 5

1

bL

Z L

0

0:0594
V

ν

0
@

1
A

20:2

x20:2b dx

5
0:0594

L

ν
V

0
@

1
A

0:2

x0:8

0:8

2
4

3
5
L

0

5 0:0742
ν
VL

0
@

1
A

0:2

CD 5
0:0742

Re
1=5
L

ð9:34Þ

Equation 9.34 is valid for 5 3 105 , ReL , 107.
For ReL , 109 the empirical equation given by Schlichting [3]

CD 5
0:455

ðlog ReLÞ2:58
ð9:35Þ

fits experimental data very well.
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For a boundary layer that is initially laminar and undergoes transition at some
location on the plate, the turbulent drag coefficient must be adjusted to account for
the laminar flow over the initial length. The adjustment is made by subtracting the
quantity B/ReL from the CD determined for completely turbulent flow. The value of B
depends on the Reynolds number at transition; B is given by

B 5 RetrðCDturbulent
2CDlaminar

Þ ð9:36Þ

For a transition Reynolds number of 53 105, the drag coefficient may be calculated by
making the adjustment to Eq. 9.34, in which case

CD 5
0:0742

Re
1=5
L

2
1740

ReL
ð53 105 ,ReL , 107Þ ð9:37aÞ

or to Eq. 9.35, in which case

CD 5
0:455

ðlog ReLÞ2:58
2

1610

ReL
ð53 105 ,ReL , 109Þ ð9:37bÞ

The variation in drag coefficient for a flat plate parallel to the flow is shown in Fig. 9.8.
In the plot of Fig. 9.8, transition was assumed to occur at Rex 5 5 3 105 for flows in

which the boundary layer was initially laminar. The actual Reynolds number at which
transition occurs depends on a combination of factors, such as surface roughness and
freestream disturbances. Transition tends to occur earlier (at lower Reynolds number)
as surface roughness or freestream turbulence is increased. For transition at other
than Rex 5 5 3 105, the constant in the second term of Eqs. 9.37 is modified using Eq.
9.36. Figure 9.8 shows that the drag coefficient is less, for a given length of plate, when
laminar flow is maintained over the longest possible distance. However, at large ReL
(. 107) the contribution of the laminar drag is negligible.

Transition at
Rex = 5 � 105

(Eq. 9.37b)

Turbulent
boundary layer

(Eq. 9.34)

Turbulent
boundary layer

(Eq. 9.35)

Laminar
boundary layer

(Eq. 9.33)
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Fig. 9.8 Variation of drag coefficient with Reynolds number for a smooth flat plate parallel to
the flow.
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Example 9.5 SKIN FRICTION DRAG ON A SUPERTANKER

A supertanker is 360 m long and has a beam width of 70 m and a draft of 25 m. Estimate the force and power
required to overcome skin friction drag at a cruising speed of 13 kt in seawater at 10�C.

Given: Supertanker cruising at U 5 13 kt.

Find: (a) Force.
(b) Power required to overcome skin friction drag.

Solution:
Model the tanker hull as a flat plate, of length L and width b 5
B 1 2D, in contact with water. Estimate skin friction drag from
the drag coefficient.

Governing equations:
CD 5

FD
1
2 ρU

2A
ð9:32Þ

CD 5
0:455

ðlogReLÞ2:58
2

1610

ReL
ð9:37bÞ

The ship speed is 13 kt (nautical miles per hour), so

U 5 13
nm

hr
3 6076

ft

nm
3 0:305

m

ft
3

hr

3600 s
5 6:69 m=s

From Appendix A, at 10�C, ν 5 1.37 3 1026 m2/s for seawater. Then

ReL 5
UL

ν
5 6:69

m

s
3 360 m 3

s

1:373 1026 m2
5 1:763 109

Assuming Eq. 9.37b is valid,

CD 5
0:455

ðlog1:763 109Þ2:58
2

1610

1:763 109
5 0:00147

and from Eq. 9.32,

FD 5 CDA
1

2
ρU2

5 0:001473 ð360 mÞð701 50Þm3
1

2
3 1020

kg

m3
3 ð6:69Þ2 m

2

s2
3

N � s2
kg �m

FD 5 1:45MN ß
FD

The corresponding power is

3 5 FDU 5 1:453 106 N3 6:69
m

s
3

W � s
N �m

3 5 9:70 MW ß
3

B = 70 m Water line

L = 360 m

D = 25 m

U

This problem illustrates application of
drag coefficient equations for a flat
plate parallel to the flow.ü The power required (about 13,000
hp) is very large because although
the friction stress is small, it acts
over a substantial area.ü The boundary layer is turbulent for
almost the entire length of the ship
(transition occurs at x � 0.1 m).
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Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow

In flow over a flat plate normal to the flow (Fig. 9.9), the wall shear stress is per-
pendicular to the flow direction and therefore does not contribute to the drag force.
The drag is given by

FD 5

Z
surface

pdA

For this geometry the flow separates from the edges of the plate; there is back-flow
in the low energy wake of the plate. Although the pressure over the rear surface of the
plate is essentially constant, its magnitude cannot be determined analytically. Con-
sequently, we must resort to experiments to determine the drag force.

The drag coefficient for flow over an immersed object usually is based on the
frontal area (or projected area) of the object. (For airfoils and wings, the planform
area is used; see Section 9.8.)

The drag coefficient for a finite plate normal to the flow depends on the ratio of
plate width to height and on the Reynolds number. For Re (based on height) greater
than about 1000, the drag coefficient is essentially independent of Reynolds number.
The variation of CD with the ratio of plate width to height (b/h) is shown in Fig. 9.10.
(The ratio b/h is defined as the aspect ratio of the plate.) For b/h 5 1.0, the drag
coefficient is a minimum at CD 5 1.18; this is just slightly higher than for a circular
disk (CD 5 1.17) at large Reynolds number.

The drag coefficient for all objects with sharp edges is essentially independent of
Reynolds number (for Re * 1000) because the separation points and therefore the
size of the wake are fixed by the geometry of the object. Drag coefficients for selected
objects are given in Table 9.3.

Friction and Pressure Drag: Flow over a Sphere and Cylinder

We have looked at two special flow cases in which either friction or pressure drag was
the sole form of drag present. In the former case, the drag coefficient was a strong
function of Reynolds number, while in the latter case, CD was essentially independent
of Reynolds number for Re * 1000.

In the case of flow over a sphere, both friction drag and pressure drag contribute to
total drag. The drag coefficient for flow over a smooth sphere is shown in Fig. 9.11 as a
function of Reynolds number.2

At very low Reynolds number,3 Re # 1, there is no flow separation from a sphere;
the wake is laminar and the drag is predominantly friction drag. Stokes has shown
analytically, for very low Reynolds number flows where inertia forces may be

Wake

Fig. 9.9 Flow over a flat plate normal to the flow.

VIDEO

Plate Normal to the Flow.

2An approximate curve fit to the data of Fig. 9.11 is presented in Problem 9.132.
3See Shapiro [17] for a good discussion of drag on spheres and other shapes. See also Fage [18].

450 Chapter 9 External Incompressible Viscous Flow



neglected, that the drag force on a sphere of diameter d, moving at speed V, through a
fluid of viscosity μ, is given by

FD 5 3πμVd

The drag coefficient, CD, defined by Eq. 9.30, is then

CD 5
24

Re

As shown in Fig. 9.11, this expression agrees with experimental values at low
Reynolds number but begins to deviate significantly from the experimental data for
Re . 1.0.

2.0

1.5

1.0

CD

0.5
0 2 4 6 8 10

Aspect ratio, b/h
12 14 16 18 20

b

h

Fig. 9.10 Variation of drag coefficient with aspect ratio for a flat plate
of finite width normal to the flow with Reh . 1000 [16].

Table 9.3
Drag Coefficient Data for Selected Objects (Re * 103)a

Object Diagram CD(Re * 103)

Square prism
b

h

b/h 5 N
b/h 5 1

2.05
1.05

Disk 1.17

Ring 1.20b

Hemisphere (open end
facing flow)

1.42

Hemisphere (open end
facing downstream)

0.38

C-section (open side
facing flow)

2.30

C-section (open side
facing downstream)

1.20

aData from Hoerner [16].
bBased on ring area.

VIDEO

An Object with a High Drag Coefficient.
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Low Reynolds Number Flows.
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As the Reynolds number is further increased, the drag coefficient drops con-
tinuously up to a Reynolds number of about 1000, but not as rapidly as predicted by
Stokes’ theory. A turbulent wake (not incorporated in Stokes’ theory) develops and
grows at the rear of the sphere as the separation point moves from the rear of the
sphere toward the front; this wake is at a relatively low pressure, leading to a large
pressure drag. By the time Re � 1000, about 95% of total drag is due to pressure. For
103 , Re , 3 3 105 the drag coefficient is approximately constant. In this range the
entire rear of the sphere has a low-pressure turbulent wake, as indicated in Fig. 9.12,
and most of the drag is caused by the front-rear pressure asymmetry. Note that CD ~
1/Re corresponds to FD ~ V, and that CD B const. corresponds to FD ~ V2, indicating
a quite rapid increase in drag.

For Reynolds numbers larger than about 3 3 105, transition occurs and the
boundary layer on the forward portion of the sphere becomes turbulent. The point of
separation then moves downstream from the sphere midsection, and the size of the
wake decreases. The net pressure force on the sphere is reduced (Fig. 9.12), and
the drag coefficient decreases abruptly.

A turbulent boundary layer, since it has more momentum flux than a laminar
boundary layer, can better resist an adverse pressure gradient, as discussed in Section
9.6. Consequently, turbulent boundary-layer flow is desirable on a blunt body because
it delays separation and thus reduces the pressure drag.

Transition in the boundary layer is affected by roughness of the sphere surface and
turbulence in the flow stream. Therefore, the reduction in drag associated with a
turbulent boundary layer does not occur at a unique value of Reynolds number.
Experiments with smooth spheres in a flow with low turbulence level show that
transition may be delayed to a critical Reynolds number, ReD, of about 4 3 105. For
rough surfaces and/or highly turbulent freestream flow, transition can occur at a cri-
tical Reynolds number as low as 50,000.

The drag coefficient of a sphere with turbulent boundary-layer flow is about one-
fifth that for laminar flow near the critical Reynolds number. The corresponding
reduction in drag force can affect the range of a sphere (e.g., a golf ball) appreciably.
The “dimples” on a golf ball are designed to “trip” the boundary layer and, thus, to
guarantee turbulent boundary-layer flow and minimum drag. To illustrate this effect
graphically, we obtained samples of golf balls without dimples some years ago. One of
our students volunteered to hit drives with the smooth balls. In 50 tries with each type
of ball, the average distance with the standard balls was 215 yards; the average with
the smooth balls was only 125 yards!

Theory due
to Stokes

400
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0.06
10–1 2 4 6 8100 2 4 6 8101 2 4 6 8102 2 4 6 8103 2 4 6 8104 2 4 6 8105 1062 4 6 8

Re =

CD

VD__

v

Fig. 9.11 Drag coefficient of a smooth sphere as a function of Reynolds number [3].

VIDEO

Examples of Flow around a Sphere.
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Adding roughness elements to a sphere also can suppress local oscillations in
location of the transition between laminar and turbulent flow in the boundary layer.
These oscillations can lead to variations in drag and to random fluctuations in lift (see
Section 9.8). In baseball, the “knuckle ball” pitch is intended to behave erratically to
confuse the batter. By throwing the ball with almost no spin, the pitcher relies on the
seams to cause transition in an unpredictable fashion as the ball moves on its way to
the batter. This causes the desired variation in the flight path of the ball.

Figure 9.13 shows the drag coefficient for flow over a smooth cylinder. The var-
iation of CD with Reynolds number shows the same characteristics as observed in the
flow over a smooth sphere, but the values of CD are about twice as high.

Flow about a smooth circular cylinder may develop a regular pattern of alternating
vortices downstream. The vortex trail4 causes an oscillatory lift force on the cylinder
perpendicular to the stream motion. Vortex shedding excites oscillations that cause
telegraph wires to “sing” and ropes on flag poles to “slap” annoyingly. Sometimes
structural oscillations can reach dangerous magnitudes and cause high stresses; they
can be reduced or eliminated by applying roughness elements or fins—either axial or
helical (sometimes seen on chimneys or automobile antennas)—that destroy the
symmetry of the cylinder and stabilize the flow.

Experimental data show that regular vortex shedding occurs most strongly in the
range of Reynolds number from about 60 to 5000. For Re . 1000 the dimensionless
frequency of vortex shedding, expressed as a Strouhal number, St 5 f D=V, is
approximately equal to 0.21 [3].
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Fig. 9.12 Pressure distribution around a smooth sphere for laminar
and turbulent boundary-layer flow, compared with inviscid flow [18].

4The regular pattern of vortices in the wake of a cylinder sometimes is called aKarman vortex street in honor

of the prominent fluid mechanician, Theodore von Kármán, who was first to predict the stable spacing of the

vortex trail on theoretical grounds in 1911; see Goldstein [19].

VIDEO

Laminar and Turbulent Flow Past a Sphere.

VIDEO

Flow Separation on a Cylinder.

VIDEO

Vortex Trail behind a Cylinder.
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Roughness affects drag of cylinders and spheres similarly: the critical Reynolds
number is reduced by the rough surface, and transition from laminar to turbulent flow
in the boundary layers occurs earlier. The drag coefficient is reduced by a factor of
about 4 when the boundary layer on the cylinder becomes turbulent.

10–1 2 4 68100 2 4 68101 2 4 68102 2 4 68103 2 4 68104 2 4 68105 1062 4 68

Re = VD___
v

CD

0.1

1

10

100

Fig. 9.13 Drag coefficient for a smooth circular cylinder as a function of Reynolds
number [3].

Example 9.6 AERODYNAMIC DRAG AND MOMENT ON A CHIMNEY

A cylindrical chimney 1 m in diameter and 25 m tall is exposed to a uniform 50 km/hr wind at standard atmospheric
conditions. End effects and gusts may be neglected. Estimate the bending moment at the
base of the chimney due to wind forces.

Given: Cylindrical chimney, D 5 1 m, L 5 25 m, in uniform flow with

V 5 50 km=hr p 5 101 kPa ðabsÞ T 5 15�C

Neglect end effects.

Find: Bending moment at bottom of chimney.

Solution:
The drag coefficient is given by CD 5 FD=

1
2 ρV

2 A, and thus FD 5 CDA
1
2 ρV2. Since the

force per unit length is uniform over the entire length, the resultant force, FD, will act at
the midpoint of the chimney. Hence the moment about the chimney base is

M0 5 FD
L

2
5 CDA

1

2
ρV2 L

2
5 CDA

L

4
ρV2

V 5 50
km

hr
3 103

m

km
3

hr

3600 s
5 13:9 m=s

For air at standard conditions, ρ 5 1:23 kg=m3, and μ 5 1:793 1025 kg=ðm � sÞ. Thus

Re 5
ρVD
μ

5 1:23
kg

m3
3 13:9

m

s
3 1 m3

m � s
1:793 1025 kg

5 9:553 105

FD

L/2

L = 25 m

d = 1 m

0

VIDEO

Low Reynolds Number Flow over a

Cylinder.

VIDEO

Flow Separation behind a Cylinder.
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From Fig. 9.13, CD � 0:35. For a cylinder, A 5 DL, so

M0 5 CDA
L

4
ρV2 5 CDDL

L

4
ρV2 5 CDD

L2

4
ρV2

5
1

4
3 0:353 1 m3 ð25Þ2 m2 3 1:23

kg

m3
3 ð13:9Þ2 m

2

s2
3

N � s2
kg �m

M0 5 13:0 kN �m ß
M0

This problem illustrates application of
drag-coefficient data to calculate the
force and moment on a structure. We
modeled the wind as a uniform flow;
more realistically, the lower atmo-
sphere is often modeled as a huge
turbulent boundary layer, with a
power-law velocity profile, u B y1/n
(y is the elevation). See Problem 9.135,
where this is analyzed for the case
n 5 7.

Example 9.7 DECELERATION OF AN AUTOMOBILE BY A DRAG PARACHUTE

A dragster weighing 1600 lbf attains a speed of 270 mph in the quarter mile. Immediately after passing through the
timing lights, the driver opens the drag chute, of area A 5 25 ft2. Air and rolling resistance of the car may be
neglected. Find the time required for the machine to decelerate to 100 mph in standard air.

Given: Dragster weighing 1600 lbf, moving with initial speed V0 5 270 mph, is slowed by the drag force on a chute
of area A 5 25 ft2. Neglect air and rolling resistance of the car. Assume standard air.

Find: Time required for the machine to decelerate to 100 mph.

Solution:
Taking the car as a system and writing Newton’s second law in the direction of motion gives

Since CD 5
FD

1
2 ρV

2 A
, then FD 5 1

2CD ρV2 A:

Substituting into Newton’s second law gives

2
1

2
CD ρV2A 5 m

dV

dt

Separating variables and integrating, we obtain

2
1

2
CD ρ

A

m

Z t

0

dt 5

Z Vf

V0

dV

V2

2
1

2
CD ρ

A

m
t 5 2

1

V

#Vf

V0

52
1

Vf

1
1

V0
52

ðV0 2Vf Þ
VfV0

Finally,

t 5
ðV0 2Vf Þ
VfV0

2m

CD ρA
5

ðV0 2Vf Þ
VfV0

2W

CD ρAg

FD V

x

– FD = ma = md V____
dt

V0 5 270mph

Vf 5 100mph

ρ 5 0:00238 slug=ft3
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All experimental data presented in this section are for single objects immersed in
an unbounded fluid stream. The objective of wind tunnel tests is to simulate the
conditions of an unbounded flow. Limitations on equipment size make this goal
unreachable in practice. Frequently it is necessary to apply corrections to measured
data to obtain results applicable to unbounded flow conditions.

In numerous realistic flow situations, interactions occur with nearby objects or
surfaces. Drag can be reduced significantly when two or more objects, moving in
tandem, interact. This phenomenon is well known to bicycle riders and those inter-
ested in automobile racing, where “drafting” is a common practice. Drag reductions of
80 percent may be achieved with optimum spacing [20]. Drag also can be increased
significantly when spacing is not optimum.

Drag can be affected by neighbors alongside as well. Small particles falling under
gravity travel more slowly when they have neighbors than when they are isolated. This
phenomenon has important applications to mixing and sedimentation processes.

Experimental data for drag coefficients on objects must be selected and applied
carefully. Due regard must be given to the differences between the actual conditions
and the more controlled conditions under which measurements were made.

Streamlining

The extent of the separated flow region behind many of the objects discussed in the
previous section can be reduced or eliminated by streamlining, or fairing, the body
shape. We have seen that due to the convergent body shape at the rear of any object
(after all, every object is of finite length!), the streamlines will diverge, so that the
velocity will decrease, and therefore, more importantly (as shown by the Bernoulli
equation, applicable in the freestream region) the pressure will increase. Hence, we

Model the drag chute as a hemisphere (with open end facing flow). From Table 9.3, CD 5 1:42 (assuming Re. 103).
Then, substituting numerical values,

t 5 ð2702 100Þmph 3 2 3 1600 lbf 3
1

100 mph
3

hr

270mi
3

1

1:2
3

ft3

0:00238 slug

3
1

25 ft2
3

s2

32:2 ft
3

slug � ft
lbf � s2 3

mi

5280 ft
3 3600

s

hr

t 5 5:05 s ß
t

Check the assumption on Re:

Re 5
DV

ν
5

4A

π

2
4

3
5
1=2

V

ν

5
4

π
3 25 ft2

2
4

3
5
1=2

3 100
mi

hr
3

hr

3600 s
3 5280

ft

mi
3

s

1:573 1024 ft2

Re 5 5:273 106

Hence the assumption is valid.

This problem illustrates application of
drag-coefficient data to calculate the
drag on a vehicle parachute.The Excel workbook for thisExample plots the dragster
velocity (and distance traveled) as a
function of time; it also allows “what-
ifs,” e.g., we can find the parachute
area A required to slow the dragster to
60 mph in 5 sec.

CLASSIC VIDEO

Low Reynolds Number Flows.
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initially have an adverse pressure gradient at the rear of the body, leading to
boundary-layer separation and ultimately to a low-pressure wake leading to large
pressure drag. Streamlining is the attempt to reduce the drag on a body. We can
reduce the drag on a body by making the rear of the body more tapered (e.g., we
can reduce the drag on a sphere by making it “teardrop” shaped), which will reduce
the adverse pressure gradient and hence make the turbulent wake smaller. However,
as we do so, we are in danger of increasing the skin friction drag simply because we
have increased the surface area. In practice, there is an optimum amount of fairing or
tapering at which the total drag (the sum of pressure and skin friction drag) is
minimized.

The pressure gradient around a “teardrop” shape (a “streamlined” cylinder) is less
severe than that around a cylinder of circular section. The trade-off between pressure
and friction drag for this case is illustrated by the results presented in Fig. 9.14, for
tests at Rec 5 43 105. (This Reynolds number is typical of that for a strut on an early
aircraft.) From the figure, the minimum drag coefficient is CD � 0:06, which occurs
when the ratio of thickness to chord is t=c � 0:25. This value is approximately 20
percent of the minimum drag coefficient for a circular cylinder of the same thickness!
Hence, even a small aircraft will typically have fairings on many structural members,
e.g., the struts that make up the landing wheel assembly, leading to significant fuel
savings.

The maximum thickness for the shapes shown in Fig. 9.14 is located approximately
25 percent of the chord distance from the leading edge. Most of the drag on the
thinner sections is due to skin friction in the turbulent boundary layers on the tapered
rear sections. Interest in low-drag airfoils increased during the 1930s. The National
Advisory Committee for Aeronautics (NACA) developed several series of “laminar-
flow” airfoils for which transition was postponed to 60 or 65 percent chord length aft
from the airfoil nose.

Pressure distribution and drag coefficients5 for two symmetric airfoils of infinite
span and 15 percent thickness at zero angle of attack are presented in Fig. 9.15.
Transition on the conventional (NACA 0015) airfoil takes place where the pressure
gradient becomes adverse, at x=c 5 0:13, near the point of maximum thickness. Thus
most of the airfoil surface is covered with a turbulent boundary layer; the drag
coefficient is CD � 0:0061. The point of maximum thickness has been moved aft on the
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Fig. 9.14 Drag coefficient on a streamlined strut as a function of
thickness ratio, showing contributions of skin friction and pressure to
total drag [19].
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The Fluid Dynamics of Drag.

5Note that drag coefficients for airfoils are based on the planform area, i.e., CD 5 FD=
1
2 ρ V2 Ap, where Ap is

the maximum projected wing area.
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airfoil (NACA 662�015) designed for laminar flow. The boundary layer is maintained
in the laminar regime by the favorable pressure gradient to x=c 5 0:63. Thus the bulk
of the flow is laminar; CD � 0:0035 for this section, based on planform area. The drag
coefficient based on frontal area is CDf

5 CD=0:15 5 0:0233, or about 40 percent of
the optimum for the shapes shown in Fig. 9.14.

Tests in special wind tunnels have shown that laminar flow can be maintained up to
length Reynolds numbers as high as 30 million by appropriate profile shaping.
Because they have favorable drag characteristics, laminar-flow airfoils are used in the
design of most modern subsonic aircraft.

Recent advances have made possible development of low-drag shapes even better
than the NACA 60-series shapes. Experiments [21, 22] led to the development of a
pressure distribution that prevented separation while maintaining the turbulent
boundary layer in a condition that produces negligible skin friction. Improved
methods for calculating body shapes that produced a desired pressure distribution
[23, 24] led to development of nearly optimum shapes for thick struts with low drag.
Figure 9.16 shows an example of the results.

Reduction of aerodynamic drag also is important for road vehicle applications.
Interest in fuel economy has provided significant incentive to balance efficient aero-
dynamic performance with attractive design for automobiles. Drag reduction also has
become important for buses and trucks.

Practical considerations limit the overall length of road vehicles. Fully streamlined
tails are impractical for all but land-speed-record cars. Consequently, it is not possible
to achieve results comparable to those for optimum airfoil shapes. However, it is
possible to optimize both front and rear contours within given constraints on overall
length [25�27].
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Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmetric
airfoil sections of 15 percent thickness ratio. (Data from Abbott and von Doenhoff [21].)
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Much attention has been focused on front contours. Studies on buses have shown
that drag reductions up to 25 percent are possible with careful attention to front
contour [27]. Thus it is possible to reduce the drag coefficient of a bus from about 0.65
to less than 0.5 with practical designs. Highway tractor-trailer rigs have higher drag
coefficients—CD values from 0.90 to 1.1 have been reported. Commercially available
add-on devices offer improvements in drag of up to 15 percent, particularly for windy
conditions where yaw angles are nonzero. The typical fuel saving is half the percen-
tage by which aerodynamic drag is reduced.

Front contours and details are important for automobiles. A low nose and smoothly
rounded contours are the primary features that promote low drag. Radii of “A-pillar”
and windshield header, and blending of accessories to reduce parasite and inter-
ference drag have received increased attention. As a result, drag coefficients have
been reduced from about 0.55 to 0.30 or less for recent production vehicles. Recent
advances in computational methods have led to development of computer-generated
optimum shapes. A number of designs have been proposed, with claims of CD values
below 0.2 for vehicles complete with running gear.

9.8Lift
For most objects in relative motion in a fluid, the most significant fluid force is the
drag. However, there are some objects, such as airfoils, for which the lift is significant.
Lift is defined as the component of fluid force perpendicular to the fluid motion. For
an airfoil, the lift coefficient, CL, is defined as

CL � FL
1

2
ρV2 Ap

ð9:38Þ

It is worth noting that the lift coefficient defined above and the drag coefficient (Eq.
9.30) are each defined as the ratio of an actual force (lift or drag) divided by the
product of dynamic pressure and area. This denominator can be viewed as the force
that would be generated if we imagined bringing to rest the fluid directly approaching
the area (recall that the dynamic pressure is the difference between total and static
pressures). This gives us a “feel” for the meaning of the coefficients: They indicate the
ratio of the actual force to this (unrealistic but nevertheless intuitively meaningful)
force. We note also that the coefficient definitions include V2 in the denominator,
so that FL (or FD) being proportional to V2 corresponds to a constant CL (or CD), and
that FL (or FD) increasing with V at a lower rate than quadratic corresponds to a
decrease in CL (or CD) with V.

The lift and drag coefficients for an airfoil are functions of both Reynolds number
and angle of attack; the angle of attack, α, is the angle between the airfoil chord and
the freestream velocity vector. The chord of an airfoil is the straight line joining the
leading edge and the trailing edge. The wing section shape is obtained by combining
a mean line and a thickness distribution (see [21] for details). When the airfoil has a

Fig. 9.16 Nearly optimum shape
for low-drag strut [24].
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symmetric section, the mean line and the chord line both are straight lines, and they
coincide. An airfoil with a curved mean line is said to be cambered.

The area at right angles to the flow changes with angle of attack. Consequently, the
planform area, Ap (the maximum projected area of the wing), is used to define lift and
drag coefficients for an airfoil.

The phenomenon of aerodynamic lift is commonly explained by the velocity
increase causing pressure to decrease (the Bernoulli effect) over the top surface of the
airfoil and the velocity decrease (causing pressure to increase) along the bottom
surface of the airfoil. The resulting pressure distributions are shown clearly in the
video Boundary Layer Control. Because of the pressure differences relative to
atmosphere, the upper surface of the airfoil may be called the suction surface and the
lower surface the pressure surface.

As shown in Example 6.12, lift on a body can also be related to the circu-
lation around the profile: In order for lift to be generated, there must be a net
circulation around the profile. One may imagine the circulation to be caused by a
vortex “bound” within the profile.

Advances continue in computational methods and computer hardware. However,
most airfoil data available in the literature were obtained from wind tunnel tests.
Reference [21] contains results from a large number of tests conducted by NACA (the
National Advisory Committee for Aeronautics—the predecessor to NASA). Data for
some representative NACA profile shapes are described in the next few paragraphs.

Lift and drag coefficient data for typical conventional and laminar-flow profiles are
plotted in Fig. 9.17 for a Reynolds number of 9 3 106 based on chord length. The
section shapes in Fig. 9.17 are designated as follows:

Conventional—23015

2 30 15

design lift coefficient ( � 0.2 � 0.3)3
2

maximum camber location ( � 30 � 15 percent chord)1
2

section thickness (15 percent chord)

Laminar Flow—662 � 215

6 6 � 2 152

location of minimum pressure (x/c ≈ 0.6)

series designation (laminar flow)

design lift coefficient (0.2)

maximum lift coefficient for favorable
           pressure gradient (0.2)

section thickness (15 percent)

Both sections are cambered to give lift at zero angle of attack. As the angle of attack is
increased, the Δp between the upper and lower surfaces increases, causing the lift
coefficient to increase smoothly until a maximum is reached. Further increases in
angle of attack produce a sudden decrease in CL. The airfoil is said to have stalled
when CL drops in this fashion.

Airfoil stall results when flow separation occurs over a major portion of the upper
surface of the airfoil. As the angle of attack is increased, the stagnation point moves

CLASSIC VIDEO

Boundary Layer Control.

VIDEO

Flow Past an Airfoil (α5 0�).

VIDEO

Flow Past an Airfoil (α5 10�).

VIDEO

Flow Past an Airfoil (α5 20�).
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back along the lower surface of the airfoil, as shown schematically for the symmetric
laminar-flow section in Fig. 9.18a. Flow on the upper surface then must accelerate
sharply to round the nose of the airfoil. The effect of angle of attack on the theoretical
upper-surface pressure distribution is shown in Fig. 9.18b. The minimum pressure
becomes lower, and its location moves forward on the upper surface. A severe adverse
pressure gradient appears following the point of minimum pressure; finally, the
adverse pressure gradient causes the flow to separate completely from the upper
surface and the airfoil stalls (the uniform pressure in the turbulent wake will be
approximately equal to the pressure just before separation, i.e., low).

Movement of the minimum pressure point and accentuation of the adverse pres-
sure gradient are responsible for the sudden increase in CD for the laminar-flow
section, which is apparent in Fig. 9.17. The sudden rise in CD is caused by early
transition from laminar to turbulent boundary-layer flow on the upper surface. Air-
craft with laminar-flow sections are designed to cruise in the low-drag region.
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Fig. 9.17 Lift and drag coefficients versus angle of attack for two airfoil sections of 15
percent thickness ratio at Rec 5 9 3 106. (Data from Abbott and von Doenhoff [21].)
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Because laminar-flow sections have very sharp leading edges, all of the effects we
have described are exaggerated, and they stall at lower angles of attack than con-
ventional sections, as shown in Fig. 9.17. The maximum possible lift coefficient, CLmax

,
also is less for laminar-flow sections.

Plots of CL versus CD (called lift-drag polars) often are used to present airfoil data
in compact form. A polar plot is given in Fig. 9.19 for the two sections we have dis-
cussed. The lift/drag ratio, CL/CD, is shown at the design lift coefficient for both
sections. This ratio is very important in the design of aircraft: The lift coefficient
determines the lift of the wing and hence the load that can be carried, and the drag
coefficient indicates a large part (in addition to that caused by the fuselage, etc.) of the
drag the airplane engines have to work against in order to generate the needed lift;
hence, in general, a high CL/CD is the goal, at which the laminar airfoil clearly excels.
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Fig. 9.18 Effect of angleof attack onflowpattern and theoretical pressuredistribution
for a symmetric laminar-flow airfoil of 15 percent thickness ratio. (Data from [21].)
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Recent improvements in modeling and computational capabilities have made it
possible to design airfoil sections that develop high lift while maintaining very low
drag [23, 24]. Boundary-layer calculation codes are used with inverse methods for
calculating potential flow to develop pressure distributions and the resulting body
shapes that postpone transition to the most rearward location possible. The turbulent
boundary layer following transition is maintained in a state of incipient separation
with nearly zero skin friction by appropriate shaping of the pressure distribution.

Such computer-designed airfoils have been used on racing cars to develop very high
negative lift (downforce) to improve high-speed stability and cornering performance [23].
Airfoil sections especially designed for operation at low Reynolds number were used for
the wings and propeller on theKremer prize-winningman-powered “Gossamer Condor”
[28], which now hangs in the National Air and Space Museum in Washington, D.C.

All real airfoils—wings—are of finite span and have less lift and more drag than
their airfoil section data would indicate. There are several ways to explain this. If we
consider the pressure distribution near the end of the wing, the low pressure on the
upper and high pressure on the lower surface cause flow to occur around the wing tip,

CL___
CD

CL___
CD

= 59.5 = 47.6

CL = 0.2

CL = 0.3

Laminar-flow section
(NACA 662–215)

Conventional section
(NACA 23015)
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0.2

0.4

0.6
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1.0

CL

1.2

1.4

1.6

1.8

CD

Fig. 9.19 Lift-drag polars for two airfoil sections of 15 percent
thickness ratio. (Data from Abbott and von Doenhoff [21].)
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Fig. 9.20 Schematic representation of the trailing
vortex system of a finite wing.
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leading to trailing vortices (as shown in Fig. 9.20), and the pressure difference is
reduced, leading to less lift. These trailing vortices can also be explained more
abstractly, in terms of circulation: We learned in Section 6.6 that circulation around a
wing section is present whenever we have lift, and that the circulation is solenoidal—
that is, it cannot end in the fluid; hence, the circulation extends beyond the wing in the
form of trailing vortices. Trailing vortices can be very strong and persistent, possibly
being a hazard to other aircraft for 5 to 10 miles behind a large airplane—air speeds of
greater than 200 mph have been measured.6

Trailing vortices reduce lift because of the loss of pressure difference, as we just
mentioned. This reduction and an increase in drag (called induced drag) can also be
explained in the following way: The “downwash” velocities induced by the vortices
mean that the effective angle of attack is reduced—the wing “sees” a flow at
approximately the mean of the upstream and downstream directions—explaining why
the wing has less lift than its section data would suggest. This also causes the lift force
(which is perpendicular to the effective angle of attack) to “lean backwards” a little,
resulting in some of the lift appearing as drag.

Loss of lift and increase in drag caused by finite-span effects are concentrated near
the tip of the wing; hence, it is clear that a short, stubby wing will experience these
effects more severely than a very long wing. We should therefore expect the effects to
correlate with the wing aspect ratio, defined as

AR � b2

Ap

ð9:39Þ

where Ap is planform area and b is wingspan. For a rectangular planform of wingspan
b and chord length c,

AR 5
b2

Ap

5
b2

bc
5

b

c

The maximum lift/drag ratio (L=D5CL=CD) for a modern low-drag section may be as
high as 400 for infinite aspect ratio. A high-performance sailplane (glider) with
AR540 might have L=D540, and a typical light plane (AR � 12) might have
L=D � 20 or so. Two examples of rather poor shapes are lifting bodies used for
reentry from the upper atmosphere, and water skis, which are hydrofoils of low aspect
ratio. For both of these shapes, L/D typically is less than unity.

Variations in aspect ratio are seen in nature. Soaring birds, such as the albatross or
California condor, have thin wings of long span. Birds that must maneuver quickly to
catch their prey, such as owls, have wings of relatively short span, but large area, which
gives low wing loading (ratio of weight to planform area) and thus high maneuverability.

It makes sense that as we try to generate more lift from a finite wing (by, for
example, increasing the angle of attack), the trailing vortices and therefore the
downwash increase; we also learned that the downwash causes the effective angle of
attack to be less than that of the corresponding airfoil section (i.e., when AR5N),
ultimately leading to loss of lift and to induced drag. Hence, we conclude that the
effects of the finite aspect ratio can be characterized as a reductionΔα in the effective
angle of attack, and that this (which is usually undesirable) becomes worse as
we generate more lift (i.e., as the lift coefficient CL increases) and as the aspect ratio
AR is made smaller. Theory and experiment indicate that

Δα � CL

πAR
ð9:40Þ

VIDEO

Wing Tip Vortices.

6Sforza, P. M., “Aircraft Vortices: Benign or Baleful?” Space/Aeronautics, 53, 4, April 1970, pp. 42�49. See

also the University of Iowa video Form Drag, Lift, and Propulsion.
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Compared with an airfoil section (AR 5 N), the geometric angle of attack of a wing
(finite AR) must be increased by this amount to get the same lift, as shown in Fig. 9.21.
It also means that instead of being perpendicular to the motion, the lift force leans
angle Δα backwards from the perpendicular—we have an induced drag component of
the drag coefficient. From simple geometry

ΔCD � CLΔα � C2
L

πAR
ð9:41Þ

This also is shown in Fig. 9.21.
When written in terms of aspect ratio, the drag of a wing of finite span becomes [21]

CD 5 CD;N 1CD; i 5 CD;N 1
C2

L

πAR
ð9:42Þ

where CD,N is the section drag coefficient at CL, CD,i is the induced drag coefficient at
CL, and AR is the aspect ratio of the finite-span wing.

Drag on airfoils arises from viscous and pressure forces. Viscous drag changes with
Reynolds number but only slightly with angle of attack. These relationships and some
commonly used terminology are illustrated in Fig. 9.22.

A useful approximation to the drag polar for a complete aircraft may be obtained
by adding the induced drag to the drag at zero lift. The drag at any lift coefficient is
obtained from
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Fig. 9.22 Drag breakdown on nonlifting and
lifting bodies.
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CD 5 CD; 0 1CD; i 5 CD; 0 1
C2

L

πAR
ð9:43Þ

where CD,0 is the drag coefficient at zero lift and AR is the aspect ratio.
It is possible to increase the effective aspect ratio for a wing of given geometric ratio

by adding an endplate or winglet to the wing tip. An endplate may be a simple plate
attached at the tip, perpendicular to the wing span, as on the rear-mounted wing of a
racing car (see Fig. 9.26). An endplate functions by blocking the flow that tends to
migrate from the high-pressure region below the wing tip to the low-pressure region
above the tip when the wing is producing lift. When the endplate is added, the
strength of the trailing vortex and the induced drag are reduced.

Winglets are short, aerodynamically contoured wings set perpendicular to the wing
at the tip. Like the endplate, the winglet reduces the strength of the trailing vortex
system and the induced drag. The winglet also produces a small component of force in
the flight direction, which has the effect of further reducing the overall drag of the
aircraft. The contour and angle of attack of the winglet are adjusted based on wind
tunnel tests to provide optimum results.

As we have seen, aircraft can be fitted with low-drag airfoils to give excellent
performance at cruise conditions. However, since the maximum lift coefficient is
low for thin airfoils, additional effort must be expended to obtain acceptably low
landing speeds. In steady-state flight conditions, lift must equal aircraft weight.
Thus,

W 5 FL 5 CL

1

2
ρV2 A

Minimum flight speed is therefore obtained when CL 5 CLmax
. Solving for Vmin,

Vmin 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

ρCLmax
A

s
ð9:44Þ

According to Eq. 9.44, the minimum landing speed can be reduced by increasing
either CLmax

or wing area. Two basic techniques are available to control these
variables: variable-geometry wing sections (e.g., obtained through the use of flaps) or
boundary-layer control techniques.

Flaps are movable portions of a wing trailing edge that may be extended during
landing and takeoff to increase effective wing area. The effects on lift and drag of two
typical flap configurations are shown in Fig. 9.23, as applied to the NACA 23012
airfoil section. The maximum lift coefficient for this section is increased from 1.52 in
the “clean” condition to 3.48 with double-slotted flaps. From Eq. 9.44, the corre-
sponding reduction in landing speed would be 34 percent.

Figure 9.23 shows that section drag is increased substantially by high-lift devices.
From Fig. 9.23b, section drag at CLmax

ðCD � 0:28Þ with double-slotted flaps is about
5 times as high as section drag at CLmax

ðCD � 0:055Þ for the clean airfoil. Induced
drag due to lift must be added to section drag to obtain total drag. Because induced
drag is proportional to CL

2 (Eq. 9.41), total drag rises sharply at low aircraft speeds.
At speeds near stall, drag may increase enough to exceed the thrust available from
the engines. To avoid this dangerous region of unstable operation, the Federal
Aviation Administration (FAA) limits operation of commercial aircraft to speeds
above 1.2 times stall speed.

Although details are beyond the scope of this book, the basic purpose of all
boundary-layer control techniques is to delay separation or reduce drag, by adding

CLASSIC VIDEO

Boundary Layer Control.
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momentum to the boundary layer through blowing, or by removing low-momentum
boundary-layer fluid by suction. Many examples of practical boundary-layer control
systems may be seen on commercial transport aircraft at your local airport. Two
typical systems are shown in Fig. 9.24.

Fig. 9.24 (a) Application of high-lift boundary-layer control devices to reduce landing speed of
a jet transport aircraft. The wing of the Boeing 777 is highly mechanized. In the landing config-
uration, large slotted trailing-edge flaps roll out from under the wing and deflect downward to
increase wing area and camber, thus increasing the lift coefficient. Slats at the leading edge of the
wing move forward and down, to increase the effective radius of the leading edge and prevent
flow separation, and to open a slot that helps keep air flow attached to the wing’s upper surface.
After touchdown, spoilers (not shown in use) are raised in front of each flap to decrease lift and
ensure that the plane remains on the ground, despite use of the lift-augmenting devices. (This
photograph was taken during a flight test. Flow cones are attached to the flaps and ailerons to
identify regions of separated flow on these surfaces.) (Photograph courtesy of Boeing Airplane
Company.)
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Fig. 9.23 Effect of flaps on aerodynamic characteristics of NACA 23012 airfoil section.
(Data from Abbott and von Doenhoff [21].)
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Example 9.8 OPTIMUM CRUISE PERFORMANCE OF A JET TRANSPORT

Jet engines burn fuel at a rate proportional to thrust delivered. The optimum cruise condition for a jet aircraft is at
maximum speed for a given thrust. In steady level flight, thrust and drag are equal. Hence, optimum cruise occurs
at the speed when the ratio of drag force to air speed is minimized.

A Boeing 727-200 jet transport has wing planform area Ap51600 ft2, and aspect ratio AR56:5. Stall speed at sea
level for this aircraft with flaps up and a gross weight of 150,000 lbf is 175 mph. Below M50:6, drag due to com-
pressibility effects is negligible, so Eq. 9.43 may be used to estimate total drag on the aircraft. CD; 0 for the aircraft is
constant at 0.0182. Assume sonic speed at sea level is c5759 mph.

Evaluate the performance envelope for this aircraft at sea level by plotting drag force versus speed, between stall
and M50:6. Use this graph to estimate optimum cruise speed for the aircraft at sea-level conditions. Comment on
stall speed and optimum cruise speed for the aircraft at 30,000 ft altitude on a standard day.

Given: Boeing 727-200 jet transport at sea-level conditions.

W5150; 000 lbf; A51600 ft2; AR56:5; and CD; 050:182

Stall speed is Vstall5175 mph, and compressibility effects on drag are negligible for M# 0:6 (sonic speed at sea level
is c 5 759 mph).

Find: (a) Drag force as a function of speed from Vstall to M 5 0:6; plot results.
(b) Estimate of optimum cruise speed at sea level.
(c) Stall speed and optimum cruise speed at 30,000 ft altitude.

Fig. 9.24 (b) Application of high-lift boundary-layer control devices to reduce takeoff speed of
a jet transport aircraft. This is another view of the Boeing 777 wing. In the takeoff configuration,
large slotted trailing-edge flaps deflect to increase the lift coefficient. The low-speed aileron near
the wingtip also deflects to improve span loading during takeoff. This view also shows the single-
slotted outboard flap, the high-speed aileron, and nearest the fuselage, the double-slotted
inboard flap. (Photograph courtesy of Boeing Airplane Company.)
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Solution:
For steady, level flight, weight equals lift and thrust equals drag.

Governing equations:

FL 5 CL A
1

2
ρV2 5 W CD 5 CD; 0 1

C2
L

πAR

FD 5 CDA
1

2
ρV2 5 T M 5

V

c

At sea level, ρ 5 0:00238 slug=ft3, and c 5 759 mph.

Since FL 5 W for level flight at any speed, then

CL 5
W

1
2 ρV

2A
5

2W

ρV2A

At stall speed, V 5 175 mph; so

CL 5 23 150; 000 lbf3
ft3

0:00238 slug

"
hr

Vmi
3

mi

5280 ft
3 3600

s

hr

#2
1

1600 ft2
3

slug � ft
lbf � s2

CL 5
3:653 104

½VðmphÞ�2 5
3:653 104

ð175Þ2 5 1:196; and

CD 5 CD; 0 1
C2

L

πAR
5 0:01821

ð1:196Þ2
πð6:5Þ 5 0:0882

Then

FD 5 W
CD

CL

5 150;000 lbf
0:0882

1:19

� �
5 11;100 lbf

At M 5 0:6; V 5 Mc 5 ð0:6Þ759 mph 5 455 mph; so CL 5 0:177 and

CD 5 0:01821
ð0:177Þ2
πð6:5Þ 5 0:0197

so

FD 5 150;000 lbf
0:0197

0:177

� �
5 16;700 lbf

Similar calculations lead to the following table (computed using Excel):

V (mph) 175 200 300 400 455

CL 1.196 0.916 0.407 0.229 0.177

CD 0.0882 0.0593 0.0263 0.0208 0.0197

FD (lbf) 11,100 9,710 9,700 13,600 16,700
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Aerodynamic lift is an important consideration in the design of high-speed land
vehicles such as racing cars and land-speed-record machines. A road vehicle generates
lift by virtue of its shape [29]. A representative centerline pressure distribution
measured in the wind tunnel for an automobile is shown in Fig. 9.25 [30].

The pressure is low around the nose because of streamline curvature as the flow
rounds the nose. The pressure reaches a maximum at the base of the windshield, again
as a result of streamline curvature. Low-pressure regions also occur at the windshield
header and over the top of the automobile. The air speed across the top is approxi-
mately 30 percent higher than the freestream air speed. The same effect occurs around

These data may be plotted as:

From the plot, the optimum cruise speed at sea level is estimated as 320 mph
(and using Excel we obtain 323 mph).

At 30,000 ft (9,140 m) altitude, the density is only about 0.375 times sea level
density, from Table A.3. The speeds for corresponding forces are calculated from

FL 5 CLA
1

2
ρV2 or V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2FL

CLρA

s
or

V30

VSL

5

ffiffiffiffiffiffiffiffi
ρSL
ρ30

r
5

ffiffiffiffiffiffiffiffiffiffiffi
1

0:375

r
5 1:63

Thus, speeds increase 63 percent at 30,000 ft altitude: Vstall � 285 mph
Vcruise � 522 mph
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This problem illustrates that high-
altitude flight increases the optimum
cruising speed—in general this speed
depends on aircraft configuration,
gross weight, segment length, and
winds aloft.

The Excel workbook for thisExample plots the drag or thrust
and power as functions of speed. It
also allows “what-ifs,” e.g., what
happens to the optimum speed if
altitude is increased, or if the aspect
ratio is increased, and so on.
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Fig. 9.25 Pressure distribution along the centerline
of an automobile [30].
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the “A-pillars” at the windshield edges. The drag increase caused by an added object,
such as an antenna, spotlight, or mirror at that location, thus would be ð1:3Þ2 � 1:7
times the drag the object would experience in an undisturbed flow field. Thus the
parasite drag of an added component can be much higher than would be predicted
from its drag calculated for free flow.

At high speeds, aerodynamic lift forces can unload tires, causing serious reductions
in steering control and reducing stability to a dangerous extent. Lift forces on early
racing cars were counteracted somewhat by “spoilers,” at considerable penalty in
drag. In 1965 Jim Hall introduced the use of movable inverted airfoils on his Chap-
arral sports cars to develop aerodynamic downforce and provide aerodynamic braking
[31]. Since then the developments in application of aerodynamic devices have been
rapid. Aerodynamic design is used to reduce lift on all modern racing cars, as
exemplified in Fig. 9.26. Liebeck airfoils [23] are used frequently for high-speed
automobiles. Their high lift coefficients and relatively low drag allow downforce equal
to or greater than the car weight to be developed at racing speeds. “Ground effect”
cars use venturi-shaped ducts under the car and side skirts to seal leakage flows. The
net result of these aerodynamic effects is that the downward force (which increases
with speed) generates excellent traction without adding significant weight to the
vehicle, allowing faster speeds through curves and leading to lower lap times.

Another method of boundary-layer control is use of moving surfaces to reduce skin
friction effects on the boundary layer [32]. This method is hard to apply to practical
devices, because of geometric and weight complications, but it is very important in
recreation. Most golfers, tennis players, soccer players, and baseball pitchers can
attest to this! Tennis and soccer players use spin to control the trajectory and bounce
of a shot. In golf, a drive can leave the tee at 275 ft/s or more, with backspin of 9000
rpm! Spin provides significant aerodynamic lift that substantially increases the carry of
a drive. Spin is also largely responsible for hooking and slicing when shots are not hit
squarely. The baseball pitcher uses spin to throw a curve ball.

Flowabout a spinning sphere is shown inFig. 9.27a. Spinalters thepressuredistribution
and also affects the location of boundary-layer separation. Separation is delayed on the
upper surface of the sphere in Fig. 9.27a, and it occurs earlier on the lower surface. Thus
pressure (becauseof theBernoulli effect) is reducedon theupper surfaceand increasedon
the lower surface; thewake is deflected downward as shown. Pressure forces cause a lift in
the direction shown; spin in the opposite direction would produce negative lift—a
downward force. The force is directed perpendicular to both V and the spin axis.

Lift and drag data for spinning smooth spheres are presented in Fig. 9.27b. The
most important parameter is the spin ratio, ωD/2V, the ratio of surface speed to

Fig. 9.26 Contemporary racing car (Schumacher’s Formula 1 Ferrari) showing aero-
dynamic features. The car’s front and rear wings are designed to provide significant
downforce at speed to improve traction. Also visible are fairings to direct hot air from the
radiators around the rear tires, and at the front of the car, cool air toward the brakes. Not
shown are other aerodynamic features such as the fuselage bottom, which is designed
to route the airflow carefully, using diffusers, to develop the most negative pressure,
and to cause this negative pressure to act over the largest possible area under the car, to
develop additional downforce. (Photograph r Wayne P. Johnson)
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freestream flow speed; Reynolds number plays a secondary role. At low spin ratio, lift
is negative in terms of the directions shown in Fig. 9.27a. Only above ωD=2V � 0:5
does lift become positive and continue to increase as spin ratio increases. Lift coef-
ficient levels out at about 0.35. Spin has little effect on sphere drag coefficient, which
varies from about 0.5 to about 0.65 over the range of spin ratio shown.

Earlier we mentioned the effect of dimples on the drag of a golf ball. Experimental
data for lift and drag coefficients for spinning golf balls are presented in Fig. 9.28 for
subcritical Reynolds numbers between 126,000 and 238,000. Again the independent
variable is spin ratio; a much smaller range of spin ratio, typical of golf balls, is pre-
sented in Fig. 9.28.

A clear trend is evident: The lift coefficient increases consistently with spin ratio for
both hexagonal and “conventional” (round) dimples. The lift coefficient on a golf ball
with hexagonal dimples is significantly—as much as 15 percent—higher than on a
ball with round dimples. The advantage for hexagonal dimples continues to the largest
spin ratios that weremeasured. The drag coefficient for a ball with hexagonal dimples is
consistently 5 to 7 percent lower than the drag coefficient for a ball with rounddimples at
low spin ratios, but the difference becomes less pronounced as spin ratio increases.
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472 Chapter 9 External Incompressible Viscous Flow



The combination of higher lift and lower drag increases the carry of a golf shot. A
recent design—the Callaway HX—has improved performance further by using a
“tubular lattice network” using ridges of hexagons and pentagons (at a precise height
of 0.0083 in.) instead of dimples, so that there are no flat spots at all on the surface
[34]. Callaway claims the HX flies farther than any ball they ever tested.

Example 9.9 LIFT OF A SPINNING BALL

A smooth tennis ball, with 57 g mass and 64 mm diameter, is hit at 25 m/s with topspin of 7500 rpm. Calculate the
aerodynamic lift acting on the ball. Evaluate the radius of curvature of its path at maximum elevation in a vertical
plane. Compare with the radius for no spin.

Given: Tennis ball in flight, with m 5 57 g and D 5 64 mm, hit with V 5 25 m=s and topspin of 7500 rpm.

Find: (a) Aerodynamic lift acting on ball.
(b) Radius of curvature of path in vertical plane.
(c) Comparison with radius for no spin.

Solution:

Assume ball is smooth.
Use data from Fig. 9.27 to find lift: CL 5 f

ωD
2V

;ReD

� �
:

From given data (for standard air, ν 5 1:463 102 5m2=s),

ωD
2V

5
1

2
3 7500

rev

min
3 0:064m3

s

25m
3 2π

rad

rev
3

min

60 s
5 1:01

ReD 5
VD

ν
5 25

m

s
3 0:064m3

s

1:463 1025 m2
5 1:103 105

From Fig. 9.27, CL � 0:3, so

FL 5 CLA
1

2
ρV2

5 CL

πD2

4

1

2
ρV2 5

π
8
CLD

2ρV2

FL 5
π
8
3 0:33 ð0:064Þ2 m2 3 1:23

kg

m3
3 ð25Þ2 m2

s2
3

N � s2
kg �m 5 0:371N ß

FL

Because the ball is hit with topspin, this force acts downward.
Use Newton’s second law to evaluate the curvature of the path. In the vertical plane,P

Fz 52FL 2mg 5 maz 52m
V2

R
or R 5

V2

g1FL=m

R 5 ð25Þ2 m2

s2
1

9:81
m

s2
1 0:371N3

1

0:057 kg
3

kg �m
N � s2

2
6664

3
7775

R 5 38:3m ðwith spinÞß
R

R 5 ð25Þ2 m2

s2
3

s2

9:81 m
5 63:7m ðwithout spinÞß

R

Thus topspin has a significant effect on trajectory of the shot!
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It has long been known that a spinning projectile in flight is affected by a force
perpendicular to the direction of motion and to the spin axis. This effect, known as the
Magnus effect, is responsible for the systematic drift of artillery shells.

Cross flow about a rotating circular cylinder is qualitatively similar to flow about
the spinning sphere shown schematically in Fig. 9.27a. If the velocity of the upper
surface of a cylinder is in the same direction as the freestream velocity, separation is
delayed on the upper surface; it occurs earlier on the lower surface. Thus the wake
is deflected and the pressure distribution on the cylinder surface is altered when
rotation is present. Pressure is reduced on the upper surface and increased on the
lower surface, causing a net lift force acting upward. Spin in the opposite direction
reverses these effects and causes a downward lift force.

Lift and drag coefficients for the rotating cylinder are based on projected area, LD.
Experimentally measured lift and drag coefficients for subcritical Reynolds numbers
between 40,000 and 660,000 are shown as functions of spin ratio in Fig. 9.29. When
surface speed exceeds flow speed, the lift coefficient increases to surprisingly high
values, while in two-dimensional flow, drag is affected only moderately. Induced drag,
which must be considered for finite cylinders, can be reduced by using end disks larger
in diameter than the body of the cylinder.

The power required to rotate a cylinder may be estimated from the skin friction
drag of the cylinder surface. Hoerner [35] suggests basing the skin friction drag esti-
mate on the tangential surface speed and surface area. Goldstein [19] suggests that the
power required to spin the cylinder, when expressed as an equivalent drag coefficient,
may represent 20 percent or more of the aerodynamic CD of a stationary cylinder.
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Fig. 9.29 Lift and drag of a rotating cylinder as a
function of relative rotational speed; Magnus force.
(Data from [35].)

9.9 Summary and Useful Equations
In this chapter we have:

ü Defined and discussed various terms commonly used in aerodynamics, such as: boundary-layer disturbance, displacement and
momentum thicknesses; flow separation; streamlining; skin friction and pressure drag and drag coefficient; lift and lift coeffi-
cient; wing chord, span and aspect ratio; and induced drag.

ü Derived expressions for the boundary-layer thickness on a flat plate (zero pressure gradient) using exact* and approximate
methods (using the momentum integral equation).

ü Learned how to estimate the lift and drag from published data for a variety of objects.

*This topic applies to a section that may be omitted without loss of continuity in the material.
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While investigating the above phenomena, we developed insight into some of the basic concepts of aerodynamic
design, such as how to minimize drag, how to determine the optimum cruising speed of an airplane, and so on.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Definition of displacement thickness:
δ* 5

Z N

0

12
u

U

� �
dy �

Z δ

0

12
u

U

� �
dy

(9.1) Page 426

Definition of momentum thickness:
θ 5

Z N

0

u

U
12

u

U

� �
dy �

Z δ

0

u

U
12

u

U

� �
dy

(9.2) Page 426

Boundary-layer thickness (laminar,
exact—Blasius):

δ � 5:0ffiffiffiffiffiffiffiffiffiffiffi
U/νx

p 5
5:0xffiffiffiffiffiffiffiffi
Rex

p (9.13) Page W-20

Wall stress (laminar, exact—Blasius):
τw 5 0:332U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρμU/x

p
5

0:332ρU2ffiffiffiffiffiffiffiffi
Rex

p (9.14) Page W-21

Skin friction coefficient (laminar,
exact—Blasius): Cf 5

τw
1
2 ρU

2
5

0:664ffiffiffiffiffiffiffiffi
Rex

p (9.15) Page W-21

Momentum integral equation:
τw
ρ

5
d

dx
ðU2θÞ1 δ*U

dU

dx

(9.17) Page 432

Boundary-layer thickness for flat plate
(laminar, approximate—polynomial
velocity profile):

δ
x

5

ffiffiffiffiffiffiffiffiffi
30μ
ρUx

s
5

5:48ffiffiffiffiffiffiffiffi
Rex

p
(9.21) Page 435

Definition of skin friction coefficient:
Cf � τw

1
2 ρU

2

(9.22) Page 436

Skin friction coefficient for flat plate
(laminar, approximate—polynomial
velocity profile):

Cf 5
0:730ffiffiffiffiffiffiffiffi
Rex

p
(9.23) Page 436

Boundary-layer thickness for flat plate
(turbulent, approximate— 1

7-power-law
velocity profile):

δ
x

5 0:382
ν
Ux

� �1/5
5

0:382

Re1/5x

(9.26) Page 440

Skin friction coefficient for flat plate
(turbulent, approximate—1

7-power-law
velocity profile):

Cf 5
τw

1
2 ρU

2
5

0:0594

Re1/5x

(9.27) Page 440

Definition of drag coefficient:
CD � FD

1
2 ρV2 A

(9.30) Page 446

Drag coefficient for flat plate (entirely
laminar, based on Blasius solution): CD 5

1:33ffiffiffiffiffiffiffiffi
ReL

p (9.33) Page 447

Drag coefficient for flat plate (entirely
turbulent, based on 1

7-power-law
velocity profile):

CD 5
0:0742

Re1/5L

(9.34) Page 447

Drag coefficient for flat plate (empirical,
ReL < 109): CD 5

0:455

ðlog ReLÞ2:58
(9.35) Page 447
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Drag coefficient for flat plate (based on
1
7th power-law velocity profile,
5 3 105 # ReL # 107):

CD 5
0:0742

Re1/5L

2
1740

ReL

(9.37a) Page 448

Drag coefficient for flat plate (empirical,
5 3 105 , ReL , 109): CD 5

0:455

ðlog ReLÞ2:58
2

1610

ReL

(9.37b) Page 448

Definition of lift coefficient:
CL � FL

1
2 ρV2 Ap

(9.38) Page 459

Definition of aspect ratio:
AR � b2

Ap

(9.39) Page 464

Drag coefficient of a wing (finite span
airfoil, using CD,N): CD 5 CD;N 1CD;i 5 CD;N 1

C2
L

πAR

(9.42) Page 465

Drag coefficient of a wing (finite span
airfoil, using CD,0): CD 5 CD;0 1CD;i 5 CD;0 1

C2
L

πAR

(9.43) Page 465

Case Study

The Humpback Whale Flipper

Humpback whale flipper and new airfoil design.

In Chapter 5 we developed the Navier�Stokes equa-
tions for describing many of the flow fields that we are
likely to study, and in Chapter 6 we developed Euler’s
equation and the Bernoulli equation, which are useful
when analyzing flows we can model as inviscid, such as
much of aerodynamics. In Chapter 9 we have expanded
on this material, considering many real-world phe-
nomena such as boundary layers, flow separation, and
so on. However, we still have a lot to learn about lots of
different flow problems. For example, it is conventional
knowledge that airfoils and hydrofoils should have

leading edges that are smooth and streamlined—even
insect debris stuck to the leading edge of a wind tur-
bine rotor, for example, can reduce performance.
However, Dr. Frank E. Fish at West Chester University,
Pennsylvania, and research colleagues at Duke Uni-
versity and the U.S. Naval Academy have studied the
fluid mechanics of the flippers of the humpback whale,
which are anything but smooth, as shown in the figure.
The researchers were curious that even allowing for
the natural variability that any animal’s profile would
have, the whale seems to have evolved flippers that have
a unique row of bumps, or tubercles, along their leading
edges that produce a serrated look.

What are the bumps doing on those flippers? Test-
ing and analysis (using many of the ideas discussed in
Chapters 5, 6, and 9) have been done comparing air-
foils with tubercles to similar airfoils with a traditional
smooth leading edge. This research showed that
the stall angle (recall that this is the angle when flow
separation occurs, leading to a sudden loss in lift) was
greatly increased and that when stall occurs, it does
so gradually, not suddenly as in most traditional air-
foils. In addition, the tubercles airfoil was more effi-
cient: It had significantly less drag and more lift.

It’s believed that this occurs because the tubercles
channel the wind as it hits the leading edge of the
airfoil, causing vortices to develop as the flow moves
along the airfoil surface, stabilizing the flow and,
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Problems
The Boundary-Layer Concept

9.1 The roof of a minivan is approximated as a horizontal flat
plate. Plot the length of the laminar boundary layer as a
function of minivan speed, V, as the minivan accelerates
from 10 mph to 90 mph.

9.2 Amodel of a river towboat is to be tested at 1:18 scale. The
boat is designed to travel at 3.5 m/s in fresh water at 10�C.
Estimate the distance from the bow where transition occurs.
Where should transition be stimulated on themodel towboat?

9.3 The takeoff speed of a Boeing 757 is 160 mph. At
approximately what distance will the boundary layer on the
wings become turbulent? If it cruises at 530 mph at 33,000 ft,
at approximately what distance will the boundary layer on
the wings become turbulent?

9.4 A student is to design an experiment involving dragging a
sphere through a tank of fluid to illustrate (a) “creeping
flow” (ReD , 1) and (b) flow for which the boundary layer
becomes turbulent (ReD � 2.5 3 105). She proposes to use a
smooth sphere of diameter 1 cm in SAE 10 oil at room
temperature. Is this realistic for both cases? If either case is
unrealistic, select an alternative reasonable sphere diameter
and common fluid for that case.

9.5 For flow around a sphere the boundary layer becomes
turbulent around ReD � 2.5 3 105. Find the speeds at which
(a) an American golf ball (D 5 1:68 in.), (b) a British golf
ball (D 5 41:1mm), and (c) a soccer ball (D 5 8:75 in.)
develop turbulent boundary layers. Assume standard atmo-
spheric conditions.

9.6 1 m 3 2 m sheet of plywood is attached to the roof of
your vehicle after being purchased at the hardware store. At
what speed (in kilometers per hour, in 20�C air) will the
boundary layer first start becoming turbulent? At what speed
is about 90 percent of the boundary layer turbulent?

9.7 Plot on one graph the length of the laminar boundary
layer on a flat plate, as a function of freestream velocity, for
(a) water and standard air at (b) sea level and (c) 10 km
altitude. Use log-log axes, and compute data for the
boundary-layer length ranging from 0.01 m to 10 m.

9.8 The extent of the laminar boundary layer on the surface of
an aircraft ormissile varies with altitude. For a given speed, will

the laminar boundary-layer length increase or decrease with
altitude?Why? Plot the ratio of laminar boundary-layer length
at altitude z, to boundary-layer length at sea level, as a function
of z, up to altitude z 5 30 km, for a standard atmosphere.

Boundary-Layer Thickness

9.9 The most general sinusoidal velocity profile for laminar
boundary-layer flow on a flat plate is u 5 A sin(By) 1 C.
State three boundary conditions applicable to the laminar
boundary-layer velocity profile. Evaluate constants A, B,
and C.

9.10 Velocity profiles in laminar boundary layers often are
approximated by the equations

Linear :
u

U
5

y

δ

Sinusoidal :
u

U
5 sin

�π
2

y

δ

�

Parabolic :
u

U
5 2

� y

δ

�
2
� y

δ

�2

Compare the shapes of these velocity profiles by plotting y/δ
(on the ordinate) versus u/U (on the abscissa).

9.11 An approximation for the velocity profile in a laminar
boundary layer is

u

U
5

3

2

y

δ
2

1

2

y

δ

� �3

Does this expression satisfy boundary conditions applicable
to the laminar boundary-layer velocity profile? Evaluate δ*/δ
and θ/δ.

9.12 An approximation for the velocity profile in a laminar
boundary layer is

u

U
5 2

y

δ
2 2

y

δ

� �3

1
y

δ

� �4

Does this expression satisfy boundary conditions applicable
to the laminar boundary-layer velocity profile? Evaluate δ*/δ
and θ/δ.
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9.13 A simplistic laminar boundary-layer model is

u

U
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ffiffiffi
2

p y

δ
0, y #

δ
2
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U
5 ð22

ffiffiffi
2

p
Þ y
δ
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p
2 1Þ δ

2
, y # δ

Does this expression satisfy boundary conditions applicable
to the laminar boundary-layer velocity profile? Evaluate δ*/δ
and θ/δ.

9.14 The velocity profile in a turbulent boundary layer often
is approximated by the 1

7-power-law equation

u

U
5

y

δ

� �1=7

Compare the shape of this profile with the parabolic laminar
boundary-layer velocity profile (Problem 9.10) by plotting y/δ
(on the ordinate) versus u/U (on the abscissa) for both
profiles.

9.15 Evaluate θ/δ for each of the laminar boundary-layer
velocity profiles given in Problem 9.10.

9.16 Evaluate δ*/δ for each of the laminar boundary-layer
velocity profiles given in Problem 9.10.

9.17 Evaluate δ*/δ and θ/δ for the turbulent 1
7-power-law

velocity profile given in Problem 9.14. Compare with ratios
for the parabolic laminar boundary-layer velocity profile
given in Problem 9.10.

9.18 A fluid, with density ρ 5 1.5 slug/ft3, flows at U 5 10 ft/s
over a flat plate 10 ft long and 3 ft wide. At the trailing edge,
the boundary-layer thickness is δ 5 1 in. Assume the velocity
profile is linear, as shown, and that the flow is two-dimensional
(flow conditions are independent of z). Using control volume
abcd, shown by the dashed lines, compute the mass flow rate
across surface ab. Determine the drag force on the upper
surface of the plate. Explain how this (viscous) drag can be
computed from the givendata even thoughwedonot know the
fluid viscosity (see Problem 9.41).

U U

u

a b

d c

= 1 in.δ
CV

x

y

P9.18

9.19 The flat plate of Problem 9.18 is turned so that the 3-ft
side is parallel to the flow (the width becomes 10 ft). Should we
expect that the drag increases or decreases? Why? The trailing
edge boundary-layer thickness is now δ 5 0.6 in. Assume again
that the velocity profile is linear and that the flow is two-
dimensional (flow conditions are independent of z). Repeat
the analysis of Problem 9.18.

9.20 Solve Problem 9.18 again with the velocity profile at
section bc given by the parabolic expression from Problem
9.10.

9.21 The test section of a low-speed wind tunnel is 5 ft long,
preceded by a nozzle with a diffuser at the outlet. The tunnel
cross section is 1 ft 3 1 ft. The wind tunnel is to operate with
100�F air and have a design velocity of 160 ft/s in the test
section. A potential problem with such a wind tunnel is

boundary-layer blockage. The boundary-layer displacement
thickness reduces the effective cross-sectional area (the test
area, in which we have uniform flow); in addition, the uni-
form flow will be accelerated. If these effects are pro-
nounced, we end up with a smaller useful test cross section
with a velocity somewhat higher than anticipated. If the
boundary layer thickness is 0.4 in. at the entrance and 1 in. at
the exit, and the boundary layer velocity profile is given by
u=U 5 ðy=δÞ1=7, estimate the displacement thickness at the
end of the test section and the percentage change in
the uniform velocity between the inlet and outlet.

9.22 Air flows in a horizontal cylindrical duct of diameter
D 5 100 mm. At a section a few meters from the entrance,
the turbulent boundary layer is of thickness δ1 5 5.25 mm,
and the velocity in the inviscid central core is U1 5 12.5 m/s.
Farther downstream the boundary layer is of thickness δ2 5
24 mm. The velocity profile in the boundary layer is
approximated well by the 1

7-power expression. Find the
velocity, U2, in the inviscid central core at the second section,
and the pressure drop between the two sections.

9.23 Laboratory wind tunnels have test sections 25 cm square
and 50 cm long.With nominal air speedU15 25m/s at the test
section inlet, turbulent boundary layers form on the top, bot-
tom, and sidewalls of the tunnel. Theboundary-layer thickness
is δ1 5 20 mm at the inlet and δ2 5 30 mm at the outlet from
the test section. The boundary-layer velocity profiles are of
power-law form, with u/U 5 (y/δ)1/7. Evaluate the freestream
velocity, U2, at the exit from the wind-tunnel test section.
Determine the change in static pressure along the test section.

9.24 The square test section of a small laboratory wind
tunnel has sides of width W 5 40 cm. At one measurement
location, the turbulent boundary layers on the tunnel walls
are δ1 5 1 cm thick. The velocity profile is approximated well
by the 1

7-power expression. At this location, the freestream
air speed is U1 5 20 m/s, and the static pressure is p1 5 2250
Pa (gage). At a second measurement location downstream,
the boundary layer thickness is δ2 5 1.3 cm. Evaluate the air
speed in the freestream in the second section. Calculate the
difference in static pressure from section 1 to section 2 .

9.25 Air flows in the entrance region of a square duct, as
shown. The velocity is uniform,U05 100 ft/s, and the duct is 3
in. square. At a section 1 ft downstream from the entrance, the
displacement thickness, δ*, on each wall measures 0.035 in.
Determine the pressure change between sections 1 and 2 .

3 in.

3 in.
2 = 0.035 in.δ∗
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9.26 Flow of 68�F air develops in a flat horizontal duct fol-
lowing a well-rounded entrance section. The duct height is H
5 1 ft. Turbulent boundary layers grow on the duct walls, but
the flow is not yet fully developed. Assume that the velocity
profile in each boundary layer is u/U5 (y/δ)1/7. The inlet flow
is uniform at V 5 40 ft/s at section 1 . At section 2 , the
boundary-layer thickness on each wall of the channel is δ2 5 4
in. Show that, for this flow, δ* 5 δ/8. Evaluate the static gage
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pressure at section 1 . Find the average wall shear stress
between the entrance and section 2 , located at L 5 20 ft.

9.27 A laboratory wind tunnel has a square test section with
sides ofwidthW5 1 ft and lengthL5 2 ft.When the freestream
air speed at the test section entrance isU15 80 ft/s, the head loss
from the atmosphere is 0.3 in. H2O. Turbulent boundary layers
form on the top, bottom, and side walls of the test section.
Measurements show theboundary-layer thicknesses are δ15 0.8
in at the entrance and δ2 5 1 in at the outlet of the test section.
The velocity profiles are of 1

7-power form. Evaluate the free-
stream air speed at the outlet from the test section. Determine
the static pressures at the test section inlet and outlet.

9.28 Flow of air develops in a horizontal cylindrical duct, of
diameter D 5 15 in., following a well-rounded entrance. A
turbulent boundary grows on the duct wall, but the flow is not
yet fully developed. Assume that the velocity profile in the
boundary layer is u=U 5 ðy=δÞ1=7. The inlet flow isU5 50 ft/s
at section 1 . At section 2 , the boundary-layer thickness is
δ2 5 4 in. Evaluate the static gage pressure at section 2 ,
located at L 5 20 ft. Find the average wall shear stress.

9.29 Air flows into the inlet contraction section of a wind
tunnel in an undergraduate laboratory. From the inlet the air
enters the test section, which is square in cross-section with
side dimensions of 305 mm. The test section is 609 mm long.
At one operating condition air leaves the contraction at 50.2
m/s with negligible boundary-layer thickness. Measurements
show that boundary layers at the downstream end of the test
section are 20.3 mm thick. Evaluate the displacement
thickness of the boundary layers at the downstream end of
the wind tunnel test section. Calculate the change in static
pressure along the wind tunnel test section. Estimate the
approximate total drag force caused by skin friction on each
wall of the wind tunnel.

Laminar Flat-Plate Boundary Layer: Exact Solution

*9.30 Using numerical results for the Blasius exact solution
for laminar boundary-layer flow on a flat plate, plot the
dimensionless velocity profile, u/U (on the abscissa), versus
dimensionless distance from the surface, y/δ (on the ordi-
nate). Compare with the approximate parabolic velocity
profile of Problem 9.10.

*9.31 Using numerical results obtained by Blasius (Table
9.1), evaluate the distribution of shear stress in a laminar
boundary layer on a flat plate. Plot τ/τw versus y/δ. Compare
with results derived from the approximate sinusoidal velocity
profile given in Problem 9.10.

*9.32 Using numerical results obtained by Blasius (Table
9.1), evaluate the distribution of shear stress in a laminar
boundary layer on a flat plate. Plot τ/τw versus y/δ. Compare
with results derived from the approximate parabolic velocity
profile given in Problem 9.10.

*9.33 Using numerical results obtained byBlasius (Table 9.1),
evaluate the vertical component of velocity in a laminar
boundary layer on aflat plate. Plot v/U versus y/δ forRex5 105.

*9.34 Verify that the y component of velocity for the Blasius
solution to the Prandtl boundary-layer equations is given by
Eq. 9.10. Obtain an algebraic expression for the x component

of the acceleration of a fluid particle in the laminar boundary
layer. Plot ax versus η to determine the maximum x com-
ponent of acceleration at a given x.

*9.35 Numerical results of the Blasius solution to the Prandtl
boundary-layer equations are presented in Table 9.1. Con-
sider steady, incompressible flow of standard air over a flat
plate at freestream speed U 5 5 m/s. At x 5 20 cm, estimate
the distance from the surface at which u 5 0.95 U. Evaluate
the slope of the streamline through this point. Obtain an
algebraic expression for the local skin friction, τw(x). Obtain
an algebraic expression for the total skin friction drag force
on the plate. Evaluate the momentum thickness at L 5 1 m.

*9.36 Consider flow of air over a flat plate. On one graph,
plot the laminar boundary-layer thickness as a function of
distance along the plate (up to transition) for freestream
speeds U 5 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s, and 10 m/s.

*9.37 The Blasius exact solution involves solving a nonlinear
equation, Eq. 9.11, with initial and boundary conditions given by
Eq. 9.12. Set up an Excel workbook to obtain a numerical
solution of this system. The workbook should consist of columns
for η, f, f u, and fv. The rows should consist of values of these,
with a suitable step size for η (e.g., for 1000 rows the step size for
η would be 0.01 to generate data through η 5 10, to go a little
beyond the data in Table 9.1). The values of f and f u for the first
row are zero (from the initial conditions, Eq. 9.12); a guess value
is needed for fv (try 0.5). Subsequent row values for f, f u, and fv
can be obtained from previous row values using the Euler
method of Section 5.5 for approximating first derivatives (and
Eq. 9.11). Finally, a solution can be found by using Excel’sGoal
Seek or Solver functions to vary the initial value of fv until f u5 1
for large η (e.g., η 5 10, boundary condition of Eq. 9.12). Plot
the results. Note: Because the Euler method is relatively crude,
the results will agree with Blasius’ only to within about 1%.

*9.38 A thin flat plate, L 5 9 in. long and b 5 3 ft wide, is in-
stalled in awater tunnel as a splitter.The freestreamspeed isU5

5 ft/s, and the velocity profile in the boundary layer is approxi-
mated as parabolic. Plot δ, δ*, and τw versus x/L for the plate.

9.39 Consider flow over the splitter plate of Problem 9.38.
Show algebraically that the total drag force on one side of
the splitter plate may be written FD 5 ρU2θLb. Evaluate θLb
and the total drag for the given conditions.

9.40 A thin flat plate is installed in a water tunnel as a
splitter. The plate is 0.3 m long and 1 m wide. The freestream
speed is 1.6 m/s. Laminar boundary layers form on both sides
of the plate. The boundary-layer velocity profile is approxi-
mated as parabolic. Determine the total viscous drag force
on the plate assuming that pressure drag is negligible.

9.41 In Problems 9.18 and 9.19 the drag on the upper surface
of a flat plate, with flow (fluid density ρ 5 1.5 slug/ft3) at
freestream speed U 5 10 ft/s, was determined from momen-
tum flux calculations. The drag was determined for the plate
with its long edge (10 ft) and its short edge (3 ft) parallel to
the flow. If the fluid viscosity μ 5 4 3 1024 lbf � s/ft2, compute
the drag using boundary-layer calculations.

9.42 Assume laminar boundary-layer flow to estimate the
drag on the plate shown when it is placed parallel to a 15 ft/s
air flow. The air is 70�F and 1 atm.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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2 ft

2 ft

2 ft

P9.42, P9.43

9.43 Assume laminar boundary-layer flow to estimate the
drag on the plate shown when it is placed parallel to a 15 ft/s
air flow, except that the base rather than the tip faces the
flow. Would you expect this to be larger than, the same as, or
lower than the drag for Problem 9.42?

9.44 Assume laminar boundary-layer flow to estimate the
drag on the plate shown when it is placed parallel to a 15 ft/s
air flow. The air is at 70�F and 1 atm. (Note that the shape is
given by x 5 y2, where x and y are in feet.)

x

y

1 ft

x = y2

P9.44, P9.45

9.45 Assume laminar boundary-layer flow to estimate the
drag on the plate shown when it is placed parallel to a 15 ft/s
flow, except that the base rather than the tip faces the flow.
Would you expect this to be large than, the same as, or lower
than the drag for Problem 9.44?

9.46 Assume laminar boundary-layer flow to estimate the
drag on four square plates (each 3 in. 3 3 in.) placed parallel
to a 3 ft/s water flow, for the two configurations shown.
Before calculating, which configuration do you expect to
experience the lower drag? Assume that the plates attached
with string are far enough apart for wake effects to be neg-
ligible and that the water is at 70�F.

P9.46

Momentum Integral Equation

9.47 The velocity profile in a laminar boundary-layer flow at
zero pressure gradient is approximated by the linear expres-
sion given in Problem 9.10. Use the momentum integral
equation with this profile to obtain expressions for δ/x and Cf.

9.48 A horizontal surface, with length L 5 1.8 m and width
b5 0.9 m, is immersed in a stream of standard air flowing

at U5 3.2 m/s. Assume a laminar boundary layer forms and
approximate the velocity profile as sinusoidal. Plot δ, δ*,
and τw versus x/L for the plate.

9.49 Water at 10�C flows over a flat plate at a speed of 0.8 m/
s. The plate is 0.35 m long and 1 m wide. The boundary layer
on each surface of the plate is laminar. Assume that the
velocity profile may be approximated as linear. Determine
the drag force on the plate.

9.50 A horizontal surface, with length L 5 0.8 m and width
b5 1.9 m, is immersed in a stream of standard air flowing
at U 5 5.3 m/s. Assume a laminar boundary layer forms and
approximate the velocity profile as linear. Plot δ, δ*, and τw
versus x/L for the plate.

9.51 For the flow conditions of Problem 9.50, develop an
algebraic expression for the variation of wall shear stress
with distance along the surface. Integrate to obtain an
algebraic expression for the total skin-friction drag on the
surface. Evaluate the drag for the given conditions.

9.52 Standard air flows from the atmosphere into the wide,
flat channel shown. Laminar boundary layers form on the top
and bottom walls of the channel (ignore boundary-layer
effects on the side walls). Assume the boundary layers
behave as on a flat plate, with linear velocity profiles. At any
axial distance from the inlet, the static pressure is uniform
across the channel. Assume uniform flow at section 1 .
Indicate where the Bernoulli equation can be applied in this
flow field. Find the static pressure (gage) and the displace-
ment thickness at section 2 . Plot the stagnation pressure
(gage) across the channel at section 2 , and explain the
result. Find the static pressure (gage) at section 1 , and
compare to the static pressure (gage) at section 2 .
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9.53 For the flow conditions of Example 9.4, develop an
algebraic expression for the variation of wall shear stress
with distance along the surface. Integrate to obtain an
algebraic expression for the total skin friction drag on the
surface. Evaluate the drag for the given conditions.

*9.54 A developing boundary layer of standard air on a flat
plate is shown in Fig. P9.18. The freestream flow outside the
boundary layer is undisturbed with U 5 50 m/s. The plate is
3 m wide perpendicular to the diagram. Assume flow in the
boundary layer is turbulent, with a 1

7-power velocity profile,
and that δ 5 19 mm at surface bc. Calculate the mass flow
rate across surface ad and the mass flux across surface ab.
Evaluate the x momentum flux across surface ab. Determine
the drag force exerted on the flat plate between d and c.
Estimate the distance from the leading edge at which tran-
sition from laminar to turbulent flow may be expected.

*This problem requires material from sections that may be omitted without loss of continuity in the text material.
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9.55 Consider flow of air over a flat plate of length 5m.On one
graph, plot the boundary-layer thickness as a function of dis-
tance along the plate for freestream speedU5 10m/s assuming
(a) a completely laminar boundary layer, (b) a completely
turbulent boundary layer, and (c) a laminar boundary layer that
becomes turbulent at Rex 5 53 105. Use Excel’s Goal Seek or
Solver to find the speeds U for which transition occurs at the
trailing edge, and at x5 4 m, 3 m, 2 m, and 1 m.

9.56 Assume the flow conditions given in Example 9.4. Plot
δ, δ*, and τw versus x/L for the plate.

9.57 Repeat Problem 9.42, except that the air flow is now at
80 ft/s (assume turbulent boundary-layer flow).

9.58 Repeat Problem 9.44, except that the air flow is now at
80 ft/s (assume turbulent boundary-layer flow).

9.59 Repeat Problem 9.46, except that the air flow is now at
80 ft/s (assume turbulent boundary-layer flow).

9.60 The velocity profile in a turbulent boundary-layer flow
at zero pressure gradient is approximated by the 1

6-power
profile expression,

u

U
5 η1=6; where η 5

y

δ

Use the momentum integral equation with this profile to
obtain expressions for δ/x and Cf. Compare with results
obtained in Section 9.5 for the 1

7-power profile.

9.61 For the flow conditions of Example 9.4, but using the 1
6-

power velocity profile of Problem 9.60, develop an algebraic
expression for the variation of wall shear stress with distance
along the surface. Integrate to obtain an algebraic expression
for the total skin friction drag on the surface. Evaluate the
drag for the given conditions.

9.62 Repeat Problem 9.60, using the 1
8-power profile

expression.

9.63 Standard air flows over a horizontal smooth flat plate at
freestream speedU5 20m/s. The plate length isL5 1.5m and
its width is b 5 0.8 m. The pressure gradient is zero. The
boundary layer is tripped so that it is turbulent from the leading
edge; the velocity profile is well represented by the 1

7-power
expression. Evaluate the boundary-layer thickness, δ, at the
trailing edge of the plate. Calculate the wall shear stress at the
trailing edge of the plate. Estimate the skin friction drag on the
portion of the plate between x5 0.5 m and the trailing edge.

9.64 Air at standard conditions flows over a flat plate. The
freestream speed is 30 ft/s. Find δ and τw at x 5 3 ft from the
leading edge assuming (a) completely laminar flow (assume a
parabolic velocity profile) and (b) completely turbulent flow
(assume a 1

7-power velocity profile).

Use of the Momentum Integral Equation
for Flow with Zero Pressure Gradient

9.65 A uniform flow of standard air at 60 m/s enters a plane-
wall diffuser with negligible boundary-layer thickness. The
inlet width is 75 mm. The diffuser walls diverge slightly to
accommodate the boundary-layer growth so that the pres-
sure gradient is negligible. Assume flat-plate boundary-layer
behavior. Explain why the Bernoulli equation is applicable

to this flow. Estimate the diffuser width 1.2 m downstream
from the entrance.

9.66 A laboratory wind tunnel has a flexible upper wall that
can be adjusted to compensate for boundary-layer growth,
giving zero pressure gradient along the test section. The wall
boundary layers are well represented by the 1

7-power-velocity
profile. At the inlet the tunnel cross section is square, with
height H1 and width W1, each equal to 1 ft. With freestream
speed U1 5 90 ft/s, measurements show that δ1 5 0.5 in. and
downstream δ6 5 0.65 in. Calculate the height of the tunnel
walls at 6 . Determine the equivalent length of a flat plate
that would produce the inlet boundary layer thickness.
Estimate the streamwise distance between sections 1 and

6 in the tunnel. Assume standard air.

Pressure Gradients in Boundary-Layer Flow

9.67 Small wind tunnels in an undergraduate laboratory have
305-mm square test sections. Measurements show the
boundary layers on the tunnel walls are fully turbulent and
well represented by 1

7-power profiles. At cross section 1 with
freestream speed U1 5 26.1 m/s, data show that δ1 5 12.2
mm; at section 2 , located downstream, δ2 5 16.6 mm.
Evaluate the change in static pressure between sections 1
and 2 . Estimate the distance between the two sections.

9.68 Air flows in a cylindrical duct of diameter D 5 6 in. At
section 1 , the turbulent boundary layer is of thickness δ15 0.4
in. and the velocity in the inviscid central core is U1 5 80 ft/s.
Further downstream, at section 2 , the boundary layer is of
thickness δ25 1.2 in. The velocity profile in the boundary layer
is approximated well by the 1

7-power expression. Find the
velocity, U2, in the inviscid central core at the second section,
and the pressure drop between the two sections. Does the
magnitude of the pressure drop indicate that we are justified in
approximating the flowbetween sections 1 and 2 as onewith
zero pressure gradient? Estimate the length of duct between
sections 1 and 2 . Estimate the distance downstream from
section 1 at which the boundary layer thickness is δ 5 0.6 in.
Assume standard air.

9.69 Consider the linear, sinusoidal, and parabolic laminar
boundary-layer approximations of Problem 9.10. Compare
the momentum fluxes of these profiles. Which is most likely
to separate first when encountering an adverse pressure
gradient?

9.70 Perform a cost-effectiveness analysis on a typical large
tanker used for transporting petroleum. Determine, as a per-
centage of the petroleum cargo, the amount of petroleum that
is consumed in travelingadistanceof 2000miles.Usedata from
Example 9.5, and the following: Assume the petroleum cargo
constitutes 75% of the total weight, the propeller efficiency is
70%, the wave drag and power to run auxiliary equipment
constitute losses equivalent to an additional 20%, the engines
have a thermal efficiency of 40%, and the petroleum energy is
20,000 Btu/lbm. Also compare the performance of this tanker
to that of theAlaskanPipeline,which requiresabout 120Btuof
energy for each ton-mile of petroleum delivery.

9.71 Consider the plane-wall diffuser shown in Fig. P9.71.
First, assume the fluid is inviscid. Describe the flow pattern,
including the pressure distribution, as the diffuser angle φ is
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increased from zero degrees (parallel walls). Second, modify
your description to allow for boundary layer effects. Which
fluid (inviscid or viscous) will generally have the highest exit
pressure?

φFlow

1

2

y

x

P9.71

*9.72 Table 9.1 shows the numerical results obtained from
Blasius exact solution of the laminar boundary-layer equa-
tions. Plot the velocity distribution (note that from Eq. 9.13
we see that η � 5:0 y

δ). On the same graph, plot the turbulent
velocity distribution given by the 1

7-power expression of
Eq. 9.24. Which is most likely to separate first when
encountering an adverse pressure gradient? To justify your
answer, compare the momentum fluxes of these profiles (the
laminar data can be integrated using a numerical method
such as Simpson’s rule).

9.73 Cooling air is supplied through the wide, flat channel
shown. For minimum noise and disturbance of the outlet flow,
laminar boundary layers must be maintained on the channel
walls. Estimate the maximum inlet flow speed at which the
outlet flow will be laminar. Assuming parabolic velocity
profiles in the laminar boundary layers, evaluate the pressure
drop, p1 2 p2. Express your answer in inches of water.

1 2
h = 15 cm

L = 3 m

Flow

P9.73

9.74 Boundary-layer separation occurs when the shear stress
at the surface becomes zero. Assume a polynomial repre-
sentation for the laminar boundary layer of the form, u/U5 a

1 bλ 1 cλ2 1 dλ3, where λ 5 y/δ. Specify boundary condi-
tions on the velocity profile at separation. Find appropriate
constants, a, b, c, and d, for the separation profile. Calculate
the shape factorH at separation. Plot the profile and compare
with the parabolic approximate profile.

9.75 For flow over a flat plate with zero pressure gradient, will
the shear stress increase, decrease, or remain constant along
the plate? Justify your answer. Does the momentum flux
increase, decrease, or remain constant as the flow proceeds
along the plate? Justify your answer. Compare the behavior of
laminar flow and turbulent flow (both from the leading edge)
over a flat plate. At a given distance from the leading edge,
which flow will have the larger boundary-layer thickness?
Does your answer depend on the distance along the plate?
How would you justify your answer?

9.76 A laboratory wind tunnel has a test section that is
square in cross section, with inlet width W1 and height H1,
each equal to 1 ft. At freestream speed U1 5 80 ft/s, mea-
surements show the boundary-layer thickness is δ1 5 0.4 in.
with a 1

7-power turbulent velocity profile. The pressure
gradient in this region is given approximately by dp/dx5
20.035 in. H2O/in. Evaluate the reduction in effective flow
area caused by the boundary layers on the tunnel bottom,
top, and walls at section 1 . Calculate the rate of change of
boundary-layer momentum thickness, dθ/dx, at section 1 .
Estimate the momentum thickness at the end of the test
section, located at L 5 10 in downstream.

9.77 The variable-wall concept is proposed to maintain
constant boundary-layer thickness in the wind tunnel
of Problem 9.76. Beginning with the initial conditions of
Problem 9.76, evaluate the freestream velocity distribution
needed to maintain constant boundary-layer thickness.
Assume constant width,W1. Estimate and plot the top-height
settings along the test section from x5 0 at section 1 to x 5
10 in. at section 2 downstream.

Drag

9.78 A flat-bottomed barge, 80 ft long and 35 ft wide, sub-
merged to a depth of 5 ft, is to be pushed up a river (the river
water is at 60�F). Estimate and plot the power required to
overcome skin friction for speeds ranging up to 15 mph.

9.79 Repeat Problem 9.46, except that the water flow is now
at 30 ft/s. (Use formulas for CD from Section 9.7.)

9.80 A towboat for river barges is tested in a towing tank.
The towboat model is built at a scale ratio of 1:13.5.
Dimensions of the model are overall length 3.5 m, beam 1 m,
and draft 0.2 m. (The model displacement in fresh water is
5500 N.) Estimate the average length of wetted surface on
the hull. Calculate the skin friction drag force of the proto-
type at a speed of 7 knots relative to the water.

9.81 A jet transport aircraft cruises at 12 km in steady level
flight at 800 km/h. Model the aircraft fuselage as a circular
cylinder with diameter D 5 4 m and length L 5 38 m.
Neglecting compressibility effects, estimate the skin friction
drag force on the fuselage. Evaluate the power needed to
overcome this force.

9.82 Resistance of a barge is to be determined from model
test data. The model is constructed to a scale ratio of 1:13.5
and has length, beam, and draft of 7.00 m, 1.4 m, and 0.2 m,
respectively. The test is to simulate performance of the
prototype at 10 knots. What must the model speed be for the
model and prototype to exhibit similar wave drag behavior?
Is the boundary layer on the prototype predominantly
laminar or turbulent? Does the model boundary layer
become turbulent at the comparable point? If not, the model
boundary layer could be artificially triggered to turbulent
by placing a tripwire across the hull. Where could this be
placed? Estimate the skin-friction drag on model and
prototype.

9.83 A vertical stabilizing fin on a land-speed-record car is
L 5 1.65 m long and H 5 0.785 m tall. The automobile is to

*This problem requires material from sections that may be omitted without loss of continuity in the text material.
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be driven at the Bonneville Salt Flats in Utah, where the
elevation is 1340 m and the summer temperature reaches
50�C. The car speed is 560 km/hr. Evaluate the length
Reynolds number of the fin. Estimate the location of tran-
sition from laminar to turbulent flow in the boundary layers.
Calculate the power required to overcome skin friction drag
on the fin.

9.84 A nuclear submarine cruises fully submerged at 27
knots. The hull is approximately a circular cylinder with
diameter D 5 11.0 m and length L 5 107 m. Estimate the
percentage of the hull length for which the boundary layer is
laminar. Calculate the skin friction drag on the hull and the
power consumed.

9.85 You are asked by your college crew to estimate the skin
friction drag on their eight-seat racing shell. The hull of the
shell may be approximated as half a circular cylinder with
457 mm diameter and 7.32 m length. The speed of the shell
through the water is 6.71 m/s. Estimate the location of
transition from laminar to turbulent flow in the boundary
layer on the hull of the shell. Calculate the thickness of the
turbulent boundary layer at the rear of the hull. Determine
the total skin friction drag on the hull under the given
conditions.

9.86 A sheet of plastic material 0.5 in. thick, with specific
gravity SG5 1.7, is dropped into a large tank containing
water. The sheet is 2 ft 3 4 ft. Estimate the terminal speed of
the sheet as it falls with (a) the short side vertical and (b) the
long side vertical. Assume that the drag is due only to skin
friction, and that the boundary layers are turbulent from the
leading edge.

9.87 The 600-seat jet transport aircraft proposed by Airbus
Industrie has a fuselage that is 240 ft long and 25 ft in
diameter. The aircraft is to operate 14 hr per day, 6 days per
week; it will cruise at 575 mph (M 5 0.87) at 12-km altitude.
The engines consume fuel at the rate of 0.6 lbm/hr for each
pound force of thrust produced. Estimate the skin friction
drag force on the aircraft fuselage at cruise. Calculate the
annual fuel savings for the aircraft if friction drag on
the fuselage could be reduced by 1 percent by modifying the
surface coating.

9.88 A supertanker displacement is approximately 600,000
tons. The ship has length L 5 1000 ft, beam (width) b 5
270 ft, and draft (depth) D 5 80 ft. The ship steams at
15 knots through seawater at 40�F. For these conditions,
estimate (a) the thickness of the boundary layer at the stern
of the ship, (b) the total skin friction drag acting on the ship,
and (c) the power required to overcome the drag force.

9.89 In Section 7.6 the wave resistance and viscous resis-
tance on a model and prototype ship were discussed. For the
prototype, L 5 130 m and A 5 1800 m2. From the data of
Figs 7.2 and 7.3, plot on one graph the wave, viscous, and
total resistance (N) experienced by the prototype, as a
function of speed. Plot a similar graph for the model. Discuss
your results. Finally, plot the power (kW) required for the
prototype ship to overcome the total resistance.

9.90 As part of the 1976 bicentennial celebration, an enter-
prising group hung a giantAmerican flag (194 ft high and 367 ft

wide) from the suspension cables of the Verrazano Narrows
Bridge. They apparently were reluctant to make holes in the
flag to alleviate the wind force, and hence they effectively had
a flat plate normal to the flow. The flag tore loose from its
mountings when the wind speed reached 10mph. Estimate the
wind force acting on the flag at this wind speed. Should they
have been surprised that the flag blew down?

9.91 A fishing net is made of 0.75-mm diameter nylon thread
assembled in a rectangular pattern. The horizontal and ver-
tical distances between adjacent thread centerlines are 1 cm.
Estimate the drag on a 2 m 3 12 m section of this net when it
is dragged (perpendicular to the flow) through 15�C water at
6 knots. What is the power required to maintain this motion?

9.92 A rotary mixer is constructed from two circular disks as
shown. The mixer is rotated at 60 rpm in a large vessel
containing a brine solution (SG 5 1.1). Neglect the drag on
the rods and the motion induced in the liquid. Estimate the
minimum torque and power required to drive the mixer.

+ +

0.6 m 0.6 m

100 mm dia.

= 60 rpmω

P9.92, P9.93

9.93 As a young design engineer you decide to make the
rotary mixer look more “cool” by replacing the disks with
rings. The rings may have the added benefit of making the
mixer mix more effectively. If the mixer absorbs 350 W at 60
rpm, redesign the device. There is a design constraint that
the outer diameter of the rings not exceed 125 mm.

9.94 The vertical component of the landing speed of a
parachute is to be less than 20 ft/s. The total weight of the
jumper and the chute is 250 lb. Determine the minimum
diameter of the open parachute.

9.95 As a young design engineer you are asked to design an
emergency braking parachute system for use with a military
aircraft of mass 9500 kg. The plane lands at 350 km/hr,
and the parachute system alone must slow the airplane to
100 km/hr in less than 1200 m. Find the minimum
diameter required for a single parachute, and for three non-
interfering parachutes. Plot the airplane speed versus dis-
tance and versus time. What is the maximum “g-force”
experienced?

9.96 An emergency braking parachute system on a military
aircraft consists of a large parachute of diameter 6 m. If the
airplanemass is 8500 kg, and it lands at 400 km/hr, find the time
and distance at which the airplane is slowed to 100 km/hr by the
parachute alone. Plot the aircraft speed versus distance and
versus time. What is the maximum “g-force” experienced?
An engineer proposes that less space would be taken up by
replacing the large parachute with three non-interfering para-
chutes each of diameter 3.75 m.What effect would this have on
the time and distance to slow to 100 km/hr?

9.97 It has been proposed to use surplus 55 gal oil drums to
make simple windmills for underdeveloped countries. (It is a
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simple Savonius turbine.) Two possible configurations are
shown. Estimate which would be better, why, and by how
much. The diameter and length of a 55 gal drum areD5 24 in.
and H 5 29 in.

ω
ω
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9.98 The resistance to motion of a good bicycle on smooth
pavement is nearly all due to aerodynamic drag. Assume that
the total weight of rider and bike is W 5 210 lbf. The frontal
area measured from a photograph is A 5 5 ft2. Experiments
on a hill, where the road grade is 9 percent, show that
terminal speed is Vt 5 50 ft/s. From these data, the drag
coefficient is estimated as CD 5 1.25. Verify this calculation
of drag coefficient. Estimate the distance needed for the bike
and rider to decelerate from 50 ft/s to 30 ft/s while coasting
after reaching level road.

9.99 A cyclist is able to attain a maximum speed of 30 km/hr
on a calm day. The total mass of rider and bike is 65 kg. The
rolling resistance of the tires is FR 5 7.5 N, and the drag
coefficient and frontal area are CD 5 1.2 and A 5 0.25 m2.
The cyclist bets that today, even though there is a headwind
of 10 km/hr, she can maintain a speed of 24 km/hr. She also
bets that, cycling with wind support, she can attain a top
speed of 40 km/hr. Which, if any, bets does she win?

9.100 Ballistic data obtained on a firing range show that
aerodynamic drag reduces the speed of a .44 magnum
revolver bullet from 250 m/s to 210 m/s as it travels over a
horizontal distance of 150 m. The diameter and mass of
the bullet are 11.2 mm and 15.6 g, respectively. Evaluate the
average drag coefficient for the bullet.

9.101 Consider the cyclist in Problem 9.99. She is having a
bad day, because she has to climb a hill with a 5� slope. What
is the speed she is able to attain? What is the maximum
speed if there is also a headwind of 10 km/hr? She reaches
the top of the hill, and turns around and heads down the hill.
If she still pedals as hard as possible, what will be her top
speed (when it is calm, and when the wind is present)? What
will be her maximum speed if she decides to coast down the
hill (with and without the aid of the wind)?

9.102 Consider the cyclist in Problem 9.99. Determine the
maximum speeds she is actually able to attain today (with the
10 km/hr wind) cycling into the wind, and cycling with the
wind. If she were to replace the tires with high-tech ones that
had a rolling resistance of only 3.5 N, determine her max-
imum speed on a calm day, cycling into the wind, and cycling
with the wind. If she in addition attaches an aerodynamic
fairing that reduces the drag coefficient to CD 5 0.9, what
will be her new maximum speeds?

9.103 At a surprise party for a friend you’ve tied a series of
20-cm-diameter helium balloons to a flagpole, each tied with

a short string. The first one is tied 1 m above the ground, and
the other eight are tied at 1 m spacings, so that the last is tied
at a height of 9 m. Being quite a nerdy engineer, you notice
that in the steady wind, each balloon is blown by the wind so
it looks like the angles that the strings make with the vertical
are about 10�, 20�, 30�, 35�, 40�, 45�, 50�, 60�, and 65�.
Estimate and plot the wind velocity profile for the 9-m range.
Assume the helium is at 20�C and 10 kPa gage and that each
balloon is made of 3 g of latex.

9.104 A 0.5-m-diameter hollow plastic sphere containing
pollution test equipment is being dragged through the
Hudson River in New York by a diver riding an underwater
jet device. The sphere (with an effective specific gravity of
SG5 0.30) is fully submerged, and it is tethered to the diver
by a thin 1.5-m-long wire. What is the angle the wire makes
with the horizontal if the velocity of the diver and sphere
relative to the water is 5 m/s? The water is at 10�C.

9.105 A simple but effective anemometer to measure wind
speed can be made from a thin plate hinged to deflect in the
wind. Consider a thin plate made from brass that is 20 mm
high and 10 mm wide. Derive a relationship for wind speed
as a function of deflection angle, θ. What thickness of brass
should be used to give θ 5 30� at 10 m/s?

9.106 An anemometer to measure wind speed is made from
four hemispherical cups of 2-in. diameter, as shown. The
center of each cup is placed at R 5 3 in. from the pivot. Find
the theoretical calibration constant, k, in the calibration
equation V 5 kω, where V (mph) is the wind speed and ω
(rpm) is the rotation speed. In your analysis, base the torque
calculations on the drag generated at the instant when two of
the cups are orthogonal and the other two cups are parallel,
and ignore friction in the bearings. Explain why, in the
absence of friction, at any given wind speed, the anemometer
runs at constant speed rather than accelerating without limit.
If the actual anemometer bearing has (constant) friction such
that the anemometer needs a minimum wind speed of 0.5
mph to begin rotating, compare the rotation speeds with and
without friction for V 5 20 mph.

R

ω

P9.106

9.107 A circular disk is hung in an air stream from a pivoted
strut as shown. In a wind-tunnel experiment, performed in
air at 15 m/s with a 25-mm diameter disk, α was measured at
10�. For these conditions determine the mass of the disk.
Assume the drag coefficient for the disk applies when the
component of wind speed normal to the disk is used.
Assume drag on the strut and friction in the pivot are
negligible. Plot a theoretical curve of α as a function of air
speed.
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9.108 Experimental data [16] suggest that the maximum and
minimum drag area (CDA) for a skydiver varies from about
9.1 ft2 for a prone, spread-eagle position to about 1.2 ft2 for
vertical fall. Estimate the terminal speeds for a 170-lb sky-
diver in each position. Calculate the time and distance
needed for the skydiver to reach 90 percent of terminal
speed at an altitude of 9800 ft on a standard day.

9.109 A vehicle is built to try for the land-speed record at the
Bonneville Salt Flats, elevation 4400 ft. The engine delivers
500 hp to the rear wheels, and careful streamlining has
resulted in a drag coefficient of 0.15, based on a 15 ft2 frontal
area. Compute the theoretical maximum ground speed of the
car (a) in still air and (b) with a 20 mph headwind.

9.110 An F-4 aircraft is slowed after landing by dual para-
chutes deployed from the rear. Each parachute is 12 ft in
diameter. The F-4 weighs 32,000 lbf and lands at 160 knots.
Estimate the time and distance required to decelerate the
aircraft to 100 knots, assuming that the brakes are not used
and the drag of the aircraft is negligible.

9.111 A tractor-trailer rig has frontal area A 5 102 ft2 and
drag coefficient CD 5 0.9. Rolling resistance is 6 lbf per 1000
lbf of vehicle weight. The specific fuel consumption of the
diesel engine is 0.34 lbm of fuel per horsepower hour, and
drivetrain efficiency is 92 percent. The density of diesel fuel is
6.9 lbm/gal. Estimate the fuel economy of the rig at 55 mph if
its gross weight is 72,000 lbf. An air fairing system reduces
aerodynamic drag 15 percent. The truck travels 120,000 miles
per year. Calculate the fuel saved per year by the roof fairing.

9.112 A bus travels at 80 km/h in standard air. The frontal
area of the vehicle is 7.5 m2, and the drag coefficient is 0.92.
How much power is required to overcome aerodynamic
drag? Estimate the maximum speed of the bus if the engine is
rated at 465 hp. A young engineer proposes adding fairings
on the front and rear of the bus to reduce the drag coefficient.
Tests indicate that this would reduce the drag coefficient to
0.86 without changing the frontal area. What would the
required power be at 80 km/h and the new top speed? If the
fuel cost for the bus is currently $300/day, how long would the
modification take to pay for itself if it costs $4800 to install?

9.113 Compare and plot the power (hp) required by a typical
large American sedan of the 1970s and a current midsize
sedan to overcome aerodynamic drag versus road speed in
standard air, for a speed range of 20 mph to 100 mph. Use
the following as representative values:

Weight (lbf) Drag Coefficient Frontal Area (ft2)

1970s Sedan 4500 0.5 24

Current Sedan 3500 0.3 20

If rolling resistance is 1.5 percent of curb weight, determine
for each vehicle the speed at which the aerodynamic force
exceeds frictional resistance.

9.114 A 180-hp sports car of frontal area 1.72 m2, with a drag
coefficient of 0.31, requires 17 hp to cruise at 100 km/h. At
what speed does aerodynamic drag first exceed rolling
resistance? (The rolling resistance is 1.2 percent of the car
weight, and the car mass is 1250 kg.) Find the drivetrain
efficiency. What is the maximum acceleration at 100 km/h?
What is the maximum speed? Which redesign will lead to a
higher maximum speed: improving the drive train efficiency
by 6 percent from its current value, reducing the drag coef-
ficient to 0.29, or reducing the rolling resistance to 0.91
percent of the car weight?

9.115 Consider a negatively charged spherical particle of
radius a bearing a charge, Qs, suspended in a pure dielectric
fluid (containing no ions). When subject to a uniform
electric field, ~EN, the particle will translate under the influ-
ence of the electric force acting on it. The induced particle
motion refers to electrophoresis, which has been widely used
to characterize and purify molecules and colloidal particles.
The net electrical force on the charged particle will simply be
~FE 5 QS

~EN. As soon as the particle starts to move under the
influence of this electric force, it encounters an oppositely
directed fluid drag force.

(a) Under the Stokes flow regime and neglecting the grav-
itational force and the buoyancy force acting on
the microparticle, derive an expression to calculate the
particle’s steady-state translational velocity.

(b) Based on the above results, explain why electrophoresis
can be used to separate biological samples.

(c) Calculate the translational velocities of two particles
of radius a 5 1 μm and 10 μm using Qs 5 210212 C,
EN5 1000 V/m, and μ 5 1023 Pa � s.

9.116 Repeat the analysis for the frictionless anemometer of
Problem 9.106, except this time base the torque calculations
on the more realistic model that the average torque is
obtained by integrating, over one revolution, the instanta-
neous torque generated by each cup (i.e., as the cup’s
orientation to the wind varies).

9.117 A round thin disk of radius R is oriented perpendic-
ular to a fluid stream. The pressure distributions on the
front and back surfaces are measured and presented in the
form of pressure coefficients. The data are modeled with
the following expressions for the front and back surfaces,
respectively:

Front Surface Cp 5 12
� r

R

�6

Rear Surface Cp 520:42

Calculate the drag coefficient for the disk.

9.118 An object falls in air down a long vertical chute. The
speed of the object is constant at 3 m/s. The flow pattern
around the object is shown. The static pressure is uniform
across sections 1 and 2 ; pressure is atmospheric at section

1 . The effective flow area at section 2 is 20 percent of the
chute area. Frictional effects between sections 1 and 2 are
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negligible. Evaluate the flow speed relative to the object at
section 2 . Calculate the static pressure at section 2 .
Determine the mass of the object.

2

1

A2 = 0.2A1

A1 = 0.09 m2

p1 = patm

V

Wake

Object

0.6 m
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9.119 An object of massm, with cross-sectional area equal to
half the size of the chute, falls down a mail chute. The
motion is steady. The wake area is 3

4 the size of the chute at
its maximum area. Use the assumption of constant pressure
in the wake. Apply the continuity, Bernoulli, and momentum
equations to develop an expression for terminal speed of the
object in terms of its mass and other quantities.

9.120 A light plane tows an advertising banner over a foot-
ball stadium on a Saturday afternoon. The banner is 4 ft tall
and 45 ft long. According to Hoerner [16], the drag coefficient
based on area (Lh) for such a banner is approximated by
CD5 0.05 L/h, where L is the banner length and h is the
banner height. Estimate the power required to tow the ban-
ner atV5 55 mph. Compare with the drag of a rigid flat plate.
Why is the drag larger for the banner?

9.121 Alargepaddlewheel is immersed in the current of a river
to generate power.Each paddle has areaA anddrag coefficient
CD; the center of each paddle is located at radius R from the
centerline of the paddle wheel. Assume the equivalent of one
paddle is submerged continuously in the flowing stream.
Obtain an expression for the drag force on a single paddle in
termsofgeometric variables, current speed,V, and linear speed
of the paddle center, U 5 Rω. Develop expressions for the
torque and power produced by the paddle wheel. Find the
speed at which the paddle wheel should rotate to obtain max-
imum power output from the wheel in a given current.

R ω

Vw

Paddle (Area, A)
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9.122 The antenna on a car is 10 mm in diameter and 1.8 m
long. Estimate the bending moment that tends to snap it off
if the car is driven at 120 km/hr on a standard day.

9.123 A large three-blade horizontal axis wind turbine
(HAWT) can be damaged if the wind speed is too high.
To avoid this, the blades of the turbine can be oriented
so that they are parallel to the flow. Find the ben-
ding moment at the base of each blade when the wind
speed is 85 knots. Model each blade as a flat plate 115 ft
wide 3 1.5 ft long.

9.124 The HAWT of Problem 9.123 is not self-starting. The
generator is used as an electric motor to get the turbine up to
the operating speed of 25 rpm. To make this easier, the
blades are aligned so that they lie in the plane of rotation.
Assuming an overall efficiency of motor and drive train
of 60 percent, find the power required to maintain the tur-
bine at the operating speed. As an approximation, model
each blade as a series of flat plates (the outer region of each
blade moves at a significantly higher speed than the inner
region).

9.125 A runner maintains a speed of 7.5 mph during a 4-mi
run. The runner’s route consists of running straight down a
road for 2 mi, then turning around and returning the 2 mi
straight home. The CDA for the runner is 9 ft2. On a windless
day, how many calories (kcal) will the runner burn over-
coming drag? On a day in which the wind is blowing 5 mph
directly along the runner’s route how many calories (kcal)
will the runner burn overcoming drag?

9.126 Consider small oil droplets (SG 5 0.85) rising in
water. Develop a relation for calculating terminal speed of a
droplet (in m/s) as a function of droplet diameter (in mm)
assuming Stokes flow. For what range of droplet diameter is
Stokes flow a reasonable assumption?

9.127 Standard air is drawn into a low-speed wind tunnel.
A 30-mm diameter sphere is mounted on a force balance
to measure lift and drag. An oil-filled manometer is used to
measure static pressure inside the tunnel; the reading is
240mm of oil (SG 5 0.85). Calculate the freestream air
speed in the tunnel, the Reynolds number of flow over the
sphere, and the drag force on the sphere. Are the boundary
layers on the sphere laminar or turbulent? Explain.

9.128 A spherical helium-filled balloon, 20 in. in diameter,
exerts an upward force of 0.3 lbf on a restraining string when
held stationary in standard air with nowind.With a wind speed
of 10 ft/s, the string holding the balloon makes an angle of 55�

with thehorizontal.Calculate thedrag coefficient of theballoon
under these conditions, neglecting the weight of the string.

9.129 A field hockey ball has diameter D 5 73 mm and
mass m 5 160 g. When struck well, it leaves the stick with
initial speed U0 5 50 m/s. The ball is essentially smooth.
Estimate the distance traveled in horizontal flight before
the speed of the ball is reduced 10 percent by aero-
dynamic drag.

9.130 Compute the terminal speed of a 3-mm-diameter
raindrop (assume spherical) in standard air.

9.131 A small sphere (D 5 6 mm) is observed to fall through
castor oil at a terminal speed of 60 mm/s. The temperature is
20�C. Compute the drag coefficient for the sphere. Determine

Problems 487



the density of the sphere. If dropped in water, would the
sphere fall slower or faster? Why?

9.132 The following curve-fit for the drag coefficient of a
smooth sphere as a function of Reynolds number has been
proposed by Chow [36]:

CD 5 24=Re Re# 1
CD 5 24=Re0:646 1,Re# 400
CD 5 0:5 400,Re# 33 105

CD 5 0:000366 Re0:4275 33 105 ,Re# 23 106

CD 5 0:18 Re. 23 106

Use data from Fig. 9.11 to estimate the magnitude and loca-
tion of the maximum error between the curve fit and data.

9.133 Problem 9.107 showed a circular disk hung in an air
stream from a cylindrical strut. Assume the strut is L 5
40 mm long and d 5 3 mm in. diameter. Solve Problem 9.107
including the effect of drag on the support.

9.134 A tennis ball with a mass of 57 g and diameter of 64 mm
is dropped in standard sea level air. Calculate the terminal
velocity of the ball. Assuming as an approximation that the
drag coefficient remains constant at its terminal-velocity
value, estimate the time and distance required for the ball to
reach 95% of its terminal speed.

9.135 Consider a cylindrical flag pole of height H. For con-
stant drag coefficient, evaluate the drag force and bending
moment on the pole if wind speed varies as u/U 5 (y/H)1/7,
where y is distance measured from the ground. Compare
with drag and moment for a uniform wind profile with con-
stant speed U.

9.136 A water tower consists of a 12-m-diameter sphere on
top of a vertical tower 30 m tall and 2 m in diameter. Esti-
mate the bending moment exerted on the base of the tower
due to the aerodynamic force imposed by a 100 km/hr wind
on a standard day. Neglect interference at the joint between
the sphere and tower.

9.137 A model airfoil of chord 15 cm and span 60 cm is
placed in a wind tunnel with an air flow of 30 m/s (the air
is at 20�C). It is mounted on a cylindrical support rod 2 cm
in diameter and 25 cm tall. Instruments at the base of
the rod indicate a vertical force of 50 N and a horizontal
force of 6 N. Calculate the lift and drag coefficients of the
airfoil.

9.138 A cast-iron “12-pounder” cannonball rolls off the deck
of a ship and falls into the ocean at a location where the
depth is 1000 m. Estimate the time that elapses before
the cannonball hits the sea bottom.

9.139 The Stokes drag law for smooth spheres is to be verified
experimentally by dropping steel ball bearings in glycerin.
Evaluate the largest diameter steel ball for which Re , 1
at terminal speed. Calculate the height of glycerin column
needed for a bearing to reach 95 percent of terminal speed.

9.140 The plot shows pressure difference versus angle,
measured for air flow around a circular cylinder at Re 5

80,000. Use these data to estimate CD for this flow. Compare
with data from Fig. 9.13. How can you explain the
difference?

9.141 Consider the tennis ball of Problem 9.134. Use the
equations for drag coefficient given in Problem 9.132, and a
numerical integration scheme (e.g., Simpson’s rule) to com-
pute the time and distance required for the ball to reach 95%
of its terminal speed.

9.142 The air bubble of Problem 3.10 expands as it rises in
water. Find the time it takes for the bubble to reach the surface.
Repeat for bubbles of diameter 5mmand15mm.Compute and
plot the depth of the bubbles as a function of time.

9.143 Consider the tennis ball of Problem 9.134. Suppose it
is hit so that it has an initial upward speed of 50 m/s. Esti-
mate the maximum height of the ball, assuming (a) a con-
stant drag coefficient and (b) using the equations for drag
coefficient given in Problem 9.132, and a numerical inte-
gration scheme (e.g., a Simpson’s rule).

9.144 Why is it possible to kick a football farther in a spiral
motion than in an end-over-end tumbling motion?

9.145 Approximate dimensions of a rented rooftop carrier are
shown. Estimate the drag force on the carrier (r5 10 cm) at 100
km/hr. If the drivetrain efficiency of the vehicle is 0.85 and the
brake specific fuel consumption of its engine is 0.3 kg/(kW � hr),
estimate the additional rate of fuel consumption due to the
carrier.Compute theeffect on fuel economy if theautoachieves
12.75km/Lwithout the carrier.The rental companyoffers youa
cheaper, square-edged carrier at a price $5 less than the current
carrier. Estimate the extra cost of using this carrier instead of
the round-edgedone for a750kmtrip, assuming fuel is $3.50per
gallon. Is the cheaper carrier really cheaper?
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9.146 A barge weighing 8820 kN that is 10 m wide, 30 m
long, and 7 m tall has come free from its tug boat in the
Mississippi River. It is in a section of river which has a
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current of 1 m/s, and there is a wind blowing straight upriver
at 10 m/s. Assume that the drag coefficient is 1.3 for both the
part of the barge in the wind as well as the part below water.
Determine the speed at which the barge will be steadily
moving. Is it moving upriver or downriver?

9.147 Coastdown tests, performed on a level road on a calm
day, can be used to measure aerodynamic drag and rolling
resistance coefficients for a full-scale vehicle. Rolling resis-
tance is estimated from dV/dt measured at low speed, where
aerodynamic drag is small. Rolling resistance then is
deducted from dV/dt measured at high speed to determine
the aerodynamic drag. The following data were obtained
during a test with a vehicle, of weight W 5 25,000 lbf and
frontal area A 5 79 ft2:

VðmphÞ 5 55

dV

dt

mph

s

0
@

1
A 20:150 20:475

Estimate the aerodynamic drag coefficient for this vehicle.
At what speed does the aerodynamic drag first exceed
rolling resistance?

9.148 A spherical sonar transducer with 15 in. diameter is to
be towed in seawater. The transducer must be fully sub-
merged at 55 ft/s. To avoid cavitation, the minimum pressure
on the surface of the transducer must be greater than 5 psia.
Calculate the hydrodynamic drag force acting on the trans-
ducer at the required towing speed. Estimate the minimum
depth to which the transducer must be submerged to avoid
cavitation.

9.149 While walking across campus one windy day, Floyd
Fluids speculates about using an umbrella as a “sail” to
propel a bicycle along the sidewalk. Develop an algebraic
expression for the speed a bike could reach on level ground
with the umbrella “propulsion system.” The frontal area of
bike and rider is estimated as 0.3 m2, and the drag coefficient
is about 1.2. Assume the rolling resistance is 0.75 percent of
the bike and rider weight; the combined mass is 75 kg.
Evaluate the bike speed that could be achieved with an
umbrella 1.22 m in diameter in a wind that blows at 24 km/hr.
Discuss the practicality of this propulsion system.

9.150 Motion of a small rocket was analyzed in Example
4.12 assuming negligible aerodynamic drag. This was not
realistic at the final calculated speed of 369 m/s. Use the
Euler method of Section 5.5 for approximating the first
derivatives, in an Excel workbook, to solve the equation of
motion for the rocket. Plot the rocket speed as a function of
time, assuming CD 5 0.3 and a rocket diameter of 700 mm.
Compare with the results for CD 5 0.

9.151 A baseball is popped straight up with an initial
velocity of 25 m/s. The baseball has a diameter of 0.073 m
and a mass of 0.143 kg. The drag coefficient for the baseball
can be estimated as 0.47 for Re , 104 and 0.10 for Re . 104.
Determine how long the ball will be in the air and how high
it will go.

9.152 WiffleTM balls made from light plastic with numerous
holes are used to practice baseball and golf. Explain the

purpose of the holes and why they work. Explain how you
could test your hypothesis experimentally.

9.153 Towers for television transmittersmay be up to 500m in
height. In the winter, ice forms on structural members. When
the ice thaws, chunks break off and fall to the ground. How far
from thebaseof a towerwould you recommendplacing a fence
to limit danger to pedestrians from falling ice chunks?

9.154 The “shot tower,” used to produce spherical lead shot,
has been recognized as a mechanical engineering landmark.
In a shot tower, molten lead is dropped from a high tower; as
the lead solidifies, surface tension pulls each shot into a
spherical shape. Discuss the possibility of increasing the
“hang time,” or of using a shorter tower, by dropping molten
lead into an air stream that is moving upward. Support your
discussion with appropriate calculations.

9.155 Design a wind anemometer that uses aerodynamic
drag to move or deflect a member or linkage, producing an
output that can be related to wind speed, for the range from
1 to 10 m/s in standard air. Consider three alternative design
concepts. Select the best concept and prepare a detailed
design. Specify the shape, size, and material for each com-
ponent. Quantify the relation between wind speed and
anemometer output. Present results as a theoretical “cali-
bration curve” of anemometer output versus wind speed.
Discuss reasons why you rejected the alternative designs and
chose your final design concept.

9.156 A model airfoil of chord 6 in. and span 30 in. is placed
in a wind tunnel with an air flow of 100 ft/s (the air is at
70�F). It is mounted on a cylindrical support rod 1 in. in
diameter and 10 in. tall. Instruments at the base of the rod
indicate a vertical force of 10 lbf and a horizontal force of 1.5
lbf. Calculate the lift and drag coefficients of the airfoil.

9.157 An antique airplane carries 50 m of external guy wires
stretched normal to the direction of motion. The wire
diameter is 5 mm. Estimate the maximum power saving that
results from an optimum streamlining of the wires at a plane
speed of 175 km/hr in standard air at sea level.

9.158 Why do modern guns have rifled barrels?

9.159 How do cab-mounted wind deflectors for tractor-
trailer trucks work? Explain using diagrams of the flow
pattern around the truck and pressure distribution on the
surface of the truck.

9.160 An airplane with an effective lift area of 25 m2 is fitted
with airfoils of NACA 23012 section (Fig. 9.23). The max-
imum flap setting that can be used at takeoff corresponds to
configuration 2 in Fig. 9.23. Determine the maximum gross
mass possible for the airplane if its takeoff speed is 150 km/hr
at sea level (neglect added lift due to ground effect). Find the
minimum takeoff speed required for this gross mass if
the airplane is instead taking off from Denver (elevation
approximately 1.6 km).

9.161 An aircraft is in level flight at 225 km/hr through air at
standard conditions. The lift coefficient at this speed is 0.45
and the drag coefficient is 0.065. The mass of the aircraft is
900 kg. Calculate the effective lift area for the craft, and the
required engine thrust and power.

9.162 The foils of a surface-piercing hydrofoil watercraft
have a total effective area of 7.5 ft2. Their coefficients of lift
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and drag are 1.5 and 0.63, respectively. The total weight of
the craft in running trim is 4000 lb. Determine the minimum
speed at which the craft is supported by the hydrofoils. At
this speed, find the power required to overcome water
resistance. If the craft is fitted with a 150-hp engine, estimate
its top speed.

9.163 A high school project involves building a model
ultralight airplane. Some of the students propose making an
airfoil from a sheet of plastic 5 ft long 3 7 ft wide at an angle
of attack of 10�. At this airfoil’s aspect ratio and angle of
attack the lift and drag coefficients are CL 5 0.75 and CD 5

0.19. If the airplane is designed to fly at 40 ft/s, what is the
maximum total payload? What will be the required power to
maintain flight? Does this proposal seem feasible?

9.164 The U.S. Air Force F-16 fighter aircraft has wing
planform area A5 300 ft2; it can achieve a maximum lift
coefficient of CL5 1.6. When fully loaded, its weight is
26,000 lb. The airframe is capable of maneuvers that produce
9 g vertical accelerations. However, student pilots are
restricted to 5 g maneuvers during training. Consider a turn
flown in level flight with the aircraft banked. Find the
minimum speed in standard air at which the pilot can pro-
duce a 5 g total acceleration. Calculate the corresponding
flight radius. Discuss the effect of altitude on these results.

9.165 The teacher of the students designing the airplane of
Problem 9.163 is not happy with the idea of using a sheet
of plastic for the airfoil. He asks the students to evaluate the
expected maximum total payload, and required power to
maintain flight, if the sheet of plastic is replaced with a con-
ventional section (NACA 23015) airfoil with the same aspect
ratio and angle of attack. What are the results of the analysis?

9.166 A light airplane, with mass M5 1000 kg, has a con-
ventional-section (NACA 23015) wing of planform area A 5
10 m2. Find the angle of attack of the wing for a cruising
speed of V 5 63 m/s. What is the required power? Find the
maximum instantaneous vertical “g force” experienced at
cruising speed if the angle of attack is suddenly increased.

9.167 A light airplane has 35-ft effective wingspan and 5.5-ft
chord. It was originally designed to use a conventional
(NACA 23015) airfoil section. With this airfoil, its cruising
speed on a standard day near sea level is 150 mph. A con-
version to a laminar-flow (NACA 662�215) section airfoil is
proposed. Determine the cruising speed that could be
achieved with the new airfoil section for the same power.

9.168 Instead of a new laminar-flow airfoil, a redesign of the
light airplane of Problem 9.167 is proposed in which
the current conventional airfoil section is replaced with
another conventional airfoil section of the same area, but
with aspect ratio AR 5 8. Determine the cruising speed that
could be achieved with this new airfoil for the same power.

9.169 Assume the Boeing 727 aircraft has wings with NACA
23012 section, planform area of 1600 ft2, double-slotted flaps,
and effective aspect ratio of 6.5. If the aircraft flies at 150
knots in standard air at 175,000 lb gross weight, estimate the
thrust required to maintain level flight.

9.170 An airplane with mass of 10,000 lb is flown at constant
elevation and speed on a circular path at 150 mph. The flight

circle has a radius of 3250 ft. The plane has lifting area of 225
ft2 and is fitted with NACA 23015 section airfoils with
effective aspect ratio of 7. Estimate the drag on the aircraft
and the power required.

9.171 Find the minimum and maximum speeds at which the
airplane of Problem 9.170 can fly on a 3250 ft radius circular
flight path, and estimate the drag on the aircraft and power
required at these extremes.

9.172 Jim Hall’s Chaparral 2F sports-racing cars in the 1960s
pioneered use of airfoils mounted above the rear suspension
to enhance stability and improve braking performance. The
airfoil was effectively 6 ft wide (span) and had a 1-ft chord.
Its angle of attack was variable between 0 and minus 12
degrees. Assume lift and drag coefficient data are given by
curves (for conventional section) in Fig. 9.17. Consider a car
speed of 120 mph on a calm day. For an airfoil deflection of
12� down, calculate (a) the maximum downward force and
(b) the maximum increase in deceleration force produced by
the airfoil.

9.173 The glide angle for unpowered flight is such that lift,
drag, and weight are in equilibrium. Show that the glide
slope angle, θ, is such that tan θ 5 CD/CL. The minimum
glide slope occurs at the speed where CL/CD is a maximum.
For the conditions of Example 9.8, evaluate the minimum
glide slope angle for a Boeing 727-200. How far could this
aircraft glide from an initial altitude of 10 km on a standard
day?

9.174 The wing loading of the Gossamer Condor is 0.4 lbf/ft2

of wing area. Crude measurements showed drag was
approximately 6 lbf at 12 mph. The total weight of the
Condor was 200 lbf. The effective aspect ratio of the Condor
is 17. Estimate the minimum power required to fly the air-
craft. Compare to the 0.39 hp that pilot Brian Allen could
sustain for 2 hr.

9.175 Some cars come with a “spoiler,” a wing section
mounted on the rear of the vehicle that salespeople some-
times claim significantly increases traction of the tires at
highway speeds. Investigate the validity of this claim. Are
these devices really just cosmetic?

9.176 Roadside signs tend to oscillate in a twisting motion
when a strong wind blows. Discuss the phenomena that must
occur to cause this behavior.

9.177 How does a FrisbeeTM fly? What causes it to curve left
or right? What is the effect of spin on its flight?

9.178 Air moving over an automobile is accelerated to
speeds higher than the travel speed, as shown in Fig. 9.25.
This causes changes in interior pressure when windows are
opened or closed. Use the data of Fig. 9.25 to estimate the
pressure reduction when a window is opened slightly at a
speed of 100 km/hr. What is the air speed in the freestream
near the window opening?

9.179 An automobile travels down the road with a bicycle
attached to a carrier across the rear of the trunk. The bicycle
wheels rotate slowly. Explain why and in what direction the
rotation occurs.

9.180 A class demonstration showed that lift is present when
a cylinder rotates in an air stream. A string wrapped around
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a paper cylinder and pulled causes the cylinder to spin and
move forward simultaneously. Assume a cylinder of 5 cm
diameter and 30 cm length is given a rotational speed of 240
rpm and a forward speed of 1.5 m/s. Estimate the approx-
imate lift force that acts on the cylinder.

9.181 A golf ball (diameter D 5 43 mm) with circular
dimples is hit from a sand trap at 20 m/s with backspin of
2000 rpm. The mass of the ball is 48 g. Evaluate the lift and
drag forces acting on the ball. Express your results as frac-
tions of the weight of the ball.

9.182 Rotating cylinders were proposed as a means of ship
propulsion in 1924 by the German engineer, Flettner. The
original Flettner rotor ship had two rotors, each about 10 ft
in diameter and 50 ft high, rotating at up to 800 rpm. Cal-
culate the maximum lift and drag forces that act on each
rotor in a 30-mph wind. Compare the total force to that
produced at the optimum L/D at the same wind speed.
Estimate the power needed to spin the rotor at 800 rpm.

9.183 A baseball pitcher throws a ball at 80 mph. Home
plate is 60 ft away from the pitcher’s mound. What spin
should be placed on the ball for maximum horizontal
deviation from a straight path? (A baseball has a mass of 5 oz
and a circumference of 9 in.) How far will the ball deviate
from a straight line?

9.184 American and British golf balls have slightly different
diameters but the same mass (see Problems 1.39 and 1.42).
Assume a professional golfer hits each type of ball from a tee
at 85 m/s with backspin of 9000 rpm. Evaluate the lift and
drag forces on each ball. Express your answers as fractions of
the weight of each ball. Estimate the radius of curvature
of the trajectory of each ball. Which ball should have the
longer range for these conditions?

9.185 A soccer player takes a free kick. Over a distance of 10
m, the ball veers to the right by about 1 m. Estimate the spin
the player’s kick put on the ball if its speed is 30 m/s. The ball
has a mass of 420 gm and has a circumference of 70 cm.
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Fluid Machinery
10.1 Introduction and Classification of Fluid Machines

10.2 Turbomachinery Analysis

10.3 Pumps, Fans, and Blowers

10.4 Positive Displacement Pumps

10.5 Hydraulic Turbines

10.6 Propellers and Wind-Power Machines

10.7 Compressible Flow Turbomachines

10.8 Summary and Useful Equations

Case Study in Energy and the Environment

Wind Power: Wind Turbine and
Fan Design Using Tubercles

In the Case Study of Chapter 9, we learned
that humpback whales’ incredible agility to a large
degree comes from the bumps on the leading edges of
their flippers, known as tubercles. Ernst van Nierop, a
PhD candidate at the School of Engineering and
Applied Sciences at Harvard University, coauthored a
study to explain this phenomenon with mathematics
professor Michael Brenner and researcher Silas Alben.

As with the airfoils discussed in Chapter 9, when the
angle of attack of a whale flipper becomes too steep,
the result is stall. Previous experiments have shown,
however, that the angle of attack before stall occurs

for a humpback-whale flipper is much steeper than
that of a smooth flipper. The Harvard team showed that
the tubercles change the distribution of pressure on the
flipper so that some parts of it stall before others,
thereby avoiding abrupt stalling and giving the whale
more freedom to attack at higher angles and the ability
to better predict its hydrodynamic limitations.
Studying living things in order to come up with

ideas to improve technology is a practice known as
biomimicry, and it is becoming more widely used to
increase efficiency in machines. In this instance we
have a practical application of tubercle technology,
specifically as it applies to turbomachinery, the topic
of this chapter. A company in Toronto, Ontario, called
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Humans have sought to control nature since antiquity. Early humans carried water by
the bucket; as larger groups formed, this process was mechanized. The first fluid
machines developed as bucket wheels and screw pumps to lift water. The Romans
introduced paddle wheels around 70 B.C. to obtain energy from streams [1]. Later,
windmills were developed to harness wind power, but the low power density of the
wind limited output to a few hundred horsepower. Development of waterwheels made
it possible to extract thousands of horsepower at a single site.

Today we take many fluid machines for granted. On a typical day we draw pres-
surized water from the tap, use a blower to dry our hair, drive a car (in which fluid
machines operate the lubrication, cooling, and power steering systems), and work in a
comfortable environment provided by air circulation. The list could be extended
indefinitely.

A fluid machine is a device that either performs work on or extracts work (or
power) from a fluid. As you can imagine, this is a very large field of study, so we will
limit ourselves mostly to incompressible flows. First the terminology of the field is
introduced and machines are classified by operating principle and physical character-
istics. Rather than attempt a treatment of the entire field, we focus on machines in
which energy transfer to or from the fluid is through a rotating element. Basic equa-
tions are reviewed and then simplified to forms useful for analysis of fluid machines.
Performance characteristics of typical machines are considered. Examples are given of

WhalePower, has demonstrated the advantages of
tubercles when they are integrated into the leading
edges of wind-turbine and fan blades. The photograph
shows a prototype of a wind turbine blade incorpor-
ating tubercles on its leading edge. Tests of these
prototypes have shown that the delayed stall doubles
the performance of the turbines and allows the turbine
to capture more energy out of lower-speed winds. As
we alluded to in the Case Study of Chapter 9, this
increase in performance can be explained by looking
at how stall affects the flow over rotating blades. In
particular, it is well-known that the stall experienced
by conventional blades causes air to travel from the
hub to the tips of the blades, rather than parallel to

the axis of rotation. The result of this effect, sometimes
referred to as span-wise pumping, is that additional
energy is needed to move the air in the desired
direction, decreasing efficiency of the fan. Similarly, a
wind turbine that experiences stall will generate less
lift, and therefore less power can extracted from the
air. In addition, the radial component of the air flow
increases vibration of the blades, causing noise and
increased wear and tear.
Ongoing tests at the Wind Energy Institute of

Canada have shown that because the tubercle-lined
blades delay stall, they are more stable, quiet, and
durable than conventional blades. Recent studies
show that the addition of tubercles to the leading
edges of turbine blades makes them generate more
stable lift, with lower drag even at high pitch angles,
and when there is stall it is a gradual, not catastrophic,
change. WhalePower claims that there is improved
power generation at low wind speeds, the blades
are quieter than conventional blades, and there is
decreased tip chatter (vibrations at the blade tip due
to flow instabilities); in other words, in real-world
conditions the tubercle-enhanced blades appear to be
more stable and responsive than any previous turbine.
WhalePower has also shown that tubercle-lined
blades on industrial ceiling fans can operate 20 per-
cent more efficiently than conventional blades and
that they do a better job at circulating air in a building.
The results were dramatic enough to convince Envira-
North, Canada’s largest maker of ventilation fans, to
license the design.

The tubercles on WhalePower’s turbine blade (Photo courtesy of
J. Subirana, WhalePower)
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pump and turbine applications in typical systems. Next, we will discuss propellers
and wind turbines, which are unique in that they achieve energy transfer with a fluid
without the benefit of an external housing. A discussion of compressible flow machines
concludes the chapter.

10.1 Introduction and Classification
of Fluid Machines
Fluid machines may be broadly classified as either positive displacement or dynamic. In
positive-displacementmachines, energy transfer is accomplishedby volume changes that
occur due to movement of the boundary in which the fluid is confined. This includes
piston-cylinder arrangements, gear pumps (for example, the oil pump for a car engine),
and lobe pumps (for example, those used in medicine for circulating blood through a
machine).Wewill not analyze these devices in this chapter; wewill review thembriefly in
Section 10.4. Dynamic fluid-handling devices that direct the flow with blades or vanes
attached to a rotating member are termed turbomachines. In contrast to positive dis-
placement machinery, there is no closed volume in a turbomachine. These devices are
very widely used in industry for power generation (for example, water and steam tur-
bines) and in numerous other applications (for example, the turbocharger of a high-
performance car). The emphasis in this chapter is on dynamic machines.

A further distinction among types of turbomachines is based on the geometry of the
flow path. In radial-flow machines, the flow path is essentially radial, with significant
changes in radius from inlet to outlet. (Such machines sometimes are called centrifugal
machines.) In axial-flow machines, the flow path is nearly parallel to the machine
centerline, and the radius of the flow path does not vary significantly. In mixed-flow
machines the flow-path radius changes only moderately. Diagrams and photographs of
typical turbomachines are shown in Figs. 10.1 through 10.5.

All work interactions in a turbomachine result from dynamic effects of the rotor on
the fluid stream; that is, the transfer of work between the fluid and the rotating
machine either increases or decreases the speed of the flow. However, in conjunction
with this kinetic energy transfer, machines that include external housings (e.g., com-
pressors, pumps, and turbines) also involve either the conversion of pressure energy to
kinetic energy, or vice versa. This acceleration or deceleration of the flow allows for
maximum pressure rise in pumps and compressors and for maximum power output
from turbines.

Machines for Doing Work on a Fluid

Machines that add energy to a fluid by performing work on it are called pumps when
the flow is liquid or slurry, and fans, blowers, or compressors for gas- or vapor-
handling units, depending on pressure rise. Fans usually have small pressure rise (less
than 1 inch of water) and blowers have moderate pressure rise (perhaps 1 inch of
mercury); pumps and compressors may have very high pressure rises. Current
industrial systems operate at pressures up to 150,000 psi (104 atmospheres).

Pumps and compressors consist of a rotating wheel (called an impeller or rotor,
depending on the type of machine) driven by an external power source (e.g., a motor
or another fluid machine) to increase the flow kinetic energy, followed by an element
to decelerate the flow, thereby increasing its pressure. This combination is known as a
stage. These elements are contained within a housing or casing. A single pump or
compressor might consist of several stages within a single housing, depending on
the amount of pressure rise required of the machine. The shaft must penetrate the
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housing in order to receive mechanical work from the external power source. Bearings
and seals are needed to minimize frictional (mechanical) losses and prevent leakage of
the working fluid.

Three typical centrifugal machines are shown schematically in Fig. 10.1. The
rotating element of a centrifugal pump or compressor is frequently called the impeller.
Flow enters each machine nearly axially at small radius through the eye of the
impeller, diagram (a), at radius r1. Flow is turned and leaves through the impeller
discharge at radius r2, where the width is b2. Diffusion of the flow is achieved in a
centrifugal machine as it leaves the impeller and is collected in the scroll or volute,
which gradually increases in area as it nears the outlet of the machine, diagram (b).
The impeller usually has vanes; it may be shrouded (enclosed) as shown in diagram
(a), or open as shown in diagram (c). The impeller vanes may be relatively straight, or
they may curve to become nonradial at the outlet. Diagram (c) shows that the diffuser
may have vanes to direct the flow between the impeller discharge and the volute;
vanes allow for more efficient diffusion, but at increased fabrication cost. Centrifugal
machines are capable of higher pressure ratios than axial machines, but they have a
higher frontal area per unit mass flow.

Typical axial-flow and mixed-flow turbomachines are shown schematically in
Fig. 10.2. Figure 10.2a shows a typical axial-flow compressor stage. In these machines
the rotating element is referred to as the rotor, and flow diffusion is achieved in the
stator. Flow enters nearly parallel to the rotor axis and maintains nearly the same
radius through the stage. The mixed-flow pump in diagram (b) shows the flow being
turned outward and moving to larger radius as it passes through the stage. Axial flow
machines have higher efficiencies and less frontal area than centrifugal machines, but

Casing

Rotor
Outlet

(b) Centrifugal blower (c) Centrifugal compressor(a) Centrifugal pump

b2 r2

r1

Eye

Impeller
vane

Volute

Diffuser
vane

Fig. 10.1 Schematic diagrams of typical centrifugal-flow turbomachines, adapted from [2].

Stage Stage

Rotor blades

Stator blades

Rotor axisHub

Flow

(a) Axial-flow compressor stage (b) Mixed-flow pump stage

Impeller

Stator vanes

Rotor axis

Fig. 10.2 Schematic diagrams of typical axial-flow and mixed-flow turbo-
machines, adapted from [2].
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Flow in an Axial Flow Compressor

(Animation).
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they cannot achieve as high pressure ratios. As a result, axial flow machines are more
likely to consist of multiple stages, making them more complex than centrifugal
machines. Figure 10.3 shows a multiple-stage axial flow compressor. In this photo-
graph, the outer housing (to which the stator vanes are attached) has been removed,
clearly showing the rows of rotor vanes.

The pressure rise that can be achieved efficiently in a single stage is limited,
depending on the type of machine. The reason for this limitation can be understood
based on the pressure gradients in these machines (see Section 9.6). In a pump or
compressor, the boundary layer subjected to an adverse pressure gradient is not
stable; so flow is more likely to encounter boundary-layer separation in a compressor
or pump. Boundary-layer separation increases the drag on the impeller, resulting in a
decrease in efficiency; therefore additional work is needed to compress the flow.

Fans, blowers, compressors, and pumps are found in many sizes and types, ranging
from simple household units to complex industrial units of large capacity. Torque and
power requirements for idealized pumps and turboblowers can be analyzed by
applying the angular-momentum principle using a suitable control volume.

Propellers are essentially axial-flow devices that operate without an outer housing.
Propellers may be designed to operate in gases or liquids. As you might expect, pro-
pellers designed for these very different applications are quite distinct. Marine propellers
tend to have wide blades compared with their radii, giving high solidity. Aircraft pro-
pellers tend to have long, thin blades with relatively low solidity. These machines will be
discussed in detail in Section 10.6.

Machines for Extracting Work (Power) from a Fluid

Machines that extract energy from a fluid in the form of work (or power) are called
turbines. In hydraulic turbines, the working fluid is water, so the flow is incompressible.
In gas turbines and steam turbines, the density of the working fluid may change sig-
nificantly. In a turbine, a stage normally consists of an element to accelerate the flow,
converting some of its pressure energy to kinetic energy, followed by a rotor, wheel, or

Fig. 10.3 Photograph of a multiple-stage axial-flow compressor rotor for a gas
turbine. (Photo courtesy of General Electric Company. ª 2010 General Electric Com-
pany. All rights reserved.)
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runner extracts the kinetic energy from the flow via a set of vanes, blades, or buckets
mounted on the wheel.

The two most general classifications of turbines are impulse and reaction turbines.
Impulse turbines are driven by one or more high-speed free jets. The classic example
of an impulse turbine is the waterwheel. In a waterwheel, the jets of water are driven
by gravity; the kinetic energy of the water is transferred to the wheel, resulting in
work. In more modern forms of impulse turbines, the jet is accelerated in a nozzle
external to the turbine wheel. If friction and gravity are neglected, neither the fluid
pressure nor speed relative to the runner changes as the fluid passes over the turbine
buckets. Thus for an impulse turbine, the fluid acceleration and accompanying pres-
sure drop take place in nozzles external to the blades, and the runner does not flow
full of fluid; work is extracted as a result of the large momentum change of the fluid.

In reaction turbines, part of the pressure change takes place externally and part
takes place within the moving blades. External acceleration occurs and the flow is
turned to enter the runner in the proper direction as it passes through nozzles or
stationary blades, called guide vanes or wicket gates. Additional fluid acceleration
relative to the rotor occurs within the moving blades, so both the relative velocity and
the pressure of the stream change across the runner. Because reaction turbines flow
full of fluid, they generally can produce more power for a given overall size than
impulse turbines.

Figure 10.4 shows turbines used for different applications. Figure 10.4a shows a
Pelton wheel, a type of impulse turbine wheel used in hydroelectric power plants.
Figure 10.4b is a photograph of an axial steam turbine rotor, an example of a reaction
turbine. Figure 10.4c is a wind turbine farm. A wind turbine is another example of a
reaction turbine, but, like a propeller, also operates without an outer housing. Modern
wind turbines typically collect wind energy and convert it into electricity.

Several typical hydraulic turbines are shown schematically in Fig. 10.5. Figure 10.5a
shows an impulse turbine driven by a single jet, which lies in the plane of the turbine
runner. Water from the jet strikes each bucket in succession, is turned, and leaves the
bucket with relative velocity nearly opposite to that with which it entered the bucket.
Spent water falls into the tailrace (not shown).

A reaction turbine of the Francis type is shown in Fig. 10.5b. Incoming water flows
circumferentially through the turbine casing. It enters the periphery of the stationary
guide vanes and flows toward the runner. Water enters the runner nearly radially and
is turned downward to leave nearly axially; the flow pattern may be thought of as a
centrifugal pump in reverse. Water leaving the runner flows through a diffuser known
as a draft tube before entering the tailrace. Figure 10.5c shows a propeller turbine of
the Kaplan type. The water entry is similar to that in the Francis turbine, but it is

(a) Pelton wheel (b) Steam turbine rotor (c) Wind turbine farm

Fig. 10.4 Photograph of turbines used in different applications. (Photo courtesy of (a) Andy
Dingley; (b) and (c) Siemens Energy ª 2010.)
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turned to flow nearly axially before encountering the turbine runner. Flow leaving the
runner may pass through a draft tube.

Thus turbines range from simple windmills to complex gas and steam turbines with
many stages of carefully designed blading. These devices also can be analyzed in
idealized form by applying the angular-momentum principle.

The allowable amount of pressure drop in a turbine stage is usually greater than the
amount of pressure rise allowable in a compressor stage. The difference is due to
the favorable pressure gradient (see Section 9.6), which makes boundary-layer separa-
tion much less likely than in the case of the compressor.

Dimensionless parameters, such as specific speed, flow coefficient, torque coefficient,
power coefficient, and pressure ratio, frequently are used to characterize the perfor-
mance of turbomachines. These parameters were introduced in Chapter 7; their
development and use will be considered in more detail later in this chapter.

Scope of Coverage

According to Japikse [3], “Turbomachinery represents a $400 billion market (possibly
much more) with enormous worldwide growth at this time. It is estimated that
industrial centrifugal pumps alone consume 5 percent of all the energy produced in
the USA.” In addition, the demands for widely available, economical, green power
will continue to drive research and development in the turbomachinery industry [4].
Therefore, proper design, construction, selection, and application of pumps and
compressors are economically significant.

Design of actual machines involves diverse technical knowledge, including fluid
mechanics, materials, bearings, seals, and vibrations. These topics are covered in
numerous specialized texts. Our objective here is to present only enough detail to
illustrate the analytical basis of fluid flow design and to discuss briefly the limitations
on results obtained from simple analytical models. For more detailed design infor-
mation, consult the references.

Applications or “system” engineering requires a wealth of experience. Much of this
experience must be gained by working with other engineers in the field. Our coverage
is not intended to be comprehensive; instead we discuss only the most important
considerations for successful system application of pumps, compressors, and turbines.

The material in this chapter is of a different nature from that in the previous
chapters. Chapters 1 through 9 covered much of the fundamental material of fluid
mechanics, with detailed analytical results in most cases. This chapter will also involve
significant amounts of analysis, but the inherent complexity of the topic means that,
on many occasions, we need to resort to empirical results and correlations. To the
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Fig. 10.5 Schematic diagrams of typical hydraulic turbines, adapted from [2].
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student, this may appear as so much “hand-waving,” but combining theory and
experiment to deduce results is a very common approach in engineering science.

10.2Turbomachinery Analysis
As in other analyses, the method of analysis used for turbomachinery is chosen
according to the information sought. If overall information on flow rate, pressure
change, torque, and power is desired, then a finite-control-volume analysis may be
used. If detailed information is desired about blade angles or velocity profiles, then
individual blade elements must be analyzed using an infinitesimal-control-volume or
other detailed procedure. We consider only idealized flow processes in this book, so
we concentrate on the approach using the finite control volume, applying the angular-
momentum principle. The analysis that follows applies to machines both for doing
work on, and extracting work from, a fluid flow.

The Angular-Momentum Principle: The Euler
Turbomachine Equation

The angular-momentum principle was applied to finite control volumes in Chapter 4. The
result was Eq. 4.46.
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Equation 4.46 states that the moment of surface forces and body forces, plus the
applied torque, lead to a change in the angular momentum of the flow. [The surface
forces are due to friction and pressure, the body force is due to gravity, the applied
torque could be positive or negative (depending on whether we are doing work on or
extracting work from the fluid, respectively), and the angular-momentum change can
arise as a change in angular momentum within the control volume, or flux of angular
momentum across the control surface.]

We will now simplify Eq. 4.46 for analysis of turbomachinery. First, it is convenient
to choose a fixed control volume enclosing the rotor to evaluate shaft torque. Because
we are looking at control volumes for which we expect large shaft torques, as a first
approximation torques due to surface forces may be ignored. This means we are
neglecting friction and torque generated by pressure changes. The body force may be
neglected by symmetry. Then, for steady flow, Eq. 4.46 becomes

~Tshaft 5

Z
CS

~r3 ~Vρ~V�d~A ð10:1aÞ

Equation 10.1a states: For a turbomachine with work input, the torque required causes
a change in the fluid angular momentum; for a turbomachine with work output, the
torque produced is due to the change in fluid angular momentum. Let us write this
equation in scalar form and illustrate its application to axial- and radial-flow machines.

As shown in Fig. 10.6, we select a fixed control volume enclosing a generalized
turbomachine rotor. The fixed coordinate system is chosen with the z-axis aligned
with the axis of rotation of the machine. The idealized velocity components are shown
in the figure. The fluid enters the rotor at radial location, r1, with uniform absolute
velocity, ~V1; the fluid leaves the rotor at radial location, r2, with uniform
absolute velocity ~V2.

The integrand on the right side of Eq. 10.1a is the product of with the mass flow rate
at each section. For uniform flow into the rotor at section 1, and out of the rotor at
section 2, Eq. 10.1a becomes
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Tshaftk̂5 ðr2Vt2 2 r1Vt1Þ _mk̂ ð10:1bÞ
(Note that in ~r3 ~V the position vector ~r is purely radial; so only the tangential
velocity component Vt counts.) In scalar form,

Tshaft 5 ðr2Vt2 2 r1Vt1Þ _m ð10:1cÞ

The assumptions we made in deriving this equation are steady, frictionless flow; uni-
form flow at inlet and exit; and negligible pressure effects. Equation 10.1c is the basic
relationship between torque and angular momentum for all turbomachines. It often is
called the Euler turbomachine equation.

Each velocity that appears in Eq. 10.1c is the tangential component of the absolute
velocity of the fluid crossing the control surface. The tangential velocities are chosen
positive when in the same direction as the blade speed, U. This sign convention gives
Tshaft. 0 for pumps, fans, blowers, and compressors and Tshaft, 0 for turbines.

The rate of work done on a turbomachine rotor (the mechanical power, _Wm) is
given by the dot product of rotor angular velocity, ~ω, and applied torque, ~T shaft. Using
Eq. 10.1b, we obtain

_Wm 5~ω �~T shaft 5ωk̂�Tshaftk̂5ωk̂�ðr2Vt2 2 r1Vt1Þ _mk̂

or

_Wm 5ωTshaft 5ωðr2Vt2 2 r1Vt1Þ _m ð10:2aÞ
According to Eq. 10.2a, the angular momentum of the fluid is increased by the addition
of shaft work. For a pump, _Wm . 0 and the angular momentum of the fluid must
increase. For a turbine, _Wm , 0 and the angular momentum of the fluid must decrease.

Equation 10.2a may be written in two other useful forms. Introducing U5 rω,
where U is the tangential speed of the rotor at radius r, we have

_Wm 5 ðU2Vt2 2U1Vt1Þ _m ð10:2bÞ

Dividing Eq. 10.2b by �mg, we obtain a quantity with the dimensions of length, which
may be viewed as the theoretical head added to the flow.1

1Since _Wm has dimensions of energy per unit time and �mg is weight flow per unit time, head, H, is actually

energy per unit weight of flowing fluid.
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Y
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2
Vn1

Vn2

Vt1

Vt2

V2

ω
ω

ωU1 = r1

ωU2 = r2 r2

r1

V1

Fig. 10.6 Finite control volume and absolute velocity
components for analysis of angular momentum.

500 Chapter 10 Fluid Machinery



H5
_Wm

_mg
5

1

g
ðU2Vt2 2U1Vt1Þ ð10:2cÞ

Equations 10.1 and 10.2 are simplified forms of the angular-momentum equation for
a control volume. They all are written for a fixed control volume under the assumptions
of steady, uniform flow at each section. The equations show that only the difference in
the product rVt or UVt, between the outlet and inlet sections, is important in deter-
mining the torque applied to the rotor or the mechanical power. Although r2. r1 in
Fig. 10.6, no restriction has been made on geometry; the fluid may enter and leave at
the same or different radii. Therefore, these equations may be used for axial, radial, or
mixed-flow machines.

Velocity Diagrams

The equations that we have derived also suggest the importance of clearly defining the
velocity components of the fluid and rotor at the inlet and outlet sections. For this
purpose, it is useful to develop velocity diagrams (frequently called velocity polygons)
for the inlet and outlet flows. Figure 10.7 shows the velocity diagrams and introduces
the notation for blade and flow angles. The important notation to remember is that the
variable V is typically used to indicate absolute velocity, that is, the velocity of the flow
relative to a stationary observer, while the variable W is used to indicate flow velocity
relative to the rotating blade.

Machines are designed such that at design condition the fluid moves smoothly
(without disturbances) through the blades. In the idealized situation at the design speed,
flow relative to the rotor is assumed to enter and leave tangent to the blade profile at
each section. (This idealized inlet condition is sometimes called shockless entry flow.)
At speeds other than design speed (and sometimes in reality, even at design speed!),
the fluid may impact the blades at inlet, exit at an angle relative to the blade, or may
have significant flow separation, leading to machine inefficiency. Figure 10.7 is repre-
sentative of a typical radial flow machine. We assume the fluid is moving without major
flow disturbances through the machine, as shown in Fig. 10.7a, with blade inlet and exit
angles β1 and β2, respectively, relative to the circumferential direction. Note that
although angles β1 and β2 are both less than 90� in Fig. 10.7, in general they can be less
than, equal to, or greater than 90�, and the analysis that follows applies to all of these
possibilities.

r2

r1

1β

2β
2β

2α

V2

U2 = r2ω

U1 = r1ω

U2

W2

Vn2
Vt2

(a) Absolute velocity as sum
of velocity relative to blade

and rotor velocity

(c) Velocity components
at outlet

(b) Velocity components
at inlet

1β 1α
V1

U1

Vn1

Vt1

V2

V1

W1

W1

W2

Fig. 10.7 Geometry and notation used to develop velocity dia-
grams for typical radial-flow machines.
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The runner speed at inlet is U15 r1ω, and therefore it is specified by the impeller
geometry and the machine operating speed. The absolute fluid velocity is the vector
sum of the impeller velocity and the flow velocity relative to the blade. The absolute
inlet velocity may be determined graphically, as shown in Fig. 10.7b. The angle of the
absolute fluid velocity, α1, is measured from the direction normal to the flow area, as
shown.2 Note that for a given machine, angles α1 and α2 will vary with flow rate, Q,
(through ~V1 and ~V2) and rotor speed, ω (through U1 and U2). The tangential com-
ponent of the absolute velocity, Vt1

, and the component normal to the flow area, Vn1
,

are also shown in Fig. 10.7b. Note from the geometry of the figure that at each section
the normal component of the absolute velocity, Vn, and the normal component
of the velocity relative to the blade, Wn, are equal (because the blade has no normal
velocity).

To help determine the absolute velocity at the machine entrance, it is necessary to
determine whether swirl exists at the entrance. Swirl, which may be present in the
inlet flow or introduced by inlet guide vanes, is the presence of a circumferential
velocity component. When the inlet flow is swirl free, the absolute inlet velocity will
be purely radial. The inlet blade angle may be specified for the design flow rate and
pump speed to provide a smooth entry flow relative to the orientation of the blades.

The velocity diagram is constructed similarly at the outlet section. The runner
speed at the outlet is U25 r2ω, which again is known from the geometry and operating
speed of the turbomachine. The relative flow is assumed to leave the impeller tangent
to the blades, as shown in Fig. 10.7c. This idealizing assumption of perfect guidance
fixes the direction of the relative outlet flow at design conditions.

For a centrifugal pump or reaction turbine, the velocity relative to the blade
generally changes in magnitude from inlet to outlet. The continuity equation must be
applied, using the impeller geometry, to determine the normal component of velocity
at each section. The normal component, together with the outlet blade angle, is suf-
ficient to establish the velocity relative to the blade at the impeller outlet for a radial-
flow machine. The velocity diagram is completed by the vector addition of the velocity
relative to the blade and the wheel velocity, as shown in Fig. 10.7c.

The inlet and outlet velocity diagrams provide all the information needed to cal-
culate the ideal torque or power, absorbed or delivered by the impeller, using Eqs.
10.1 or 10.2. The results represent the performance of a turbomachine under idealized
conditions at the design operating point, since we have assumed:

� Negligible torque due to surface forces (viscous and pressure).

� Inlet and exit flow tangent to blades.

� Uniform flow at inlet and exit.

An actual turbomachine is not likely to conform to all of these assumptions, so the
results of our analysis represent the upper limit of the performance of actual
machines.

Performance of an actual machine may be estimated using the same basic
approach, but accounting for variations in flow properties across the blade span at the
inlet and outlet sections, as well as for deviations between the blade angles and
the flow directions. Such detailed calculations are beyond the scope of this book. The
alternative is to measure the overall performance of a machine on a suitable test
stand. Manufacturers’ data are examples of measured performance information.

In Example 10.1 we will use the Euler Turbomachine Equation to analyze an
idealized centrifugal pump.

2The notation varies from book to book, so be careful when comparing references.
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Example 10.1 IDEALIZED CENTRIFUGAL PUMP

A centrifugal pump is used to pump 150 gpm of water. The water enters the impeller axially through a 1.25-in.-
diameter inlet. The inlet velocity is axial and uniform. The impeller outlet diameter is 4 in. Flow leaves the impeller at
10 ft/s relative to the blades, which are radial at the exit. The impeller speed is 3450 rpm. Determine the impeller exit
width, b2, the torque input, and the power predicted by the Euler turbine equation.

Given: Flow as shown in the figure:
Vr2 5 10 ft=s; Q5 150 gpm:

Find: (a) b2.
(b) Tshaft.
(c) _Wm.

Solution:
Apply the Euler turbomachine equation to a fixed
control volume.

Governing equations:

Tshaft 5 ðr2Vt2 2 r1Vt1Þ _m ð10:1cÞ

t CV

 dV �  
CS

 V · dA � 0

� 0(2)

� �� � ð4:12Þ

Assumptions: (1) Neglect torques due to body and surface forces.
(2) Steady flow.
(3) Uniform flow at inlet and outlet sections.
(4) Incompressible flow.

Then, from continuity,

ð2ρV1πR2
1Þ1 ðρVr22πR2b2Þ5 0

or
�m 5 ρQ5 ρVr22πR2b2

so that

b2 5
Q

2πR2Vr2

5
1

2π
3 150

gal

min
3

1

2 in:
3

s

10 ft
3

ft3

7:48 gal
3

min

60 s
3 12

in:

ft

b2 5 0:0319 ft or 0:383 in: ß

b2

For an axial inlet the tangential velocity Vt1 5 0, and for radial exit blades Vt2 5R2ω, so Eq. 10.1c reduces to

Tshaft 5R2
2ω

�m 5ωR2
2ρQ

where we have used continuity ( �m 5 ρQ).
Thus,

Tshaft 5ωR2
2ρQ5 3450

rev

min
3 ð2Þ2in:2 3 1:94

slug

ft3
3 150

gal

min

3 2π
rad

rev
3

min2

3600 s2
3

ft3

7:48 gal
3

ft2

144 in:2
3

lbf �s2
slug�ft

Tshaft 5 6:51 ft�lbf ß

Tshaft

V2

R2ω

Vr2

R1 = 0.625 in.

ω = 3450 rpm

r

z

Fixed CV

R2 = 2 in.

b2
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Performance—Hydraulic Power

The torque and power predicted by applying the angular-momentum equation to a
turbomachine rotor (Eqs. 10.1c and 10.2a) are idealized values. In practice, rotor
power and the rate of change of fluid energy are not equal. Energy transfer between
rotor and fluid causes losses because of viscous effects, departures from uniform flow,
and departures of flow direction from the blade angles. Kinetic energy transformation
to pressure rise (which is ultimately the goal of these turbomachines) by diffusion in
the fixed casing introduces more losses. Energy dissipation occurs in seals and bear-
ings and in fluid friction between the rotor and housing of the machine (“windage”
losses). Applying the first law of thermodynamics to a control volume surrounding the
rotor shows that these “losses” in mechanical energy are irreversible conversions from
mechanical energy to thermal energy. As was the case for the pipe flows discussed in
Chapter 8, the thermal energy appears either as internal energy in the fluid stream or
as heat transfer to the surroundings.

Because of these losses, in a pump the actual power delivered to the fluid is less
than predicted by the angular-momentum equation. In the case of a turbine, the actual
power delivered to the shaft is less than the power given up by the fluid stream.

We can define the power, head, and efficiency of a turbomachine based on whether
the machine does work on the fluid or extracts work (or power) from the fluid.

For a pump, the hydraulic power is given by the rate of mechanical energy input to
the fluid,

_Wh 5 ρQgHp ð10:3aÞ

where

Hp 5
p

ρg
1

V
2

2g
1 z

 !
discharge

2
p

ρg
1

V
2

2g
1 z

 !
suction

ð10:3bÞ

For a pump the head rise measured on a test stand is less than that produced by the
impeller. The rate of mechanical energy input is greater than the rate of head rise
produced by the impeller. The mechanical input power needed to drive the pump is
related to the hydraulic power by defining pump efficiency as

ηp 5
_Wh

_Wm

5
ρQgHp

ωT
ð10:3cÞ

To evaluate the actual change in head across a machine from Eq. 10.3b, we must know
the pressure, fluid velocity, and elevation at two measurement sections. Fluid velocity
can be calculated from the measured volume flow rate and passage diameters. (Suc-
tion and discharge lines for pumps usually have different inside diameters.)

and

_Wm 5ωTshaft 5 3450
rev

min
3 6:51 ft�lbf3 2π

rad

rev
3

min

60 s
3

hp�s
550 ft�lbf

_Wm 5 4:28 hp ß

_Wm

This problem illustrates the application
of the Euler turbomachine equation for
a fixed control volume to a centrifugal
flow machine.
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Static pressure usually is measured in straight sections of pipe upstream from the
pump inlet and downstream from the pump outlet, after diffusion has occurred within
the pump casing. The elevation of each pressure gage may be recorded, or the static
pressure readings may be corrected to the same elevation. (The pump centerline
provides a convenient reference level.)

For a hydraulic turbine, the hydraulic power is defined as the rate of mechanical
energy removal from the flowing fluid stream,

_Wh 5 ρQgHt ð10:4aÞ

where

Ht 5
p

ρg
1

V
2

2g
1 z

 !
inlet

2
p

ρg
1

V
2

2g
1 z

 !
outlet

ð10:4bÞ

For a hydraulic turbine, the power output obtained from the rotor (the mechanical
power) is less than the rate of energy transfer from the fluid to the rotor, because the
rotor must overcome friction and windage losses.

The mechanical power output obtained from the turbine is related to the hydraulic
power by defining turbine efficiency as

ηt 5
_Wm

_Wh

5
ωT

ρQgHt

ð10:4cÞ

Equations 10.4a and 10.4b show that to obtain maximum power output from a
hydraulic turbine, it is important to minimize the mechanical energy in the flow leaving
the turbine. This is accomplished by making the outlet pressure, flow speed, and
elevation as small as practical. The turbine must be set as close to the tailwater level as
possible, allowing for the level increase when the river floods. Tests to measure tur-
bine efficiency may be performed at various output power levels and at different
constant head conditions (see the discussion of Figs. 10.35 and 10.36).

Dimensional Analysis and Specific Speed

Dimensional analysis for turbomachines was introduced in Chapter 7, where dimen-
sionless flow, head, and power coefficients were derived in generalized form. The
independent parameters were the flow coefficient and a form of Reynolds number.
The dependent parameters were the head and power coefficients.

Our objective here is to develop the forms of dimensionless coefficients in common
use and to give examples illustrating their use in selecting a machine type, designing
model tests, and scaling results. Since we developed an idealized theory for turbo-
machines, we can gain additional physical insight by developing dimensionless coef-
ficients directly from the resulting computing equations. We will then apply these
expressions to scaling of turbomachines through similarity rules in Section 10.3.

The dimensionless flow coefficient, Φ, is defined by normalizing the volume flow
rate using the exit area and the wheel speed at the outlet. Thus

Φ5
Q

A2U2
5

Vn2

U2
ð10:5Þ

where Vn2
is the velocity component perpendicular to the exit area. This component is

also referred to as the meridional velocity at the wheel exit plane. It appears in true
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projection in the meridional plane, which is any radial cross-section through the
centerline of a machine.

A dimensionless head coefficient, Ψ, may be obtained by normalizing the head, H
(Eq. 10.2c), with U2

2=g. Thus

Ψ5
gH

U2
2

ð10:6Þ

A dimensionless torque coefficient, τ, may be obtained by normalizing the torque,
T (Eq. 10.1c), with ρA2U

2
2R2. Thus

τ5
T

ρA2U
2
2R2

ð10:7Þ

Finally, the dimensionless power coefficient, Π, is obtained by normalizing the
power, _W (Eq. 10.2b), with _mU2

2 5 ρQU2
2 . Thus

Π5
_W

ρQU2
2

5
_W

ρω2QR2
2

ð10:8Þ

For pumps, mechanical input power exceeds hydraulic power, and the efficiency is
defined as ηp 5 _Wh= _Wm (Eq. 10.3c). Hence

_Wm 5Tω5
1

ηp
_Wh 5

ρQgHp

ηp
ð10:9Þ

Introducing dimensionless coefficients Φ (Eq. 10.5), Ψ (Eq. 10.6), and τ (Eq. 10.7)
into Eq. 10.9, we obtain an analogous relation among the dimensionless coefficients as

τ5
ΨΦ
ηp

ð10:10Þ

For turbines, mechanical output power is less than hydraulic power, and the effi-
ciency is defined as ηt 5 _Wm= _Wh (Eq. 10.4c). Hence

_Wm 5Tω5 ηt _Wh 5 ηtρQgHp ð10:11Þ
Introducing dimensionless coefficients Φ, Ψ, and τ into Eq. 10.11, we obtain an

analogous relation among the dimensionless coefficients as

τ5ΨΦηt ð10:12Þ
The dimensionless coefficients form the basis for designing model tests and scaling

the results. As shown in Chapter 7, the flow coefficient, Φ, is treated as the inde-
pendent parameter. Then, if viscous effects are neglected, the head, torque, and power
coefficients are treated as multiple dependent parameters. Under these assumptions,
dynamic similarity is achieved when the flow coefficient is matched between model
and prototype machines.

As discussed in Chapter 7, a useful parameter called specific speed can be obtained
by combining the flow and head coefficients and eliminating the machine size. The
result was

NS 5
ωQ1=2

h3=4
ð7:22aÞ
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When head is expressed as energy per unit mass (i.e., with dimensions equivalent to
L2/t2, or g times head in height of liquid), and ω is expressed in radians per second, the
specific speed defined by Eq. 7.22a is dimensionless.

Although specific speed is a dimensionless parameter, it is common practice to use
an “engineering” equation form of Eq. 7.22a in which ω and Q are specified in units
that are convenient but inconsistent, and energy per unit mass, h, is replaced with
energy per unit weight of fluid, H. When this is done, the specific speed is not a
unitless parameter and the magnitude of the specific speed depends on the units used
to calculate it. Customary units used in U.S. engineering practice for pumps are rpm
for ω, gpm for Q, and feet (energy per unit weight) for H. In practice, the symbol N is
used to represent rate of rotation (ω) in rpm. Thus, the dimensional specific speed for
pumps, expressed in U.S. customary units, as an “engineering” equation, becomes

NScu 5
NðrpmÞ½QðgpmÞ�1=2

½HðftÞ�3=4
ð7:22bÞ

Values of the dimensionless specific speed, NS (Eq. 7.22a), must be multiplied by 2733
to obtain the values of specific speed corresponding to this commonly used but
inconsistent set of units (see Example 10.2).

For hydraulic turbines, we use the fact that power output is proportional to flow
rate and head, 3 ~ ρQh in consistent units. Substituting 3/ρh for Q in Eq. 7.22a gives

NS 5
ω

h3=4
3

ρh

� �1=2

5
ω31=2

ρ1=2h5=4
ð10:13aÞ

as the nondimensional form of the specific speed.
In U.S. engineering practice it is customary to drop the factor ρ1=2 (water is

invariably the working fluid in the turbines to which the specific speed is applied) and
to use head H in place of energy per unit mass h. Customary units used in U.S.
engineering practice for hydraulic turbines are rpm for ω, horsepower for 3, and feet
for H. In practice, the symbol N is used to represent rate of rotation (ω) in rpm. Thus
the dimensional specific speed for a hydraulic turbine, expressed in U.S. customary
units, as an “engineering” equation, becomes

NScu 5
NðrpmÞ½3ðhpÞ�1=2

½HðftÞ�5=4
ð10:13bÞ

Values of the dimensionless specific speed for a hydraulic turbine, NS (Eq. 10.13a),
must be multiplied by 43.46 to obtain the values of specific speed corresponding to this
commonly used but inconsistent set of units.

Specific speed may be thought of as the operating speed at which a pump produces
unit head at unit volume flow rate (or, for a hydraulic turbine, unit power at unit
head). To see this, solve for N in Eqs. 7.22b and 10.13b, respectively. For pumps

NðrpmÞ5NScu

½HðftÞ�3=4
½QðgpmÞ�1=2

and for hydraulic turbines

NðrpmÞ5NScu

½HðftÞ�5=4
½3ðhpÞ�1=2

Holding specific speed constant describes all operating conditions of geometrically
similar machines with similar flow conditions.
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It is customary to characterize a machine by its specific speed at the design point.
This specific speed has been found to characterize the hydraulic design features of a
machine. Low specific speeds correspond to efficient operation of radial-flow machines.
High specific speeds correspond to efficient operation of axial-flow machines. For a
specified head and flow rate, one can choose either a low specific speed machine (which
operates at low speed) or a high specific speed machine (which operates at higher
speed).

Typical proportions for commercial pump designs and their variation with
dimensionless specific speed are shown in Fig. 10.8. In this figure, the size of each
machine has been adjusted to give the same head and flow rate for rotation at a speed
corresponding to the specific speed. Thus it can be seen that if the machine’s size and
weight are critical, one should choose a higher specific speed. Figure 10.8 shows the
trend from radial (purely centrifugal pumps), through mixed-flow, to axial-flow geom-
etries as specific speed increases.

The corresponding efficiency trends for typical pumps are shown in Fig. 10.9, which
shows that pump capacity generally increases as specific speed increases. The figure
also shows that at any given specific speed, efficiency is higher for large pumps than
for small ones. Physically this scale effect means that viscous losses become less
important as the pump size is increased.

Characteristic proportions of hydraulic turbines also are correlated by specific
speed, as shown in Fig. 10.10. As in Fig. 10.8, the machine size has been scaled in this
illustration to deliver approximately the same power at unit head when rotating at a
speed equal to the specific speed. The corresponding efficiency trends for typical
turbine types are shown in Fig. 10.11.

Several variations of specific speed, calculated directly from engineering units, are
widely used in practice. The most commonly used forms of specific speed for pumps
are defined and compared in Example 10.2.

4.03.01.00.3 0.50.6 2.00.8
Dimensionless specific speed, Ns

0.40.2

Fig. 10.8 Typical geometric proportions of commercial
pumps as they vary with dimensionless specific speed [5].
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Fig. 10.11 Average efficiencies of commercial hydraulic
turbines as they vary with specific speed [6].
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Fig. 10.10 Typical geometric proportions of commercial
hydraulic turbines as they vary with dimensionless specific
speed [5].

Example 10.2 COMPARISON OF SPECIFIC SPEED DEFINITIONS

At the best efficiency point, a centrifugal pump, with impeller diameterD5 8 in., producesH5 21.9 ft atQ5 300 gpm
with N 5 1170 rpm. Compute the corresponding specific speeds using: (a) U.S. customary units, (b) SI units (rad/s,
m3/s, m2/s2), and (c) European units (rev/s, m3/s, m2/s2). Develop conversion factors to relate the specific speeds.

Given: Centrifugal pump at best efficiency point (BEP). Assume the pump characteristics are H 5 21.9 ft, Q 5 300
gpm, and N 5 1170 rpm.

Find: (a) The specific speed in U.S. customary units.
(b) The specific speed in SI units.
(c) The specific speed in European units.
(d) Appropriate conversion factors to relate the specific speeds.

Solution:

Governing equations: Ns 5
ωQ1=2

h3=4
and NScu 5

NQ1=2

H3=4

From the given information, the specific speed in U.S. customary units is

NScu 5 1170 rpm 3 ð300Þ1=2 gpm1=2 3
1

ð21:9Þ3=4 ft3=4
5 2000 ß

NScu
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10.3 Pumps, Fans, and Blowers
We will now look at the various types of fluid machines in greater detail. We will begin
our discussion with rotating machines that perform work on an incompressible fluid,
namely pumps, fans and blowers.

Application of Euler Turbomachine Equation
to Centrifugal Pumps

As demonstrated in Example 10.1, the treatment from Section 10.2 may be applied
directly to the analysis of centrifugal machines. Figure 10.7 in Section 10.2 represents

Convert information to SI units:

ω5 1170
rev

min
3 2π

rad

rev
3

min

60 s
5 123 rad=s

Q5 300
gal

min
3

ft3

7:48 gal
3

min

60 s
3 ð0:305Þ3 m

3

ft3
5 0:0190 m3=s

H5 21:9 ft 3 0:305
m

ft
5 6:68 m

The energy per unit mass is

h5 gH5 9:81
m

s2
3 6:68 m5 65:5 m2=s2

The dimensionless specific speed is

Ns 5 123
rad

s
3 ð0:0190Þ1=2 m

3=2

s1=2
3

ðs2Þ3=4
ð65:5Þ3=4 ðm2Þ3=4

5 0:736 ß

Ns ðSIÞ

Convert the operating speed to hertz:

ω5 1170
rev

min
3

min

60 s
3

Hz�s
rev

5 19:5 Hz

Finally, the specific speed in European units is

NsðEurÞ5 19:5 Hz3 ð0:0190Þ1=2 m
3=2

s1=2
3

ðs2Þ3=4
ð65:5Þ3=4ðm2Þ3=4

5 0:117 ß

NsðEurÞ

To relate the specific speeds, form ratios:

Nscu

NsðEurÞ
5

2000

0:117
5 17; 100

Nscu

NsðSIÞ
5

2000

0:736
5 2720

This problem demonstrates the use of
“engineering” equations to calculate
specific speed for pumps from each of
three commonly used sets of units and
to compare the results. (Three sig-
nificant figures have been used for all
calculations in this example. Slightly
different results would be obtained if
more significant figures were carried in
intermediate calculations.)
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the flow through a simple centrifugal pump impeller. If the fluid enters the impeller
with a purely radial absolute velocity, then the fluid entering the impeller has no
angular momentum and Vt1

is identically zero.
With Vt1

5 0, the increase in head (from Eq. 10.2c) is given by

H5
U2Vt2

g
ð10:14Þ

From the exit velocity diagram of Fig. 10.7c,

Vt2 5U2 2W2 cos β2 5U2 2
Vn2

sin β2

cos β2 5U2 2Vn2 cot β2 ð10:15Þ

Then

H5
U2

2 2U2Vn2 cot β2

g
ð10:16Þ

For an impeller of width w, the volume flow rate is

Q5πD2wVn2 ð10:17Þ
To express the increase in head in terms of volume flow rate, we substitute for Vn2

in
terms of Q from Eq. 10.17. Thus

H5
U2

2

g
2

U2 cot β2

πD2wg
Q ð10:18aÞ

Equation 10.18a is of the form

H5C1 2C2Q ð10:18bÞ
where constants C1 and C2 are functions of machine geometry and speed,

C1 5
U2

2

g
and C2 5

U2 cot β2

πD2wg

Thus Eq. 10.18a predicts a linear variation of head, H, with volume flow rate, Q. Note
that this linear relation is an idealized model; actual devices may have only an
approximate linear variation and may be better modeled with a curve-fitting method
based on measured data. (We will see an example of this in Example 10.5.)

Constant C1 5U2
2=g represents the ideal head developed by the pump for zero flow

rate; this is called the shutoff head. The slope of the curve of head versus flow rate (the
H � Q curve) depends on the sign and magnitude of C2.

For radial outlet vanes, β25 90� and C25 0. The tangential component of the
absolute velocity at the outlet is equal to the wheel speed and is independent of flow
rate. From Eq. 10.18a, the ideal head is independent of flow rate. This characteristic
H � Q curve is plotted in Fig. 10.12.

If the vanes are backward curved (as shown in Fig. 10.7a), β2, 90� and C2. 0. Then
the tangential component of the absolute outlet velocity is less than the wheel speed and
it decreases in proportion to the flow rate. From Eq. 10.18a, the ideal head decreases
linearly with increasing flow rate. The correspondingH�Q curve is plotted in Fig. 10.12.

If the vanes are forward curved, then β2. 90� and C2, 0. The tangential compo-
nent of the absolute fluid velocity at the outlet is greater than the wheel speed, and it
increases as the flow rate increases. From Eq. l0.7a, the ideal head increases linearly
with increasing flow rate. The corresponding H � Q curve is plotted in Fig. 10.12.

The characteristics of a radial-flow machine can be altered by changing the outlet
vane angle; the idealized model developed above predicts the trends as the outlet vane
angle is changed.
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The predictions of the idealized angular-momentum theory for a centrifugal pump
are summarized in Fig. 10.12. Forward-curved vanes are almost never used in practice
because they tend to have an unstable operating point.

Application of the Euler Equation to Axial
Flow Pumps and Fans

The Euler Turbomachine Equation developed in Section 10.2 can be used for axial-flow
machines as well. However, in order to use this model, some assumptions need to be
made. Themost important assumption is that the flow properties at themean radius (the
midpoint of the rotor blades) fully represent the flow at all radii. This is a good
assumption, provided the ratio of blade height to mean radius is approximately 0.2 or
less [7]. At larger ratios a three-dimensional analysis will be necessary. Such an analysis
is beyond the scope of this work, but other sources can provide information on this
phenomenon, such as Dixon [7]. A second assumption is that there is no radial com-
ponent to the flow velocity. This is a reasonable assumption, since many axial machines
incorporate stators or sets of vanes which guide the flow into the machine, removing
unwanted radial velocity components. The third assumption is that the flow only varies
in the axial direction. This is not the same as saying that there is only an axial component
of velocity! In fact, there will be a significant component of the velocity in the tangential
direction as the flowpasses through an axial-flowmachine, i.e., the flowwill have “swirl.”
The meaning of this assumption is that at a given axial location, the amount of swirl in
the flow is constant, rather than varying between the blades of the machine [7].

The primary consequence of this model applied to axial-flow machines is that the
radius used in Equations (10.1) is constant, i.e.,

r1 5 r2 5Rm ð10:19aÞ
Since the angular velocity ω of the rotor is also constant, it follows that

U1 5U2 5U ð10:19bÞ

Cross section
Meridional

section

Volume flow rate, Q

H
ea

d,
 H

R2

2β

β

β

ω

ω

ω

U2 =R2

W2 (rel) V2 (abs)
H = –––––

R2
22

g

Backward-curved,
  2 < 90°

β
Forward-curved,

  2 > 90°

Radial,  2 = 90°

Fig. 10.12 Idealized relationship between
head and volume flow rate for centrifugal
pump with forward-curved, radial, and
backward-curved impeller blades.
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Therefore, Equations (10.1) and (10.2) reduce to:

Tshaft 5RmðVt2 2Vt1Þ _m ð10:20Þ
_Wm 5UðVt2 2Vt1Þ _m ð10:21Þ

H5
_Wm

_mg
5

U

g
ðVt2 2Vt1Þ ð10:22Þ

In Example 10.3 these special versions of the Euler turbomachine equation and
velocity diagrams are utilized in the analysis of flow through an axial-flow fan.

Example 10.3 IDEALIZED AXIAL-FLOW FAN

An axial-flow fan operates at 1200 rpm. The blade tip diameter is 1.1 m and the hub diameter is 0.8 m. The inlet and
exit angles at the mean blade radius are 30� and 60�, respectively. Inlet guide vanes give the absolute flow entering
the first stage an angle of 30�. The fluid is air at standard conditions and the flow may be considered incompressible.
There is no change in axial component of velocity across the rotor. Assume the relative flow enters and leaves the
rotor at the geometric blade angles and use properties at the mean blade radius for calculations. For these idealized
conditions, draw the inlet velocity diagram, determine the volume flow rate of the fan, and sketch the rotor blade
shapes. Using the data so obtained, draw the outlet velocity diagram and calculate the minimum torque and power
needed to drive the fan.

Given: Flow through rotor of axial-flow fan.

Tip diameter: 1.1 m
Hub diameter: 0.8 m
Operating speed: 1200 rpm
Absolute inlet angle: 30�

Blade inlet angle: 30�

Blade outlet angle: 60�

Fluid is air at standard conditions. Use properties at mean diameter
of blades.

Find: (a) Inlet velocity diagram. (d) Outlet velocity diagram.
(b) Volume flow rate.
(c) Rotor blade shape.

(e) Rotor torque.
(f) Power required.

Solution: Apply the Euler turbomachine equation to a fixed control volume.

Governing equation:
Tshaft 5RmðVt2 2Vt1Þ _m5RmðVt2 2Vt1ÞρQ ð10:20Þ

Assumptions: (1) Neglect torques due to body or surface forces.
(2) Steady flow.
(3) Uniform flow at inlet and outlet sections.
(4) Incompressible flow.
(5) No change in axial flow area.
(6) Use mean radius of rotor blades, Rm.

1
2

Stationary CV
is flow channel

z

ω
Flow

Rm
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The blade shapes are

(Note that for an axial-flow machine the normal velocity components are parallel to the axis, not normal
to the circumferential surface!)

The inlet velocity diagram is

From continuity

ð2ρVn1A1Þ1 ðρVn2A2Þ5 0

or

Q5Vn1A1 5Vn2A2

Since A1 5 A2, then Vn1 5Vn2 , and the outlet velocity diagram is as shown in the following figure:

At the mean blade radius,

U5Rmω5
Dm

2
ω

U5

1

2
ð1:11 0:8Þm

2
3 1200

rev

min
3 2π

rad

rev
3

min

60 s
5 59:7m=s

From the geometry of the inlet velocity diagram,

U5Vn1ðtan α1 1 cot β1Þ
so that

Vn1 5
U

tan α1 1 cot β1

5 59:7
m

s
3

1

tan 30� 1 cot 30�
5 25:9m=s

Blade
motion

β1 = 30°

β2 = 60°

W1

W2

z

Vn2

W2

Vt2

2 = 60°β

2α

U = Rmω

V2

Vn1

W1

Vt1

1 = 30°β

1 = 30°α

U = Rmω

V1
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Consequently,

V1 5
Vn1

cos α1
5 25:9

m

s
3

1

cos 30�
5 29:9 m=s

Vt1 5V1 sin α1 5 29:9
m

s
3 sin 30� 5 15:0 m=s

and

W1 5
Vn1

sin β1

5 25:9
m

s
3

1

sin 30�
5 51:8m=s

The volume flow rate is

Q5Vn1A1 5
π
4
Vn1ðD2

t 2D2
hÞ5

π
4
3 25:9

m

s
½ð1:1Þ2 2 ð0:8Þ2�m2

Q5 11:6 m3=s ß

Q

From the geometry of the outlet velocity diagram,

tan α2 5
Vt2

Vn2

5
U2Vn2cot β2

Vn2

5
U2Vn1cot β2

Vn1

or

α2 5 tan21
59:7

m

s
2 25:9

m

s
3 cot 60�

25:9
m

s

2
64

3
755 59:9�

and

V2 5
Vn2

cos α2
5

Vn1

cos α2
5 25:9

m

s
3

1

cos 59:9�
5 51:6m=s

Finally,

Vt2 5V2 sinα2 5 51:6
m

s
3 sin 59:9� 5 44:6m=s

Applying Eq. 10.20

Tshaft 5 ρQRmðVt2 2Vt1Þ

5 1:23
kg

m3
3 11:6

m3

s
3

0:95

2
m3 ð44:62 15:0Þm

s
3

N�s2
kg�m

Tshaft 5 201 N�m ß
Tshaft

Thus the torque on the CV is in the same sense as ~ω. The power required is

_Wm 5 ~ω �~T 5ωTshaft 5 1200
rev

min
3 2π

rad

rev
3

min

60 s
3 201 N�m3

W�s
N�m

_Wm 5 25:3 kW ß

_Wm

This problem illustrates construction of
velocity diagrams and application of
the Euler turbomachine equation for a
fixed control volume to an axial-flow
machine under idealized conditions.
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Performance Characteristics

To specify fluid machines for flow systems, the designer must know the pressure rise
(or head), torque, power requirement, and efficiency of a machine. For a given
machine, each of these characteristics is a function of flow rate; the characteristics for
similar machines depend on size and operating speed. Here we define performance
characteristics for pumps and turbines and review experimentally measured trends for
typical machines.

The idealized analyses presented in Section 10.2 are useful to predict trends and to
approximate the design-point performance of an energy-absorbing or an energy-
producing machine. However, the complete performance of a real machine, including
operation at off-design conditions, must be determined experimentally.

To determine performance, a pump, fan, blower, or compressor must be set up on
an instrumented test stand with the capability of measuring flow rate, speed, input
torque, and pressure rise. The test must be performed according to a standardized
procedure corresponding to the machine being tested [8, 9]. Measurements are made
as flow rate is varied from shutoff (zero flow) to maximum delivery by varying the
load from maximum to minimum (by starting with a valve that is closed and opening it
to fully open in stages). Power input to the machine is determined from a calibrated
motor or calculated from measured speed and torque, and then efficiency is computed
as illustrated in Example 10.4. Finally, the calculated characteristics are plotted in the
desired engineering units or nondimensionally. If appropriate, smooth curves may be
faired through the plotted points or curve-fits may be made to the results, as illus-
trated in Example 10.5.

Example 10.4 CALCULATION OF PUMP CHARACTERISTICS FROM TEST DATA

The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is shown. The liquid is water at 80�F,
and the suction and discharge pipe diameters are 6 in. Data measured during the test are given in the table. The
electric motor is supplied at 460 V, 3-phase, and has a power factor of 0.875 and a constant efficiency of 90 percent.

Rate of Flow
(gpm)

Suction Pressure
(psig)

Discharge Pressure
(psig)

Motor Current
(amp)

0 0.65 53.3 18.0
500 0.25 48.3 26.2
800 20.35 42.3 31.0

1000 20.92 36.9 33.9
1100 21.24 33.0 35.2
1200 21.62 27.8 36.3
1400 22.42 15.3 38.0
1500 22.89 7.3 39.0

Calculate the net head delivered and the pump efficiency at a volume flow rate of 1000 gpm. Plot the pump head,
power input, and efficiency as functions of volume flow rate.

Given: Pump test flow system and data shown.

FInd: (a) Pump head and efficiency at Q5 1000 gpm.
(b) Pump head, power input, and efficiency as a function of volume flow rate. Plot the results.

zs = 1 ft

zd = 3 ft

pd

ps
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Solution:

Governing equations:

_Wh 5 ρQgHp ηp 5
_Wh

_Wm

5
ρQgHp

ωT

Hp 5
p

ρg
1

V
2

2g
1 z

0
@

1
A

d

2
p

ρg
1

V
2

2g
1 z

0
@

1
A

s

Assumptions: (1) Steady flow.
(2) Uniform flow at each section.
(3) V2 5V1.
(4) Correct all heads to the same elevation.

Since V1 5V2, the pump head is

Hp 5
1

g

p

ρ
1 gz

� �
d

2
p

ρ
1 gz

� �
s

� �
5

p2 2 p1
ρg

where the discharge and suction pressures, corrected to the same elevation, are designated p2 and p1, respectively.
Correct measured static pressures to the pump centerline:

p1 5 ps 1 ρgzs

p1 5 2 0:92
lbf

in:2
1 1:94

slug

ft3
3 32:2

ft

s2
3 1:0 ft3

lbf �s2
slug�ft 3

ft2

144 in:2
520:49 psig

and

p2 5 pd 1 ρgzd

p2 5 36:9
lbf

in:2
1 1:94

slug

ft3
3 32:2

ft

s2
3 3:0 ft3

lbf �s2
slug�ft 3

ft2

144 in:2
5 38:2 psi

Calculate the pump head:

Hp 5 ðp2 2 p1Þ=ρg

Hp 5 ½38:22 ð20:49Þ� lbf
in:2

3
ft3

1:94 slug
3

s2

32:2 ft
3 144

in:2

ft2
3

slug�ft
lbf �s2 5 89:2 ft ß

Hp

Compute the hydraulic power delivered to the fluid:

_Wh 5 ρQgHp 5Qðp2 2 p1Þ

5 1000
gal

min
3 ½38:22 ð20:49Þ� lbf

in:2
3

ft3

7:48 gal
3

min

60 s
3 144

in:2

ft2
3

hp�s
550 ft�lbf

_Wh 5 22:6 hp

Calculate the motor power output (the mechanical power input to the pump) from electrical information:

3in 5 η
ffiffiffi
3

p ðPFÞEI

3in 5 0:903
ffiffiffi
3

p
3 0:8753 460 V3 33:9 A3

W

VA
3

hp

746 W
5 28:5 hp
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The corresponding pump efficiency is

ηp 5
_Wh

_Wm

5
22:6 hp

28:5 hp
5 0:792 or 79:2 percent ß

ηp

Results from similar calculations at the other volume flow rates are
plotted below:
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This problem illustrates the data reduc-
tion procedure used to obtain the per-
formance curves for a pump from
experimental data. The results calcu-
lated and plotted in this example are
typical for a centrifugal pump driven at
constant speed:
ü The pressure rise is highest at shutoff
(zero flow rate).ü Pressure rise decreases steadily as
flow rate is increased; compare this
typical experimental curve to the lin-
ear behavior predicted by Eq. 10.18b,
and shown in Fig. 10.12, for idealized
backward-curved impeller blades
(used in most centrifugal pumps).

ü Required power input increases with
flow rate; the increase is generally
nonlinear.ü Efficiency is zero at shutoff, rises to a
peak as flow rate is increased, then
drops off at larger flow rates; it stays
near its maximum over a range of flow
rates (in this example, from about
800 to 1100 gpm).This example is a little oversimplified

because it is assumed that the electric
motor efficiency is constant. In practice,
motor efficiency varies with load, so
must be either computed at each load
from motor speed and torque measure-
ments, or obtained from a calibration
curve.

The Excel workbook for thisExample was used for the calcu-
lations for each flow rate, and for gen-
erating the graph. It can be modified for
use with other pump data.

Example 10.5 CURVE-FIT TO PUMP PERFORMANCE DATA

Pump test data were given and performance was calculated in Example 10.4. Fit a parabolic curve, H5 H0 2AQ2,
to these calculated pump performance results and compare the fitted curve with the measured data.

Given: Pump test data and performance calculated in Example 10.4.
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The basic procedure used to calculate machine performance was illustrated for
a centrifugal pump in Example 10.4. The difference in static pressures between
the pump suction and discharge was used to calculate the head rise produced by the
pump. For pumps, dynamic pressure rise (or fluid kinetic energy change) typically is a
small fraction of the head rise developed by the pump, so it may be neglected com-
pared with the head rise.

Find: (a) Parabolic curve, H5H0 2AQ2, fitted to the pump performance data.
(b) Comparison of the curve-fit with the calculated performance.

Solution:
The curve-fit may be obtained by fitting a linear curve to H versus Q2. Tabulating,

From calculated performance: From the curve fit:

Q (gpm) Q2 (gpm2) H (ft) H (ft) Error (%)

0 0 123 127 2.8
500 25 3 104 113 116 3.1
800 64 3 104 100 99.8 20.5

1000 100 3 104 89.2 84.6 25.2
1100 121 3 104 80.9 75.7 26.5
1200 144 3 104 69.8 65.9 25.6
1400 196 3 104 42.8 43.9 2.5
1500 225 3 104 25.5 31.7 24.2

Intercept5 127

Slope5 2 4:233 102 5

r2 5 0:984

Using the method of least squares, the equation for the fitted curve is obtained as

HðftÞ5 1272 4:233 1025 ½QðgpmÞ�2

with coefficient of determination r2 5 0:984. (The closer r2 is to unity, its
maximum possible value, the better the fit.)

Always compare the results of a curve-fit with the data used to develop
the fit. The figure shows the curve-fit (the solid line) and the experimental
values (the points).
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This problem illustrates that the pump
test data for Example 10.4 can be fitted
quite well to a parabolic curve. As with
fitting a curve to any experimental
data, our justifications for choosing a
parabolic function in this case are:ü Experimental observation—the
experimental data looks parabolic.

ü Theory or concept—we will see later
in this section that similarity rules
suggest such a relation between
head and flow rate.

The Excel workbook for thisExample was used for the least-
squares calculations, and for gen-
erating the graph. It can be modified
for use with other pump data.
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Typical characteristic curves for a centrifugal pump tested at constant speed
were shown qualitatively in Fig. 7.5;3 the head versus capacity curve is reproduced
in Fig. 10.13 to compare with characteristics predicted by the idealized analysis.
Figure 10.13 shows that the head at any flow rate in the real machine may be sig-
nificantly lower than is predicted by the idealized analysis. Some of the causes are:

1. At very low flow rate, some fluid recirculates in the impeller.

2. Friction loss and leakage loss both increase with flow rate.

3. “Shock loss” results from a mismatch between the direction of the relative velocity
and the tangent to the impeller blade at the inlet.4

Curves such as those in Figs. 7.5 and 10.13 are measured at constant (design) speed
with a single impeller diameter. It is common practice to vary pump capacity by
changing the impeller size in a given casing. To present information compactly, data
from tests of several impeller diameters may be plotted on a single graph, as shown in
Fig. 10.14. As before, for each diameter, head is plotted versus flow rate; each curve is
labeled with the corresponding diameter. Efficiency contours are plotted by joining
points having the same constant efficiency. Power-requirement contours are also
plotted. Finally, the NPSH requirements (which we have not yet defined; we will
discuss its meaning later in this section) are shown for the extreme diameters; in Fig.
10.14, the curve for the 8-in. impeller lies between the curves for the 6-in. and 10-in.
impellers.

With the advent of computer-aided analyses, the data of Fig. 10.14 are often
tabulated for quick access by computer codes. Therefore, data are not always pre-
sented in the manner shown in this figure. Specifically, the data of Fig. 10.14 are
simplified by reporting an average efficiency as a function of the flow rate only, as
shown in Fig. 10.15, rather than as a function of flow rate and head. The figures in
Appendix D display pump performance in this format.

For this typical machine, head is a maximum at shutoff and decreases con-
tinuously as flow rate increases. Input power is minimum at shutoff and increases as

Loss due to recirculation

Ideal head-flow curve (Fig. 10.12)
Loss due to
flow friction

Actual
head-flow

curve

Approximate
best efficiency point

"Shock" loss

Volume flow rate, Q

H
ea

d,
 H

Fig. 10.13 Comparison of ideal and actual
head-flow curves for a centrifugal pump with
backward-curved impeller blades [10].

3The only important pump characteristic not shown in Fig. 7.5 is the net positive suction head (NPSH)

required to prevent cavitation. Cavitation and NPSH will be treated later in this section.
4This loss is largest at high and low flow rates; it decreases essentially to zero as optimum operating con-

ditions are approached [11].
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delivery is increased. Consequently, to minimize the starting load, it may be advisable
to start the pump with the outlet valve closed. (However, the valve should not be left
closed for long, lest the pump overheat as energy dissipated by friction is transferred to
the water in the housing.) Pump efficiency increases with capacity until the best effi-
ciency point (BEP) is reached, then decreases as flow rate is increased further. For
minimum energy consumption, it is desirable to operate as close to BEP as possible.

Centrifugal pumps may be combined in parallel to deliver greater flow or in series
to deliver greater head. A number of manufacturers build multistage pumps, which
are essentially several pumps arranged in series within a single casing. Pumps and
blowers are usually tested at several constant speeds. Common practice is to drive
machines with electric motors at nearly constant speed, but in some system applica-
tions impressive energy savings can result from variable-speed operation. These pump
application topics are discussed later in this section.

Impeller diameter

10 in.

8 in.

6 in.

Efficiency

Best efficiency point

Total
head

Volume flow rate, Q

H
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d,
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E
fficiency, η

Fig. 10.15 Typical pump performance curves from tests with
three impeller diameters at constant speed, showing efficiency
as a function of flow rate only [12].
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Fig. 10.14 Typical pump performance curves from tests with
three impeller diameters at constant speed [10].

10.3 Pumps, Fans, and Blowers 521



Similarity Rules

Pump manufacturers offer a limited number of casing sizes and designs. Frequently,
casings of different sizes are developed from a common design by increasing or
decreasing all dimensions by the same scale ratio. Additional variation in character-
istic curves may be obtained by varying the operating speed or by changing the
impeller size within a given pump housing. The dimensionless parameters developed
in Chapter 7 form the basis for predicting changes in performance that result from
changes in pump size, operating speed, or impeller diameter.

To achieve dynamic similarity requires geometric and kinematic similarity.Assuming
similar pumps and flow fields and neglecting viscous effects, as shown in Chapter 7, we
obtain dynamic similarity when the dimensionless flow coefficient is held constant.
Dynamically similar operation is assured when two flow conditions satisfy the relation

Q1

ω1D
3
1

5
Q2

ω2D
3
2

ð10:23aÞ

The dimensionless head and power coefficients depend only on the flow coefficient, i.e.,

h

ω2D2
5 f1

�
Q

ωD3

�
and

3

ρω3D5
5 f2

�
Q

ωD3

�

Hence, when we have dynamic similarity, as shown in Example 7.6, pump char-
acteristics at a new condition (subscript 2) may be related to those at an old condition
(subscript 1) by

h1
ω2
1D

2
1

5
h2

ω2
2D

2
2

ð10:23bÞ

and

31

ρω3
1D

5
1

5
32

ρω3
2D

5
2

ð10:23cÞ

These scaling relationships may be used to predict the effects of changes in pump
operating speed, pump size, or impeller diameter within a given housing.

The simplest situation is when we keep the same pump and only the pump speed is
changed. Then geometric similarity is assured. Kinematic similarity holds if there is no
cavitation; flows are then dynamically similar when the flow coefficients are matched.
For this case of speed change with fixed diameter, Eqs. 10.23 become

Q2

Q1
5

ω2

ω1
ð10:24aÞ

h2
h1

5
H2

H1
5

ω2

ω1

� �2
ð10:24bÞ

32

31
5

ω2

ω1

� �3
ð10:24cÞ

In Example 10.5, we showed that a pump performance curve may be modeled
within engineering accuracy by the parabolic relationship,

H5H0 2AQ2 ð10:25aÞ
Since this representation contains two parameters, the pump curve for the new
operating condition could be derived by scaling any two points from the performance
curve measured at the original operating condition. Usually, the shutoff condition and
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the best efficiency point are chosen for scaling. These points are represented by
points B and C in Fig. 10.16.

As shown by Eq. 10.24a, the flow rate increases by the ratio of operating speeds, so

QBu 5
ω2

ω1
QB 5 0 and QCu 5

ω2

ω1
QC

Thus, point Bu is located directly above point B, and point Cu moves to the right of
point C (in this example ω2 .ω1).

The head increases by the square of the speed ratio, so

HBu 5HB

ω1

ω2

� �2

and HCu 5HC

ω2

ω1

� �2
Points C and Cu, where dynamically similar flow conditions are present, are termed
homologous points for the pump.

We can relate the old operating condition (e.g., running at speed N15 1170 rpm, as
shown in Fig. 10.16) to the new, primed one (e.g., running at speed N25 1750 rpm in
Fig. 10.16) using the parabolic relation and Eqs. 10.24a and 10.24b,

H5Hu
ω1

ω2

� �2

5H0 2AQ2 5Hu0
ω1

ω2

� �2

2AQu2
ω1

ω2

� �2
or

Hu5Hu0 2AQu2 ð10:25bÞ
so that for a given pump the factor A remains unchanged as we change pump speed
(as we will verify in Example 10.6).

Efficiency remains relatively constant between dynamically similar operating
points when only the pump operating speed is changed. Application of these ideas is
illustrated in Example 10.6.

B'

B

1750 rpm

1170 rpm
C

C'

500400300200
Volume flow rate, Q (gpm)

1000
0

20

40

60

H
ea

d,
 H

 (f
t)

Fig. 10.16 Schematic of a pump performance curve,
illustrating the effect of a change in pump operating
speed.

Example 10.6 SCALING PUMP PERFORMANCE CURVES

When operated at N5 1170 rpm, a centrifugal pump, with impeller diameterD5 8 in., has shutoff headH0 5 25.0 ft
of water. At the same operating speed, best efficiency occurs atQ5 300 gpm, where the head isH5 21.9 ft of water.
Fit these data at 1170 rpm with a parabola. Scale the results to a new operating speed of 1750 rpm. Plot and compare
the results.

Given: Centrifugal pump (with D 5 8 in. impeller) operated at N 5 1170 rpm.
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Q (gpm) 0 300

H (ft of water) 25.0 21.9

Find: (a) The equation of a parabola through the pump characteristics at 1170 rpm.
(b) The corresponding equation for a new operating speed of 1750 rpm.
(c) Comparison (plot) of the results.

Solution:
Assume a parabolic variation in pump head of the form, H 5 H0 2 AQ2. Solving for A gives

A1 5
H0 2H

Q2
5 ð25:02 21:9Þft 3 1

ð300Þ2ðgpmÞ2 5 3:443 1025 ft=ðgpmÞ2

The desired equation is

HðftÞ5 25:02 3:443 102 5 ½Q ðgpmÞ�2

The pump remains the same, so the two flow conditions are geometrically similar. Assuming no cavitation occurs, the
two flows also will be kinematically similar. Then dynamic similarity will be obtained when the two flow coefficients
are matched. Denoting the 1170 rpm condition by subscript 1 and the 1750 rpm condition by subscript 2, we have

Q2

ω2D
3
2

5
Q1

ω1D
3
1

or
Q2

Q1
5

ω2

ω1
5

N2

N1

since D2 5 D1. For the shutoff condition,

Q2 5
N2

N1
Q1 5

1750 rpm

1170 rpm
3 0 gpm5 0 gpm

From the best efficiency point, the new flow rate is

Q2 5
N2

N1
Q1 5

1750 rpm

1170 rpm
3 300 gpm5 449 gpm

The pump heads are related by

h2
h1

5
H2

H1
5

N2
2D

2
2

N2
1D

2
1

or
H2

H1
5

N2
2

N2
1

5
N2

N1

� �2

since D2 5 D1. For the shutoff condition,

H2 5
N2

N1

� �2
H1 5

1750 rpm

1170 rpm

� �2
25:0 ft5 55:9 ft

At the best efficiency point,

H2 5
N2

N1

� �2
H1 5

1750 rpm

1170 rpm

� �2
21:9 ft5 49:0 ft

The curve parameter at 1750 rpm may now be found. Solving for A, we find

A2 5
H02 2H2

Q2
2

5 ð55:92 49:0Þ ft 3 1

ð449Þ2ðgpmÞ2 5 3:443 1025 ft=ðgpmÞ2

Note that A2 at 1750 rpm is the same as A1 at 1170 rpm. Thus we have demonstrated that the coefficient A in the
parabolic equation does not change when the pump speed is changed. The “engineering” equations for the two
curves are

H1 5 25:02 3:443 102 5½Q ðgpmÞ�2 ðat 1170 rpmÞ
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In principle, geometric similarity would be maintained when pumps of the same
geometry, differing in size only by a scale ratio, were tested at the same operating
speed. The flow, head, and power would be predicted to vary with pump size as

Q2 5Q1
D2

D1

� �3
; H2 5H1

D2

D1

� �2
; and 32 531

D2

D1

� �5
ð10:26Þ

It is impractical to manufacture and test a series of pump models that differ in size by
only a scale ratio. Instead it is common practice to test a given pump casing at a fixed
speed with several impellers of different diameter [13]. Because pump casing width is
the same for each test, impeller width also must be the same; only impeller diameterD
is changed. As a result, volume flow rate scales in proportion to D2, not to D3. Pump
input power at fixed speed scales as the product of flow rate and head, so it becomes
proportional to D4. Using this modified scaling method frequently gives results of
acceptable accuracy, as demonstrated in several end-of-chapter problems where the
method is checked against measured performance data from Appendix D.

It is not possible to compare the efficiencies at the two operating conditions
directly. However, viscous effects should become relatively less important as the
pump size increases. Thus efficiency should improve slightly as diameter is increased.
Moody [14] suggested an empirical equation that may be used to estimate the max-
imum efficiency of a prototype pump based on test data from a geometrically similar
model of the prototype pump. His equation is written

12 ηp
12 ηm

5
Dm

Dp

� �1=5

ð10:27Þ

To develop Eq. 10.27, Moody assumed that only the surface resistance changes with
model scale so that losses in passages of the same roughness vary as 1/D5. Unfortu-
nately, it is difficult to maintain the same relative roughness between model and

and

H2 5 55:92 3:443 102 5½Q ðgpmÞ�2 ðat 1750 rpmÞ
The pump curves are compared in the following plot:
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1170 rpm C
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This Example illustrates the proce-
dures for:
ü Obtaining the parabolic “engineer-
ing” equation from shutoff head H0

and best efficiency data on Q and H.
ü Scaling pump curves from one speed
to another.

The Excel workbook for thisExample can be used to gen-
erate pump performance curves for a
range of speeds.
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prototype pumps. Further, the Moody model does not account for any difference in
mechanical losses between model and prototype, nor does it allow determination of
off-peak efficiencies. Nevertheless, scaling of the maximum-efficiency point is useful
to obtain a general estimate of the efficiency curve for the prototype pump.

Cavitation and Net Positive Suction Head

Cavitation can occur in any machine handling liquid whenever the local static pres-
sure falls below the vapor pressure of the liquid. When this occurs, the liquid
can locally flash to vapor, forming a vapor cavity and significantly changing the
flow pattern from the noncavitating condition. The vapor cavity changes the
effective shape of the flow passage, thus altering the local pressure field. Since the size
and shape of the vapor cavity are influenced by the local pressure field, the flow may
become unsteady. The unsteadiness may cause the entire flow to oscillate and the
machine to vibrate.

As cavitation commences, it reduces the performance of a pump or turbine rapidly.
Thus cavitation must be avoided to maintain stable and efficient operation. In addi-
tion, local surface pressures may become high when the vapor cavity implodes or
collapses, causing erosion damage or surface pitting. The damage may be severe
enough to destroy a machine made from a brittle, low-strength material. Obviously
cavitation also must be avoided to assure long machine life.

In a pump, cavitation tends to begin at the section where the flow is accelerated
into the impeller. Cavitation in a turbine begins where pressure is lowest. The ten-
dency to cavitate increases as local flow speeds increase; this occurs whenever flow
rate or machine operating speed is increased.

Cavitation can be avoided if the pressure everywhere in the machine is kept above
the vapor pressure of the operating liquid. At constant speed, this requires that a
pressure somewhat greater than the vapor pressure of the liquid be maintained at
a pump inlet (the suction). Because of pressure losses in the inlet piping, the
suction pressure may be subatmospheric. Therefore it is important to carefully limit
the pressure drop in the inlet piping system.

Net positive suction head (NPSH) is defined as the difference between the absolute
stagnation pressure in the flow at the pump suction and the liquid vapor pressure,
expressed as head of flowing liquid [15].5 Hence the NPSH is a measure of the dif-
ference between the maximum possible pressure in the given flow and the pressure at
which the liquid will start flashing over to a vapor; the larger the NPSH, the less likely
cavitation is to occur. The net positive suction head required (NPSHR) by a specific
pump to suppress cavitation varies with the liquid pumped, and with the liquid tem-
perature and pump condition (e.g., as critical geometric features of the pump are
affected by wear). NPSHR may be measured in a pump test facility by controlling the
input pressure. The results are plotted on the pump performance curve. Typical pump
characteristic curves for three impellers tested in the same housing were shown in
Fig. 10.14. Experimentally determined NPSHR curves for the largest and smallest
impeller diameters are plotted near the bottom of the figure.

The net positive suction head available (NPSHA) at the pump inlet must be greater
than the NPSHR to suppress cavitation. Pressure drop in the inlet piping and pump
entrance increases as volume flow rate increases. Thus for any system, the NPSHA
decreases as flow rate is raised. The NPSHR of the pump increases as the flow rate is
raised. Therefore, as the system flow rate is increased, the curves for NPSHA and
NPSHR versus flow rate ultimately cross. Hence, for any inlet system, there is a flow

CLASSIC VIDEO

Cavitation.

5NPSH may be expressed in any convenient units of measure, such as height of the flowing liquid, e.g., feet

of water (hence the term suction head), psia, or kPa (abs). When expressed as head, NPSH is measured

relative to the pump impeller centerline.

526 Chapter 10 Fluid Machinery



rate that cannot be exceeded if flow through the pump is to remain free from cavi-
tation. Inlet pressure losses may be reduced by increasing the diameter of the inlet
piping; for this reason, many centrifugal pumps have larger flanges or couplings at the
inlet than at the outlet.

Example 10.7 CALCULATION OF NET POSITIVE SUCTION HEAD (NPSH)

A Peerless Type 4AE11 centrifugal pump (Fig. D.3, Appendix D) is tested at 1750 rpm using a flow system with
the layout of Example 10.4. The water level in the inlet reservoir is 3.5 ft above the pump centerline; the inlet line
consists of 6 ft of 5 in. diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve. Calculate the
net positive suction head available (NPSHA) at the pump inlet at a volume flow rate of 1000 gpm of water at 80�F.
Compare with the net positive suction head required (NPSHR) by the pump at this flow rate. Plot NPSHA and
NPSHR for water at 80�F and 180�F versus volume flow rate.

Given: A Peerless Type 4AE11 centrifugal pump (Fig. D.3, Appendix D) is tested at 1750 rpm using a flow system
with the layout of Example 10.4. The water level in the inlet reservoir is 3.5 ft. above the pump centerline; the inlet
line has 6 ft of 5 in. diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve.

Find: (a) NPSHA at Q 5 1000 gpm of water at 80�F.
(b) Comparison with NPSHR for this pump at Q 5 1000 gpm.
(c) Plot of NPSHA and NPSHR for water at 80�F and 180�F versus volume flow rate.

Solution:
Net positive suction head (NPSH) is defined as the difference between the absolute stagnation pressure in the flow at
the pump suction and the liquid vapor pressure, expressed as head of flowing liquid. Therefore it is necessary to
calculate the head at the pump suction.

Apply the energy equation for steady, incompressible pipe flow to compute the pressure at the pump inlet and
thus the NPSHA. Denote the reservoir level as 1 and the pump suction as s , as shown above.

Governing equation:
� gs � h�T

1
2

�� gz1 � ps �

� 0
1
2

� �p1 � V1�
2

Vs�
2

Assumption: V1 is negligible. Thus

ps 5 p1 1 ρgðz1 2 zsÞ2 1

2
ρV

2

s 2 ρh‘T ð1Þ

s

1

D = 5 in.

zs = 1 ft

zd = 3 ft

pd

ps
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The total head loss is

h‘T 5
X

K1
X

f
Le

D
1 f

L

D

� �
1

2
ρV

2

s ð2Þ

Substituting Eq. 2 into Eq. 1 and dividing by ρg,

Hs 5H1 1 z1 2 zs 2
X

K1
X

f
Le

D
1 f

L

D
1 1

� �
V

2

s

2g
ð3Þ

Evaluating the friction factor and head loss,

f 5 f ðRe; e=DÞ; Re5
ρVD

μ
5

VD

ν
; V5

Q

A
; A5

πD2

4

For 5 in. (nominal) pipe, D 5 5.047 in.

D5 5:047 in:3
ft

12 in:
5 0:421 ft; A5

πD2

4
5 0:139 ft2

V5 1000
gal

min
3

ft3

7:48 gal
3

1

0:139 ft2
3

min

60 s
5 16:0 ft=s

From Table A.7, for water at T 5 80�F, ν 5 0.927 3 1025 ft2/s.
The Reynolds number is

Re5
VD

ν
5 16:0

ft

s
3 0:421 ft3

s

0:9273 1025 ft2
5 7:273 105

From Table 8.1, e 5 0.00085 ft, so e/D 5 0.00202. From Eq. 8.37, f 5 0.0237.
The minor loss coefficients are

Entrance K5 0:5

Standard elbow
Le

D
5 30

Open gate value
Le

D
5 8

Substituting,

X
K1

X
f
Le

D
1 f

L

D
1 1

0
@

1
A

5 0:51 0:0237ð301 8Þ1 0:0237
6

0:421

0
@

1
A1 15 2:74

The heads are

H1 5
patm
ρg

5 14:7
lbf

in:2
3 144

in:2

ft2
3

ft3

1:93 slug
3

s2

32:2 ft
3

slug�ft
lbf �s2

5 34:1 ft ðabsÞ

V
2

s

2g
5

1

2
3 ð16:0Þ2 ft

2

s2
3

s2

32:2 ft
5 3:98 ft

Thus,

Hs 5 34:1 ft1 3:5 ft2 ð2:74Þ3:98 ft5 26:7 ft ðabsÞ

This problem illustrates the procedures
used for checking whether a given pump
is in danger of experiencing cavitation:
ü Equation 3 and the plots show that
the NPSHA decreases as flow rate Q
(or Vs) increases; on the other hand,
the NPSHR increases with Q, so if the
flow rate is high enough, a pump will
likely experience cavitation (when
NPSHA , NPSHR).ü The NPSHR for any pump increases
with flow rate Q because local fluid
velocities within the pump increase,
causing locally reduced pressures
and tending to promote cavitation.

ü For this pump, at 80�F, the pump
appears to have NPSHA . NPSHR at
all flow rates, so it would never
experience cavitation; at 180�F, cavi-
tation would occur around 1100 gpm,
but from Fig. D.3, the pump best
efficiency is around 900 gpm, so it
would probably not be run at
1100 gpm—the pump would probably
not cavitate even with the hotter
water.

The Excel workbook for thisExample can be used to generate
the NPSHA and NPSHR curves for a
variety of pumps and watertemperatures.
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Pump Selection: Applications to Fluid Systems

We define a fluid system as the combination of a fluid machine and a network of pipes
or channels that convey fluid. The engineering application of fluid machines in an
actual system requires matching the machine and system characteristics, while satis-
fying constraints of energy efficiency, capital economy, and durability. We have
alluded to the vast assortment of hardware offered by competing suppliers; this
variety verifies the commercial importance of fluid machinery in modern engineering
systems.

Usually it is more economical to specify a production machine rather than a custom
unit, because products of established vendors have known, published performance
characteristics, and they must be durable to survive in the marketplace. Application
engineering consists of making the best selection from catalogs of available products.
In addition to machine characteristic curves, all manufacturers provide a wealth of
dimensional data, alternative configuration and mounting schemes, and technical
information bulletins to guide intelligent application of their products.

This section consists of a brief review of relevant theory, followed by example
applications using data taken from manufacturer literature. Selected performance

To obtain NPHSA, add velocity head and subtract vapor head. Thus

NPHSA5Hs 1
V

2

s

2g
2Hv

The vapor pressure for water at 80�F is pv 5 0.507 psia. The corresponding head is Hv 5 1.17 ft of water. Thus,

NPSHA5 26:71 3:982 1:175 29:5 ft ß
NPSHA

The pump curve (Fig. D.3, Appendix D) shows that at 1000 gpm the pump requires

NPSHR5 12:0 ft ß
NPSHR

Results of similar computations for water at 80�F are plotted in the figure on the left below. (NPSHR values are
obtained from the pump curves in Fig. D.3, Appendix D.)

Results of computation for water at 180�F are plotted in the figure on the right above. The vapor pressure for
water at 180�F is pv 5 7.51 psia. The corresponding head is Hv 5 17.3 ft of water. This high vapor pressure reduces
the NPSHA, as shown in the plot.
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curves for centrifugal pumps and fans are presented in Appendix D. These may be
studied as typical examples of performance data supplied by manufacturers. The
curves may also be used to help solve the equipment selection and system design
problems at the end of the chapter.

We will consider various machines for doing work on a fluid, but we first make a
few general points. As we saw in Example 10.4, a typical pump, for example,
produces a smaller head as the flow rate is increased. On the other hand, the head
(which includes major and minor losses) required to maintain flow in a pipe system
increases with the flow rate. Hence, as shown graphically6 in Fig. 10.17, a pump-
system will run at the operating point, the flow rate at which the pump head rise and
required system head match. (Figure 10.17 also shows a pump efficiency curve,
indicating that, for optimum pump selection, a pump should be chosen that has
maximum efficiency at the operating point flow rate.) The pump-system shown in
Fig. 10.17 is stable. If for some reason the flow rate falls below the operating flow
rate, the pump pressure head rises above the required system head, and so the flow
rate increases back to the operating point. Conversely, if the flow rate momentarily
increases, the required head exceeds the head provided by the pump, and the flow
rate decreases back to the operating point. This notion of an operating point applies
to each machine we will consider (although, as we will see, the operating points are
not always stable).

The system pressure requirement at a given flow rate is composed of frictional
pressure drop (major loss due to friction in straight sections of constant area and
minor loss due to entrances, fittings, valves, and exits) and pressure changes due to
gravity (static lift may be positive or negative). It is useful to discuss the two limiting
cases of pure friction and pure lift before considering their combination.

The all-friction system head versus flow curve, with no static lift, starts at zero flow
and head, as shown in Fig. 10.18a. For this system the total head required is the sum of
major and minor losses,

hlT 5
X

hl 1
X

hlm 5
X

f
L

D

V
2

2
1
X

f
Le

D

V
2

2
1K

V
2

2

 !

For turbulent flow (the usual flow regime in engineering systems), as we learned in
Chapter 8 (see Fig. 8.13), the friction factors approach constant and the minor loss
coefficients K and equivalent lengths Le are also constant. Hence hlTBV

2
BQ2 so that

the system curve is approximately parabolic. (In reality, because the friction factors f
only approach constants as the regime becomes fully turbulent, it turns out that
Q1:75 , hlT ,Q2.) This means the system curve with pure friction becomes steeper as

Pump efficiency curve

Operating point

Volume flow rate

System curve

Pump head-capacity curve

H
ea

d

Fig. 10.17 Superimposed system head-flow and
pump head-capacity curves.

6While a graphical representation is useful for visualizing the pump-system matching, we typically use

analytical or numerical methods to determine the operating point (Excel is very useful for this).
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flow rate increases. To develop the friction curve, losses are computed at various flow
rates and then plotted.

Pressure change due to elevation difference is independent of flow rate. Thus the
pure lift system head-flow curve is a horizontal straight line. The gravity head is
evaluated from the change in elevation in the system.

All actual flow systems have some frictional pressure drop and some elevation
change. Thus all system head-flow curves may be treated as the sum of a frictional
component and a static-lift component. The head for the complete system at any flow
rate is the sum of the frictional and lift heads. The system head-flow curve is plotted in
Fig. 10.18b.

Whether the resulting system curve is steep or flat depends on the relative importance
of friction and gravity. Friction drop may be relatively unimportant in the water supply
to a high-rise building (e.g., the Willis Tower, formerly the Sears Tower, in Chicago,
which is nearly 400 m tall), and gravity lift may be negligible in an air-handling system
for a one-story building.

In Section 8.7 we obtained a form of the energy equation for a control volume
consisting of a pump-pipe system,

p1
ρ

1α1
V

2

1

2
1 gz1

 !
2

p2
ρ

1α2
V

2

2

2
1 gz2

 !
5 hlT 2Δhpump ð8:49Þ

Replacing Δhpump with ha, representing the head added by any machine (not only a
pump) that does work on the fluid, and rearranging Eq. 8.49, we obtain a more general
expression

p1
ρ

1α1
V

2

1

2
1 gz1 1 ha 5

p2
ρ

1α2
V

2

2

2
1 gz2 1 hlT ð10:28aÞ

Dividing by g gives

p1
ρg

1α1
V

2

1

2g
1 z1 1Ha 5

p2
ρg

1α2
V

2

2

2g
1 z2 1

hlT
g

ð10:28bÞ
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Fig. 10.18 Schematic diagrams illustrating basic types of
system head-flow curves (adapted from [10]).
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where Ha is the energy per unit weight (i.e, the head, with dimensions of L) added by
the machine. Note that these equations may also be used to analyze a fluid machine
with internal losses as well.

The pump operating point is defined by superimposing the system curve and the
pump performance curve, as shown in Fig. 10.17. The point of intersection is the only
condition where the pump and system flow rates are equal and the pump and system
heads are equal simultaneously. The procedure used to determine the match point for
a pumping system is illustrated in Example 10.8.

Example 10.8 FINDING THE OPERATING POINT FOR A PUMPING SYSTEM

The pump of Example 10.6, operating at 1750 rpm, is used to pump water through the pipe system of Fig. 10.18a.
Develop an algebraic expression for the general shape of the system resistance curve. Calculate and plot the system
resistance curve. Solve graphically for the system operating point. Obtain an approximate analytical expression for
the system resistance curve. Solve analytically for the system operating point.

Given: Pump of Example 10.6, operating at 1750 rpm, withH5H0 2 AQ2, whereH0 5 55.9 ft andA5 3.443 1025

ft/(gpm)2. System of Fig. 10.18a, where L1 5 2 ft of D1 5 10 in. pipe and L2 5 3000 ft of D2 5 8 in. pipe, conveying
water between two large reservoirs whose surfaces are at the same level.

Find: (a) A general algebraic expression for the system head curve.
(b) The system head curve by direct calculation.
(c) The system operating point using a graphical solution.
(d) An approximate analytical expression for the system head curve.
(e) The system operating point using the analytical expression of part (d).

Solution:
Apply the energy equation to the flow system of Fig. 10.18a.

Governing equation:

p0
ρg

1α0
V

2

0

2g
1 z0 1Ha 5

p3
ρg

1α3
V

2

3

2g
1 z3 1

hlT
g

ð10:24bÞ

where z0 and z3 are the surface elevations of the supply and discharge reservoirs, respectively.

Assumptions: (1) p0 5 p3 5 patm.
(2) V0 5V3 5 0.
(3) z0 5 z3 (given).

Simplifying, we obtain

Ha 5
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g

5
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where sections 1 and 2 are located just upstream and downstream from the pump, respectively.
The total head losses are the sum of the major and minor losses, so
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Hence
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This is the head loss equation for the system. At the operating point, as indicated in Eq. 1, the head loss is equal to
the head produced by the pump, given by

Ha 5H0 2AQ2 ð2Þ
where H0 5 55.9 ft and A 5 3.44 3 1025 ft/(gpm)2.

The head loss in the system and head produced by the pump can be computed for a range of flow rates:

Q (gpm) V1 (ft/s) Re1 (1000) f1 (2) V2 (ft/s) Re2 (1000) f2 (2) HlT (ft) Ha ( ft)

0 0.00 0 � 0.00 0 � 0.0 55.9
100 0.41 32 0.026 0.64 40 0.025 0.7 55.6
200 0.82 63 0.023 1.28 79 0.023 2.7 54.5
300 1.23 95 0.022 1.91 119 0.023 5.9 52.8
400 1.63 127 0.022 2.55 158 0.022 10.3 50.4
500 2.04 158 0.021 3.19 198 0.022 15.8 47.3
600 2.45 190 0.021 3.83 237 0.022 22.6 43.5
700 2.86 222 0.021 4.47 277 0.022 30.6 39.0
800 3.27 253 0.021 5.11 317 0.022 39.7 33.9
900 3.68 285 0.021 5.74 356 0.021 50.1 28.0
1000 4.09 317 0.021 6.38 396 0.021 61.7 21.5
1100 4.49 348 0.020 7.02 435 0.021 74.4
1200 4.90 380 0.020 7.66 475 0.021 88.4
1300 5.31 412 0.020 8.30 515 0.021 103
1400 5.72 443 0.020 8.94 554 0.021 120
1500 6.13 475 0.020 9.57 594 0.021 137

The pump curve and the system resistance curve are plotted below:

The graphical solution is shown on the plot. At the operating point, H � 36 ft and Q � 750 gpm.
We can obtain more accuracy from the graphical solution using the following approach: Because the Reynolds

number corresponds to the fully turbulent regime, f � const., we can simplify the equation for the head loss and write
it in the form
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The shapes of both the pump curve and the system curve can be important to
system stability in certain applications. The pump curve shown in Fig. 10.17 is typical
of the curve for a new centrifugal pump of intermediate specific speed, for which the
head decreases smoothly and monotonically as the flow rate increases from shutoff.
Two effects take place gradually as the system ages: (1) The pump wears, and its
performance decreases (it produces less pressure head; so the pump curve gradually
moves downward toward lower head at each flow rate). (2) The system head increases
(the system curve gradually moves toward higher head at each flow rate because of

HlT � CQ2 ð3Þ
where C5 8=π2D4

2g times the term in square brackets in the expression for HlT . We can obtain a value for C directly
from Eq. 3 by using values for HlT and Q from the table at a point close to the anticipated operating point. For
example, from the Q 5 700 gpm data point,

C5
HlT

Q2
5

30:6 ft

7002 ðgpmÞ2 5 6:243 1025 ft=ðgpmÞ2

Hence, the approximate analytical expression for the system head curve is

HlT 5 6:243 102 5 ft=ðgpmÞ2 ½QðgpmÞ�2 ß

HlT

Using Eqs. 2 and 3 in Eq. 1, we obtain

H0 2AQ2 5CQ2

Solving for Q, the volume flow rate at the operating point, gives

Q5
H0

A1C

� �1=2

For this case,

Q5 55:9 ft3
ðgpmÞ2

ð3:443 1025 1 6:243 1025Þ ft

" #1=2
5 760 gpm ß

Q

The volume flow rate may be substituted into either expression for head
to calculate the head at the operating point as

H5CQ2 5 6:243 1025 ft

ðgpmÞ2 3 ð760Þ2ðgpmÞ2 5 36:0 ft ß
H

We can see that in this problem our reading of the operating point
from the graph was pretty good: The reading of head was in agree-
ment with the calculated head; the reading of flow rate was less than
2 percent different from the calculated result.

Note that both sets of results are approximate. We can get a more
accurate, and easier, result by using Excel’s Solver or Goal Seek to
find the operating point, allowing for the fact that the friction factors
vary, however slightly, with Reynolds number. Doing so yields an
operating point flow rate of 761 gpm and head of 36.0 ft.

This problem illustrates the procedures
used to find the operating point of a
pump and flow system.ü The approximate methods—graphi-
cal, and assuming friction losses are
proportional to Q2

—yielded results
close to the detailed computation
using Excel. We conclude that since
most pipe flow friction coefficients are
accurate to only about 610 percent
anyway, the approximate methods
are accurate enough. On the other
hand, use of Excel, when available, is
easier as well as being more accurate.

ü Equation 3, for the head loss in the
system, must be replaced with an
equation of the form H 5 Z0 1 CQ2
when the head H required by the
system has a component Z0 due to
gravity as well as a component due to
head losses.

The Excel workbook for thisExample was used to generate
the tabulated results as well as the
most accurate solution. It can be
adapted for use with other pump-pipe
systems.
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pipe aging7). The effect of these changes is to move the operating point toward lower
flow rates over time. The magnitude of the change in flow rate depends on the shapes
of the pump and system curves.

The capacity losses, as pump wear occurs, are compared for steep (friction domi-
nated) and flat (gravity dominated) system curves in Fig. 10.19. The loss in capacity is
greater for the flat system curve than for the steep system curve.

The pump efficiency curve is also plotted in Fig. 10.17. The original system operating
point usually is chosen to coincide with the maximum efficiency by careful choice of
pump size and operating speed. Pump wear increases internal leakage, thus reducing
delivery and lowering peak efficiency. In addition, as shown in Fig. 10.19, the operating
point moves toward lower flow rate, away from the best efficiency point. Thus the
reduced system performance may not be accompanied by reduced energy usage.

Sometimes it is necessary to satisfy a high-head, low-flow requirement; this forces
selection of a pumpwith low specific speed. Such a pumpmay have a performance curve
with a slightly rising head near shutoff, as shown in Fig. 10.20. When the system curve is
steep, the operating point is well-defined and no problemswith system operation should
result. However, use of the pump with a flat system curve could easily cause problems,
especially if the actual system curve were slightly above the computed curve or the
pump delivery were below the charted head capacity performance.

If there are two points of intersection of the pump and system curves, the system
may operate at either point, depending on conditions at start-up; a disturbance could
cause the system operating point to shift to the second point of intersection. Under
certain conditions, the system operating point can alternate between the two points of
intersection, causing unsteady flow and unsatisfactory performance.

Steep system curve Flat system curve

New pump head-capacity curve

Worn pump head-capacity curve

Capacity loss-steep system curve

Capacity loss-flat system curve

Volume flow rate
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Fig. 10.19 Effect of pump wear on flow delivery to system.
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Fig. 10.20 Operation of low specific speed pump near
shutoff.

7As the pipe ages, mineral deposits form on the wall (see Fig. 8.14), raising the relative roughness and

reducing the pipe diameter compared with the as-new condition. See Problem 10.63 for typical friction

factor data.
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Instead of a single pump of low specific speed, a multistage pump may be used in
this situation. Since the flow rate through all stages is the same, but the head per stage
is less than in the single-stage unit, the specific speed of the multistage pump is higher
(see Eq. 7.22a).

The head-flow characteristic curve of some high specific speed pumps shows a dip
at capacities below the peak efficiency point, as shown in Fig. 10.21. Caution is needed
in applying such pumps if it is ever necessary to operate the pump at or near the dip in
the head-flow curve. No trouble should occur if the system characteristic is steep, for
there will be only one point of intersection with the pump curve. Unless this inter-
section is near point B, the system should return to stable, steady-state operation
following any transient disturbance.

Operation with a flat system curve is more problematic. It is possible to have one,
two, or three points of intersection of the pump and system curves, as suggested in the
figure. Points A and C are stable operating points, but point B is unstable: If the flow
rate momentarily falls below QB, for whatever reason, the flow rate will continue to
fall (to QA) because the head provided by the pump is now less than that required by
the system; conversely, if the flow surges above QB, the flow rate will continue to
increase (to QC) because the pump head exceeds the required head. With the flat
system curve, the pump may “hunt” or oscillate periodically or aperiodically.

Several other factors can adversely influence pump performance: pumping hot
liquid, pumping liquid with entrained vapor, and pumping liquid with high viscosity.
According to [9], the presence of small amounts of entrained gas can drastically
reduce performance. As little as 4 percent vapor can reduce pump capacity by more
than 40 percent. Air can enter the suction side of the pumping circuit where pressure
is below atmospheric if any leaks are present.

Adequate submergence of the suction pipe is necessary to prevent air entrainment.
Insufficient submergence can cause a vortex to form at the pipe inlet. If the vortex is
strong, air can enter the suction pipe. Dickinson [16] and Hicks and Edwards [17] give
guidelines for adequate suction-basin design to eliminate the likelihood of vortex
formation.

Increased fluid viscosity may dramatically reduce the performance of a centrifugal
pump [17]. Typical experimental test results are plotted in Fig. 10.22. In the
figure, pump performance with water (μ5 1 cP) is compared with performance in
pumping a more viscous liquid (μ5 220 cP). The increased viscosity reduces the head
produced by the pump. At the same time the input power requirement is increased.
The result is a dramatic drop in pump efficiency at all flow rates.

Heating a liquid raises its vapor pressure. Thus to pump a hot liquid requires
additional pressure at the pump inlet to prevent cavitation, as we saw in Example 10.7.

In some systems, such as city water supply or chilled-water circulation, there may
be a wide range in demand with a relatively constant system resistance. In these cases,
it may be possible to operate constant-speed pumps in series or parallel to supply the
system requirements without excessive energy dissipation due to outlet throttling.

Pump efficiency curve
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Steep system curve
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Fig. 10.21 Operation of high specific speed pump near
the dip.
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Two or more pumps may be operated in parallel or series to supply flow at high
demand conditions, and fewer units can be used when demand is low.

For pumps in series, the combined performance curve is derived by adding the head
rises at each flow rate (Fig. 10.23). The increase in flow rate gained by operating
pumps in series depends on the resistance of the system being supplied. For
two pumps in series, delivery will increase at any system head. The characteristic
curves for one pump and for two identical pumps in series are

H1 5H0 2AQ2

and

H2s 5 2ðH0 2AQ2Þ5 2H0 2 2AQ2

Figure 10.23 is a schematic illustrating the application of two identical pumps in
series. A reasonable match to the system requirement is possible—while keeping
efficiency high—if the system curve is relatively steep.

In an actual system, it is not appropriate simply to connect two pumps in series. If
only one pump were powered, flow through the second, unpowered pump would cause
additional losses, raising the system resistance. It also is desirable to arrange the
pumps and piping so that each pump can be taken out of the pumping circuit for
maintenance, repair, or replacement when needed. Thus a system of bypasses, valves,
and check valves may be necessary in an actual installation [13, 17].

Head curve

Efficiency curve

QA

HA

(a) Single-pump operation

QA

HA

HA

(b) Two pumps in series

Fig. 10.23 Operation of two centrifugal pumps in series.
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Fig. 10.22 Effect of liquid viscosity on performance of a
centrifugal pump [9].
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Pumps also may be combined in parallel. The resulting performance curve, shown
in Fig. 10.24, is obtained by adding the pump capacities at each head. The char-
acteristic curves for one pump and for two identical pumps in parallel are

H1 5H0 2AQ2

and

H2p 5H0 2A
Q

2

� �2

5H0 2
1

4
AQ2

The schematic in Fig. 10.24 shows that the parallel combination may be used most
effectively to increase system capacity when the system curve is relatively flat.

An actual system installation with parallel pumps also requires more thought to
allow satisfactory operation with only one pump powered. It is necessary to prevent
backflow through the pump that is not powered. To prevent backflow and to permit
pump removal, a more complex and expensive piping setup is needed.

Many other piping arrangements and pump combinations are possible. Pumps of
different sizes, heads, and capacities may be combined in series, parallel, or series-
parallel arrangements. Obviously the complexity of the piping and control system
increases rapidly. In many applications the complexity is due to a requirement that the
system handle a variety of flow rates—a range of flow rates can be generated by using
pumps in parallel and in series and by using throttling valves. Throttling valves are
usually necessary because constant-speed motors drive most pumps, so simply using a
network of pumps (with some on and others off) without throttling valves allows the
flow rate to be varied only in discrete steps. The disadvantage of throttling valves is
that they can be a major loss of energy so that a given flow rate will require a larger
power supply than would otherwise be the case. Some typical data for a throttling
valve, given in Table 10.1 [18], show a decreasing valve efficiency (the percentage of
pump pressure available that is not consumed by the valve) as the valve is used to
reduce the flow rate.

Use of variable-speed operation allows infinitely variable control of system flow rate
with high energy efficiency and without extra plumbing complexity. A further
advantage is that a variable-speed drive system offers much simplified control of
system flow rate. The cost of efficient variable-speed drive systems continues to
decrease because of advances in power electronic components and circuits. The sys-
tem flow rate can be controlled by varying pump operating speed with impressive
savings in pumping power and energy usage. The input power reduction afforded by
use of a variable-speed drive is illustrated in Table 10.1. At 1100 gpm, the power input
is cut almost 54 percent for the variable-speed system; the reduction at 600 gpm is
more than 75 percent.

The reduction in input power requirement at reduced flow with the variable speed
drive is impressive. The energy savings, and therefore the cost savings, depend on the
specific duty cycle on which the machine operates. Armintor and Conners [18] present

One pump
Two pumps
in parallel

System curve

Volume flow rate
H
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d

Fig. 10.24 Operation of two centrifugal pumps in parallel.
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information on mean duty cycles for centrifugal pumps used in the chemical process
industry; Fig. 10.25 is a plot showing the histogram of these data. The plot shows that
although the system must be designed and installed to deliver full rated capacity, this
condition seldom occurs. Instead, more than half the time, the system operates at 70
percent capacity or below. The energy savings that result from use of a variable speed
drive for this duty cycle are estimated in Example 10.9.
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Fig. 10.25 Mean duty cycle for centrifugal pumps in the
chemical and petroleum industries [18].

Table 10.1
Power Requirements for Constant- and Variable-Speed Drive Pumps

Throttle Valve Control with Constant-Speed (1750 rpm) Motor

Flow
Rate
(gpm)

System
Head (ft)

Valvea

Efficiency
(%)

Pump
Head
(ft)

Pump
Efficiency

(%)

Pump
Power
(bhp)

Motor
Efficiency

(%)

Motor
Input
(hp)

Power
Inputb

(hp)

1700 180 100.0 180 80.0 96.7 90.8 106.5 106.7
1500 150 78.1 192 78.4 92.9 90.7 102.4 102.6
1360 131 66.2 198 76.8 88.6 90.7 97.7 97.9
1100 102 49.5 206 72.4 79.1 90.6 87.3 87.5
900 83 39.5 210 67.0 71.3 90.3 79.0 79.1
600 62 29.0 214 54.0 60.1 90.0 66.8 66.9

Variable-Speed Drive with Energy-Efficient Motor

Flow
Rate
(gpm)

Pump/
System

Head (ft)

Pump
Efficiency

(%)

Pump
Power
(bhp)

Motor
speed
(rpm)

Motor
Efficiency

(%)

Motor
Input
(hp)

Control
Efficiency

(%)

Power
Input
(hp)

1700 180 80.0 96.7 1750 93.7 103.2 97.0 106.4
1500 150 79.6 71.5 1580 94.0 76.0 96.1 79.1
1360 131 78.8 57.2 1470 93.9 60.9 95.0 64.1
1100 102 78.4 36.2 1275 93.8 38.6 94.8 40.7
900 83 77.1 24.5 1140 92.3 26.5 92.8 28.6
600 62 72.0 13.1 960 90.0 14.5 89.1 16.3

Source: Based on Armintor and Conners [18].
aValve efficiency is the ratio of system pressure to pump pressure.
bPower input is motor input divided by 0.998 starter efficiency.
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Example 10.9 ENERGY SAVINGS WITH VARIABLE-SPEED CENTRIFUGAL PUMP DRIVE

Combine the information on mean duty cycle for centrifugal pumps given in Fig. 10.25 with the drive data in
Table 10.1. Estimate the annual savings in pumping energy and cost that could be achieved by implementing a
variable-speed drive system.

Given: Consider the variable-flow, variable-pressure pumping system of Table 10.1. Assume the system operates on
the typical duty cycle shown in Fig. 10.25, 24 hours per day, year round.

Find: (a) An estimate of the reduction in annual energy usage obtained with the variable-speed drive.
(b) The energy costs and the cost saving due to variable-speed operation.

Solution:
Full-time operation involves 365 days 3 24 hours per day, or 8760 hours per year. Thus the percentages in Fig. 10.27
may be multiplied by 8760 to give annual hours of operation.

First plot the pump input power versus flow rate using data from Table 10.1 to allow interpolation, as shown below.

Illustrate the procedure using operation at 70 percent flow rate as a sample calculation. At 70 percent flow rate,
the pump delivery is 0:73 1700 gpm5 1190 gpm. From the plot, the pump input power requirement at this flow rate
is 90 hp for the constant-speed drive. At this flow rate, the pump operates 23 percent of the time, or 0:233
87605 2015 hours per year. The total energy consumed at this duty point is 90 hp3 2015 hr5 1:813 105 hp�hr. The
electrical energy consumed is

E5 1:813 105 hp�hr3 0:746
kW�hr
hp�hr 5 1:353 105 kW�hr

The corresponding cost of electricity [at $0.12/(kW�hr)] is

C5 1:353 105 kW�hr3 $0:12

kW�hr 5 $16;250

The following tables were prepared using similar calculations:

Constant-Speed Drive, 8760 hr/yr

Flow (%) Flow (gpm) Time (%) Time (hr) Power (hp) Energy (hp�hr)

100 1700 2 175 109 1.91 3 104

90 1530 8 701 103 7.20 3 104

80 1360 21 1840 96 17.7 3 104

70 1190 23 2015 90 18.1 3 104

60 1020 21 1840 84 15.4 3 104

50 850 15 1314 77 10.2 3 104

40 680 10 876 71 6.21 3 104

Total: 76.7 3 104
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Blowers and Fans

Fans are designed to handle air or vapor. Fan sizes range from that of the cooling fan in
a notebook computer, which moves a cubic meter of air per hour and requires a few
watts of power, to that of the ventilation fans for the Channel Tunnel, which move
thousands of cubic meters of air per minute and require many hundreds of kilowatts of
power. Fans are produced in varieties similar to those of pumps: They range from
radial-flow (centrifugal) to axial-flow devices. As with pumps, the characteristic curve
shapes for fans depend on the fan type. Some typical performance curves for centrifugal
fans are presented inAppendix D. The curves may be used to choose fans to solve some
of the equipment-selection and system design problems at the end of the chapter.

Summing the last column of the table shows that for the constant-speed drive system the annual energy consumption
is 7.67 3 105 hp�hr. The electrical energy consumption is

E5 7:673 105 hp�hr3 0:746
kW�hr
hp�hr 5 572;000 kW�hr ß

ECSD

At $0.12 per kilowatt hour, the energy cost for the constant-speed drive system is

C5 572; 000 kW�hr3 $0:12

kW�hr 5 $68;700 ß

CCSD

Variable-Speed Drive, 8760 hr/yr

Flow (%) Flow (gpm) Time (%) Time (hr) Power (hp) Energy (hp�hr)

100 1700 2 175 109 1.90 3 104

90 1530 8 701 81 5.71 3 104

80 1360 21 1840 61 11.2 3 104

70 1190 23 2015 46 9.20 3 104

60 1020 21 1840 34 6.29 3 104

50 850 15 1314 26 3.37 3 104

40 680 10 876 19 1.68 3 104

Total: 39.4 3 104

Summing the last column of the table shows that for the variable-speed drive system, the annual energy consumption
is 3:943 105 hp�hr. The electrical energy consumption is

E5 3:943 105 hp�hr3 0:746
kW�hr
hp�hr 5 294;000 kW�hr ß

EVSD

At $0.12 per kilowatt hour, the energy cost for the variable-speed drive
system is only

C5 294; 000 kW�hr3 $0:12

kW�hr 5 $35;250 ß

CVSD

Thus, in this application, the variable-speed drive reduces energy
consumption by 278,000 kW�hr (47 percent). The cost saving is an
impressive $33,450 annually. One could afford to install a variable-
speed drive even at considerable cost penalty. The savings in energy
cost are appreciable each year and continue throughout the life of the
system.

This problem illustrates the energy and
cost savings that can be gained by the
use of variable-speed pump drives. We
see that the specific benefits depend on
the system and its operating duty cycle.

The Excel workbook for thisExample was used for plotting the
graph, for obtaining the interpolated
data, and for performing all calcula-
tions. It can be easily modified for other
such analyses. Note that results were
rounded down to three significant fig-
ures after calculation.

10.3 Pumps, Fans, and Blowers 541



An exploded view of a medium-size centrifugal fan is shown in Fig. 10.26. Some
commonly used terminology is shown on the figure. The pressure rise produced by
fans is several orders of magnitude less than that for pumps. Another difference
between fans and pumps is that measurement of flow rate is more difficult in gases and
vapors than in liquids. There is no convenient analog to the catch-the-flow-in-a-bucket
method of measuring liquid flow rates! Consequently, fan testing requires special
facilities and procedures [20, 21]. Because the pressure rise produced by a fan is small,
usually it is impractical to measure flow rate with a restriction flow meter such as an
orifice, flow nozzle, or venturi. It may be necessary to use an auxiliary fan to develop
enough pressure rise to permit measurement of flow rate with acceptable accuracy
using a restriction flow meter. An alternative is to use an instrumented duct in which
the flow rate is calculated from a pitot traverse. Appropriate standards may be con-
sulted to obtain complete information on specific fan-test methods and data-reduction
procedures for each application [20, 21].

The test and data reduction procedures for fans, blowers, and compressors are
basically the same as for centrifugal pumps. However, blowers, and especially fans,
add relatively small amounts of static head to gas or vapor flows. For these machines,
the dynamic head may increase from inlet to discharge, and it may be appreciable
compared with the static head rise. For these reasons, it is important to state clearly
the basis on which performance calculations are made. Standard definitions are
available for machine efficiency based on either the static-to-static pressure rise or the
static-to-total pressure rise [20]. Data for both static and total pressure rise and for
efficiency, based on both pressure rises, are frequently plotted on the same char-
acteristic graph (Fig. 10.27).

The coordinates may be plotted in physical units (e.g., inches of water, cubic feet
per minute, and horsepower) or as dimensionless flow and pressure coefficients.
The difference between the total and static pressures is the dynamic pressure, so the
vertical distance between these two curves is proportional to Q2.

Centrifugal fans are used frequently; we will use them as examples. The centrifugal
fan developed from simple paddle-wheel designs, in which the wheel was a disk
carrying radial flat plates. (This primitive form still is used in nonclogging fans such
as in commercial clothes dryers.) Refinements have led to the three general types
shown in Fig. 10.28a�c, with backward-curved, radial-tipped, and forward curved
blades. All the fans illustrated have blades that are curved at their inlet edges to
approximate shockless flow between the blade and the inlet flow direction. These
three designs are typical of fans with sheet-metal blades, which are relatively simple to
manufacture and thus relatively inexpensive. The forward-curved design illustrated in
the figure has very closely spaced blades; it is frequently called a squirrel-cage fan
because of its resemblance to the exercise wheels found in animal cages.

Inlet
Outlet

Cutoff

ScrollSide sheet

Hub

Flange
Impeller Stationary inlet

Blades

Backplate Inlet guide vanes

Inlet bell

Fig. 10.26 Exploded view of typical centrifugal fan [19].
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As fans become larger in size and power demand, efficiency becomes more
important. The streamlined airfoil blades shown in Fig. 10.28d are much less sensitive
to inlet flow direction and improve efficiency markedly compared with the thin blades
shown in diagrams a through c. The added expense of airfoil blades for large metal
fans may be life-cycle cost effective. Airfoil blades are being used more frequently on
small fans as impellers molded from plastic become common.

As is true for pumps, the total pressure rise across a fan is approximately pro-
portional to the absolute velocity of the fluid at the exit from the wheel. Therefore the
characteristic curves produced by the basic blade shapes tend to differ from each
other. The typical curve shapes are shown in Fig. 10.29, where both pressure rise and
power requirements are sketched. Fans with backward-curved blade tips typically
have a power curve that reaches a maximum and then decreases as flow rate increases.
If the fan drive is sized properly to handle the peak power, it is impossible to overload
the drive with this type of fan.

The power curves for fans with radial and forward-curved blades rise as flow rate
increases. If the fan operating point is higher than the design flow rate, the motor may
be overloaded. Such fans cannot be run for long periods at low back pressures. An
example of this would be when a fan is run without a load to resist the flow—in other
words, the fan is almost “free-wheeling.” Because the power drawn by the fan
monotonically increases with flow rate, the fan motor could eventually burn out under
this free-wheeling condition.
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Fig. 10.27 Typical characteristic curves for fan with
backward-curved blades [22].

(a) Backward-curved (b) Radial-tipped

(d) Airfoil blades

(c) Forward-curved

Fig. 10.28 Typical types of blading used for centrifugal fan
wheels [22].
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Fans with backward-curved blades are best for installations with large power
demand and continuous operation. The forward-curved blade fan is preferred where
low first cost and small size are important and where service is intermittent. Forward
curved blades require lower tip speed to produce a specified head; lower blade tip
speed means reduced noise. Thus forward-curved blades may be specified for heating
and air conditioning applications to minimize noise.

Characteristic curves for axial-flow (propeller) fans differ markedly from those for
centrifugal fans. The power curve, Fig. 10.30, is especially different, as it tends to
decrease continuously as flow rate increases. Thus it is impossible to overload a
properly sized drive for an axial-flow fan. The simple propeller fan is often used for
ventilation; it may be free-standing or mounted in an opening, as a window fan, with no
inlet or outlet duct work. Ducted axial-flow fans have been studied extensively and
developed to high efficiency [23]. Modern designs, with airfoil blades, mounted in ducts
and often fitted with guide vanes, can deliver large volumes against high resistances
with high efficiency. The primary deficiency of the axial-flow fan is the non-monotonic
slope of the pressure characteristic: In certain ranges of flow rate the fan may pulsate.
Because axial-flow fans tend to have high rotational speeds, they can be noisy.

Selection and installation of a fan always requires compromise. To minimize energy
consumption, it is desirable to operate a fan at its highest efficiency point. To reduce
the fan size for a given capacity, it is tempting to operate at higher flow rate than that
at maximum efficiency. In an actual installation, this tradeoff must be made con-
sidering such factors as available space, initial cost, and annual hours of operation. It is
not wise to operate a fan at a flow rate below maximum efficiency. Such a fan would
be larger than necessary and some designs, particularly those with forward-curved
blades, can be unstable and noisy when operated in this region.

It is necessary to consider the duct system at both the inlet and the outlet of the fan to
develop a satisfactory installation.Anything that disrupts the uniformflowat the fan inlet
is likely to impair performance. Nonuniform flow at the inlet causes the wheel to operate
unsymmetrically and may decrease capacity dramatically. Swirling flow also adversely

Head
Head Head

Power Power Power
Q

(a) Backward-curved blades

Q

(b) Radial-tipped blades

Q

(c) Forward-curved blades

Fig. 10.29 General features of performance curves for centrifugal fans with backward-, radial-,
and forward-curved blades [22].
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Fig. 10.30 Characteristic curves for a
typical axial-flow fan [22].
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affects fan performance. Swirl in the direction of rotation reduces the pressure devel-
oped; swirl in the opposite direction can increase the power required to drive the fan.

The fan specialist may not be allowed total freedom in designing the best flow
system for the fan. Sometimes a poor flow system can be improved without too much
effort by adding splitters or straightening vanes to the inlet. Some fan manufacturers
offer guide vanes that can be installed for this purpose.

Flow conditions at the fan discharge also affect installed performance. Every fan
produces nonuniform outlet flow. When the fan is connected to a length of straight
duct, the flow becomes more uniform and some excess kinetic energy is transformed
to static pressure. If the fan discharges directly into a large space with no duct, the
excess kinetic energy of the nonuniform flow is dissipated. A fan in a flow system with
no discharge ducting may fall considerably short of the performance measured in a
laboratory test setup.

The flow pattern at the fan outlet may be affected by the amount of resistance
present downstream. The effect of the system on fan performance may be different at
different points along the fan pressure-flow curve. Thus, it may not be possible to
accurately predict the performance of a fan, as installed, on the basis of curves
measured in the laboratory.

Fans may be scaled up or down in size or speed using the basic laws developed for
fluid machines in Chapter 7. It is possible for two fans to operate with fluids of sig-
nificantly different density,8 so pressure is used instead of head (which uses density) as
a dependent parameter and density must be retained in the dimensionless groups. The
dimensionless groups appropriate for fan scaling are

Π1 5
Q

ωD3
; Π2 5

p

ρω2D2
; and Π3 5

3

ρω3D5 ð10:29Þ

Once again, dynamic similarity is assured when the flow coefficients are matched.
Thus when

Qu5Q
ωu
ω

� �
Du
D

� �3

ð10:30aÞ
then

pu5 p
ρu
ρ

� �
ωu
ω

� �2
Du
D

� �2

ð10:30bÞ
and

3u53
ρu
ρ

� �
ωu
ω

� �3
Du
D

� �5

ð10:30cÞ
As a first approximation, the efficiency of the scaled fan is assumed to remain con-
stant, so

ηu5 η ð10:30dÞ
When head is replaced by pressure, and density is included, the expression defining

the specific speed of a fan becomes

NS 5
ωQ1=2ρ3=4

p3=4
ð10:31Þ

A fan scale-up with density variation is the subject of Example 10.10.

8Density of the flue gas handled by an induced-draft fan on a steam powerplant may be 40 percent less than

the density of the air handled by the forced-draft fan in the same plant.
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Example 10.10 SCALING OF FAN PERFORMANCE

Performance curves [20] are given below for a centrifugal fan withD5 36 in. andN5 600 rpm, as measured on a test
stand using cool air ðρ5 0:075 lbm=ft3Þ. Scale the data to predict the performance of a similar fan with
Du5 42 in:; Nu5 1150 rpm, and ρu5 0:045 lbm=ft3. Estimate the delivery and power of the larger fan when it
operates at a system pressure equivalent to 7.4 in. of H2O. Check the specific speed of the fan at the new operating
point.

Given: Performance data as shown for centrifugal fan with D5 36 in., N5 600 rpm, and ρ5 0:075 lbm=ft3.

Find: (a) The predicted performance of a geometrically similar fan with Du5 42 in:; at Nu5 1150 rpm, with
ρu5 0:045 lbm=ft3.

(b) An estimate of the delivery and input power requirement if the larger fan operates against a system
resistance of 7.4 in. H2O.

(c) The specific speed of the larger fan at this operating point.

Solution:
Develop the performance curves at the new operating condition by scaling the test data point-by-point. Using Eqs.
10.30 and the data from the curves at Q5 30;000 cfm, the new volume flow rate is

Qu5Q
Nu
N

� �
Du
D

� �3

5 30;000 cfm
1150

600

� �
42

36

� �3

5 91;300 cfm

The fan pressure rise is

pu5 p
ρu
ρ

Nu
N

� �2
Du
D

� �2
5 2:96 in: H2O

0:045

0:075

� �
1150

600

� �2 42

36

� �2
5 8:88 in: H2O

and the new power input is

3u53
ρu
ρ

� �
Nu
N

� �3
Du
D

� �5
5 21:4 hp

0:045

0:075

� �
1150

600

� �3 42

36

� �5
5 195 hp

We assume the efficiency remains constant between the two scaled points, so

ηu5 η5 0:64

Similar calculations at other operating points give the results tabulated below:
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Three methods are available to control fan delivery: motor speed control, inlet
dampers, and outlet throttling. Speed control was treated thoroughly in the section on
pumps. The same benefits of reduced energy usage and noise are obtained with fans,
and the cost of variable-speed drive systems continues to drop.

Inlet dampers may be used effectively on some large centrifugal fans. However,
they decrease efficiency and cannot be used to reduce the fan flow rate below about 40
percent of rated capacity. Outlet throttling is cheap but wasteful of energy. For further
details, consult either Jorgensen [19] or Berry [22]; both are particularly compre-
hensive. Osborne [24] also treats noise, vibration, and the mechanical design of fans.

Q (cfm) p (in. H2O) 3 (hp) η (%) Qu(cfm) pu (in. H2O) 3u (hp)

0 3.68 11.1 0 0 11.0 101
10,000 3.75 15.1 37 30,400 11.3 138
20,000 3.50 18.6 59 60,900 10.5 170
30,000 2.96 21.4 65 91,300 8.88 195
40,000 2.12 23.1 57 122,000 6.36 211
50,000 1.02 23.1 34 152,000 3.06 211
60,000 0 21.0 0 183,000 0 192

To allow interpolation among the calculated points, it is convenient to plot the results:

From the head-capacity curve, the larger fan should deliver 110,000 cfm at 7.5 in. H2O system head, with an
efficiency of about 58 percent.

This operating point is only slightly to the right of peak efficiency for this
fan, so it is a reasonable point at which to operate the fan. The specific
speed of the fan at this operating point (in U.S. customary units) is given
by direct substitution into Eq. 10.31:

Nscu 5
ωQ1=2 ρ3=4

p3=4
5

ð1150 rpmÞð110;000 cfmÞ1=2ð0:045 lbm=ft3Þ3=4
ð7:5 in: H2OÞ3=4

5 8223 ß

Nscu

In nondimensional (SI) units,

Ns 5
ð120 rad=sÞð3110 m3=sÞ1=2ð0:721 kg=m3Þ3=4

ð1:863 103N=m2Þ3=4
5 18:5 ß

NsðSIÞ
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This problem illustrates the procedure
for scaling performance of fans operat-
ing on gases with two different
densities.

The Excel workbook for thisExample was used for plotting the
graphs, for obtaining the interpolated
data, and for performing all calcula-
tions. It can be easily modified for other
such analyses.
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Fans also may be combined in series, parallel, or more complex arrangements to
match varying system resistance and flow needs. These combinations may be analyzed
using the methods described for pumps. ASHRAE [25] and Idelchik [26] are excellent
sources for loss data on air flow systems.

Blowers have performance characteristics similar to fans, but they operate (typi-
cally) at higher speeds and increase the fluid pressure more than do fans. Jorgensen [19]
divides the territory between fans and compressors at an arbitrary pressure level
that changes the air density by 5 percent; he does not demarcate between fans and
blowers.

10.4 Positive Displacement Pumps
Pressure is developed in positive-displacement pumps through volume reductions
caused by movement of the boundary in which the fluid is confined. In contrast to
turbomachines, positive displacement pumps can develop high pressures at relatively
low speeds because the pumping effect depends on volume change instead of dynamic
action.

Positive-displacement pumps frequently are used in hydraulic systems at pressures
ranging up to 40 MPa (6000 psi). A principal advantage of hydraulic power is the high
power density (power per unitweight or unit size) that canbe achieved:For a givenpower
output, a hydraulic system can be lighter and smaller than a typical electric-drive system.

Numerous types of positive-displacement pumps have been developed. A few
examples include piston pumps, vane pumps, and gear pumps.Within each type, pumps
may be fixed- or variable-displacement. A comprehensive classification of pump types
is given in [16].

The performance characteristics of most positive-displacement pumps are similar; in
this section we shall focus on gear pumps. This pump type typically is used, for example,
to supply pressurized lubricating oil in internal combustion engines. Figure 10.31 is a
schematic diagram of a typical gear pump. Oil enters the space between the gears at the
bottomof the pump cavity.Oil is carried outward andupwardby the teeth of the rotating
gears and exits through the outlet port at the top of the cavity. Pressure is generated as
the oil is forced toward the pump outlet; leakage and backflow are prevented by the
closely fitting gear teeth at the center of the pump, and by the small clearances main-
tained between the side faces of the gears and the pump housing. The close clearances
require the hydraulic fluid to be kept extremely clean by full-flow filtration.

Figure 10.32 is a photo showing the parts of an actual gear pump; it gives a good
idea of the robust housing and bearings needed to withstand the large pressure forces

Outlet

Inlet

Drive gear

Driven gear

Fig. 10.31 Schematic of typical gear pump [27].

Fig. 10.32 Cutaway photograph of gear pump.
(Photo courtesy Sauer-Danfoss Inc.)
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developed within the pump. It also shows pressure-loaded side plates designed to
“float”—to allow thermal expansion—while maintaining the smallest possible side
clearance between gears and housing. Many ingenious designs have been developed
for pumps; details are beyond the scope of our treatment here, which will focus on
performance characteristics. For more details consult Lambeck [27] or Warring [28].

Typical performance curves of pressure versus delivery for a medium-duty gear
pump are shown in Fig. 10.33. The pump size is specified by its displacement per
revolution and the working fluid is characterized by its viscosity and temperature.
Curves for tests at three constant speeds are presented in the diagram. At each speed,
delivery decreases slightly as pressure is raised. The pump displaces the same volume,
but as pressure is raised, both leakage and backflow increase; so delivery decreases
slightly. Leakage fluid ends up in the pump housing; so a case drain must be provided
to return this fluid to the system reservoir.

Volumetric efficiency—shown by the dashed curves—is defined as actual volumetric
delivery divided by pump displacement. Volumetric efficiency decreases as pressure
is raised or pump speed is reduced. Overall efficiency—shown by the solid curves—is
defined as power delivered to the fluid divided by power input to the pump. Overall
efficiency tends to rise (and reaches a maximum at intermediate pressure) as pump
speed increases.

Thus far we have shown pumps of fixed displacement only. The extra cost and com-
plicationof variable-displacement pumps aremotivatedby the energy saving they permit
during partial-flow operation. In a variable-displacement pump, delivery can be varied
to accommodate the load. Load sensing can be used to reduce the delivery pressure
and thus the energy expenditure still further during part-load operation. Some pump
designs allow pressure relief to further reduce power loss during standby operation.

Figure 10.34 illustrates system losses with a fixed-displacement pump, compared
with losses for variable-displacement and variable-pressure pumps. Assume the
pressure and flow required by the load at partial-flow operation correspond to point L
on the diagram. A fixed-displacement pump will operate along curve CD; its delivery
will be at point A. Since the load requires only the flow at L, the remaining flow

Pump displacement: 5.9 in.3/rev (97 mL/rev)

Overall efficiency
Volumetric efficiency
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Fig. 10.33 Performance characteristics of typical
gear pump [27].
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(between L and A) must be bypassed back to the reservoir. Its pressure is dissipated
by throttling. Consequently the system power loss will be the area beneath line LA.

A variable-displacement pump operating at constant pressure will deliver just
enough flow to supply the load, but at a pressure represented by point B. The
system power loss will be proportional to the area to the left of line BL. Control of
delivery pressure using load sensing can be used to reduce power loss. With a load-
sensing pump of variable displacement, the pressure supplied is only slightly higher
than is needed to move the load. A pump with load sensing would operate at the flow
and pressure of point B0. The system loss would be reduced significantly to the area to
the left of line BuL.

The best system choice depends on the operating duty cycle. Complete details of
these and other hydraulic power systems are presented in Lambeck [27].
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Fig. 10.34 Pressure-flow diagram
illustrating system losses at part
load [27].

Example 10.11 PERFORMANCE OF A POSITIVE-DISPLACEMENT PUMP

A hydraulic pump, with the performance characteristics of Fig. 10.33, operates at 2000 rpm in a system that requires
Q5 20 gpm at p5 1500 psig to the load at one operating condition. Check the volume of oil per revolution delivered
by this pump. Compute the required pump power input, the power delivered to the load, and the power dissipated by
throttling at this condition. Compare with the power dissipated by using (i) a variable-displacement pump at 3000
psig and (ii) a pump with load sensing that operates at 100 psi above the load requirement.

Given: Hydraulic pump, with performance characteristics of Fig. 10.33, operating at 2000 rpm. System requires
Q 5 20 gpm at p 5 1500 psig.

Find: (a) The volume of oil per revolution delivered by this pump.
(b) The required pump power input.
(c) The power delivered to the load.
(d) The power dissipated by throttling at this condition.
(e) The power dissipated using:

(i) a variable-displacement pump at 3000 psig, and
(ii) a pump with load sensing that operates at 100 psi above the load pressure requirement.

Solution:
To estimate the maximum delivery, extrapolate the curve of pressure versus flow rate to zero pressure. Under these
conditions, Q 5 48.5 gpm at N 5 2000 rpm with negligible Δp. Thus

V---5
Q

N
5 48:5

gal

min
3

min

2000 rev
3 231

in:3

gal
5 5:60 in:3=rev ß

V---
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The volumetric efficiency of the pump at maximum flow is

ηV 5
V---calc
V---pump

5
5:60

5:9
5 0:949

The operating point of the pump may be found from Fig. 10.33. At 1500 psig, it operates atQ � 46.5 gpm. The power
delivered to the fluid is

3fluid 5 ρQgHp 5QΔpp

5 46:5
gal

min
3 1500

lbf

in:2
3

ft3

7:48 gal
3

min

60 s
3 144

in:2

ft2
3

hp�s
550 ft�lbf

3fluid 5 40:7 hp

From the graph, at this operating point, the pump efficiency is approximately η 5 0.84. Therefore the required input
power is

3input 5
3fluid

η
5

40:7 hp

0:84
5 48 hp ß

3input

The power delivered to the load is

3load 5QloadΔpload

5 20:0
gal

min
3 1500

lbf

in:2
3

ft3

7:48 gal
3

min

60 s
3 144

in:2

ft2
3

hp�s
550 ft�lbf

3load 5 17:5 hp ß

3load

The power dissipated by throttling is

3dissipated 53fluid 23load 5 40:72 17:55 23:2 hp ß

3dissipated

The dissipation with the variable-displacement pump is

3var-disp 5Qloadðpoper 2 ploadÞ

5 20:0
gal

min
3 ð30002 1500Þ lbf

in:2
3

ft3

7:48 gal
3

min

60 s
3 144

in:2

ft2
3

hp�s
550 ft�lbf

3var-disp 5 17:5 hp ß

3var-disp

The dissipation with the variable-displacement pump is therefore less than
the 23.2 hp dissipated with the constant-displacement pump and throttle.
The saving is approximately 6 hp.

The final computation is for the load-sensing pump. If the pump pressure
is 100 psi above that required by the load, the excess energy dissipation is

3load-sense 5Qloadðpoper 2 ploadÞ

5 20:0
gal

min
3 100

lbf

in:2
3

ft3

7:48 gal
3

min

60 s
3 144

in:2

ft2
3

hp�s
550 ft�lbf

3load-sense 5 1:17 hp ß

3load-sense

This problem contrasts the performance
of a system with a pump of constant
displacement to that of a system with
variable-displacement and load-sensing
pumps. The specific savings depend on
the system operating point and on the
duty cycle of the system.
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10.5 Hydraulic Turbines
Hydraulic Turbine Theory

The theory for machines doing work on a fluid, e.g., pumps, may be used for the
analysis of machines extracting work from a fluid, namely turbines. The main dif-
ference is that the terms denoting torque, work, and power will be negative instead of
positive. Example 10.12 below illustrates the application of the Euler turbomachine
equation to a reaction turbine.

Example 10.12 IDEAL ANALYSIS OF A REACTION TURBINE

In a vertical-shaft Francis turbine the available head at the inlet flange of the turbine is 500 ft and the vertical
distance between the runner and the tailrace is 6.5 ft. The runner tip speed is 115 ft/s, the velocity of the water
entering the runner is 130 ft/s, and the velocity of the water exiting the runner is constant and equal to 35 ft/s. The
flow velocity at the exit of the draft tube is 11.5 ft/s. The hydraulic energy losses estimated from the turbine are equal
to 20 ft at the volute, 3.5 ft at the draft tube, and 33.0 ft at the runner. Determine the pressure head (with respect to
the tailrace) at the inlet and exit of the runner, the flow angle at the runner inlet, and the efficiency of the turbine.

Given: Flow through a vertical shaft Francis turbine
Head at entrance: 500 ft
Distance between runner and tailrace: 6.5 ft
Runner tip speed: 115 ft/s
Velocity at runner entrance: 130 ft/s
Velocity at runner exit: 35 ft/s
Flow velocity at draft tube exit: 11.5 ft/s
Losses: 20 ft at volute, 3.5 ft at draft tube, 33 ft at runner

Find: (a) Pressure head at inlet and exit of runner.
(b) Flow angle at runner inlet.
(c) Turbine efficiency.

Solution: Apply the energy and Euler turbomachine equations to the control volume.

Governing equations:

H5
_Wm

_mg
5

1

g
ðU2Vt2 2U1Vt1Þ ð10:2cÞ

ηt 5
_Wm

_Wh

5
ωT

ρQgHt

ð10:4cÞ

HE

B

Turbine

2

1

3

4
Draft tube
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p1
ρg

1α1
V

2

1

2g
1 z1 1Ha 5

p2
ρg

1α2
V

2

2

2g
1 z2 1

hlT
g

ð10:28bÞ

Assumptions: (1) Steady flow
(2) Uniform flow at each station
(3) Turbulent flow; α5 1
(4) Reservoir and tailrace are at atmospheric pressure
(5) Reservoir is at stagnation condition; V1 5 0

(a) If we apply the energy equation between the runner exit and the tailrace:

H3 5
p3 2 patm

ρg
5

V
2

4 2V
2

3

2g
1ΔHDT 1 z4

H3 5
1

2
3

��
11:5

ft

s

�2
2

�
35

ft

s

�2�
3

1

32:2

s2

ft
1 3:5ft2 6:5ft5 2 19:97ft ß

H3

(negative sign indicates suction)

Next we apply the energy equation between the runner entrance and the tailrace:

H2 5
p2 2 patm

ρg
5HE 2ΔHR 2

V
2

2

2g

H2 5 500 ft2 33:0 ft2
1

2
3

�
130

ft

s

�2

3
1

32:2

s2

ft
5 205 ft ß

H2

(b) Applying the energy equation across the entire system provides the work extraction through the turbine:

p1
ρg

1α1
V

2

1

2g
1 z1 1Ha 5

p4
ρg

1α4
V

2

4

2g
1 z4 1

hlT
g

If we simplify the expression based on assumptions and solve for the head extracted at the turbine:

Ha 5
V

2

4

2g
2 z1 1 z4 1

X
ΔH5

V
2

4

2g
2 ðHE 1 zÞ1 ðΔHV 1ΔHR 1ΔHDTÞ

Since station 1 is higher than station 4, we will take the negative of Ha and call that HT, the head extracted at the
turbine:

HT 5 2
V

2

4

2g
1 ðHe 1 zÞ2 ðΔHV 1ΔHR 1ΔHDTÞ

5 2
1

2
3 11:5

ft

s

0
@

1
A

2

3
1

32:2

s2

ft
1 ð500 ft1 6:5 ftÞ2 ð20 ft1 33 ft1 3:5 ftÞ5 448 ft

Applying the Euler turbomachine equation to this system:

2HT 5
U3Vt3 2U2Vt2

g

Solving for the tangential velocity at 2:

Vt2 5
gHT

U2
5 32:2

ft

s2
3 448 ft3

1

115

s

ft
5 125:4

ft

s

Setting up the velocity triangle:

10.5 Hydraulic Turbines 553



The trends predicted by the idealized angular-momentum theory, especially Eq.
10.18b and Fig. 10.12, are compared with experimental results in the next section.

Performance Characteristics for Hydraulic Turbines

The test procedure for turbines is similar to that for pumps, except that a dyna-
mometer is used to absorb the turbine power output while speed and torque are
measured. Turbines usually are intended to operate at a constant speed that is a
fraction or multiple of the electric power frequency to be produced. Therefore turbine
tests are run at constant speed under varying load, whereas water usage is measured
and efficiency is calculated.

The impulse turbine is a relatively simple turbomachine, so we use it to illustrate
typical test results. Impulse turbines are chosen when the head available exceeds
about 300 m. Most impulse turbines used today are improved versions of the Pelton
wheel developed in the 1880s by American mining engineer Lester Pelton [29]. An
impulse turbine is supplied with water under high head through a long conduit called a
penstock. The water is accelerated through a nozzle and discharges as a high-speed
free jet at atmospheric pressure. The jet strikes deflecting buckets attached to the rim
of a rotating wheel (Fig. 10.5a). Its kinetic energy is given up as it is turned by the
buckets. Turbine output is controlled at essentially constant jet speed by changing the
flow rate of water striking the buckets. A variable-area nozzle may be used to make
small and gradual changes in turbine output. Larger or more rapid changes must be
accomplished by means of jet deflectors, or auxiliary nozzles, to avoid sudden changes
in flow speed and the resulting high pressures in the long water column in the pen-
stock. Water discharged from the wheel at relatively low speed falls into the tailrace.
The tailrace level is set to avoid submerging the wheel during flooded conditions.
When large amounts of water are available, additional power can be obtained by
connecting two wheels to a single shaft or by arranging two or more jets to strike a
single wheel.

Figure 10.35 illustrates an impulse-turbine installation and the definitions of gross
and net head [11]. The gross head available is the difference between the levels in the
supply reservoir and the tailrace. The effective or net head, H, used to calculate
efficiency, is the total head at the entrance to the nozzle, measured at the nozzle
centerline [11]. Hence not all of the net head is converted into work at the turbine:
Some is lost to turbine inefficiency, some is lost in the nozzle itself, and some is lost as
residual kinetic energy in the exit flow. In practice, the penstock usually is sized so that
at rated power the net head is 85�95 percent of the gross head.

In addition to nozzle loss, windage, bearing friction, and surface friction between
the jet and bucket reduce performance compared with the ideal, frictionless case.
Figure 10.36 shows typical results from tests performed at constant head.

β2 5 tan2 1 Vt2 2U2

Vn2

5 tan2 1 125:42 115

35
5 16:58�ß

β2

α2 5 tan2 1 Vt2

Vn2

5 tan2 1 125:4

10:5
5 85:2�ß

α2

(c) To calculate the efficiency:

ηt 5
_Wm

_Wh

5
gHT

gHE

5
448

500
5 89:6% ß

η

This problem demonstrates the analysis
of a hydraulic turbine with head losses
and quantifies those effects in terms of a
turbine efficiency. In addition, since the
head at the turbine exit is below atmo-
spheric, care must be taken to ensure
that cavitation does not occur.
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The peak efficiency of the impulse turbine corresponds to the peak power, since the
tests are performed at constant head and flow rate. For the ideal turbine, as we will see
in Example 10.13, this occurs when the wheel speed is half the jet speed. As we will
see, at this wheel speed the fluid exits the turbine at the lowest absolute velocity
possible, hence minimizing the loss of kinetic energy at the exit. As indicated in
Eq. 10.2a, if we minimize the exit velocity ~V2 we will maximize the turbine work _Wm,
and hence the efficiency. In actual installations, peak efficiency occurs at a wheel
speed only slightly less than half the jet speed. This condition fixes the wheel speed
once the jet speed is determined for a given installation. For large units, overall
efficiency may be as high as 88 percent [30].
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Fig. 10.35 Schematic of impulse-turbine installation,
showing definitions of gross and net heads [11].
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Fig. 10.36 Ideal and actual variable-speed
performance for an impulse turbine [6].

Example 10.13 OPTIMUM SPEED FOR IMPULSE TURBINE

A Pelton wheel is a form of impulse turbine well adapted to situations of high
head and low flow rate. Consider the Pelton wheel and single-jet arrangement
shown, in which the jet stream strikes the bucket tangentially and is turned
through angle θ. Obtain an expression for the torque exerted by the water stream
on the wheel and the corresponding power output. Show that the power is a
maximum when the bucket speed, U 5 Rω, is half the jet speed, V.

Given: Pelton wheel and single jet shown.

Find: (a) Expression for torque exerted on the wheel.
(b) Expression for power output.
(c) Ratio of wheel speed U to jet speed V for maximum power.

VJet

R = mean radius

ω

θ
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Solution:
As an illustration of its use, we start with the angular-momentum
equation, Eq. 4.52 (on theWeb site), for a rotating CV as shown,
rather than the inertial CV form, Eq. 4.46, that we used in
deriving the Euler turbomachine equation in Section 10.2.

Governing equation:

r � FS �    

CV

 r � g dV � Tshaft �  
CV

 r � [2  � Vxyz �  � (  � r ) �  � r ] dV

t CV

 r � Vxyz dV �  
CS

 r � Vxyz Vxyz · dA�

� 0(3)� 0(2)� 0(1)

 � � � � �  �

 �  �

� 0(4)

� �
��

ð4:52Þ

Assumptions: (1) Neglect torque due to surface forces.
(2) Neglect torque due to body forces.
(3) Neglect mass of water on wheel.
(4) Steady flow with respect to wheel.
(5) All water that issues from the nozzle acts upon the buckets.
(6) Bucket height is small compared with R, hence r1 � r2 � R.
(7) Uniform flow at each section.
(8) No change in jet speed relative to bucket.

Then, since all water from the jet crosses the buckets,

~Tshaft 5~r1 3 ~V1ð2ρVAÞ1~r2 3 ~V2ð1ρVAÞ
~r1 5Rêr ~r2 5Rêr

~V1 5 ðV2UÞêθ ~V2 5 ðV2UÞ cos θ êθ 1 ðV2UÞ sin θ êr

Tshaftk̂5RðV2UÞk̂ð2ρVAÞ1RðV2UÞ cos θ k̂ðρVAÞ
so that finally

Tshaftk̂52Rð12 cos θÞρVAðV2UÞk̂
This is the external torque of the shaft on the control volume, i.e., on the
wheel. The torque exerted by the water on the wheel is equal and opposite,

~Tout 5 2~Tshaft 5Rð12 cos θÞρVAðV2UÞk̂
~Tout 5 ρQRðV2UÞ3 ð12 cos θÞk̂ ß

~Tout

The corresponding power output is

_Wout 5~ω �~Tout 5Rωð12 cos θÞρVAðV2UÞ
_Wout 5 ρQUðV2UÞ3 ð12 cos θÞ ß

_Wout

To find the condition for maximum power, differentiate the expression for
power with respect to wheel speed U and set the result equal to zero. Thus

d _W

dU
5 ρQðV2UÞð12 cos θÞ1 ρQUð21Þð12 cos θÞ5 0

‘ ðV2UÞ2U5V2 2U5 0

2

1
V – U

V – U
U = R

V

A

ρ

θ

ω

ω

Rr

CV rotates
with wheel

This problem illustrates the use of the
angular-momentum equation for a
rotating control volume, Eq. 4.52 (on the
Web), to analyze flow through an ideal
impulse turbine.
ü Thepeak power occurswhen thewheel
speed is half the jet speed, which is a
useful design criterion when selecting
a turbine for a given available head.

ü This problem also could be analyzed
starting with an inertial control
volume, i.e., using the Euler turbo-
machine equation (Problem 10.17).
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In practice, hydraulic turbines usually are run at a constant speed, and output is
varied by changing the opening area of the needle valve jet nozzle. Nozzle loss
increases slightly and mechanical losses become a larger fraction of output as the
valve is closed, so efficiency drops sharply at low load, as shown in Fig. 10.37. For this
Pelton wheel, efficiency remains above 85 percent from 40 to 113 percent of full load.

At lower heads, reaction turbines provide better efficiency than impulse turbines.
In contrast to flow in a centrifugal pump, used for doing work on a fluid, flow in a
work-producing reaction turbine enters the rotor at the largest (outer) radial section
and discharges at the smallest (inner) radial section after transferring most of its
energy to the rotor. Reaction turbines tend to be high-flow, low-head machines. A
typical reaction turbine installation is shown schematically in Fig. 10.38, where the
terminology used to define the heads is indicated.

THE PELTON WATER WHEEL COMPANY

Effective head: 1190 ft    Speed: 225 rpm

Unit No. 2 –– Tiger Creek Power House

PACIFIC GAS & ELECTRIC COMPANY

36,000 hp Pelton Impulse Wheel

Maximum Efficiency 87%

Over 86% from 49% to 102% of full load

Over 85% from 40% to 113% of full load
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Fig. 10.37 Relation between efficiency and output for a typical Pelton water
turbine (adapted from [30] ).
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Turbine
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Fig. 10.38 Schematic of typical reaction turbine
installation, showing definitions of head terminology [11].

Thus for maximum power, U=V5
1

2
or U5V=2: ß

U=V

Note: Turning the flow through θ5 180� would give maximum power with U5V=2. Under
these conditions, theoretically the absolute velocity of the fluid at the exit (computed in the direction of U)
would be U2 ðV2UÞ5 V=22 ðV2V=2Þ5 0, so that the fluid would exit with zero kinetic energy, max-
imizing the power output. In practice, it is possible to deflect the jet stream through angles up to 165�. With
θ5 165�, 12 cos θ � 1:97, or about 1.5 percent below the value for maximum power.
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Reaction turbines flow full of water. Consequently, it is possible to use a diffuser or
draft tube to regain a fraction of the kinetic energy that remains in water leaving the
rotor. The draft tube forms an integral part of the installation design. As shown in
Fig. 10.38, the gross head available is the difference between the supply reservoir head
and the tailrace head. The effective head or net head, H, used to calculate efficiency,
is the difference between the elevation of the energy grade line just upstream of
the turbine and that of the draft tube discharge (section C). The benefit of the draft
tube is clear: The net head available for the turbine is equal to the gross head minus
losses in the supply pipework and the kinetic energy loss at the turbine exit. Without
the draft tube the exit velocity and kinetic energy would be relatively large, but
with the draft tube they are small, leading to increased turbine efficiency. Put another
way, the draft tube diffuser, through a Bernoulli effect, reduces the turbine exit
pressure, leading to a larger pressure drop across the turbine, and increased power
output. (We saw a similar Bernoulli effect used by ancient Romans in Example 8.10.)

An efficient mixed-flow turbine runner was developed by James B. Francis using
a careful series of experiments at Lowell, Massachusetts, during the 1840s [29]. An
efficient axial-flow propeller turbine, with adjustable blades, was developed by Ger-
man Professor Victor Kaplan between 1910 and 1924. The Francis turbine (Fig. 10.5b)
is usually chosen when 15 m # H # 300 m, and the Kaplan turbine (Fig. 10.5c) is
usually chosen for heads of 15 m or less. Performance of reaction turbines may be
measured in the same manner as performance of the impulse turbine. However,
because the gross heads are less, any change in water level during operation is more
significant. Consequently, measurements are made at a series of heads to completely
define the performance of a reaction turbine.

An example of the data presentation for a reaction turbine is given in Fig. 10.39,
where efficiency is shown at various output powers for a series of constant heads [6].
The reaction turbine has higher maximum efficiency than the impulse turbine, but
efficiency varies more sharply with load.

Sizing Hydraulic Turbines for Fluid Systems

Falling water has long been considered a source of “free,” renewable energy. In reality,
power produced by hydraulic turbines is not free; operating costs are low, but con-
siderable capital investment is required to prepare the site and install the equipment. At
a minimum, the water inlet works, supply penstock, turbine(s), powerhouse, and con-
trolsmust be provided.An economic analysis is necessary to determine the feasibility of
developing any candidate site. In addition to economic factors, hydroelectric power

Field test

380 ft
430 ft
475 ft

N = 138.6 rpm

14012010080

Power, � (1000 hp)

6040200
70

80

90

100

 E
ff

ic
ie

nc
y,

  
 (

%
)

Expected efficiencies
H = 238 ft

280 ft
330 ft

η

Fig. 10.39 Performance of typical reaction turbine as predicted
by model tests (expected efficiencies) and confirmed by field
test [6].
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plants must also be evaluated for their environmental impact; in recent years it has
been found that such plants are not entirely benign and can be damaging, for example,
to salmon runs.

Early in the industrial revolution, waterwheels were used to power grain mills and
textile machinery. These plants had to be located at the site of the falling water, which
limited use of water power to relatively small and local enterprises. The introduction
of alternating current in the 1880s made it possible to transmit electrical energy
efficiently over long distances. Since then nearly 40 percent of the available hydro-
electric power resources in the United States have been developed and connected to
the utility grid [31]. Hydroelectric power accounts for about 16 percent of the elec-
trical energy produced in this country.

The United States has abundant and relatively cheap supplies of fossil fuels, mostly
coal. Therefore at present the remaining hydropower resources in the United States
are not considered economical compared to fossil-fired plants.

Worldwide, only about one-third of available hydropower resources have been
developed commercially [32]. Considerably more hydropower will likely be developed
in coming decades as countries become more industrialized. Many developing coun-
tries do not have their own supplies of fossil fuel. Hydropower may offer many such
countries their only practical path to increased utility development. Consequently the
design and installation of hydroelectric plants are likely to be important future
engineering activities in developing countries.

To evaluate a candidate site for hydropower potential, one must know the average
stream flow rate and the gross head available to make preliminary estimates of turbine
type, number of turbines, and potential power production. Economic analyses are
beyond the scope of this book, but we consider the fluids engineering fundamentals of
impulse turbine performance to optimize the efficiency.

Hydraulic turbines convert the potential energy of stored water to mechanical
work. To maximize turbine efficiency, it is always a design goal to discharge water
from a turbine at ambient pressure, as close to the tailwater elevation as possible and
with the minimum possible residual kinetic energy.

Conveying water flow into the turbine with minimum energy loss also is important.
Numerous design details must be considered, such as inlet geometry, trash racks, etc.
[31]. References 1, 6, 10, 31 and 33�38 contain a wealth of information about turbine
siting, selection, hydraulic design, and optimization of hydropower plants. The num-
ber of large manufacturers has dwindled to just a few, but small-scale units are
becoming plentiful [35]. The enormous cost of a commercial-scale hydro plant justifies
the use of comprehensive scale-model testing to finalize design details. See [31] for a
more detailed coverage of hydraulic power generation.

Hydraulic losses in long supply pipes (known as penstocks) must be considered
when designing the installation for high-head machines such as impulse turbines; an
optimum diameter for the inlet pipe that maximizes turbine output power can be
determined for these units, as shown in Example 10.14.

Turbine power output is proportional to volume flow rate times the pressure dif-
ference across the nozzle. At zero flow, the full hydrostatic head is available but power
is zero. As flow rate increases, the net head at the nozzle inlet decreases. Power first
increases, reaches a maximum, then decreases again as flow rate increases. As we will
see in Example 10.14, for a given penstock diameter, the theoretical maximum power
is obtained when the system is designed so that one-third of the gross head is dis-
sipated by friction losses in the penstock. In practice, penstock diameter is chosen
larger than the theoretical minimum, and only 10�15 percent of the gross head is
dissipated by friction [11].

A certain minimum penstock diameter is required to produce a given power
output. The minimum diameter depends on the desired power output, the available
head, and the penstock material and length. Some representative values are shown
in Fig. 10.40.
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Fig. 10.40 Maximum hydraulic impulse tur-
bine power output versus penstock diameter.

Example 10.14 PERFORMANCE AND OPTIMIZATION OF AN IMPULSE TURBINE

Consider the hypothetical impulse turbine installation shown. Analyze flow in the penstock to develop an expression
for the optimum turbine output power as a function of jet diameter, Dj. Obtain an expression for the ratio of jet
diameter, Dj, to penstock diameter, D, at which output power is maximized. Under conditions of maximum power
output, show that the head loss in the penstock is one-third of the available head. Develop a parametric equation for
the minimum penstock diameter needed to produce a specified power output, using gross head and penstock length
as parameters.

Given: Impulse turbine installation shown.

Find: (a) Expression for optimum turbine output power as a function of jet diameter.
(b) Expression for the ratio of jet diameter, Dj, to penstock diameter, D, at which output power is

maximized.
(c) Ratio of head loss in penstock to available head for condition of maximum power.
(d) Parametric equation for the minimum penstock diameter needed to produce a specified output power,

using gross head and penstock length as parameters.

Solution:
According to the results of Example 10.13, the output power of an idealized impulse turbine is given by 3out 5 ρQU
(V 2 U) (1 2 cos θ). For optimum power output, U 5 V/2 5 Vj /2, and

Reservoir surface

Penstock

H

D

L
Turbine wheel

Vj
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3out 5 ρQ
V

2
V2

V

2

0
@

1
Að12 cos θÞ5 ρAjVj

Vj

2

Vj

2
ð12 cos θÞ

3out 5 ρAj

V3
j

4
ð12 cos θÞ

Thus output power is proportional to Aj V
3
j .

Apply the energy equation for steady incompressible pipe flow through the penstock to analyze V2
j at the nozzle

outlet. Designate the free surface of the reservoir as section 1 ; there V1 � 0.

Governing equation:

� 0

� 1 � gz1� � ( ( p1 L
D

V 1

2

2

� j � gzj� ) � hlT � (Kent � f) pj V j

2

2

� � ) � Knozzle
Vp

2

2 Vj

2

2

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Fully developed flow.
(4) Atmospheric pressure at jet exit.
(5) αj 5 1, so Vj 5Vj.
(6) Uniform flow in penstock, so Vp 5V.

(7) Kent{ f
L

D
.

(8) Knozzle 5 1.
Then

gðz1 2 zjÞ5 gH5 f
L

D

V2

2
1

V2
j

2
or V2

j 5 2gH2 f
L

D
V2 ð1Þ

Hence the available head is partly consumed in friction in the supply penstock, and the rest is available as kinetic
energy at the jet exit—in other words, the jet kinetic energy is reduced by the loss in the penstock. However, this loss
itself is a function of jet speed, as we see from continuity:

VA5Vj Aj; so V5Vj

Aj

A
5Vj

Dj

D

� �2

and V2
j 5 2gH2 f

L

D
V2

j

Dj

D

� �4

Solving for Vj, we obtain

Vj 5
2gH

11 f
L

D

Dj

D

� �4
( )
2
66664

3
77775

1=2

ð2Þ

The turbine power can be written as

35 ρAj

V3
j

4
ð12 cos θÞ5 ρ

π
16

D2
j

2gH

11 f
L

D

Dj

D

� �4
( )
2
66664

3
77775

3=2

ð12 cos θÞ

35C1D
2
j 11 f

L

D

Dj

D

� �4
" #23=2

ß
3

where C1 5 ρπð2gHÞ3=2ð12 cos θÞ=165 constant.
To find the condition for maximum power output, at fixed penstock diameter, D, differentiate with respect

to Dj and set equal to zero,
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10.6 Propellers and Wind-Power Machines
As mentioned in Section 10.1, propellers and wind-power machines such as windmills
and wind turbines may be considered axial-flow machines without housings [6].
Despite their long history (propellers were used on marine craft as early as 1776, and
wind-power machines discovered in Persia date back to some time between the 6th
and 10th centuries C.E. [39]), they have been proven to be efficient methods of
propulsion and energy generation.

d3

dDj

5 2C1 Dj 11 f
L

D

Dj

D

� �4" #23=2

2
3

2
C1D

2
j 11 f

L

D

Dj

D

� �4" #25=2

4 f
L

D

D3
j

D4
5 0

Thus,

11 f
L

D

Dj

D

� �4
5 3f

L

D

Dj

D

� �4

Solving for Dj/D, we obtain

Dj

D
5

1

2 f
L

D

2
64

3
75
1=4

ß

Dj

D

At this optimum value of Dj/D, the jet speed is given by Eq. 2 as

Vj 5
2gH

11 f
L

D

Dj

D

� �4
( )

2
66664

3
77775

1=2

5

ffiffiffiffiffiffiffiffiffiffi
4

3
gH

r

The head loss at maximum power is then obtained from Eq. 1 after rearranging

hl 5 f
L

D

V2

2
5 gH2

V2
j

2
5 gH2

2

3
gH5

1

3
gH

and

hl
gH

5
1

3
ß

hl
gH

Under the conditions of maximum power

3max 5 ρV3
j

Aj

4
ð12 cos θÞ5 ρ

4

3
gH

� �3=2 π
16

D5

2 fL

� �1=2
ð12 cos θÞ

Finally, to solve for minimum penstock diameter for fixed output power,
the equation may be written in the form

D ~
L

H

� �1=5 3

H

� �2=5

ß
D

This problem illustrates the optimization
of an idealized impulse turbine. The
analysis determines the minimum pen-
stock diameter needed to obtain a spec-
ified power output. In practice, larger
diameters than this are used, reducing
the frictional head loss below that com-
puted here.
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Propellers

In common with other propulsion devices, a propeller produces thrust by imparting
linear momentum to a fluid. Thrust production always leaves the stream with some
kinetic energy and angular momentum that are not recoverable, so the process is
never 100 percent efficient.

The one-dimensional flow model shown schematically in Fig. 10.41 is drawn in
absolute coordinates on the left and as seen by an observer moving with the propeller,
at speed V, on the right. The wake is modeled as a uniform flow as shown, and in the
new coordinates the flow is steady. The actual propeller is replaced conceptually by a
thin actuator disk, across which flow speed is continuous but pressure rises abruptly.
Relative to the propeller, the upstream flow is at speed V and ambient pressure. The
axial speed at the actuator disk is V1ΔV=2, with a corresponding reduction in
pressure. Downstream, the speed is V1ΔV and the pressure returns to ambient.
(Example 10.15 will show that half the speed increase occurs before and half after the
actuator disk.) The contraction of the slipstream area to satisfy continuity and
the pressure rise across the propeller disk are shown in the figure.

Not shown in the figure are the swirl velocities that result from the torque required to
turn the propeller. The kinetic energy of the swirl in the slipstream also is lost unless it is
removedby a counter-rotating propeller or partially recovered in stationary guide vanes.

As for all turbomachinery, propellers may be analyzed in two ways. Application of
linear momentum in the axial direction, using a finite control volume, provides overall
relations among slipstream speed, thrust, useful power output, and minimum residual
kinetic energy in the slipstream. A more detailed blade element theory is needed to
calculate the interaction between a propeller blade and the stream. A general relation
for ideal propulsive efficiency can be derived using the control volume approach, as
shown following Example 10.15.

Ambient
air (at rest)

Propeller
motion,
speed V

Propeller
wake

After change in
coordinates, and
idealizing wake

Δp

Pressure
distribution

V +
V + ΔV

V

ΔV____
2

D

Control
volume

Slipstream
boundary

V

Fig. 10.41 One-dimensional flow model and control volume used to analyze an idealized propeller [6].

Example 10.15 CONTROL VOLUME ANALYSIS OF IDEALIZED FLOW THROUGH A PROPELLER

Consider the one-dimensional model for the idealized flow through a propeller shown in Fig. 10.41. The propeller
advances into still air at steady speed V1. Obtain expressions for the pressure immediately upstream and the pressure
immediately downstream from the actuator disk. Write the thrust on the propeller as the product of this pressure dif-
ference times the disk area. Equate this expression for thrust to one obtained by applying the linearmomentum equation
to the control volume. Show that half the velocity increase occurs ahead of and half behind the propeller disk.

Given: Propeller advancing into still air at speed V1, as shown in Fig. 10.41.
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Find: (a) Expressions for the pressures immediately upstream and immediately downstream from the actuator
disk.

(b) Expression for the air speed at the actuator disk. Then show that half the velocity increase occurs ahead
of the actuator disk and half occurs behind the actuator disk.

Solution:
Apply the Bernoulli equation and the x component of linear momentum using the CV shown.

Governing equations:

� � gz � constant

� 0(5)

p V 2

2�

FSx � FBx � t     CV

 uxyz dV �   
CS

 uxyz V 	 dA

� 0(5) � 0(1)

 �  ���
Assumptions: (1) Steady flow relative to the CV.

(2) Incompressible flow.
(3) Flow along a streamline.
(4) Frictionless flow.
(5) Horizontal flow: neglect changes in z; FBx

5 0.
(6) Uniform flow at each section.
(7) patm surrounds the CV.

Applying the Bernoulli equation from section 1 to section 2 gives

patm
ρ

1
V2

1

2
5

p2
ρ

1
V2

2

2
; p2ðgageÞ 5

1

2
ρ ðV2

1 2V2
2Þ

Applying Bernoulli from section 3 to section 4 gives

p3
ρ

1
V2

3

2
5

patm
ρ

1
V2

4

2
; p3ðgageÞ 5

1

2
ρ ðV2

4 2V2
3Þ

The thrust on the propeller is given by

FT 5 ðp3 2 p2ÞA5
1

2
ρAðV2

4 2V2
1Þ ðV3 5V2 5VÞ

From the momentum equation, using relative velocities,

Rx 5FT 5 u1ð2 �mÞ1 u4ð1 �mÞ5 ρVAðV4 2V1Þ fu1 5V1; u4 5V4g
FT 5 ρVAðV4 2V1Þ

Equating these two expressions for FT,

FT 5
1

2
ρAðV2

4 2V2
1Þ5 ρVAðV4 2V1Þ

or
1

2
ðV4 1V1ÞðV4 2V1Þ5VðV4 2V1Þ

Thus, V5
1

2
ðV1 1V4Þ, so

ΔV12 5V2V1 5
1

2
ðV1 1V4Þ2V1 5

1

2
ðV4 2V1Þ5 ΔV

2

ΔV34 5V4 2V5V4 2
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2
ðV1 1V4Þ5 1

2
ðV4 2V1Þ5 ΔV

2
ß
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D
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Propeller disk

=

The purpose of this problem is to apply
the continuity, momentum, and Ber-
noulli equations to an idealized flow
model of a propeller, and to verify the
Rankine theory of 1885 that half the
velocity change occurs on either side of
the propeller disk.

564 Chapter 10 Fluid Machinery



The continuity and momentum equations in control volume form were applied in
Example 10.15 to the propeller flow shown in Fig. 10.41. The results obtained are
discussed further below. The thrust produced is

FT 5 _mΔV ð10:32Þ
For incompressible flow, in the absence of friction and heat transfer, the energy
equation indicates that the minimum required input to the propeller is the power
required to increase the kinetic energy of the flow, which may be expressed as

3input 5 _m
ðV1ΔVÞ2

2
2

V2

2

" #
5 _m

2VΔV1 ðΔVÞ2
2

" #
5 _mVΔV 11

ΔV

2V

� �
ð10:33Þ

The useful power produced is the product of thrust and speed of advance, V, of the
propeller. Using Eq. 10.32, this may be written as

3useful 5FTV5 _mVΔV ð10:34Þ
Combining Eqs. 10.33 and 10.34, and simplifying, gives the propulsive efficiency as

η5
3useful

3input
5

1

11
ΔV

2V

ð10:35Þ

Equations 10.32�10.35 are applicable to any device that creates thrust by
increasing the speed of a fluid stream. Thus they apply equally well to propeller-driven
or jet-propelled aircraft, boats, or ships.

Equation 10.35 for propulsive efficiency is of fundamental importance. It indi-
cates that propulsive efficiency can be increased by reducing ΔV or by increasing V.
At constant thrust, as shown by Eq. 10.32, ΔV can be reduced if _m is increased, i.e.,
if more fluid is accelerated over a smaller speed increase. More mass flow can be
handled if propeller diameter is increased, but overall size and tip speed ultimately
limit this approach. The same principle is used to increase the propulsive efficiency
of a turbofan engine by using a large fan to move additional air flow outside the
engine core.

Propulsive efficiency also can be increased by increasing the speed of motion
relative to the fluid. Speed of advance may be limited by cavitation in marine appli-
cations. Flight speed is limited for propeller-driven aircraft by compressibility effects
at the propeller tips, but progress is being made in the design of propellers to maintain
high efficiency with low noise levels while operating with transonic flow at the blade
tips. Jet-propelled aircraft can fly much faster than propeller-driven craft, giving them
superior propulsive efficiency.

The analysis provided does not reveal the length scale over which the axial velocity
varies. Such an analysis is provided in [40]; the axial variation in velocity may be
expressed as

VclðxÞ5V1ΔV 12
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 1R2
p

� �
ð10:36Þ

In Eq. 10.36 Vcl(x) is the centerline velocity at location x upstream of the disk,
while V is the upstream velocity. This relationship is plotted in Fig. 10.42. The plot
shows that the effects of the propeller are only felt at distances within two radii of the
actuator disk.

A more detailed blade element theory may be used to calculate the interaction
between a propeller blade and the stream and therefore to determine the effects of
blade aerodynamic drag on the propeller efficiency. If the blade spacing is large and the
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disk loading9 is light, blades can be considered independent, and relations can be
derived for the torque required and the thrust produced by a propeller. These
approximate relations are most accurate for low-solidity propellers.10 Aircraft pro-
pellers typically are of fairly low solidity, having long, thin blades.

A schematic diagram of an element of a rotating propeller blade is shown in
Fig. 10.43. The blade is set at angle θ to the plane of the propeller disk and has a
thickness (into the plane of the page) of dr. Flow is shown as it would be seen by an
observer on the propeller blade. Lift and drag forces are exerted on the blade per-
pendicular and parallel to the relative velocity vector Vr, respectively. We call the
angle that Vr makes with the plane of the propeller disk the effective pitch angle, φ,
and therefore the lift and drag forces are inclined at an angle to the propeller rotation
axis and the plane of the propeller disk, respectively.

The relative speed of flow, Vr, passing over the blade element depends on both the
blade peripheral speed, rω, and the speed of advance,V. Consequently, for a given blade
setting, the angle of attack, α, depends on both V and rω. Thus, the performance of a
propeller is influenced by both ω and V.

If we take a free-body diagram of the airfoil element of width dr in Fig. 10.43, we
find that the magnitude of the resultant force dFr parallel to the velocity vector ~V :

dFT 5 dL cosφ2 dD sinφ5 qrcdrðCL cosφ2CD sinφÞ ð10:37aÞ
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Fig. 10.42 Plot of velocity versus distance for flow of air near a propeller.
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Fig. 10.43 Diagram of blade element and relative flow
velocity vector.

9Disk loading is the propeller thrust divided by the swept area of the actuator disk.
10Solidity is defined as the ratio of projected blade area to the swept area of the actuator disk.
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In this equation qr is the dynamic pressure based on the relative velocity Vr,

qr 5
1

2
ρV2

r

c is the local chord length, and CL and CD are lift and drag coefficients, respectively,
for the airfoil. In general, due to twist and taper in the propeller blades, and the radial
variation of the blade peripheral speed, CL, CD, Vr, c, φ, and qr will all be functions of
the radial coordinate r. We can also generate an expression for the torque that must
be applied to the propeller:

dT5 rðdL sin φ1 dD cos φÞ5 qrrcdrðCL sin φ1CD cos φÞ ð10:37bÞ

These two expressions may be integrated to find the total propulsive thrust and
torque, assuming N independent blades mounted on the rotor:

FT 5N

Z r5R

r5Rhub

dFT 5 qN

Z R

Rhub

ðCL cos φ2CD sin φÞ
sin2 φ

cdr ð10:38aÞ

T5N

Z r5R

r5Rhub

dT5 qN

Z R

Rhub

ðCL sin φ1CD cos φÞ
sin2 φ

rcdr ð10:38bÞ

In these equations, qr is replaced by q/sin2φ based on the relationship between V and
Vr. We will use the equations above to analyze the startup characteristics of a pro-
peller in Example 10.16.

Example 10.16 PROPELLER STARTUP THRUST AND TORQUE

Use blade element theory to estimate the start-up thrust and torque for a propeller consisting of N independent
blades with constant chord length, c, and at a constant angle, θ, with respect to the actuator disk plane.

Given: Propeller with N independent blades
Chord length c is constant
Angle with respect to actuator disk θ is constant

Find: Expressions for startup thrust and torque

Solution: Apply the equations presented above to the propeller:

Governing equations:

dFT 5 dL cos φ2 dD sin φ5 qrcdrðCL cos φ2CD sin φÞ ð10:37aÞ
dT5 rðdL sin φ1 dD cos φÞ5 qrrcdrðCL sin φ1CD cos φÞ ð10:37bÞ

FT 5 qN

Z R

Rhub

ðCL cos φ2CD sin φÞ
sin 2φ

cdr ð10:38aÞ

T5 qN

Z R

Rhub

ðCL sin φ1CD cos φÞ
sin 2 φ

rcdr ð10:38bÞ

Assumptions: Local wind velocity V is negligible.
Angular velocity ω is constant.
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While these expressions may be relatively simple to derive, they are difficult to
evaluate. Even if the geometry of the propeller is adjusted to give constant geometric
pitch,11 the flow field in which it operates may not be uniform. Thus, the angle of
attack across the blade elements may vary from the ideal, and it can be calculated only
with the aid of a comprehensive computer code that can predict local flow directions
and speeds. As a result, Eqs. 10.38 are not normally used, and propeller performance
characteristics usually are measured experimentally.

Figure 10.44 shows typical measured characteristics for a marine propeller [6] and
for an aircraft propeller [41]. The variables used to plot the characteristics are almost
dimensionless: by convention, rotational speed, n, is expressed in revolutions per
second (rather than as ω, in radians per second). The independent variable is the speed
of advance coefficient, J,

J � V

nD
ð10:39Þ

If at start-up we neglect the local wind velocity V, we find that the integrals in Eqs. 10.38 will be indeterminate since
q5 0 and φ5 0. Therefore, we will use the differential thrust and torque expressions given in Eqs. 10.37 and inte-
grate them. At start-up, the relative velocity Vr is simply equal to the local blade element velocity rω. Therefore, the
relative dynamic pressure qr is equal to:

qr 5
1

2
ρr2ω2

When φ5 0, the differential thrust and torque expressions become

dFT 5
1

2
ρr2ω2cdrðCL cos 02CD sin 0Þ5 1

2
ρω2cCLr

2dr

dT5
1

2
ρr2ω2rcdrðCL sin 01CD cos 0Þ5 1

2
ρω2cCDr

3dr

We can then integrate the thrust and torque over the entire actuator disk:
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When we collect terms and simplify we get the following expressions:

FTstartup
5

ρω2cCL

6
R3 2R3

hub

� �
ß

FTstartup

Tstartup 5
ρω2cCD

8
ðR4 2R4

hubÞß
Tstartup

This problem demonstrates the analysis
of a propeller using blade element the-
ory. While the expressions here seem
relatively simple, it is important to note
that the lift and drag coefficients, CL and
CD, are functions of the airfoil section
being used, as well as the local angle of
attack, α, which for V5 0 is equal to the
blade inclination angle θ. In addition, it
should also be noted that when airfoil
lift and drag coefficients are presented,
such as in Figs. 9.17 or 9.19, they are
typically given at high Reynolds num-
bers, where the flow is fully turbulent
and the lift and drag are insensitive to
changes in speed. Care needs to be
taken to make sure that the lift and drag
coefficients used are appropriate for the
Reynolds number at startup.

11Pitch is defined as the distance a propeller would travel in still fluid per revolution if it advanced along the

blade setting angle θ. The pitch,H, of this blade element is equal to 2πr tan θ. To obtain constant pitch along

the blade, θ must follow the relation, tan θ5H/2πr, from hub to tip. Thus the geometric blade angle is

smallest at the tip and increases steadily toward the root.
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Dependent variables are the thrust coefficient, CF, the torque coefficient, CT, the
power coefficient, CP, and the propeller efficiency, η, defined as

CF5
FT

ρn2D4
; CT5

T

ρn2D5
; CP5

3

ρn3D5
; and η5

FTV

3input
ð10:40Þ

The performance curves for both propellers show similar trends. Both thrust and
torque coefficients are highest, and efficiency is zero, at zero speed of advance. This
corresponds to the largest angle of attack for each blade element (α5αmax5 θ).
Efficiency is zero because no useful work is being done by the stationary propeller. As
advance speed increases, thrust and torque decrease smoothly. Efficiency increases to
a maximum at an optimum advance speed and then decreases to zero as thrust tends to
zero. (For example, if the blade element section is symmetric, this would theoret-
ically occur when α5 0, or when tan θ5V/ωr.)

In order to improve performance, some propellers are designed with variable pitch.
The performance of a variable-pitch propeller is shown in Fig. 10.45. This figure shows
efficiency curves (solid curves) for a propeller set to different pitch angles. As we saw
in Fig. 10.44, the propeller exhibits a maximum η at a certain value of J. However,
the value of J needed for maximum η varies with θ. If we trace out all of the maxima,
the result is the dashed curve in Fig. 10.45. Therefore, if we allow for the variation of θ,
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Fig. 10.44 Typical measured characteristics of two
propellers.
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we may achieve improved efficiency over a wider range of J than with a fixed-pitch
propeller. Such a design, however, comes at the cost of the additional complexity in
actuators and control systems needed to implement the variable pitch, so the selection
of this design depends on the relative costs and benefits for the intended application.

Example 10.17 SIZING A MARINE PROPELLER

Consider the supertanker of Example 9.5. Assume the total power required to overcome viscous resistance and wave
drag is 11.4 MW. Use the performance characteristics of the marine propeller shown in Fig. 10.44a to estimate the
diameter and operating speed required to propel the supertanker using a single propeller.

Given: Supertanker of Example 9.5, with total propulsion power requirement of 11.4 MW to overcome viscous and
wave drag, and performance data for the marine propeller shown in Fig. 10.44a.

Find: (a) An estimate of the diameter of a single propeller required to power the ship.
(b) The operating speed of this propeller.

Solution:
From the curves in Fig. 10.44a, at optimum propeller efficiency, the coefficients are

J5 0:85; CF 5 0:10; CT 5 0:020; and η5 0:66

The ship steams at V 5 6.69 m/s and requires 3useful 5 11.4 MW. Therefore, the propeller thrust must be

FT 5
3useful

V
5 11:43 106W3

s

6:69 m
3

N�m
W�s 5 1:70 MN

The required power input to the propeller is

3input 5
3useful

η
5

11:4 MW

0:66
5 17:3 MW

From J5
V

nD
5 0:85, then

nD5
V

J
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m

s
3

1

0:85
5 7:87 m=s

Since
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Fig. 10.45 Propeller efficiency for a variable-pitch
propeller at various overall incidences identified by
θ at a fixed radial distance.
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Marine propellers tend to have high solidity. This packs a lot of lifting surface
within the swept area of the disk to keep the pressure difference small across
the propeller and to avoid cavitation. Cavitation tends to unload the blades of a
marine propeller, reducing both the torque required and the thrust produced [6].
Cavitation becomes more prevalent along the blades as the cavitation number,

Ca5
p2 pv
1
2 ρV

2
ð10:41Þ

is reduced. Inspection of Eq. 10.41 shows that Ca decreases when p is reduced by
operating near the free surface or by increasing V. Those who have operated motor
boats also are aware that local cavitation can be caused by distorted flow approaching
the propeller, e.g., from turning sharply.

Compressibility affects aircraft propellers when tip speeds approach the critical
Mach number, at which the local Mach number approaches M5 1 at some point on
the blade. Under these conditions, torque increases because of increased drag, thrust
drops because of reduced section lift, and efficiency drops drastically.

If a propeller operates within the boundary layer of a propelled body, where the
relativeflow is slowed, its apparent thrust and torquemay increase comparedwith those in
a uniform freestream at the same rate of advance. The residual kinetic energy in the
slipstreamalsomaybe reduced. The combination of these effectsmay increase the overall
propulsive efficiency of the combined body and propeller. Advanced computer codes are
used in the design of modern ships (and submarines, where noise may be an overriding
consideration) to optimize performance of each propeller/hull combination.

For certain special applications, a propeller may be placed within a shroud or duct.
Such configurations may be integrated into a hull (e.g., as a bow thruster to increase
maneuverability), built into the wing of an aircraft, or placed on the deck of a hover-
craft. Thrust may be improved by the favorable pressure forces on the duct lip, but
efficiency may be reduced by the added skin-friction losses encountered in the duct.

Wind-Power Machines

Windmills (or more properly, wind turbines) have been used for centuries to harness
the power of natural winds. Two well-known classical examples are shown in Fig. 10.46.

solving for D gives
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so that
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s
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The required propeller is quite large, but still smaller than the 25 m draft
of the supertanker. The ship would need to take on seawater for ballast
to keep the propeller submerged when not carrying a full cargo of petroleum.

This problem illustrates the use of nor-
malized coefficient data for the pre-
liminary sizing of a marine propeller.
This preliminary design process would
be repeated, using data for other pro-
peller types, to find the optimum com-
bination of propeller size, speed, and
efficiency.
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Dutch windmills (Fig. 10.46a) turned slowly so that the power could be used to turn
stone wheels for milling grain; hence the name “windmill.” They evolved into large
structures; the practical maximum size was limited by the materials of the day. Calvert
[43] reports that, based on his laboratory-scale tests, a traditional Dutch windmill of
26 m diameter produced 41 kW in a wind of 36 km/hr at an angular speed of 20 rpm.
American multi-blade windmills (Fig. 10.46b) were found on many American farms
between about 1850 and 1950. They performed valuable service in powering water
pumps before rural electrification.

The recent emphasis on renewable resources has revived interest in windmill
design and optimization. In 2008, the United States had over 25,000 MW of wind-
based electric generation capacity, which generated 52 million MWh of electricity,
representing 1.26 percent of the total electric energy consumption for that year [44].
In addition, in 2008 the United States overtook Germany to become the largest
generator of wind-based electrical power in the world. Wind power accounts for 42
percent of all new generating capacity, up from only 2 percent in 2004. America’s wind
belt, which stretches across the Great Plains from Texas to the Dakotas, has been
dubbed the “Saudi Arabia of wind” [45].

Schematics of wind turbine configurations are shown in Fig. 10.47. In general, wind
turbines are classified in two ways. The first classification is the orientation of the
turbine axis. Horizontal-axis wind turbine (HAWT) and vertical-axis wind turbine
(VAWT) configurations have been studied extensively. Most HAWT designs feature
two- or three-bladed propellers turning at high speed, mounted on a tower along
with its electric generator. The large modern HAWT, shown in Fig. 10.48a, is capable
of producing power in any wind above a light breeze. The wind turbine shown in
Fig. 10.48b is a VAWT. This device uses a modern symmetric airfoil section for the
rotor. Earlier designs of the VAWT, such as the Darrieus troposkien shape,12 suffered
from high bending stresses and pulsatory torques. More recent designs, such as the
one shown in this figure, feature helical airfoils, which distribute the torques more
evenly about the central axis. VAWTs feature a ground-mounted electric generator.

The second classification is how the wind energy is harnessed. The first group of
turbines collects wind energy through drag forces; these wind turbines are typically
of the vertical axis configuration only. The second group collects energy through lift
forces. Lift-based wind turbines employ horizontal- or vertical-axis configurations. It
is important to note that most of these designs are self-starting. The lift-type VAWT is

12This shape (which would be assumed by a flexible cord whirled about a vertical axis) minimizes bending

stresses in the Darrieus turbine rotor.

(a) Traditional Dutch Mill (b) American farm windmill

Fig. 10.46 Examples of well-known windmills [42]. (Photo courtesy of
(a) Netherlands Board of Tourism, (b) U.S. Department of Agriculture.)
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not capable of starting from rest; it can produce usable power only above a certain
minimum angular speed. It is typically combined with a self-starting turbine, such as a
Savonius rotor, to provide starting torque [40, 46].

A horizontal-axis wind turbine may be analyzed as a propeller operated in reverse.
The Rankine model of one-dimensional flow incorporating an idealized actuator disk
is shown in Fig. 10.49. The simplified notation of the figure is frequently used for
analysis of wind turbines.

The wind speed far upstream is V. The stream is decelerated to V(1 � a) at the
turbine disk and to V(1 � 2a) in the wake of the turbine (a is called the interference
factor). Thus the stream tube of air captured by the wind turbine is small upstream
and its diameter increases as it moves downstream.

(a) Horizontal-axis wind turbine (b) Vertical-axis wind turbine

Fig. 10.48 Examples of modern wind turbine designs. (Photos courtesy of
(a) Siemens Energy, ª 2010; (b) www.quietrevolution.co.uk.)

Savonius Split Savonius Cup anemometer

Darrieus

Propeller

Horizontal axis
lift type

(wind into page)

Vertical axis
lift type

(wind left-right)

Vertical axis
drag type

(wind left-right)

Giromill Helical

U.S. farm multibladed

Fig. 10.47 Wind turbine configurations differentiated by axis orientation
(horizontal versus vertical) and by nature of force exerted on the active
element (lift versus drag).
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Straightforward application of linear momentum to a CV (see Example 10.18)
predicts the axial thrust on a turbine of radius R to be

FT52πR2ρV2að12 aÞ ð10:42Þ
Application of the energy equation, assuming no losses (no change in internal energy
or heat transfer), gives the power taken from the fluid stream as

352πR2ρV3að12 aÞ2 ð10:43Þ
The efficiency of a wind turbine is most conveniently defined with reference to

the kinetic energy flux contained within a stream tube the size of the actuator disk.
This kinetic energy flux is

KEF5
1

2
ρV3πR2 ð10:44Þ

Combining Eqs. 10.43 and 10.44 gives the efficiency (or alternatively, the power
coefficient [47]) as

η5
3

KEF
54að12 aÞ2 ð10:45Þ

Betz [see 47] was the first to derive this result and to show that the theoretical effi-
ciency is maximized when a5 1/3. The maximum theoretical efficiency is η5 0.593.

If the wind turbine is lightly loaded (a is small), it will affect a large mass of air per
unit time, but the energy extracted per unit mass will be small and the efficiency low.
Most of the kinetic energy in the initial air stream will be left in the wake and wasted.
If the wind turbine is heavily loaded (a � 1/2), it will affect a much smaller mass of air
per unit time. The energy removed per unit mass will be large, but the power pro-
duced will be small compared with the kinetic energy flux through the undisturbed
area of the actuator disk. Thus a peak efficiency occurs at intermediate disk loadings.

The Rankine model includes some important assumptions that limit its applica-
bility [47]. First, the wind turbine is assumed to affect only the air contained within the
stream tube defined in Fig. 10.49. Second, the kinetic energy produced as swirl behind
the turbine is not accounted for. Third, any radial pressure gradient is ignored.
Glauert [see 41] partially accounted for the wake swirl to predict the dependence of
ideal efficiency on tip-speed ratio, X,

X5
Rω
V

ð10:46Þ

as shown in Fig. 10.50 (ω is the angular velocity of the turbine).
As the tip-speed ratio increases, ideal efficiency increases, approaching the peak

value (η5 0.593) asymptotically. (Physically, the swirl left in the wake is reduced as
the tip-speed ratio increases.) Avallone et al. [46] presents a summary of the detailed
blade-element theory used to develop the limiting efficiency curve shown in Fig. 10.50.

Turbine disk

Control volume

V V (1 – 2a)
V (1 – a)

Fig. 10.49 Control volume and simplified notation used to
analyze wind turbine performance.
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Each type of wind turbine has its most favorable range of application. The tradi-
tional American multibladed windmill has a large number of blades and operates at
relatively slow speed. Its solidity, σ (the ratio of blade area to the swept area of the
turbine disk, πR2), is high. Because of its relatively slow operating speed, its tip-speed
ratio and theoretical performance limit are low. Its relatively poor performance,
compared with its theoretical limit, is largely caused by use of crude blades, which are
simply bent sheet metal surfaces rather than airfoil shapes.

It is necessary to increase the tip-speed ratio considerably to reach a more favor-
able operating range. Modern high-speed wind-turbine designs use carefully shaped
airfoils and operate at tip-speed ratios up to 7 [48].
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Fig. 10.50 Efficiency trends of wind turbine types versus
tip-speed ratio [43].

Example 10.18 PERFORMANCE OF AN IDEALIZED WINDMILL

Develop general expressions for thrust, power output, and efficiency of an idealized windmill, as shown in Fig. 10.49.
Calculate the thrust, ideal efficiency, and actual efficiency for the Dutch windmill tested by Calvert (D5 26 m,
N5 20 rpm, V5 36 km=hr, and 3output 5 41 kW).

Given: Idealized windmill, as shown in Fig. 10.49, and Dutch windmill tested by Calvert:

D5 26 m N5 20 rpm V5 36 km=hr 3output 5 41 kW

Find: (a) General expressions for the ideal thrust, power output, and efficiency.
(b) The thrust, power output, and ideal and actual efficiencies for the Dutch windmill tested by Calvert.

Solution:
Apply the continuity, momentum (x component), and energy equations, using the CV and coordinates shown.

Streamline

Rx

V2 V3V1 D

D3

y

x

Windmill disk

CV
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Governing equations:

   CV

 dV �   
CS

 V · dA � 0

� 0(3)

� �

FSx � FBx �

� 0(2) � 0(3)

) V · dA
p

Q � Ws �
    CV

 e dV �   
CS

 (e �

� 0(7) � 0(3)

 �  �
�

��
dV  �   

CS

  �

�
�

�

u
CS

t

t

t

� V · dA � u

Assumptions: (1) Atmospheric pressure acts on CV; FSx 5Rx.
(2) FBx

5 0.
(3) Steady flow.
(4) Uniform flow at each section.
(5) Incompressible flow of standard air.
(6) V1 2V2 5V2 2V3 5

1
2 ðV1 2V3Þ, as shown by Rankine.

(7) Q5 0.
(8) No change in internal energy for frictionless incompressible flow.

In terms of the interference factor, a, V1 5V; V2 5 ð12 aÞV, and V3 5 ð12 2aÞV.

From continuity, for uniform flow at each cross section, V1A1 5V2A2 5V3A3.
From momentum,

Rx 5 u1ð2ρV1A1Þ1 u3ð1ρV3A3Þ5 ðV3 2V1ÞρV2A2 fu1 5V1; u3 5V3g
Rx is the external force acting on the control volume. The thrust force exerted by the CV on the surroundings is

Kx 52Rx 5 ðV1 2V3ÞρV2A2

In terms of the interference factor, the equation for thrust may be written in the general form,

Kx 5 ρV2 πR22að12 aÞ ß

Kx

(Set dKx/da equal to zero to show that maximum thrust occurs when a 5 1
2.)

The energy equation becomes

2 _Ws 5
V2

1

2
ð2ρV1A1Þ1 V2

3

2
ð1ρV3A3Þ5 ρV2πR2 1

2
ðV2

3 2V2
1Þ

The ideal output power, 3, is equal to _Ws. In terms of the interference factor,

35 _Ws 5 ρVð12 aÞπR2 V2

2
2

V2

2
ð12 2aÞ2

� �
5 ρV3ð12 aÞ πR2

2
½12 ð12 2aÞ2�

After simplifying algebraically,

3ideal 5 2ρV3πR2að12 aÞ2 ß

3ideal

The kinetic energy flux through a stream tube of undisturbed flow, equal in area to the actuator disk, is

KEF5 ρVπR2 V2

2
5

1

2
ρV3πR2

Thus the ideal efficiency may be written

η5
3ideal

KEF
5

2ρV3πR2að12 aÞ2
1
2 ρV

3πR2
5 4að12 aÞ2 ß

η
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The analysis of a VAWT is slightly different from that of a HAWT. The main
reason for this difference can be seen in Fig. 10.51. In this figure, a cross section of one
airfoil in a Darrieus turbine is shown rotating about the turbine axis. Assuming that
the wind emanates from a constant direction, the airfoil angle of attack α will be a
function of the azimuthal angle θ. The angle of attack is due to the relation between
the effective velocity vector and the rotational direction. As θ varies, α will vary as
well until it reaches a maximum value when θ is equal to 90�. In that configuration, the
angle of attack is expressed by:

αm5tan2 1 V

Rω
ð10:47aÞ

To find the condition for maximum possible efficiency, set dη/da equal to zero. The maximum efficiency is η5 0:593,
which occurs when a5 1=3.

The Dutch windmill tested by Calvert had a tip-speed ratio of

X5
NR

V
5 20

rev

min
3 2π

rad

rev
3

min

60 s
3 13 m3

s

10 m
5 2:72 ß

X

The maximum theoretically attainable efficiency at this tip-speed ratio, accounting for swirl (Fig. 10.45), would be
about 0.53.

The actual efficiency of the Dutch windmill is

ηactual 5
3actual

KEF

Based on Calvert’s test data, the kinetic energy flux is

KEF5
1

2
ρV3πR2

5
1

2
3 1:23

kg

m3
3 ð10Þ3 m

3

s3
3π3 ð13Þ2 m2 3

N�s2
kg�m 3

W�s
N�m

KEF5 3:273 105 W or 327 kW

Substituting into the definition of actual efficiency,

ηactual 5
41 kW

327 kW
5 0:125 ß

ηactual

Thus the actual efficiency of the Dutch windmill is about 24 percent of the maximum efficiency theoretically
attainable at this tip-speed ratio.

The actual thrust on the Dutch windmill can only be estimated, because the interference factor, a, is not known.
The maximum possible thrust would occur at a 5 1/2, in which case,

Kx 5 ρV2πR2 2að12 aÞ
5 1:23

kg

m3
3 ð10Þ2 m

2

s2
3 π3 ð13Þ2 m2 3 2

�
1

2

��
12

1

2

�
3

N�s2
kg�m

Kx 5 3:273 104 N or 32:7 kN ß

Kx

This does not sound like a large thrust force, considering the size (D5 26 m)
of the windmill. However, V5 36 km=hr is only a moderate wind. The
actual machine would have to withstand much more severe wind conditions
during storms.

This problem illustrates application of
the concepts of ideal thrust, power, and
efficiency for a windmill, and calculation
of these quantities for an actual
machine.
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Equation 10.47a states that the maximum angle of attack is related to the wind velocity,
the angular velocity of the rotor, and the local rotor radius. In terms of the tip speed
ratio X from Eq. 10.46, Eq. 10.47a may then be rewritten as:

αm5tan2 1 1

X
ð10:47bÞ

Since the maximum angle of attack must be less than that for stall (10��15� for most
typical airfoils), it follows that X should be a large number (at least on the order of 6).
The lift and drag forces (L and D, respectively) acting on the airfoil can be seen in
Fig. 10.51. These aerodynamic forces generate a torque on the rotor. The torque on
the rotor at a given value of α is:

T5ωRðL sin α2D cos αÞ ð10:48Þ

Now if the airfoil section being employed is symmetric (zero camber), then the lift
coefficient is linearly proportional to the angle of attack [49]:

CL5mα ð10:49Þ

In Eq. 10.49, m is the slope of the lift curve, and is specific to the airfoil being used. In
addition, the drag coefficient may be approximated by:

CD5CD;0 1
C2

L

πAR
ð9:43Þ

In this expression, CD,0 is the drag coefficient at zero angle of attack, and AR is the
aspect ratio of the airfoil. Now since the air velocity relative to the rotor is a function
of α, which depends on θ, it follows that the lift and drag forces are functions of θ as
well. Therefore, any quantification of rotor performance needs to be averaged over
the entire range of θ. Decher [40] derived an expression for the efficiency of the rotor
based on lift and drag effects, ηL/D. This expression is defined as the useful work out

DL

V

V

Vrel

Vrel

θα

α

θ�α

θ

αm

Rω � XV

Rω θ � π/2

Fig. 10.51 Velocities around a Darrieus rotor blade ele-
ment at a general azimuthal angle θ, as well as at θ5π/2,
where the airfoil angle of attack is maximized.
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(the torque in Eq. 10.48) divided by the available power in the wind. In terms of the lift
and drag, this expression is:

ηL=D5
RωðL sin α2D cos αÞ
VðL cos α1D sin αÞ

The overbars in this equation indicate average values of those quantities. Since the lift
and drag forces on the rotor change with θ, a time average of the forces needs to be
calculated by integrating. Now once we substitute Eqs. 10.49 and 9.43 into this
expression and average over a full revolution of the rotor (0 # θ # 2π), the efficiency
becomes:

ηL=D5
12CD;0

2

CD;0AR
1

4X3

11X2

� �

11CD;0
1

2π
1

3

2CD;0ARX2

� � ð10:50Þ

This efficiency modifies the efficiency based on actuator disk theory (Eq. 10.45) for an
estimate of the overall efficiency of the rotor:

η � ηact diskηL=D ð10:51Þ

One must keep in mind, however, that in order to determine the efficiency of a
complete rotor, one must add the contributions to the torque over the entire rotor.
Since different parts of the rotor have different radii (different values of R), they will
have different values of X. Based on Eq. 10.50, one might realize that the portions of
the rotor with small radii will contribute very little to the torque compared to central
portions of the rotor.

Example 10.19 ANALYSIS OF A GIROMILL

AGiromill wind turbine (see Fig. 10.47) has a height of 140 ft and a diameter of 110 ft. The airfoil section being used
is a constant-width symmetric section with a stall angle of 12� and an aspect ratio of 50. Over the normal range of
operation the airfoil lift coefficient can be described by the equation CL5 0.1097α, where α is the angle of attack in
degrees. The drag coefficient at zero angle of attack is 0.006, and at other angles of attack the drag coefficient can be
approximated by Eq. 9.43. If the Giromill rotates at 24 rpm, calculate the maximum allowable wind speed to avoid
stall on the airfoil section. If the power generated at this minimum speed condition is 160 hp, what is the efficiency of
the turbine?

Given: Giromill wind turbine
Height: 140 ft
Diameter: 100 ft
Minimum rotation speed: 24 rpm
Power: 160 hp
Airfoil is symmetric
Stall angle: 12�

Aspect ratio: 50
Lift coefficient is linear; CL5 0.1097α (α is in degrees)
Drag coefficient is parabolic, CD,05 0.006

Find: (a) Maximum allowable wind speed to prevent stall.
(b) Turbine efficiency.
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Solution:
Apply the equations presented above to the turbine:

Governing equations:

αm 5 tan2 1 V

ωR
5 tan2 1 1

X
ð10:47a;bÞ

KEF5
1

2
ρV3πR2 ð10:44Þ

η5
3

KEF
ð10:45Þ

CD 5CD;0 1
C2

L

πAR
ð9:43Þ

ηL=D 5

12CD;0
2

CD;0AR
1

4X3

11X2

� �

11CD;0
1

2π
1

3

2CD;0ARX2

� � ð10:50Þ

η � ηact diskηL=D ð10:51Þ

Assumption: Standard atmosphere: ρ5 0.002377 slug/ft3

(a) To find the maximum speed, we solve Eq. 10.47a for the velocity:

V5Rω tan αm 5 55 ft3 24
rev

min
3

2π rad

rev
3

min

60 s
3 tan 12� 5 29:4

ft

s
3

mi

5280 ft
3

3600 s

hr
5 20:0 mph

V5 20:0 mph ß
V

(b) To determine the efficiency, we find the actuator disk efficiency and the lift/drag efficiency, per Eq. 10.51. To
calculate the actuator disk efficiency, first we find the kinetic energy flux:

KEF5
1

2
ρV3πR2 5

π
2
3 0:002377

slug

ft3
3 29:4

ft

s

� �3

3 ð55 ftÞ2 3 lbf �s2
slug�ft 3

hp�s
550 ft�lbf 5 521 hp

Therefore, the actuator disk efficiency is:

η5
3

KEF
5

160

521
5 0:307

To find the lift/drag efficiency of the rotor, we need to find the tip
speed ratio:

X5
1

tan αm
5

1

tan 12�
5 4:705

Taking this value for X and the given data, we can calculate the lift/drag efficiency:

ηL=D 5

12CD;0
2

CD;0AR
1

4X3

11X2

� �

11CD;0
1

2π
1

3

2CD;0ARX2

� � 5

12 0:0063
2

0:0063 50
1

43 4:7053

11 4:7052

 !

11 0:0063
1

2π
1

3

23 0:0063 503 4:7052

� � 5 0:850

So the overall efficiency is:

η � ηact diskηL=D 5 0:3073 0:8505 0:261 ß
η

This problem demonstrates the analysis
of a VAWT, provided that the airfoil
section used is below the stall angle. A
more detailed analysis would be needed
if a different type of section, such as the
Darrieus turbine, were used, since the
rotor radius is not constant.
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10.7Compressible Flow Turbomachines
While the interaction of incompressible fluids with turbomachines is an important
topic, both from a phenomenological and a practical point of view, there are many
instances in which the flow through a turbomachine will experience significant
changes in density. This is especially important in gas turbine (Brayton cycle) power
generation (for both stationary and mobile power plants) and in steam turbine
(Rankine cycle) power generation. We will investigate the modifications to the gov-
erning equations and dimensional analyses necessary in compressible flow applica-
tions. Where necessary, the reader is directed to the appropriate sections in Chapters
12 and 13 for further clarification.

Application of the Energy Equation
to a Compressible Flow Machine

In Chapter 4 we looked at the first law of thermodynamics for an arbitrary control
volume. The result was the energy equation, Eq. 4.56,

_Q2 _Ws 2 _Wshear 2 _Wother5
@

@t

Z
CV

eρdV---1
Z
CS

u1 pv1
V2

2
1 gz

� �
ρ~V �d~A ð4:56Þ

Equation 4.56 states that the heat added to the system, minus the work done by the
system results in an increase in energy for the system. In this equation, the work done
by the system is assumed to consist of three parts. The first, known as “shaft work,” is
the useful work input/output we consider in the analysis of turbomachines. The second
is the work done by fluid shear stresses at the control volume surface. The third,
referred to as “other work,” includes sources such as electromagnetic energy transfer.

We will now simplify Eq. 4.56 for compressible flow turbomachinery. First, tur-
bomachines typically run at conditions such that heat transfer with the surroundings
are minimized, and so the heat transfer term may be ignored. Second, work terms
other than shaft work should be negligibly small, and so they can be ignored as well.
Third, changes in gravitational potential energy should be small, and so that term can
be dropped from the surface integral. Since enthalpy is defined as h � u1 pv, for
steady flow, Eq. 4.56 becomes

_Ws52

Z
CS

h1
V2

2

� �
ρ~V�d~A

At this point, we introduce the stagnation enthalpy13 as the sum of the fluid enthalpy
and kinetic energy:

h05h1
V2

2

Therefore, we may rewrite the energy equation as:

_Ws52

Z
CS

h0ρ~V�d~A ð10:52aÞ

Equation 10.52a states that, for a turbomachine with work input, the power required
causes an increase in the stagnation enthalpy in the fluid; for a turbomachine with work
output, the power produced is due to a decrease in the stagnation enthalpy of the fluid.

13See Section 12.3 for a discussion of the stagnation state.
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In this equation, _Ws is positive when work is being done by the fluid (as in a turbine),
while _Ws is negative when work is being done on the fluid (as in a compressor).

It is important to note that the sign convention used in this equation appears to be
contrary to that used in the Euler turbomachine equation, developed in Section 10.2.
If you recall, in Eq. 10.2 a positive value of _Wp indicated work done on the fluid, while
a negative value indicated work done by the fluid. The difference to remember is that
_Ws is the mechanical power exerted by the working fluid on its surroundings, i.e., the
rotor, whereas _Wp is the mechanical power exerted on the working fluid by the rotor.
Keeping this distinction in mind, it makes perfect sense that these two quantities
would have equal magnitudes and opposite signs.

The integrand on the right side of Eq. 10.52a is the product of the stagnation
enthalpy with the mass flow rate at each section. If we make the additional assumption
of uniform flow into the machine at section 1, and out of the machine at section 2,
Eq. 10.52a becomes

_Ws52ðh02 2 h01Þ _m ð10:52bÞ

Compressors

Compressors may be centrifugal or axial, depending on specific speed. Automotive
turbochargers, small gas-turbine engines, and natural-gas pipeline boosters usually are
centrifugal. Large gas and steam turbines and jet aircraft engines (as seen in Figs. 10.3
and 10.4b) frequently are axial-flow machines.

Since the flow through a compressor will see a change in density, the dimensional
analysis presented for incompressible flow is no longer appropriate. Rather, we
quantify the performance of a compressor through Δh0s , the ideal rise in stagnation
enthalpy of the flow,14 the efficiency η, and the power 3. The functional relationship is:

Δh0s ; η;35f ðμ;N;D; _m; ρ01 ; c01 ; kÞ ð10:53Þ
In this relation, the independent variables are, in order, viscosity, rotational speed,
rotor diameter, mass flow rate, inlet stagnation density, inlet stagnation speed of
sound, and ratio of specific heats.

If we apply the Buckingham Pi theorem to this system, the resulting dimensionless
groups are:

Π15
Δh0s

ðNDÞ2 Π25
3

ρ01N
3D5

Π35
_m

ρ01ND3
Π45

ρ01ND2

μ

Π55
ND

c01

Since the efficiency η and ratio of specific heats k are dimensionless quantities, they
can be thought of as Π-terms. The resulting functional relationships are:

14In Section 12.1, it is demonstrated that an adiabatic and reversible process is isentropic. It can be proven

that an isentropic compression results in the minimum power input between two fixed pressures, and an

isentropic expansion results in the maximum power output between two fixed pressures. Therefore,

the isentropic compression/expansion process is considered the ideal for compressors and turbines,

respectively. For more information, please consult Moran and Shapiro [50].
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Δh0s

ðNDÞ2 ; η;
3

ρ01N
3D5

5f1
_m

ρ01ND3
;
ρ01ND2

μ
;
ND

c01
; k

 !
ð10:54aÞ

This equation is actually an expression of three separate functions; that is, the terms
Π15Δh0s=ðNDÞ2, η, and Π253=ρ01N

3D5 are all functions of the other dimensionless
quantities. Δh0s=ðNDÞ2 is a measure of the energy change in the flow and is the
compressible analog to the head coefficient Ψ (Eq. 10.6). 3=ρ01N

3D5 is a power
coefficient, similar to that in Eq. 10.8. _m=ρ01ND3 is a mass flow coefficient, analogous
to the incompressible flow coefficient Φ (Eq. 10.5). ρ01ND2=μ is a Reynolds number
based on rotor tip speed, and ND=c01 is a Mach number based on rotor tip speed.
Using the relationships for isentropic processes and for the compressible flow of a
perfect gas, we can make some simplifications. As a result, Eq. 10.54a may be
rewritten as:

p02
p01

; η;
ΔT0

T01

5f2
_m
ffiffiffiffiffiffiffiffiffiffiffi
RT01

p
p01D

2
; Re;

NDffiffiffiffiffiffiffiffiffiffiffi
RT01

p ; k

 !
ð10:54bÞ

The functional relationships presented here can be used in the manner seen both in
Chapter 7 and earlier in this chapter to investigate scaling the performance of similar
flow machines. An example of this is presented in the following example.

Example 10.20 SCALING OF A COMPRESSOR

A 1/5 scale model of a prototype air compressor consuming 300 hp and running at a speed of 1000 rpm delivers a flow
rate of 20 lbm/s through a pressure ratio of 5. At dynamically and kinematically similar conditions, what would the
operating speed, mass flow rate, and power consumption be for the full-scale prototype?

Given: 1/5 scale compressor model
Power: 300 hp
Speed: 1000 rpm
Pressure ratio: 5
Mass flow rate: 50 lbm/s

Find: Prototype speed, mass flow rate, and power consumption at similar conditions.

Solution: Apply the equations presented above and the concepts presented in Chapter 7 on similitude to the
compressor:

Governing equations:
ND

c01

� �
p

5
ND

c01

� �
m

_m

ρ01ND3

 !
p

5
_m

ρ01ND3

 !
m

3

ρ01N
3D5

 !
p

5
3

ρ01N
3D5

 !
m

Assumption: Similar entrance conditions for both model and prototype.

Similar entrance conditions would stipulate that the stagnation sound speed and density would be equal for both the
model and the prototype. Solving the first equation for the prototype speed:
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Since most operability studies are performed on a single compressor design without
scaling, and, using the same working fluid, all variables related to the scale and the
fluid (specifically, D, R, and k) may be eliminated from the functional relationship. In
addition, empirical studies have shown that, as in the case study of the centrifugal
pump in Chapter 7, for sufficiently high values of Reynolds number the performance
of the compressor is not dependent upon Reynolds number either; i.e., the flow is fully
turbulent in the compressor. Once these variables are eliminated, Eq. 10.54b becomes

p02
p01

; η;
ΔT0

T01

5f3
_m
ffiffiffiffiffiffiffi
T01

p
p01

;
Nffiffiffiffiffiffiffi
T01

p
 !

ð10:54cÞ

Note that this equation is no longer dimensionless. However, it is still useful in char-
acterizing the performance of a compressor, provided the performance is assessed for a
single machine using a single working fluid. The relationship portrayed in Eq. 10.54c is
normally expressed in the form of a compressor operability map, as shown in Fig. 10.52.
On this map we can see the compression ratio versus mass flow ratio ð _m ffiffiffiffiffiffiffi

T01

p
=p01Þ, with

curves of constant normalized speed ðN=
ffiffiffiffiffiffiffi
T01

p Þ and efficiency. Often, the abscissa is a
“corrected mass flow”:

_mcorr5
_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01=Tref

p
p01=pref

and the lines of constant compressor speed are a “corrected speed”:

Ncorr5
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T01=Tref

p
In these expressions, Tref and pref are reference pressure and temperature (usually
standard conditions one would expect at the entrance of such a machine). This allows
the user to read the chart quickly in terms of “real” physical quantities and to be able
to make adjustments for varying entrance conditions with a minimum of calculation.
The operating line is the locus of points of maximum efficiency for a given mass flow.

Np 5Nm

Dm

Dp

c01p
c01m

5 1000 rpm3
1

5
3 15 200 rpm

Np 5 200 rpm ß

Np

Solving the second equation for the prototype mass flow rate:

_mp 5 _mm

ρ01p
ρ01m

Np

Nm

Dp

Dm

0
@

1
A
3

5 20
lbm

s
3

200

1000
3

5

1

0
@
1
A
3

5 500
lbm

s

_mp 5 500 lbm=s ß

_mp

To calculate the power requirement for the prototype:

3p 53m

ρ01p
ρ01m

Np

Nm

� �3 Dp

Dm

� �5
5 300 hp3

200

1000

� �3
3

5

1

� �5
5 7500 hp

3p 5 7500 hp ß

Pp

This problem demonstrates the scaling
of compressible flow machines. Note
that if the working fluid for the two dif-
ferent scale machines were different,
e.g., air versus helium, the effects of
different gas constants and specific
heat ratios would have to be taken
into account.
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It is important to note that the compressor operability map of Fig. 10.52 bears a
striking resemblance to the pump operability map of Fig. 10.14. Not only do both
figures show the performance of a turbomachine performing work on a fluid, but the
data are plotted in a similar fashion; level curves of constant efficiency are plotted on a
plane of work output (head for the pump, pressure ratio for the compressor) versus
flow input (volumetric flow rate for the pump, mass flow rate for the compressor).

This figure shows two of the phenomena that must be avoided in the operation of a
compressor. The first is choking, which is experienced when the local Mach number at
some point in the compressor reaches unity.15 To explain choking in a physical sense,
imagine that we run the compressor at constant speed and constant inlet pressure and
that we can directly control the compressor exit pressure. On the compressor map, we
would be traveling along a line of constant normalized speed. If we were to lower the
exit pressure, the pressure ratio would decrease. If the compressor speed remains
constant, the mass flow increases. However, we see that the lines of constant nor-
malized speed turn downward if the mass flow rate is increased beyond a certain
value, indicating a maximum possible flow rate for a given rotor speed, and the
compressor is choked. When choking occurs, it is impossible to increase mass flow
without increasing rotor speed.

The second phenomenon is surge, which is a cyclic pulsation phenomenon that causes
the mass flow rate through the machine to vary, and can even reverse it! Surge occurs
when the pressure ratio in the compressor is raised beyond a certain level for a givenmass
flow rate.Aspressure ratio increases, the adverse pressure gradient across the compressor
increases as well. This increase in pressure gradient can cause boundary-layer separation
on the rotor surfaces and constrict flow through the space between two adjacent blades.16

Therefore, the extra flow gets diverted to the next channel between blades. The separa-
tion is relieved in the previous channel and moves to the next channel, causing the cyclic
pulsation mentioned above. Surge is accompanied by loud noises and can damage the
compressor or related components; it toomust be avoided. Fig. 10.52 shows the surge line,
the locus of operating conditions beyond which surge will occur.

In general, as shown in Fig. 10.52, the higher the performance, the more narrow the
range in which the compressor may be operated successfully. Thus a compressor must
be carefully matched to its flow system to assure satisfactory operation. Compressor
matching in natural gas pipeline applications is discussed by Vincent-Genod [51].
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Fig. 10.52 Performance map for a compressor.

15Choking is also described from the standpoint of nozzle flow in Section 13.2.
16Boundary layer separation due to adverse pressure gradients is discussed in Section 9.6.
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Perhaps the most common application of high-speed fluid machinery today is in
automotive turbochargers (worldwide many millions of cars are sold each year with
turbochargers). Automotive turbocharger matching is described in manufacturers’
literature [52].

Compressible-Flow Turbines

The flow through a gas turbine is governed by the same general relationship as the
compressor, but the actual functional relationships are different. Figure 10.53 shows
the performance map for a compressible flow turbine. As in the case for the com-
pressor the turbine map shows lines of constant normalized speed on a graph of
pressure ratio versus normalized mass flow rate. The most striking difference between
this map and that for the compressor is that the performance is a very weak function
of N=

ffiffiffiffiffiffiffi
T01

p
; the curves are set very close together. The choking of the turbine flow is

well-defined on this map: There is a normalized mass flow that cannot be exceeded in
the turbine, regardless of the pressure ratio.
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Fig. 10.53 Performance map for a compressible flow turbine.

10.8 Summary and Useful Equations
In this chapter, we:

ü Defined the two major types of fluid machines: positive displacement machines and turbomachines.
ü Defined, within the turbomachine category, radial, axial, and mixed-flow types, pumps, fans, blowers, compressors, and impulse

and reaction turbines.
ü Discussed various features of turbomachines, such as impellers, rotors, runners, scrolls (volutes), compressor stages, and draft

tubes.
ü Used the angular-momentum equation for a control volume to derive the Euler turbomachine equation.
ü Drew velocity diagrams and applied the Euler turbomachine equation to the analysis of various idealized machines to derive ideal

torque, head, and power.
ü Evaluated the performance—head, power, and efficiency—of various actual machines from measured data.
ü Defined and used dimensionless parameters to scale the performance of a fluid machine from one size, operating speed, and set

of operating conditions to another.
ü Discussed various defining parameters, such as pump efficiency, solidity, hydraulic power, mechanical power, turbine efficiency,

shutoff head, shock loss, specific speed, cavitation, NPSHR, and NPSHA.
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ü Examined pumps for their compliance with the constraint that the net positive suction head available exceeds that required to
avoid cavitation.

ü Matched fluid machines for doing work on a fluid to pipe systems to obtain the operating point (flow rate and head).
ü Predicted the effects of installing fluid machines in series and parallel on the operating point of a system.
ü Discussed and analyzed turbomachines without housings, namely propellers and wind turbines.
ü Discussed the use and performance of compressible flow turbomachines.

With these concepts and techniques, we learned how to use manufacturers’ literature and other data to perform
preliminary analyses and make appropriate selections of pumps, fans, hydraulic and wind turbines, and other fluid
machines.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Euler turbomachine equation:
Tshaft5ðr2Vt2 2 r1Vt1Þ _m

(10.1c) Page
500

Turbomachine theoretical power:
_Wm5ðU2Vt2 2U1Vt1Þ _m

(10.2b) Page
500

Turbomachine theoretical head:
H5

_Wm

_mg
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(10.2c) Page
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Pump power, head, and efficiency: _Wh5ρQgHp
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Turbine power, head, and
efficiency:
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Page
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Dimensionless flow coefficient:
Φ5

Q

A2U2
5

Vn2

U2

(10.5) Page
505

Dimensionless head coefficient:
Ψ5

gH

U2
2

(10.6) Page
506

Dimensionless torque coefficient:
τ5

T

ρA2U
2
2R2

(10.7) Page
506

Dimensionless power coefficient:

Π5
_W

ρQU2
2

5
_W

ρω2QR2
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(10.8) Page
506
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Centrifugal pump specific speed
(in terms of head h): NS5

ωQ1=2

h3=4

(7.22a) Page
506

Centrifugal pump specific speed
(in terms of head H): NScu5

NðrpmÞ½QðgpmÞ�1=2
½HðftÞ�3=4

(7.22b) Page
507

Centrifugal turbine specific speed
(in terms of head h): NS5

ω
h3=4

3

ρh

� �1=2

5
ω31=2

ρ1=2h5=4
(10.13a) Page

507

Centrifugal turbine specific speed
(in terms of head H): NScu5

NðrpmÞ½3ðhpÞ�1=2
½HðftÞ�5=4

(10.13b) Page
507

Axial-flow turbomachine ideal
performance:
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Page
513

Propeller thrust:
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(10.38a) Page
567

Propeller torque:
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(10.38b) Page
567

Propeller speed of advance
coefficient: J � V

nD

(10.39) Page
568

Propeller thrust, torque, power,
and efficiency coefficients: CF5
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Cavitation number:
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(10.41) Page
571

Actuator disk efficiency:
η5
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(10.45) Page
574

Tip-speed ratio
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VAWT efficiency:
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Energy equation for compressible
flow turbomachine:

_Ws52ðh02 2 h01Þ _m (10.52b) Page
582

Performance parameters for
compressible flow turbomachine:
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Problems
Introduction and Classification of Fluid
Machines; Turbomachinery Analysis

10.1 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section 1 Outlet, Section 2
Radius, r (mm) 175 500

Blade width, b (mm) 50 30

Blade angle, β (deg) 65 70

The pump handles water and is driven at 750 rpm. Calculate
the theoretical head and mechanical power input if the flow
rate is 0.75 m3/s.

10.2 The geometry of a centrifugal water pump is r15 10 cm,
r25 20 cm, b15b25 4 cm, β15 30�, β25 15�, and it runs at
speed 1600 rpm. Estimate the discharge required for axial
entry, the power generated in the water in watts, and the
head produced.

10.3 A centrifugal pump running at 3000 rpm pumps water at
a rate of 0.6 m3/min. The water enters axially and leaves the
impeller at 5.4 m/s relative to the blades, which are radial at
the exit. If the pump requires 5 kW and is 72 percent effi-
cient, estimate the basic dimensions (impeller exit diameter
and width), using the Euler turbomachine equation.

10.4 Consider the centrifugal pump impeller dimensions
given in Example 10.1. Estimate the ideal head rise and
mechanical power input if the outlet blade angle is changed
to 60�, 70�, 80�, or 85�.

10.5 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section 1 Outlet, Section 2
Radius, r (in.) 15 45

Blade width, b (in.) 4.75 3.25

Blade angle, β (deg) 40 60

The pump is driven at 575 rpm and the fluid is water. Cal-
culate the theoretical head and mechanical power if the flow
rate is 80,000 gpm.

10.6 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section 1 Outlet, Section 2
Radius, r (in.) 3 9.75

Blade width, b (in.) 1.5 1.125

Blade angle, β (deg) 60 70

The pump is driven at 1250 rpm while pumping water. Cal-
culate the theoretical head and mechanical power input if the
flow rate is 1500 gpm.

10.7 For the impeller of Problem 10.6, determine the rota-
tional speed for which the tangential component of the inlet
velocity is zero if the volume flow rate is 4000 gpm. Calculate
the theoretical head and mechanical power input.

10.8 A centrifugal water pump, with 15 cm diameter impeller
and axial inlet flow, is driven at 1750 rpm. The impeller vanes
are backward-curved (β2565�) and have axial width

b2 5 2 cm. For a volume flow rate of 225 m3/hr determine
the theoretical head rise and power input to the pump.

10.9 For the impeller of Problem 10.1, operating at 750 rpm,
determine the volume flow rate for which the tangential
component of the inlet velocity is zero. Calculate the theo-
retical head and mechanical power input.

10.10 Consider the geometry of the idealized centrifugal
pump described in Problem 10.11. Draw inlet and outlet
velocity diagrams assuming b 5 constant. Calculate the inlet
blade angles required for “shockless” entry flow at the design
flow rate. Evaluate the theoretical power input to the pump
at the design flow rate.

10.11 Consider a centrifugal water pump whose geometry
and flow conditions are as follows:

Impeller inlet radius, R1 2.5 cm

Impeller outlet radius, R2 18 cm

Impeller outlet width, b2 1 cm

Design speed, N 1800 rpm

Design flow rate, Q 30 m3/min

Backward-curved vanes

(outlet blade angle), β2

75�

Required flow rate range 50�150% of design

Assume ideal pump behavior with 100 percent efficiency.
Find the shutoff head. Calculate the absolute and relative
discharge velocities, the total head, and the theoretical
power required at the design flow rate.

10.12 Consider the centrifugal pump impeller dimensions
given in Example 10.1. Construct the velocity diagram for
shockless flow at the impeller inlet, if b5 constant. Calculate
the effective flow angle with respect to the radial impeller
blades for the case of no inlet swirl. Investigate the effects on
flow angle of (a) variations in impeller width and (b) inlet
swirl velocities.

10.13 For the impeller of Problem 10.5, determine the inlet
blade angle for which the tangential component of the inlet
velocity is zero if the volume flow rate is 125,000 gpm. Cal-
culate the theoretical head and mechanical power input.

10.14 A centrifugal water pump designed to operate at 1300
rpm has dimensions

Parameter Inlet Outlet

Radius, r (mm) 100 175

Blade width, b (mm) 10 7.5

Blade angle, β (deg) 40

Draw the inlet velocity diagram for a volume flow rate of
35 L/s. Determine the inlet blade angle for which the
entering velocity has no tangential component. Draw the
outlet velocity diagram. Determine the outlet absolute flow
angle (measured relative to the normal direction). Evaluate
the hydraulic power delivered by the pump, if its efficiency is
75 percent. Determine the head developed by the pump.
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10.15 A centrifugal pump runs at 1750 rpm while pumping
water at a rate of 50 L/s. The water enters axially, and leaves
tangential to the impeller blades. The impeller exit diameter
and width are 300 mm and 10 mm, respectively. If the pump
requires 45 kW, and is 75 percent efficient, estimate the exit
angle of the impeller blades.

10.16 A centrifugal water pump designed to operate at 1200
rpm has dimensions

Parameter Inlet Outlet

Radius, r (mm) 90 150

Blade width, b (mm) 10 7.5

Blade angle, β (deg) 25 45

Determine the flow rate at which the entering velocity has no
tangential component. Draw the outlet velocity diagram, and
determine the outlet absolute flow angle (measured relative
to the normal direction) at this flow rate. Evaluate the
hydraulic power delivered by the pump if its efficiency is
70 percent. Determine the head developed by the pump.

10.17 Repeat the analysis for determining the optimum
speed for an impulse turbine of Example 10.13, using the
Euler turbomachine equation.

10.18 Kerosene is pumped by a centrifugal pump. When the
flow rate is 350 gpm, the pump requires 18 hp input, and its
efficiency is 82 percent. Calculate the pressure rise produced
by the pump. Express this result as (a) feet of water and
(b) feet of kerosene.

10.19 A centrifugal pump designed to deliver water at 70 cfm
has dimensions

Parameter Inlet Outlet

Radius, r (in.) 14 7

Blade width, b (in.) 0.4 0.3

Blade angle, β (�) 20 45

Draw the inlet velocity diagram. Determine the design speed
if the entering velocity has no tangential component. Draw
the outlet velocity diagram. Determine the outlet absolute
flow angle (measured relative to the normal direction).
Evaluate the theoretical head developed by the pump.
Estimate the minimum mechanical power delivered to the
pump.

Pumps, Fans, and Blowers

10.20 In the water pump of Problem 10.8, the pump casing
acts as a diffuser, which converts 60 percent of the absolute
velocity head at the impeller outlet to static pressure rise. The
head loss through the pump suction and discharge channels is
0.75 times the radial component of velocity head leaving the
impeller. Estimate the volume flow rate, head rise, power
input, and pump efficiency at the maximum efficiency point.
Assume the torque to overcome bearing, seal, and spin losses
is 10 percent of the ideal torque at Q 5 0.065 m3/s.

10.21 The theoretical head delivered by a centrifugal pump
at shutoff depends on the discharge radius and angular speed
of the impeller. For preliminary design, it is useful to have a
plot showing the theoretical shutoff characteristics and
approximating the actual performance. Prepare a log-log

plot of impeller radius versus theoretical head rise at shutoff
with standard motor speeds as parameters. Assume the fluid
is water and the actual head at the design flow rate is
70 percent of the theoretical shutoff head. (Show these as
dashed lines on the plot.) Explain how this plot might be
used for preliminary design.

10.22 Use data from Appendix D to choose points from the
performance curves for a Peerless horizontal split case Type
16A18B pump at 705 and 880 nominal rpm. Obtain and plot
curve-fits of total head versus delivery for this pump, with an
18.0-in.-diameter impeller.

10.23 Use data from Appendix D to choose points from the
performance curves for a Peerless horizontal split case Type
4AE12 pump at 1750 and 3550 nominal rpm. Obtain and plot
curve-fits for total head versus delivery at each speed for this
pump, with a 12-in.-diameter impeller.

10.24 Data from tests of a water suction pump operated at
2000 rpm with a 12-in. diameter impeller are

Flow rate, Q (cfm) 36 50 74 88 125

Total head, H (ft) 190 195 176 162 120

Power input, 3 (hp) 25 30 35 40 46

Plot the performance curves for this pump; include a curve of
efficiency versus volume flow rate. Locate the best efficiency
point and specify the pump rating at this point.

10.25 A 9-in.-diameter centrifugal pump, running at 900 rpm
with water at 68�F generates the following performance data:

Flow rate, Q (cfm) 0 200 400 600 800 1000

Total head, H (ft) 23.0 22.3 21.0 19.5 17.0 12.5

Power input, 3 (hp) 3.13 3.50 4.06 4.47 4.88 5.09

Plot the performance curves for this pump; include a curve of
efficiency versus volume flow rate. Locate the best efficiency
point. What is the specific speed for this pump?

10.26 An axial-flow fan operates in seal-level air at 1350 rpm
and has a blade tip diameter of 3 ft and a root diameter of
2.5 ft. The inlet angles are α15 55�, β15 30�, and at the exit
β25 60�. Estimate the flow volumetric flow rate, horsepower,
and the outlet angle, α2.

10.27 Write the turbine specific speed in terms of the flow
coefficient and the head coefficient.

10.28 Data measured during tests of a centrifugal pump
driven at 3000 rpm are

Parameter

Inlet, Section

1
Outlet, Section

2
Gage pressure, p (psi) 12.5

Elevation above datum, z (ft) 6.5 32.5

Average speed of flow, V (ft/s) 6.5 15

The flow rate is 65 gpm and the torque applied to the pump
shaft is 4.75 lbf�ft. The pump efficiency is 75 percent, and the
electric motor efficiency is 85 percent. Find the electric
power required, and the gage pressure at section 2 .

10.29 The kilogram force (kgf), defined as the force exerted
by a kilogram mass in standard gravity, is commonly used in
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European practice. The metric horsepower (hpm) is defined
as 1 hpm� 75 m�kgf/s. Develop a conversion relating metric
horsepower to U.S. horsepower. Relate the specific speed for
a hydraulic turbine—calculated in units of rpm, metric
horsepower, and meters—to the specific speed calculated in
U.S. customary units.

10.30 Write the pump specific speed in terms of the flow
coefficient and the head coefficient.

10.31 A small centrifugal pump, when tested at N52875 rpm
with water, delivered Q50:016 m3=s and H540 m at its best
efficiency point (η50:70). Determine the specific speed of the
pump at this test condition. Sketch the impeller shape you
expect. Compute the required power input to the pump.

10.32 Typical performance curves for a centrifugal pump,
tested with three different impeller diameters in a single
casing, are shown. Specify the flow rate and head produced
by the pump at its best efficiency point with a 12-in. diameter
impeller. Scale these data to predict the performance of this
pump when tested with 11 in. and 13 in. impellers. Comment
on the accuracy of the scaling procedure.
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10.33 A pump with D5500 mm delivers Q50:725 m3=s of
water at H510 m at its best efficiency point. If the specific
speed of the pump is 1.74, and the required input power is 90
kW, determine the shutoff head, H0, and best efficiency, η.
What type of pump is this? If the pump is now run at 900
rpm, by scaling the performance curve, estimate the new flow
rate, head, shutoff head, and required power.

10.34 At its best efficiency point (η5 0.87), a mixed-flow
pump, with D5 16 in., delivers Q5 2500 cfm of water at
H5 140 ft when operating at N5 1350 rpm. Calculate the
specific speed of this pump. Estimate the required power
input. Determine the curve-fit parameters of the pump per-
formance curve based on the shutoff point and the best
efficiency point. Scale the performance curve to estimate the
flow, head, efficiency, and power input required to run
the same pump at 820 rpm.

10.35 A pumping system must be specified for a lift station
at a wastewater treatment facility. The average flow rate is
110 million liters per day and the required lift is 10 m. Non-
clogging impellers must be used; about 65 percent efficiency
is expected. For convenient installation, electric motors of
37.5 kW or less are desired. Determine the number of motor/

pump units needed and recommend an appropriate operat-
ing speed.

10.36 A centrifugal water pump operates at 1750 rpm; the
impeller has backward-curved vanes with β2560� and
b251:25 cm. At a flow rate of 0.025 m3/s, the radial outlet
velocity is Vn253:5 m=s. Estimate the head this pump could
deliver at 1150 rpm.

10.37 A set of eight 30-kW motor-pump units is used to
deliver water through an elevation of 30 m. The efficiency of
the pumps is specified to be 65 percent. Estimate the delivery
(liters per day) and select an appropriate operating speed.

10.38 Appendix D contains area bound curves for pump
model selection and performance curves for individual
pump models. Use these data to verify the similarity rules
for a Peerless Type 4AE12 pump, with impeller diameter
D511:0 in., operated at 1750 and 3550 nominal rpm.

10.39 Appendix D contains area bound curves for pump
model selection and performance curves for individual
pumpmodels.Use thesedata and the similarity rules topredict
and plot the curves of headH (ft) versusQ (gpm) of a Peerless
Type 10AE12 pump, with impeller diameter D512 in., for
nominal speeds of 1000, 1200, 1400, and 1600 rpm.

10.40 Consider the Peerless Type 16A18B horizontal split
case centrifugal pump (Appendix D). Use these performance
data to verify the similarity rules for (a) impeller diameter
change and (b) operating speeds of 705 and 880 rpm (note
the scale change between speeds).

10.41 Use data from Appendix D to verify the similarity
rules for the effect of changing the impeller diameter of a
Peerless Type 4AE12 pump operated at 1750 and 3550
nominal rpm.

10.42 Performance curves for Peerless horizontal split case
pumps are presented in Appendix D. Develop and plot a
curve-fit for a Type 10AE12 pump driven at 1150 nominal
rpm using the procedure described in Example 10.6.

10.43 Performance curves for Peerless horizontal split case
pumps are presented in Appendix D. Develop and plot
curve-fits for a Type 16A18B pump, with impeller diameter
D518:0 in., driven at 705 and 880 nominal rpm. Verify
the effects of pump speed on scaling pump curves using the
procedure described in Example 10.6.

10.44 Catalog data for a centrifugal water pump at design
conditions are Q5250 gpm and Δp518:6 psi at 1750 rpm. A
laboratory flume requires 200 gpm at 32 ft of head. The only
motor available develops 3 hp at 1750 rpm. Is this motor
suitable for the laboratory flume? How might the pump/
motor match be improved?

10.45 Problem 10.21 suggests that pump head at best effi-
ciency is typically about 70 percent of shutoff head. Use pump
data from Appendix D to evaluate this suggestion. A further
suggestion in Section 10.4 is that the appropriate scaling for
tests of a pump casing with different impeller diameters is
Q ~ D2. Use pump data to evaluate this suggestion.

10.46 White [53] suggests modeling the efficiency for a
centrifugal pump using the curve-fit, η5aQ2 bQ3, where
a and b are constants. Describe a procedure to evaluate a
and b from experimental data. Evaluate a and b using data
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for the Peerless Type 10AE12 pump, with impeller diameter
D512:0 in., at 1760 rpm (Appendix D). Plot and illustrate
the accuracy of the curve-fit by comparing measured and
predicted efficiencies for this pump.

10.47 A fan operates at Q5 6.3 m3/s, H5 0.15 m, and
N5 1440 rpm. A smaller, geometrically similar fan is
planned in a facility that will deliver the same head at the
same efficiency as the larger fan, but at a speed of 1800 rpm.
Determine the volumetric flow rate of the smaller fan.

10.48 A 1/3 scale model of a centrifugal water pump, when
running at Nm55100 rpm, produces a flow rate of Qm51 m3=s
with a head ofHm55:4 m. Assuming the model and prototype
efficiencies are comparable, estimate the flow rate, head, and
power requirement if the design speed is 125 rpm.

10.49 Sometimes the variation of water viscosity with tem-
perature can be used to achieve dynamic similarity. A model
pump delivers 0.10 m3/s of water at 15�C against a head of
27 m, when operating at 3600 rpm. Determine the water
temperature that must be used to obtain dynamically similar
operation at 1800 rpm. Estimate the volume flow rate and
head produced by the pump at the lower-speed test condi-
tion. Comment on the NPSH requirements for the two tests.

10.50 A large deep fryer at a snack-food plant contains hot oil
that is circulated through a heat exchanger by pumps. Solid
particles and water droplets coming from the food product are
observed in the flowing oil. What special factors must be con-
sidered in specifying the operating conditions for the pumps?

10.51 Data from tests of a pump operated at 1450 rpm, with a
12.3-in. diameter impeller, are

Flow rate, Q (cfm) 20 40 60 80 100 120 140

Net positive suction head

required, NPSR (ft) 7.1 8.0 8.9 10.3 11.8 12.3 16.9

Develop and plot a curve-fit equation for NPSHR versus
volume flow rate in the form NPSHR5a1 bQ2, where a and
b are constants. If the NPSHA520 ft, estimate the maximum
allowable flow rate of this pump.

10.52 Afour-stage boiler feedpumphas suction anddischarge
lines of 10 cm and 7.5 cm inside diameter. At 3500 rpm, the
pump is rated at 0.025 m3/s against a head of 125 m while
handling water at 115�C. The inlet pressure gage, located
50 cm below the impeller centerline, reads 150 kPa. The pump
is tobe factory certifiedby tests at the sameflowrate, head rise,
and speed, but using water at 27�C. Calculate the NPSHA at
the pump inlet in the field installation. Evaluate the suction
head that must be used in the factory test to duplicate field
suction conditions.

10.53 The net positive suction head required (NPSHR) by a
pump may be expressed approximately as a parabolic func-
tion of volume flow rate. The NPSHR for a particular pump
operating at 1800 rpm is given as Hr5H05AQ2, where
H05 10 ft of water and A5 7.9 ft/cfs2. Assume the pipe
system supplying the pump suction consists of a reservoir,
whose surface is 22 ft above the pump centerline, a square
entrance, 20 ft of 6-in. (nominal) cast-iron pipe, and a 90�

elbow. Calculate the maximum volume flow rate at 70�F for
which the suction head is sufficient to operate this pump
without cavitation.

10.54 A centrifugal pump, operating at N52265 rpm, lifts
water between two reservoirs connected by 300 ft of 6 in. and
100 ft of 3 in. cast-iron pipe in series. The gravity lift is 25 ft.
Estimate the head requirement, power needed, and hourly
cost of electrical energy to pump water at 200 gpm to the
higher reservoir. Assume that electricity costs 12b/kW�hr,
and that the electric motor efficiency is 85 percent.

10.55 For the pump and flow system of Problem 10.53,
calculate the maximum flow rate for hot water at various
temperatures and plot versus water temperature. (Be sure
to consider the density variation as water temperature is
varied.)

10.56 A centrifugal pump is installed in a piping system with
L5300 m of D540 cm cast-iron pipe. The downstream
reservoir surface is 15 m lower than the upstream reservoir.
Determine and plot the system head curve. Find the volume
flow rate (magnitude and direction) through the system when
the pump is not operating. Estimate the friction loss, power
requirement, and hourly energy cost to pump water at 1 m3/s
through this system.

10.57 Part of the water supply for the South Rim of Grand
CanyonNational Park is taken from theColoradoRiver [54].A
flow rate of 600 gpm, taken from the river at elevation 3734 ft, is
pumped to a storage tank atop the South Rim at 7022 ft ele-
vation. Part of the pipeline is above ground and part is in a hole
directionally drilled at angles up to 70� from the vertical; the
total pipe length is approximately 13,200 ft. Under steady flow
operating conditions, the frictional head loss is 290 ft ofwater in
addition to the static lift. Estimate the diameter of the com-
mercial steel pipe in the system. Compute the pumping power
requirement if the pump efficiency is 61 percent.

10.58 A Peerless horizontal split-case type 4AE12 pump
with 11.0-in.-diameter impeller, operating at 1750 rpm, lifts
water between two reservoirs connected by 200 ft of 4 in. and
200 ft of 3 in. cast-iron pipe in series. The gravity lift is 10 ft.
Plot the system head curve and determine the pump oper-
ating point.

10.59 A pump transfers water from one reservoir to another
through two cast-iron pipes in series. The first is 3000 ft of
9 in. pipe and the second is 1000 ft of 6 in. pipe. A constant
flow rate of 75 gpm is tapped off at the junction between the
two pipes. Obtain and plot the system head versus flow rate
curve. Find the delivery if the system is supplied by the pump
of Example 10.6, operating at 1750 rpm.

10.60 Performance data for a pump are

H (ft) 90 87 81 70 59 43 22

Q (cfm) 0 50 100 150 200 250 300

The pump is to be used to move water between two open
reservoirs with an elevation increase of 24 ft. The connecting
pipe system consists of 1750 ft of commercial steel pipe
containing two 90� elbows and an open gate valve. Find the
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flow rate if we use (a) 8-in., (b) 10-in., and (c) 12-in. (nom-
inal) pipe.

10.61 Performance data for a pump are

H (ft) 179 176 165 145 119 84 43

Q (gpm) 0 500 1000 1500 2000 2500 3000

Estimate the delivery when the pump is used to move water
between two open reservoirs, through 1200 ft of 12 in.
commercial steel pipe containing two 90� elbows and an
open gate valve, if the elevation increase is 50 ft. Determine
the gate valve loss coefficient needed to reduce the volume
flow rate by half.

10.62 Consider again the pump and piping system of
Problem 10.61. Determine the volume flow rate and gate
valve loss coefficient for the case of two identical pumps
installed in series.

10.63 The resistance of a given pipe increases with age as
deposits form, increasing the roughness and reducing the
pipe diameter (see Fig. 8.14). Typical multipliers to be
applied to the friction factor are given in [15]:

Pipe Age

(years)

Small Pipes,

4�10 in.

Large Pipes,

12�60 in.

New 1.00 1.00

10 2.20 1.60

20 5.00 2.00

30 7.25 2.20

40 8.75 2.40

50 9.60 2.86

60 10.0 3.70

70 10.1 4.70

Consider again the pump and piping system of Problem
10.61. Estimate the percentage reductions in volume flow
rate that occur after (a) 20 years and (b) 40 years of use, if
the pump characteristics remain constant. Repeat the cal-
culation if the pump head is reduced 10 percent after
20 years of use and 25 percent after 40 years.

10.64 Consider again the pump and piping system of
Problem 10.61. Determine the volume flow rate and gate
valve loss coefficient for the case of two identical pumps
installed in parallel.

10.65 Consider again the pump and piping system of Problem
10.64. Estimate the percentage reductions in volume flow rate
that occur after (a) 20 years and (b) 40 years of use, if the
pump characteristics remain constant. Repeat the calculation
if the pump head is reduced 10 percent after 20 years of use
and 25 percent after 40 years. (Use the data of Problem 10.63
for increase in pipe friction factor with age.)

10.66 Consider again the pump and piping system of
Problem 10.62. Estimate the percentage reductions in volume
flow rate that occur after (a) 20 years and (b) 40 years of use,
if the pump characteristics remain constant. Repeat the
calculation if the pump head is reduced 10 percent after
20 years of use and 25 percent after 40 years. (Use the data

of Problem 10.63 for increase in pipe friction factor
with age.)

10.67 The city of Englewood, Colorado, diverts water for
municipal use from the South Platte River at elevation 1610 m
[54]. The water is pumped to storage reservoirs at 1620-m
elevation. The inside diameter of the steel water line is 68.5
cm; its length is 1770 m. The facility is designed for an initial
capacity (flow rate) of 3200 m3/hr, with an ultimate capacity of
3900 m3/hr. Calculate and plot the system resistance curve.
Ignore entrance losses. Specify an appropriate pumping sys-
tem. Estimate the pumping power required for steady-state
operation, at both the initial and ultimate flow rates.

10.68 A pump in the system shown draws water from a sump
and delivers it to an open tank through 400 m of new, 10-cm-
diameter steel pipe. The vertical suction pipe is 2 m long and
includes a foot valve with hinged disk and a 90� standard
elbow. The discharge line includes two 90� standard elbows,
an angle lift check valve, and a fully open gate valve. The
design flow rate is 800 L/min. Find the head losses in the
suction and discharge lines. Calculate the NPSHA. Select a
pump suitable for this application.

80 m

Angle lift check valve

400 m

Gate valve (fully open)

Discharge pressure gage
pd

0.7 m

2 m

2 m

Elev 8.7 m

Elev 7.2 m

SUMP

Foot valve with hinged disk

Sudden enlargement

Elev 87 m

P10.68, P10.70

10.69 Consider the flow system described in Problem 8.175.
Select a pump appropriate for this application. Check the
NPSHR versus the NPSHA for this system.

10.70 Consider the flow system and data of Problem 10.68
and the data for pipe aging given in Problem 10.63. Select
pump(s) that will maintain the system flow at the desired rate
for (a) 10 years and (b) 20 years. Compare the delivery
produced by these pumps with the delivery by the pump
sized for new pipes only.

10.71 Consider the flow system shown in Problem 8.176.
Select an appropriate pump for this application. Check the
pump efficiency and power requirement compared with
those in the problem statement.

10.72 Consider the flow system shown in Problem 8.124.
Assume the minimum NPSHR at the pump inlet is 15 ft of
water. Select a pump appropriate for this application. Use
the data for increase in friction factor with pipe age given in
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Problem 10.65 to determine and compare the system flow
rate after 10 years of operation.

10.73 Consider the pipe network of Problem 8.189. Select a
pump suitable to deliver a total flow rate of 300 gpm through
the pipe network.

10.74 A fire nozzle is supplied through 300 ft of 3-in.-
diameter canvas hose (with e50:001 ft). Water from a
hydrant is supplied at 50 psig to a booster pump on board
the pumper truck. At design operating conditions, the pres-
sure at the nozzle inlet is 100 psig, and the pressure drop
along the hose is 33 psi per 100 ft of length. Calculate the
design flow rate and the maximum nozzle exit speed. Select a
pump appropriate for this application, determine its effi-
ciency at this operating condition, and calculate the power
required to drive the pump.

10.75 Apumping systemwith two different static lifts is shown.
Each reservoir is supplied by a line consisting of 1000 ft of 6-in.
cast-iron pipe. Evaluate and plot the system head versus flow
curve. Explain what happens when the pump head is less than
the height of the upper reservoir. Calculate the flow rate
delivered at a pump head of 85 ft.

70 ft

50 ft

1000 ft of 6-in. pipe (cast iron)

P10.75

10.76 Consider the flow system shown in Problem 8.90.
Evaluate the NPSHA at the pump inlet. Select a pump
appropriate for this application. Use the data on pipe aging
from Problem 10.63 to estimate the reduction in flow rate
after 10 years of operation.

10.77 Consider the gasoline pipeline flow of Problem 8.142.
Select pumps that, combined in parallel, supply the total flow
requirement. Calculate the power required for 4 pumps in
parallel. Also calculate the volume flow rates and power
required when only 1, 2, or 3 of these pumps operates.

10.78 Consider the chilled water circulation system of
Problem 8.178. Select pumps that may be combined in par-
allel to supply the total flow requirement. Calculate the
power required for 3 pumps in parallel. Also calculate the
volume flow rates and power required when only 1 or 2 of
these pumps operates.

10.79 Water for the sprinkler system at a lakeside summer
home is to be drawn from the adjacent lake. The home is
located on a bluff 33 m above the lake surface. The pump
is located on level ground 3 m above the lake surface. The
sprinkler system requires 40 L/min at 300 kPa (gage).
The piping system is to be 2-cm-diameter galvanized iron. The
inlet section (between the lake and pump inlet) includes a
reentrant inlet, one standard 45� elbow, one standard 90�

elbow, and 20 m of pipe. The discharge section (between the
pump outlet and the sprinkler connection) includes two

standard 45� elbows and 45 m of pipe. Evaluate the head loss
on the suction side of the pump. Calculate the gage pressure at
the pump inlet. Determine the hydraulic power requirement
of the pump. If the pipe diameter were increased to 4 cm.,
would the power requirement of the pump increase, decrease,
or stay the same? What difference would it make if the pump
were located halfway up the hill?

10.80 Consider the fire hose and nozzle of Problem 8.179.
Specify an appropriate pump to supply four such hoses
simultaneously. Calculate the power input to the pump.

10.81 Manufacturer’s data for a submersible utility pump are

Discharge height (ft) 0.3 0.7 1.5 3.0 4.5 6.0 8.0

Water flow rate (L/min) 77.2 75 71 61 51 26 0

The owner’s manual also states, “Note: These ratings are
based on discharge into 25-mm pipe with friction loss
neglected. Using 20-mm garden hose adaptor, performance
will be reduced approximately 15 percent.” Plot a perfor-
mance curve for the pump. Develop a curve-fit equation for
the performance curve; show the curve-fit on the plot. Calcu-
late and plot the pump delivery versus discharge height
through a 15-m length of smooth 20-mm garden hose. Com-
pare with the curve for delivery into 25-mm pipe.

10.82 Consider the swimming pool filtration system of
Problem 8.190. Assume the pipe used is 20-mm PVC
(smooth plastic). Specify the speed and impeller diameter
and estimate the efficiency of a suitable pump.

10.83 Water is pumped from a lake (at z5 0) to a large
storage tank located on a bluff above the lake. The pipe is
3-in.-diameter galvanized iron. The inlet section (between
the lake and the pump) includes one rounded inlet, one
standard 90� elbow, and 50 ft of pipe. The discharge section
(between the pump outlet and the discharge to the open
tank) includes two standard 90� elbows, one gate valve, and
150 ft of pipe. The pipe discharge (into the side of the tank)
is at z5 70 ft. Calculate the system flow curve. Estimate the
system operating point. Determine the power input to the
pump if its efficiency at the operating point is 80 percent.
Sketch the system curve when the water level in the upper
tank reaches z5 90 ft. If the water level in the upper tank is
at z5 75 ft and the valve is partially closed to reduce the flow
rate to 0.1 ft3/s, sketch the system curve for this operating
condition. Would you expect the pump efficiency to be
higher for the first or second operating condition? Why?

10.84 Performance data for a centrifugal fan of 3-ft diam-
eter, tested at 750 rpm, are

Volume flow rate

Q (ft3/s)

106 141 176 211 246 282

Static pressure rise,

Δp (psi)

0.075 0.073 0.064 0.050 0.033 0.016

Power output 3 (hp) 2.75 3.18 3.50 3.51 3.50 3.22

Plot the performance data versus volume flow rate. Calculate
static efficiency, and show the curve on the plot. Find the
best efficiency point, and specify the fan rating at this point.
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10.85 Using the fan of Problem 10.84, determine the mini-
mum size square sheet-metal duct that will carry a flow of
200 ft3/s over a distance of 50 ft. Estimate the increase in
delivery if the fan speed is increased to 1000 rpm.

10.86 The performance data of Problem 10.84 are for a
36-in.-diameter fan wheel. The fan also is manufactured with
42-, 48-, 54-, and 60-in. diameter wheels. Pick a standard fan
to deliver 600 ft3/s against a 1-in. H2O static pressure rise.
Determine the required fan speed and input power required.

10.87 Consider the fan andperformance data of Problem10.84.
At Q5 200 ft3/s, the dynamic pressure is equal to 0.25 in.
of water. Evaluate the fan outlet area. Plot total pressure rise
and input horsepower for this fan versus volume flow rate.
Calculate the fan total efficiency, and show the curveon theplot.
Find the best efficiency point, and specify the fan rating at this
point.

10.88 Performance characteristics of a Howden Buffalo
axial flow fan are presented below. The fan is used to power
a wind tunnel with 1-ft square test section. The tunnel con-
sists of a smooth inlet contraction, two screens (each with
loss coefficient K50:12), the test section, and a diffuser
where the cross section is expanded to 24 in. diameter at the
fan inlet. Flow from the fan is discharged back to the room.
Calculate and plot the system characteristic curve of pressure
loss versus volume flow rate. Estimate the maximum air flow
speed available in this wind tunnel test section.
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10.89 Consider again the axial-flow fan and wind tunnel of
Problem 10.88. Scale the performance of the fan as it varies
with operating speed. Develop and plot a “calibration curve”
showing test section flow speed (in m/s) versus fan speed
(in rpm).

10.90 Experimental test data for an aircraft engine fuel pump
are presented below. This gear pump is required to supply jet
fuel at 450 pounds per hour and 150 psig to the engine fuel
controller. Tests were conducted at 10, 96, and 100 percent
of the rated pump speed of 4536 rpm. At each constant speed,
the back pressure on the pump was set, and the flow rate
measured. On one graph, plot curves of pressure versus
delivery at the three constant speeds. Estimate the pump
displacement volume per revolution. Calculate the volu-
metric efficiency at each test point and sketch contours of
constant ηv. Evaluate the energy loss caused by valve throt-
tling at 100 percent speed and full delivery to the engine.

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph*)

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph)

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph)

200 1810 200 1730 200 89

4536 300 1810 4355 300 1750 453 250 73

(100%) 400 1810 (96%) 400 1735 (10%) 300 58.5

500 1790 500 1720 350 45

900 1720 900 1635 400 30

* Fuel flow rate measured in pounds per hour (pph).

Hydraulic Turbines

10.91 A hydraulic turbine is designed to produce 36,000 hp at
95 rpm under 50 ft of head. Laboratory facilities are avail-
able to provide 15 ft of head and to absorb 50 hp from the
model turbine. Determine (a) the appropriate model test
speed and scale ratio and (b) volume flow rate, assuming a
model efficiency of 86 percent.

10.92 Preliminary calculations for a hydroelectric power
generation site show a net head of 2350 ft is available at a
water flow rate of 75 ft3/s. Compare the geometry and effi-
ciency of Pelton wheels designed to run at (a) 450 rpm and
(b) 600 rpm.

10.93 Conditions at the inlet to the nozzle of a Pelton wheel
are p5700 psig and V515 mph. The jet diameter is d57:5 in.
and the nozzle loss coefficient is Knozzle50:04. The wheel dia-
meter isD58 ft. At this operating condition, η50:86. Calculate
(a) the power output, (b) the normal operating speed, (c) the
approximate runaway speed, (d) the torque at normal operat-
ing speed, and (e) the approximate torque at zero speed.

10.94 The reaction turbines at Niagara Falls are of the
Francis type. The impeller outside diameter is 4.5 m. Each
turbine produces 54 MW at 107 rpm, with 93.8 percent effi-
ciency under 65 m of net head. Calculate the specific speed of
these units. Evaluate the volume flow rate to each turbine.
Estimate the penstock size if it is 400 m long and the net
head is 83 percent of the gross head.

10.95 Francis turbine Units 19, 20, and 21, installed at the
Grand Coulee Dam on the Columbia River, are very large
[55]. Each runner is 32.6 ft in diameter and contains 550 tons
of cast steel. At rated conditions, each turbine develops
820,000 hp at 72 rpm under 285 ft of head. Efficiency is
nearly 95 percent at rated conditions. The turbines operate at
heads from 220 to 355 ft. Calculate the specific speed at rated
operating conditions. Estimate the maximum water flow rate
through each turbine.

10.96 Measured data for performance of the reaction tur-
bines at Shasta Dam near Redding, California, are shown in
Fig. 10.39. Each turbine is rated at 103,000 hp when oper-
ating at 138.6 rpm under a net head of 380 ft. Evaluate the
specific speed and compute the shaft torque developed by
each turbine at rated operating conditions. Calculate and
plot the water flow rate per turbine required to produce
rated output power as a function of head.

10.97 Figure 10.37 contains data for the efficiency of a large
Pelton waterwheel installed in the Tiger Creek Power House
of Pacific Gas & Electric Company near Jackson, California.
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This unit is rated at 26.8 MW when operated at 225 rpm
under a net head of 360 m of water. Assume reasonable flow
angles and nozzle loss coefficient, and water at 15�C.
Determine the rotor radius, and estimate the jet diameter
and the mass flow rate of water.

10.98 An impulse turbine is to develop 15 MW from a single
wheel at a location where the net head is 350 m.Determine the
appropriate speed, wheel diameter, and jet diameter for single-
and multiple-jet operation. Compare with a double-overhung
wheel installation. Estimate the required water consumption.

10.99 An impulse turbine under a net head of 33 ft was
tested at a variety of speeds. The flow rate and the brake
force needed to set the impeller speed were recorded:

Wheel Speed

(rpm)

Flow rate

(cfm)

Brake Force (lbf)

(R 5 0.5 ft)

0 7.74 2.63

1000 7.74 2.40

1500 7.74 2.22

1900 7.44 1.91

2200 7.02 1.45

2350 5.64 0.87

2600 4.62 0.34

2700 4.08 0.09

Calculate and plot the machine power output and efficiency
as a function of water turbine speed.

10.100 In U.S. customary units, the common definition of
specific speed for a hydraulic turbine is given by Eq. 10.13b.
Develop a conversion between this definition and a truly
dimensionless one in SI units. Evaluate the specific speed of
an impulse turbine, operating at 400 rpm under a net head of
1190 ft with 86 percent efficiency, when supplied by a single
6-in.-diameter jet. Use both U.S. customary and SI units.
Estimate the wheel diameter.

10.101 According to a spokesperson for Pacific Gas &
Electric Company, the Tiger Creek plant, located east of
Jackson, California, is one of 71 PG&E hydroelectric pow-
erplants. The plant has 373 m of gross head, consumes 21 m3/s
of water, is rated at 60 MW, and operates at 58 MW. The
plant is claimed to produce 0.785 kW�hr/(m2�m) of water and
336.43 106 kW�hr/yr of operation. Estimate the net head at
the site, the turbine specific speed, and its efficiency. Com-
ment on the internal consistency of these data.

10.102 Design thepiping systemto supplyawater turbine from
a mountain reservoir. The reservoir surface is 320 m above the
turbine site. The turbine efficiency is 83 percent, and it must
produce 30 kW of mechanical power. Define the minimum
standard-size pipe required to supply water to the turbine
and the required volume flow rate of water. Discuss the effects
of turbine efficiency, pipe roughness, and installing a diffuser at
the turbine exit on the performance of the installation.

10.103 A small hydraulic impulse turbine is supplied with
water through a penstockwith diameterD and lengthL; the jet
diameter is d. The elevation difference between the reservoir
surface and nozzle centerline is Z. The nozzle head loss coef-
ficient is Knozzle and the loss coefficient from the reservoir to
the penstock entrance is Kentrance. Determine the water jet
speed, the volume flow rate, and the hydraulic power of the

jet, for the case where Z5300 ft, L51000 ft, D56 in.,
Kentrance50:5, Knozzle50:04, and d52 in., if the pipe is made
from commercial steel. Plot the jet power as a function of jet
diameter to determine the optimum jet diameter and the
resulting hydraulic power of the jet. Comment on the effects of
varying the loss coefficients and pipe roughness.

Propellers and Wind-Power Machines

10.104 The propeller on a fanboat used in the Florida Ever-
glades moves air at the rate of 50 kg/s. When at rest, the speed
of the slipstream behind the propeller is 45 m/s at a location
where the pressure is atmospheric. Calculate (a) the propeller
diameter, (b) the thrust produced at rest, and (c) the thrust
produced when the fanboat is moving ahead at 15 m/s if the
mass flow rate through the propeller remains constant.

10.105 A fanboat in the Florida Everglades is powered by a
propeller, with D51:5 m, driven at maximum speed,
N51800 rpm, by a 125 kW engine. Estimate the maximum
thrust produced by the propeller at (a) standstill and
(b) V512:5 m=s.

10.106 A jet-propelled aircraft traveling at 225 m/s takes in
50 kg/s of air. If the propulsive efficiency (defined as the ratio
of the useful work output to the mechanical energy input to
the fluid) of the aircraft is 45 percent, determine the speed at
which the exhaust is discharged relative to the aircraft.

10.107 Drag data for model and prototype guided missile
frigates are presented in Figs. 7.2 and 7.3. Dimensions of the
prototype vessel are given in Problem 9.89. Use these data,
with the propeller performance characteristics of Fig. 10.44,
to size a single propeller to power the full-scale vessel. Cal-
culate the propeller size, operating speed, and power input, if
the propeller operates at maximum efficiency when the
vessel travels at its maximum speed, V537:6 knots.

10.108 The propulsive efficiency, η, of a propeller is defined
as the ratio of the useful work produced to the mechanical
energy input to the fluid. Determine the propulsive efficiency
of the moving fanboat of Problem 10.104. What would be the
efficiency if the boat were not moving?

10.109 The propeller for the Gossamer Condor human-
powered aircraft has D512 ft and rotates at N5107 rpm.
Additional details on the aircraft are given in Problem 9.174.
Estimate the dimensionless performance characteristics and
efficiency of this propeller at cruise conditions. Assume the pilot
expends 70percent ofmaximumpower at cruise. (SeeReference
[56] for more information on human-powered flight.)

10.110 Equations for the thrust, power, and efficiency of
propulsion devices were derived in Section 10.6. Show that
these equations may be combined for the condition of con-
stant thrust to obtain

η5
2

11 11
FT

ρV2

2

πD2

4

0
BB@

1
CCA

1=2

Interpret this result physically.

10.111 The National Aeronautics & Space Administration
(NASA) and the U.S. Department of Energy (DOE)
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cosponsor a large demonstration wind turbine generator at
Plum Brook, near Sandusky, Ohio [47]. The turbine has two
blades, with a radius of 63 ft, and delivers maximum power
when the wind speed is above V5 16 knots. It is designed to
produce 135 hp with powertrain efficiency of 74 percent. The
rotor is designed to operate at a constant speed of 45 rpm in
winds over 5 knots by controlling system load and adjusting
blade angles. For the maximum power condition, estimate
the rotor tip speed and power coefficient.

10.112 A typical American multiblade farm windmill has
D57 ft and is designed to produce maximum power in winds
with V515 mph. Estimate the rate of water delivery, as a
function of the height to which the water is pumped, for this
windmill.

10.113 A model of an American multiblade farm windmill is
to be built for display. The model, withD51 m, is to develop
full power at V510 m=s wind speed. Calculate the angular
speed of the model for optimum power generation. Estimate
the power output.

10.114 A large Darrieus vertical axis wind turbine was built
by the U.S. Department of Energy near Sandia, New Mexico
[48]. This machine is 18 m tall and has a 5-m radius; the area
swept by the rotor is over 110 m2. If the rotor is constrained
to rotate at 70 rpm, plot the power this wind turbine can
produce in kilowatts for wind speeds between 5 and 50 knots.

10.115 Lift and drag data for the NACA 23015 airfoil section
are presented in Fig. 9.17. Consider a two-blade horizontal-
axis propeller wind turbine with NACA 23015 blade section.
Analyze the air flow relative to a blade element of the
rotating wind turbine. Develop a numerical model for
the blade element. Calculate the power coefficient developed
by the blade element as a function of tip-speed ratio. Com-
pare your result with the general trend of power output for
high-speed two-bladed turbine rotors shown in Fig. 10.50.

10.116 Aluminum extrusions, patterned after NACA sym-
metric airfoil sections, frequently are used to form Darrieus
wind turbine “blades.” Below are section lift and drag
coefficient data [57] for a NACA 0012 section, tested at
Re5 6 3 106 with standard roughness (the section stalled for
α . 12�):

Angle of attack,

α (deg)

0 2 4 6 8 10 12

Lift coefficient,

CL (—)

0 0.23 0.45 0.68 0.82 0.94 1.02

Drag coefficient.

CD (—)

0.0098 0.0100 0.0119 0.0147 0.0194 — —

Analyze the air flow relative to a blade element of a Darrieus
wind turbine rotating about its troposkien axis. Develop a
numerical model for the blade element. Calculate the power
coefficient developed by the blade element as a function of
tip-speed ratio. Compare your result with the general trend
of power output for Darrieus rotors shown in Fig. 10.50.

Compressible-Flow Turbomachines

10.117 A prototype air compressor with a compression ratio
of 7 is designed to take 8.9 kg/s air at 1 atmosphere and 20�C.
The design point speed, power requirement, and efficiency
are 600 rpm, 5.6 MW, and 80 percent, respectively. A 1:5-
scale model of the prototype is built to help determine
operability for the prototype. If the model takes in air at
identical conditions to the prototype design point, what will
the mass flow and power requirement be for operation at
80 percent efficiency?

10.118 A compressor has been designed for entrance con-
ditions of 14.7 psia and 70�F. To economize on the power
required, it is being tested with a throttle in the entry duct to
reduce the entry pressure. The characteristic curve for its
normal design speed of 3200 rpm is being obtained on a day
when the ambient temperature is 58�F. At what speed should
the compressor be run? At the point on the characteristic
curve at which the mass flow would normally be 125 lbm/s,
the entry pressure is 8.0 psia. Calculate the actual mass flow
rate during the test.

10.119 The turbine for a new jet engine was designed
for entrance conditions of 160 psia and 1700�F, ingesting
500 lbm/s at a speed of 500 rpm, and exit conditions of
80 psia and 1350�F. If the altitude and fueling for the engine
were changed such that the entrance conditions were now
140 psia and 1600�F, calculate the new operating speed,
mass flow rate, and exit conditions for similar operation, i.e.,
equal efficiency.

10.120 We have seen many examples in Chapter 7 of
replacing working fluids in order to more easily achieve
similitude between models and prototypes. Describe the
effects of testing an air compressor using helium as the
working fluid on the dimensionless and dimensional parame-
ters we have discussed for compressible flow machines.
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11
Flow in Open
Channels
11.1 Basic Concepts and Definitions

11.2 Energy Equation for Open-Channel Flows

11.3 Localized Effect of Area Change (Frictionless Flow)

11.4 The Hydraulic Jump

11.5 Steady Uniform Flow

11.6 Flow with Gradually Varying Depth

11.7 Discharge Measurement Using Weirs

11.8 Summary and Useful Equations

Case Study in Energy and the Environment

Using a Reservoir as a Battery
We are all familiar with electric batteries;

we have them in our cars, our laptops, our
cell phones, and our MP3 players, to mention just a
few of their uses. Batteries are energy storage devices
that allow us to generate energy at one time and place
and store it for use at a different time and in another
place. The figure shows a rather mundane-looking

dam (it’s the Ffestiniog Dam in north Wales), but it’s
actually part of a pretty exciting development, the
Ffestiniog Pumped Storage Scheme: it’s a battery!
The idea of using reservoirs not only as a source of

power but as a way to store power is not new; efforts
were made in the 19th century. But it is becoming very
important in optimizing power plant performance, as
well as in storing renewable energy generated by wind,
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In this chapter we introduce some of the basic concepts in the study of open-channel
flows. The topic of open-channel flow is covered in much more detail in a number of
specialized texts [1�8].

Many flows in engineering and in nature occur with a free surface. An example of
a human-made channel is shown in Fig. 11.1. This is a view of the 190-mile-long
Hayden-Rhodes Aqueduct, which is part of the Central Arizona Project (CAP). The
CAP is a 336-mi (541 km) diversion canal in Arizona used to redirect water from

wave, and ocean current farms, some of which we have
reviewed in previous Case Studies in Energy and the
Environment. Power companies have always had
the problem that energy demand tends to have severe
peaks and troughs; in the afternoon and evening there
is high demand; in the middle of the night, low
demand. However, for best efficiency, plants should
operate at a steady energy output; in addition, the
power company needs to have on hand extra power
generation capability just for those peaks. On the other
hand, renewable energy needs to be harvested when
it’s available—when the wind is blowing, when there
are waves or decent currents flowing—and these times
do not always correspond to the times when the
energy is needed. With schemes like the one at Ffes-
tiniog, at times of low electrical demand, excess gen-
eration capacity from the power company is used to
pump water into an upper reservoir; when there is high
demand, water is released back into a lower reservoir
through a turbine, generating electricity. Reversible
turbine/generator assemblies act as pump and turbine
(usually of a Francis turbine design; see Chapter 10).

The system’s four water turbines can generate 360 MW
of electricity within a minute of the need arising!
Some facilities worldwide are purely pumped-

storage plants, which simply shift water between two
reservoirs, but combined pump-storage plants that
also generate their own electricity like conventional
hydroelectric plants are becoming more common. The
process is reasonably efficient and is the only way that
huge amounts of energy can be stored (electric bat-
teries are all relatively low capacity). Taking into
account losses in the turbine/generator system and
from evaporation loss at the exposed water surface, as
well as the possibility of losses due to hydraulic jumps
(discussed in this chapter) occurring at outlets, about
70 to 85 percent of the electrical energy used to pump
the water into the elevated reservoir can be regained.
In future years, increased effort will be placed on
increasing the efficiency of these systems, and they
will become much more common. The Ffestiniog sys-
tem is for storing excess power plant energy, but in
the future we may expect to see pumped-storage
plants adjacent to a number of wind farms.

The Ffestiniog dam.
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Fig. 11.1 Hayden-Rhodes Aqueduct, Central Arizona Project.
[Courtesy of the U.S. Bureau of Reclamation (1985), photograph by Joe Madrigal Jr.]
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the Colorado River into central and southern Arizona, and it is the largest and most
expensive aqueduct system ever constructed in the United States.

Because free surface flows differ in several important respects from the flows in
closed conduits that we reviewed in Chapter 8, we treat them separately in this
chapter. Familiar examples where the free surface is at atmospheric pressure include
flows in rivers, aqueducts, and irrigation canals, flows in rooftop or street gutters, and
drainage ditches. Human-made channels are given many different names, including
canal, flume, or culvert. A canal usually is excavated below ground level and may be
unlined or lined. Canals generally are long and of very mild slope; they are used to
carry irrigation or storm water or for navigation. A flume usually is built above ground
level to carry water across a depression. A culvert, which usually is designed to flow
only part-full, is a short covered channel used to drain water under a highway or
railroad embankment.

In this chapter we shall develop, using control volume concepts from Chapter 4,
some basic theory for describing the behavior and classification of flows in natural and
human-made channels. We shall consider:

� Flows for which the local effects of area change predominate and frictional forces
may be neglected. An example is flow over a bump or depression, over the short
length of which friction is negligible.

� Flow with an abrupt change in depth. This occurs during a hydraulic jump (see
Fig. 11.12 for examples of hydraulic jumps).

� Flow at what is called normal depth. For this, the flow cross section does not vary in
the flow direction; the liquid surface is parallel to the channel bed. This is analogous
to fully developed flow in a pipe.

� Gradually varied flow. An example is flow in a channel in which the bed slope
varies. The major objective in the analysis of gradually varied flow is to predict the
shape of the free surface.

It is quite common to observe surface waves in flows with a free surface, the simplest
example being when an object such as a pebble is thrown into the water. The prop-
agation speed of a surface wave is analogous in many respects to the propagation of a
sound wave in a compressible fluid medium (which we discuss in Chapter 12). We
shall determine the factors that affect the speed of such surface waves. We will see
that this is an important determinant in whether an open-channel flow is able to
gradually adjust to changing conditions downstream or a hydraulic jump occurs.

This chapter also includes a brief discussion of flow measurement techniques for
use in open channels.

11.1Basic Concepts and Definitions
Before analyzing the different types of flows that may occur in an open channel, we
will discuss some common concepts and state some simplifying assumptions. We are
doing so explicitly, because there are some important differences between our
previous studies of pipes and ducts in Chapter 8 and the study of open-channel
flows.

One significant difference between flows in pipes and ducts is

� The driving force for open-channel flows is gravity.

(Note that some flows in pipes and ducts are also gravity driven (for example, flow
down a full drainpipe), but typically flow is driven by a pressure difference generated
by a device such as a pump.) The gravity force in open-channel flow is opposed by
friction force on the solid boundaries of the channel.
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Simplifying Assumptions

The flow in an open channel, especially in a natural one such as a river, is often very
complex, three-dimensional, and unsteady. However, in most cases, we can obtain
useful results by approximating such flows as being:

� One-dimensional.

� Steady.

A third simplifying assumption is:

� The flow at each section in an open-channel flow is approximated as a uniform
velocity.

Typical contours of actual streamwise velocity for a number of open-channel sections
are shown in Fig. 11.2. These would seem to indicate that the third assumption is
invalid, but in fact it is a reasonable approximation, as we shall now justify. Most flows
of interest are large in physical scale, so the Reynolds numbers generally are large.
Consequently, open-channel flow seldom is laminar; in this chapter we will assume
turbulent flow. As we saw in earlier chapters, turbulence tends to smooth out the
velocity gradient (see Fig. 8.11 for turbulent pipe flow and Fig. 9.7a for turbulent
boundary layers). Hence although the profiles, as shown in Fig. 11.2, are not uniform,
as a reasonable approximation we will assume uniform velocity at each section, with
the kinetic energy coefficient, α, taken to be unity (the kinetic energy coefficient is
discussed in Section 8.6). This is illustrated in Fig. 11.3a.

Figure 11.2 shows that the measured maximum velocity occurs below the free
surface, in spite of the fact that there is negligible shear stress due to air drag so
one would expect the maximum velocity to occur at the free surface. Secondary flows
are also responsible for distorting the axial velocity profile; examples of secondary
flows are when a channel has a bend or curve or has an obstruction, such as a bridge
pier. The high velocities that may be present in the vortices generated in such cases
can seriously erode the bottom of a natural channel.

VIDEO

A Turbulent Channel (Animation).

VIDEO

The Glen Canyon Dam: A Source of

Turbulent Channel Flow.
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Fig. 11.2 Typical contours of equal velocity in open-channel sections. (From Chow [1], used by
permission.)
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The next simplifying assumption we make is:

� The pressure distribution is approximated as hydrostatic.

This is illustrated in Fig. 11.3b and is a significant difference from the analysis of flows
in pipes and ducts of Chapter 8; for these we found that the pressure was uniform at
each axial location and varied in the streamwise direction. In open-channel flows, the
free surface will be at atmospheric pressure (zero gage), so the pressure at the surface
does not vary in the direction of flow. The major pressure variation occurs across each
section; this will be exactly true if streamline curvature effects are negligible, which is
often the case.

As in the caseof turbulent flow inpipes,wemust relyonempirical correlations to relate
frictional effects to the average velocity of flow. The empirical correlation is included
through a head loss term in the energy equation (Section 11.2). Additional complications
inmany practical cases include the presence of sediment or other particulatematter in the
flow, as well as the erosion of earthen channels or structures by water action.

Channel Geometry

Channels may be constructed in a variety of cross-sectional shapes; in many cases
regular geometric shapes are used. A channel with a constant slope and cross section
is termed prismatic. Lined canals often are built with rectangular or trapezoidal sec-
tions; smaller troughs or ditches sometimes are triangular. Culverts and tunnels
generally are circular or elliptical in section. Natural channels are highly irregular and
nonprismatic, but often they are approximated using trapezoid or paraboloid sections.
Geometric properties of common open-channel shapes are summarized in Table 11.1.

The depth of flow, y, is the perpendicular distance measured from the channel bed
to the free surface. The flow area, A, is the cross section of the flow perpendicular to
the flow direction. The wetted perimeter, P, is the length of the solid channel cross-
section surface in contact with the liquid. The hydraulic radius, Rh, is defined as

Rh 5
A

P
ð11:1Þ

For flow in noncircular closed conduits (Section 8.7), the hydraulic diameter was
defined as

Dh 5
4A

P
ð8:50Þ

Thus, for a circular pipe, the hydraulic diameter, from Eq. 8.50, is equal to the pipe
diameter. From Eq. 11.1, the hydraulic radius for a circular pipe would then be half
the actual pipe radius, which is a bit confusing! The hydraulic radius, as defined by
Eq. 11.1, is commonly used in the analysis of open-channel flows, so it will be used

V

(a) Approximate velocity profile (b) Approximate pressure
distribution (gage)

Fig. 11.3 Approximations for velocity profile and pressure
distribution.
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throughout this chapter. One reason for this usage is that the hydraulic radius of a
wide channel, as seen in Table 11.1, is equal to the actual depth.

For nonrectangular channels, the hydraulic depth is defined as

yh 5
A

bs
ð11:2Þ

where bs is the width at the surface. Hence the hydraulic depth represents the average
depth of the channel at any cross section. It gives the depth of an equivalent rectan-
gular channel.

Speed of Surface Waves and the Froude Number

We will learn later in this chapter that the behavior of an open-channel flow as it
encounters downstreamchanges (for example, a bumpof the bed surface, a narrowing of
the channel, or a change in slope) is strongly dependent on whether the flow is “slow” or

Table 11.1
Geometric Properties of Common Open-Channel Shapes

Shape

Trapezoidal

Triangular

Rectangular

Wide Flat

Circular

Section
Flow

Area, A
Wetted

Perimeter, P
Hydraulic
Radius, Rh

y (b � y cot α)

(α � sinα)
8

y2 cot α

D2

by b� 2y

by b

y  cos α

y (b � y cot α)
b �

2y
sinα

2y
sinα 2

by
b� 2y

b �
2y

sinα

y

2
αD

4
1�

D sinα
α

bs

bs

bs

α

α

b

b

y

y

y

y

yα

D

b>>y
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“fast.” A slow flow will have time to gradually adjust to changes downstream, whereas
a fast flow will also sometimes gradually adjust but in some situations will do so
“violently” (i.e., there will be a hydraulic jump; see Fig. 11.12a for an example). The
question is what constitutes a slow or fast flow? These vague descriptions will be
made more precise now. It turns out that the speed at which surface waves travel along
the surface is key to defining more precisely the notions of slow and fast.

To determine the speed (or celerity) of surface waves, consider an open channel
with movable end wall, containing a liquid initially at rest. If the end wall is given a
sudden motion, as in Fig. 11.4a, a wave forms and travels down the channel at some
speed, c (we assume a rectangular channel of width, b, for simplicity).

If we shift coordinates so that we are traveling with the wave speed, c, we obtain a
steady control volume, as shown in Fig. 11.4b (where for now we assume c.ΔV). To
obtain an expression for c, we will use the continuity and momentum equations for
this control volume. We also have the following assumptions:

1. Steady flow.

2. Incompressible flow.

3. Uniform velocity at each section.

4. Hydrostatic pressure distribution at each section.

5. Frictionless flow.

Assumption 1 is valid for the control volume in shifted coordinates. Assumption 2 is
obviously valid for our liquid flow. Assumptions 3 and 4 are used for the entire
chapter. Assumption 5 is valid in this case because we assume the area on which it
acts, bΔx, is relatively small (the sketch is not to scale), so the total friction force is
negligible.

For an incompressible flow with uniform velocity at each section, we can use the
appropriate form of continuity from Chapter 4,X

CS
~V � ~A 5 0 ð4:13bÞ

Applying Eq. 4.13b to the control volume, we obtain

ðc2ΔVÞfðy1ΔyÞbg2 cyb 5 0 ð11:3Þ
or

cy2ΔVy1 cΔy2ΔVΔy2 cy 5 0

Solving for ΔV,

ΔV 5 c
Δy

y1Δy
ð11:4Þ

ΔV

(a) Absolute coordinates

Fluid
moving at
speed ΔV

Fluid at
rest

Fluid moving
at speed
(c –ΔV)

Wave at rest

Wave moving
at speed c

(b) Coordinates at rest relative to wave

Fluid moving
at speed

c

Control
volume

x

y

Δy

y y + Δy y

Δx

Fig. 11.4 Motion of a surface wave.
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For the momentum equation, again with the assumption of uniform velocity at each
section, we can use the following form of the x component of momentum

Fx 5 FSx 1FBx
5

@

@t

Z
CV

uρ dV--- 1
X

CS
uρ~V � ~A ð4:18dÞ

The unsteady term @/@t disappears as the flow is steady, and the body force FBx
is zero

for horizontal flow. So we obtain

FSx 5
X

CS
uρ~V � ~A ð11:5Þ

The surface force consists of pressure forces on the two ends, and friction force on the
bottom surface (the air at the free surface contributes negligible friction in open-
channel flows). By assumption 5 we neglect friction. The gage pressure at the two ends
is hydrostatic, as illustrated in Fig. 11.4b. We recall from our study of hydrostatics that
the hydrostatic force FR on a submerged vertical surface of area A is given by the
simple result

FR 5 pcA ð3:10bÞ
where pc is the pressure at the centroid of the vertical surface. For the two vertical
surfaces of the control volume, then, we have

FSx 5 FRleft
2FRright

5 ðpcAÞleft 2 ðpcAÞright

5

(�
ρg

y1Δy

2

�
y1Δyð Þb

)
2

(�
ρg

y

2

�
yb

)

5
ρgb
2

ðy1ΔyÞ2 2 ρgb
2

y2

Using this result in Eq. 11.5 and evaluating the terms on the right,

FSx 5
ρgb
2

ðy1ΔyÞ2 2 ρgb
2

y2 5
X

CS
uρ~V � ~A

5 2 ðc2ΔVÞρfðc2ΔVÞðy1ΔyÞbg2 cρf2 cybg
The two terms in braces are equal, from continuity as shown in Eq. 11.3, so the
momentum equation simplifies to

gyΔy1
gðΔyÞ2

2
5 ycΔV

or

g 11
Δy

2y

� �
Δy 5 cΔV

Combining this with Eq. 11.4, we obtain

g 11
Δy

2y

� �
Δy 5 c2

Δy

y1Δy

and solving for c,

c2 5 gy 11
Δy

2y

� �
11

Δy

y

� �
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For waves of relatively small amplitude (Δy � y), we can simplify this expression to

c 5
ffiffiffiffiffi
gy

p ð11:6Þ

Hence the speed of a surface disturbance depends on the local fluid depth. For
example, it explains why waves “crash” as they approach the beach. Out to sea, the
water depths below wave crests and troughs are approximately the same, and hence so
are their speeds. As the water depth decreases on the approach to the beach, the
depth of crests start to become significantly larger than trough depths, causing crests
to speed up and overtake the troughs.

Note that fluid properties do not enter into the speed: Viscosity is usually a minor
factor, and it turns out that the disturbance or wave we have described is due to the
interaction of gravitational and inertia forces, both of which are linear with density.
Equation 11.6 was derived on the basis of one-dimensional motion (x direction); a
more realistic model allowing two-dimensional fluid motion (x and y directions) shows
that Eq. 11.6 applies for the limiting case of large wavelength waves (Problem 11.6
explores this). Also, there are other types of surface waves, such as capillary waves
driven by surface tension, for which Eq. 11.6 does not apply (Problems 11.7 and 11.8
explore surface tension effects).

Example 11.1 SPEED OF FREE SURFACE WAVES

You are enjoying a summer’s afternoon relaxing in a rowboat on a pond. You decide to find out how deep the water
is by splashing your oar and timing how long it takes the wave you produce to reach the edge of the pond. (The pond
is artificial; so it has approximately the same depth even to the shore.) From floats installed in the pond, you know
you’re 20 ft from shore, and you measure the time for the wave to reach the edge to be 1.5 s. Estimate the pond
depth. Does it matter if it’s a freshwater pond or if it’s filled with seawater?

Given: Time for a wave to reach the edge of a pond.

Find: Depth of the pond.

Solution: Use the wave speed equation, Eq. 11.6.

Governing equation: c 5
ffiffiffiffiffi
gy

p

The time for a wave, speed c, to travel a distance L, is Δt 5
L

c
, so c 5

L

Wt
. Using this and Eq. 11.6,

ffiffiffiffiffi
gy

p
5

L

Wt

where y is the depth, or

y 5
L2

gΔt2

Using the given data

y 5 202ft2 3
1

32:2

s2

ft
3

1

1:52
1

s2
5 5:52 ft ß

y

The pond depth is about 512 ft.

The result obtained is independent of
whether the water is fresh or saline,
because the speed of these surface
waves is independent of fluid
properties.
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The speed of surface disturbances given in Eq. 11.6 provides us with a more useful
“litmus test” for categorizing the speed of a flow than the terms “slow” and “fast.” To
illustrate this, consider a flow moving at speed V, which experiences a disturbance
at some point downstream. (The disturbance could be caused by a bump in the channel
floor or by a barrier, for example.) The disturbance will travel upstream at speed c
relative to the fluid. If the fluid speed is slow, V, c, and the disturbance will travel
upstream at absolute speed (c � V). However, if the fluid speed is fast, V. c, and the
disturbance cannot travel upstreamand instead iswashed downstreamat absolute speed
(V� c). This leads to radically different responses of slow and fast flows to a downstream
disturbance. Hence, recalling Eq. 11.6 for the speed c, open-channel flows may be
classified on the basis of Froude number first introduced in Chapter 7:

Fr 5
Vffiffiffiffiffi
gy

p ð11:7Þ

Instead of the rather loose terms “slow” and “fast,” we now have the following
criteria:

Fr, 1 Flow is subcritical, tranquil, or streaming. Disturbances can travel upstream;
downstream conditions can affect the flow upstream. The flow can gradually
adjust to the disturbance.

Fr=1 Flow is critical.

Fr. 1 Flow is supercritical, rapid, or shooting. No disturbance can travel upstream;
downstream conditions cannot be felt upstream. The flow may “violently”
respond to the disturbance because the flow has no chance to adjust to the
disturbance before encountering it.

Note that for nonrectangular channels we use the hydraulic depth yh,

Fr 5
Vffiffiffiffiffiffiffi
gyh

p ð11:8Þ

These regimes of flow behavior are qualitatively analogous to the subsonic, sonic, and
supersonic regimes of gas flow that we will discuss in Chapter 12. (In that case we are
also comparing a flow speed, V, to the speed of a wave, c, except that the wave is a
sound wave rather than a surface wave.)

We will discuss the ramifications of these various Froude number regimes later in
this chapter.

11.2 Energy Equation for Open-Channel Flows
In analyzing open-channel flows, we will use the continuity, momentum, and energy
equations. Here we derive the appropriate form of the energy equation (we will use
continuity and momentum when needed). As in the case of pipe flow, friction in open-
channel flows results in a loss of mechanical energy; this can be characterized by a
head loss. The temptation is to just use one of the forms of the energy equation for
pipe flow we derived in Section 8.6, such as

p1
ρg

1α1
V

2

2

2g
1 z1

 !
2

p2
ρg

1α2
V

2

2

2g
1 z2

 !
5

hlT
g

5 HlT ð8:30Þ

The problem with this is that it was derived on the assumption of uniform pressure at
each section, which is not the case in open-channel flow (we have a hydrostatic

610 Chapter 11 Flow in Open Channels



pressure variation at each location); we do not have a uniform p1 at section 1 and
uniform p2 at section 2 !

Instead we need to derive an energy equation for open-channel flows from first
principles. We will closely follow the steps outlined in Section 8.6 for pipe flows but
use different assumptions. You are urged to review Section 8.6 in order to be aware of
the similarities and differences between pipe flows and open-channel flows.

We will use the generic control volume shown in Fig. 11.5, with the following
assumptions:

1. Steady flow

2. Incompressible flow

3. Uniform velocity at a section

4. Gradually varying depth so that pressure distribution is hydrostatic

5. Small bed slope

6. _Ws 5 _Wshear 5 _Wother 5 0

Wemake a few comments here.Wehave seen assumptions 1�4 already; theywill always
apply in this chapter. Assumption 5 simplifies the analysis so that depth, y, is taken to be
vertical and speed, V, is taken to be horizontal, rather than normal and parallel to the
bed, respectively. Assumption 6 states that there is no shaft work, no work due to fluid
shearing at the boundaries, and no other work. There is no shear work at the boundaries
because on each part of the control surface the tangential velocity is zero (on the channel
walls) or the shear stress is zero (the open surface), so no work can be done. Note that
there can still be mechanical energy dissipation within the fluid due to friction.

We have chosen a generic control volume so that we can derive a generic energy
equation for open-channel flows, that is, an equation that can be applied to a variety
of flows such as ones with a variation in elevation, or a hydraulic jump, or a sluice gate,
and so on, between sections 1 and 2 . Coordinate z indicates distances measured in
the vertical direction; distances measured vertically from the channel bed are denoted
by y. Note that y1 and y2 are the flow depths at sections 1 and 2 , respectively, and z1
and z2 are the corresponding channel elevations.

The energy equation for a control volume is

Q � Ws � Wshear � Wother � 

� 0(6)   � 0(6)    � 0(6)     � 0(1)

t CV

e   dV �

� �

CS

(e � pυ) V

V 2

2

dA � �� �. . . .

e � u

(4.56)·

gz

Control
volume

z1

�

y1

y

z2

�

y2

z

Fig. 11.5 Control volume and coordinates for
energy analysis of open-channel flow.
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Recall that u is the thermal specific energy and v = 1/ρ is the specific volume. After
using assumptions 1 and 6, and rearranging, with _m 5

R
ρ~V � d~A, and dA= bdy where

b(y) is the channel width, we obtain

_Q 5 2

Z
1

p

ρ
1

V2

2
1 gz

0
@

1
AρVbdy2

Z
1

uρVbdy1
Z
2

p

ρ
1

V2

2
1 gz

0
@

1
AρVbdy1

Z
2

uρVbdy

5

Z
1

p

ρ
1

V2

2
1 gz

0
@

1
AρVbdy1

Z
2

p

ρ
1

V2

2
1 gz

0
@

1
AρVbdy1 _mðu2 2 u1Þ

or

Z
1

p

ρ
1

V2

2
1 gz

� �
ρVbdy2

Z
2

p

ρ
1

V2

2
1 gz

� �
ρVbdy 5 _mðu2 2 u1Þ2 _Q 5 _mhlT

ð11:9Þ
This states that the loss in mechanical energies (“pressure,” kinetic and potential)
through the control volume leads to a gain in the thermal energy and/or a loss of heat
from the control volume. As in Section 8.6, these thermal effects are collected into the
head loss term hlT .

The surface integrals in Eq. 11.9 can be simplified. The speed, V, is constant at each
section by assumption 3. The pressure, p, does vary across sections 1 and 2 , as does
the potential, z. However, by assumption 4, the pressure variation is hydrostatic.
Hence, for section 1 , using the notation of Fig. 11.5

p 5 ρgðy1 2 yÞ

[so p= ρgy1 at the bed and p= 0 (gage) at the free surface] and

z 5 ðz1 1 yÞ
Conveniently, we see that the pressure decreases linearly with y while z increases
linearly with y, so the two terms together are constant,

p

ρ
1 gz

� �
1

5 gðy1 2 yÞ1 gðz1 1 yÞ 5 gðy1 1 z1Þ

Using these results in the first integral in Eq. 11.9,

Z
1

p

ρ
1

V2

2
1 gz

� �
ρVbdy 5

Z
1

V2

2
1 gðy1 1 z1Þ

� �
ρVbdy 5

V2
1

2
1 gy1 1 gz1

� �
_m

We find a similar result for section 2 , so Eq. 11.9 becomes

V2
2

2
1 gy2 1 gz2

� �
2

V2
1

2
1 gy1 1 gz1

� �
5 hlT

Finally, dividing by g (with Hl 5 hlT=g) leads to an energy equation for open-channel
flow

V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 1Hl ð11:10Þ

This can be compared to the corresponding equation for pipe flow, Eq. 8.30, presented
at the beginning of this section. (Note that we Hl use rather than HlT ; in pipe flow we
can have major and minor losses, justifying T for total, but in open-channel flow we do
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not make this distinction.) Equation 11.10 will prove useful to us for the remainder of
the chapter and indicates that energy computations can be done simply from geometry
(y and z) and velocity, V.

The total head or energy head, H, at any location in an open-channel flow can be
defined from Eq. 11.10 as

H 5
V2

2g
1 y1 z ð11:11Þ

where y and z are the local flow depth and channel bed elevation, respectively (they no
longer represent the coordinates shown in Fig. 11.5). This is a measure of the
mechanical energy (kinetic and pressure/potential) of the flow. Using this in the
energy equation, we obtain an alternative form

H1 2H2 5 Hl ð11:12Þ
From this we see that the loss of total head depends on head loss due to friction.

Specific Energy

We can also define the specific energy (or specific head), denoted by the symbol E,

E 5
V2

2g
1 y ð11:13Þ

This is a measure of the mechanical energy (kinetic and pressure/potential) of the flow
above and beyond that due to channel bed elevation; it essentially indicates the energy
due to the flow’s speed and depth. Using Eq. 11.13 in Eq. 11.10, we obtain another form
of the energy equation,

E1 2E2 1 z1 2 z2 5 Hl ð11:14Þ
From this we see that the change in specific energy depends on friction and on channel
elevation change. While the total head must decrease in the direction of flow (Eq.
11.12), the specific head may decrease, increase, or remain constant, depending on the
bed elevation, z.

From continuity, V=Q/A, so the specific energy can be written

E 5
Q2

2gA2
1 y ð11:15Þ

For all channels A is a monotonically increasing function of flow depth (as Table 11.1
indicates); increasing the depth must lead to a larger flow area. Hence, Eq. 11.15
indicates that the specific energy is a combination of a hyperbolic-type decrease with
depth and a linear increase with depth. This is illustrated in Fig. 11.6. We see that for
a given flow rate, Q, there is a range of possible flow depths and energies, but one
depth at which the specific energy is at a minimum. Instead of E versus y we typically
plot y versus E so that the plot corresponds to the example flow section, as shown in
Fig. 11.7.

Recalling that the specific energy, E, indicates actual energy (kinetic plus potential/
pressure per unit mass flow rate) being carried by the flow, we see that a given flow,Q,
can have a range of energies, E, and corresponding flow depths, y. Figure 11.7 also
reveals some interesting flow phenomena. For a given flow, Q, and specific energy, E,
there are two possible flow depths, y; these are called alternate depths. For example,
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we can have a flow at depth y1 or depth y2. The first flow has large depth and is moving
slowly, and the second flow is shallow but fast moving. The plot graphically indicates
this: For the first flow, E1 is made up of a large y1 and small V2

1=2g; for the second flow,
E2 is made up of a small y2 and large V2

2=2g. We will see later that we can switch from
one flow to another. We can also see (as we will demonstrate in Example 11.2 for a
rectangular channel) that for a given Q, there is always one flow for which the specific
energy is minimum, E=Emin; we will investigate this further after Example 11.2 and
show that Emin =Ecrit, where Ecrit is the specific energy at critical conditions.

E

y

2gA2
Q2

y

Fig. 11.6 Dependence of specific
energy on flow depth for a given flow rate.

Critical flow

Constant Q

E1 = E2 Q2

2gA2
E = y+

y

yc

y2

y2

y1

y1

2V2
2g

2V1
2g

Fig. 11.7 Specific energy curve for a given flow rate.

Example 11.2 SPECIFIC ENERGY CURVES FOR A RECTANGULAR CHANNEL

For a rectangular channel of width b=10 m, construct a family of specific energy curves for Q= 0, 2, 5, and 10 m3/s.
What are the minimum specific energies for these curves?

Given: Rectangular channel and range of flow rates.

Find: Curves of specific energy. For each flow rate, find the minimum specific energy.

Solution: Use the flow rate form of the specific energy equation (Eq. 11.15) for generating the curves.

Governing equation:
E 5

Q2

2gA2
1 y ð11:15Þ
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For the specific energy curves, express E as a function of depth, y.

E 5
Q2

2gA2
1 y 5

Q2

2gðbyÞ2 1 y 5
Q2

2gb2

� �
1

y2
1 y ð1Þ

The table and corresponding graph were generated from this equation using Excel.

Specific Energy, E (m)

y (m) Q5 0 Q5 2 Q5 5 Q5 10

0.100 0.10 0.92 5.20 20.49
0.125 0.13 0.65 3.39 13.17
0.150 0.15 0.51 2.42 9.21
0.175 0.18 0.44 1.84 6.83
0.200 0.20 0.40 1.47 5.30
0.225 0.23 0.39 1.23 4.25
0.250 0.25 0.38 1.07 3.51
0.275 0.28 0.38 0.95 2.97
0.30 0.30 0.39 0.87 2.57
0.35 0.35 0.42 0.77 2.01
0.40 0.40 0.45 0.72 1.67
0.45 0.45 0.49 0.70 1.46
0.50 0.50 0.53 0.70 1.32
0.55 0.55 0.58 0.72 1.22
0.60 0.60 0.62 0.74 1.17
0.70 0.70 0.72 0.80 1.12
0.80 0.80 0.81 0.88 1.12
0.90 0.90 0.91 0.96 1.15
1.00 1.00 1.01 1.05 1.20
1.25 1.25 1.26 1.28 1.38
1.50 1.50 1.50 1.52 1.59
2.00 2.00 2.00 2.01 2.05
2.50 2.50 2.50 2.51 2.53

To find the minimum energy for a given Q, we differentiate Eq. 1,

dE

dy
5

Q2

2gb2

� �
2

2

y3

� �
1 1 5 0

Hence, the depth yEmin
for minimum specific energy is

yEmin
5

Q2

gb2

� �1
3

Using this in Eq. 11.15:

Emin 5
Q2

2gA2
1 yEmin

5
Q2

2gb2y2Emin

1

"
Q2

gb2

#1
3

5
1

2

"
Q2

gb2

#"
gb2

Q2

#2
3

1

"
Q2

gb2

#1
3

5
3

2

"
Q2

gb2

#1
3

Emin 5
3

2

"
Q2

gb2

#1
3

5
3

2
yEmin

ð2Þ

0

1

2

3

0 1 2 3
E (m)

y 
(m

)

Q = 0

Q = 2 m3/s

Q = 5 m3/s

Q = 10 m3/s

Emin

11.2 Energy Equation for Open-Channel Flows 615



Critical Depth: Minimum Specific Energy

Example 11.2 treated the case of a rectangular channel. We now consider channels of
general cross section. For flow in such a channel we have the specific energy in terms
of flow rate Q,

E 5
Q2

2gA2
1 y ð11:15Þ

For a given flow rate Q, to find the depth for minimum specific energy, we
differentiate:

dE

dy
5 0 5 2

Q2

gA3

dA

dy
1 1 ð11:16Þ

To proceed further, it would seem we need A(y); some examples of A(y) are shown in
Table 11.1. However, it turns out that for any given cross section we can write

dA 5 bsdy ð11:17Þ
where, as we saw earlier, bs is the width at the surface. This is indicated in Fig. 11.8;
the incremental increase in area dA due to incremental depth change dy occurs at the
free surface, where b= bs.

Using Eq. 11.17 in Eq. 11.16 we find

2
Q2

gA3

dA

dy
1 1 5 2

Q2

gA3
bs 1 1 5 0

Hence for a rectangular channel, we obtain a simple result for the minimum
energy. Using Eq. 2 with the given data:

Q (m3/s) 2 5 10

Emin (m) 0.302 0.755 1.51

The depths corresponding to these flows are 0.201 m, 0.503 m, and 1.01 m,
respectively.

We will see in the next topic that the
depth at which we have minimum
energy is the critical depth, yc, and
Emin5 Ecrit.

The Excel workbook for thisproblem can be used for plotting
specific energy curves for other rec-
tangular channels. The depth for
minimum energy is also obtained
using Solver.

bs

dy
dA � bsdy

Fig. 11.8 Dependence of flow area
change dA on depth change dy.
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so

Q2 5
gA3

bs
ð11:18Þ

for minimum specific energy. From continuity V=Q/A, so Eq. 11.18 leads to

V 5
Q

A
5

1

A

gA3

bs

� �1=2
5

ffiffiffiffiffiffiffi
gA

bs

s
ð11:19Þ

We have previously defined the hydraulic depth,

yh 5
A

bs
ð11:2Þ

Hence, using Eq. 11.2 in Eq. 11.19, we obtain

V 5
ffiffiffiffiffiffiffi
gyh

p ð11:20Þ

But the Froude number is given by

Fr 5
Vffiffiffiffiffiffiffi
gyh

p ð11:8Þ

Hence we see that, for minimum specific energy, Fr= 1, which corresponds to critical
flow. We obtain the important result that, for flow in any open channel, the specific
energy is at its minimum at critical conditions.

We collect Eqs. 11.18 and 11.20; for critical flow

Q2 5
gA3

c

bsc
ð11:21Þ

Vc 5
ffiffiffiffiffiffiffiffiffi
gyhc

p ð11:22Þ

for E=Emin. In these equations, Ac, Vc, bsc and yhc are the critical flow area, velocity,
channel surface width, and hydraulic depth, respectively. Equation 11.21 can be used
to find the critical depth, yc, for a given channel cross-section shape, at a given flow
rate. The equation is deceptively difficult: Ac and bsc each depend on flow depth y,
often in a nonlinear fashion; so it must usually be iteratively solved for y. Once yc is
obtained, area, Ac, and surface width, bsc , can be computed, leading to yhc (using Eq.
11.2). This in turn is used in Eq. 11.22 to find the flow speed Vc (or Vc=Q/Ac can be
used). Finally, the minimum energy can be computed from Eq. 11.15.

For the particular case of a rectangular channel, we have bs= b= constant and
A= by, so Eq. 11.21 becomes

Q2 5
gA3

c

bsc
5

gb3y3c
b

5 gb2y3c

so

yc 5
Q2

gb2

� �1=3
ð11:23Þ
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with

Vc 5
ffiffiffiffiffiffiffi
gyc

p
5

gQ

b

� �1=3
ð11:24Þ

For the rectangular channel, a particularly simple result for the minimum energy is
obtained when Eq. 11.24 is used in Eq. 11.15,

E 5 Emin 5
V2

c

2g
1 yc 5

gyc
2g

1 yc

or

Emin 5
3

2
yc ð11:25Þ

This is the same result we found in Example 11.2. The critical state is an important
benchmark. It will be used in the next section to help determine what happens when a
flow encounters an obstacle such as a bump. Also, near the minimum E, as Fig. 11.7
shows, the rate of change of y with E is nearly infinite. This means that for critical flow
conditions, even small changes in E, due to channel irregularities or disturbances, can
cause pronounced changes in fluid depth. Thus, surface waves, usually in an unstable
manner, form when a flow is near critical conditions. Long runs of near-critical flow
consequently are avoided in practice.

Example 11.3 CRITICAL DEPTH FOR TRIANGULAR SECTION

A steep-sided triangular section channel (α= 60�) has a flow rate of 300 m3/s. Find the
critical depth for this flow rate. Verify that the Froude number is unity.

Given: Flow in a triangular section channel.

Find: Critical depth; verify that Fr=1.

Solution:
Use the critical flow equation, Eq. 11.21.

Governing equations: Q2 5
gA3

c

bsc
Fr 5

Vffiffiffiffiffiffiffi
gyh

p

The given data is: Q 5 300m3=s α 5 60�

From Table 11.1 we have the following:

A 5 y2 cot α

and from basic geometry

tan α 5
y

bs=2
so bs 5 2y cot α

Using these in Eq. 11.21

Q2 5
gA3

c

bsc
5

g½y2c cot α�3
2yc cot α

5
1

2
gy5c cot2α

bs

y

α
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11.3Localized Effect of Area Change (Frictionless Flow)
We will next consider a simple flow case in which the channel bed is horizontal and for
which the effects of channel cross section (area change) predominate: flow over a
bump. Since this phenomenon is localized (it takes place over a short distance), the
effects of friction (on either momentum or energy) may be reasonably neglected.

The energy equation, Eq. 11.10, with the assumption of no losses due to friction
then becomes

V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 5

V2

2g
1 y1 z 5 const ð11:26Þ

(Note that Eq. 11.26 could also have been obtained from by applying the Bernoulli
equation between two points 1 and 2 on the surface, because all of the requirements
of the Bernoulli equation are satisfied here.) Alternatively, using the definition of
specific energy

Hence

yc 5
2Q2tan2α

g

� �1=5

Using the given data

yc 5 23 3002
m3

s

� �2

3 tan2
603 π
180

� �
3

s2

9:81m

" #1=5
5 ½5:513 104m5�1=5

Finally

yc 5 8:88 m ß
yc

To verify that Fr=1, we need V and yh.

From continuity

Vc 5
Q

Ac

5
Q

y2c cot α
5 300

m3

s
3

1

8:882m2
3

1

cot
603π
180

� � 5 6:60 m=s

and from the definition of hydraulic depth

yhc 5
Ac

bsc
5

y2c cot α
2yc cot α

5
yc
2

5 4:44 m

Hence

Frc 5
Vcffiffiffiffiffiffiffiffiffi
gyhc

p 5

6:60
m

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81

m

s2
3 4:44 m

s 5 1 ß
Frc 5 1

We have verified that at critical depth the Froude number is unity.

As with the rectangular channel, the
triangular section channel analysis
leads to an explicit equation for yc from
Eq. 11.21. Other more complicated
channel cross sections often lead to an
implicit equation that needs to be
solved numerically.
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E1 1 z1 5 E2 1 z2 5 E1 z 5 const

We see that the specific energy of a frictionless flow will change only if there is a
change in the elevation of the channel bed.

Flow over a Bump

Consider frictionless flow in a horizontal rectangular channel of constant width, b,
with a bump in the channel bed, as illustrated in Fig. 11.9. (We choose a rectangular
channel for simplicity, but the results we obtain will apply generally.) The bump
height above the horizontal bed of the channel is z= h(x); the water depth, y(x), is
measured from the local channel bottom surface.

Note that we have indicated two possibilities for the free surface behavior: Perhaps
the flow gradually rises over the bump; perhaps it gradually dips over the bump.
(There are other possibilities too!) One thing we can be sure of, however, is that if it
rises, it will not have the same contour as the bump. (Can you explain why?) Applying
the energy equation (Eq. 11.26) for frictionless flow between an upstream point 1
and any point along the region of the bump,

V2
1

2g
1 y1 5 E1 5

V2

2g
1 y1 h 5 E1 hðxÞ 5 const ð11:27Þ

Equation 11.27 indicates that the specific energy must decrease through the bump,
then increase back to its original value (of E1 =E2),

EðxÞ 5 E1 2 hðxÞ ð11:28Þ
From continuity

Q 5 bV1y1 5 bVy

Using this in Eq 11.27

Q2

2gb2y21
1 y1 5

Q2

2gb2y2
1 y1 h 5 const ð11:29Þ

We can obtain an expression for the variation of the free surface depth by differ-
entiating Eq. 11.29:

2
Q2

gb2y3
dy

dx
1

dy

dx
1

dh

dx
5 0

Free
surface

z � 0

y1 y (x)

x

y2 � y1

z � h (x)

Fig. 11.9 Flow over a bump in a horizontal channel.

620 Chapter 11 Flow in Open Channels



Solving for the slope of the free surface, we obtain

dy

dx
5

dh=dx

Q2

gb2y3
2 1

� � 5
dh=dx

V2

gy
2 1

� �

Finally,

dy

dx
5

1

Fr2 2 1

dh

dx
ð11:30Þ

Equation 11.30 leads to the interesting conclusion that the response to a bump very
much depends on the local Froude number, Fr.

Fr, 1 Flow is subcritical, tranquil, or streaming. When Fr, 1, (Fr2 � 1), 1 and the
slope dy/dx of the free surface has the opposite sign to the slope dh/dx of
the bump: When the bump elevation increases, the flow dips; when the bump
elevation decreases, the flow depth increases. This is the solid free surface
shown in Fig. 11.9.

Fr5 1 Flow is critical. When Fr5 1, (Fr2 � 1)5 0. Eq. 11.30 predicts an infinite water
surface slope, unless dh/dx equals zero at this instant. Since the free surface
slope cannot be infinite, then dh/dx must be zero when Fr=1; put another way,
if we have Fr=1 (we don’t have to have Fr=1 in a flow), it can only be at a
location where dh/dx=0 (at the crest of the bump, or where the channel is flat).
If critical flow is attained, then downstream of the critical flow location the flow
may be subcritical or supercritical, depending on downstream conditions. If
critical flow does not occur where dh/dx=0, then flow downstream from this
location will be the same type as the flow upstream from the location.

Fr. 1 Flow is supercritical, rapid, or shooting. When Fr. 1, (Fr2 � 1). 1 and the
slope dy/dx of the free surface has the same sign as the slope dh/dx of the bump:
when the bump elevation increases, so does the flow depth; when the
bump elevation decreases, so does the flow depth. This is the dashed free
surface shown in Fig. 11.9.

The general trends for Fr, 1 and Fr. 1, for either an increasing or decreasing bed
elevation, are illustrated in Fig. 11.10. The important point about critical flow (Fr=1)
is that, if it does occur, it can do so only where the bed elevation is constant.

An additional visual aid is provided by the specific energy graph of Fig. 11.11.
This shows the specific energy curve for a given flow rate, Q. For a subcritical flow
that is at state a before it encounters a bump, as the flow moves up the bump
toward the bump peak, the specific energy must decrease (Eq. 11.28). Hence we
move along the curve to point b. If point b corresponds to the bump peak, then
we move back along the curve to a (note that this frictionless flow is reversible!) as
the flow descends the bump. Alternatively, if the bump continues to increase
beyond point b, we continue to move along the curve to the minimum energy
point, point e where E=Emin =Ecrit. As we have discussed, for frictionless flow to
exist, point e can only be where dh/dx = 0 (the bump peak). For this case, some-
thing interesting happens as the flow descends down the bump: We can return
along the curve to point a, or we can move along the curve to point d. This means
that the surface of a subcritical flow that encounters a bump will dip and then either
return to its original depth or (if the bump is high enough for the flow to reach
critical conditions) may continue to accelerate and become shallower until it
reaches the supercritical state corresponding to the original specific energy (point
d). Which trend occurs depends on downstream conditions; for example, if there is
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some type of flow restriction, the flow downstream of the bump will return to its
original subcritical state. Note that as we mentioned earlier, when a flow is at the
critical state the surface behavior tends to display dramatic variations in behavior.
Finally, Fig. 11.11 indicates that a supercritical flow (point d) that encounters a
bump would increase in depth over the bump (to point c at the bump peak), and then
return to its supercritical flow at point d. We also see that if the bump is high enough
a supercritical flow could slow down to critical (point e) and then either return to
supercritical (point d) or become subcritical (point a). Which of these possibilities
actually occurs obviously depends on the bump shape, but also on upstream and
downstream conditions (the last possibility is somewhat unlikely to occur in prac-
tice). The alert reader may ask, “What happens if the bump is so big that the specific
energy wants to decrease below the minimum shown at point e?” The answer is that
the flow will no longer conform to Eq. 11.26; the flow will no longer be frictionless,
because a hydraulic jump will occur, consuming a significant amount of mechanical
energy (see Section 11.4).

y

E

a

b

c
d

e
(E = Emin)

Fig. 11.11 Specific energy curve for flow over
a bump.

Flow regime
> 0

FlowSubcritical
Fr < 1

Supercritical
Fr > 1

dh
dx

Flow

< 0dy
dx

> 0dh
dx

> 0dy

y

h

dx

< 0dh
dx

> 0dy
dx

< 0dh
dx

< 0dy
dx

FlowFlow

Fig. 11.10 Effects of bed elevation changes.
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Example 11.4 FLOW IN A RECTANGULAR CHANNEL WITH A BUMP OR A NARROWING

A rectangular channel 2 m wide has a flow of 2.4 m3/s at a depth of 1.0 m. Determine whether critical depth occurs at
(a) a section where a bump of height h= 0.20 m is installed across the channel bed, (b) a side wall constriction (with
no bumps) reducing the channel width to 1.7 m, and (c) both the bump and side wall constrictions combined. Neglect
head losses of the bump and constriction caused by friction, expansion, and contraction.

Given: Rectangular channel with a bump, a side wall constriction, or both.

Find: Whether critical flow occurs.

Solution: Compare the specific energy to the minimum specific energy for the given flow rate in each case to
establish whether critical depth occurs.

Governing equations: E 5
Q2

2gA2
1 y ð11:15Þ yc 5

Q

gb2

� �1=3
ð11:23Þ

Emin 5
3

2
yc ð11:25Þ E 5 E1 2 h ð11:28Þ

(a) Bump of height h=0.20 m:

The initial specific energy, E1, is

E1 5 y1 1
Q2

2gA2
5 y1 1

Q2

2gb2y21

5 1:0 m1 2:42
�
m3

s

�2
3

1

2
3

s2

9:81 m
3

1

22 m2
3

1

12 m2

E1 5 1:073 m

Then the specific energy at the peak of the bump, Ebump, is obtained from Eq. 11.28

Ebump 5 E1 2 h 5 1:073 m2 0:20 m
Ebump 5 0:873 m

ð1Þ

We must compare this to the minimum specific energy for the flow rate Q. First, the critical depth is

yc 5

�
Q2

gb2

�1=3
5

"
2:42

�
m3

s

�2
3

s2

9:81 m
3

1

22 m2

#1=3

yc 5 0:528 m

(Note that we have y1. yc, so we have a subcritical flow.)
Then the minimum specific energy is

Emin 5
3

2
yc 5 0:791 m ð2Þ

Comparing Eqs. 1 and 2 we see that with the bump we
do not attain critical conditions. ß

(b) A side wall constriction (with no bump) reducing the channel width to 1.7 m:

In this case the specific energy remains constant throughout (h=0), even at the constriction; so

Econstriction 5 E1 2 h 5 E1 5 1:073m ð3Þ
However, at the constriction, we have a new value for b, (bconstriction = 1.7 m), and so a new critical depth
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ycconstriction 5

"
Q2

gb2constriction

#1=3
5 2:42

 
m3

s

!2

3
s2

9:81m
3

1

1:72 m2

2
4

3
5
1=3

ycconstriction 5 0:588m

Then the minimum specific energy at the constriction is

Eminconstriction 5
3

2
ycconstriction 5 0:882m ð4Þ

Comparing Eqs. 3 and 4 we see that with the constriction
we do not attain critical conditions. ß

We might enquire as to what constriction would cause critical flow. To find this, solve

E 5 1:073m 5 Emin 5
3

2
yc 5

3

2

Q2

gb2c

� �1=3

for the critical channel width bc.
Hence

Q2

gb2c
5

2

3
Emin

2
4

3
5
3

bc 5
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

27
gE3

min

s

5

 
27

8

!1=2

3 2:4

 
m3

s

!
3

s

9:811=2 m1=2
3

1

1:0733=2 m3=2

bc 5 1:27m

To make the given flow attain critical conditions, the constriction should be 1.27 m; anything wider, and critical
conditions are not reached.

(c) For a bump of h= 0.20 m and the constriction to b= 1.7 m:

We have already seen in case (a) that the bump (h=0.20 m) was insufficient by itself to create critical conditions. From
case (b) we saw that at the constriction the minimum specific energy isEmin = 0.882 m rather thanEmin = 0.791 m in the
main flow. When we have both factors present, we can compare the specific energy at the bump and constriction,

Ebump1 constriction 5 Ebump 5 E1 2 h 5 0:873m ð5Þ
and the minimum specific energy for the flow at the bump and constriction,

Eminconstriction 5
3

2
ycconstriction 5 0:882m ð6Þ

From Eqs. 5 and 6 we see that with both factors the specific energy is
actually less than the minimum. The fact that we must have a specific energy
that is less than the minimum allowable means something has to give! What
happens is that the flow assumptions become invalid; the flow may no
longer be uniform or one-dimensional, or there may be a significant energy
loss, for example due to a hydraulic jump occurring. (We will discuss
hydraulic jumps in the next section.)

Hence the bump and constriction together are sufficient to make the flow
reach critical state. ß

This Example illustrates how to deter-
mine whether a channel bump or
constriction, or both, lead to critical
flow conditions.
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11.4The Hydraulic Jump
We have shown that open-channel flow may be subcritical (Fr, 1) or supercritical
(Fr. 1). For subcritical flow, disturbances caused by a change in bed slope or flow
cross section may move upstream and downstream; the result is a smooth adjustment
of the flow, as we have seen in the previous section. When flow at a section is
supercritical, and downstream conditions will require a change to subcritical flow, the
need for this change cannot be communicated upstream; the flow speed exceeds
the speed of surface waves, which are the mechanism for transmitting changes. Thus a
gradual change with a smooth transition through the critical point is not possible. The
transition from supercritical to subcritical flow occurs abruptly through a hydraulic
jump. Hydraulic jumps can occur in canals downstream of regulating sluices, at the
foot of spillways (see Fig. 11.12a), where a steep channel slope suddenly becomes
flat—and even in the home kitchen (see Fig. 11.12b)! The specific energy curve and
general shape of a jump are shown in Fig. 11.13. We will see in this section that the
jump always goes from a supercritical depth (y1, yc) to a subcritical depth (y2. yc)
and that there will be a drop ΔE in the specific energy. Unlike the changes due to
phenomena such as a bump, the abrupt change in depth involves a significant loss of
mechanical energy through turbulent mixing.

The control volume for a hydraulic jump is sketched in Fig. 11.14.
We shall analyze the jump phenomenon by applying the basic equations to the

control volume shown in the sketch. Experiments show that the jump occurs over a
relatively short distance—at most, approximately six times the larger depth (y2) [9]. In
view of this short length, it is reasonable to assume that friction force Ff acting on the
control volume is negligible compared to pressure forces. Note that we are therefore
ignoring viscous effects for momentum considerations, but not for energy considera-
tions (as we just mentioned, there is considerable turbulence in the jump). Although
hydraulic jumps can occur on inclined surfaces, for simplicity we assume a horizontal
bed, and rectangular channel of width b; the results we obtain will apply generally to
hydraulic jumps.

Hence we have the following assumptions:

1. Steady flow

2. Incompressible flow

3. Uniform velocity at each section

(a) The Burdekin dam in Australia (b) The Kitchen Sink
(James Kilfiger)

Fig. 11.12 Examples of a hydraulic jump.

VIDEO

A Laminar Hydraulic Jump.
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4. Hydrostatic pressure distribution at each section

5. Frictionless flow (for the momentum equation)

These assumptions are familiar from previous discussions in this chapter. For an
incompressible flow with uniform velocity at each section, we can use the appropriate
form of continuity from Chapter 4,X

CS
~V � ~A 5 0 ð4:13bÞ

Applying Eq. 4.13b to the control volume we obtain

2V1by1 1V2by2 5 0

or

V1y1 5 V2y2 ð11:31Þ
This is the continuity equation for the hydraulic jump. For the momentum equation,
again with the assumption of uniform velocity at each section, we can use the fol-
lowing form for the x component of momentum

Fx 5 FSx 1FBx
5

@

@t

Z
CV

uρ dV--- 1
X

CS
uρ~V � ~A ð4:18dÞ

The unsteady term @/@t disappears as the flow is steady, and the body force FBx
is zero

for horizontal flow. So we obtain

FS~x 5
X

CS
uρ~V � ~A ð11:32Þ

ΔE

Specific energy curve Hydraulic jump

E

yc

y1

y

yc

y2

Fig. 11.13 Specific energy curve for flow through a hydraulic jump.

Control
volume

Flow

y

x
Ff

y1

y2

Fig. 11.14 Schematic of hydraulic jump, showing
control volume used for analysis.
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The surface force consists of pressure forces on the two ends and friction force on the
wetted surface. By assumption 5 we neglect friction. The gage pressure at the two ends
is hydrostatic, as illustrated in Fig. 11.3b. We recall from our study of hydrostatics that
the hydrostatic force, FR, on a submerged vertical surface of area, A, is given by the
simple result

FR 5 pcA ð3:10bÞ
where pc is the pressure at the centroid of the vertical surface. For the two vertical
surfaces of the control volume, then, we have

FSx 5 FR1
2FR2

5 ðpcAÞ1 2 ðpcAÞ2 5 fðρgy1Þy1bg2 fðρgy2Þy2bg

5
ρgb
2

ðy21 2 y22Þ

Using this result in Eq. 11.32, and evaluating the terms on the right,

FSx 5
ρgb
2

ðy21 2 y22Þ 5
X

CS
uρ~V � ~A 5 V1ρf2V1y1bg1V2ρfV2y2bg

Rearranging and simplifying

V2
1y1
g

1
y21
2

5
V2

2y2
g

1
y22
2

ð11:33Þ

This is the momentum equation for the hydraulic jump. We have already derived the
energy equation for open-channel flows,

V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 1Hl ð11:10Þ

For our horizontal hydraulic jump, z1 = z2, so

E1 5
V2

1

2g
1 y1 5

V2
2

2g
1 y2 1Hl 5 E2 1Hl ð11:34Þ

This is the energy equation for the hydraulic jump; the loss of mechanical energy is

ΔE 5 E1 2E2 5 Hl

The continuity, momentum, and energy equations (Eqs. 11.31, 11.33, and 11.34,
respectively) constitute a complete set for analyzing a hydraulic jump.

Depth Increase Across a Hydraulic Jump

To find the downstream or, as it is called, the sequent depth in terms of conditions
upstream from the hydraulic jump, we begin by eliminating V2 from the momentum
equation. From continuity, V2 =V1y1/y2 (Eq. 11.31), so Eq. 11.33 can be written

V2
1y1
g

1
y21
2

5
V2

1y1
g

y1
y2

� �
1

y22
2

Rearranging

y22 2 y21 5
2V2

1y1
g

12
y1
y2

� �
5

2V2
1y1
g

y2 2 y1
y2

� �
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Dividing both sides by the common factor (y2 � y1), we obtain

y2 1 y1 5
2V2

1y1
gy2

Next, multiplying by y2 and dividing by y21 gives

y2
y1

� �2

1
y2
y1

� �
5

2V2
1

gy1
5 2Fr21 ð11:35Þ

Solving for y2/y1 using the quadratic formula (ignoring the physically meaningless
negative root), we obtain

y2
y1

5
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 1

� �
ð11:36Þ

Hence, the ratio of downstream to upstream depths across a hydraulic jump is only a
function of the upstream Froude number. Equation 11.36 has been experimentally well
verified, as can be seen in Fig. 11.15a. Depths y1 and y2 are referred to as conjugate depths.
From Eq. 11.35, we see that an increase in depth (y2. y1) requires an upstream Froude
numbergreater thanone (Fr1. 1).Wehavenot yet established thatwemusthaveFr1. 1,
just that it must be for an increase in depth (theoretically we could have Fr1, 1 and
y2, y1); we will now consider the head loss to demonstrate that wemust have Fr1. 1.

Head Loss Across a Hydraulic Jump

Hydraulic jumps often are used to dissipate energy below spillways as a means of
preventing erosion of artificial or natural channel bottom or sides. It is therefore of
interest to be able to determine the head loss due to a hydraulic jump.

From the energy equation for the jump, Eq. 11.34, we can solve for the head loss

Hl 5 E1 2E2 5
V2

1

2g
1 y1 2

V2
2

2g
1 y2

� �

From continuity, V2 =V1y1/y2, so

Hl 5
V2

1

2g
12

y1
y2

� �2
" #

1 ðy1 2 y2Þ

0
0
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Fig. 11.15 Depth ratio and head loss for a hydraulic jump. (Data from Peterka [9].)
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or

Hl

y1
5

Fr21
2

12
y1
y2

� �2
" #

1 12
y2
y1

� �
ð11:37Þ

Solving Eq. 11.35 for Fr1 in terms of y2/y1 and substituting into Eq.11.37, we obtain
(after quite a bit of algebraic manipulation)

Hl

y1
5

1

4

y2
y1

2 1

� �3
y2
y1

ð11:38aÞ

Equation 11.38a is our proof that y2/y1. 1; the left side is always positive (turbulence
must lead to a loss of mechanical energy); so the cubed term must lead to a positive
result. Then, from either Eq. 11.35 or Eq.11.36, we see that we must have Fr1 >1.
An alternative form of this result is obtained after some minor rearranging,

Hl 5
½y2 2 y1�3
4y1y2

ð11:38bÞ

which again shows that y2. y1 for real flows (Hl. 0). Next, the specific energy, E1,
can be written as

E1 5
V2

1

2g
1 y1 5 y1

V2
1

2gy1
1 1

� �
5 y1

ðFr21 1 2Þ
2

Nondimensionalizing Hl using E1,

Hl

E1
5

1

2

y2
y1

2 1

� �3
y2
y1

½Fr21 1 2�

The depth ratio in terms of Fr1 is given by Eq. 11.36. Hence Hl/E1, can be written
purely as a function of the upstream Froude number. The result, after some manip-
ulation, is

Hl

E1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 3

h i3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 1

h i
Fr21 1 2
� � ð11:39Þ

We see that the head loss, as a fraction of the original specific energy across a
hydraulic jump, is only a function of the upstream Froude number. Equation 11.39 is
experimentally well verified, as can be seen in Fig. 11.15b; the figure also shows that
more than 70 percent of the mechanical energy of the entering stream is dissipated in
jumps with Fr1. 9. Inspection of Eq. 11.39 also shows that if Fr1 = 1, then Hl= 0, and
that negative values are predicted for Fr1, 1. Since Hl must be positive in any real
flow, this reconfirms that a hydraulic jump can occur only in supercritical flow. Flow
downstream from a jump always is subcritical.

Example 11.5 HYDRAULIC JUMP IN A RECTANGULAR CHANNEL FLOW

A hydraulic jump occurs in a rectangular channel 3 m wide. The water depth before the jump is 0.6 m, and after the
jump is 1.6 m. Compute (a) the flow rate in the channel (b) the critical depth (c) the head loss in the jump.
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Given: Rectangular channel with hydraulic jump in which flow depth changes from 0.6 m to 1.6 m.

Find: Flow rate, critical depth, and head loss in the jump.

Solution: Use the equation that relates depths y1 and y2 in terms of the Froude number (Eq. 11.36); then use the
Froude number (Eq. 11.7) to obtain the flow rate; use Eq. 11.23 to obtain the critical depth; and finally compute
the head loss from Eq. 11.38b.

Governing equations:
y2
y1

5
1

2
2 11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q� �
ð11:36Þ

Fr 5
Vffiffiffiffiffi
gy

p ð11:7Þ

yc 5
Q2

gb2

� �1=3
ð11:23Þ

Hl 5
½y2 2 y1�3
4y1y2

ð11:38bÞ

(a) From Eq. 11.36

Fr1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
11 2

y2
y1

�2
2 1

8

vuuuuut

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
11 23

1:6m

0:6m

�2
2 1

8

vuuuuut
Fr1 5 2:21

As expected, Fr1. 1 (supercritical flow). We can now use the definition of Froude number for open-channel
flow to find V1

Fr1 5
V1ffiffiffiffiffiffiffi
gy1

p
Hence

V1 5 Fr1
ffiffiffiffiffiffiffi
gy1

p
5 2:213

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81m

s2
3 0:6m

r
5 5:36m=s

From this we can obtain the flow rate, Q.

Q 5 by1V1 5 3:0m3 0:6m3
5:36m

s

Q 5 9:65m3=s ß
Q

(b) The critical depth can be obtained from Eq. 11.23.

yc 5
Q2

gb2

2
4

3
5
1=3

5

�
9:652

m6

s2
3

s2

9:81m
3

1

3:02 m2

�1=3

yc 5 1:02m ß

yc
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11.5Steady Uniform Flow
After studying local effects such as bumps and hydraulic jumps, and defining some
fundamental quantities such as the specific energy and critical velocity, we are ready
to analyze flows in long stretches. Steady uniform flow is something that is to be
expected to occur for channels of constant slope and cross section; Figs. 11.1 and 11.2
show examples of this kind of flow. Such flows are very common and important, and
have been extensively studied.

The simplest such flow is fully developed flow; it is analogous to fully developed
flow in pipes. A fully developed flow is one for which the channel is prismatic, that is, a
channel with constant slope and cross section that flows at constant depth. This depth,
yn, is termed the normal depth and the flow is termed a uniform flow. Hence the
expression uniform flow in this chapter has a different meaning than in earlier
chapters. In earlier chapters it meant that the velocity was uniform at a section of the
flow; in this chapter we use it to mean that, but in addition specifically that the flow is
the same at all sections. Hence for the flow shown in Fig. 11.16, we have A1 =A2 =A
(cross-section areas),Q1 =Q2 =Q (flow rates), V1 =V2 =V (average velocity, V=Q/A),
and y1 = y2 = yn (flow depth).

As before (Section 11.2), we use the following assumptions:

1. Steady flow

2. Incompressible flow

3. Uniform velocity at a section

4. Gradually varying depth so that pressure distribution is hydrostatic

5. Bed slope is small

6. _Ws 5 _Wshear 5 _Wother 5 0

Note that as illustrated in Fig. 11.13, y1, yc, y2.

(c) The head loss can be found from Eq. 11.38b.

Hl 5
½y2 2 y1�3
4y1y2

5
1

4

½1:6m2 0:6m�3
1:6m3 0:6m

5 0:260m ß

Hl

As a verification of this result, we use the energy equation directly,

Hl 5 E1 2E2 5 y1 1
V2

1

2g

� �
2 y2 1

V2
2

2g

� �

with V25Q/(by2)5 2.01 m/s,

Hl 5

�
0:6m1 5:362

m2

s2
3

1

2
3

s2

9:81m

�

2

�
1:6m1 2:012

m2

s2
3

1

2
3

s2

9:81m

�
Hl 5 0:258m

This Example illustrates computation
of flow rate, critical depth, and head
loss, for a hydraulic jump.
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Note that assumption 5 means that we can approximate the flow depth y to be vertical
and flow speed horizontal. (Strictly speaking they should be normal and parallel to the
channel bottom, respectively.)

The continuity equation is obvious for this case.

Q 5 V1A1 5 V2A2 5 VA

For the momentum equation, again with the assumption of uniform velocity at each
section, we can use the following form for the x component of momentum

Fx 5 FSx 1FBx
5

@

@t

Z
CV

uρ dV--- 1
X

CS
uρ ~V � ~A ð4:18dÞ

The unsteady term @/@t disappears as the flow is steady, and the control surface
summation is zero because V1 =V2; hence the right hand side is zero as there is no
change of momentum for the control volume. The body force FBx

5 W sin θ where W
is the weight of fluid in the control volume; θ is the bed slope, as shown in Fig. 11.16.
The surface force consists of the hydrostatic force on the two end surfaces at 1 and 2
and the friction force Ff on the wetted surface of the control volume; however,
because we have the same pressure distributions at 1 and 2 , the net x component of
pressure force is zero. Using all these results in Eq. 4.18d we obtain

2Ff 1W sin θ 5 0

or

Ff 5 W sin θ ð11:40Þ
We see that for flow at normal depth, the component of the gravity force driving the
flow is just balanced by the friction force acting on the channel walls. This is in
contrast to flow in a pipe or duct, for which (with the exception of pure gravity driven
flow) we usually have a balance between an applied pressure gradient and the friction.
The friction force may be expressed as the product of an average wall shear stress, τw,
and the channel wetted surface area, PL (where L is the channel length), on which the
stress acts

Ff 5 τwPL ð11:41Þ
The component of gravity force can be written as

Wsin θ 5 ρgALsin θ � ρgALθ � ρgALSb ð11:42Þ

Control
volume

z1

�

y1 = yn

z2

�

Sb = tan θ   θ

y2 = yn

Fig. 11.16 Control volume for uniform channel
flow.
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where Sb is the channel bed slope. Using Eqs. 11.41 and 11.42 in Eq. 11.40,

τwPL 5 ρgALSb

or

τw 5
ρgASb

P
5 ρgRhSb ð11:43Þ

where we have used the hydraulic radius, Rh=A/P as defined in Eq. 11.1. In Chapter 9
we have previously introduced a skin friction coefficient,

Cf 5
τw

1
2 ρV

2
ð9:22Þ

Using this in Eq. 11.43

1

2
CfρV2 5 ρgRhSb

so, solving for V

V 5

ffiffiffiffiffi
2g

Cf

s ffiffiffiffiffiffiffiffiffiffi
RhSb

p
ð11:44Þ

The Manning Equation for Uniform Flow

Equation 11.44 gives the flow velocity V as a function of channel geometry, specifically
the hydraulic radius, Rh and slope, Sb, but also the skin friction coefficient, Cf. This
latter term is difficult to obtain experimentally or theoretically; it depends on a number
of factors such as bed roughness and fluid properties, but also on the velocity itself (via
the flow Reynolds number). Instead of this we define a new quantity,

C 5

ffiffiffiffiffi
2g

Cf

s

so that Eq. 11.44 becomes

V 5 C
ffiffiffiffiffiffiffiffiffiffi
RhSb

p
ð11:45Þ

Equation 11.45 is the well-known Chezy equation, and C is referred to as the Chezy
coefficient. Experimental values of C were obtained by Manning [10]. He suggested
that

C 5
1

n
R

1=6
h ð11:46Þ

where n is a roughness coefficient having different values for different types of
boundary roughness. Some representative values of n are listed in Table 11.2. Values
of n for natural channels have also been published by the U.S. Geological Survey [13].
Substituting C from Eq. 11.46 into Eq. 11.45 results in the Manning equation for the
velocity for flow at normal depth

V 5
1

n
R

2=3
h S

1=2
b ð11:47aÞ
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which is valid for SI units. Manning’s equation in SI units can also be expressed as

Q 5
1

n
AR

2=3
h S

1=2
b ð11:48aÞ

For V in ft/s and Rh in feet (English Engineering units), Eq. 11.47a can be rewritten as

V 5
1:49

n
R

2=3
h S

1=2
b ð11:47bÞ

and Eq. 11.48a can be written as

Q 5
1:49

n
AR

2=3
h S

1=2
b ð11:48bÞ

where A is in square feet. Note that a number of these equations, as well as many that
follow, are “engineering” equations; that is, the user needs to be aware of the required
units of each term in the equation. In Table 11.1 we have previously listed data on A
and Rh for various channel geometries.

The relationship among variables in Eqs. 11.48 can be viewed in a number of ways.
For example, it shows that the volume flow rate through a prismatic channel of given
slope and roughness is a function of both channel size and channel shape. This is
illustrated in Examples 11.6 and 11.7.

Table 11.2
A Selection of Manning’s Roughness Coefficients

Manning’s n

Depth Ranges

Lining Category Lining Type 0�0.5 ft (0�15 cm) 0.5�2.0 ft (15�60 cm) .2.0 ft (.60 cm)

Rigid Concrete 0.015 0.013 0.013
Grouted riprap 0.040 0.030 0.028
Stone masonry 0.042 0.032 0.030
Soil cement 0.025 0.022 0.020
Asphalt 0.018 0.016 0.016

Unlined Bare soil 0.023 0.020 0.020
Rock cut 0.045 0.035 0.025

Temporary Woven paper net 0.016 0.015 0.015
Jute net 0.028 0.022 0.019
Fiberglass roving 0.028 0.021 0.019
Straw with net 0.065 0.033 0.025
Curled wood mat 0.066 0.035 0.028
Synthetic mat 0.036 0.025 0.021

Gravel riprap 1 in (2.5 cm) D50 0.044 0.033 0.030
2 in (5 cm) D50 0.066 0.041 0.034

Rock riprap 6 in (15 cm) D50 0.104 0.069 0.035
12 in (30 cm) D50 — 0.078 0.040

Source: Linsley et al. [11] and Chen and Cotton [12].
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Example 11.6 FLOW RATE IN A RECTANGULAR CHANNEL

An 8-ft-wide rectangular channel with a bed slope of 0.0004 ft/ft has a depth of flow of 2 ft. Assuming steady uniform
flow, determine the discharge in the channel. The Manning roughness coefficient is n= 0.015.

Given: Geometry of rectangular channel and flow depth.

Find: Flow rate Q.

Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units, this is
Eq. 11.48b.

Governing equations:

Q 5
1:49

n
AR

2=3
h S

1=2
b Rh 5

by

b1 2y
ðTable 11:1Þ

Using this equation with the given data

Q 5
1:49

n
AR

2=3
h S

1=2
b

5
1:49

0:015
3 ð8 ft3 2 ftÞ3 8 ft3 2 ft

8 ft1 23 2 ft

0
@

1
A
2=3

3 0:004
ft

ft

0
@

1
A
1=2

Q 5 38:5 ft3=s ß Q

This Example demonstrates use of
Manning’s equation to solve for flow
rate, Q. Note that because this is an
“engineering” equation, the units do
not cancel.

Example 11.7 FLOW VERSUS AREA THROUGH TWO CHANNEL SHAPES

Open channels, of square and semicircular shapes, are being considered for carrying flow on a slope of Sb= 0.001; the
channel walls are to be poured concrete with n= 0.015. Evaluate the flow rate delivered by the channels for max-
imum dimensions between 0.5 and 2.0 m. Compare the channels on the basis of volume flow rate for given cross-
sectional area.

Given: Square and semicircular channels; Sb= 0.001 and n=0.015. Sizes between
0.5 and 2.0 m across.

Find: Flow rate as a function of size. Compare channels on the basis of volume
flow rate, Q, versus cross-sectional area, A.

Solution: Use the appropriate form of Manning’s equation. For a problem in SI
units, this is Eq. 11.48a.

Governing equation:

Q 5
1

n
AR

2=3
h S

1=2
b ð11:48aÞ

Assumption: Flow at normal depth.

For the square channel,

P 5 3b and A 5 b2 so Rh 5
b

3

b

y � b
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Using this in Eq. 11.48a

Q 5
1

n
AR

2=3
h S

1=2
b 5

1

n
b2

b

3

� �2=3

S
1=2
b 5

1

32=3n
S
1=2
b b8=3

For b= 1 m,

Q 5
1

32=3ð0:015Þ ð0:001Þ
1=2ð1Þ8=3 5 1:01m3=s ß

Q

Tabulating for a range of sizes yields

b (m) 0.5 1.0 1.5 2.0

A (m2) 0.25 1.00 2.25 4.00

Q (m3/s) 0.160 1.01 2.99 6.44

For the semicircular channel,

P 5
πD
2

and A 5
πD2

8

so Rh 5
πD2

8

2

πD
5

D

4

Using this in Eq. 11.48a

Q 5
1

n
AR

2=3
h S

1=2
b 5

1

n

πD2

8

D

4

0
@

1
A

2=3

S
1=2
b

5
π

45=3ð2ÞnS
1=2
b D8=3

For D= 1 m,

Q 5
π

45=3ð2Þð0:015Þ ð0:001Þ
1=2ð1Þ8=3 5 0:329m3=s ß

Q

Tabulating for a range of sizes yields

D (m) 0.5 1.0 1.5 2.0

A (m2) 0.0982 0.393 0.884 1.57

Q (m3/s) 0.0517 0.329 0.969 2.09

For both channels, volume flow rate varies as

QBL8=3 or QBA4=3

since ABL2. The plot of flow rate versus cross-sectional area shows that
the semicircular channel is more “efficient.”

Performance of the two channels may be compared at any specified
area. At A5 1 m2, Q/A5 1.01 m/s for the square channel. For the
semicircularchannel with A5 1 m2, then D5 1.60 m, and Q5 1.15 m3/s;
so Q/A5 1.15 m/s. Thus the semicircular channel carries approximately
14 percent more flow per unit area than the square channel.

0.1

1.0

10.0

0.1 1.0 10.0

Cross-sectional area, A (m2) 

Vo
lu

m
e 

flo
w

 ra
te

, Q
 (m

3 /s
) Semicircular

Square

D

The comparison on cross-sectional
area is important in determining the
amount of excavation required to build
the channel. The channel shapes also
could be compared on the basis of
perimeter, which would indicate the
amount of concrete needed to finish
the channel.

The Excel workbook for thisproblem can be used for com-
puting data and plotting curves for
other square and semicircular
channels.
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We have demonstrated that Eqs. 11.48 mean that, for normal flow, the flow rate
depends on the channel size and shape. For a specified flow rate through a prismatic
channel of given slope and roughness, Eqs. 11.48 also show that the depth of uniform
flow is a function of both channel size and shape, as well as the slope. There is only
one depth for uniform flow at a given flow rate; it may be greater than, less than, or
equal to the critical depth. This is illustrated in Examples 11.8 and 11.9.

Example 11.8 NORMAL DEPTH IN A RECTANGULAR CHANNEL

Determine the normal depth (for uniform flow) if the channel described in Example 11.6 has a flow rate of 100 cfs.

Given: Geometric data on rectangular channel of Example 11.6.

Find: Normal depth for a flow rate Q=100 ft3/s.

Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units,
this is Eq. 11.48b.

Governing equations:

Q 5
1:49

n
AR

2=3
h S

1=2
b Rh 5

byn
b1 2yn

ðTable 11:1Þ

Combining these equations

Q 5
1:49

n
AR

2=3
h S

1=2
b 5

1:49

n
ðbynÞ byn

b1 2yn

� �2=3

S
1=2
b

Hence, after rearranging

Qn

1:49b5=3S
1=2
b

 !3
ðb1 2ynÞ2 5 y5n

Substituting Q= 100 ft3/s, n= 0.015, b=8 ft, and Sb=0.0004 and simplifying
(remembering this is an “engineering” equation, in which we insert values
without units),

3:89ð81 2ynÞ2 5 y5n

This nonlinear equation can be solved for yn using a numerical method
such as the Newton-Raphson method (or better yet using your calculator’s
solving feature or Excel’s Goal Seek or Solver!). We find

yn 5 3:97 ft ß
yn

Note that there are five roots, but four of them are complex—mathematically correct
but physically meaningless.

ü This Example demonstrates the use
of Manning’s equation for finding
the normal depth.ü This relatively simple physical
problem still involved solving a
nonlinear algebraic equation.The Excel workbook for thisproblem can be used for solving

similar problems.

Example 11.9 DETERMINATION OF FLUME SIZE

An above-ground flume, built from timber, is to convey water from a mountain lake to a small hydroelectric plant.
The flume is to deliver water at Q=2 m3/s; the slope is Sb=0.002 and n= 0.013. Evaluate the required flume size for
(a) a rectangular section with y/b=0.5 and (b) an equilateral triangular section.

Given: Flume to be built from timber, with Sb= 0.002, n=0.013, and Q= 2.00 m3/s.
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Find: Required flume size for:
(a) Rectangular section with y/b= 0.5.
(b) Equilateral triangular section.

Solution: Assume flume is long, so flow is uniform; it is at normal depth. Then Eq. 11.48a applies.

Governing equation:

Q 5
1

n
AR

2=3
h S

1=2
b ð11:48aÞ

The choice of channel shape fixes the relationship between Rh and A; so Eq. 11.48a may be solved for normal depth,
yn, thus determining the channel size required.

(a) Rectangular section

P 5 2yn 1 b; yn=b 5 0:5 so b 5 2yn

P 5 2yn 1 2yn 5 4yn A 5 ynb 5 ynð2ynÞ 5 2y2n

so Rh 5
A

P
5

2y2n
4yn

5 0:5yn

Using this in Eq. 11.48a,

Q 5
1

n
AR

2=3
h S

1=2
b 5

1

n
ð2y2nÞð0:5ynÞ2=3S1=2b 5

2ð0:5Þ2=3
n

y8=3n S
1=2
b

Solving for yn

yn 5
nQ

2ð0:5Þ2=3S1=2b

" #3=8
5

0:013ð2:00Þ
2ð0:5Þ2=3ð0:002Þ1=2
" #3=8

5 0:748m

The required dimensions for the rectangular channel are

yn 5 0:748m A 5 1:12m2

b 5 1:50m p 5 3:00m ß
Flume size

(b) Equilateral triangle section

P 5 2s 5
2yn

cos 30o
A 5

yns

2
5

y2n
2 cos 30o

soRh 5
A

P
5

yn
4

Using this in Eq. 11.48a,

Q 5
1

n
AR

2=3
h S

1=2
b 5

1

n

y2n
2 cos 30o

� �
yn
4

	 
2=3
S
1=2
b 5

1

2 cos 30oð4Þ2=3n
y8=3n S

1=2
b

Solving for yn

yn 5
2 cos 30oð4Þ2=3nQ

S
1=2
b

" #3=8
5

2 cos 30oð4Þ2=3ð0:013Þð2:00Þ
ð0:002Þ1=2

" #3=8
5 1:42m

The required dimensions for the triangular channel are

yn 5 1:42 m A 5 1:16 m2

bs 5 1:64 m p 5 3:28 m ß
Flume size

yn
s

b

yn
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Energy Equation for Uniform Flow

To complete our discussion of normal flows, we consider the energy equation. The
energy equation was already derived in Section 11.2.

V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 1Hl ð11:10Þ

In this case we obtain, with V1 =V2 =V, and y1 = y2 = yn,

z1 5 z2 1Hl

or

Hl 5 z1 2 z2 5 LSb ð11:49Þ
where Sb is the slope of the bed and L is the distance between points 1 and 2 . Hence
we see that for flow at normal depth, the head loss due to friction is equal to the change
in elevation of the bed. The specific energy, E, is the same at all sections,

E 5 E1 5
V2

1

2g
1 y1 5 E2 5

V2
2

2g
1 y 5 const

For completeness we also compute the energy grade line EGL and hydraulic grade
line HGL. From Section 6.5

EGL 5
p

ρg
1

V2

2g
1 ztotal ð6:16bÞ

and

HGL 5
p

ρg
1 ztotal ð6:16cÞ

Note that we have used ztotal = z+ y in Eqs. 6.16b and 6.16c (in Chapter 6, z is the total
elevation of the free surface). Hence at any point on the free surface (recall that we
are using gage pressures),

Note that for the triangular channel

V 5
Q

A
5 2:0

m3

s
3

1

1:16m2
5 1:72m=s

and

Fr 5 5
Vffiffiffiffiffiffiffi
gyh

p 5
Vffiffiffiffiffiffiffiffiffiffiffiffiffi
gA=bs

p
Fr 5 1:72

m

s
3

1

9:81
m

s2
3 1:16m2 3

1

1:64m

2
4

3
5
1=2

5 0:653

Hence this normal flow is subcritical (as is the flow in the rectangular
channel).

Comparing results, we see that the rectangular flume would be cheaper to build; its perimeter is about 8.5 percent
less than that of the triangular flume.

This example shows the effect of
channel shape on the size required to
deliver a given flow at a specified bed
slope and roughness coefficient. At
specified Sb and n, flow may be sub-
critical, critical, or supercritical,
depending on Q.
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EGL 5
V2

2g
1 z1 y ð11:50Þ

and

HGL 5 z1 y ð11:51Þ

Hence, using Eqs. 11.50 and 11.51 in Eqs. 11.10, between points 1 and 2 we obtain

EGL1 2EGL2 5 Hl 5 z1 2 z2

and (because V1 =V2)

HGL1 2HGL2 5 Hl 5 z1 2 z2

For normal flow, the energy grade line, the hydraulic grade line, and the channel bed are
all parallel. The trends for the energy grade line, hydraulic grade line, and specific
energy, are shown in Fig. 11.17.

Optimum Channel Cross Section

For given slope and roughness, the optimum channel cross section is that for which we
need the smallest channel for a given flow rate; this is when Q/A is maximized. From
Eq. 11.48a (using the SI version, although the results we obtain will apply generally)

Q

A
5

1

n
R

2=3
h S

1=2
b ð11:52Þ

Thus the optimum cross section has maximum hydraulic radius, Rh. Since Rh=A/P, Rh

is maximum when the wetted perimeter is minimum. Solving Eq. 11.52 for A (with
Rh=A/P) then yields

A 5
nQ

S
1=2
b

" #3=5
P2=5 ð11:53Þ

From Eq. 11.53, the flow area will be a minimum when the wetted perimeter is a
minimum.

�

EGL1

�

V

2g

2
1

HGL1

E1

V

2g

2
2

E2

EGL2

HGL2

EGL line

HGL line

Fig. 11.17 Energy grade line, hydraulic grade line, and
specific energy for uniform flow.
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Wetted perimeter, P, is a function of channel shape. For any given prismatic
channel shape (rectangular, trapezoidal, triangular, circular, etc.), the channel cross
section can be optimized. Optimum cross sections for common channel shapes are
given without proof in Table 11.3.

Once the optimum cross section for a given channel shape has been determined,
expressions for normal depth, yn, and area, A, as functions of flow rate can be
obtained from Eq. 11.48. These expressions are included in Table 11.3.

11.6Flow with Gradually Varying Depth
Most human-made channels are designed to have uniform flow (for example, see
Fig. 11.1). However, this is not true in some situations. A channel can have nonuniform
flow, that is, a flow forwhich the depth andhence speed, and so on vary along the channel
for a number of reasons. Examples include when an open-channel flow encounters a
change in bed slope, geometry, or roughness, or is adjusting itself back to normal depth
after experiencing an upstream change (such as a sluice gate). We have already studied
rapid, localized changes, such as that occurring in a hydraulic jump, but here we assume
flowdepth changes gradually. Flowwith gradually varying depth is analyzed by applying
the energy equation to a differential control volume; the result is a differential equation

Table 11.3
Properties of Optimum Open-Channel Sections (SI Units)

Shape Section
Optimum
Geometry

yn

Qn

Sb

α � 60�

b �

Normal
Depth, yn

Cross-Sectional
 Area, A

2 0.968
1/2

3/8

3

Qn

Sb

1.622
1/2

3/4

Qn

Sb
b � 2yn

0.917
1/2

3/8
Qn

Sb

1.682
1/2

3/4

Qn

Sb
D � 2yn

1.00
1/2

3/8
Qn

Sb

1.583
1/2

3/4

Qn

Sb

yn

yn

yn

b

b

D

α

α

b >> y

yn

yn

α � 45� 1.297
1/2

3/8
Qn

Sb

1.682
1/2

3/4

(Q/b)n
None —1.00

Sb
1/2

3/8

Trapezoidal

Triangular

Rectangular

Wide Flat

Circular
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that relates changes in depth to distance along the flow. The resulting equation may be
solved analytically or, more typically numerically, if we approximate the head loss at
each section as being the same as that for flow at normal depth, using the velocity and
hydraulic radius of the section. Water depth and channel bed height are assumed to
change slowly. As in the case of flow at normal depth, velocity is assumed uniform, and
the pressure distribution is assumed hydrostatic at each section.

The energy equation (Eq. 11.10) for open-channel flow was applied to a finite
control volume in Section 11.2,

V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 1Hl ð11:10Þ

We apply this equation to the differential control volume, of length dx, shown in
Fig. 11.18. Note that the energy grade line, hydraulic grade line, and channel bottom all
have different slopes, unlike for the uniform flow of the previous section!

The energy equation becomes

V2

2g
1 y1 z 5

V2

2g
1 d

V2

2g

� �
1 y1 dy1 z1 dz1 dHl

or after simplifying and rearranging

2 d
V2

2g

� �
2 dy2 dz 5 dHl ð11:54Þ

This is not surprising. The differential loss of mechanical energy equals the differential
head loss. From channel geometry

dz 52 Sbdx ð11:55Þ
We also have the approximation that the head loss in this differential nonuniform flow
can be approximated by the head loss that uniform flow would have at the same
flow rate, Q, at the section. Hence the differential head loss is approximated by

dHl 5 Sdx ð11:56Þ
where S is the slope of the EGL (see Fig. 11.18). Using Eqs. 11.55 and 11.56 in Eq.
11.54, dividing by dx, and rearranging, we obtain

�

�

V2

2g

y

EGL line

HGL line
⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
+

V2
d

V2

2g2g

z

y + dy

z + dz
dx

Slope Sb

Slope S

Fig. 11.18 Control volume for energy analysis of gradually varying flow.
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d

dx

V2

2g

� �
1

dy

dx
5 Sb 2 S ð11:57Þ

To eliminate the velocity derivative, we differentiate the continuity equation, Q=
VA= const, to obtain

dQ

dx
5 0 5 A

dV

dx
1V

dA

dx

or

dV

dx
5 2

V

A

dA

dx
5 2

Vbs
A

dy

dx
ð11:58Þ

where we have used dA= bsdy (Eq. 11.17), where bs is the channel width at the free
surface. Using Eq. 11.58 in Eq. 11.57, after rearranging

d

dx

V2

2g

� �
1

dy

dx
5

V

g

dV

dx
1

dy

dx
5 2

V2bs
gA

dy

dx
1

dy

dx
5 Sb 2 S ð11:59Þ

Next, we recognize that

V2bs
gA

5
V2

g
A

bs

5
V2

gyh
5 Fr2

where yh is the hydraulic depth (Eq. 11.2). Using this in Eq. 11.59, we finally obtain
our desired form of the energy equation for gradually varying flow

dy

dx
5

Sb 2 S

12Fr2
ð11:60Þ

This equation indicates how the depth y of the flow varies. Whether the flow becomes
deeper (dy/dx. 0) or shallower (dy/dx, 0) depends on the sign of the right-hand side.
For example, consider a channel that has a horizontal section (Sb= 0):

dy

dx
5 2

S

12Fr2

Because of friction the EGL always decreases, so S. 0. If the incoming flow is sub-
critical (Fr, 1), the flow depth will gradually decrease (dy/dx, 0); if the incoming
flow is supercritical (Fr. 1), the flow depth will gradually increase (dy/dx. 0). Note
also that for critical flow (Fr=1), the equation leads to a singularity, and gradually
flow is no longer sustainable—something dramatic will happen (guess what).

Calculation of Surface Profiles

Equation 11.60 can be used to solve for the free surface shape y(x); the equation looks
simple enough, but it is usually difficult to solve analytically and so is solved
numerically. It is difficult to solve because the bed slope, Sb, the local Froude number,
Fr, and S, the EGL slope equivalent to uniform flow at rate Q, will in general all vary
with location, x. For S, we use the results obtained in Section 11.5, specifically

Q 5
1

n
AR

2=3
h S1=2 ð11:48aÞ

or for English Engineering units

11.6 Flow with Gradually Varying Depth 643



Q 5
1:49

n
AR

2=3
h S1=2 ð11:48bÞ

Note that we have used S rather than Sb in Eq. 11.48 as we are using the equation to
obtain an equivalent value of S for a uniform flow at rate Q! Solving for S,

S 5
n2Q2

A2R
4=3
h

ð11:61aÞ

or for English Engineering units

S 5
n2Q2

1:492A2R
4=3
h

ð11:61bÞ

We can also express the Froude number as a function of Q,

Fr 5
Vffiffiffiffiffiffiffi
gyh

p 5
Q

A
ffiffiffiffiffiffiffi
gyh

p ð11:62Þ

Using Eqs. 11.61a (or 11.61b) and 11.62 in Eq. 11.60

dy

dx
5

Sb 2 S

12Fr2
5

Sb 2
n2Q2

A2R
4=3
h

12
Q2

A2gyh

ð11:63aÞ

or for English Engineering units

dy

dx
5

Sb 2
n2Q2

1:492A2R
4=3
h

12
Q2

A2gyh

ð11:63bÞ

For a given channel (slope, Sb, and roughness coefficient, n, both of which may vary
with x) and flow rate Q, the area A, hydraulic radius Rh, and hydraulic depth yh are all
functions of depth y (see Section 11.1). Hence Eqs. 11.63 are usually best solved using
a suitable numerical integration scheme. Example 11.10 shows such a calculation for
the simplest case, that of a rectangular channel.

Example 11.10 CALCULATION OF FREE SURFACE PROFILE

Water flows in a 5-m-wide rectangular channel made from unfinished concrete with n5 0.015. The channel contains a
long reach on which Sb is constant at Sb5 0.020. At one section, flow is at depth y15 1.5 m, with speed V15 4.0 m/s.
Calculate and plot the free surface profile for the first 100 m of the channel, and find the final depth.

Given: Water flow in a rectangular channel.

Find: Plot of free surface profile; depth at 100 m.

Solution: Use the appropriate form of the equation for flow depth, Eq. 11.63a.

Governing equation:

dy

dx
5

Sb 2 S

12Fr2
5

Sb 2
n2Q2

A2R
4=3
h

12
Q2

A2gyh

ð11:63aÞ
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We use Euler’s method (see Section 5.5) to convert the differential equation to a difference equation.
In this approach, the differential is converted to a difference,

dy

dx
� Δy

Δx
ð1Þ

where Δx and Δy are small but finite changes
in x and y, respectively. Combining Eqs.
11.63a and 1, and rearranging,

Δy 5 Δx

Sb 2
n2Q2

A2R
4=3
h

12
Q2

A2gyh

0
BBB@

1
CCCA

Finally, we let Δy5 yi11 � yi, where yi and
yi11 are the depths at point i and a point (i+1)
distance Δx further downstream,

yi1 1 5 yi 1Δx

Sbi 2
n2i Q

2

A2
i R

4=3
hi

12
Q2

A2
i gyhi

0
BBBB@

1
CCCCA ð2Þ

Equation 2 computes the depth, yi11, given data at point i. In the current application, Sb and n are constant, but A,
Rh, and yh will, of course, vary with x because they are functions of y. For a rectangular channel we have the
following:

Ai 5 byi

Rhi 5
byi

b1 2yi

yhi 5
Ai

bs
5

Ai

b
5

byi
bs

5 yi

The calculations are conveniently performed and results plotted using Excel. Note that partial results are shown
in the table, and that for the first meter, over which there is a rapid change in depth, the step size is Δx5 0.05.

i x (m) y (m) A (m2) Rh (m) yh (m)

1 0.00 1.500 7.500 0.938 1.500

2 0.05 1.491 7.454 0.934 1.491

3 0.10 1.483 7.417 0.931 1.483

4 0.15 1.477 7.385 0.928 1.477

5 0.20 1.471 7.356 0.926 1.471
..
. ..

. ..
. ..

. ..
. ..

.

118 98 0.916 4.580 0.670 0.916

119 99 0.915 4.576 0.670 0.915

120 100 0.914 4.571 0.669 0.914

The depth at location x5 100 m is seen to be 0.914 m.

yð100mÞ 5 0:914m ß

yð100mÞ
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11.7 Discharge Measurement Using Weirs
A weir is a device (or overflow structure) that is placed normal to the direction of flow.
The weir essentially backs up water so that, in flowing over the weir, the water goes
through critical depth. Weirs have been used for the measurement of water flow in
open channels for many years. Weirs can generally be classified as sharp-crested weirs
and broad-crested weirs. Weirs are discussed in detail in Bos [14], Brater [15], and
Replogle [16].

A sharp-crested weir is basically a thin plate mounted perpendicular to the flow
with the top of the plate having a beveled, sharp edge, which makes the nappe spring
clear from the plate (see Fig. 11.19).

The rate of flow is determined by measuring the head, typically in a stilling well
(see Fig. 11.20) at a distance upstream from the crest. The head H is measured using a
gage.

Suppressed Rectangular Weir

These sharp-crested weirs are as wide as the channel and the width of the nappe is the
same length as the crest. Referring to Fig. 11.20, consider an elemental area dA= bdh
and assume the velocity is V 5

ffiffiffiffiffiffiffiffi
2gh

p
; then the elemental flow is

dQ 5 bdh
ffiffiffiffiffiffiffiffi
2gh

p
5 b

ffiffiffiffiffi
2g

p
h1=2dh

Note (following the solution procedure of Example 11.8) that the normal
depth for this flow is yn5 0.858 m; the flow depth is asymptotically
approaching this value. In general, this is one of several possibilities,
depending on the values of the initial depth and the channel properties (slope
and roughness). A flow may approach normal depth, become deeper and
deeper, or eventually become shallower and experience a hydraulic jump.

The accuracy of the results obtained
obviously depends on the numerical
model used; for example, a more
accurate model is the RK4 method.
Also, for the first meter or so, there are
rapid changes in depth, bringing into
question the validity of several
assumptions, for example, uniform
flow and hydrostatic pressure.The Excel workbook for thisproblem can be modified for use
in solving similar problems.

Crest V

Nappe
V
2g

Drawdown
V0

2

V0

2g

H

P

Fig. 11.19 Flow over sharp-crested weir.
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The discharge is expressed by integrating this over the area above the top of the weir
crest:

Q 5

ZH
0

dQ 5
ffiffiffiffiffi
2g

p
b

ZH
0

h1=2dh 5
2

3

ffiffiffiffiffi
2g

p
bH3=2 ð11:64Þ

Friction effects have been neglected in the derivation of Eq. 11.64. The drawdown
effect shown in Fig. 11.19 and the crest contraction indicate that the streamlines are
not parallel or normal to the area in the plane. To account for these effects, a coef-
ficient of discharge Cd is used, so that

Q 5 Cd

2

3

ffiffiffiffiffi
2g

p
bH3=2

where Cd is approximately 0.62. This is the basic equation for a suppressed rectangular
weir, which can be expressed more generally as

Q 5 CwbH
3=2 ð11:65Þ

where the Cw is the weir coefficient, Cw 5 2
3Cd

ffiffiffiffiffi
2g

p
. For English Engineering units,

Cw � 3.33, and for SI units, Cw � 1.84.
If the velocity of approach, Va, where H is measured is appreciable, then the

integration limits are

Q 5
ffiffiffiffiffi
2g

p
b

ZH1V2
a=2g

V2
a=2g

h1=2dh 5 Cwb H1
V2

a

2g

� �3=2

2
V2

a

2g

� �3=2
" #

ð11:66Þ

When ðV2
a=2gÞ3=2 � 0 Eq. 11.66 can be simplified to

Q 5 Cwb H1
V2

a

2g

� �3=2

ð11:67Þ

Contracted Rectangular Weirs

A contracted horizontal weir is another sharp-crested weir with a crest that is shorter
than the width of the channel and one or two beveled end sections so that water
contracts both horizontally and vertically. This forces the nappe width to be less than
b. The effective crest length is

b 5 b2 0:1 nH

Stilling
well

Crest

b

dh H

h

P

Fig. 11.20 Rectangular sharp-crested weir without end contraction.
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where n= 1 if the weir is placed against one side wall of the channel so that the
contraction on one side is suppressed and n=2 if the weir is positioned so that it is not
placed against a side wall.

Triangular Weir

Triangular or V-notch weirs are sharp-crested weirs that are used for relatively
small flows but that have the advantage that they can also function for reasonably
large flows as well. Referring to Fig. 11.21, the rate of discharge through an elemental
area, dA, is

dQ 5 Cd

ffiffiffiffiffiffiffiffi
2gh

p
dA

where dA= 2xdh, and x= (H � h)tan(θ/2); so dA= 2(H � h)tan(θ/2)dh. Then

dQ 5 Cd

ffiffiffiffiffiffiffiffi
2gh

p
2ðH2 hÞtan θ

2

� �
dh

� �

and

Q 5 Cd2
ffiffiffiffiffi
2g

p
tan

�
θ
2

�ZH
0

ðH2 hÞh1=2dh

5 Cd

�
8

15

� ffiffiffiffiffi
2g

p
tan

�
θ
2

�
H5=2

Q 5 CwH
5=2

The value of Cw for a value of θ= 90� (the most common) is Cw= 1.38 for SI units and
Cw= 2.50 for English Engineering units.

Broad-Crested Weir

Broad-crested weirs (Fig. 11.22) are essentially critical-depth weirs in that if the weirs
are high enough, critical depth occurs on the crest of the weir. For critical flow con-
ditions yc 5 ðQ2=gb2Þ1=3 (Eq. 11.23) and E= 3yc/2 (Eq. 11.25) for rectangular
channels:

H-h

h
x

d

θ

H

Fig. 11.21 Triangular sharp-crested weir.
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Q 5 b
ffiffiffiffiffiffiffi
gy3c

q
5 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2

3
E

� �3
s

5 b
2

3

� �3=2 ffiffiffi
g

p
E3=2

or, assuming the approach velocity is negligible:

Q 5 b

�
2

3

�3=2 ffiffiffi
g

p
H3=2

Q 5 CwbH
3=2

Figure 11.23 illustrates a broad-crested weir installation in a concrete-lined canal.

Vc

2

2g

H

P

V1
2

2g

Ec yc

V1

Fig. 11.22 Broad-crested weir.

bc

Cross-sectionSection along center line

Recorder

Top of canal

Concrete-lined canal

Stilling well
for recorder Staff gauge

Flow

Survey point for establishing gage zero
reference, L/4 to L/3 from end, on weir
center line 

2 to 3
1

Fig. 11.23 Broad-crested weir in concrete-lined canal (from Bos et al. [14]).
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Example 11.11 DISCHARGE FROM A RECTANGULAR SHARP-CRESTED SUPPRESSED WEIR

A rectangular, sharp-crested suppressed weir 3 m long is 1 m high. Determine the discharge when the head
is 150 mm.

Given: Geometry and head of a rectangular sharp-crested suppressed weir.

Find: Discharge (flow rate), Q.

Solution: Use the appropriate weir discharge equation.

Governing equation:
Q 5 CwbH

3=2 ð11:65Þ
In Eq. 11.65 we use Cw � 1.84, and the given data, b5 3 m and H5 150 mm5 0.15 m, so

Q 5 1:843 3m3 ð0:15mÞ3=2

Q 5 0:321m3=s ß

Q

Note that Eq. 11.65 is an “engineering” equation; so we do not expect
the units to cancel.

This Example illustrates use of one of a
number of weir discharge equations.

11.8 Summary and Useful Equations
In this chapter, we:

ü Derived an expression for the speed of surface waves and developed the notion of the specific energy of a flow, and derived the
Froude number for determining whether a flow is subcritical, critical, or supercritical.

ü Investigated rapidly varied flows, especially the hydraulic jump.
ü Investigated steady uniform flow in a channel, and used energy and momentum concepts to derive Chezy’s and Manning’s

equations.
ü Investigated some basic concepts of gradually varied flows.

We also learned how to use many of the important concepts mentioned above in analyzing a range of real-world
open-channel flow problems.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Hydraulic radius:
Rh 5

A

P

(11.1) Page 605

Hydraulic depth:
yh 5

A

bs

(11.2) Page 606

Speed of surface wave: c 5
ffiffiffiffiffi
gy

p
(11.6) Page 609

Froude number:
Fr 5

Vffiffiffiffiffi
gy

p (11.7) Page 610

Energy equation for open-channel flow: V2
1

2g
1 y1 1 z1 5

V2
2

2g
1 y2 1 z2 1Hl

(11.10) Page 612
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Total head:
H 5

V2

2g
1 y1 z

(11.11) Page 613

Specific energy:
E 5

V2

2g
1 y

(11.13) Page 613

Critical flow:
Q2 5

gA3
c

bsc

(11.21) Page 617

Critical velocity: Vc 5
ffiffiffiffiffiffiffiffiffi
gyhc

p
(11.22) Page 617

Critical depth (rectangular channel):
yc 5

Q2

gb2

� �1=3 (11.23) Page 617

Critical velocity (rectangular channel):
Vc 5

ffiffiffiffiffiffiffi
gyc

p
5

gQ

b

� �1=3 (11.24) Page 618

Minimum specific energy (rectangular
channel):

Emin 5
3

2
yc

(11.25) Page 618

Hydraulic jump conjugate depths: y2
y1

5
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 1

� �
(11.36) Page 628

Hydraulic jump head loss:
Hl 5

½y2 2 y1�3
4y1y2

(11.38b) Page 629

Hydraulic jump head loss (in terms
of Fr1): Hl

E1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 3

h i3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8Fr21

q
2 1

h i
½Fr21 1 2�

(11.39) Page 629

Chezy equation: V 5 C
ffiffiffiffiffiffiffiffiffiffi
RhSb

p
(11.45) Page 633

Chezy coefficient:
C 5

1

n
R

1=6
h

(11.46) Page 633

Manning equation for velocity (SI units)
V 5

1

n
R

2=3
h S

1=2
b

(11.47a) Page 633

Manning equation for flow (SI units)
Q 5

1

n
AR

2=3
h S

1=2
b

(11.48a) Page 634

Manning equation for velocity (English
Engineering units)

V 5
1:49

n
R

2=3
h S

1=2
b

(11.47b) Page 634

Manning equation for flow (English
Engineering units)

Q 5
1:49

n
AR

2=3
h S

1=2
b

(11.48b) Page 634

Energy Grade Line
EGL 5

V2

2g
1 z1 y

(11.50) Page 640

Hydraulic Grade Line HGL 5 z1 y (11.51) Page 640

Energy equation (gradually varying
flow):

dy

dx
5

Sb 2 S

12Fr2
(11.60) Page 643
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Case Study

The Three Gorges Dam

A model of the Three Gorges Dam.

This chapter provided an introduction to free surface
flows, such as that at the exit from a dam. The Three
Gorges Dam on the Yangtze River in China is the
largest hydroelectric dam in the world. The generating
capacity will eventually be 22,500 MW. The dam is
more than 2 km wide and 185 m tall, and its reservoir
will eventually stretch over 600 km upstream. The

construction of the dam was very controversial: Mil-
lions of people had to be relocated, and we are still
not sure of the long-term environmental consequences
of this massive project.
The most significant function of the dam, apart from

power generation, is to control flooding. The reser-
voir’s flood storage capacity is 22 km3; this will reduce
the frequency of downstream flooding from once every
10 years to once every 100 years. Historically, a
number of large cities and a lot of farmland have been
vulnerable to flooding. For example, in 1954, almost
200,000 km2 of land were flooded, killing over 30,000
people and forcing almost 20 million people to move;
in 1998, a flood in the same area affected over 2
million people. With the dam, it is expected that major
floods can be controlled.
Ship locks for river traffic to bypass the dam have

been built so that shipping will become safer (the
gorges were notoriously dangerous to navigate). Each
ship lock is made up of five stages, taking around 4 hr
in total to complete. In addition to the canal locks, the
Three Gorges Dam is equipped with a ship lift capable
of lifting ships of up to 3000 tons.
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Problems
Basic Concepts and Definitions

11.1 Verify the equation given in Table 11.1 for the hydraulic
radius of a trapezoidal channel. Plot the ratio R/y for b= 2 m
with side slope angles of 30� and 60� for 0.5 m, y, 3 m.

11.2 Verify the equation given in Table 11.1 for the hydraulic
radius of a circular channel. Evaluate and plot the ratio R/D,
for liquid depths between 0 and D.

11.3 A wave from a passing boat in a lake is observed to
travel at 10 mph. Determine the approximate water depth at
this location.

11.4 A pebble is dropped into a stream of water that flows in
a rectangular channel at 2 m depth. In one second, a ripple
caused by the stone is carried 7 m downstream. What is the
speed of the flowing water?

11.5 A pebble is dropped into a stream of water of uniform
depth. A wave is observed to travel upstream 5 ft in 1 s, and
13 ft downstream in the same time. Determine the flow speed
and depth.

11.6 Solution of the complete differential equations for wave
motion without surface tension shows that wave speed is
given by

c 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gλ
2π

tanh
2πy
λ

� �s

where λ is the wave wavelength and y is the liquid depth.
Show that when λ/y � 1, wave speed becomes proportional
to

ffiffiffi
λ

p
. In the limit as λ/y - N, Vw 5

ffiffiffiffiffi
gy

p
. Determine the

value of λ/y for which Vw . 0:99
ffiffiffiffiffi
gy

p
.

11.7 Capillary waves (ripples) are small amplitude and
wavelength waves, commonly seen, for example, when an
insect or small particle hits the water surface. They are waves
generated due to the interaction of the inertia force of the
fluid ρ and the fluid surface tension σ. The wave speed is

c 5 2π
ffiffiffiffiffi
σ
ρg

r

Find the speed of capillary waves in water and mercury.

11.8 Solution of the complete differential equations for wave
motion in quiescent liquid, including the effects of surface
tension, shows that wave speed is given by

c 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gλ
2π

1
2πσ
ρλ

� �
tanh

2πy
λ

� �s

where λ is the wave wavelength, y is the liquid depth, and σ
is the surface tension. Plot wave speed versus wavelength for
the range 1 mm,λ, 100 mm for (a) water and (b) mercury.
Assume y= 7 mm for both liquids.

11.9 Surface waves are caused by a sharp object that just
touches the free surface of a stream of flowing water, forming
the wave pattern shown. The stream depth is 150 mm.
Determine the flow speed and Froude number. Note that the
wave travels at speed c (Eq. 11.6) normal to the wave front,
as shown in the velocity diagram.

Flow speed V

V

c
θ = 30°

P11.9

11.10 The Froude number characterizes flow with a free sur-
face. Plot on a log-log scale the speed versus depth for
0.1 m/s,V, 3 m/s and 0.001, y, 1 m; plot the line Fr=1,
and indicate regions that correspond to tranquil and rapid flow.

11.11 A submerged body traveling horizontally beneath a
liquid surface at a Froude number (based on body length)
about 0.5 produces a strong surface wave pattern if sub-
merged less than half its length. (The wave pattern of a sur-
face ship also is pronounced at this Froude number.) On a log-
log plot of speed versus body (or ship) length for 1 m/s,
V, 30 m/s and 1 m, x, 300 m, plot the line Fr5 0.5.

11.12 Water flows in a rectangular channel at a depth of
750 mm. If the flow speed is (a) 1 m/s and (b) 4 m/s, compute
the corresponding Froude numbers.

11.13 A long rectangular channel 10 ft wide is observed to
have a wavy surface at a depth of about 6 ft. Estimate the
rate of discharge.

Energy Equation for Open-Channel Flows

11.14 A partially open sluice gate in a 5-m-wide rectangular
channel carries water at 10 m3/s. The upstream depth is
2.5 m. Find the downstream depth and Froude number.

11.15 For a rectangular channel of width b5 20 ft, construct a
family of specific energy curves for Q5 0, 25, 75, 125, and
200 ft3/s. What are the minimum specific energies for these
curves?

11.16 Find the critical depth for flow at 3 m3/s in a rectan-
gular channel of width 2.5 m.

11.17 A trapezoidal channel with a bottom width of 20 ft, side
slopes of 1 to 2, channel bottom slope of 0.0016, and a
Manning’s n of 0.025 carries a discharge of 400 cfs. Compute
the critical depth and velocity of this channel.

11.18 A rectangular channel carries a discharge of 10 ft3/s
per foot of width. Determine the minimum specific energy
possible for this flow. Compute the corresponding flow depth
and speed.

11.19 Flow in the channel of Problem 11.18 (Emin5 2.19 ft) is
to be at twice the minimum specific energy. Compute the
alternate depths for this E.

11.20 For a channel of nonrectangular cross section, critical
depth occurs at minimum specific energy. Obtain a general
equation for critical depth in a trapezoidal section in terms of
Q, g, b, and θ. It will be implicit in yc!
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11.21 Water flows at 400 ft3/s in a trapezoidal channel with
bottom width of 10 ft. The sides are sloped at 3:1. Find the
critical depth for this channel.

Localized Effects of Area Change (Frictionless Flow)

11.22 Consider the Venturi flume shown. The bed is hor-
izontal, and flow may be considered frictionless. The
upstream depth is 1 ft, and the downstream depth is 0.75 ft.
The upstream breadth is 2 ft, and the breadth of the throat is
1 ft. Estimate the flow rate through the flume.

Elevation view

Plan view

b1 = 2 ft b2 = 1 ft

y1 = 1 ft y2 = 0.75 ft

P11.22

11.23 A rectangular channel 10 ft wide carries 100 cfs on a
horizontal bed at 1.0 ft depth. A smooth bump across the
channel rises 4 in. above the channel bottom. Find the ele-
vation of the liquid free surface above the bump.

y = 1 ft 4 in.

P11.23

11.24 A rectangular channel 10 ft wide carries a discharge of
20 ft3/s at 1.0 ft depth. A smooth bump 0.25 ft high is placed
on the floor of the channel. Estimate the local change in flow
depth caused by the bump.

11.25 At a section of a 10-ft-wide rectangular channel, the
depth is 0.3 ft for a discharge of 20 ft3/s. A smooth bump 0.1
ft high is placed on the floor of the channel. Determine the
local change in flow depth caused by the bump.

11.26 Water, at 3 ft/s and 2 ft depth, approaches a smooth
rise in a wide channel. Estimate the stream depth after the
0.5 ft rise.

y = 2 ft

0.5 ft

V = 3 s
ft

P11.26

11.27 Water issues from a sluice gate at 1.25 m depth. The
discharge per unit width is 10 m3/s/m. Estimate the water
level far upstream where the flow speed is negligible. Cal-
culate the maximum rate of flow per unit width that could be
delivered through the sluice gate.

11.28 A horizontal rectangular channel 3 ft wide contains a
sluice gate. Upstream of the gate the depth is 6 ft; the depth
downstream is 0.9 ft. Estimate the volume flow rate in the
channel.

11.29 Flow through a sluice gate is shown. Estimate the
water depth and velocity after the gate (well before the
hydraulic jump).

y1 = 1.5 m

V1 = 0.2 m/s

P11.29, P11.39

11.30 Rework Example 11.4 for a 350-mm-high bump and
a side wall constriction that reduces the channel width to
1.5 m.

The Hydraulic Jump

11.31 Find the rate at which energy is being consumed (kW)
by the hydraulic jump of Example 11.5. Is this sufficient to
produce a significant temperature rise in the water?

11.32 A hydraulic jump occurs in a rectangular channel 4.0 m
wide. The water depth before the jump is 0.4 m and 1.7 m
after the jump. Compute the flow rate in the channel, the
critical depth, and the head loss in the jump.

11.33 A wide channel carries 10 m3/s per foot of width at a
depth of 1 m at the toe of a hydraulic jump. Determine the
depth of the jump and the head loss across it.

11.34 A hydraulic jump occurs in a wide horizontal channel.
The discharge is 2 m3/s per meter of width. The upstream
depth is 750 mm. Determine the depth of the jump.

11.35 A hydraulic jump occurs in a rectangular channel. The
flow rate is 200 ft3/s, and the depth before the jump is 1.2 ft.
Determine the depth behind the jump and the head loss, if
the channel is 10 ft wide.

11.36 The hydraulic jump may be used as a crude flow meter.
Suppose that in a horizontal rectangular channel 5 ft wide
the observed depths before and after a hydraulic jump are
0.66 and 3.0 ft. Find the rate of flow and the head loss.

11.37 A hydraulic jump occurs on a horizontal apron down-
stream from a wide spillway, at a location where depth is 0.9
m and speed is 25 m/s. Estimate the depth and speed
downstream from the jump. Compare the specific energy
downstream of the jump to that upstream.

11.38 A hydraulic jump occurs in a rectangular channel. The
flow rate is 50 m3/s, and the depth before the jump is 2 m.
Determine the depth after the jump and the head loss, if the
channel is 1 m wide.

11.39 Estimate the depthofwater before andafter the jump for
the hydraulic jumpdownstreamof the sluice gate ofFig. P11.29.

11.40 A positive surge wave, or moving hydraulic jump, can
be produced in the laboratory by suddenly opening a sluice
gate. Consider a surge of depth y2 advancing into a quiescent
channel of depth y1. Obtain an expression for surge speed in
terms of y1 and y2
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y2

y1

Quiescent fluidVSurge

P11.40

11.41 A tidal bore (an abrupt translating wave or moving
hydraulic jump) often forms when the tide flows into the
wide estuary of a river. In one case, a bore is observed to
have a height of 12 ft above the undisturbed level of the river
that is 8 ft deep. The bore travels upstream at Vbore5 18
mph. Determine the approximate speed Vr of the current of
the undisturbed river.

y2

y1

Vbore

Vr

P11.41

Uniform Flow

11.42 A 2-m-wide rectangular channel with a bed slope of
0.0005 has a depth of flow of 1.5 m. Manning’s roughness
coefficient is 0.015. Determine the steady uniform discharge
in the channel.

11.43 Determine the uniform flow depth in a rectangular
channel 2.5 m wide with a discharge of 3 m3/s. The slope is
0.0004 and Manning’s roughness factor is 0.015.

11.44 Determine the uniform flow depth in a trapezoidal
channel with a bottom width of 8 ft and side slopes of
1 vertical to 2 horizontal. The discharge is 100 ft3/s. Man-
ning’s roughness factor is 0.015 and the channel bottom slope
is 0.0004.

11.45 Determine the uniform flow depth in a trapezoidal
channel with a bottom width of 2.5 m and side slopes of
1 vertical to 2 horizontal with a discharge of 3 m3/s. The slope
is 0.0004 and Manning’s roughness factor is 0.015.

11.46 A rectangular flume built of concrete, with 1 ft per
1000 ft slope, is 6 ft wide. Water flows at a normal depth of 3
ft. Compute the discharge.

11.47 A rectangular flume built of timber is 3 ft wide. The
flume is to handle a flow of 90 ft3/s at a normal depth of 6 ft.
Determine the slope required.

11.48 A channel with square cross section is to carry 20 m3/s
of water at normal depth on a slope of 0.003. Compare the
dimensions of the channel required for (a) concrete and (b)
soil cement.

11.49 Water flows in a trapezoidal channel at a normal depth
of 1.2 m. The bottom width is 2.4 m and the sides slope at 1:1

(45�). The flow rate is 7.1 m3/s. The channel is excavated
from bare soil. Find the bed slope.

11.50 A triangular channel with side angles of 45� is to carry
10 m3/s at a slope of 0.001. The channel is concrete. Find the
required dimensions.

11.51 A semicircular trough of corrugated steel, with diam-
eter D5 1 m, carries water at depth y5 0.25 m. The slope is
0.01. Find the discharge.

11.52 Find the discharge at which the channel of Problem
11.51 flows full.

11.53 The flume of Problem 11.46 is fitted with a new plastic
film liner (n5 0.010). Find the new depth of flow if the dis-
charge remains constant at 85.5 ft3/s.

11.54 Discharge through the channel of Problem 11.49 is
increased to 10 m3/s. Find the corresponding normal depth if
the bed slope is 0.00193.

11.55 The channel of Problem 11.49 has 0.00193 bed slope.
Find the normal depth for the given discharge after a new
plastic liner (n5 0.010) is installed.

11.56 Consider again the semicircular channel of Problem
11.51. Find the normal depth that corresponds to a discharge
of 0.5 m3/s.

11.57 Consider a symmetric open channel of triangular cross
section. Show that for a given flow area, the wetted perim-
eter is minimized when the sides meet at a right angle.

11.58 Compute the normal depth and velocity of the channel
of Problem 11.17.

11.59 Determine the cross section of the greatest hydraulic
efficiency for a trapezoidal channel with side slope of 1
vertical to 2 horizontal if the design discharge is 250 m3/s.
The channel slope is 0.001 and Manning’s roughness factor is
0.020.

11.60 For a trapezoidal shaped channel (n5 0.014 and slope
Sb5 0.0002 with a 20-ft bottom width and side slopes of 1
vertical to 1.5 horizontal), determine the normal depth for a
discharge of 1000 cfs.

11.61 Show that the best hydraulic trapezoidal section is one-
half of a hexagon.

11.62 Compute the critical depth for the channel in Problem
11.41.

11.63 Consider a 2.45-m-wide rectangular channel with a bed
slope of 0.0004 and a Manning’s roughness factor of 0.015.
A weir is placed in the channel, and the depth upstream of
the weir is 1.52 m for a discharge of 5.66 m3/s. Determine
whether a hydraulic jump forms upstream of the weir.

11.64 An above-ground rectangular flume is to be con-
structed of timber. For a drop of 10 ft/mile, what will be the
depth and width for the most economical flume if it is to
discharge 40 cfs?

11.65 Consider flow in a rectangular channel. Show that, for
flow at critical depth and optimum aspect ratio (b5 2y), the
volume flow rate and bed slope are given by the expressions:

Q 5 62:6y
5=2
c and Sc 5 24:7

n2

y
1=3
c
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11.66 A trapezoidal canal lined with brick has side slopes of
2:1 and bottom width of 10 ft. It carries 600 ft3/s at critical
speed. Determine the critical slope (the slope at which the
depth is critical).

11.67 A wide flat unfinished concrete channel discharges
water at 20 ft3/s per foot of width. Find the critical slope (the
slope at which depth is critical).

11.68 An optimum rectangular storm sewer channel made of
unfinished concrete is to be designed to carry a maximum
flow rate of 100 ft3/s, at which the flow is at critical condition.
Determine the channel width and slope.

Discharge Measurement

11.69 The crest of a broad-crested weir is 1 ft below the level
of an upstream reservoir, where the water depth is 8 ft. For
Cw � 3.4, what is the maximum flow rate per unit width that
could pass over the weir?

11.70 A rectangular, sharp-crested weir with end contrac-
tion is 1.6 m long. How high should it be placed in a

channel to maintain an upstream depth of 2.5 m for 0.5 m3/s
flow rate?

11.71 For a sharp-crested suppressed weir (Cw � 3.33) of
length B5 8.0 ft, P5 2.0 ft, and H5 1.0 ft, determine the
discharge over the weir. Neglect the velocity of approach
head.

11.72 A rectangular sharp-crested weir with end contractions
is 1.5 m long. How high should the weir crest be placed in a
channel to maintain an upstream depth of 2.5 m for 0.5 m3/s
flow rate?

11.73 Determine the head on a 60� V-notch weir for a dis-
charge of 150 L/s. Take Cd � 0.58.

11.74 The head on a 90� V-notch weir is 1.5 ft. Determine the
discharge.

11.75 Determine the weir coefficient of a 90� V-notch weir
for a head of 180 mm for a flow rate of 20 L/s.
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12
Introduction to
Compressible Flow
12.1 Review of Thermodynamics

12.2 Propagation of Sound Waves

12.3 Reference State: Local Isentropic Stagnation Properties

12.4 Critical Conditions

12.5 Summary and Useful Equations

Case Study in Energy and the Environment

Wind Power: The Helix Vertical
Axis Wind Turbine

Most of the devices we have looked at in
previous Case Studies in Energy and the Environment
have been concerned with large-scale power production.
However, a lot of work is being done on residential-scale
devices. Scott Weinbrandt is the CEO of a company
called Helix Wind. His background is in computer tech-
nology, and he has lived through the computer industry,
moving from large central mainframes to distributed
personal computers. Scott says he’s seeing the same
trend emerging in wind energy. His company is targeting
urban residential (and commercial) customers with the
company’s range of small-scale helical-shaped turbines;

one of the models is shown in the photograph. As can
be seen, they are quite beautiful machines—excellent
examples of how engineering at its best can create
attractive, as well as functional, machines. Helix Wind
is finding that some customers are even buying them
just for the product’s aesthetic value! The turbines
are an elegant form of a Savonius turbine and so are
generally considered less efficient at generating
electricity than the common horizontal-axis propeller-
driven turbines. (Figure P9.97 in the problem set for
Chapter 9 shows a crude version of a Savonius tur-
bine; such turbines are drag-based, as opposed to
the lift-based propeller turbines.) An advantage of the
helix design is that the helix shape generates a

657



In Chapter 2 we briefly discussed the two most important questions we must ask
before analyzing a fluid flow: whether or not the flow is viscous, and whether or not
the flow is compressible. We subsequently considered incompressible, inviscid flows
(Chapter 6) and incompressible, viscous flows (Chapters 8 and 9). We are now ready
to study flows that experience compressibility effects. Because this is an introductory
text, our focus will be mainly on one-dimensional compressible, inviscid flows,
although we will also review some important compressible, viscous flow phenomena.
After our consideration of one-dimensional flows, we will introduce some basic
concepts of two-dimensional steady compressible flows.

We first need to establish what we mean by a “compressible” flow. This is a flow in
which there are significant or noticeable changes in fluid density. Just as inviscid fluids
do not actually exist, so incompressible fluids do not actually exist. For example, in
this text we have treated water as an incompressible fluid, although in fact the density

secondary upward flow that improves the overall
aerodynamics, hence improving efficiency.
Helix Wind says a key benefit of the helical design is

its ability to operate even in lower wind speeds,
although high wind speeds will not present any diffi-
culties. Recently an S322 model in California con-
tinued to operate in wind speeds in excess of 60 mph,
whereas a nearby conventional wind farm had many
damaged turbine blades.
The Helix turbines, being vertical-axis wind turbines

(VAWTs), have a number of advantages: They are easy
to maintain because most of the moving parts are
located near the ground; no yaw device is needed to
orient the device into the wind; they usually have a
lower tip-speed ratio and so are less likely to break in

high winds (see Fig. 10.50); they don’t have to shut
down in high wind speeds. On the other hand, a
possible disadvantage of VAWTs is that they tend to
be a little less efficient than horizontal-axis wind tur-
bines. (See Fig. 10.50 for a comparison of Savonius
turbine and conventional turbine efficiencies.) The
Helix design has resulted in greatly increased effi-
ciency, overcoming this disadvantage, and Helix Wind
turbines are now only 6�7 percent less efficient than
the most efficient HAWTs.

The low-speed 2 kW Helix Wind turbine (which is
only about 9 ft 3 4 ft) starts generating power at less
than 10 mph and continues to do so up to about
40 mph; it continues to spin with no damage to the
system in winds as high as 80 mph, although no
additional electricity is generated above the maximum
output at 40 mph. Helix Wind turbines are safe for
wildlife because they spin at much lower speeds than
horizontal turbines and appear as a solid mass rather
than a blurry blade that a bird cannot see. At about
5 dB, the turbines are nearly silent because they
operate with tip speeds close to the wind velocity
(similar to the wind blowing around any stationary
object such as a tree or house). Conventional wind
turbines spin at up to 10 times the wind speed, which
causes the whistling sound that can be heard around
them. The turbine spins no matter what direction the
wind comes from (including vertically if it’s mounted
on the side of a large building) and generates power
even in turbulence-prone urban environments.

Helix Wind is confident that there will be a huge
market for these residential and small commercial-
scale turbines, including at such existing locations as
cell phone towers, cruise ships, billboards, oil and gas
pumping systems, and agricultural water pumping.
The company says its wind turbines also are ideal for
use in developing countries, for example, for pumping
potable water and providing electricity.

Helix S322 Turbine. (Picture courtesy of Helix
Wind.)
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of seawater increases by 1 percent for each mile or so of depth. Hence, whether or not
a given flow can be treated as incompressible is a judgment call: Liquid flows will
almost always be considered incompressible (exceptions include phenomena such as
the “water hammer” effect in pipes), but gas flows could easily be either incompres-
sible or compressible. We will learn in this chapter (in Example 12.5) that for Mach
numbers M less than about 0.3, the change in gas density due to the flow will be less
than 3 percent; this change is small enough in most engineering applications for the
following rule: A gas flow can be considered incompressible when M , 0.3.

The consequences of compressibility are not limited simply to density changes.
Density changes mean that we can have significant compression or expansion work on
a gas, so the thermodynamic state of the fluid will change, meaning that in general
all properties—temperature, internal energy, entropy, and so on—can change. In
particular, density changes create a mechanism (just as viscosity did) for exchange of
energy between “mechanical” energies (kinetic, potential, and “pressure”) and the
thermal internal energy. For this reason, we begin with a review of the thermo-
dynamics needed to study compressible flow.

12.1Review of Thermodynamics
The pressure, density, and temperature of a substance may be related by an equation
of state. Although many substances are complex in behavior, experience shows that
most gases of engineering interest, at moderate pressure and temperature, are well
represented by the ideal gas equation of state,

p5 ρRT ð12:1Þ
where R is a unique constant for each gas;1 R is given by

R5
Ru

Mm

where Ru is the universal gas constant, Ru 5 8314 N�m/(kgmole�K) 5 1544
ft�lbf/(lbmole��R) and Mm is the molecular mass of the gas. Although the ideal gas
equation is derived using a model that has the unrealistic assumptions that the
gas molecules (a) take up zero volume (i.e., they are point masses) and (b) do not
interact with one another, many real gases conform to Eq. 12.1, especially if the pres-
sure is “low” enough and/or temperature “high” enough (see, e.g., [1�3]). For example,
at room temperature, as long as the pressure is less than about 30 atm, Eq. 12.1 models
the air density to better than 1 percent accuracy; similarly, Eq. 12.1 is accurate for air at
1 atm for temperatures that are greater than about 2130�C (140 K).

The ideal gas has other features that are useful. In general, the internal energy of a
simple substance may be expressed as a function of any two independent properties,
e.g., u 5 u(v, T), where v � 1/ρ is the specific volume. Then

du5
@u

@T

� �
v
dT1

@u

@v

� �
T

dv

The specific heat at constant volume is defined as cv � (@u/@T)v, so that

du5 cv dT1
@u

@v

� �
T

dv

1For air, R5 287 N�m=ðkg�KÞ5 53:3 ft�lbf=ðlbm�� RÞ.
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In particular, for an ideal gas it can be shown (see, e.g., Chapter 11 of [1]) that the
internal energy, u, is a function of temperature only, so (@u/@v)T 5 0, and

du5 cv dT ð12:2Þ
for an ideal gas. This means that internal energy and temperature changes may be
related if cv is known. Furthermore, since u 5 u(T), then from Eq. 12.2, cv 5 cv (T).

The enthalpy of any substance is defined as h � u 1 p/ρ. For an ideal gas, p 5 ρRT,
and so h 5 u 1 RT. Since u 5 u(T) for an ideal gas, h also must be a function of
temperature alone.

We can obtain a relation between h and T by recalling once again that for a simple
substance any property can be expressed as a function of any two other independent
properties [1], e.g., h 5 h(v, T) as we did for u, or h 5 h(p, T). We choose the latter in
order to develop a useful relation,

dh5
@h

@T

� �
p

dT1
@h

@p

� �
T

dp

Since the specific heat at constant pressure is defined as cp � (@h/@T)p,

dh5 cp dT1
@h

@p

� �
T

dp

We have shown that for an ideal gas h is a function of T only. Consequently,
(@h/@p)T 5 0 and

dh5 cp dT ð12:3Þ
Since h is a function of T alone, Eq. 12.3 requires that cp be a function of T only for an
ideal gas.

Although specific heats for an ideal gas are functions of temperature, their dif-
ference is a constant for each gas. To see this, from

h5 u1RT

we can write

dh5 du1RdT

Combining this with Eq. 12.2 and Eq. 12.3, we can write

dh5 cp dT5 du1RdT5 cv dT1R dT

Then

cp 2 cv 5R ð12:4Þ
It may seem a bit odd that we have functions of temperature on the left of Eq. 12.4 but
a constant on the right; it turns out that the specific heats of an ideal gas change with
temperature at the same rate, so their difference is constant.

The ratio of specific heats is defined as

k � cp
cv

ð12:5Þ

Using the definition of k, we can solve Eq. 12.4 for either cp or cv in terms of k
and R. Thus,

cp 5
kR

k2 1
ð12:6aÞ
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and

cv 5
R

k2 1
ð12:6bÞ

Although the specific heats of an ideal gas may vary with temperature, for moderate
temperature ranges they vary only slightly, and can be treated as constant, so

u2 2 u1 5

Z u2

u1

du5

Z T2

T1

cv dT5 cvðT2 2T1Þ ð12:7aÞ

h2 2 h1 5

Z h2

h1

dh5

Z T2

T1

cp dT5 cpðT2 2T1Þ ð12:7bÞ

Data forMm, cp, cv,R, and k for common gases are given in TableA.6 ofAppendixA.
We will find the property entropy to be extremely useful in analyzing compressible

flows. State diagrams, particularly the temperature-entropy (Ts) diagram, are valu-
able aids in the physical interpretation of analytical results. Since we shall make
extensive use of Ts diagrams in solving compressible flow problems, let us review
briefly some useful relationships involving the property entropy [1�3].

Entropy is defined by the equation

ΔS �
Z
rev

δQ
T

or dS5
δQ
T

� �
rev

ð12:8Þ

where the subscript signifies reversible.
The inequality of Clausius, deduced from the second law, states thatI

δQ
T

# 0

As a consequence of the second law, we can write

dS$
δQ
T

or T dS$ δQ ð12:9aÞ

For reversible processes, the equality holds, and

Tds5
δQ
m

reversible processð Þ ð12:9bÞ

The inequality holds for irreversible processes, and

T ds .
δQ
m

irreversible processð Þ ð12:9cÞ

For an adiabatic process, δQ/m 5 0. Thus

ds5 0 ðreversible adiabatic processÞ ð12:9dÞ
and

ds . 0 ðirreversible adiabatic processÞ ð12:9eÞ
Thus a process that is reversible and adiabatic is also isentropic; the entropy remains
constant during the process. Inequality 12.9e shows that entropy must increase for an
adiabatic process that is irreversible.

Equations 12.9 show that any two of the restrictions—reversible, adiabatic, or
isentropic—imply the third. For example, a process that is isentropic and reversible
must also be adiabatic.
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A useful relationship among properties (p, v, T, s, u) can be obtained by con-
sidering the first and second laws together. The result is the Gibbs, or T ds, equation

T ds5 du1 p dv ð12:10aÞ
This is a differential relationship among properties, valid for any process between any
two equilibrium states. Although it is derived from the first and second laws, it is, in
itself, a statement of neither.

An alternative form of Eq. 12.10a can be obtained by substituting

du5 dðh2 pvÞ5 dh2 p dv2 v dp

to obtain

T ds5 dh2 v dp ð12:10bÞ
For an ideal gas, entropy change can be evaluated from the T ds equations as

ds5
du

T
1

p

T
dv5 cv

dT

T
1R

dv
v

ds5
dh

T
2

v
T

dp5 cp
dT

T
2R

dp

p

For constant specific heats, these equations can be integrated to yield

s2 2 s1 5 cv ln
T2

T1
1R ln

v2
v1

ð12:11aÞ

s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð12:11bÞ

and also

s2 2 s1 5 cv ln
p2
p1

1 cp ln
v2
v1

ð12:11cÞ

(Equation 12.11c can be obtained from either Eq. 12.11a or 12.11b using Eq. 12.4 and
the ideal gas equation, Eq. 12.1, written in the form pv 5 RT, to eliminate T.)

Example 12.1 shows use of the above governing equations (the Tds equations) to
evaluate property changes during a process.

For an ideal gas with constant specific heats, we can use Eqs. 12.11 to obtain
relations valid for an isentropic process. From Eq. 12.11a

s2 2 s1 5 05 cv ln
T2

T1

1R ln
v2
v1

Then, using Eqs. 12.4 and 12.5,

T2

T1

� �
v2
v1

� �R=cv
5 0 or T2v

k2 1
2 5T1v

k2 1
1 5Tvk2 1 5 constant

where states 1 and 2 are arbitrary states of the isentropic process. Using v 5 1/ρ,

Tvk2 1 5
T

ρk2 1
5 constant ð12:12aÞ

We can apply a similar process to Eqs. 12.11b and 12.11c, respectively, and obtain the
following useful relations:

Tp12 k=k 5 constant ð12:12bÞ
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pvk 5
p

ρk
5 constant ð12:12cÞ

Equations 12.12 are for an ideal gas undergoing an isentropic process.
Qualitative information that is useful in drawing state diagrams also can be

obtained from the T ds equations. To complete our review of the thermodynamic
fundamentals, we evaluate the slopes of lines of constant pressure and of constant
volume on the Ts diagram in Example 12.2.

Example 12.1 PROPERTY CHANGES IN COMPRESSIBLE DUCT FLOW

Air flows through a long duct of constant area at 0.15 kg/s. A short section of the duct is cooled by liquid nitrogen
that surrounds the duct. The rate of heat loss in this section is 15.0 kJ/s from the air. The absolute pressure, tem-
perature, and velocity entering the cooled section are 188 kPa, 440 K, and 210 m/s, respectively. At the outlet, the
absolute pressure and temperature are 213 kPa and 351 K. Compute the duct cross-sectional area and the changes in
enthalpy, internal energy, and entropy for this flow.

Given: Air flows steadily through a short section of constant-area duct that is cooled by liquid nitrogen.

T1 5 440 K
p1 5 188 kPa ðabsÞ
V1 5 210 m=s

T2 5 351 K
p2 5 213 kPa ðabsÞ

Find: (a) Duct area. (b) Δh. (c) Δu. (d) Δs.

Solution: The duct area may be found from the continuity equation.

Governing equation:
5 0ð1Þ
@

@t

Z
CV

ρ dV---1

Z
CV

ρ~V �d~A5 0 ð4:12Þ

Assumptions: (1) Steady flow.
(2) Uniform flow at each section.
(3) Ideal gas with constant specific heats.

Then

ð2ρ1V1A1Þ1 ðρ2V2A2Þ5 0

or

_m5 ρ1V1A5 ρ2V2A

since A5A1 5A2 5 constant. Using the ideal gas relation, p5 ρRT , we find

ρ1 5
p1
RT1

5 1:883 105
N

m2
3

kg�K
287 N�m 3

1

440 K
5 1:49 kg=m3

From continuity,

A5
_m

ρ1V1
5 0:15

kg

s
3

m3

1:49 kg
3

s

210 m
5 4:793 102 4m2

ß
A

1 2

CVFlow

·
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For an ideal gas, the change in enthalpy is

Δh5 h2 2 h1 5

Z T2

T1

cp dT5 cpðT2 2T1Þ ð12:7bÞ

Δh5 1:00
kJ

kg�K 3 ð3512 440ÞK5 2 89:0 kJ=kg ß
Δh

Also, the change in internal energy is

Δu5 u2 2 u1 5

Z T2

T1

cv dT5 cvðT2 2T1Þ ð12:7aÞ

Δu5 0:717
kJ

kg�K 3 ð3512 440ÞK5 263:8 kJ=kg ß
Δu

The entropy change may be obtained from Eq. 12.11b,

Δs5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

5 1:00
kJ

kg�K 3 ln
351

440

0
@

1
A2 0:287

kJ

kg�K 3 ln
2:133 105

1:883 105

0
@

1
A

Δs52 0:262 kJ=ðkg�KÞ ß
Δs

We see that entropy may decrease for a nonadiabatic process in which the gas is cooled.

This Example illustrates the use of the
governing equations for computing
property changes of an ideal gas
during a process.

Example 12.2 CONSTANT-PROPERTY LINES ON A Ts DIAGRAM

For an ideal gas, find the equations for lines of (a) constant volume and (b) constant pressure in the Ts plane.

Find: Equations for lines of (a) constant volume and
(b) constant pressure in the Ts plane for an ideal gas.

Solution:
(a) We are interested in the relation between T and s with the volume v held constant. This suggests use

of Eq. 12.11a,

5 0

s2 2 s1 5 cv ln
T2

T1
1R ln

v2
v1

ð12:8Þ

We relabel this equation so that state 1 is now reference state 0, and state 2 is an arbitrary state,

s2 s0 5 cv ln
T

T0
or T5T0e

ðs2 s0Þ=cv ð1Þ

Hence, we conclude that constant volume lines in the Ts plane are exponential.
(b) We are interested in the relation between T and s with the pressure p held constant. This suggests use of

Eq. 12.11b, and using a similar approach to case (a), we find
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12.2Propagation of Sound Waves
Speed of Sound

A beginner to compressible flow studies might wonder what on earth sound has to do
with the speeds present in a flow. We will see in this chapter and the next that the
speed of sound, c, is an important marker in fluid mechanics: Flows with speeds less
than the speed of sound are called subsonic; flows with speeds greater than the speed
of sound are called supersonic; and we will learn that the behaviors of subsonic and
supersonic flows are completely different. We have previously (in Chapter 2, and in
Chapter 7 with Eq. 7.16) defined the Mach number M of a flow, and it is so important
for our studies that we redefine it here,

M � V

c
ð12:13Þ

where V is the speed (of the fluid, or in some cases of the aircraft), so that M , 1 and
M . 1 correspond to subsonic and supersonic flow, respectively. In addition, we
mentioned in Section 12.1 that we’ll demonstrate in Example 12.5 that for M , 0.3,
we can generally assume incompressible flow. Hence, knowledge of the Mach number
value is important in fluid mechanics.

An answer to the question posed at the beginning of this section is that the speed of
sound is important in fluid mechanics because this is the speed at which “signals” can
travel through the medium. Consider, for example, an object such as an aircraft in
motion—the air ultimately has to move out of its way. In Newton’s day, it was thought
that this happened when the (invisible) air particles literally bounced off the front of
the object, like so many balls bouncing off a wall; now we know that in most instances

T5T0e
ðs2 s0Þ=cp ð2Þ

Hence, we conclude that constant pressure lines in the Ts plane are also exponential.
What about the slope of these curves? Because cp . cv for all gases, we can see that the exponential, and

therefore the slope, of the constant pressure curve, Eq. 2, is smaller than that for the constant volume curve, Eq. 1.
This is shown in the sketch below:
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This Example illustrates use of gov-
erning equations to explore relations
among properties.

VIDEO

Sound Waves (Animation).
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the air starts moving out of the way well before encountering the object (this will not
be true when we have supersonic flow!). How does the air “know” to move out of the
way? It knows because as the object moves, it generates disturbances (infinitesimal
pressure waves—sound waves) that emanate from the object in all directions. It is
these waves that cumulatively “signal” the air and redirect it around the body as it
approaches. These waves travel out at the speed of sound.

[Sound is a pressure wave of very low pressure magnitude, for human hearing
typically in the range of about 1029 atm (the threshold of hearing) to about 1023 atm
(you will feel pain!). Superimposed on the ambient atmospheric pressure, sound
waves consist of extremely small pressure fluctuations. Because the range of human
hearing covers about five or six orders of magnitude in pressure, typically we use a
dimensionless logarithmic scale, the decibel level, to indicate sound intensity; 0 dB
corresponds to the threshold of hearing, and if you listen to your MP3 player at full
blast the sound will be at about 100 dB—about 1010 the intensity of the threshold of
hearing!]

Let us derive a method for computing the speed of sound in any medium (solid,
liquid, or gas). As we do so, bear in mind that we are obtaining the speed of a
“signal”—a pressure wave—and that the speed of the medium in which the wave
travels is a completely different thing. For example, if you watch a soccer player kick
the ball (at the speed of light—the watching, that is), a fraction of a second later you
will hear the thud of contact as the sound (a pressure wave) travels from the field up to
you in the stands, but no air particles traveled between you and the player (all the air
particles simply vibrated a bit).

Consider propagation of a sound wave of infinitesimal strength into an undisturbed
medium, as shown in Fig. 12.1a. We are interested in relating the speed of wave
propagation, c, to fluid property changes across the wave. If pressure and density in
the undisturbed medium ahead of the wave are denoted by p and ρ, passage of the
wave will cause them to undergo infinitesimal changes to become p 1 dp and ρ 1 dρ.
Since the wave propagates into a stationary fluid, the velocity ahead of the wave, Vx, is
zero. The magnitude of the velocity behind the wave, Vx 1 dVx, then will be simply
dVx; in Fig. 12.1a, the direction of the motion behind the wave has been assumed to
the left.2

Stationary
observer

   � dρ
dVx
p � dpp

Vx � 0
ρ

   � dρ
c � dVx
p � dp

ρ

ρ

p
c
ρ

c

Y

X

(a) Propagating wave

(b) Inertial control volume moving with wave, velocity c

y

x

Observer
on CV

Fig. 12.1 Propagating sound wave showing control volume
chosen for analysis.

2The same final result is obtained regardless of the direction initially assumed for motion behind the wave

(see Problem 12.39).
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The flow of Fig. 12.1a appears unsteady to a stationary observer, viewing the wave
motion from a fixed point on the ground. However, the flow appears steady to an
observer located on an inertial control volume moving with a segment of the wave, as
shown in Fig. 12.1b. The velocity approaching the control volume is then c, and the
velocity leaving is c2 dVx.

The basic equations may be applied to the differential control volume shown in
Fig. 12.1b (we use Vx for the x component of velocity to avoid confusion with internal
energy, u).

a. Continuity Equation

5 0ð1Þ
Governing equation :

@

@t

Z
CV

ρdV---1
Z
CS

ρ~V �d~A5 0 ð4:12Þ

Assumptions: (1) Steady flow.
(2) Uniform flow at each section.

Then

ð2 ρcAÞ1 fðρ1 dρÞðc2 dVxÞAg5 0 ð12:14aÞ
or

� 0

2ρcA1 ρcA2 ρ dVxA1 dρcA2 dρ dVxA5 0

or

dVx 5
c

ρ
dρ ð12:14bÞ

b. Momentum Equation

5 0ð3Þ5 0ð1Þ
Governing equation : FSx 1FBx

5
@

@t

Z
CV

Vx ρdV---1
Z

CS

Vx ρ~V �d~A ð4:18aÞ

Assumption: (3) FBx
5 0

The only surface forces acting in the x direction on the control volume of Fig. 12.1b
are due to pressure (the infinitesimal upper and lower areas have zero friction because
we assume the wave is one dimensional).

FSx
5 pA2 ðp1 dpÞA5 2A dp

Substituting into the governing equation gives

2A dp5 cð2ρcAÞ1 ðc2 dVxÞfðρ1 dρÞðc2 dVxÞAg
Using the continuity equation, (Eq. 12.14a), this reduces to

2A dp5 cð2ρcAÞ1 ðc2 dVxÞðρcAÞ5 ð2c1 c2 dVxÞðρcAÞ
2A dp5 2ρcA dVx

or

dVx 5
1

ρc
dp ð12:14cÞ

12.2 Propagation of Sound Waves 667



Combining Eqs. 12.14b and 12.14c, we obtain

dVx 5
c

ρ
dρ5

1

ρc
dp

from which

dp5 c2 dρ

or

c2 5
dp

dρ
ð12:15Þ

We have derived an expression for the speed of sound in any medium in terms of
thermodynamic quantities! Equation 12.15 indicates that the speed of sound depends
on how the pressure and density of the medium are related. To obtain the speed of
sound in a medium we could measure the time a sound wave takes to travel a pre-
scribed distance, or instead we could apply a small pressure change dp to a sample,
measure the corresponding density change dρ, and evaluate c from Eq. 12.15. For
example, an incompressible medium would have dρ 5 0 for any dp, so c - N. We
can anticipate that solids and liquids (whose densities are difficult to change) will
have relatively high c values, and gases (whose densities are easy to change) will have
relatively low c values. There is only one problem with Eq. 12.15: For a simple sub-
stance, each property depends on any two independent properties [1]. For a sound
wave, by definition we have an infinitesimal pressure change (i.e., it is reversible), and
it occurs very quickly, so there is no time for any heat transfer to occur (i.e., it is
adiabatic). Thus the sound wave propagates isentropically. Hence, if we express p as a
function of density and entropy, p5 pðρ; sÞ, then

dp5
@p

@ρ

� �
s

dρ1
@p

@s

� �
ρ
ds5

@p

@ρ

� �
s

dρ

so Eq. 12.15 becomes

c2 5
dp

dρ
5

@p

@ρ

�
s

and

c5

ffiffiffiffiffiffiffiffiffiffiffi
@p

@ρ

�
s

s
ð12:16Þ

We can now apply Eq. 12.16 to solids, liquids, and gases. For solids and liquids data
are usually available on the bulk modulus Ev, which is a measure of how a pressure
change affects a relative density change,

Ev 5
dp

dρ=ρ
5 ρ

dp

dρ

For these media

c5
ffiffiffiffiffiffiffiffiffi
Ev=ρ

p
ð12:17Þ

For an ideal gas, the pressure and density in isentropic flow are related by

p

ρk
5 constant ð12:12cÞ
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Taking logarithms and differentiating, we obtain

dp

p
2 k

dρ
ρ

5 0

Therefore,

@p

@ρ

�
s

5 k
p

ρ

But p=ρ5RT, so finally

c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p
ð12:18Þ

for an ideal gas. The speed of sound in air has been measured precisely by numerous
investigators [4]. The results agree closely with the theoretical prediction of Eq. 12.18.

The important feature of sound propagation in an ideal gas, as shown by
Eq. 12.18, is that the speed of sound is a function of temperature only. The variation in
atmospheric temperature with altitude on a standard day was discussed in Chapter 3;
the properties are summarized in Table A.3. The corresponding variation in c is
computed as an exercise in Problem 12.40 and plotted as a function of altitude.

Example 12.3 SPEED OF SOUND IN STEEL, WATER, SEAWATER, AND AIR

Find the speed of sound in (a) steel (Ev � 200 GN=m2), (b) water (at 20�C), (c) seawater (at 20�C), and (d) air at sea
level on a standard day.

Find: Speed of sound in (a) steel (Ev 5 200 GN/m2), (b) water (at 20�C),
(c) seawater (at 20�C), and (d) air at sea level on a standard day.

Solution:

(a) For steel, a solid, we use Eq. 12.17, with ρ obtained from Table A.1(b),

c5
ffiffiffiffiffiffiffiffiffi
Ev=ρ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev=SGρH2O

q

c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2003 109

N

m2
3

1

7:83
3

1

1000

m3

kg
3

kg�m
N�s2

vuut 5 5050 m=s ß

csteel

(b) For water we also use Eq. 12.17, with data obtained from Table A.2,

c5
ffiffiffiffiffiffiffiffiffi
Ev=ρ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev=SGρH2O

q

c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:243 109

N

m2
3

1

0:998
3

1

1000

m3

kg
3

kg�m
N�s2

vuut 5 1500 m=s ß
cwater

(c) For seawater we again use Eq. 12.17, with data obtained from Table A.2,

c5
ffiffiffiffiffiffiffiffiffi
Ev=ρ

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev=SGρH2O

q

c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:423 109

N

m2
3

1

1:025
3

1

1000

m3

kg
3

kg�m
N�s2

vuut 5 1540 m=s ß
cseawater
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Types of Flow—The Mach Cone

Flows for which M , 1 are subsonic, while those with M . 1 are supersonic. Flow
fields that have both subsonic and supersonic regions are termed transonic. (The
transonic regime occurs for Mach numbers between about 0.9 and 1.2.) Although
most flows within our experience are subsonic, there are important practical cases
where M $ 1 occurs in a flow field. Perhaps the most obvious are supersonic aircraft
and transonic flows in aircraft compressors and fans. Yet another flow regime, hyper-
sonic flow (M ^ 5), is of interest in missile and reentry-vehicle design. (The proposed
National Aerospace Plane would have cruised at Mach numbers approaching 20.) Some
important qualitative differences between subsonic and supersonic flows can be
deduced from the properties of a simple moving sound source.

Consider a point source of sound that emits a pulse every Δt seconds. Each pulse
expands outwards from its origination point at the speed of sound c, so at any instant
t the pulse will be a sphere of radius ct centered at the pulse’s origination point. We
want to investigate what happens if the point source itself is moving. There are four
possibilities, as shown in Fig. 12.2:

(a) V 5 0. The point source is stationary. Figure 12.2a shows conditions after 3Δt
seconds. The first pulse has expanded to a sphere of radius c(3Δt), the second to a
sphere of radius c(2Δt), and the third to a sphere of radius c(Δt); a new pulse is
about to be emitted. The pulses constitute a set of ever-expanding concentric
spheres.

(b) 0, V, c. The point source moves to the left at subsonic speed. Figure 12.2b shows
conditions after 3Δt seconds. The source is shown at times t 5 0, Δt, 2Δt, and 3Δt.
The first pulse has expanded to a sphere of radius c(3Δt) centered where the source
was originally, the second to a sphere of radius c(2Δt) centered where the source was
at timeΔt, and the third to a sphere of radius c(Δt) centered where the source was at
time 2Δt; a new pulse is about to be emitted. The pulses again constitute a set of
ever-expanding spheres, except now they are not concentric. The pulses are all
expanding at constant speed c. We make two important notes: First, we can see
that an observer who is ahead of the source (or whom the source is approaching)
will hear the pulses at a higher frequency rate than will an observer who is behind
the source (this is the Doppler effect that occurs when a vehicle approaches and
passes); second, an observer ahead of the source hears the source before the source
itself reaches the observer.

(c) V 5 c. The point source moves to the left at sonic speed. Figure 12.2c shows con-
ditions after 3Δt seconds. The source is shown at times t 5 0 (point 1), Δt (point 2),

(d) For air we use Eq. 12.18, with the sea level temperature obtained from
Table A.3,

c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p

c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 288 K3

kg�m
N�s2

s
5 340 m=s ß

cair ð288 KÞ

This Example illustrates the relative
magnitudes of the speed of sound
in typical solids, liquids, and gases
(csolids . cliquids . cgases). Do not
confuse the speed of sound with the
attenuation of sound—the rate at
which internal friction of the medium
reduces the sound level—generally,
solids and liquids attenuate sound
much more rapidly than do gases.
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2Δt (point 3), and 3Δt (point 4). The first pulse has expanded to sphere 1 of radius c
(3Δt) centered at point 1, the second to sphere 2 of radius c(2Δt) centered at point 2,
and the third to sphere 3 of radius c(Δt) centered around the source at point 3. We
can see once more that the pulses constitute a set of ever-expanding spheres, except
now they are tangent to one another on the left! The pulses are all expanding at
constant speed c, but the source is also moving at speed c, with the result that the
source and all its pulses are traveling together to the left. We again make two
important notes: First, we can see that an observer who is ahead of the source will
not hear the pulses before the source reaches her; second, in theory, over time an
unlimited number of pulses will accumulate at the front of the source, leading to a
sound wave of unlimited amplitude (a source of concern to engineers trying to break
the “sound barrier,” which many people thought could not be broken—Chuck
Yeager in a Bell X-1 was the first to do so in 1947).

(d) V . c. The point source moves to the left at supersonic speed. Figure 12.2d shows
conditions after 3Δt seconds. By now it is clear how the spherical waves develop.
We can see once more that the pulses constitute a set of ever-expanding spheres,
except now the source is moving so fast it moves ahead of each sphere that it
generates! For supersonic motion, the spheres generate what is called a Mach
cone tangent to each sphere. The region inside the cone is called the zone of
action and that outside the cone the zone of silence, for obvious reasons, as shown
in Fig. 12.2e. From geometry, we see from Fig. 12.2d that

sin α5
c

V
5

1

M

c Δt

c(2Δt)

c(3Δt)

c(3Δt)

c(3Δt)

V(3Δt)

(a) V = 0: stationary source

(c) V = c

V > c
(e) M > 1: the Mach cone

c(Δt)

V(Δt)

c(2Δt)

c(2Δt)

V(2Δt)

V(2Δt)

(b) V < c: Doppler shift

Locus of wave fronts

34

3

2 1

(d) V > c: supersonic motion

3 2 1

2 1

α

Outside cone:
unaware of sound Inside cone:

aware of sound

Fig. 12.2 Propagation of sound waves from a moving source: The Mach cone.
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or

α5 sin2 1 1

M

� �
ð12:19Þ

Figure 12.3 shows an image of an F/A-18 Hornet just as it accelerates to supersonic
speed. The visible vapor pattern is due to the sudden increase in pressure as a shock
wave washes over the aircraft (we will see in the next chapter that a shock wave leads
to a sudden and large pressure increase). The (invisible) Mach cone emanates from
the nose of the aircraft and passes through the periphery of the vapor disk.

Example 12.4 MACH CONE OF A BULLET

In tests of a protective material, we wish to photograph a bullet
as it impacts a jacket made of the material. A camera is set up a
perpendicular distance h 5 5 m from the bullet trajectory. We
wish to determine the perpendicular distance d from the target
plane at which the camera must be placed such that the sound
of the bullet will trigger the camera at the impact time. Note:
The bullet speed is measured to be 550 m/s; the delay time of
the camera is 0.005 s.

Find: Location of camera for capturing impact image.

Solution:

The correct value of d is that for which the bullet hits the target 0.005 s before the Mach wave reaches the camera.
We must first find the Mach number of the bullet; then we can find the Mach angle; finally, we can use basic
trigonometry to find d.

Assuming sea level conditions, from Table A.3 we have T 5 288 K. Hence Eq. 12.18 yields

c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p

c5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 288 K3

kg�m
N�s2

s
5 340 m=s

h = 5 m

Bullet trajectory

d

VIDEO

Shock Waves over a Supersonic Airplane.

VIDEO

Shock Waves due to a Projectile.

Fig. 12.3 An F/A-18 Hornet as it breaks the sound barrier.
(Ensign John Gay, USS Constellation, U.S. Navy.)
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12.3Reference State: Local Isentropic
Stagnation Properties

In our study of compressible flow, we will discover that, in general, all properties (p, T,
ρ, u, h, s, V) may be changing as the flow proceeds. We need to obtain reference
conditions that we can use to relate conditions in a flow from point to point. For any
flow, a reference condition is obtained when the fluid is (in reality or conceptually)
brought to rest (V 5 0). We will call this the stagnation condition, and the property
values (p0, T0, ρ0, u0, h0, s0) at this state the stagnation properties. This process—of
bringing the fluid to rest—is not as straightforward as it seems. For example, do we do
so while there is friction, or while the fluid is being heated or cooled, or “violently,” or
in some other way? The simplest process to use is an isentropic process, in which
there is no friction, no heat transfer, and no “violent” events. Hence, the properties
we obtain will be the local isentropic stagnation properties. Why “local”? Because the
actual flow can be any kind of flow, e.g., with friction, so it may or may not itself
be isentropic. Hence, each point in the flow will have its own, or local, isentropic
stagnation properties. This is illustrated in Fig. 12.4, showing a flow from some state

1 to some new state 2 . The local isentropic stagnation properties for each state,
obtained by isentropically bringing the fluid to rest, are also shown. Hence, s015 s1 and
s025 s2. The actual flow may or may not be isentropic. If it is isentropic, s15s25s015 s02 ,
so the stagnation states are identical; if it is not isentropic, then s01 6¼ s02 . We will see
that changes in local isentropic stagnation properties will provide useful information
about the flow.

We can obtain information on the reference isentropic stagnation state for
incompressible flows by recalling the Bernoulli equation from Chapter 6

p

ρ
1

V2

2
1 gz5 constant ð6:8Þ

valid for a steady, incompressible, frictionless flow along a streamline. Equation 6.8
is valid for an incompressible isentropic process because it is reversible (frictionless

Then we can find the Mach number,

M5
V

c
5

550 m=s

340 m=s
5 1:62

From Eq. 12.19 we can next find the Mach angle,

α5 sin2 1 1

M

� �
5 sin2 1 1

1:62

� �
5 38:2�

The distance x traveled by the bullet while the Mach wave reaches the camera is then

x5
h

tanðαÞ 5
5 m

tanð38:2�Þ 5 6:35 m

Finally, we must add to this the time traveled by the bullet while the camera is operating, which is 0.005 s 3 550 m/s,

d5 0:005 s3
550 m

s
1 6:35 m5 2:75 m1 6:35 m

d5 9:10 m ß
d
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and steady) and adiabatic (we did not include heat transfer considerations in its
derivation). As we saw in Section 6.3, the Bernoulli equation leads to

p0 5 p1
1

2
ρV2 ð6:11Þ

(The gravity term drops out because we assume the reference state is at the same
elevation as the actual state, and in any event in external flows it is usually much smaller
than the other terms.) In Example 12.6 we compare isentropic stagnation conditions
obtained assuming incompressibility (Eq. 6.11), and allowing for compressibility.

For compressible flows, we will focus on ideal gas behavior.

Local Isentropic Stagnation Properties for the Flow of an Ideal Gas

For a compressible flow we can derive the isentropic stagnation relations by applying
the mass conservation (or continuity) and momentum equations to a differential
control volume, and then integrating. For the process shown schematically in Fig. 12.4,
we can depict the process from state 1 to the corresponding stagnation state by
imagining the control volume shown in Fig. 12.5. Consider first the continuity equation.

a. Continuity Equation

5 0ð1Þ
Governing equation :

@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V �d~A5 0 ð4:12Þ

Assumptions: (1) Steady flow.
(2) Uniform flow at each section.

Then

ð2ρVxAÞ1 fðρ1 dρÞðVx 1 dVxÞðA1 dAÞg5 0

or

ρVxA5 ðρ1 dρÞðVx 1 dVxÞðA1 dAÞ ð12:20aÞ

b. Momentum Equation

5 0ð3Þ5 0ð1Þ
Governing equation : FSx 1FBx

5
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p1, T1,   1, u1, h1, s1, V1ρ
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, T02
,   02

, u02
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Actual flow
(isentropic or not)

1
2

Fig. 12.4 Local isentropic stagnation properties.
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Assumptions: (3) FBx
5 0.

(4) Frictionless flow.

The surface forces acting on the infinitesimal control volume are

FSx 5 dRx 1 pA2 ðp1 dpÞðA1 dAÞ
The force dRx is applied along the stream tube boundary, as shown in Fig. 12.5, where the
average pressure is p1 dp/2, and the area component in the x direction is dA. There is no
friction. Thus,

FSx 5 p1
dp

2

� �
dA1 pA2 ðp1 dpÞðA1 dAÞ

or

FSx
 � p dA � dp dA

2
� pA � pA � dp A � p dA � dp dA

� 0 � 0

Substituting this result into the momentum equation gives

2 dpA5Vxf2 ρVxAg1 ðVx 1 dVxÞfðρ1 dρÞðVx 1 dVxÞðA1 dAÞg
which may be simplified using Eq. 12.20a to obtain

2 dp A5 ð2Vx 1Vx 1 dVxÞðρVxAÞ
Finally,

dp52ρVxdVx 52ρ d
V2

x

2

� �
or

dp

ρ
1 d

V2
x

2

� �
5 0 ð12:20bÞ

Equation 12.20b is a relation among properties during the deceleration process. (Note
that for incompressible flow, it immediately leads to Eq. 6.11.) In developing this
relation, we have specified a frictionless deceleration process. Before we can integrate
between the initial and final (stagnation) states, we must specify the relation that
exists between pressure, p, and density, ρ, along the process path.

Since the deceleration process is isentropic, then p and ρ for an ideal gas are related
by the expression

p

ρk
5 constant ð12:12cÞ
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   + d  
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A + dA
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T + dT

ρρ ρ
Vx
A
p
T

Flow

Fig. 12.5 Compressible flow in an infinitesimal stream tube.
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Our task now is to integrate Eq. 12.20b subject to this relation. Along the stagnation
streamline there is only a single component of velocity; Vx is the magnitude of the
velocity. Hence we can drop the subscript in Eq. 12.20b.

From p/ρk 5 constant 5 C, we can write

p5Cρk and ρ5 p1=k C2 1=k

Then, from Eq. 12.20b,

2 d
V2

2

� �
5

dp

ρ
5 p2 1=kC1=kdp

We can integrate this equation between the initial state and the corresponding stag-
nation state

2

Z 0

V

d

�
V2

2

�
5C1=k

Z p0

p

p2 1=kdp

to obtain

V2

2
5C1=k k

k2 1

h
pðk2 1Þ=k

ip0
p
5C1=k k

k2 1

h
p
ðk2 1Þ=k
0 2 pðk2 1Þ=k

i

V2

2
5C1=k k

k2 1
pðk2 1Þ=k

��
p0
p

�ðk2 1Þ=k
2 1

�

Since C1/k 5 p1/k/ρ,

V2

2
5

k

k2 1

p1=k

ρ
pðk2 1Þ=k

��
p0
p

�ðk2 1Þ=k
2 1

�

V2

2
5

k

k2 1

p

ρ

��
p0
p

�ðk2 1Þ=k
2 1

�

Since we seek an expression for stagnation pressure, we can rewrite this equation as

p0
p

� �ðk2 1Þ=k
5 11

k2 1

k

ρ
p

V2

2

and

p0
p

5 11
k2 1

k

ρV2

2p

� �k=ðk2 1Þ

For an ideal gas, p 5 ρRT, and hence

p0
p

5 11
k2 1

2

V2

kRT

� �k=ðk2 1Þ

Also, for an ideal gas the sonic speed is c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p
, and thus

p0
p

5 11
k2 1

2

V2

c2

2
4

3
5
k=ðk2 1Þ

p0
p

5 11
k2 1

2
M2

2
4

3
5
k=ðk2 1Þ

ð12:21aÞ
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Equation 12.21a enables us to calculate the local isentropic stagnation pressure at any
point in a flow field of an ideal gas, provided that we know the static pressure and
Mach number at that point.

We can readily obtain expressions for other isentropic stagnation properties by
applying the relation

p

ρk
5 constant

between end states of the process. Thus

p0
p

5

�
ρ0
ρ

�k
and

ρ0
ρ

5

�
p0
p

�1=k

For an ideal gas, then,

T0

T
5

p0
p

ρ
ρ0

5
p0
p

p0
p

� �2 1=k

5
p0
p

� �ðk2 1Þ=k

Using Eq. 12.21a, we can summarize the equations for determining local isentropic
stagnation properties of an ideal gas as

p0
p

5 11
k2 1

2
M2

� �k=ðk2 1Þ
ð12:21aÞ

T0

T
5 11

k2 1

2
M2 ð12:21bÞ

ρ0
ρ

5 11
k2 1

2
M2

� �1=ðk2 1Þ
ð12:21cÞ

From Eqs. 12.21, the ratio of each local isentropic stagnation property to the corre-
sponding static property at any point in a flow field for an ideal gas can be found if the
local Mach number is known. We will usually use Eqs. 12.21 in lieu of the continuity
and momentum equations for relating the properties at a state to that state’s stagnation
properties, but it is important to remember that we derived Eqs. 12.21 using these
equations and the isentropic relation for an ideal gas. Appendix E.1 lists flow functions
for property ratios T0 / T, p0 /p, and ρ0 /ρ, in terms of M for isentropic flow of an ideal
gas. A table of values, as well as a plot of these property ratios is presented for air (k5
1.4) for a limited range of Mach numbers. The associated Excel workbook, Isentropic
Relations, available on the Web site, can be used to print a larger table of values for air
and other ideal gases. The calculation procedure is illustrated in Example 12.5.

The Mach number range for validity of the assumption of incompressible flow is
investigated in Example 12.6.

Example 12.5 LOCAL ISENTROPIC STAGNATION CONDITIONS IN CHANNEL FLOW

Air flows steadily through the duct shown from 350 kPa (abs), 60�C, and 183 m/s at
the inlet state to M 5 1.3 at the outlet, where local isentropic stagnation conditions
are known to be 385 kPa (abs) and 350 K. Compute the local isentropic stagnation
pressure and temperature at the inlet and the static pressure and temperature at the
duct outlet. Locate the inlet and outlet static state points on a Ts diagram, and
indicate the stagnation processes.

Flow

OutletInlet
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Given: Steady flow of air through a duct as shown in the sketch.

Find: (a) p01 .
(b) T01 .
(c) p2.
(d) T2.
(e) State points 1 and 2 on a Ts diagram; indicate the stagnation processes.

Solution: To evaluate local isentropic stagnation conditions at section 1 , we must calculate the Mach number,
M15V1/c1. For an ideal gas, c5

ffiffiffiffiffiffiffiffiffiffi
kRT

p
. Then

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 1:43 287

N�m
kg�K 3 ð2731 60Þ K3

kg�m
N�s2

� �1=2
5 366 m=s

and

M1 5
V1

c1
5

183

366
5 0:5

Local isentropic stagnation properties can be evaluated from Eqs. 12.21. Thus

p01 5 p1 11
k2 1

2
M2

1

2
4

3
5
kðk2 1Þ

5 350 kPa ½11 0:2ð0:5Þ2�3:5 5 415 kPaðabsÞ ß

p01

T01 5T1 11
k2 1

2
M2

1

2
4

3
55 333 K½11 0:2ð0:5Þ2�5 350 K ß

T01

At section 2 , Eqs. 12.21 can be applied again. Thus from Eq. 12.21a,

p2 5
p02

11
k2 1

2
M2

2

� �k=ðk2 1Þ 5
385 kPa

½11 0:2ð1:3Þ2�3:5
5 139 kPa absð Þ ß

p2

From Eq. 12.21b,

T2 5
T02

11
k2 1

2
M2

2

5
350 K

11 0:2ð1:3Þ2 5 262 K ß

T2

To locate states 1 and 2 in relation to one another, and sketch the stagnation processes on the Ts diagram, we
need to find the change in entropy s2 2 s1. At each state we have p and T, so it is convenient to use Eq. 12.11b,

s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

5 1:00
kJ

kg�K 3 ln
262

333

0
@

1
A2 0:287

kJ

kg�K 3 ln
139

350

0
@

1
A

s2 2 s1 5 0:0252 kJ=ðkg�KÞ
Hence in this flow we have an increase in entropy. Perhaps there is irreversibility (e.g., friction), or heat is being
added, or both. (We will see in Chapter 13 that the fact that T01 5T02 for this particular flow means that actually we

Flow

1 2

p02
 � 385 kPa (abs)

T02
 � 350 K

M2 � 1.3

p1 � 350 kPa (abs)
T1 � 60°C
V1 � 183 m/s
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have an adiabatic flow.) We also found that T2 , T1 and that p2 , p1. We can now sketch the Ts diagram (and recall
we saw in Example 12.2 that isobars (lines of constant pressure) in Ts space are exponential),

Isentropic processes

T

T1

T2

T01
 = T02

p = p1
p = p2

s

State 1

State 2

p01
p02

This problem illustrates use of the
local isentropic stagnation properties
(Eqs. 12.21) to relate different points in
a flow.

The Excel workbook Isentropic
Relations, available on the Web

site, can be used for computing prop-
erty ratios from the Mach number M,
as well as for computing M from
property ratios.

Example 12.6 MACH-NUMBER LIMIT FOR INCOMPRESSIBLE FLOW

We have derived equations for p0/p for both compressible and “incompressible” flows. By writing both equations in
terms of Mach number, compare their behavior. Find the Mach number below which the two equations agree within
engineering accuracy.

Given: The incompressible and compressible forms of the equations for stagnation pressure, p0.

Incompressible p0 5 p1
1

2
ρV2 ð6:11Þ

Compressible
p0
p

5 11
k2 1

2
M2

2
4

3
5
k=ðk2 1Þ

ð12:21aÞ

Find: (a) Behavior of both equations as a function of Mach number.
(b) Mach number below which calculated values of p0/p agree within engineering accuracy.

Solution: First, let us write Eq. 6.11 in terms of Mach number. Using the ideal gas equation of state and c2 5 kRT,

p0
p

5 11
ρV2

2p
5 11

V2

2RT
5 11

kV2

2kRT
5 11

kV2

2c2

Thus,

p0
p

5 11
k

2
M2 ð1Þ

for “incompressible” flow.
Equation 12.21a may be expanded using the binomial theorem,

ð11 xÞn 5 11 nx1
nðn2 1Þ

2!
x2 1 � � � ; jxj , 1
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For Eq. 12.21a, x 5 [(k 2 1)/2]M2, and n 5 k/(k 2 1). Thus the series converges for [(k 2 1)/2]M2 , 1, and for
compressible flow,

p0
p

5 11
k

k2 1

0
@

1
A k2 1

2
M2

2
4

3
51

k

k2 1

0
@

1
A k

k2 1
2 1

0
@

1
A 1

2!

k2 1

2
M2

2
4

3
5
2

1
k

k2 1

0
@

1
A k

k2 1
2 1

0
@

1
A k

k2 1
2 2

0
@

1
A 1

3!

k2 1

2
M2

2
4

3
5
3

1 � � �

5 11
k

2
M2 1

k

8
M4 1

kð22 kÞ
48

M6 1 � � �

p0
p

5 11
k

2
M2 11

1

4
M2 1

ð22 kÞ
24

M4 1 � � �
2
4

3
5

ð2Þ

In the limit, as M - 0, the term in brackets in Eq. 2 approaches 1.0. Thus, for flow at low Mach number, the
incompressible and compressible equations give the same result. The variation of p0/p with Mach number is shown
below. As Mach number is increased, the compressible equation gives a larger ratio, p0/p.

Equations 1 and 2 may be compared quantitatively most simply by writing

p0
p

2 15
k

2
M2 ð‘‘incompressible’’Þ

p0
p

2 15
k

2
M2 11

1

4
M2 1

ð22 kÞ
24

M4 1 � � �
2
4

3
5ðcompressibleÞ

The term in brackets is approximately equal to 1.02 at M 5 0.3, and to 1.04 at M 5 0.4. Thus, for calculations of
engineering accuracy, flow may be considered incompressible if M, 0.3. The two agree within 5 percent forM& 0.45.

Compressible
Eq. 12.21a

Incompressible
Eq. 6.11

1.00.80.4
Mach number, M
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12.4Critical Conditions
Stagnation conditions are extremely useful as reference conditions for thermodynamic
properties; this is not true for velocity, since by definition V5 0 at stagnation. A useful
reference value for velocity is the critical speed—the speed V we attain when a flow is
either accelerated or decelerated (actually or conceptually) isentropically until we
reach M 5 1. Even if there is no point in a given flow field where the Mach number is
equal to unity, such a hypothetical condition still is useful as a reference condition.

Using asterisks to denote conditions at M 5 1, then by definition

V* � c*

At critical conditions, Eqs. 12.21 for isentropic stagnation properties become

p0
p*

5
k1 1

2

� �k=ðk2 1Þ
ð12:22aÞ

T0

T*
5

k1 1

2
ð12:22bÞ

ρ0
ρ*

5
k1 1

2

� �1=ðk2 1Þ
ð12:22cÞ

The critical speed may be written in terms of either critical temperature, T*, or
isentropic stagnation temperature, T0.

For an ideal gas, c*5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kRT*

p
, and thus V*5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kRT*

p
. Since, from Eq. 12.22b,

T*5
2

k1 1
T0

we have

V*5 c*5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

k1 1
RT0

r
ð12:23Þ

We shall use both stagnation conditions and critical conditions as reference con-
ditions in the next chapter when we consider a variety of compressible flows.

12.5 Summary and Useful Equations
In this chapter, we:

ü Reviewed the basic equations used in thermodynamics, including isentropic relations.
ü Introduced some compressible flow terminology, such as definitions of the Mach number and subsonic, supersonic, transonic,

and hypersonic flows.
ü Learned about several phenomena having to do with sound, including that the speed of sound in an ideal gas is a function of

temperature only (c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p
), and that the Mach cone and Mach angle determine when a supersonic vehicle is heard on the

ground.
ü Learned that there are two useful reference states for a compressible flow: the isentropic stagnation condition, and the isentropic

critical condition.
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Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details!

Useful Equations

Definition of Mach number M:
M � V

c

(12.13) Page 665

Speed of sound c:
c5

ffiffiffiffiffiffiffiffiffiffi
@p

@ρ

�
s

s
(12.16) Page 668

Speed of sound c (solids and liquids): c5
ffiffiffiffiffiffiffiffiffi
Ev=ρ

p (12.17) Page 668

Speed of sound c (ideal gas): c5
ffiffiffiffiffiffiffiffiffiffi
kRT

p (12.18) Page 669

Mach cone angle α:
α5 sin2 1 1

M

� �
(12.19) Page 672

Isentropic pressure ratio (ideal gas, constant specific
heats):

p0
p

5 11
k2 1

2
M2

� �k=ðk2 1Þ (12.21a) Page 677

Isentropic temperature ratio (ideal gas, constant
specific heats):

T0

T
5 11

k2 1

2
M2

(12.21b) Page 677

Isentropic density ratio (ideal gas, constant specific heats): ρ0
ρ

5 11
k2 1

2
M2

� �1=ðk2 1Þ (12.21c) Page 677

Critical pressure ratio (ideal gas, constant specific heats): p0
p*

5
k1 1

2

� �k=ðk2 1Þ (12.22a) Page 681

Critical temperature ratio (ideal gas, constant
specific heats):

T0

T*
5

k1 1

2

(12.22a) Page 681

Critical density ratio (ideal gas, constant specific heats): ρ0
ρ*

5
k1 1

2

� �1=ðk2 1Þ (12.22c) Page 681

Critical velocity V* (ideal gas, constant specific heats):
V*5 c*5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

k1 1
RT0

r
(12.23) Page 681

Case Study

Reducing the Sonic Boom

The SSBD aircraft trailing NASA’s F-15B. (Courtesy of NASA.)

Most of us are familiar with the fact that supersonic
aircraft generally have very sharp noses and wing
leading edges, compared to subsonic aircraft (we will
learn some reasons why supersonic aircraft are so
shaped in the next chapter); compare, for example,
the decommissioned supersonic Concorde to the
subsonic Boeing 747 jumbo jet. We are also familiar
with the notion of a sonic boom, a large window-
rattling boom created when the remains of a super-
sonic jet’s oblique shock wave wash over the ground.
The sonic boom is an important reason that the Con-
corde was not allowed to fly supersonically over land,
limiting its use and being one factor in the aircraft’s
limited commercial success.
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Problems
Review of Thermodynamics

12.1 An air flow in a duct passes through a thick filter. What
happens to the pressure, temperature, and density of the air
as it does so? Hint: This is a throttling process.

12.2 Air is expanded in a steady flow process through a tur-
bine. Initial conditions are 1300�C and 2.0 MPa (abs). Final
conditions are 500�C and atmospheric pressure. Show this
process on a Ts diagram. Evaluate the changes in internal
energy, enthalpy, and specific entropy for this process.

12.3 A vendor claims that an adiabatic air compressor takes
in air at atmosphere pressure and 50�F and delivers the air at
150 psig and 200�F. Is this possible? Justify your answer by
calculation. Sketch the process on a Ts diagram.

12.4 A turbine manufacturer claims that an adiabatic gas
turbine can take flow at 10 atmospheres and 2200�F and
exhaust to atmospheric pressure at a temperature of 850�F.
Sketch the process on a Ts diagram, and prove whether the
manufacturer’s claims are possible. Assume that the gas has
the same properties as air.

12.5 Air initially at 50 psia and 660�R expands to atmospheric
pressure. The process by which this expansion occurs is
defined by the expression pV---1.3 = constant. Calculate the final
temperature and the change in entropy through this process.

12.6 What is the lowest possible delivery temperature gen-
erated by an adiabatic air compressor, starting with standard
atmosphere conditions and delivering the air at 500 kPa
(gage)? Sketch the process on a Ts diagram.

12.7 Air expands without heat transfer through a turbine
from a pressure of 10 bars and a temperature of 1400 K to a
pressure of 1 bar. If the turbine has an efficiency of 80 per-
cent, determine the exit temperature, and the changes in
enthalpy and entropy across the turbine. If the turbine is

generating 1 MW of power, what is the mass flow rate of air
through the turbine?

12.8 A test chamber is separated into two equal chambers by
a rubber diaphragm. One contains air at 20�C and 200 kPa
(absolute), and the other has a vacuum. If the diaphragm is
punctured, find the pressure and temperature of the air after
it expands to fill the chamber. Hint: This is a rapid, violent
event, so is irreversible but adiabatic.

12.9 An automobile supercharger is a device that pressurizes
the air that is used by the engine for combustion to increase the
engine power (how does it differ from a turbocharger?). A
supercharger takes in air at 70�F and atmospheric pressure
and boosts it to 200 psig, at an intake rate of 0.5 ft3/s. What
are the pressure, temperature, and volume flow rate at the exit?
(The relatively high exit temperature is the reason an inter-
cooler is also used.) Assuming a 70 percent efficiency, what
is the power drawn by the supercharger? Hint: The efficiency
is defined as the ratio of the isentropic power to actual power.

12.10 Five kilograms of air is cooled in a closed tank from 250
to 50�C. The initial pressure is 3 MPa. Compute the changes
in entropy, internal energy, and enthalpy. Show the process
state points on a Ts diagram.

12.11 Air is contained in a piston-cylinder device. The tem-
perature of the air is 100�C. Using the fact that for a reversible
process the heat transfer q5

R
Tds, compare the amount of

heat (J/kg) required to raise the temperature of the air to
1200�C at (a) constant pressure and (b) constant volume.
Verify your results using the first law of thermodynamics. Plot
the processes on a Ts diagram.

12.12 The four-stroke Otto cycle of a typical automobile
engine is sometimes modeled as an ideal air-standard closed
system. In this simplified system the combustion process is
modeled as a heating process, and the exhaust-intake process

The Defense Advanced Research Projects Agency
(DARPA) and NASA have now shown that modifying an
aircraft’s shape can also change the shape of its sonic
boom, thereby reducing the loudness developed. Their
Shaped Sonic Boom Demonstration (SSBD) program
found that by designing the aircraft to a specific shape,
the pressure waves created by the aircraft can be kept
from merging into a shock wave (see the discussion of
the Mach cone in Section 12.2); when these weaker

waves reach the ground, the loudness of the sonic boom
is greatly reduced. For the demonstration, Northrop
Grumman modified an F-5E fighter aircraft by installing
a specially shaped “nose glove”; compare the nose of
the SSBD (the lower aircraft in the figure) to the tradi-
tional supersonic nose of a supersonic F-15B.
It ispossible that thisnewnoseshape couldeventually

allow reintroduction of supersonic transports, even for
the key routes across the continental United States.
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as a cooling process of the working fluid (air). The cycle con-
sists of: isentropic compression from state 1 (p15 100 kPa
(abs), T15 20�C, V---1 5 500 cc) to state 2 (V---2 5V---1=8:5);
isometric (constant volume) heat addition to state 3
(T352750�C); isentropic expansion to state 4 (V---4 5V---1); and
isometric cooling back to state 1 . Plot the pV--- and Ts dia-
grams for this cycle, and find the efficiency, defined as the net
work (the cycle area in pV--- space) divided by the heat added.

12.13 The four-stroke cycle of a typical diesel engine is
sometimes modeled as an ideal air-standard closed system.
In this simplified system the combustion process is modeled
as a heating process, and the exhaust-intake process as a
cooling process of the working fluid (air). The cycle consists
of: isentropic compression from state 1 (p15 100 kPa (abs),
T15 20�C, V---1 5 500 cc) to state 2 (V---2 5V---1=12:5); isometric
(constant volume) heat addition to state 3 (T35 3000�C);
isobaric heat addition to state 4 (V---4 5 1:75V---3); isentropic
expansion to state 5 ; and isometric cooling back to state 1 .
Plot the pV--- and Ts diagrams for this cycle, and find the
efficiency, defined as the net work (the cycle area in pV---

space) divided by the heat added.

12.14 A 1-m3 tank contains air at 0.1 MPa (abs) and 20�C.
The tank is pressurized to 2 MPa. Assuming that the tank is
filled adiabatically and reversibly, calculate the final tem-
perature of the air in the tank. Now assuming that the tank is
filled isothermally, how much heat is lost by the air in the
tank during filling? Which process (adiabatic or isothermal)
results in a greater mass of air in the tank?

12.15 A tank of volume V---5 10 m3 contains compressed air at
15�C. The gage pressure in the tank is 4.50 MPa. Evaluate
the work required to fill the tank by compressing air from
standard atmosphere conditions for (a) isothermal com-
pression and (b) isentropic compression followed by cooling
at constant pressure. What is the peak temperature of the
isentropic compression process? Calculate the energy
removed during cooling for process (b). Assume ideal gas
behavior and reversible processes. Label state points on a Ts
diagram and a pV--- diagram for each process.

12.16 Air enters a turbine in steady flow at 0.5 kg/s with
negligible velocity. Inlet conditions are 1300�C and 2.0 MPa
(abs). The air is expanded through the turbine to atmospheric
pressure. If the actual temperature and velocity at the turbine
exit are 500�C and 200 m/s, determine the power produced by
the turbine. Label state points on aTs diagram for this process.

12.17 Natural gas, with the thermodynamic properties of
methane, flows in an underground pipeline of 0.6 m
diameter. The gage pressure at the inlet to a compressor
station is 0.5 MPa; outlet pressure is 8.0 MPa (gage). The gas
temperature and speed at inlet are 13�C and 32 m/s,
respectively. The compressor efficiency is η5 0.85. Calculate
the mass flow rate of natural gas through the pipeline. Label
state points on a Ts diagram for compressor inlet and outlet.
Evaluate the gas temperature and speed at the compressor
outlet and the power required to drive the compressor.

12.18 Over time the efficiency of the compressor of Problem
12.17 drops. At what efficiency will the power required to
attain 8.0 MPa (gage) exceed 30 MW? Plot the required
power and the gas exit temperature as functions of efficiency.

12.19 Improper maintenance on the turbine of Problem 12.7
has resulted in a gradual decrease in its efficiency over time.
Assuming that the efficiency drops by 1 percent per year,
how long would it take for the power output of the turbine to
drop to 950 kW, assuming that entrance conditions, flow rate,
and exhaust pressure were all kept constant?

12.20 In an isothermal process, 0.1 cubic feet of standard air
per minute (SCFM) is pumped into a balloon. Tension in
the rubber skin of the balloon is given by σ5kA, where
k5 200 lbf/ft3, and A is the surface area of the balloon in ft2.
Compute the time required to increase the balloon radius
from 5 to 7 in.

12.21 For the balloon process of Problem 12.20 we could
define a “volumetric ratio” as the ratio of the volume of
standard air supplied to the volume increase of the balloon,
per unit time. Plot this ratio over time as the balloon radius is
increased from 5 to 7 in.

Propagation of Sound Waves

12.22 A sound pulse level above about 20 Pa can cause
permanent hearing damage. Assuming such a sound wave
travels through air at 20�C and 100 kPa, estimate the density,
temperature, and velocity change immediately after the
sound wave passes.

12.23 Calculate the speed of sound at 20�C for (a) hydrogen,
(b) helium, (c) methane, (d) nitrogen, and (e) carbon dioxide.

12.24 The bulk modulus Ev of a material indicates how hard
it is to compress the material; a large Ev indicates the
material requires a large pressure to compress. Is air “stiffer”
when suddenly or slowly compressed? To answer this, find
expressions in terms of instantaneous pressure p for the bulk
modulus of air (kPa) when it is (a) rapidly compressed and
(b) slowly compressed. Hint: Rapid compression is approxi-
mately isentropic (it is adiabatic because it is too quick for
heat transfer to occur), and slow compression is isothermal
(there is plenty of time for the air to equilibrate to ambient
temperature).

12.25 You have designed a device for determining the bulk
modulus, Ev, of a material. It works by measuring the time
delay between sending a sound wave into a sample of
the material and receiving the wave after it travels through
the sample and bounces back. As a test, you use a 1-m rod of
steel (Ev � 200 GN/m2). What time delay should your device
indicate? You now test a 1-m rod (1 cm diameter) of an
unknown material and find a time delay of 0.5 ms. The mass of
the rod is measured to be 0.25 kg. What is this material’s bulk
modulus?

12.26 Dolphins often hunt by listening for sounds made by
their prey. They “hear” with the lower jaw, which conducts
the sound vibrations to the middle ear via a fat-filled cavity
in the lower jaw bone. If the prey is half a mile away, how
long after a sound is made does a dolphin hear it? Assume
the seawater is at 68�F.

12.27 A submarine sends a sonar signal to detect the enemy.
The reflected wave returns after 3.25 s. Estimate the
separation between the submarines. (As an approximation,
assume the seawater is at 20�C.)
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12.28 An airplane flies at 550 km/hr at 1500 m altitude on
a standard day. The plane climbs to 15,000 m and flies at
1200 km/h. Calculate the Mach number of flight in both cases.

12.29 Next-generation missiles will use scramjet engines to
travel at Mach numbers as high as 7. If a scramjet-powered
missile travels at Mach 7 at an altitude of 85,000 ft, how long
will it take for the missile to travel 600 nautical miles? Assume
standard atmospheric conditions. (Note: This is the range for
the Tomahawk missile, which uses a conventional propulsion
system, but it takes 90 min to cover that same distance.)

12.30 Actual performance characteristics of the Lockheed
SR-71 “Blackbird” reconnaissance aircraft never were
released. However, it was thought to cruise at M5 3.3 at
85,000 ft altitude. Evaluate the speed of sound and flight
speed for these conditions. Compare to the muzzle speed of a
30-06 rifle bullet (700m/s).

12.31 The Boeing 727 aircraft of Example 9.8 cruises at 520
mph at 33,000 ft altitude on a standard day. Calculate the
cruise Mach number of the aircraft. If the maximum allow-
able operating Mach number for the aircraft is 0.9, what is
the corresponding flight speed?

12.32 Investigate the effect of altitude on Mach number by
plotting the Mach number of a 500 mph airplane as it flies at
altitudes ranging from sea level to 10 km.

12.33 You are watching a July 4th fireworks display from a
distance of one mile. How long after you see an explosion do
you hear it? You also watch New Year’s fireworks (same
place and distance). How long after you see an explosion do
you hear it? Assume it’s 75�F in July and 5�F in January.

12.34 The X-15 North American rocket plane held the
record for the fastest manned flight. In 1967, the X-15 flew at
a speed of 7270 km/h at an altitude of 58.4 km. At what Mach
number did the X-15 fly?

12.35 You need to estimate the speed of a hypersonic air-
craft traveling at Mach 7 and 120,000 ft. Not having a table of
atmospheric tables handy, you remember that through the
stratosphere (approximately 36,000 ft to 72,000 ft) the tem-
perature of air is nearly constant at 390�R, and you assume
this temperature for your calculation. Later, you obtain
the appropriate data and recalculate the speed. What was the
percentage error? What would the percentage error have
been if you used the air temperature at sea level?

12.36 The grandstand at the Kennedy Space Center is
located 3.5 mi away from the Space Shuttle Launch Pad.
On a day when the air temperature is 80�F, how long does it
take the sound from a blastoff to reach the spectators? If the
launch was early on a winter morning, the temperature may
be as low as 50�F. How long would the sound take to reach
the spectators under those conditions?

12.37 While working on a pier on a mountain lake, you
notice that the sounds of your hammering are echoing from
the mountains in the distance. If the temperature is 25�C
and the echoes reach you 3 seconds after the hammer strike,
how far away are the mountains?

12.38 Use data for specific volume to calculate and plot the
speed of sound in saturated liquid water over the tempera-
ture range from 0 to 200�C.

12.39 Re-derive the equation for sonic speed (Eq. 12.18)
assuming that the direction of fluid motion behind the sound
wave is dVx to the right. Show that the result is identical to
that given by Eq. 12.18.

12.40 Compute the speed of sound at sea level in standard
air. By scanning data from Table A.3 into your PC (or using
Fig. 3.3), evaluate the speed of sound and plot for altitudes to
90 km.

12.41 The temperature varies linearly from sea level to
approximately 11 km altitude in the standard atmosphere.
Evaluate the lapse rate—the rate of decrease of temperature
with altitude—in the standard atmosphere. Derive an expres-
sion for the rate of change of sonic speed with altitude in an
ideal gas under standard atmospheric conditions. Evaluate and
plot from sea level to 10 km altitude.

12.42 Air at 77�F flows at M5 1.9. Determine the air speed
and the Mach angle.

12.43 Consider the hypersonic aircraft of Problem 12.35.
How long would it take for an observer to hear the aircraft
after it flies over the observer? In that elapsed time, how far
did the aircraft travel?

12.44 A projectile is fired into a gas (ratio of specific heats
k5 1.625) in which the pressure is 450 kPa (abs) and the
density is 4.5 kg/m3. It is observed experimentally that
a Mach cone emanates from the projectile with 25� total
angle. What is the speed of the projectile with respect to the
gas?

12.45 A photograph of a bullet shows a Mach angle of 32�.
Determine the speed of the bullet for standard air.

12.46 The National Transonic Facility (NTF) is a high-speed
wind tunnel designed to operate with air at cryogenic tem-
peratures to reduce viscosity, thus raising the unit Reynolds
number (Re/x) and reducing pumping power requirements.
Operation is envisioned at temperatures of 2270�F and
below. A schlieren photograph taken in the NTF shows
a Mach angle of 57� where T52270�F and p5 1.3 psia.
Evaluate the local Mach number and flow speed. Calculate
the unit Reynolds number for the flow.

12.47 An F-4 aircraft makes a high-speed pass over an air-
field on a day when T5 35�C. The aircraft flies at M5 1.4
and 200 m altitude. Calculate the speed of the aircraft. How
long after it passes directly over point A on the ground does
its Mach cone pass over point A?

12.48 While jogging on the beach (it’s a warm summer day,
about 25�C) a high-speed jet flies overhead. You guesstimate
that it’s at an altitude of about 3000 m, and count off about
7.5 s before you hear it. Estimate the speed and Mach
number of the jet.

12.49 An aircraft passes overhead at 3 km altitude. The
aircraft flies atM5 1.5; assume air temperature is constant at
20�C. Find the air speed of the aircraft. A headwind blows
at 30 m/s. How long after the aircraft passes directly over-
head does its sound reach a point on the ground?

12.50 A supersonic aircraft flies at 3 km altitude at a speed of
1000 m/s on a standard day. How long after passing directly
above a ground observer is the sound of the aircraft heard by
the ground observer?
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12.51 For the conditions of Problem 12.50, find the location
at which the sound wave that first reaches the ground
observer was emitted.

12.52 The Concorde supersonic transport cruised at M5 2.2
at 17 km altitude on a standard day. How long after the air-
craft passed directly above a ground observer was the sound
of the aircraft heard?

12.53 The airflow around an automobile is assumed to be
incompressible. Investigate the validity of this assumption
for an automobile traveling at 60 mph. (Relative to the
automobile the minimum air velocity is zero, and the max-
imum is approximately 120 mph.)

12.54 Opponents of supersonic transport aircraft claim that
sound waves can be refracted in the upper atmosphere and
that, as a result, sonic booms can be heard several hundred
miles away from the ground track of the aircraft. Explain the
phenomenon of sound wave refraction.

Reference State: Local Isentropic
Stagnation Properties

12.55 Plot the percentage discrepancy between the density at
the stagnation point and the density at a location where the
Mach number is M, of a compressible flow, for Mach num-
bers ranging from 0.05 to 0.95. Find the Mach numbers at
which the discrepancy is 1 percent, 5 percent, and 10 percent.

12.56 Find the stagnation temperature at the nose of the
missile described in Problem 12.29.

12.57 Find the stagnation temperature at the nose of the
aircraft described in Problem 12.34.

12.58 Find the ratio of static to total pressure for a car
moving at 55 mph and for a Formula One race car traveling
at 220 mph at sea level. Do you expect the flow over either
car to experience compressibility effects?

12.59 Find the dynamic and stagnation pressures for the
missile described in Problem 12.29.

12.60 Find the dynamic and stagnation pressures for the
aircraft described in Problem 12.34.

12.61 An aircraft flies at 250 m/s in air at 28 kPa and 250�C.
Find the stagnation pressure at the nose of the aircraft.

12.62 Compute the air density in the undisturbed air, and at
the stagnation point, of Problem 12.61. What is the percen-
tage increase in density? Can we approximate this as an
incompressible flow?

12.63 For an aircraft traveling at M5 2 at an elevation of
12 km, find the dynamic and stagnation pressures.

12.64 A body moves through standard air at 200 m/s. What is
the stagnation pressure on the body? Assume (a) compres-
sible flow and (b) incompressible flow.

12.65 Consider flow of standard air at 600 m/s. What is the
local isentropic stagnation pressure? The stagnation enthalpy?
The stagnation temperature?

12.66 A DC-10 aircraft cruises at 12 km altitude on a stan-
dard day. A pitot-static tube on the nose of the aircraft
measures stagnation and static pressures of 29.6 kPa and 19.4
kPa. Calculate (a) the flight Mach number of the aircraft,

(b) the speed of the aircraft, and (c) the stagnation tem-
perature that would be sensed by a probe on the aircraft.

12.67 An aircraft cruises at M5 0.65 at 10 km altitude on a
standard day. The aircraft speed is deduced from measure-
ment of the difference between the stagnation and static
pressures. What is the value of this difference? Compute the
air speed from this actual difference assuming (a) compres-
sibility and (b) incompressibility. Is the discrepancy in air-
speed computations significant in this case?

12.68 The Anglo-French Concorde supersonic transport
cruised at M5 2.2 at 20 km altitude. Evaluate the speed of
sound, aircraft flight speed, and Mach angle. What was the
maximum air temperature at stagnation points on the air-
craft structure?

12.69 Modern high-speed aircraft use “air data computers”
to compute air speed from measurement of the difference
between the stagnation and static pressures. Plot, as a func-
tion of actual Mach number M, for M5 0.1 to M5 0.9, the
percentage error in computing the Mach number assuming
incompressibility (i.e., using the Bernoulli equation), from
this pressure difference. Plot the percentage error in speed,
as a function of speed, of an aircraft cruising at 12 km alti-
tude, for a range of speeds corresponding to the actual Mach
number ranging from M5 0.1 to M5 0.9.

12.70 A supersonic wind tunnel test section is designed to
have M5 2.5 at 15�C and 35 kPa (abs). The fluid is air.
Determine the required inlet stagnation conditions, T0 and
p0. Calculate the required mass flow rate for a test section
area of 0.175 m2.

12.71 Air flows steadily through a length ( 1 denotes inlet
and 2 denotes exit) of insulated constant-area duct. Prop-
erties change along the duct as a result of friction.
(a) Beginning with the control volume form of the first law

of thermodynamics, show that the equation can be
reduced to

h1 1
V2

1

2
5h2 1

V2
2

2
5 constant

(b) Denoting the constant by h0 (the stagnation enthalpy),
show that for adiabatic flow of an ideal gas with friction

T0

T
5 11

k2 1

2
M2

(c) For this flow does T01 5T02? p01 5p02? Explain these
results.

12.72 A new design for a supersonic transport is tested in a
wind tunnel at M5 1.8. Air is the working fluid. The stag-
nation temperature and pressure for the wind tunnel are 200
psia and 500�F, respectively. The model wing area is 100 in2.
The measured lift and drag are 12,000 lbf and 1600 lbf,
respectively. Find the lift and drag coefficients.

12.73 For aircraft flying at supersonic speeds, lift and drag
coefficients are functions of Mach number only. A super-
sonic transport with wingspan of 75 m is to fly at 780 m/s at
20 km altitude on a standard day. Performance of the aircraft
is to be measured from tests of a model with 0.9 m wingspan
in a supersonic wind tunnel. The wind tunnel is to be sup-
plied from a large reservoir of compressed air, which can be
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heated if desired. The static temperature of air in the test
section is to be 10�C to avoid freezing of moisture. At what
air speed should the wind tunnel tests be run to duplicate the
Mach number of the prototype? What must be the stagnation
temperature in the reservoir? What pressure is required in
the reservoir if the test section pressure is to be 10 kPa (abs)?

12.74 Actual performance characteristics of the Lockheed
SR-71 “Blackbird” reconnaissance aircraft were classified.
However, it was thought to cruise atM5 3.3 at 26 km altitude.
Calculate the aircraft flight speed for these conditions.
Determine the local isentropic stagnation pressure. Because
the aircraft speed is supersonic, a normal shock occurs in front
of a total-head tube. The stagnation pressure decreases by
74.7 percent across the shock. Evaluate the stagnation pres-
sure sensed by a probe on the aircraft. What is the maximum
air temperature at stagnation points on the aircraft structure?

12.75 The NASA X-43A Hyper-X experimental vehicle
traveled at M= 9.68 at an altitude of 110,000 ft. Calculate the
flight speed for these conditions. Determine the local stag-
nation pressure. Because the aircraft speed is supersonic, a
normal shock wave occurs in front of a total-head tube.
However, the shock wave results in a stagnation pressure
decrease of 99.6 percent. Evaluate the stagnation pressure
sensed by a probe on the aircraft. What is the maximum air
temperature at stagnation points on the aircraft structure?

12.76 Air flows in an insulated duct. At point 1 the con-
ditions are M15 0.1, T15 20�C, and p15 1.0 MPa (abs).
Downstream, at point 2 , because of friction the conditions
are M25 0.7, T2525.62�C, and p25 136.5 kPa (abs). (Four
significant figures are given to minimize roundoff errors.)
Compare the stagnation temperatures at points 1 and 2 ,
and explain the result. Compute the stagnation pressures at
points 1 and 2 . Can you explain how it can be that the
velocity increases for this frictional flow? Should this process
be isentropic or not? Justify your answer by computing the
change in entropy between points 1 and 2 . Plot static and
stagnation state points on a Ts diagram.

12.77 Air is cooled as it flows without friction at a rate of
0.05 kg/s in a duct. At point 1 the conditions are M15 0.5,
T15 500�C, and p15 500 kPa (abs). Downstream, at point 2 ,
the conditions are M25 0.2, T25218.57�C, and p25 639.2
kPa (abs). (Four significant figures are given to minimize
roundoff errors.) Compare the stagnation temperatures at
points 1 and 2 , and explain the result. Compute the rate of
cooling. Compute the stagnation pressures at points 1 and

2 . Should this process be isentropic or not? Justify your
answer by computing the change in entropy between points 1
and 2 . Plot static and stagnation state points on aTs diagram.

12.78 Consider steady, adiabatic flow of air through a long
straight pipe with A5 0.05 m2. At the inlet (section 1 ) the
air is at 200 kPa (abs), 60�C, and 146 m/s. Downstream at
section 2 , the air is at 95.6 kPa (abs) and 280 m/s. Deter-
mine p01 , p02 , T01 , T02 , and the entropy change for the flow.
Show static and stagnation state points on a Ts diagram.

12.79 Air flows steadily through a constant-area duct. At
section 1 , the air is at 400 kPa (abs), 325K, and 150m/s. As
a result of heat transfer and friction, the air at section 2
downstream is at 275 kPa (abs), 450K. Calculate the heat

transfer per kilogram of air between sections 1 and 2 , and
the stagnation pressure at section 2 .

12.80 The combustion process in a ramjet engine is modeled
as simple heat addition to air in a frictionless duct. Consider
such a combustor, with air flowing at a rate of 0.1 lbm/s.
At point 1 the conditions are M1 0.2, T15 600�F, and
p15 7 psia. Downstream, at point 2 , the conditions are
M25 0.9, T25 1890�F, and p25 4.1 psia. Compare the stag-
nation temperatures at points 1 and 2 , and explain the
result. Compute the rate of heat addition to the flow. Com-
pute the stagnation pressures at points 1 and 2 . Should
this process be isentropic or not? Justify your answer by
computing the change in entropy between points 1 and 2 .
Plot static and stagnation state points on a Ts diagram.

12.81 Let us revisit the ramjet combustor in Problem 12.80.
To more accurately model the flow, we now include the
effects of friction in the duct. Once the effects of friction
have been included, we find that the conditions at state 2
are nowM25 0.9, T25 1660�F, and p25 1.6 psia. Recalculate
the heat transfer per pound of air between sections 1 and

2 , and the stagnation pressure at section 2 .

12.82 Air passes through a normal shock in a supersonic
wind tunnel. Upstream conditions are M15 1.8, T15 270 K,
and p15 10.0 kPa (abs). Downstream conditions are
M25 0.6165, T25 413.6 K, and p25 36.13 kPa (abs). (Four
significant figures are given to minimize roundoff errors.)
Evaluate local isentropic stagnation conditions (a) upstream
from, and (b) downstream from, the normal shock. Calculate
the change in specific entropy across the shock. Plot static
and stagnation state points on a Ts diagram.

12.83 Air enters a turbine at M15 0.4, T15 1250�C, and
p15 625 kPa (abs). Conditions leaving the turbine are
M25 0.8, T25 650�C, and p25 20 kPa (abs). Evaluate local
isentropic stagnation conditions (a) at the turbine inlet and
(b) at the turbine outlet. Calculate the change in specific
entropy across the turbine. Plot static and stagnation state
points on a Ts diagram.

12.84 A Boeing 747 cruises at M5 0.87 at an altitude of
13 km on a standard day. A window in the cockpit is located
where the external flow Mach number is 0.2 relative to the
plane surface. The cabin is pressurized to an equivalent altitude
of 2500 m in a standard atmosphere. Estimate the pressure
difference across the window. Be sure to specify the direction
of the net pressure force.

Critical Conditions

12.85 If a window of the cockpit in Problem 12.84 develops a
tiny leak the air will start to rush out at critical speed. Find
the mass flow rate if the leak area is 1mm2.

12.86 Space debris impact is a real concern for spacecraft. If
a piece of space debris were to create a hole of 0.001 in.2 area
in the hull of the International Space Station (ISS), at what
rate would air leak from the ISS? Assume that the atmo-
sphere in the International Space Station (ISS) is air at a
pressure of 14.7 psia and a temperature of 65�F.

12.87 A CO2 cartridge is used to propel a toy rocket. Gas in
the cartridge is pressurized to 45 MPa (gage) and is at 25�C.
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Calculate the critical conditions (temperature, pressure, and
flow speed) that correspond to these stagnation conditions.

12.88 The gas storage reservoir for a high-speed wind tunnel
contains helium at 3600�R and 725 psig. Calculate the critical
conditions (temperature, pressure, and flow speed) that cor-
respond to these stagnation conditions.

12.89 Stagnation conditions in a solid propellant rocket
motor are T05 3000 K and p05 45 MPa (gage). Critical
conditions occur in the throat of the rocket nozzle where the
Mach number is equal to one. Evaluate the temperature,
pressure, and flow speed at the throat. Assume ideal gas
behavior with R5 323 J/(kg�K) and k5 1.2.

12.90 The hot gas stream at the turbine inlet of a JT9-D jet
engine is at 1500�C, 140 kPa (abs), and M5 0.32. Calculate

the critical conditions (temperature, pressure, and flow
speed) that correspond to these conditions. Assume the fluid
properties of pure air.

12.91 Certain high-speed wind tunnels use combustion air
heaters to generate the extreme pressures and temperatures
required to accurately simulate flow at high Mach numbers.
In one set of tests, a combustion air heater supplied stag-
nation conditions of 1.7 MPa and 1010 K. Calculate the
critical pressure and temperature corresponding to these
stagnation conditions.

12.92 The ramjet combustor exhaust from Problem 12.81 is
accelerated through a nozzle to critical conditions. Calculate
the temperature, pressure, and flow velocity at the nozzle
exit. Assume fluid properties of pure air.
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13
Compressible Flow
13.1 Basic Equations for One-Dimensional Compressible Flow

13.2 Isentropic Flow of an Ideal Gas: Area Variation

13.3 Normal Shocks

13.4 Supersonic Channel Flow with Shocks

13.5 Flow in a Constant-Area Duct with Friction

13.6 Frictionless Flow in a Constant-Area Duct with Heat Exchange

13.7 Oblique Shocks and Expansion Waves

13.8 Summary and Useful Equations

Case Study in Energy and the Environment

Wind Power: The Windspire
Vertical Axis Wind Turbine

Wind turbine farms are now a common sight
in many parts of the world. One of the earliest wind
farms in the United States, the Altamont Pass Wind
Farm in central California, has almost 5000 relatively
small wind turbines of various types, making it at one
time the largest farm in the world in terms of capacity.
Altamont Pass is still the largest single concentration of
wind turbines in the world, with a capacity of 576 MW,
producing about 125 MW on average and 1.1 TWh
annually. Even though the turbines are quite large,
technology has improved since they were installed in

the 1970s, and they are being gradually replaced with
much larger and more cost-effective units. The smaller
turbines are dangerous to various birds such as golden
eagles (about 70 of these are killed each year). The
new, larger units turn more slowly and, being so much
larger and higher, are less hazardous to the local
wildlife.
As we saw in the last Case Study in Energy and the

Environment, a number of companies are developing
small-scale alternatives to such wind farms. One such
company is Windspire Energy in Nevada. Its wind tur-
bines, as shown in the photograph, are low-cost, low-
noise, attractive-looking wind power generators for use
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In Chapter 12 we reviewed some basic concepts of compressible flow. The main focus
of this chapter is to discuss one-dimensional compressible flow in more detail. The first
question we can ask is “What would cause the fluid properties to vary in a one-
dimensional compressible flow?” The answer is that various phenomena can cause
changes:

� Flow with varying area (causing the velocity to change, and hence other property
changes).

� Normal shock (a “violent” adiabatic process that causes the entropy to increase, and
hence other property changes).

� Flow in a channel with friction (causing the entropy to increase, and hence other
property changes).

� Flow in a channel with heating or cooling (causing a change in fluid energy, and
hence other property changes).

For simplicity, we will study each of these phenomena separately (bearing in mind
that a real flow is likely to experience several of them simultaneously). After com-
pleting our treatment of one-dimensional flow, we will introduce some basic concepts
of two-dimensional flows: oblique shocks and expansion waves.

with residential, business, and commercial buildings.
EachWindspire can generate about 1.2 kW of electricity;
for comparison, a typical home solar array can generate
up to 3 kW in full, direct sunlight. Manufactured in
Michigan, the Windspire wind turbines are 30 ft tall and
4 ft wide, propeller-free, vertical-axis wind turbine
(VAWTs, discussed in Chapter 10). The Windspire tur-
bines, in contrast to the Helix VAWT in Chapter 12, are
lift devices; that is, the vertical blades are essentially

airfoils generating lift (see Chapter 9) and hence torque.
Windspires are currently powering over 500 homes,
small businesses, schools, museums, parks, vineyards,
and commercial buildings.

Recently Adobe Systems Inc., makers of the com-
monly used Adobe Acrobat, installed 20 Windspire
wind turbines at its San Jose, California, campus. This
is in keeping with Adobe’s leadership in green build-
ing efforts; the headquarters is the first commercial
office building to receive the Leadership in Energy and
Environmental Design (LEED-EB) Platinum certification
for its headquarters. The new Windspires are located
on Adobe’s sixth-floor patio, which doubles as a
rooftop garden and recreational area; the patio is
located between three office towers, which create a
wind tunnel effect from steady winds off the Pacific
Ocean. Adobe selected the Windspire for its powerful,
sleek, quiet, and aesthetically pleasing design. The
tall, slender, delicate-looking cylinders look nothing
like the giant turbine blades turning above the Alta-
mont Pass, but they generate power all the same!

Sales of small turbines—those with a capacity of
100 kW or less—rose 78 percent in 2008; so the
market is rapidly growing. Unlike the Windspire, most
of the small turbines sold in the United States are
horizontal-axis turbines (HAWTs). Windspire Energy
believes that its VAWT Windspire has a number of
advantages over HAWTs, including its much smaller
footprint, lower noise level, and aesthetic appeal.

Windspire Turbines. (Picture Courtesy of Windspire Energy.)
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13.1Basic Equations for One-Dimensional
Compressible Flow

Our first task is to develop general equations for a one-dimensional flow that express
the basic laws from Chapter 4: mass conservation (continuity), momentum, the first
law of thermodynamics, the second law of thermodynamics, and an equation of state.
To do so, we will use the fixed control volume shown in Fig. 13.1. We initially assume
that the flow is affected by all of the phenomena mentioned above (i.e., area change,
friction, and heat transfer—even the normal shock will be described by this approach).
Then, for each individual phenomenon we will simplify the equations to obtain useful
results.

As shown in Fig. 13.1, the properties at sections 1 and 2 are labeled with corre-
sponding subscripts. Rx is the x component of surface force from friction and pressure
on the sides of the channel. There will also be surface forces from pressures at surfaces

1 and 2 . Note that the x component of body force is zero, so it is not shown. _Q is the
heat transfer.

a. Continuity Equation

Basic equation:

5 0ð1Þ
@

@t

Z
CV

ρ dV---1
Z
CS

ρ~V �d~A 5 0 ð4:12Þ

Assumptions: (1) Steady flow.
(2) One-dimensional flow.

Then

ð2ρ1V1A1Þ1 ðρ2V2A2Þ 5 0

or

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:1aÞ

Rx

Flow
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•

Fig. 13.1 Control volume for analysis of a
general one-dimensional flow.
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b. Momentum Equation

Basic equation:

5 0ð3Þ 5 0ð1Þ

FSx 1FBx
5

@

@t

Z
CV

Vx ρ dV---1
Z

CS

Vx ρ~V �d~A ð4:18aÞ

Assumption: (3) FBx
5 0

The surface force is caused by pressure forces at surfaces 1 and 2 , and by the friction
and distributed pressure force, Rx, along the channel walls. Substituting gives

Rx 1 p1A1 2 p2A2 5 V1ð2ρ1V1A1Þ1V2ðρ2V2A2Þ

Using continuity, we obtain

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:1bÞ

c. First Law of Thermodynamics

Basic equation:

_Q2 _Ws 2 _Wshear 2 _Wother 5
@

@t

Z
CV

e ρ dV---1
Z
CS

ðe1 pvÞρ ~V �d~A ð4:56Þ

where

C0ð6Þ
e 5 u1

V2

2
1 gz

Assumptions: (4) _Ws 5 0.
(5) _Wshear 5 _Wother 5 0.
(6) Effects of gravity are negligible.

(Note that even if we have friction, there is no friction work at the walls because with
friction the velocity at the walls must be zero from the no-slip condition.) Under these
assumptions, the first law reduces to

_Q 5 u1 1 p1v1 1
V2

1

2

� �
ð2ρ1V1A1Þ1 u2 1 p2v2 1

V2
2

2

� �
ðρ2V2A2Þ

(Remember that v here represents the specific volume.) This can be simplified by
using h � u1 pv, and continuity (Eq. 13.1a),

_Q 5 �m h2 1
V2

2

2

� �
2 h1 1

V2
1

2

� �� �

We can write the heat transfer on a per unit mass rather than per unit time basis:

δQ
dm

5
1
�m

_Q
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so

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2
ð13:1cÞ

Equation 13.1c expresses the fact that heat transfer changes the total energy (the sum
of thermal energy h, and kinetic energy V2/2) of the flowing fluid. This combination,
h1V2=2, occurs often in compressible flow, and is called the stagnation enthalpy, h0.
This is the enthalpy obtained if a flow is brought adiabatically to rest.

Hence, Eq. 13.1c can also be written

δQ
dm

5 h02 2 h01

We see that heat transfer causes the stagnation enthalpy, and hence, stagnation
temperature, T0, to change.

d. Second Law of Thermodynamics

Basic equation:

5 0ð1Þ
@

@t

Z
CV

sρdV---1
Z
CS

s ρ~V �d~A$

Z
CS

1

T

_Q

A

0
@

1
AdA ð4:58Þ

or

s1ð2ρ1V1A1Þ1 s2ðρ2V2A2Þ$
Z
CS

1

T

_Q

A

 !
dA

and, again using continuity,

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:1dÞ

e. Equation of State

Equations of state are relations among intensive thermodynamic properties. These
relations may be available as tabulated data or charts, or as algebraic equations. In
general, regardless of the format of the data, as we discussed in Chapter 12 (see
References [1�3] of that chapter), for a simple substance any property can be
expressed as a function of any two other independent properties. For example, we
could write h 5 h(s, p), or ρ 5 ρ(s, p), and so on.

We will primarily be concerned with ideal gases with constant specific heats, and for
these we can write Eqs. 12.1 and 12.7b (renumbered for convenient use in this chapter),

p 5 ρRT ð13:1eÞ
and

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:1fÞ

For ideal gases with constant specific heats, the change in entropy, Δs 5 s2 2 s1, for
any process can be computed from any of Eqs. 12.11. For example, Eq. 12.11b
(renumbered for convenient use in this chapter) is
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Δs 5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð13:1gÞ

We now have a basic set of equations for analyzing one-dimensional compressible
flows of an ideal gas with constant specific heats:

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:1aÞ

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:1bÞ

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2
ð13:1cÞ

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:1dÞ

p 5 ρRT ð13:1eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:1fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

ð13:1gÞ

Note that Eq. 13.1e applies only if we have an ideal gas; Equations 13.1f and 13.1g
apply only if we have an ideal gas with constant specific heats. Our task is now to
simplify this set of equations for each of the phenomena that can affect the flow:

� Flow with varying area.

� Normal shock.

� Flow in a channel with friction.

� Flow in a channel with heating or cooling.

13.2 Isentropic Flow of an Ideal Gas: Area Variation
The first phenomenon is one in which the flow is changed only by area variation—
there is no heat transfer (δQ=dm 5 0) or friction (so that Rx, the x component of
surface force, results only from pressure on the sides of the channel), and there are no
shocks. The absence of heat transfer, friction, and shocks (which are “violent” and
therefore inherently irreversible) means the flow will be reversible and adiabatic, so
Eq. 13.1d becomes

�mðs2 2 s1Þ 5
Z
CS

1

T

_Q

A

 !
dA 5 0

or

Δs 5 s2 2 s1 5 0

so such a flow is isentropic. This means that Eq. 13.1g leads to the result we saw in
Chapter 12,

T1p
ð12kÞ=k
1 5 T2p

ð12kÞ=k
2 5 Tpð12kÞ=k 5 constant ð12:12bÞ
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or its equivalent (which can be obtained by using the ideal gas equation of state in
Eq. 12.12b to eliminate temperature),

p1

ρk1
5

p2

ρk2
5

p

ρk
5 constant ð12:12cÞ

Hence, the basic set of equations (Eqs. 13.1) becomes:

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:2aÞ

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:2bÞ

h01 5 h1 1
V2

1

2
5 h2 1

V2
2

2
5 h02 5 h0 ð13:2cÞ

s2 5 s1 5 s ð13:2dÞ

p 5 ρRT ð13:2eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:2fÞ

p1

ρk1
5

p2

ρk2
5

p

ρk
5 constant ð13:2gÞ

Note that Eqs. 13.2c, 13.2d, and 13.2f provide insight into how this process appears on
an hs diagram and on a Ts diagram. From Eq. 13.2c, the total energy, or stagnation
enthalpy h0, of the fluid is constant; the enthalpy and kinetic energy may vary along
the flow, but their sum is constant. This means that if the fluid accelerates, its tem-
perature must decrease, and vice versa. Equation 13.2d indicates that the entropy
remains constant. These results are shown for a typical process in Fig. 13.2.

Equation 13.2f indicates that the temperature and enthalpy are linearly related;
hence, processes plotted on a Ts diagram will look very similar to that shown in
Fig. 13.2 except for the vertical scale.

Equations 13.2 could be used to analyze isentropic flow in a channel of varying
area. For example, if we know conditions at section 1 (i.e., p1, ρ1, T1, s1, h1, V1, and
A1) we could use these equations to find conditions at some new section 2 where the
area is A2: We would have seven equations and seven unknowns (p2, ρ2, T2, s2, h2, V2,
and, if desired, the net pressure force on the walls Rx). We stress could, because in
practice this procedure is unwieldy—we have a set of seven nonlinear coupled alge-
braic equations to solve (however, we will see, for example in Example 13.1, that
Excel can be used to solve this set of equations). Instead we will usually use some of
these equations as convenient but also take advantage of the results we obtained for
isentropic flows in Chapter 12, and develop property relations in terms of the local
Mach number, the stagnation conditions, and critical conditions.

h

s

h0

h1

h2

Reference
state Kinetic

energy of
state

State

p = const

1
1

Thermal
energy of
state 1State 2

Kinetic
energy of
state 2

Thermal
energy of
state 2

Total
energy
h0 of all
states

Fig. 13.2 Isentropic flow in the hs plane.
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Before proceeding with this approach, we can gain insight into the isentropic
process by reviewing the results we obtained in Chapter 12 when we analyzed a dif-
ferential control volume (Fig. 12.5). The momentum equation for this was

dp

ρ
1 d

V2

2

� �
5 0 ð12:20bÞ

(Note that we could also have obtained this equation using our set of equations, Eqs.
13.1. If we applied Eqs. 13.1 to a differential control volume, we could replace ρ1, V1,
and A1 with ρ, V, and A, and ρ2, V2, and A2 with ρ 1 dρ, V 1 dV, and A 1 dA. Then
Eq. 13.1a and 13.1b simplify to the above equation.) Then

dp 52ρV dV

Dividing by ρV2, we obtain

dp

ρV2
52

dV

V
ð13:3Þ

A convenient differential form of the continuity equation can be obtained from Eq.
13.2a, in the form

ρAV 5 constant

Differentiating and dividing by ρAV yields

dρ
ρ

1
dA

A
1

dV

V
5 0 ð13:4Þ

Solving Eq. 13.4 for dA/A gives

dA

A
52

dV

V
2

dρ
ρ

Substituting from Eq. 13.3 gives

dA

A
5

dp

ρV2
2

dρ
ρ

or

dA

A
5

dp

ρV2
12

V2

dp=dρ

� �

Now recall that for an isentropic process, dp=dρ 5 @p=@ρÞs 5 c2, so

dA

A
5

dp

ρV2
12

V2

c2

� �
5

dp

ρV2
½12M2�

or

dp

ρV2
5

dA

A

1

½12M2� ð13:5Þ

Substituting from Eq. 13.3 into Eq. 13.5, we obtain

dV

V
52

dA

A

1

½12M2� ð13:6Þ
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Note that for an isentropic flow there can be no friction. Equations 13.5 and 13.6
confirm that for this case, from a momentum point of view we expect an increase in
pressure to cause a decrease in speed, and vice versa. Although we cannot use them
for computations (we have not so far determined how M varies with A), Eqs. 13.5 and
13.6 give us very interesting insights into how the pressure and velocity change as we
change the area of the flow. Three possibilities are discussed below.

Subsonic Flow, M , 1

For M , 1, the factor 1/[1 2 M2] in Eqs. 13.5 and 13.6 is positive, so that a positive dA
leads to a positive dp and a negative dV. These mathematical results mean that in a
divergent section (dA . 0) the flow must experience an increase in pressure (dp . 0)
and the velocity must decrease (dV , 0). Hence a divergent channel is a subsonic
diffuser (a diffuser is a device that decelerates a flow).

On the other hand, a negative dA leads to a negative dp and a positive dV. These
mathematical results mean that in a convergent section (dA , 0) the flow must
experience a decrease in pressure (dp , 0) and the velocity must increase (dV . 0).
Hence a convergent channel is a subsonic nozzle (a nozzle is a device that accel-
erates a flow).

These results are consistent with our everyday experience and are not surprising—
for example, recall the venturi meter in Chapter 8, in which a reduction in area at the
throat of the venturi led to a local increase in velocity, and because of the Bernoulli
principle, to a pressure drop, and the divergent section led to pressure recovery and
flow deceleration. (The Bernoulli principle assumes incompressible flow, which is the
limiting case of subsonic flow.)

The subsonic diffuser and nozzle are also shown in Fig. 13.3.

Supersonic Flow, M . 1

ForM. 1, the factor 1/[12M2] in Eqs. 13.5 and 13.6 is negative, so that a positive dA
leads to a negative dp and a positive dV. These mathematical results mean that in a
divergent section (dA . 0) the flow must experience a decrease in pressure (dp , 0)
and the velocity must increase (dV . 0). Hence a divergent channel is a supersonic
nozzle.

Flow

Flow

Flow

Flow

Flow regime

Subsonic
M < 1

Supersonic
M > 1

Nozzle
dp < 0
dV > 0

dp > 0
dV < 0

Diffuser

Fig. 13.3 Nozzle and diffuser shapes as a function of initial Mach number.
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On the other hand, a negative dA leads to a positive dp and a negative dV. These
mathematical results mean that in a convergent section (dA , 0) the flow must
experience an increase in pressure (dp . 0) and the velocity must decrease (dV , 0).
Hence a convergent channel is a supersonic diffuser.

These results are inconsistent with our everyday experience and are at first a bit
surprising—they are the opposite of what we saw in the venturi meter! The results are
consistent with the laws of physics; for example, an increase in pressure must lead to a
flow deceleration because pressure forces are the only forces acting.

The supersonic nozzle and diffuser are shown in Fig. 13.3.
These somewhat counterintuitive results can be understood when we realize that

we are used to assuming that ρ 5 constant, but we are now in a flow regime where the
fluid density is a sensitive function of flow conditions. From Eq. 13.4,

dV

V
52

dA

A
2

dρ
ρ

For example, in a supersonic diverging flow (dA positive) the flow actually accelerates
(dV also positive) because the density drops sharply (dρ is negative and large, with the
net result that the right side of the equation is positive). We can see examples of
supersonic diverging nozzles in the space shuttle main engines, each of which has a
nozzle about 10 ft long with an 8 ft exit diameter. The maximum thrust is obtained
from the engines when the combustion gases exit at the highest possible speed, which
the nozzles achieve.

Sonic Flow, M 5 1

As we approach M 5 1, from either a subsonic or supersonic state, the factor
1=½12M2� in Eqs. 13.5 and 13.6 approaches infinity, implying that the pressure and
velocity changes also approach infinity. This is obviously unrealistic, so we must look
for some other way for the equations to make physical sense. The only way we can
avoid these singularities in pressure and velocity is if we require that dA-0 as M-1.
Hence, for an isentropic flow, sonic conditions can only occur where the area is
constant! We can be even more specific: We can imagine approaching M 5 1 from
either a subsonic or a supersonic state. A subsonic flow (M , 1) would need to be
accelerated using a subsonic nozzle, which we have learned is a converging section; a
supersonic flow (M . 1) would need to be decelerated using a supersonic diffuser,
which is also a converging section. Hence, sonic conditions are limited not just to a
location of constant area, but one that is a minimum area. The important result is that
for isentropic flow the sonic condition M 5 1 can only be attained at a throat, or section
of minimum area. (This does not mean that a throat must have M 5 1. After all, we
may have a low speed flow or even no flow at all in the device!).

We can see that to isentropically accelerate a fluid from rest to supersonic speed we
would need to have a subsonic nozzle (converging section) followed by a supersonic
nozzle (diverging section), withM5 1 at the throat. This device is called a converging-
diverging nozzle (C-Dnozzle). Of course, to create a supersonic flowwe needmore than
just a C-D nozzle: We must also generate and maintain a pressure difference between
the inlet and exit. We will discuss shortly C-D nozzles in some detail, and the pressures
required to accomplish a change from subsonic to supersonic flow.

We must be careful in our discussion of isentropic flow (especially deceleration),
because real fluids can experience nonisentropic phenomena such as boundary-layer
separation and shock waves. In practice, supersonic flow cannot be decelerated to
exactly M 5 1 at a throat because sonic flow near a throat is unstable in a rising
(adverse) pressure gradient. (It turns out that disturbances that are always present in a
real subsonic flow propagate upstream, disturbing the sonic flow at the throat, causing
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shock waves to form and travel upstream, where they may be disgorged from the inlet
of the supersonic diffuser.)

The throat area of a real supersonic diffuser must be slightly larger than that
required to reduce the flow to M 5 1. Under the proper downstream conditions, a
weak normal shock forms in the diverging channel just downstream from the throat.
Flow leaving the shock is subsonic and decelerates in the diverging channel. Thus
deceleration from supersonic to subsonic flow cannot occur isentropically in practice,
since the weak normal shock causes an entropy increase. Normal shocks will be
analyzed in Section 13.3.

For accelerating flows (favorable pressure gradients), the idealization of isentropic
flow is generally a realistic model of the actual flow behavior. For decelerating flows,
the idealization of isentropic flow may not be realistic because of the adverse pressure
gradients and the attendant possibility of flow separation, as discussed for incom-
pressible boundary-layer flow in Chapter 9.

Reference Stagnation and Critical Conditions for
Isentropic Flow of an Ideal Gas

As we mentioned at the beginning of this section, in principle we could use Eqs. 13.2
to analyze one-dimensional isentropic flow of an ideal gas, but the computations
would be somewhat tedious. Instead, because the flow is isentropic, we can use the
results of Sections 12.3 (reference stagnation conditions) and 12.4 (reference critical
conditions). The idea is illustrated in Fig. 13.4: Instead of using Eqs. 13.2 to compute,
for example, properties at state 2 from those at state 1 , we can use state 1 to
determine two reference states (the stagnation state and the critical state), and then
use these to obtain properties at state 2 . We need two reference states because the
reference stagnation state does not provide area information (mathematically the
stagnation area is infinite).

We will use Eqs. 12.21 (renumbered for convenience),

p0
p

5 11
k2 1

2
M2

� �k=ðk21Þ
ð13:7aÞ

T0

T
5 11

k2 1

2
M2 ð13:7bÞ

ρ0
ρ

5 11
k2 1

2
M2

� �1=ðk21Þ
ð13:7cÞ

Reference stagnation state

Reference critical state

State

T0

T1

T2

T*

T

s

1

State      to
stagnation state

to state     

1

State 2

2

State      to
critical state
to state     

1

2

Fig. 13.4 Example of stagnation and critical reference
states in the Ts plane.
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We note that the stagnation conditions are constant throughout the isentropic flow.
The critical conditions (when M 5 1) were related to stagnation conditions in Section
12.4,

p0
p� 5

k1 1

2

� �k=ðk21Þ
ð12:22aÞ

T0

T*
5

k1 1

2
ð12:22bÞ

ρ0
ρ*

5
k1 1

2

� �1=ðk21Þ
ð12:22cÞ

V* 5 c* 5

ffiffiffiffiffiffiffiffiffiffiffi
2k

k1 1

r
RT0 ð12:23Þ

Although a particular flow may never attain sonic conditions (as in the example in
Fig. 13.4), we will still find the critical conditions useful as reference conditions.
Equations 13.7a, 13.7b, and 13.7c relate local properties (p, ρ, T, and V) to stagnation
properties (p0, ρ0, and T0) via the Mach number M, and Eqs. 12.22 and 12.23 relate
critical properties (p*, ρ*, T*, and V*) to stagnation properties (p0, ρ0, and T0)
respectively, but we have yet to obtain a relation between areas A and A*. To do this
we start with continuity (Eq. 13.2a) in the form

ρAV 5 constant 5 ρ*A*V*

Then

A

A*
5

ρ*
ρ

V*

V
5

ρ*
ρ

c*

Mc
5

1

M

ρ*
ρ

ffiffiffiffiffiffi
T*

T

s

A

A*
5

1

M

ρ*
ρ0

ρ0
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T*=T0

T=T0

vuut

A

A*
5

1

M

11
k2 1

2
M2

� �1=ðk21Þ

k1 1

2

� �1=ðk2 1Þ
11

k2 1

2
M2

k1 1

2

2
64

3
75
1=2

A

A*
5

1

M

11
k2 1

2
M2

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

ð13:7dÞ

Equations 13.7 form a set that is convenient for analyzing isentropic flow of an ideal
gas with constant specific heats, which we usually use instead of the basic equations,
Eqs. 13.2. For convenience we list Eqs. 13.7 together:

p0
p

5 11
k2 1

2
M2

� �k=ðk21Þ
ð13:7aÞ

T0

T
5 11

k2 1

2
M2 ð13:7bÞ
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ρ0
ρ

5 11
k2 1

2
M2

� �1=ðk2 1Þ
ð13:7cÞ

A

A*
5

1

M

11
k2 1

2
M2

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

ð13:7dÞ

Equations 13.7 provide property relations in terms of the local Mach number, the
stagnation conditions, and critical conditions; theyare souseful that somecalculatorshave
some of them built in (for example, the HP 48G series [1]). It is a good idea to program
them if your calculator does not already have them. There are even interactiveWeb sites
that make them available (see, for example, [2]), and they are fairly easy to define in
spreadsheets such as Excel. The reader is urged to download the Excel add-ins for these
equations from the Web site; with the add-ins, functions are available for computing
pressure, temperature, density or area ratios fromM, andM from the ratios. While they
are somewhat complicated algebraically, they have the advantage over the basic equa-
tions, Eq. 13.2, that they are not coupled. Each property can be found directly from its
stagnation value and theMachnumber. Equation 13.7d shows the relation betweenMach
number M and area A. The critical area A* (defined whether or not a given flow ever
attains sonic conditions) is used to normalize areaA. For eachMach numberMwe obtain
a unique area ratio, but as shown in Fig 13.5 eachA/A* ratio (except 1) has two possible
Mach numbers—one subsonic, the other supersonic. The shape shown in Fig. 13.5 looks
like a converging-diverging section for accelerating from a subsonic to a supersonic flow
(with, as necessary,M5 1 only at the throat), but in practice this is not the shape towhich
such a passagewould be built. For example, the diverging section usuallywill have amuch
less severe angle of divergence to reduce the chance of flow separation (in Fig. 13.5 the
Mach number increases linearly, but this is not necessary).

Appendix E.1 lists flow functions for property ratios T0/T, p0/p, ρ0/ρ, and A/A* in
terms of M for isentropic flow of an ideal gas. A table of values, as well as a plot of
these property ratios, is presented for air (k 5 1.4) for a limited range of Mach
numbers. The associated Excel workbook, Isentropic Relations, can be used to print a
larger table of values for air and other ideal gases.

Example 13.1 demonstrates useof someof the aboveequations.As shown inFig. 13.4,
we canuse the equations to relate a property at one state to the stagnation value and then
from the stagnation value to a second state, but note that we can accomplish this in one
step—for example,p2 can be obtained from p1 bywriting p2 5 ðp2=p0Þðp0=p1Þp1, where
the pressure ratios come from Eq. 13.7a evaluated at the two Mach numbers.
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Fig. 13.5 Variation of A/A* with Mach number
for isentropic flow of an ideal gas with k 5 1.4.
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Example 13.1 ISENTROPIC FLOW IN A CONVERGING CHANNEL

Air flows isentropically in a channel. At section 1 , the Mach number is 0.3, the area is 0.001m2, and the absolute
pressure and the temperature are 650 kPa and 62�C, respectively. At section 2 , the Mach number is 0.8. Sketch
the channel shape, plot a Ts diagram for the process, and evaluate properties at section 2 . Verify that the results
agree with the basic equations, Eqs. 13.2.

Given: Isentropic flow of air in a channel. At sections 1 and 2 , the following data are given:
M1 5 0.3, T1 5 62�C, p1 5 650 kPa (abs), A1 5 0.001 m2, and M2 5 0.8.

Find: (a) The channel shape.
(b) A Ts diagram for the process.
(c) Properties at section 2 .
(d) Show that the results satisfy the basic equations.

Solution:
To accelerate a subsonic flow requires a converging nozzle. The channel shape must be as shown.

On the Ts plane, the process follows an s 5 constant line. Stagnation conditions remain fixed for isentropic flow.
Consequently, the stagnation temperature at section 2 can be calculated (for air, k 5 1.4) from Eq. 13.7b.

T02 5 T01 5 T1 11
k2 1

2
M2

1

2
4

3
5

5 ð621 273ÞK 11 0:2ð0:3Þ2
h i

T02 5 T01 5 341 K ß
T01 ;T02

For p02 , from Eq. 13.7a,

p02 5 p01 5 p1 11
k2 1

2
M2

1

2
4

3
5
k=ðk21Þ

5 650 kPa½11 0:2ð0:3Þ2�3:5

p02 5 692 kPa ðabsÞ ß

p02

For T2, from Eq. 13.7b,

T2 5 T02

,
11

k2 1

2
M2

2

2
4

3
55 341 K= 11 0:2ð0:8Þ2

h i

T2 5 302 K ß

T2

For p2, from Eq. 13.7a,

p2 5 p02

,
11

k2 1

2
M2

2

2
4

3
5
k=k2 1

5 692 kPa= 11 0:2ð0:8Þ2
h i3:5

p2 5 454 kPa ß

p2

Note that we could have directly computed T2 from T1 because T0 5 constant:

1 2

Flow

1

2
T2

T1

T01
 = T02

p01
 = p02

p1

p2

T

s
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T2

T1

5
T2

T0

�
T0

T1

5 11
k2 1

2
M2

1

2
4

3
5, 11

k2 1

2
M2

2

2
4

3
5 5 11 0:2ð0:3Þ2

h i.
11 0:2ð0:8Þ2
h i

T2

T1
5

0:8865

0:9823
5 0:9025

Hence,

T2 5 0:9025 T1 5 0:9025ð2731 62ÞK5 302 K

Similarly, for p2,

p2
p1

5
p2
p0

.p0
p1

5 0:88653:5=0:98233:5 5 0:6982

Hence,

p2 5 0:6982 p1 5 0:6982ð650 kPaÞ 5 454 kPa

The density ρ2 at section 2 can be found from Eq. 13.7c using the same procedure we used for T2 and p2, or we can
use the ideal gas equation of state, Eq. 13.2e,

ρ2 5
p2
RT2

5 4:543 105
N

m2
3

kg�K
287 N�m 3

1

302 K
5 5:24 kg=m3

ß
ρ2

and the velocity at section 2 is

V2 5 M2c2 5 M2

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT2

p
5 0:83

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 302 K3

kg�m
s2 �N

s
5 279 m=s ß

V2

The area A2 can be computed from Eq. 13.7d, noting that A* is constant for this flow,

A2

A1
5

A2

A*

A*

A1
5

1

M2

11
k2 1

2
M2

2

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ,

1

M1

11
k2 1

2
M2

1

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

5
1

0:8

11 0:2ð0:8Þ2
1:2

2
4

3
5
3,

1

0:3

11 0:2ð0:3Þ2
1:2

2
4

3
5
3

5
1:038

2:035
5 0:5101

Hence,

A2 5 0:5101A1 5 0:5101ð0:001 m2Þ 5 5:103 1024 m2
ß

A2

Note that A2 , A1 as expected.
Let us verify that these results satisfy the basic equations.
We first need to obtain ρ1 and V1:

ρ1 5
p1
RT1

5 6:53 105
N

m2
3

kg�K
287 N�m 3

1

335 K
5 6:76 kg=m3

and

V1 5 M1c1 5 M1

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 0:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 335 K3

kg�m
s2 �N

s
5 110 m=s

The mass conservation equation is

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:2aÞ
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Isentropic Flow in a Converging Nozzle

Now that we have our computing equations (Eqs. 13.7) for analyzing isentropic flows,
we are ready to see how we could obtain flow in a nozzle, starting from rest. We first
look at the converging nozzle, and then the C-D nozzle. In either case, to produce a
flow we must provide a pressure difference. For example, as illustrated in the con-
verging nozzle shown in Fig. 13.6a, we can do this by providing the gas from a
reservoir (or “plenum chamber”) at p0 and T0, and using a vacuum pump/valve

�m 5 6:76
kg

m3
3 110

m

s
3 0:001 m2 5 5:24

kg

m3
3 279

m

s
3 0:00051 m2 5 0:744 kg=s ðCheck!Þ

We cannot check the momentum equation (Eq. 13.2b) because we do not know the force Rx produced by the walls of
the device (we could use Eq. 13.2b to compute this if we wished). The energy equation is

h01 5 h1 1
V2

1

2
5 h2 1

V2
2

2
5 h02 5 h0 ð13:2cÞ

We will check this by replacing enthalpy with temperature using Eq. 13.2f,

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:2fÞ
so the energy equation becomes

cpT1 1
V2

1

2
5 cpT2 1

V2
2

2
5 cpT0

Using cp for air from Table A.6,

cpT1 1
V2

1

2
5 1004

J

kg�K 3 335 K1
ð110Þ2

2

�m
s

	2
3

N�s2
kg�m 3

J

N�m 5 342 kJ=kg

cpT2 1
V2

2

2
5 1004

J

kg�K 3 302 K1
ð278Þ2

2

�m
s

	2
3

N�s2
kg�m 3

J

N�m 5 342 kJ=kg

cpT0 5 1004
J

kg�K 3 341 K 5 342 kJ=kg ðCheck!Þ

The final equation we can check is the relation between pressure and density for
an isentropic process (Eq. 13.2g),

p1

ρk1
5

p2

ρk2
5

p

ρk
5 constant ðCheck!Þ

p1

ρ1:41

5
650 kPa

6:76
kg

m3

� �1:4 5
p2

ρ1:42

5
454 kPa

5:24
kg

m3

� �1:4 5 44:7
kPa

kg

m3

� �1:4 ðCheck!Þ

The basic equations are satisfied by our solution.

This Example illustrates:ü Use of the isentropic equations, Eqs.
13.7.

ü That the isentropic equations are
consistent with the basic equations,
Eqs. 13.2.ü That the computations can be quite
laborious without usingpreprogrammed isentropic relations
(available, for example, in the Excel
add-ins on the Web site)!The Excel workbook for thisExample is convenient for per-

forming the calculations, using either
the isentropic equations or the basic
equations.
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combination to create a low pressure, the “back pressure,” pb. We are interested in
what happens to the gas properties as the gas flows through the nozzle, and also in
knowing how the mass flow rate increases as we progressively lower the back pressure.
(We could also produce a flow by maintaining a constant back pressure, e.g., atmo-
spheric, and increasing the pressure in the plenum chamber.)

Let us call the pressure at the exit plane pe. We will see that this will often be equal
to the applied back pressure, pb, but not always! The results we obtain as we pro-
gressively open the valve from a closed position are shown in Figs. 13.6b and 13.6c.
We consider each of the cases shown.

When the valve is closed, there is no flow through the nozzle. The pressure is p0
throughout, as shown by condition (i) in Fig. 13.6a.

If the back pressure, pb, is now reduced to slightly less than p0, there will be flow
through the nozzle with a decrease in pressure in the direction of flow, as shown by
condition (ii). Flow at the exit plane will be subsonic with the exit-plane pressure
equal to the back pressure.

What happens as we continue to decrease the back pressure? As expected, the flow
rate will continue to increase, and the exit-plane pressure will continue to decrease, as
shown by condition (iii) in Fig. 13.6a. [Note that conditions (ii) and (iii) can be
described using the Bernoulli equation (Eq. 6.8), as long as the maximum Mach
number, at the exit plane, does not exceed M 5 0.3.]

As we progressively lower the back pressure the flow rate increases, and hence, so
do the velocity and Mach number at the exit plane. The question arises: “Is there a
limit to the mass flow rate through the nozzle?” or, to put it another way, “Is there an
upper limit on the exit Mach number?” The answer to these questions is “Yes!” To
see this, recall that for isentropic flow Eq. 13.6 applies:

dV

V
52

dA

A

1

12M2½ � ð13:6Þ

Fromthiswe learned that theonlyplacewecanhave sonic conditions (M5 1) iswhere the
change in area dA is zero. We cannot have sonic conditions anywhere in the converging
section.Logicallywe can see that themaximumexitMachnumber is one. Because theflow
started from rest (M5 0), if we hadM. 1 at the exit, we would have had to pass through
M5 1 somewhere in the converging section, which would be a violation of Eq. 13.6.

Hence, the maximum flow rate occurs when we have sonic conditions at the exit
plane, whenMe 5 1, and pe 5 pb 5 p*, the critical pressure. This is shown as condition
(iv) in Fig. 13.6a, and is called a “choked flow,” beyond which the flow rate cannot be
increased. From Eq. 13.7a with M 5 1 (or from Eq. 12.21a),

p0
T0
V0     0

Flow
≅ pb

pe

To vacuum

pump

(b)
Valve 0 1.0p*/p0

0

m•

pb__
p0

0 1.0p*/p0

p*/p0

0

1.0

0

p*/p0

p/p0

0

1.0

pb__
p0

pe__
p0

(c)(a)
Throat

x

pe]min = p*
(v)

(iv)
(iii)

(ii)
(i)

Regime I

Regime II

Fig. 13.6 Converging nozzle operating at various back pressures.
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pe
p0






choked

5
p*

p0
5

2

k1 1

� �k=ðk21Þ
ð13:8Þ

For air, k 5 1.4, so pe/p0]choked 5 0.528. For example, if we wish to have sonic flow at
the exit of a nozzle from a plenum chamber that is at atmospheric pressure, we would
need to maintain a back pressure of about 7.76 psia, or about 6.94 psig vacuum. This
does not sound difficult for a vacuum pump to generate, but actually takes a lot of
power to maintain, because we will have a large mass flow rate through the pump. For
the maximum, or choked, mass flow rate we have

�m choked 5 ρ*V*A*

Using the ideal gas equation of state, Eq. 13.2e, and the stagnation to critical pressure and
temperature ratios, Eqs. 13.7a and 13.7b respectively, with M5 1 (or Eqs. 12.21a
and 12.21b, respectively), withA*5 Ae, it can be shown that this becomes

�m choked 5 Aep0

ffiffiffiffiffiffiffiffiffi
k

RT0

s
2

k1 1

� �ðk11Þ=2ðk21Þ
ð13:9aÞ

Note that for a given gas (k and R), the maximum flow rate in the converging nozzle
depends only on the size of the exit area (Ae) and the conditions in the reservoir (p0, T0).

For air, for convenience we write an “engineering” form of Eq. 13.9a,

�m choked 5 0:04
Aep0ffiffiffiffiffiffi
T0

p ð13:9bÞ

with �m choked in kg/s, Ae in m2, p0 in Pa, and T0 in K, and

�m choked 5 76:6
Aep0ffiffiffiffiffiffi
T0

p ð13:9cÞ

with �m choked in lbm/s, Ae in ft2, p0 in psia, and T0 in
oR.

Suppose we now insist on lowering the back pressure below this “benchmark” level
of p*. Our next question is “What will happen to the flow in the nozzle?” The answer
is “Nothing!” The flow remains choked: The mass flow rate does not increase, as
shown in Fig. 13.6b, and the pressure distribution in the nozzle remains unchanged,
with pe 5 p*. pb, as shown in condition (v) in Figs. 13.6a and 13.6c. After exiting, the
flow adjusts down to the applied back pressure, but does so in a nonisentropic, three-
dimensional manner in a series of expansion waves and shocks, and for this part of the
flow our one-dimensional, isentropic flow concepts no longer apply. We will return to
this discussion in Section 13.4.

This idea of choked flow seems a bit strange, but can be explained in at least two
ways. First, we have already discussed that to increase the mass flow rate beyond
choked would require Me . 1, which is not possible. Second, once the flow reaches
sonic conditions, it becomes “deaf” to downstream conditions: Any change (i.e., a
reduction) in the applied back pressure propagates in the fluid at the speed of sound in
all directions, as we discussed in Chapter 12, so it gets “washed” downstream by the
fluid which is moving at the speed of sound at the nozzle exit.

Flow through a converging nozzle may be divided into two regimes:

1. In Regime I, 1$pb=p0$p*=p0. Flow to the throat is isentropic and pe 5 pb.

2. In Regime II, pb=p0 , p*=p0. Flow to the throat is isentropic, and Me 5 1.
A nonisentropic expansion occurs in the flow leaving the nozzle and pe 5 p*. pb
(entropy increases because this is adiabatic but irreversible).

706 Chapter 13 Compressible Flow



The flow processes corresponding toRegime II are shown on aTs diagram in Fig. 13.7.
Two problems involving converging nozzles are solved in Examples 13.2 and 13.3.

Although isentropic flow is an idealization, it often is a very good approximation
for the actual behavior of nozzles. Since a nozzle is a device that accelerates a flow, the
internal pressure gradient is favorable. This tends to keep the wall boundary layers
thin and to minimize the effects of friction.

T*

s � constant

Nozzle exit plane
p*

s = constant

pb < p*

T0

p0

s

T

Fig. 13.7 Schematic Ts diagram for
choked flow through a converging nozzle.

Example 13.2 ISENTROPIC FLOW IN A CONVERGING NOZZLE

A converging nozzle, with a throat area of 0.001 m2, is operated with air at a back pressure of 591 kPa (abs). The
nozzle is fed from a large plenum chamber where the absolute stagnation pressure and temperature are 1.0 MPa and
60�C. The exit Mach number and mass flow rate are to be determined.

Given: Air flow through a converging nozzle at the conditions shown: Flow is isentropic.

Find: (a) Me.
(b) �m .

Solution:
The first step is to check for choking. The pressure ratio is

pb
p0

5
5:913 105

1:03 106
5 0:591. 0:528

so the flow is not choked. Thus pb 5 pe, and the flow is isentropic, as sketched on the
Ts diagram.

Since p0 5 constant, Me may be found from the pressure ratio,

p0
pe

5 11
k2 1

2
M2

e

� �k=ðk21Þ

Solving for Me, since pe 5 pb, we obtain

11
k2 1

2
M2

e 5
p0
pb

� �ðk21Þ=k

T0

Te
T*

pe

p0

s

T

pe

pb = 591 kPa (abs)p0 = 1.0 MPa (abs)
T0 = 333K
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and

Me 5
p0
pb

� �ðk21Þ=k
2 1

" #
2

k2 1

( )1=2
5

1:03 106

5:913 105

 !0:286
2 1

2
4

3
5 2

1:42 1

8<
:

9=
;
1=2

5 0:90 ß
Me

The mass flow rate is

�m 5 ρeVeAe 5 ρeMeceAe

We need Te to find ρe and ce. Since T0 5 constant,

T0

Te

5 11
k2 1

2
M2

e

or

Te 5
T0

11
k2 1

2
M2

e

5
ð2731 60ÞK
11 0:2ð0:9Þ2 5 287 K

ce 5
ffiffiffiffiffiffiffiffiffiffiffi
kRTe

p
5 1:43 287

N�m
kg�K 3 287 K3

kg�m
N�s2

� �1=2
5340 m=s

and

ρe 5
pe
RTe

5 5:913 105
N

m2
3

kg�K
287 N�m 3

1

287 K
5 7:18 kg=m3

Finally,

�m 5 ρeMeceAe 5 7:18
kg

m3
3 0:93 340

m

s
3 0:001 m2

5 2:20 kg=s ß

�m

This problem illustrates use of the
isentropic equations, Eqs. 13.7, for a
flow that is not choked.The Excel workbook for thisExample is convenient for per-
forming the calculations (using either
the isentropic equations or the basic
equations). (The Excel add-ins for
isentropic flow, on the Web site, also
make calculations much easier.)

Example 13.3 CHOKED FLOW IN A CONVERGING NOZZLE

Air flows isentropically through a converging nozzle. At a section where the nozzle area is 0.013 ft2, the local
pressure, temperature, and Mach number are 60 psia, 40�F, and 0.52, respectively. The back pressure is 30 psia. The
Mach number at the throat, the mass flow rate, and the throat area are to be determined.

Given: Air flow through a converging nozzle at the conditions shown:

M1 5 0:52
T1 5 40�F
p1 5 60 psia
A1 5 0:013 ft2

Find: (a) Mt. (b) �m. (c) At.

Solution:
First we check for choking, to determine if flow is isentropic down to pb. To check, we evaluate the stagnation
conditions.

p0 5 p1 11
k2 1

2
M2

1

� �k=ðk21Þ
5 60 psia ½11 0:2ð0:52Þ2�3:5 5 72:0 psia

1 t

pb = 30 psia
T0

p0
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Isentropic Flow in a Converging-Diverging Nozzle

Having considered isentropic flow in a converging nozzle, we turn now to isentropic
flow in a converging-diverging (C-D) nozzle. As in the previous case, flow through the
converging-diverging passage of Fig. 13.8 is induced by a vacuum pump downstream,
and is controlled by the valve shown; upstream stagnation conditions are constant.

The back pressure ratio is

pb
p0

5
30:0

72:0
5 0:417, 0:528

so the flow is choked! For choked flow,

Mt 5 1:0 ß
Mt

The Ts diagram is

The mass flow rate may be found from conditions at section 1 , using �m 5 ρ1V1 A1.

V1 5 M1c1 5 M1

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p

5 0:52 1:4 3 53:3
ft�lbf
lbm�� R 3 ð4601 40Þ�R3 32:2

lbm

slug
3

slug�ft
lbf �s2

2
4

3
5
1=2

V1 5 570 ft=s

ρ1 5
p1
RT1

5 60
lbf

in:2
3

lbm�� R
53:3 ft�lbf 3

1

500�R
3 144

in:2

ft2
5 0:324 lbm=ft3

�m 5 ρ1V1A1 5 0:324
lbm

ft3
3 570

ft

s
3 0:013 ft2 5 2:40 lbm=s ß

�m

From Eq. 13.6,

A1

A*
5

1

M1

11
k2 1

2
M2

1

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

5
1

0:52

11 0:2ð0:52Þ2
1:2

" #3:00
5 1:303

For choked flow, At 5 A*. Thus,

At 5 A* 5
A1

1:303
5

0:013 ft2

1:303

At 5 9:983 1023 ft2 ß
At

This problem illustrates use of the
isentropic equations, Eqs. 13.7, for a
flow that is choked.ü Because the flow is choked, we
could also have used Eq. 13.9a for �m(after finding T0).

The Excel workbook for thisExample is convenient for per-
forming the calculations. (The Excel
add-ins for isentropic flow, on the Web
site, also make calculations much
easier.)

pb

pt
Tt

T1

T0

p0

p1

T

s
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Pressure in the exit plane of the nozzle is pe; the nozzle discharges to back pressure pb.
As for the converging nozzle, we wish to see, among other things, how the flow rate
varies with the driving force, the applied pressure difference (p0 2 pb). Consider the
effect of gradually reducing the back pressure. The results are illustrated graphically in
Fig. 13.8. Let us consider each of the cases shown.

With the valve initially closed, there is no flow through the nozzle; the pressure is
constant at p0. Opening the valve slightly (pb slightly less than p0) produces pressure
distribution curve (i). If the flow rate is low enough, the flow will be subsonic and
essentially incompressible at all points on this curve. Under these conditions, the C-D
nozzle will behave as a venturi, with flow accelerating in the converging portion until a
point of maximum velocity and minimum pressure is reached at the throat, then
decelerating in the diverging portion to the nozzle exit. (This behavior is described
accurately by the Bernoulli equation, Eq. 6.8.)

As the valve is opened farther and the flow rate is increased, a more sharply
defined pressure minimum occurs, as shown by curve (ii). Although compressibility
effects become important, the flow is still subsonic everywhere, and flow decelerates
in the diverging section. (Clearly, this behavior is not described accurately by the
Bernoulli equation.) Finally, as the valve is opened farther, curve (iii) results. At
the section of minimum area the flow finally reaches M 5 1, and the nozzle is
choked—the flow rate is the maximum possible for the given nozzle and stagnation
conditions.

All flows with pressure distributions (i), (ii), and (iii) are isentropic; as we progress
from (i) to (ii) to (iii) we are generating increasing mass flow rates. Finally, when
curve (iii) is reached, critical conditions are present at the throat. For this flow rate,
the flow is choked, and

�m 5 ρ*V*A*

where A*5 At, just as it was for the converging nozzle, and for this maximum possible
flow rate Eq. 13.9a applies (with Ae replaced with the throat area At),

�m choked 5 Atp0

ffiffiffiffiffiffiffiffiffi
k

RT0

s
2

k1 1

� �ðk11Þ=2ðk21Þ
ð13:10aÞ

Note that for a given gas (k and R), the maximum flow rate in the C-D nozzle depends
only on the size of the throat area (At) and the conditions in the reservoir (p0, T0).

pb

pe

Valve

To vacuum
pumpt

T0

p0

V0     0≅

1.0

p/p0

p*___
p0

Throat Exit plane x

iii

iv
v

ii
i

Me < 1

Me > 1

M = 1

Flow

Fig. 13.8 Pressure distributions for isentropic flow in a converging-diverging
nozzle.
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For air, for convenience we write an “engineering” form of Eq. 13.10a,

�m choked 5 0:04
Atp0ffiffiffiffiffiffi
T0

p ð13:10bÞ

with �m choked in kg/s, At in m2, p0 in Pa, and T0 in K, and

�m choked 5 76:6
Atp0ffiffiffiffiffiffi
T0

p ð13:10cÞ

with �m choked in lbm/s, At in ft2, p0 in psia, and T0 in
�R.

Any attempt to increase the flow rate by further lowering the back pressure will
fail, for the two reasons we discussed earlier: once we attain sonic conditions,
downstream changes can no longer be transmitted upstream; and we cannot exceed
sonic conditions at the throat, because this would require passing through the sonic
state somewhere in the converging section, which is not possible in isentropic flow.
(Of course, we could increase the choked mass flow rate through a given C-D nozzle
to any level desired by, for example, increasing the reservoir pressure.)

With sonic conditions at the throat, we consider what can happen to the flow in the
diverging section. We have previously discussed (see Fig. 13.3) that a diverging section
will decelerate a subsonic flow (M, 1) but will accelerate a supersonic flow (M. 1)—
very different behaviors! The question arises: “Does a sonic flowbehave as a subsonic or
as a supersonic flowas it enters a diverging section?”The answer to this question is that it
can behave like either one, depending on the downstream pressure! We have already
seen subsonic flow behavior [curve (iii)]: the applied back pressure leads to a gradual
downstream pressure increase, decelerating the flow.We now consider accelerating the
choked flow.

To accelerate flow in the diverging section requires a pressure decrease. This con-
dition is illustrated by curve (iv) in Fig. 13.8. The flowwill accelerate isentropically in the
nozzle provided the exit pressure is set at piv. Thus, we see that with a throat Mach
number of unity, there are two possible isentropic flow conditions in the converging-
diverging nozzle. This is consistent with the results of Fig. 13.5, where we found two
Mach numbers for each A/A* in isentropic flow.

Lowering the back pressure below condition (iv), say to condition (v), has no effect
on flow in the nozzle. The flow is isentropic from the plenum chamber to the nozzle
exit [as in condition (iv)] and then it undergoes a three-dimensional irreversible
expansion to the lower back pressure. A nozzle operating under these conditions is
said to be underexpanded, since additional expansion takes place outside the nozzle.

A converging-diverging nozzle generally is intended to produce supersonic flow at
the exit plane. If the back pressure is set at piv, flow will be isentropic through the
nozzle, and supersonic at the nozzle exit. Nozzles operating at pb 5 piv [corresponding
to curve (iv) in Fig. 13.8] are said to operate at design conditions.

Flow leaving a C-D nozzle is supersonic when the back pressure is at or below
nozzle design pressure. The exit Mach number is fixed once the area ratio, Ae/A*, is
specified. All other exit plane properties (for isentropic flow) are uniquely related to
stagnation properties by the fixed exit plane Mach number.

The assumption of isentropic flow for a real nozzle at design conditions is a rea-
sonable one. However, the one-dimensional flow model is inadequate for the design of
relatively short nozzles to produce uniform supersonic exit flow.

Rocket-propelled vehicles use C-D nozzles to accelerate the exhaust gases to the
maximum possible speed to produce high thrust. A propulsion nozzle is subject to
varying ambient conditions during flight through the atmosphere, so it is impossible to
attain the maximum theoretical thrust over the complete operating range. Because
only a single supersonic Mach number can be obtained for each area ratio, nozzles for
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developing supersonic flow in wind tunnels often are built with interchangeable test
sections, or with variable geometry.

You probably have noticed that nothing has been said about the operation of
converging-diverging nozzles with back pressure in the range piii . pb . piv. For such
cases the flow cannot expand isentropically to pb. Under these conditions a shock
(which may be treated as an irreversible discontinuity involving entropy increase)
occurs somewhere within the flow. Following a discussion of normal shocks in Section
13.3, we shall return to complete the discussion of converging-diverging nozzle flows
in Section 13.4.

Nozzles operating with piii . pb . piv are said to be overexpanded because the
pressure at some point in the nozzle is less than the back pressure. Obviously, an
overexpanded nozzle could be made to operate at a new design condition by removing
a portion of the diverging section.

In Example 13.4, we consider isentropic flow in a C-D nozzle; in Example 13.5, we
consider choked flow in a C-D nozzle.

Example 13.4 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE

Air flows isentropically in a converging-diverging nozzle, with exit area of 0.001 m2. The nozzle is fed from a large
plenum where the stagnation conditions are 350K and 1.0 MPa (abs). The exit pressure is 954 kPa (abs) and the
Mach number at the throat is 0.68. Fluid properties and area at the nozzle throat and the exit Mach number are to be
determined.

Given: Isentropic flow of air in C-D nozzle as shown:

T0 5 350 K
p0 5 1:0MPa ðabsÞ
pb 5 954 kPa ðabsÞ
Mt 5 0:68 Ae 5 0:001 m2

Find: (a) Properties and area at nozzle throat.
(b) Me.

Solution:
Stagnation temperature is constant for isentropic flow. Thus, since

T0

T
5 11

k2 1

2
M2

then

Tt 5
T0

11
k2 1

2
M2

t

5
350 K

11 0:2ð0:68Þ2 5 320 K ß
Tt

Also, since p0 is constant for isentropic flow, then

pt 5 p0
Tt

T0

0
@

1
A
k=ðk21Þ

5 p0
1

11
k2 1

2
M2

t

2
6664

3
7775
k=ðk21Þ

pt 5 1:03 106 Pa
1

11 0:2ð0:68Þ2

2
4

3
5
3:5

5 734 kPa ðabsÞ ß
pt

Flow

t e

pb
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so

ρt 5
pt
RTt

5 7:343 105
N

m2
3

kg�K
287 N�m 3

1

320 K
5 7:99 kg=m3

ß
ρt

and

Vt 5 Mtct 5 Mt

ffiffiffiffiffiffiffiffiffiffiffi
kRTt

p

Vt 5 0:68 143 287
N�m
kg�K 3 320 K3

kg�m
N�s2

2
4

3
5
1=2

5 244 m=s ß
Vt

From Eq. 13.7d we can obtain a value of At/A*

At

A*
5

1

Mt

11
k2 1

2
M2

t

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

5
1

0:68

11 0:2ð0:68Þ2
1:2

" #3:00
5 1:11

but at this point A* is not known.
Since Mt , 1, flow at the exit must be subsonic. Therefore, pe 5 pb. Stagnation properties are constant, so

p0
pe

5 11
k2 1

2
M2

e

� �k=ðk21Þ

Solving for Me gives

Me 5
p0
pe

� �ðk21Þ=k
2 1

" #
2

k2 1

( )1=2
5

1:03 106

9:543 105

 !0:286
2 1

2
4

3
5ð5Þ

8<
:

9=
;
1=2

5 0:26 ß
Me

The Ts diagram for this flow is

Since Ae and Me are known, we can compute A*. From Eq. 13.7d

Ae

A*
5

1

Me

11
k2 1

2
M2

e

k1 1

2

2
64

3
75
ðk11Þ=2ðk21Þ

5
1

0:26

11 0:2ð0:26Þ2
1:2

" #3:00
5 2:317

Thus,

A* 5
Ae

2:317
5

0:001 m2

2:317
5 4:323 1024 m2

and

At 5 1:110A* 5 ð1:110Þð4:323 1024 m2Þ
5 4:803 1024 m2

ß
At

T

T0
Te

Tt

pt

pe

p0

s
This problem illustrates use of the
isentropic equations, Eqs. 13.7, for flow
in a C-D nozzle that is not choked.ü Note that use of Eq. 13.7d allowed
us to obtain the throat area without
needing to first compute other
properties.

The Excel workbook for thisExample is convenient for per-
forming the calculations (using either
the isentropic equations or the basic
equations). (The Excel add-ins for
isentropic flow, on the Web site, also
make calculations much easier.)
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Example 13.5 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE: CHOKED FLOW

The nozzle of Example 13.4 has a design back pressure of 87.5 kPa (abs) but is operated at a back pressure of 50.0
kPa (abs). Assume flow within the nozzle is isentropic. Determine the exit Mach number and mass flow rate.

Given: Air flow through C-D nozzle as shown:

T0 5 350 K
p0 5 1:0MPa ðabsÞ

peðdesignÞ 5 87:5 kPa ðabsÞ
pb 5 50:0 kPa ðabsÞ
Ae 5 0:001 m2

At 5 4:83 1024m2 ðExample 13:4Þ

Find: (a) Me.
(b) �m .

Solution:
The operating back pressure is below the design pressure. Consequently, the nozzle is underexpanded, and the Ts
diagram and pressure distribution will be as shown:

Flow within the nozzle will be isentropic, but the irreversible expansion from pe to
pb will cause an entropy increase; pe 5 peðdesignÞ 5 87:5 kPa ðabsÞ.

Since stagnation properties are constant for isentropic flow, the exit Mach
number can be computed from the pressure ratio. Thus

p0
pe

5 11
k2 1

2
M2

e

� �k=ðk21Þ

or

Me 5

���
p0
pe

�ðk21Þ=k
2 1

�
2

k2 1

�1=2

5

���
1:03 106

8:753 104

�0:286

2 1

�
2

0:4

�1=2

5 2:24 ß
Me

Because the flow is choked we can use Eq. 13.10b for the mass flow rate,

�m chocked 5 0:04
Atp0ffiffiffiffiffiffi
T0

p ð13:10bÞ

(with �m choked in kg/s, At in m2, p0 in Pa, and T0 in K), so

�m choked 5 0:043 4:83 1024 3 13 106=
ffiffiffiffiffiffiffiffi
350

p
�m 5 �m choked 5 1:04 kg=s ß

�m

t e

pb
Flow

T0

Tt

Te

pe

pb

pt

T

s

p0

1.0

0

p/p0

x
b

t

e

This problem illustrates use of the
isentropic equations, Eqs. 13.7, for flow
in a C-D nozzle that is choked.ü Note that we used Eq. 13.10b, an
“engineering equation”—that is, an
equation containing a coefficient
that has units. While useful here,
generally these equations are no
longer used in engineering because
their correct use depends on using
input variable values in specific
units.

The Excel workbook for thisExample is convenient for per-
forming the calculations (using either
the isentropic equations or the basic
equations). (The Excel add-ins for
isentropic flow, on the Web site, also
make calculations much easier.)
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We have now completed our study of idealized one-dimensional isentropic flow in
channels of varying area. In real channels, we will have friction and quite possibly heat
transfer. We need to study the effects of these phenomena on a flow. Before this,
in the next section, we study the effect of normal shocks (and see in Section 13.4 how
these affect the C-D nozzle, in more detail than we did in this section).

13.3Normal Shocks
We mentioned normal shocks in the previous section in the context of flow through a
nozzle. In practice, these irreversible discontinuities can occur in any supersonic flow
field, in either internal flow or external flow. Knowledge of property changes across
shocks and of shock behavior is important in understanding the design of supersonic
diffusers, e.g., for inlets on high performance aircraft, and supersonic wind tunnels.
Accordingly, the purpose of this section is to analyze the normal shock process.

Before applying the basic equations to normal shocks, it is important to form a
clear physical picture of the shock itself. Although it is physically impossible to have
discontinuities in fluid properties, the normal shock is nearly discontinuous. The
thickness of a shock is about 0.2 μm (1025 in.), or roughly 4 times the mean free path
of the gas molecules [3]. Large changes in pressure, temperature, and other properties
occur across this small distance. Fluid particle decelerations through the shock reach
tens of millions of gs! These considerations justify treating the normal shock as an
abrupt discontinuity; we are interested in changes occurring across the shock rather
than in the details of its structure.

Consider the short control volume surrounding a normal shock standing in a pas-
sage of arbitrary shape shown in Fig. 13.9. As for isentropic flow with area variation
(Section 13.2), our starting point in analyzing this normal shock is the set of basic
equations (Eqs. 13.1), describing one-dimensional motion that may be affected by
several phenomena: area change, friction, and heat transfer. These are

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:1aÞ

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:1bÞ

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2
ð13:1cÞ

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:1dÞ

p 5 ρRT ð13:1eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:1fÞ

CLASSIC VIDEO

Channel Flow of a Compressible Fluid.

CV

y

x

1 2

Flow
T1
p1
V1

T2
p2
V2

Fig. 13.9 Control volume used for analysis
of normal shock.

13.3 Normal Shocks 715



Δs 5 s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

ð13:1gÞ

We recall that Equation 13.1a is continuity, Eq. 13.1b is a momentum equation,
Eq. 13.1c is an energy equation, Eq. 13.1d is the second law of thermodynamics, and
Eqs. 13.1e, 13.1f, and 13.1g are useful property relations for an ideal gas with constant
specific heats.

We must simplify these equations for flow through a normal shock.

Basic Equations for a Normal Shock

We can now simplify Eqs. 13.1 for flow of an ideal gas with constant specific heats
through a normal shock. The most important simplifying feature is that the width
of the control volume is infinitesimal (in reality about 0.2 μm as we indicated), so
A1	A2	A, the force due to the walls Rx	 0 (because the control volume wall
surface area is infinitesimal), and the heat exchange with the walls δQ/dm	 0, for the
same reason. Hence, for this flow our equations become

ρ1V1 5 ρ2V2 5
�m
A

5 constant ð13:11aÞ

p1A2 p2A 5 �mV2 2
�mV1

or, using Eq. 13.11a,

p1 1 ρ1V
2
1 5 p2 1 ρ2V

2
2 ð13:11bÞ

h01 5 h1 1
V2

1

2
5 h2 1

V2
2

2
5 h02 ð13:11cÞ

s2 . s1 ð13:11dÞ

p 5 ρRT ð13:11eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:11fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð13:11gÞ

Equations 13.11 can be used to analyze flow through a normal shock. For example, if
we know conditions before the shock, at section 1 (i.e., p1, ρ1, T1, s1, h1, and V1), we
can use these equations to find conditions after the shock, at section 2 . We have six
equations (not including the constraint of Eq. 13.11d) and six unknowns (p2, ρ2, T2, s2,
h2, and V2). Hence, for given upstream conditions there is a single unique downstream
state. In practice this procedure is unwieldy—we have a set of nonlinear coupled
algebraic equations to solve.

We can certainly use these equations for analyzing normal shocks, but we will
usually find it more useful to develop normal shock functions based on M1, the
upstream Mach number. Before doing this, let us consider the set of equations. We
have stated in this chapter that changes in a one-dimensional flow can be caused
by area variation, friction, or heat transfer, but in deriving Eqs. 13.11 we have
eliminated all three causes! In this case, then, what is causing the flow to change?
Perhaps there are no changes through a normal shock! Indeed, if we examine each of
these equations we see that each one is satisfied—has a possible “solution”—if all
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properties at location 2 are equal to the corresponding properties at location 1 (e.g.,
p2 5 p1, T25T1) except for Eq. 13.11d, which expresses the second law of thermo-
dynamics. Nature is telling us that in the absence of area change, friction, and heat
transfer, flow properties will not change except in a very abrupt, irreversible manner,
for which the entropy increases. In fact, all properties except T0 do change through the
shock. We must find a solution in which all of Eqs. 13.11 are satisfied. (Incidentally,
because all the equations except Eq. 13.11d are satisfied by p25 p1, T25T1, and so on,
numerical searching methods such as Excel‘s Solver have some difficulty in finding the
correct solution!)

Because they are a set of nonlinear coupled equations, it is difficult to use Eqs.
13.11 to see exactly what happens through a normal shock. We will postpone
formal proof of the results we are about to present until a subsequent subsection,
where we recast the equations in terms of the incoming Mach number. This
recasting is rather mathematical, so we present results of the analysis here for
clarity. It turns out that a normal shock can occur only when the incoming flow is
supersonic. Fluid flows will generally gradually adjust to downstream conditions
(e.g., an obstacle in the flow) as the pressure field redirects the flow (e.g., around
the object). However, if the flow is moving at such a speed that the pressure field
cannot propagate upstream (when the flow speed, V, is greater than the local speed
of sound, c, or in other words M. 1), then the fluid has to “violently” adjust to the
downstream conditions. The shock that a supersonic flow may encounter is like a
hammer blow that each fluid particle experiences; the pressure suddenly increases
through the shock (as mentioned, over a distance, 2 μm), so that, at the instant a
particle is passing through the shock, there is a very large negative pressure gra-
dient. This pressure gradient causes a dramatic reduction in speed, V, and hence a
rapid rise in temperature, T, as kinetic energy is converted to internal thermal
energy. We may wonder what happens to the density because both the temperature
and pressure rise through the shock, leading to opposing changes in density; it turns
out that the density, ρ, increases through the shock. Because the shock is adiabatic
but highly irreversible, entropy, s, increases through the shock. Finally, we see that
as speed, V, decreases and the speed of sound, c, increases (because temperature,
T, increases) through the normal shock, the Mach number, M, decreases; in fact,
we will see later that it always becomes subsonic. These results are shown graph-
ically in Fig. 13.10 and in tabular form in Table 13.1.

1

2

1

2
Flow

T1

T2

p2

p1

Shock

p01 p02
T01 = T02

s2 – s1

T

s

Fig. 13.10 Schematic of normal-shock process on the Ts plane.
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Fanno and Rayleigh Interpretation of Normal Shock

A normal shock is a phenomenon in which fluid properties experience large changes
over a very short distance and time; we are very far from equilibrium conditions! It is
not easy to see what is happening in such a dramatic process. However, we can gain
some insight by considering two processes in which flow properties are gradually
changing: during a process involving friction and during a heat transfer process. Hence
Eqs. 13.11 can be understood to some degree by considering Fanno-line (friction) and
Rayleigh-line (heat transfer) curves. You may wish to postpone reading this subsec-
tion until these curves are discussed in much more detail in Sections 13.5 and 13.6, but
the following discussion briefly and sufficiently describes them; they are shown
schematically in Fig. 13.11. Both curves comply with our ubiquitous Eqs. 13.1.

In a Ts diagram, the Fanno line curve shows all possible states for a one-dimensional
flow that is being changed only by friction (there is no area change and no heat transfer).
The second law of thermodynamics requires that in this case entropy must increase, so
that, as seen in Fig. 13.11, if the flow starts out subsonic, friction causes the flow
to accelerate until it becomes sonic; a flow that starts out supersonic decelerates until it
is sonic. We will see in Section 13.5 that the curve is generated from Eqs. 13.1. (It is
counterintuitive that friction can accelerate a flow, but it can happen if the pressure

Table 13.1
Summary of Property Changes Across a Normal Shock

Property Effect Obtained from:

Stagnation temperature T0 5 Constant Energy equation
Entropy s Second law
Stagnation pressure p0 Ts diagram
Temperature T Ts diagram
Velocity V Energy equation, and effect on T

Density ρ Continuity equation, and effect on V
Pressure p Momentum equation, and effect on V
Mach number M M 5 V/c, and effects on V and T

2

1

Shock

Fanno line

M � 1

M � 1
M � 1

M �
 1

M �
 1

M
 �

 1

Rayleigh line

T

s

Fig. 13.11 Intersection of Fanno line and Rayleigh
line as a solution of the normal-shock equations.
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is falling sufficiently rapidly). We will wait until Section 13.5 to discuss what happens if
friction continues after we reach sonic conditions! All such friction flows must move in
the direction of increasing entropy.

The Rayleigh line shows all possible states for a one-dimensional flow that is
experiencing only heat transfer (no area changes or friction). Heat addition corre-
sponds to an increase in both entropy and temperature (except for a small region near
M5 1), and both sub- and supersonic flows approach sonic conditions; a cooling
process leads to reductions in temperature and entropy. We will see in Section 13.6
that the curve is generated from Eqs. 13.1.

The normal shock is obtained from a superposition of the two curves, as shown.
States 1 and 2 are the beginning and end states of a flow that (following the Fanno
line) has only friction present (no area changes or heat transfer); they are also the
beginning and end states of a flow that (following the Rayleigh curve) has only heat
transfer (no area changes or friction). This raises the question of how we can have a flow
with simultaneously only friction and only heat transfer! The answer is that we math-
ematically can follow the Fanno line from 1 to 2 , although not in reality. We could
actually have a flow in which we had friction from state 1 to where M5 1, but from
M5 1 to state 2 we would have to have “negative friction” (recall that friction requires
us to increase the entropy). Hence, from state 1 to state 2 , we have a fictitious process
in which we have friction, then negative friction, ending in no net friction. A similar
process applies to the Rayleigh line. To get from state 1 to state 2 , we would heat the
flow and then cool it, with no net heat transfer. The conclusion we come to is that states

1 and 2 represent a change in a flow for which there is no heat transfer, no friction,
and no area change; moreover, it is “violent” because the flow changes from state 1 to
state 2 without following a process curve; so entropy must increase. Note that Fig.
13.11 shows some trends we have mentioned: The flow must go from super- to subsonic,
and entropy and temperature must increase through a shock.

Normal-Shock Flow Functions for One-
Dimensional Flow of an Ideal Gas

We have mentioned that the basic equations, Eqs. 13.11, can be used to analyze flows
that experience a normal shock. As in isentropic flow, it is often more convenient to
use Mach number-based equations, in this case based on the incoming Mach number,
M1. This involves three steps: First, we obtain property ratios (e.g., T2/T1 and p2/p1) in
terms of M1 and M2, then we develop a relation between M1 and M2, and finally, we
use this relation to obtain expressions for property ratios in terms of upstream Mach
number, M1.

The temperature ratio can be expressed as

T2

T1
5

T2

T02

T02

T01

T01

T1

Since stagnation temperature is constant across the shock, we have

T2

T1

5
11

k2 1

2
M2

1

11
k2 1

2
M2

2

ð13:12Þ

A velocity ratio may be obtained by using

V2

V1
5

M2c2
M1c1

5
M2

M1

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT2

pffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p 5
M2

M1

ffiffiffiffiffiffi
T2

T1

s
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or

V2

V1

5
M2

M1

11
k2 1

2
M2

1

11
k2 1

2
M2

2

2
64

3
75
1=2

A ratio of densities may be obtained from the continuity equation

ρ1V1 5 ρ2V2 ð13:11aÞ
so that

ρ2
ρ1

5
V1

V2
5

M1

M2

11
k2 1

2
M2

2

11
k2 1

2
M2

1

2
64

3
75
1=2

ð13:13Þ

Finally, we have the momentum equation,

p1 1 ρ1V
2
1 5 p2 1 ρ2V

2
2 ð13:11bÞ

Substituting ρ 5 p/RT, and factoring out pressures, gives

p1 11
V2

1

RT1

� �
5 p2 11

V2
2

RT2

� �

Since

V2

RT
5 k

V2

kRT
5 kM2

then

p1 11 kM2
1

 �
5 p2 11 kM2

2

 �
Finally,

p2
p1

5
11 kM2

1

11 kM2
2

ð13:14Þ

To solve for M2 in terms of M1, we must obtain another expression for one of the
property ratios given by Eqs. 13.12 through 13.14.

From the ideal gas equation of state, the temperature ratio may be written as

T2

T1
5

p2=ρ2R
p1=ρ1R

5
p2
p1

ρ1
ρ2

Substituting from Eqs. 13.13 and 13.14 yields

T2

T1
5

11 kM2
1

11 kM2
2

� �
M2

M1

11
k2 1

2
M2

1

11
k2 1

2
M2

2

2
64

3
75
1=2

ð13:15Þ

Equations 13.12 and 13.15 are two equations for T2/T1. We can combine them and
solve for M2 in terms of M1. Combining and canceling gives
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11
k2 1

2
M2

1

11
k2 1

2
M2

2

2
64

3
75
1=2

5
M2

M1

11 kM2
1

11 kM2
2

� �

Squaring, we obtain

11
k2 1

2
M2

1

11
k2 1

2
M2

2

5
M2

2

M2
1

11 2kM2
1 1 k2M4

1

11 2kM2
2 1 k2M4

2

� �

which may be solved explicitly for M2
2. Two solutions are obtained:

M2
2 5 M2

1 ð13:16aÞ
and

M2
2 5

M2
1 1

2

k2 1
2k

k2 1
M2

1 2 1

ð13:16bÞ

Obviously, the first of these is trivial. The second expresses the unique dependence of
M2 on M1.

Now, having a relationship between M2 and M1, we can solve for property ratios
across a shock. KnowingM1, we obtainM2 from Eq. 13.16b; the property ratios can be
determined subsequently from Eqs. 13.12 through 13.14.

Since the stagnation temperature remains constant, the stagnation temperature
ratio across the shock is unity. The ratio of stagnation pressures is evaluated as

p02
p01

5
p02
p2

p2
p1

p1
p01

5
p2
p1

11
k2 1

2
M2

2

11
k2 1

2
M2

1

2
64

3
75
k=ðk21Þ

ð13:17Þ

Combining Eqs. 13.14 and 13.16b, we obtain (after considerable algebra)

p2
p1

5
11 kM2

1

11 kM2
2

5
2k

k1 1
M2

1 2
k2 1

k1 1
ð13:18Þ

Using Eqs. 13.16b and 13.18, we find that Eq. 13.17 becomes

p02
p01

5

k1 1

2
M2

1

11
k2 1

2
M2

1

2
664

3
775
k=ðk21Þ

2k

k1 1
M2

1 2
k2 1

k1 1

� �1=ðk21Þ ð13:19Þ

After substituting for M2
2 from Eq.13.16b into Eqs. 13.12 and 13.13, we summarize the

set of Mach number-based equations (renumbered for convenience) for use with an
ideal gas passing through a normal shock:

M2
2 5

M2
1 1

2

k2 1
2k

k2 1
M2

1 2 1

ð13:20aÞ
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p02
p01

5

k1 1

2
M2

1

11
k2 1

2
M2

1

2
664

3
775
k=ðk21Þ

2k

k1 1
M2

1 2
k2 1

k1 1

� �1=ðk21Þ ð13:20bÞ

T2

T1
5

11
k2 1

2
M2

1

� �
kM2

1 2
k2 1

2

� �
k1 1

2

� �2
M2

1

ð13:20cÞ

p2
p1

5
2k

k1 1
M2

1 2
k2 1

k1 1
ð13:20dÞ

ρ2
ρ1

5
V1

V2
5

k1 1

2
M2

1

11
k2 1

2
M2

1

ð13:20eÞ

Equations 13.20 are useful for analyzing flow through a normal shock. Note that all
changes through a normal shock depend only on M1, the incoming Mach number (as
well as the fluid property, k, the ratio of specific heats). The equations are usually
preferable to the original equations, Eq. 13.11, because they provide explicit,
uncoupled expressions for property changes; Eqs. 13.11 are occasionally useful too.
Note that Eq. 13.20d requires M1. 1 for p2. p1, which agrees with our previous
discussion. The ratio p2/p1 is known as the strength of the shock; the higher the
incoming Mach number, the stronger (more violent) the shock.

Equations 13.20, while quite complex algebraically, provide explicit property
relations in terms of the incoming Mach number, M1. They are so useful that some
calculators have some of them built in (e.g., theHP 48G series [1]); it is a good idea to
program them if your calculator does not already have them. There are also inter-
active Web sites that make them available (see, e.g., [2]), and they are fairly easy to
define in spreadsheets such as Excel. The reader is urged to download the Excel add-
ins for these equations from the Web site; with the add-ins, functions are available for
computing M2, and the stagnation pressure, temperature, pressure, and density/
velocity ratios, from M1, and M1 from these ratios. Appendix E.2 lists flow functions
for M2 and property ratios p02=p01 , T2/T1, p2/p1, and ρ2/ρ1 (V1/V2) in terms of M1 for
normal-shock flow of an ideal gas. A table of values, as well as a plot of these property
ratios, is presented for air (k 5 1.4) for a limited range of Mach numbers. The
associated Excel workbook, Normal-Shock Relations, can be used to print a larger
table of values for air and other ideal gases.

A problem involving a normal shock is solved in Example 13.6.

Example 13.6 NORMAL SHOCK IN A DUCT

A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. Properties upstream from the
shock are T1 5 5�C, p1 5 65.0 kPa (abs), and V1 5 668 m/s. Determine properties downstream and s2 2 s1. Sketch
the process on a Ts diagram.
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Given: Normal shock in a duct as shown:

T1 5 5�C
P1 5 65:0 kPa ðabsÞ
V1 5 668 m=s

Find: (a) Properties at section 2 .
(b) s2 2 s1.
(c) Ts diagram.

Solution:
First compute the remaining properties at section 1 . For an ideal gas,

ρ1 5
p1
RT1

5 6:53 104
N

m2
3

kg�K
287 N�m 3

1

278 K
5 0:815 kg=m3

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 1:43 287

N�m
kg�K 3 278 K3

kg�m
N�s2

2
4

3
5
1=2

5 334 m=s

Then

M1 5
V1

c1
5

668

334
5 2:00, and (using isentropic stagnation relations, Eqs. 12.21b and 12.21a)

T01 5 T1

�
11

k2 1

2
M2

1

�
5 278 K½11 0:2ð2:0Þ2� 5 500 K

p01 5 p1

�
11

k2 1

2
M2

1

�k=ðk21Þ
5 65:0 kPa½11 0:2ð2:0Þ2�3:5 5 509 kPa ðabsÞ

From the normal-shock flow functions, Eqs. 13.20, at M1 5 2.0,

M1 M2 p02=p01 T2/T1 p2/p1 V2/V1

2.00 0.5774 0.7209 1.687 4.500 0.3750

From these data

T2 5 1:687T1 5 ð1:687Þ278 K 5 469 K ß

T2

p2 5 4:500p1 5 ð4:500Þ65:0 kPa 5 293 kPa ðabsÞ ß

p2

V2 5 0:3750V1 5 ð0:3750Þ668 m=s 5 251 m=s ß

V2

For an ideal gas,

ρ2 5
p2
RT2

5 2:93 3 105
N

m2
3

kg�K
287 N�m 3

1

469 K
5 2:18 kg=m3

ß

ρ2

Stagnation temperature is constant in adiabatic flow. Thus

T02 5 T01 5 500 K ß

T02

Using the property ratios for a normal shock, we obtain

p02 5 p01
p02
p01

5 509 kPa ð0:7209Þ 5 367 kPa ðabsÞ ß

p02

Flow Flow is airy

x

1 2

CV
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13.4 Supersonic Channel Flow with Shocks
Supersonic flow is a necessary condition for a normal shock to occur. The possibility of
a normal shock must be considered in any supersonic flow. Sometimes a shock must
occur to match a downstream pressure condition; it is desirable to determine if a shock
will occur and the shock location when it does occur.

In Section 13.3 we showed that stagnation pressure decreases dramatically across a
shock: The stronger the shock, the larger the decrease in stagnation pressure. It is
necessary to control shock position to obtain acceptable performance from a super-
sonic diffuser or supersonic wind tunnel.

In this section isentropic flow in a converging-diverging nozzle (Section 13.2) is
extended to include shocks. Additional topics (on the Web site) include operation of
supersonic diffusers and supersonic wind tunnels, flows with friction, and flows with
heat addition.

Flow in a Converging-Diverging Nozzle

Since we have considered normal shocks, we now can complete our discussion of flow
in a converging-diverging nozzle operating under varying back pressures, begun in

For the change in entropy (Eq. 13.11g),

s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

But s02 2 s01 5 s2 2 s1, so

s02
 � s01

 � s2 � s1 � cp ln
T02

T01

� R ln � �0.287 � ln(0.7209)

� 0

p02

p01

kJ
kg � K

s2 2 s1 5 0:0939 kJ=ðkg�KÞ ß
s2 2 s1

The Ts diagram is

2

1
Shock

T1

T2

p2

p1 s2 – s1

s02 – s01

p02p01

T02 = T01

T

s

This problem illustrates the use of the
normal shock relations, Eqs. 13.20, for
analyzing flow of an ideal gas through
a normal shock.

The Excel workbook for thisExample is convenient for per-
forming the calculations. (Alternatively,
the normal shock relations Excel add-
ins, available on the Web site, are
useful for these calculations.)
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Section 13.2. The pressure distribution through a nozzle for different back pressures is
shown in Fig. 13.12.

Four flow regimes are possible. In Regime I the flow is subsonic throughout. The
flow rate increases with decreasing back pressure. At condition (iii), which forms
the dividing line between Regimes I and II, flow at the throat is sonic, and Mt 5 1.

As the back pressure is lowered below condition (iii), a normal shock appears
downstream from the throat, as shown by condition (vi). There is a pressure rise
across the shock. Since the flow is subsonic (M, 1) after the shock, the flow
decelerates, with an accompanying increase in pressure, through the diverging chan-
nel. As the back pressure is lowered further, the shock moves downstream until it
appears at the exit plane (condition vii). In Regime II, as in Regime I, the exit flow is
subsonic, and consequently pe 5 pb. Since flow properties at the throat are constant
for all conditions in Regime II, the flow rate in Regime II does not vary with back
pressure.

In Regime III, as exemplified by condition (viii), the back pressure is higher than
the exit pressure, but not high enough to sustain a normal shock in the exit plane. The
flow adjusts to the back pressure through a series of oblique compression shocks
outside the nozzle; these oblique shocks cannot be treated by one-dimensional theory.

As previously noted in Section 13.2, condition (iv) represents the design condition.
In Regime IV the flow adjusts to the lower back pressure through a series of oblique
expansion waves outside the nozzle; these oblique expansion waves cannot be treated
by one-dimensional theory.

The Ts diagram for converging-diverging nozzle flow with a normal shock is shown
in Fig. 13.13; state 1 is located immediately upstream from the shock and state 2 is
immediately downstream. The entropy increase across the shock moves the subsonic
downstream flow to a new isentropic line. The critical temperature is constant, so
p*
2

is lower than p*
1
. Since ρ* 5 p*=RT*, the critical density downstream also is

reduced. To carry the same mass flow rate, the downstream flow must have a larger
critical area. From continuity (and the equation of state), the critical area ratio is the
inverse of the critical pressure ratio, i.e., across a shock, p*A* 5 constant.

If the Mach number (or position) of the normal shock in the nozzle is known,
the exit-plane pressure can be calculated directly. In the more realistic situation,
the exit-plane pressure is specified, and the position and strength of the shock are
unknown. The subsonic flow downstream must leave the nozzle at the back pressure,
so pb 5 pe. Then

bet

Valve

To vacuum
pump

Flow
T0
p0
V0     0≅

(v)
(iv)

(viii)
(vii)

(vi)
(iii)
(ii)
(i)

––Me < 1

––Me > 1

Regime I

Regime II

Regime III

Regime IV

Exit
plane

x

s = c

Throat

Mt = 1

p* ____
p0

p___
p0

1.0

Fig. 13.12 Pressure distributions for flow in a converging-diverging nozzle for
different back pressures.
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pb
p01

5
pe
p01

5
pe
p02

p02
p01

5
pe
p02

A*
1

A*
2

5
pe
p02

At

Ae

Ae

A*
2

ð13:21Þ

Because we have isentropic flow from state 2 (after the shock) to the exit plane,
A*

2
5 A*e and p02 5 p0e . Then from Eq. 13.21 we can write

pe
p01

5
pe
p02

At

Ae

Ae

A*
2

5
pe
p0e

At

Ae

Ae

A*
e

Rearranging,

pe
p01

Ae

At

5
pe
p0e

Ae

A*
e

ð13:22Þ

In Eq. 13.22 the left side contains known quantities, and the right side is a function of
the exit Mach number Me only. The pressure ratio is obtained from the stagnation
pressure relation (Eq. 12.21a); the area ratio is obtained from the isentropic area
relation (Eq. 13.7d). Finding Me from Eq. 13.43 usually requires iteration. (Problem
13.103 uses Excel’s Solver feature to perform the iteration.) The magnitude and
location of the normal shock can be found once Me is known by rearranging Eq. 13.43
(remembering that p02 5 p0e),

p02
p01

5
At

Ae

Ae

A*
e

ð13:23Þ

In Eq. 13.44 the right side is known (the first area ratio is given and the second is a
function of Me only), and the left side is a function of the Mach number before the
shock, M1, only (Eq. 13.41b). Hence, M1 can be found. The area at which this shock
occurs can then be found from the isentropic area relation (Eq. 13.7d, with A* 5 At)
for isentropic flow between the throat and state 1 .

Supersonic Diffuser (on the Web)

Supersonic Wind Tunnel Operation (on the Web)

Supersonic Flow with Friction in a Constant-Area Channel
(on the Web)

Supersonic Flow with Heat Addition in a Constant-Area Channel
(on the Web)

1 2
e

pb
Flow

p01

T01

V0 = 0

T p01 p02

pe
Te

T2

p2

p1*

p1

T1

p2*

Shock

T* = constant

T0 = constant

s

Fig. 13.13 Schematic Ts diagram for flow in a converging-diverging nozzle with a
normal shock.
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13.5Flow in a Constant-Area Duct with Friction
Gas flow in constant-area ducts is commonly encountered in a variety of engineering
applications. In this section we consider flows in which wall friction is responsible for
changes in fluid properties.

As for isentropic flow with area variation (Section 13.2) and the normal shock
(Section 13.3), our starting point in analyzing flows with friction is the set of basic
equations (Eqs. 13.1), describing one-dimensional motion that is affected by several
phenomena: area change, friction, heat transfer, and normal shocks. These are

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:1aÞ

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:1bÞ

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2
ð13:1cÞ

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:1dÞ

p 5 ρRT ð13:1eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:1fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

ð13:1gÞ

Equation 13.1a is continuity, Eq. 13.1b is a momentum equation, Eq. 13.1c is an energy
equation, Eq. 13.1d is the second law of thermodynamics, and Eqs. 13.1e, 13.1f, and
13.1g are useful property relations for an ideal gas with constant specific heats.

We must simplify these equations for flow in a constant-area duct with friction. We
must think about what happens to the heat that friction generates. There are two
obvious cases we can consider: In the first we assume that the flow is adiabatic, so any
heat generated remains in the fluid; in the second we assume that the flow remains
isothermal, so the fluid either gives off heat or absorbs heat as necessary. While some
flows may be neither adiabatic nor isothermal, many real-world flows are. Flow in a
relatively short duct will be approximately adiabatic; flow in a very long duct (e.g., an
uninsulated natural gas pipeline) will be approximately isothermal (the pipeline will
be at the ambient temperature). We consider first adiabatic flow.

Basic Equations for Adiabatic Flow

We can simplify Eqs. 13.1 for frictional adiabatic flow in a constant-area duct of an
ideal gas with constant specific heats, as shown in Fig. 13.18.

We now have A1 5 A2 5 A. In addition, for no heat transfer we have δQ/dm 5 0.
Finally, the force Rx is now due only to friction (no x component of surface force is
caused by pressure on the parallel sides of the channel). Hence, for this flow our
equations simplify to

ρ1V1 5 ρ2V2 5 ρV � G 5
�m
A

5 constant ð13:24aÞ

Rx 1 p1A2 p2A 5 �mV2 2
�mV1 ð13:24bÞ
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h01 5 h1 1
V2

1

2
5 h2 1

V2
2

2
5 h02 5 h0 ð13:24cÞ

s2 . s1 ð13:24dÞ

p 5 ρRT ð13:24eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:24fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð13:24gÞ

Equations 13.24 can be used to analyze frictional adiabatic flow in a channel of
constant area. For example, if we know conditions at section 1 (i.e., p1, ρ1, T1, s1, h1,
and V1), we can use these equations to find conditions at some new section 2 after the
fluid has experienced a total friction force Rx. It is the effect of friction that causes
fluid properties to change along the duct. For a known friction force we have six
equations (not including the constraint of Eq. 13.24d) and six unknowns (p2, ρ2, T2, s2,
h2, and V2). In practice this procedure is unwieldy—as for isentropic flow we have a
set of nonlinear coupled algebraic equations to solve, and as for isentropic flow we will
eventually develop alternative approaches. For now, let’s see what Eqs. 13.24 indicate
will happen to the flow.

Adiabatic Flow: The Fanno Line

If we were to attempt the calculations described above, as the flow progresses down
the duct (i.e., for increasing values of Rx), we would develop a relationship between
T and s shown qualitatively in Fig. 13.19 for two possibilities: a flow that was initially
subsonic (starting at some point 1 ), and flow that was initially supersonic (starting at
some point 1' ). The locus of all possible downstream states is referred to as the Fanno
line. Detailed calculations show some interesting features of Fanno-line flow. At the
point of maximum entropy, the Mach number is unity. On the upper branch of
the curve, the Mach number is always less than unity, and it increases monotonically
as we proceed to the right along the curve. At every point on the lower portion of the
curve, the Mach number is greater than unity; the Mach number decreases mono-
tonically as we move to the right along the curve.

For any initial state on a Fanno line, each point on the Fanno line represents a
mathematically possible downstream state. In Fig. 13.19 we generated the curves by
repeatedly solving Eqs. 13.24 for increasing values of the friction force, Rx; the total
friction force increases as we progress down the duct because we are including more
and more surface area. Note the arrows in Fig. 13.19, indicating that, as required by
Eq. 13.24d, the entropy must increase for this flow. In fact it is because we do have
friction (an irreversibility) present in an adiabatic flow that this must happen.

1 2

Rx V2

p2

   2

T2

ρ
V1

p1

   1

T1

ρ

Flow

CV

y

x

Fig. 13.18 Control volume used for integral
analysis of frictional adiabatic flow.
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Referring again to Fig. 13.19, we see that for an initially subsonic flow (state 1 ), the
effect of friction is to increase the Mach number toward unity. For a flow that is
initially supersonic (state 1' ), the effect of friction is to decrease the Mach number
toward unity.

In developing the simplified form of the first law for Fanno-line flow, Eq. 13.24c, we
found that stagnation enthalpy remains constant. Consequently, when the fluid is an
ideal gas with constant specific heats, stagnation temperature must also remain con-
stant. What happens to stagnation pressure? Friction causes the local isentropic
stagnation pressure to decrease for all Fanno-line flows, as shown in Fig. 13.20. Since
entropy must increase in the direction of flow, the flow process must proceed to the
right on the Ts diagram. In Fig. 13.20, a path from state 1 to state 2 is shown on
the subsonic portion of the curve. The corresponding local isentropic stagnation
pressures, p01 and p02 , clearly show that p02 , p01 . An identical result is obtained for
flow on the supersonic branch of the curve from state 1' to state 2' . Again p0

2u
, p0

1u
.

Thus p0 decreases for any Fanno-line flow.
The effects of friction on flow properties in Fanno-line flow are summarized in

Table 13.2.

1'

2'

1
2

M < 1

M > 1

M = 1

T

s

p01 = p01' p02 = p02'

T0 = constant

Fig. 13.20 Schematic of Fanno-line
flow on Ts plane, showing reduction in
local isentropic stagnation pressure
caused by friction.

Table 13.2
Summary of Effects of Friction on Properties in Fanno-Line Flow

Property
Subsonic
M , 1

Supersonic
M . 1 Obtained from:

Stagnation
temperature

T0 5 Constant T0 5 Constant Energy equation

Entropy s s T ds equation
Stagnation
pressure

p0 p0 T0 5 constant; s

Temperature T T Shape of Fanno line
Velocity V V Energy equation, and trend of T
Mach number M M Trends of V, T, and definition of M
Density ρ ρ Continuity equation, and effect on V
Pressure p p Equation of state, and effects on ρ, T

1'

1M < 1

M > 1

M = 1

T

s

Fig. 13.19 Schematic Ts diagram for
frictional adiabatic (Fanno-line) flow in
a constant-area duct.
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In deducing the effect of friction on flow properties for Fanno-line flow, we used the
shape of the Fanno line on the Ts diagram and the basic governing equations
(Eqs. 13.24). You should follow through the logic indicated in the right column of the
table. Note that the effect of friction is to accelerate a subsonic flow! This seems a real
puzzle—a violation of Newton’s second law—until we realize that the pressure is
dropping quite rapidly, so the pressure gradient more than cancels the drag due to
friction. We can also note that the density is decreasing in this flow (largely because of
the pressure drop) mandating (from continuity) that the velocity must be increasing.
All properties simultaneously affect one another (as expressed in the coupled set of
equations, Eqs. 13.24), so it is not possible to conclude that the change in any one
property is solely responsible for changes in any of the others. Note the parallel
between normal shocks (Table 13.1) and supersonic flow with friction (Table 13.2).
Both represent irreversible processes in supersonic flow, and all properties change in
the same directions.

We have noted that entropy must increase in the direction of flow: It is the effect of
friction that causes the change in flow properties along the Fanno-line curve. From
Fig. 13.20, we see that there is a maximum entropy point corresponding to M 5 1 for
each Fanno line. The maximum entropy point is reached by increasing the amount of
friction (through addition of duct length), just enough to produce a Mach number
of unity (choked flow) at the exit. If we insist on adding duct beyond this critical duct
length, at which the flow is choked, one of two things happens: If the inlet flow is
subsonic, the additional length forces the sonic condition to move down to the new
exit, and the flow rate in the duct (and Mach number at each location) decreases; if the
inlet flow is supersonic, the additional length causes a normal shock to appear
somewhere in the duct, and the shock moves upstream as more duct is added (for
more details see Section 13.4).

To compute the critical duct length, we must analyze the flow in detail, accounting
for friction. This analysis requires that we begin with a differential control volume,
develop expressions in terms of Mach number, and integrate along the duct to the
section where M 5 1. This is our next task, and it will involve quite a bit of algebraic
manipulation, so first we will demonstrate use of some of Eqs. 13.24 in Example 13.7.

Example 13.7 FRICTIONAL ADIABATIC FLOW IN A CONSTANT-AREA CHANNEL

Air flow is induced in an insulated tube of 7.16 mm diameter by a vacuum pump. The air is drawn from a room,
where p0 5 101 kPa (abs) and T0 5 23�C, through a smoothly contoured converging nozzle. At section 1 , where the
nozzle joins the constant-area tube, the static pressure is 98.5 kPa (abs). At section 2 , located some distance
downstream in the constant-area tube, the air temperature is 14�C. Determine the mass flow rate, the local isentropic
stagnation pressure at section 2 , and the friction force on the duct wall between sections 1 and 2 .

Given: Air flow in insulated tube

Find: (a) �m .
(b) Stagnation pressure at section 2 .
(c) Force on duct wall.

Solution:
The mass flow rate can be obtained from properties at section 1 . For
isentropic flow through the converging nozzle, local isentropic stagnation
properties remain constant. Thus,

p01
p1

5 11
k2 1

2
M2

1

� �k=ðk21Þ

1 2

D = 7.16 mm
FlowT0 = 296 K

p0 = 101 kPa (abs)

p1 = 98.5 kPa (abs) T2 = 287 K

730 Chapter 13 Compressible Flow



and

M1 5
2

k2 1

�
p01
p1

�ðk21Þ=k
2 1

" #( )1=2
5

2

0:4

�
1:013 105

9:853 104

�0:286

2 1

" #( )1=2
5 0:190

T1 5
T01

11
k2 1

2
M2

1

5
ð2731 23ÞK
11 0:2ð0:190Þ2 5 294 K

For an ideal gas,

ρ1 5
p1
RT1

5 9:853 104
N

m2
3

kg�K
287 N�m 3

1

294 K
5 1:17 kg=m3

V1 5 M1c1 5 M1

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 ð0:190Þ

�
1:43 287

N�m
kg�K 3 294 K3

kg�m
N�s2

�1=2
V1 5 65:3m=s

The area, A1, is

A1 5 A 5
πD2

4
5

π
4
ð7:163 1023Þ2 m2 5 4:033 1025 m2

From continuity,

�m 5 ρ1V1A1 5 1:17
kg

m3
3 65:3

m

s
3 4:033 1025 m2

�m 5 3:083 1023 kg=s ß

�m

Flow is adiabatic, so T0 is constant, and

T02 5 T01 5 296 K ß

T02

Then

T02

T2

5 11
k2 1

2
M2

2

Solving for M2 gives

M2 5

�
2

k2 1

�
T02

T2

2 1

��1=2
5

�
2

0:4

�
296

287
2 1

��1=2
5 0:396 ß

M2

V2 5 M2c2 5 M2

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT2

p
5 ð0:396Þ

�
1:43 287

N�m
kg�K 3 287 K3

kg�m
N�s2

�1=2

V2 5 134 m=s ß
V2

From continuity, Eq. 13.24a, ρ1V1 5 ρ2V2, so

ρ2 5 ρ1
V1

V2

5 1:17
kg

m3
3

65:3

134
5 0:570 kg=m3

ß
ρ2

and

p2 5 ρ2RT2 5 0:570
kg

m3
3 287

N�m
kg�K 3 287 K 5 47:0 kPa absð Þ ß

p2

13.5 Flow in a Constant-Area Duct with Friction 731



Fanno-Line Flow Functions for One-Dimensional
Flow of an Ideal Gas

The primary independent variable in Fanno-line flow is the friction force, Ff.
Knowledge of the total friction force between any two points in a Fanno-line flow
enables us to predict downstream conditions from known upstream conditions. The
total friction force is the integral of the wall shear stress over the duct surface area.
Since wall shear stress varies along the duct, we must develop a differential equation
and then integrate to find property variations. To set up the differential equation, we
use the differential control volume shown in Fig. 13.21.

Comparing Fig. 13.21 to Fig. 13.19 we see that we can use the basic equations, Eqs.
13.24, for flow in a duct with friction, if we replace T1, p1, ρ1, V1, with T, p, ρ, V, and
T2, p2, ρ2, V2, with T1 dT; p1 dp; ρ1 dρ; V1 dV, and also Rx with 2dFf.

The local isentropic stagnation pressure is

p02 5 p2

�
11

k2 1

2
M2

2

�k=ðk21Þ
5 4:703 104 Pa½11 0:2ð0:396Þ2�3:5

p02 5 52:4 kPa ðabsÞ ß

p02

The friction force may be obtained using the momentum equation (Eq.13.24b),

Rx 1 p1A2 p2A 5 �mV2 2
�mV2 ð13:24bÞ

which we apply to the control volume shown above (except we replace Rx from Fig. 13.18 with2Ff because we know
the friction force Ff on the fluid acts in the negative x direction).

2Ff 5 ðp2 2 p1ÞA1 �mðV2 2V1Þ

2Ff 5 ð4:702 9:85Þ3 104
N

m2
3 4:033 102 5 m2 1 3:083 102 3 kg

s
3 ð1342 65:3Þm

s
3

N�s2
kg�m

or

Ff 5 1:86 N ðto the left; as shownÞ
This is the force exerted on the control volume by the duct wall. The force
of the fluid on the duct is

Kx 52Ff 5 1:86 N ß

ðto the rightÞ Kx

1 2L

Ff

Flow p2

V2

  2ρ
p1

V1

  1ρ

p01
p02

p2
T2

T0 = constant
p1

T1

2
1

T

s

y

x

CV

This problem illustrates use of some of
the basic equations, Eqs. 13.24, for
flow in a duct with friction.The Excel workbook for thisExample is convenient for
performing the calculations.
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The continuity equation (Eq. 13.24a) becomes

ρV 5 ðρ1 dρÞðV1 dVÞ 5
�m
A

so

ρV 5 ρV1 ρ dV1 dρV1 dρ dV

which reduces to

ρ dV1V dρ 5 0 ð13:25aÞ
since products of differentials are negligible. The momentum equation (Eq. 13.24b)
becomes

2dFf 1 pA2 ðp1 dpÞA 5 �mðV1 dVÞ2 �mV

which reduces to

2
dFf

A
2 dp 5 ρV dV ð13:25bÞ

after using continuity ( �m 5 ρAV). The first law of thermodynamics (Eq. 13.24c)
becomes

h1
V2

2
5 ðh1 dhÞ1 ðV1 dVÞ2

2

which reduces to

dh1 d
V2

2

� �
5 0 ð13:25cÞ

since products of differentials are negligible.
Equations 13.25 are differential equations that we can integrate to develop useful

relations, but before doing so we need to see how we can relate the friction force Ff to
other flow properties. First, we note that

dFf 5 τw dAw 5 τwP dx ð13:26Þ

where P is the wetted perimeter of the duct. To obtain an expression for τw in terms of
flow variables at each cross section, we assume changes in flow variables with x are
gradual and use correlations developed in Chapter 8 for fully developed, incom-
pressible duct flow. For incompressible flow, the local wall shear stress can be written

CV

T
p

V
ρ

T
p

V

+ dT
+ dp

+ dV
+ dρ ρ

dFf

Area, A

dx

x

y
Flow

Fig. 13.21 Differential control volume used
for analysis of Fanno-line flow.
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in terms of flow properties and friction factor. From Eqs. 8.16, 8.32, and 8.34 we have,
for incompressible flow,

τw 52
R

2

dp

dx
5

ρR
2

dhl
dx

5
fρV2

8
ð13:27Þ

where f is the friction factor for pipe flow, given by Eq. 8.36 for laminar flow and
Eq. 8.37 for turbulent flow, plotted in Fig. 8.13. (We assume that this correlation
of experimental data also applies to compressible flow. This assumption, when
checked against experimental data, shows surprisingly good agreement for subsonic
flows; data for supersonic flow are sparse.)

Ducts of other than circular shape can be included in our analysis by introducing
the hydraulic diameter

Dh 5
4A

P
ð8:50Þ

(Recall the factor of 4 was included in Eq. 8.50 so thatDh would reduce to diameterD
for circular ducts.)

Combining Eqs. 8.50, 13.26, and 13.27, we obtain

dFf 5 τwP dx 5 f
ρV2

8

4A

Dh

dx

or

dFf 5
fA

Dh

ρV2

2
dx ð13:28Þ

Substituting this result into the momentum equation (Eq. 13.25b), we obtain

2
f

Dh

ρV2

2
dx2 dp 5 ρV dV

or, after dividing by p,

dp

p
52

f

Dh

ρV2

2p
dx2

ρV dV

p

Noting that p/ρ 5 RT 5 c2/k, and VdV 5 d(V2/2), we obtain

dp

p
52

f

Dh

kM2

2
dx2

k

c2
d

V2

2

� �

and finally,

dp

p
52

f

Dh

kM2

2
dx2

kM2

2

dðV2Þ
V2

ð13:29Þ

To relate M and x, we must eliminate dp/p and d(V2)/V2 from Eq. 13.29. From the
definition of Mach number, M 5 V=c, so V2 5 M2c2 5 M2 kRT , and after differ-
entiating this equation and dividing by the original equation,

dðV2Þ
V2

5
dT

T
1

dðM2Þ
M2

ð13:30aÞ
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From the continuity equation, Eq. 13.25a, dρ/ρ 5 2dV/V and so

dρ
ρ

52
1

2

dðV2Þ
V2

From the ideal gas equation of state, p 5 ρRT,

dp

p
5

dρ
ρ

1
dT

T

Combining these three equations, we obtain

dp

p
5

1

2

dT

T
2

1

2

dðM2Þ
M2

ð13:30bÞ

Substituting Eqs. 13.30 into Eq. 13.29 gives

1

2

dT

T
2

1

2

dðM2Þ
M2

52
f

Dh

kM2

2
dx2

kM2

2

dT

T
2

kM2

2

dðM2Þ
M2

This equation can be simplified to

11 kM2

2

� �
dT

T
52

f

Dh

kM2

2
dx1

12 kM2

2

� �
dðM2Þ
M2

ð13:31Þ

We have been successful in reducing the number of variables somewhat. However,
to relate M and x, we must obtain an expression for dT/T in terms of M. Such an
expression can be obtained most readily from the stagnation temperature equation

T0

T
5 11

k2 1

2
M2 ð12:21bÞ

Since stagnation temperature is constant for Fanno-line flow,

T 11
k2 1

2
M2

� �
5 constant

and after differentiating this equation and dividing by the original equation,

dT

T
1

M2 ðk2 1Þ
2

11
k2 1

2
M2

� � dðM2Þ
M2

5 0

Substituting for dT/T into Eq. 13.31 yields

M2 ðk2 1Þ
2

11 kM2

2

� �

11
k2 1

2
M2

� � dðM2Þ
M2

5
f

Dh

kM2

2
dx2

12 kM2

2

� �
dðM2Þ
M2

Combining terms, we obtain

ð12M2Þ
11

k2 1

2
M2

� � dðM2Þ
kM4

5
f

Dh

dx ð13:32Þ

We have (finally!) obtained a differential equation that relates changes in M with x.
Now we must integrate the equation to find M as a function of x.

Integrating Eq. 13.32 between states 1 and 2 would produce a complicated
function of both M1 and M2. The function would have to be evaluated numerically for
each new combination of M1 and M2 encountered in a problem. Calculations can be
simplified considerably using critical conditions (where, by definition, M 5 1). All
Fanno-line flows tend toward M 5 1, so integration is between a section where the
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Mach number is M and the section where sonic conditions occur (the critical condi-
tions). Mach number will reach unity when the maximum possible length of duct is
used, as shown schematically in Fig. 13.22.

The task is to perform the integration

Z 1

M

ð12M2Þ
kM4 11

k2 1

2
M2

� �dðM2Þ 5
Z Lmax

0

f

Dh

dx ð13:33Þ

The left side may be integrated by parts. On the right side, the friction factor, f, may
vary with x, since Reynolds number will vary along the duct. Note, however, that since
ρV is constant along the duct (from continuity), the variation in Reynolds number is
caused solely by variations in fluid absolute viscosity.

For a mean friction factor, f , defined over the duct length as

f 5
1

Lmax

Z Lmax

0

f dx

integration of Eq. 13.33 leads to

12M2

kM2
1

k1 1

2k
ln

ðk1 1ÞM2

2 11
k2 1

2
M2

� �
2
664

3
775 5

fLmax

Dh

ð13:34aÞ

Equation 13.34a gives the maximum fL=Dh corresponding to any initial Mach
number.

Since fLmax=Dh is a function of M, the duct length, L, required for the Mach
number to change from M1 to M2 (as illustrated in Fig. 13.22) may be found from

fL

Dh

5
fLmax

Dh

� �
M1

2
fLmax

Dh

� �
M2

Critical conditions are appropriate reference conditions to use in developing
property ratio flow functions in terms of local Mach number. Thus, for example, since
T0 is constant, we can write

T

T*
5

T=T0

T*=T0
5

k1 1

2

� �

11
k2 1

2
M2

� � ð13:34bÞ

Similarly,

V

V*
5

M
ffiffiffiffiffiffiffiffiffiffi
kRT

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kRT*

p 5 M

ffiffiffiffiffiffi
T

T�

r
5

k1 1

2

� �
M2

11
k2 1

2
M2

2
664

3
775
1=2

M1 M2 M = 1

Hypothetical
duct extension

L

L max

2

1

Flow

x

Fig. 13.22 Coordinates and notation used for analysis of Fanno-line flow.
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From continuity, V=V* 5 ρ*=ρ, so

V

V*
5

ρ*
ρ

5

k1 1

2

� �
M2

11
k2 1

2
M2

2
664

3
775
1=2

ð13:34cÞ

From the ideal gas equation of state,

p

p*
5

ρ
ρ*

T

T*
5

1

M

k1 1

2

� �

11
k2 1

2
M2

2
664

3
775
1=2

ð13:34dÞ

The ratio of local stagnation pressure to the reference stagnation pressure is given by

p0
p*
0

5
p0
p

p

p*

p*

p*
0

p0
p*
0

5

�
11

k2 1

2
M2

�k=ðk21Þ
1

M

�
k1 1

2

�

11
k2 1

2
M2

2
66664

3
77775

1=2

1�
k1 1

2

�k=ðk21Þ

or

p0
p*
0

5
1

M

2

k1 1

� �
11

k2 1

2
M2

� �� �ðk11Þ=2ðk21Þ
ð13:34eÞ

Equations 13.34 form a complete set for analyzing flow of an ideal gas in a duct with
friction, which we usually use instead of (or in addition to) the basic equations, Eqs.
13.24. For convenience we list them together:

fLmax

Dh

5
12M2

kM2
1

k1 1

2k
ln

ðk1 1ÞM2

2 11
k2 1

2
M2

� �
2
664

3
775 ð13:34aÞ

T

T*
5

k1 1

2

� �

11
k2 1

2
M2

� � ð13:34bÞ

V

V*
5

ρ*
ρ

5

k1 1

2

� �
M2

11
k2 1

2
M2

2
664

3
775
1=2

ð13:34cÞ

p

p*
5

1

M

k1 1

2

� �

11
k2 1

2
M2

2
664

3
775
1=2

ð13:34dÞ

p0
p*
0

5
1

M

2

k1 1

� �
11

k2 1

2
M2

� �� �ðk11Þ=2ðk21Þ
ð13:34eÞ

Equations 13.34, the Fanno-line relations, provide property relations in terms of the local
Machnumber and critical conditions. They are obviously quite algebraically complicated,
but unlike Eqs. 13.24 are not coupled. It is a good idea to program them into your
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calculator. They are also fairly easy to define in spreadsheets such as Excel. The reader
is urged to download the Excel add-ins for these equations from the Web site; with the
add-ins, functions are available for computing the friction factor, temperature, velocity,
pressure, and stagnation pressure ratios fromM, andM from these ratios. It is important
to remember that, as demonstrated in Fig. 12.4, the properties at a state, in any
flow process, may be related to that state’s isentropic stagnation properties through
use of Eqs. 12.21. Appendix E.3 lists flow functions for property ratios p0/p0*,
T=T*; p=p*; ρ=ρ*; ðV*=VÞ, and fLmax=Dh in terms ofM for Fanno-line flow of an ideal
gas. A table of values, as well as a plot of these property ratios, is presented for air (k 5
1.4) for a limited range of Mach numbers. The associated Excel workbook, Fanno-Line
Relations, can be used to print a larger table of values for air and other ideal gases.

Example 13.8 FRICTIONAL ADIABATIC FLOW IN A CONSTANT-AREA CHANNEL: SOLUTION USING
FANNO-LINE FLOW FUNCTIONS

Air flow is induced in a smooth insulated tube of 7.16mmdiameter by a vacuumpump.Air is drawn froma room,where
p05 760mmHg (abs) andT05 23�C, through a smoothly contoured converging nozzle.At section 1 , where the nozzle
joins the constant-area tube, the static pressure is 218.9mm Hg (gage). At section 2 , located some distance down-
stream in the constant-area tube, the static pressure is 2412 mm Hg (gage). The duct walls are smooth; assume the
average friction factor, f, is the value at section 1 . Determine the length of duct required for choking from section 1 ,
theMachnumber at section 2 , and the duct length,L12, between sections 1 and 2 . Sketch theprocess onaTsdiagram.

Given:
Air flow (with friction) in an insulated constant-area tube.

Gage pressures: p15218.9mmHg, and p252412mmHg.
M35 1.0

Find: (a) L13. (b) M2. (c) L12. (d) Sketch the Ts diagram.

Solution:
Flow in the constant-area tube is frictional and adiabatic, a
Fanno-line flow. To find the friction factor, we need to know
the flow conditions at section 1 . If we assume flow in the nozzle
is isentropic, local properties at the nozzle exit may be computed
using isentropic relations. Thus

p01
p1

5 11
k2 1

2
M2

1

� �k=ðk21Þ

Solving for M1, we obtain

M1 5
2

k2 1

p01
p1

� �ðk21Þ=k
2 1

" #( )1=2
5

2

0:4

760

7602 18:9

� �0:286
2 1

" #( )1=2
5 0:190

T1 5
T01

11
k2 1

2
M2

1

5
296 K

11 0:2ð0:190Þ2 5 294 K

V1 5 M1c1 5 M1

ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 0:190 1:43 287

N�m
kg�K 3 2943

kg�m
N�s2

2
4

3
5
1=2

V1 5 65:3m=s

Using the density of mercury at room temperature (23�C),

p1 5 gρHgh1 5 g SG ρH2O
h1

5 9:81
m

s2
3 13:53 1000

kg

m3
3 ð7602 18:9Þ3 1023 m3

N�s2
kg�m

D = 7.16 mm
FlowT0 = 296 K

p0 = 760 mm Hg

L12

L13

321
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p1 5 98:1 kPaðabsÞ
ρ1 5

p1
RT1

5 9:813 104
N

m2
3

kg�K
287 N�m 3

1

294 K
5 1:16 kg=m3

At T 5 294 K ð21�CÞ; μ 5 1:823 1025 kg=ðm�sÞ from Table A.10, Appendix A. Thus

Re1 5
ρ1V1D1

μ1

5 1:16
kg

m3
3 65:3

m

s
3 0:00716 m3

m�s
1:823 1025 kg

5 2:983 104

From Eq. 8.37 (turbulent flow), for smooth pipe, f 5 0.0235.
From Appendix E.3 at M1 5 0:190; p=p* 5 5:745 (Eq. 13.34d), and fLmax/Dh 5 16.38 (Eq. 13.34a). Thus,

assuming f 5 f1,

L13 5 ðLmaxÞ1 5
fLmax

Dh

� �
1

Dh

f1
5 16:383

0:00716 m

0:0235
5 4:99 m ß

L13

Since p* is constant for all states on the same Fanno line, conditions at section 2 can be determined from the
pressure ratio, (p/p*)2. Thus

p

p*

� �
2

5
p2
p*

5
p2
p1

p1
p*

5
p2
p1

p

p*

� �
1

5
7602 412

7602 18:9

� �
5:745 5 2:698

where we used Eq. 13.34d to obtain the value of p/p* at section 1 . For p/p* 5 2.698 at section 2 , Eq. 13.34d yields
M2 5 0.400 (after obtaining an initial guess value from the plot in Appendix E.3, and iterating).

M2 5 0:400 ß
M2

The Ts diagram for this flow is

At M2 5 0:400; fLmax=Dh 5 2:309 (Eq. 13.34a, Appendix E.3). Thus

L23 5 ðLmaxÞ2 5
fLmax

Dh

� �
2

Dh

f1
5 2:3093

0:00716 m

0:0235
5 0:704 m

Finally,

L12 5 L13 2L23 5 ð4:992 0:704Þm 5 4:29 m ß
L12

p01 p02

T2
p2

p1

T1
T0 = constant

1
2

T

s

This problem illustrates use of the
Fanno-line equations, Eqs. 13.34.ü These equations give the same
results as the basic equations, Eqs.
13.24, as can be seen by comparing,
for example, the value of M2
obtained in this Example and in
Example 13.7.ü The computations can be quite
laborious without usingpreprogrammed Fanno-line relations
(available, for example, in the Excel
add-ins on the Web site)!The Excel workbook for thisExample is convenient for per-

forming the calculations, either using
the Fanno-line relations or the basic
equations.
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Isothermal Flow (on the Web)

13.6 Frictionless Flow in a Constant-Area
Duct with Heat Exchange
To explore the effects of heat exchange on a compressible flow, we apply the basic
equations to steady, one-dimensional, frictionless flow of an ideal gas with constant
specific heats through the finite control volume shown in Fig. 13.23.

You may well be exhausted by the process by now, but as in Section 13.2 (effects of
area variation only), Section 13.3 (the normal shock), and Section 13.5 (effects
of friction only), our starting point in analyzing frictionless flows with heat exchange is
the set of basic equations (Eqs. 13.1), describing one-dimensional motion that is affected
by several phenomena: area change, friction, heat transfer, and normal shocks. These are

ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant ð13:1aÞ

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1 ð13:1bÞ

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2
ð13:1cÞ

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:1dÞ

p 5 ρRT ð13:1eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:1fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð13:1gÞ

We recall that Eq. 13.1a is continuity, Eq. 13.1b is amomentum equation, Eq. 13.1c is an
energy equation, Eq. 13.1d is the second law of thermodynamics, and Eqs. 13.1e, 13.1f,
and 13.1g are useful property relations for an ideal gas with constant specific heats.

Basic Equations for Flow with Heat Exchange

We simplify Eqs. 13.1 using the facts that A1 5 A2 5 A and that Rx 5 0. In addition we
have the relation h0 5 h 1 V2/2. Equations 13.1 become for this flow

ρ1V1 5 ρ2V2 5 ρVA � G 5
�m
A

5 constant ð13:43aÞ

CV

Q___
dm
δ

1 2

Flow
p1

V1

1ρ
p2

V2

2ρ y

x

Fig. 13.23 Control volume used for integral analysis
of frictionless flow with heat exchange.
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p1A2 p2A 5 �mV2 2
�mV1 ð13:43bÞ

δQ
dm

5 h2 1
V2

2

2

� �
2 h1 1

V2
1

2

� �
5 h02 2 h01 ð13:43cÞ

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA ð13:43dÞ

p 5 ρRT ð13:43eÞ

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ ð13:43fÞ

Δs 5 s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

ð13:43gÞ

Note that Eq. 13.43c indicates that the heat exchange changes the total (kinetic plus
internal) energy of the flow. Equation 13.43d is not very useful here. The inequality or
equality may apply, depending on the nature of the heat exchange, but in any event
we should not conclude that in this flow the entropy necessarily increases. For
example, for a gradual cooling it will decrease!

Equations 13.43 can be used to analyze frictionless flow in a channel of constant
area with heat exchange. For example, if we know conditions at section 1 (i.e., p1, ρ1,
T1, s1, h1, and V1) we can use these equations to find conditions at some new section 2
after the fluid has experienced a total heat exchange δQ/dm. For a given heat
exchange, we have six equations (not including the constraint of Eq. 13.43d) and six
unknowns (p2, ρ2, T2, s2, h2, and V2). It is the effect of heat exchange that causes fluid
properties to change along the duct. In practice, as we have seen for other flows, this
procedure is unwieldy—we again have a set of nonlinear coupled algebraic equations
to solve. We will use Eqs. 13.43 in Example 13.9. We will also develop some Mach
number-based relations to supplement or replace the basic equations, and show how
to use these in Example 13.10.

The Rayleigh Line

If we use Eqs. 13.43 to compute property values as a given flow proceeds with a
prescribed heat exchange rate, we obtain a curve shown qualitatively in the Ts plane
in Fig. 13.24. The locus of all possible downstream states is called the Rayleigh line.
The calculations show some interesting features of Rayleigh-line flow. At the point of
maximum temperature (point a of Fig. 13.24), the Mach number for an ideal gas is
1=

ffiffiffi
k

p
. At the point of maximum entropy (point b of Fig. 13.24), M 5 1. On the upper

branch of the curve, Mach number is always less than unity, and it increases mono-
tonically as we proceed to the right along the curve. At every point on the lower
portion of the curve, Mach number is greater than unity, and it decreases mono-
tonically as we move to the right along the curve. Regardless of the initial Mach
number, with heat addition the flow state proceeds to the right, and with heat
rejection the flow state proceeds to the left along the Rayleigh line.

For any initial state in a Rayleigh-line flow, any other point on the Rayleigh line
represents a mathematically possible downstream state. Although the Rayleigh
line represents all mathematically possible states, are they all physically attainable
downstream states? A moment’s reflection will indicate that they are. Since we are
considering a flow with heat exchange, the second law (Eq. 13.43d) does not impose
any restrictions on the sign of the entropy change.
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The effects of heat exchange on properties in steady, frictionless, compressible flow
of an ideal gas are summarized in Table 13.3; the basis of each indicated trend is
discussed in the next few paragraphs.

The direction of entropy change is always determined by the heat exchange;
entropy increases with heating and decreases with cooling. Similarly, the first law,
Eq. 13.43c, shows that heating increases the stagnation enthalpy and cooling decreases
it; since Δh0 5 cpΔT0, the effect on stagnation temperature is the same.

The effect of heating and cooling on temperature may be deduced from the shape
of the Rayleigh line in Fig. 13.24. We see that except for the region 1=

ffiffiffi
k

p
,M, 1 (for

air, 1=
ffiffiffi
k

p 	 0:85), heating causes T to increase, and cooling causes T to decrease.
However, we also see the unexpected result that for 1=

ffiffiffi
k

p
,M, 1, heat addition

causes the stream temperature to decrease, and heat rejection causes the stream
temperature to increase!

For subsonic flow, the Mach number increases monotonically with heating, until
M5 1 is reached. For given inlet conditions, all possible downstream states lie on a
single Rayleigh line. Therefore, the point M5 1 determines the maximum possible
heat addition without choking. If the flow is initially supersonic, heating will reduce
the Mach number. Again, the maximum possible heat addition without choking is that
which reduces the Mach number to M5 1.0.

The effect of heat exchange on static pressure is obtained from the shapes of the
Rayleigh line and of constant-pressure lines on the Ts plane (see Fig. 13.25). ForM, 1,
pressure falls with heating, and forM. 1, pressure increases, as shown by the shapes of
the constant-pressure lines. Once the pressure variation has been found, the effect on
velocity may be found from the momentum equation,

p1A2 p2A 5 �mV2 2
�mV1 ð13:43bÞ

or

p1
�m
A

� �
V 5 constant

Thus, since �m=A is a positive constant, trends in p and V must be opposite. From the
continuity equation, Eq. 13.43a, the trend in ρ is opposite to that in V.

a

b M = 1

M > 1

M < 1

M = 1___
k

Cool
ing

Heat
ing

Cool
ing

Heat
ing

T

s

√

Fig. 13.24 Schematic Ts diagram for
frictionless flow in a constant-area duct with
heat exchange (Rayleigh-line flow).
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Local isentropic stagnation pressure always decreases with heating. This is illus-
trated schematically in Fig. 13.25. A reduction in stagnation pressure has obvious
practical implications for heating processes, such as combustion chambers. Adding the
same amount of energy per unit mass (same change in T0) causes a larger change in p0
for supersonic flow; because heating occurs at a lower temperature in supersonic flow,
the entropy increase is larger.

Table 13.3
Summary of Effects of Heat Exchange on Fluid Properties

Property

Heating Cooling

Obtained from:M , 1 M . 1 M , 1 M . 1

Entropy s s s s T ds equation

Stagnation temperature T0 T0 T0 T0 First law, and Δh0 5 cpΔT0

Temperature T M, 1ffiffi
k

p
� 	

T T M, 1ffiffi
k

p
� 	

T Shape of Rayleigh line

T 1ffiffi
k

p ,M, 1
� 	

T 1ffiffi
k

p ,M, 1
� 	

Mach number M M M M Trend on Rayleigh line

Pressure p p p p Trend on Rayleigh line

Velocity V V V V Momentum equation, and effect on p

Density ρ ρ ρ ρ Continuity equation, and effect on V

Stagnation pressure p0 p0 p0 p0 Fig. 13.25

1

2

p01

p2

p1

T01

p02

T02

s2 – s1

M = 1

Rayleigh line

s

T

(a) Subsonic flow

3

4

p03

p4

p3

T03

p04

T04

s4 – s3

M = 1

Rayleigh line

s

T

(b) Supersonic flow

Fig. 13.25 Reduction in stagnation pressure due to heat addition for two flow cases.
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Example 13.9 FRICTIONLESS FLOW IN A CONSTANT-AREA DUCT WITH HEAT ADDITION

Air flows with negligible friction through a duct of area A 5 0.25 ft2. At section 1 , flow properties are T1 5 600�R,
p1 5 20 psia, and V1 5 360ft/s. At section 2 , p2 5 10 psia. The flow is heated between sections 1 and 2 . Determine
the properties at section 2 , the energy added, and the entropy change. Finally, plot the process on a Ts diagram.

Given: Frictionless flow of air in duct shown:

T1 5 600�R
p1 5 20 psia p2 5 10 psia
V1 5 360 ft=s A1 5 A2 5 A 5 0:25 ft2

Find: (a) Properties at section 2 .
(b) δQ/dm.
(c) s22 s1.
(d) Ts diagram.

Solution:
The momentum equation (Eq. 13.43b) is

p1A2 p2A 5 �mV2 2
�mV1 ð13:43bÞ

or

p1 2 p2 5
�m
A

ðV2 2V1Þ 5 ρ1V1ðV2 2V1Þ

Solving for V2 gives

V2 5
p1 2 p2
ρ1V1

1V1

For an ideal gas, Eq. 13.43e,

ρ1 5
p1
RT1

5 20
lbf

in:2
3 144

in:2

ft2
3

lbm��R
53:3 ft�lbf 3

1

600�R
5 0:0901 lbm=ft3

V2 5 ð202 10Þ lbf
in:2

3 144
in:2

ft2
3

ft3

0:0901 lbm
3

s

360 ft
3 32:2

lbm

slug
3

slug�ft
lbf �s2 1 360

ft

s

V2 5 1790 ft=s ß
V2

From continuity, Eq. 13.43a, G 5 ρ1V1 5 ρ2V2, so

ρ2 5 ρ1
V1

V2
5 0:0901

lbm

ft3
360

1790

� �
5 0:0181 lbm=ft3 ß

ρ2

Solving for T2, we obtain

T2 5
p2
ρ2R

5 10
lbf

in:2
3 144

in:2

ft2
3

ft3

0:0181 lbm
3

lbm��R
53:3 ft�lbf 5 1490�R ß

T2

The local isentropic stagnation temperature is given by Eq. 12.21b,

T02 5 T2

�
11

k2 1

2
M2

2

�

c2 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT2

p
5 1890 ft=s; M2 5

V2

c2
5

1790

1890
5 0:947

T02 5 1490�R½11 0:2ð0:947Þ2� 5 1760�R ß
T02

1 2

CV

Flow

x

y

Q____
dm
δ
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and

p02 5 p2
T02

T2

� �k=ðk21Þ
5 10 psia

1760

1490

� �3:5

5 17:9 psia ß
p02

The heat addition is obtained from the energy equation (Eq. 13.43c),

δQ
dm

5 h2 1
V2

2

2

� �
2 h1 1

V2
1

2

� �
5 h02 2 h01 ð13:43cÞ

or

δQ
dm

5 h02 2 h01 5 cpðT02 2T01Þ

We already obtained T02 . For T01 we have

T01 5 T1

�
11

k2 1

2
M2

1

�

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 1200 ft=s; M1 5

V1

c1
5

360

1200
5 0:3

T01 5 600�R½11 0:2ð0:3Þ2� 5 611�R

so

δQ
dm

5 0:240
Btu

lbm��R ð17602 611Þ�R 5 276 Btu=lbm ß
δQ=dm

For the change in entropy (Eq 13.43g),

Δs 5 s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

5 cp ln
T2

T1

2 ðcp 2 cvÞln p2
p1

ð13:43gÞ

Then

s2 2 s1 5 0:240
Btu

lbm��R 3 ln
1490

600

0
@

1
A2 ð0:2402 0:71Þ Btu

lbm��R 3 ln
10

20

0
@

1
A

s2 2 s1 5 0:266 Btu=ðlbm��RÞ ß
s2 2 s1

The process follows a Rayleigh line:

2

1

p01

p02
T02

T01

s

T
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Rayleigh-Line Flow Functions for One-Dimensional
Flow of an Ideal Gas

Equations 13.43 are the basic equations for Rayleigh-line flow between two arbitrary
states 1 and 2 in the flow. To reduce labor in solving problems, it is convenient to
derive flow functions for property ratios in terms of local Mach number as we did
for Fanno-line flow. The reference state is again taken as the critical condition where
M 5 1; properties at the critical condition are denoted by (*).

Dimensionless properties (such as p/p* and T/T*) may be obtained by writing the
basic equations between a point in the flow where properties are M, T, p, etc., and
the critical state (M 5 1, with properties denoted as T*, p*, etc.).

The pressure ratio, p/p*, may be obtained from the momentum equation,
Eq. 13.43b,

pA2 p*A 5 �mV*2 �mV

or

p1 ρV2 5 p*1 ρ*V*2

Substituting ρ 5 p/RT, and factoring out pressures yields

p 11
V2

RT

� �
5 p* 11

V*2

RT*

� �

Noting that V2/RT 5 k(V2/kRT) 5 kM2, we find

p 11 kM2
 �

5 p* 11 k½ �

and finally,

p

p*
5

11 k

11 kM2
ð13:44aÞ

From the ideal gas equation of state,

T

T*
5

p

p*

ρ*
ρ

From the continuity equation, Eq. 13.43a,

ρ*
ρ

5
V

V*
5 M

c

c*
5 M

ffiffiffiffiffiffi
T

T*

r

To complete our analysis, let us examine the change in p0 by comparing p02
with p01 .

p01 5 p1

�
T01

T1

�k=ðk2 1Þ
5 20:0 psia

�
611

600

�3:5

5 21:3 psia ß

p01

Comparing, we see that p02 is less than p01 .

This problem illustrates the use of the
basic equations, Eqs. 13.43, for ana-
lyzing frictionless flow of an ideal gas
in a duct with heat exchange.The Excel workbook for thisExample is convenient for per-
forming the calculations.
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Then, substituting for ρ*/ρ, we obtain

T

T*
5

p

p*
M

ffiffiffiffiffiffi
T

T*

r

Squaring and substituting from Eq. 13.44a gives

T

T*
5

p

p*
M

� �2
5 M

11 k

11 kM2

� �� �2
ð13:44bÞ

From continuity, using Eq. 13.44b,

ρ*
ρ

5
V

V*
5

M2ð11 kÞ
11 kM2

ð13:44cÞ

The dimensionless stagnation temperature, T0=T
*
0 , can be determined from

T0

T*
0

5
T0

T

T

T*

T*

T*
0

5

�
11

k2 1

2
M2

��
M

�
11 k

11 kM2

��2 1�
k1 1

2

�

T0

T*
0

5

2 k1 1ð ÞM2

�
11

k2 1

2
M2

�
ð11 kM2Þ2

ð13:44dÞ

Similarly,

p0
p*
0

5
p0
p

p

p*

p*

p*
0

5

�
11

k2 1

2
M2

�k=ðk21Þ�
11 k

11 kM2

�
1�

k1 1

2

�k=ðk21Þ

p0
p*
0

5
11 k

11 kM2

2

k1 1

� �
11

k2 1

2
M2

� �� �k=ðk21Þ
ð13:44eÞ

For convenience we collect together the equations:

p

p*
5

11 k

11 kM2
ð13:44aÞ

T

T*
5 M

11 k

11 kM2

� �� �2
ð13:44bÞ

ρ*
ρ

5
V

V*
5

M2ð11 kÞ
11 kM2

ð13:44cÞ

T0

T*
0

5

2ðk1 1ÞM2 11
k2 1

2
M2

� �
ð11 kM2Þ2 ð13:44dÞ
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p0
p*
0

5
11 k

11 kM2

2

k1 1

� �
11

k2 1

2
M2

� �� �k=k21

ð13:44eÞ

Equations 13.44, the Rayleigh-line relations, provide property ratios in terms of the
local Mach number and critical conditions. They are obviously complicated, but can
be programmed into your calculator. They are also fairly easy to define in spread-
sheets such as Excel. The reader is urged to download the Excel add-ins for these
equations from the Web site; with the add-ins, functions are available for computing
the pressure, temperature, density, and stagnation temperature and pressure ratios
from M, and M from these ratios. In Example 13.10 we will explore their use.
Appendix E.4 lists flow functions for property ratios T0=T*0 , p0=p*0 , T/T*, p/p*, and ρ*/
ρ (V/V*), in terms of M for Rayleigh-line flow of an ideal gas. A table of values, as
well as a plot of these property ratios, is presented for air (k 5 1.4) for a limited range
of Mach numbers. The associated Excel workbook, Rayleigh-Line Relations, can be
used to print a larger table of values for air and other ideal gases.

Example 13.10 FRICTIONLESS FLOW IN A CONSTANT-AREA DUCT WITH HEAT ADDITION:
SOLUTION USING RAYLEIGH-LINE FLOW FUNCTIONS

Air flows with negligible friction in a constant-area duct. At section 1 , properties are T1 5 60�C, p1 5 135 kPa (abs),
and V1 5 732 m/s. Heat is added between section 1 and section 2 , where M2 5 1.2. Determine the properties at
section 2 , the heat exchange per unit mass, and the entropy change, and sketch the process on a Ts diagram.

Given: Frictionless flow of air as shown:

T1 5 333 K M2 5 1:2
p1 5 135 kPa ðabsÞ
V1 5 732 m=s

Find: (a) Properties at section 2 .
(b) δQ/dm.
(c) s2 2 s1.
(d) Ts diagram.

Solution:
To obtain property ratios, we need both Mach numbers.

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5 1:43 287

N�m
kg�K 3 333 K3

kg�m
N�s2

2
4

3
5
1=2

5 366 m=s

M1 5
V1

c1
5 732

m

s
3

s

366 m
5 2:00

From the Rayleigh-line flow functions of Appendix E-4 we find the following:

M T0/T0
* p0/p0* T/T* p/p* V/V*

2.00 0.7934 1.503 0.5289 0.3636 1.455
1.20 0.9787 1.019 0.9119 0.7958 1.146

1 2

CV

Flow

Q____
dm
δ
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Using these data and recognizing that critical properties are constant, we obtain

T2

T1

5
T2=T*

T1=T*
5

0:9119

0:5289
5 1:72; T2 5 1:72T1 5 ð1:72Þ333K 5 573K ß

T2

p2
p1

5
p2=p*

p1=p*
5

0:7958

0:3636
5 2:19; p2 5 2:19p1 5 ð2:19Þ135 kPa

p2 5 296 kPa ðabsÞ ß
p2

V2

V1
5

V2=V*

V1=V*
5

1:146

1:455
5 0:788; V2 5 0:788V1 5 ð0:788Þ732 m=s

V2 5 577m=s ß
V2

ρ2 5
p2
RT2

5 2:963 105
N

m2
3

kg�K
287 N�m 3

1

573 K
5 1:80 kg=m3

ß
ρ2

The heat addition may be determined from the energy equation, Eq. 13.43c,

δQ
dm

5 h02 2 h01 5 cpðT02 2T01Þ

From the isentropic-stagnation functions (Eq. 12.21b) at M 5 2.0,

T

T0
5

T1

T01

5 0:5556; T01 5
T1

0:5556
5

333 K

0:5556
5 599 K

and at M 5 1.2,

T

T0
5

T2

T02

5 0:7664; T02 5
T2

0:7764
5

573 K

0:7764
5 738 K ß

T02

Substituting gives

δQ
dm

5 cpðT02 2T01Þ 5 1:00
kJ

kg�K 3 ð7382 599Þ K 5 139 kJ=kg ß
δQ=dm

For the change in entropy (Eq. 13.43g),

s2 2 s1 5 cp ln
T2

T1
2R ln

p2
p1

5 1:00
kJ

kg�K 3 ln
573

333

0
@

1
A2 287

N�m
kg�K 3 ln

2:963 105

1:353 105

0
@

1
A3

kJ

1000 N�m

s2 2 s1 5 0:137 kJ= kg�Kð Þ ß
s2 2 s1

Finally, check the effect on p0. From the isentropic-stagnation function (Eq. 12.21a), at M 5 2.0,

p

p0
5

p1
p01

5 0:1278; p01 5
p1

0:1278
5

135 kPa

0:1278
5 1:06MPa ðabsÞ

and at M 5 1.2,

p

p0
5

p2
p02

5 0:4124; p02 5
p2

0:4124
5

296 kPa

0:4124
5 718 kPa ðabsÞ ß

p02

Thus, p02 , p01 , as expected for a heating process.
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13.7 Oblique Shocks and Expansion Waves
So far we have considered one-dimensional compressible flows. With the under-
standing we have developed, we are ready to introduce some basic concepts of two-
dimensional flow: oblique shocks and expansion waves.

Oblique Shocks

In Section 12.2, we discussed the Mach cone, with Mach angle α, that is generated by
an airplane flying at M . 1, as shown (in airplane coordinates) in Fig. 13.26a. The
Mach cone is a weak pressure (sound) wave, so weak that, as shown in Fig. 13.26a, it
barely disturbs the streamlines—it is the limiting case of an oblique shock. If we zoom
in on the airplane, we see that at the nose of the airplane we have an oblique shock—a
shock wave that is aligned, at some angle β, 90�, to the flow. This oblique shock
causes the streamlines to abruptly change direction (usually to follow the surface of
the airplane or the airplane’s airfoil). Further away from the airplane we still have an
oblique shock, but it becomes progressively weaker (β decreases) and the streamlines
experience smaller deflections until, far away from the airplane the oblique shock
becomes a Mach cone (β - α) and the streamlines are essentially unaffected by the
airplane.

A supersonic airplane does not necessarily generate an oblique shock that is
attached to its nose—we may instead have a detached normal shock ahead of the
airplane! In fact, as illustrated in Fig. 13.27, as an airplane accelerates to its supersonic
cruising speed the flow will progress from subsonic, through supersonic with a
detached normal shock, to attached oblique shocks that become increasingly
“pressed” against the airplane’s surface.

The process follows the supersonic branch of a Rayleigh line:

T02

p02

T01

p01

T2

p2

T1

p1

2

1

T

s

Rayleigh line

This problem illustrates the use of the
Rayleigh-line equations, Eqs. 13.44, for
analyzing frictionless flow of an ideal
gas in a duct with heat exchange.The Excel workbook for thisExample is convenient for
performing the calculations.(Alternatively, the Rayleigh-line Excel
add-ins, available on the Web site, are
useful for these calculations.)

VIDEO

Shock Waves over a Supersonic Airplane.
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We can explain these flow phenomena using concepts we developed in our analysis
of normal shocks. Consider the oblique shock shown in Fig. 13.28a. It is at some angle
β with respect to the incoming supersonic flow, with velocity ~V 1, and causes the flow
to deflect at some angle θ, with velocity ~V 2 after the shock.

It is convenient to orient the xy coordinates orthogonal to the oblique shock, and
decompose ~V 1 and ~V 2 into components normal and tangential to the shock, as shown
in Fig. 13.28b, with appropriate subscripts. The control volume is assumed to have
arbitrary area A before and after the shock, and infinitesimal thickness across the
shock (the upper and lower surfaces in Fig. 13.28b). For this infinitesimal control
volume, we can write the basic equations: continuity, momentum, and the first and
second laws of thermodynamics.

The continuity equation is

∂
∂t�CV

 dV 	 �
CS

 V � dA � 0

� 0(1)

ρ ρ ð4:12Þ

Assumption: (1) Steady flow.

(a) Oblique shock (b) Oblique shock in shock coordinates

V1

V2

V1t

V2t

y

x
V1n

V2n

β

β
θ

CV

(   –   )β θ

Fig. 13.28 Oblique shock control volume.

Streamline

Oblique shock

Weaker oblique shock

Mach cone

Streamline

α

(a) Mach cone (b) Oblique shock

β

Fig. 13.26 Mach cone and oblique shock generated by airplane.

(a) Subsonic M < 1 (b) Low supersonic (c) Increasing M

Fig. 13.27 Airplane flow patterns as speed increases.

VIDEO

Shock Waves due to a Projectile.
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Then

ð2ρ1V1nAÞ1 ðρ2V2nAÞ 5 0

(The tangential velocity components V1t and V2t flow through an infinitesimal area, so
do not contribute to continuity.) Hence,

ρ1V1n 5 ρ2V2n ð13:45aÞ
Next we consider the momentum equation for motion normal and tangential to the
shock. We get an interesting result if we look first at the tangential, y component,

FSy
 	 FBy �

∂
∂t�CV

 Vy dV 	 �
CS

 Vy V � dA

� 0(2) � 0(1)

 ρ   ρ ð4:18bÞ

Assumption: (2) Negligible body forces.

Then

0 5 V1tð2ρ1V1nAÞ1V2tðρ2V2nAÞ
or, using Eq. 13.45a

V1t 5 V2t 5 Vt

Hence, we have proved that the oblique shock has no effect on the velocity component
parallel to the shock (a result that is perhaps not surprising). The momentum equation
for the normal, x direction is

FSx
 	 FBx �

∂
∂t�CV

 Vx dV 	 �
CS

 Vx V � dA

� 0(2) � 0(1)

 ρ   ρ ð4:18aÞ

For our control volume we obtain

p1A2 p2A 5 V1nð2ρ1V1nAÞ1V2nðρ2V2nAÞ
or, again using Eq. 13.45a,

p1 1 ρ1V
2
1n

5 p2 1 ρ2V
2
2n

ð13:45bÞ
The first law of thermodynamics is

Q � Ws � Wshear � Wother �
∂
∂t�CV

 e dV 	 �
CS

 (e 	 pv) V � dA

� 0(4) � 0(5) � 0(5) � 0(5)  � 0(1)

 ρ  ρ ð4:56Þ

where

e � u 	 	 gz

� 0(6)
V 2

2

Assumptions: (4) Adiabatic flow.
(5) No work terms.
(6) Negligible gravitational effect.

For our control volume we obtain

0 5 u1 1 p1v1 1
V2

1

2

� �
ð2ρ1V1n AÞ1 u2 1 p2v2 1

V2
2

2

� �
ðρ2V2nAÞ
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(Remember that v here represents the specific volume.) This can be simplified by
using h � u1 pv, and continuity (Eq. 13.45a),

h1 1
V2

1

2
5 h2 1

V2
2

2

But each velocity can be replaced by its Pythagorean sum, so

h1 1
V2

1n
1V2

1t

2
5 h2 1

V2
2n
1V2

2t

2

We have already learned that the tangential velocity is constant, V1t 5 V2t 5 Vt, so
the first law simplifies to

h1 1
V2

1n

2
5 h2 1

V2
2n

2
ð13:45cÞ

Finally, the second law of thermodynamics is

Q
A

∂
∂t �CV

 s dV 	 �
CS

 s V � dA 
 �
CS

dA( )
� 0(1) � 0(4)

1
T

ρρ ð4:58Þ

The shock is irreversible, so Eq. 4.58 for our control volume is

s1ð2ρ1V1nAÞ1 s2ðρ2V2nAÞ. 0

and, again using continuity,

s2 . s1 ð13:45dÞ

The continuity and momentum equations, and the first and second laws of thermo-
dynamics, for an oblique shock, are given by Eqs. 13.45a through 13.45d, respectively.
Examination of these equations shows that they are identical to the corresponding
equations for a normal shock we derived is Section 13.3. Equations 13.11a through
13.11d, except V1 and V2, are replaced with normal velocity components V1n and V2n ,
respectively! Hence, we can use all of the concepts and equations of Section 13.3 for
normal shocks, as long as we replace the velocities with their normal components
only. The normal velocity components are given by

V1n 5 V1 sin β ð13:46aÞ

and

V2n 5 V2 sinðβ2 θÞ ð13:46bÞ

The corresponding Mach numbers are

M1n 5
V1n

c1
5 M1 sin β ð13:47aÞ

and

M2n 5
V2n

c2
5 M2 sinðβ2 θÞ ð13:47bÞ

The oblique shock equations for an ideal gas with constant specific heats are obtained
directly from Eqs. 13.20:
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M2
2n
5

M2
1n
1

2

k2 1
2k

k2 1
M2

1n
2 1

ð13:48aÞ

p02
p01

5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

2
664

3
775
k=ðk21Þ

2k

k1 1
M2

1n
2

k2 1

k1 1

� �1=ðk21Þ ð13:48bÞ

T2

T1
5

11
k2 1

2
M2

1n

� �
kM2

1n
2

k2 1

2

� �
k1 1

2

� �2

M2
1n

ð13:48cÞ

p2
p1

5
2k

k1 1
M2

1n
2

k2 1

k1 1
ð13:48dÞ

ρ2
ρ1

5
V1n

V2n

5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

ð13:48eÞ

Equations 13.48, along with Eqs. 13.46 and 13.47, can be used to analyze oblique
shock problems. Appendix E.5 lists flow functions for M2n and property ratios
p02=p01 ; T2=T1; p2=p1; and ρ2=ρ1 (V1/V2) in terms of M1n for oblique-shock flow of an
ideal gas. A table of values of these property ratios is presented for air (k 5 1.4) for a
limited range of Mach numbers. The associated Excel workbook, Oblique-Shock
Relations, can be used to print a larger table of values for air and other ideal gases. In
essence, as demonstrated in Example 13.11, an oblique shock problem can be ana-
lyzed as an equivalent normal shock problem. The reader is urged to download the
normal shock Excel add-ins from the Web site; they apply to these equations as well
as Eqs. 13.20 for a normal shock.

Example 13.11 COMPARISON OF NORMAL AND OBLIQUE SHOCKS

Air at 22�C and 100 kPa is traveling at a speed of 1650 m/s. Find the pressure, temperature, and speed after the air
experiences a normal shock. Compare with the pressure, temperature, and speed (and find the deflection angle θ) if
the air instead experiences an oblique shock at angle β 5 30�.

Given: Air flow with:

p1 5 100 kPa
T1 522�C
V1 5 1650 m=s

Find: Downstream pressure, temperature, and speed if it experiences (a) a normal shock and (b) an oblique shock
at angle β 5 30�. Also find the deflection angle θ.
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Solution:
(a) Normal shock

First compute the speed of sound,

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 271 K3

kg�m
s2 �N

s
5 330 m=s

Then the upstream Mach number is

M1 5
V1

c1
5

1650 m=s

330 m=s
5 5:0

From the normal-shock flow functions, Eqs. 13.20, at M1 5 5.0

M1 M2 p2/p1 T2/T1 V2/V1

5.0 0.4152 29.00 5.800 0.2000

From these data

T2 5 5:800T1 5 ð5:800Þ271 K 5 1572 K 5 1299�C ß
T2

p2 5 29:00p1 5 ð29:00Þ100 kPa 5 2:9MPa ß
p2

V2 5 0:200V1 5 ð0:200Þ1650 m=s 5 330 m=s ß
V2

(b) Oblique shock

First compute the normal and tangential components of velocity,

V1n 5 V1 sin β 5 1650 m=s3 sin 30� 5 825 m=s
V1t 5 V1 cos β 5 1650 m=s3 cos 30� 5 1429 m=s

Then the upstream normal Mach number is

M1n 5
V1n

c1
5

825 m=s

330 m=s
5 2:5

From the oblique-shock flow functions, Eqs. 13.48, at M1n 5 2:5

M1n
M2n

p2/p1 T2/T1 V2n
/V1n

2.5 0.5130 7.125 2.138 0.300

From these data

T2 5 2:138T1 5 ð2:138Þ271 K 5 579 K 5 306�C ß
T2

p2 5 7:125p1 5 ð7:125Þ100 kPa 5 712:5 kPa ß
p2

V2n 5 0:300V1n 5 ð0:300Þ825 m=s 5 247:5m=s

V2t 5 V1t 5 1429 m=s ß
V2

The downstream velocity is given by the Pythagorean sum of the velocity components,

V2 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV2

2n
1V2

2t
Þ

q
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð247:52 1 14292Þ

q
m=s 5 1450 m=s

Note that

c2 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT2

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K579 K3

kg�m
s2 �N 5 482 m=s

s
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We can gain further insight into oblique shock behavior by combining some of our
earlier equations to relate the deflection angle θ, the Mach number M1, and the shock
angle β. From the oblique shock geometry of Fig. 13.28b,

V1n

V2n

5
V1t tan β

V2t tanðβ2 θÞ 5
tan β

tanðβ2 θÞ

We can also relate the two normal velocities from Eq. 13.48e,

V1n

V2n

5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

ð13:48eÞ

Equating the two expressions for the normal velocity ratio, we have

V1n

V2n

5
tan β

tanðβ2 θÞ 5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

and

tanðβ2 θÞ 5 tan β
ðk1 1Þ

2
M2

1n

11
k2 1

2
M2

1n

� �

so that the downstream Mach number is

M2 5
V2

c2
5

1450 m=s

482 m=s
5 3:01

Although the downstream normal Mach number must be subsonic, the actual
downstream Mach number could be subsonic or supersonic (as in this case).

The deflection angle can be obtained from Eq. 13.46b

V2n 5 V2 sinðβ2 θÞ
or

θ 5 β2 sin21 V2n

V2

0
@

1
A 5 30� 2 sin21 247:5

1450

0
@

1
A

5 30� 2 9:8� 5 20:2� ß
θ

This Example illustrates:ü That an oblique shock involves
deflection of the flow through angle θ.

ü Use of normal shock functions for
solution of oblique shock problems.

ü The important result that for a given
supersonic flow an oblique shock
will always be weaker than a normal
shock, because M1n ,M1.

ü That while M2n , 1 always, M2 can
be subsonic or supersonic (as in this
case).

The Excel workbook for oblique
shocks is convenient for perform-

ing these calculations. (Alternatively,
the normal shock relations Excel add-
ins, available on the Web site, are useful
for these calculations.)
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Finally, if we use M1n 5 M1 sin β in this expression and further simplify, we obtain
(after using a trigonometric identity and more algebra)

tan θ 5
2 cot βðM2

1 sin
2 β2 1Þ

M2
1ðk1 cos 2βÞ1 2

ð13:49Þ

Equation 13.49 relates the deflection angle θ to the incoming Mach number M1 and
the oblique shock angle β. For a given Mach number, we can compute θ as a function
of β, as shown in Fig. 13.29 for air (k 5 1.4).

Appendix E.5 presents a table of values of deflection angle θ as a function of Mach
number M1 and oblique shock angle β for air (k5 1.4) for a limited range of
Mach numbers. The associated Excel workbook, Oblique-Shock Relations, can be
used to print a larger table of values for air and other ideal gases. The reader is urged
to download the oblique shock Excel add-in from the Web site; it can be used for
solving Eq. 13.49 for the deflection angle θ, oblique shock β, or M1.

We should note that we used M1 and shock angle β to compute θ, but in reality the
causality is the reverse: it is the deflection θ caused by an object such as the surface of
an airplane wing that causes an oblique shock at angle β. We can draw some inter-
esting conclusions from Fig. 13.29:

� For a given Mach number and deflection angle, there are generally two possible
oblique shock angles—we could generate a weak shock (smaller β value, and hence,
smaller normal Mach number, M1n) or a strong shock (larger β value, and hence,
larger normal Mach number). In most cases the weak shock appears (exceptions
include situations where the downstream pressure is forced to take on a large value
as caused by, for example, an obstruction).

� For a given Mach number, there is a maximum deflection angle. For example, for
air (k5 1.4), ifM1 5 3, the maximum deflection angle is θmax 	 34�. Any attempt to
deflect the flow at an angle θ. θmax would cause a detached normal shock to form
instead of an oblique shock.

� For zero deflection (θ-0), the weak shock becomes a Mach wave and β-α 5
sin21ð1=M1Þ.
Figure 13.29 can be used to explain the phenomena shown in Fig. 13.27. If an

airplane (or airplane wing), causing deflection θ, accelerates from subsonic through
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Fig. 13.29 Oblique shock deflection angle.
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supersonic speed, we can plot the airplane’s progress on Fig. 13.29 as a horizontal line
from right to left, through lines of increasing Mach number. For example, for θ 5 10�,
we obtain the following results: AsM1 increases from subsonic through about 1.4 there
is no oblique shock solution—we instead either have no shock (subsonic flow) or a
detached normal shock; at some Mach number the normal shock first attaches and
becomes an oblique shock (Problem 13.187 shows that for θ 5 10�, the normal shock
first attaches and becomes oblique at M1 	 1.42, with β 	 67�); as M1 increases from
1.6 through 1.8, 2.0, 2.5, etc., toward infinity, from Fig. 13.29, β 	 51�, 44�, 39�, 32�,
toward 12�, respectively—the oblique shock angle progressively decreases, as we saw
in Fig. 13.27.

A problem involving oblique shocks is solved in Example 13.12.

Example 13.12 OBLIQUE SHOCKS ON AN AIRFOIL

An airplane travels at a speed of 600 m/s in air at 4�C and 100 kPa. The airplane’s airfoil has a sharp leading edge
with included angle δ5 6�, and an angle of attack α5 1�. Find the pressures on the upper and lower surfaces of the
airfoil immediately after the leading edge.

Given: Air flow over sharp leading edge with:

p1 5 100 kPa δ 5 6�

T1 5 4�C α 5 1�

V1 5 600 m/s

Find: Pressure on upper and lower surfaces.

Solution:
For an angle of attack of 1� of an airfoil with leading edge angle 6�, the deflection
angles are θu 5 2� and θl 5 4� as shown.

(a) Upper surface

First compute the speed of sound,

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 277 K3

kg�m
s2 �N

s
5 334 m=s

Then the upstream Mach number is

M1 5
V1

c1
5

600 m=s

334 m=s
5 1:80

For M1 5 1.80 and θu 5 2�, we obtain βu from

tan θu 5
2 cot βuðM2

1 sin
2βu 2 1Þ

M2
1ðk1 cos 2βuÞ1 2

ð13:49Þ

This can be solved for βu using manual iteration or interpolation, or by using, for example, Excel’s Goal Seek
function,

βu 5 35:5�

Then we can find M1nðupperÞ ,

M1nðupperÞ 5 M1 sin βu 5 1:803 sin 35:5� 5 1:045

The normal Mach number for the upper oblique shock is close to one—the shock is quite weak.

βu

βl
l

θu = 2°

θ  = 4°
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Isentropic Expansion Waves

Oblique shock waves occur when a flow is suddenly compressed as it is deflected. We
can ask ourselves what happens if we gradually redirect a supersonic flow, for
example, along a curved surface. The answer is that we may generate isentropic
compression or expansion waves, as illustrated schematically in Figs. 13.30a and
13.30b, respectively. From Fig. 13.30a we see that a series of compression waves will
eventually converge, and their cumulative effect will eventually generate an oblique
shock not far from the curved surface. While compression waves do occur, they
are not of great interest because the oblique shocks they lead to usually dominate the
aerodynamics—at most the waves are a local phenomenon. On the other hand, as
shown in Fig. 13.30b, expansion waves in series are divergent and so do not coalesce.
Figure 13.30c shows expansion around a sharp-edged corner.

We wish to analyze these isentropic waves to obtain a relation between the
deflection angle and the Mach number. First we note that each wave is a Mach wave,
so is at angle α 5 sin21ð1=MÞ, where M is the Mach number immediately before the
wave. Compression waves are convergent because the wave angle α increases as
the Mach number decreases. On the other hand, expansion waves are divergent
because as the flow expands the Mach number increases, decreasing the Mach angle.

From the oblique-shock pressure ratio, Eqs. 13.48d, at M1nðupperÞ 5 1:045,

p2ðupperÞ
p1

5
2k

k1 1
M2

1nðupperÞ 2
k2 1

k1 1
5

23 1:4

ð1:41 1Þ ð1:045Þ2 2 ð1:42 1Þ
ð1:41 1Þ 5 1:11

Hence,

p2ðupperÞ 5 1:11 p1 5 ð1:11Þ100 kPa 5 111 kPa ß

p2ðupperÞ

(b) Lower surface

For M1 5 1.80 and θl 5 4�, we obtain βl from

tan θl 5
2 cot βlðM2

1 sin
2 βl 2 1Þ

M2
1ðk1 cos 2βlÞ1 2

ð13:49Þ

and find

βl 5 37:4�

Then we can find M1nðlowerÞ ,

M1nðlowerÞ 5 M1 sin βl 5 1:803 sin 37:4� 5 1:093

The normal Mach number for the lower oblique shock is also close to one.
From the oblique-shock pressure ratio, Eq. 13.48d, at M1nðlowerÞ 5 1:093,

p2ðlowerÞ
p1

5
2k

k1 1
M2

1nðlowerÞ 2
k2 1

k1 1
5

23 1:4

ð1:41 1Þ ð1:093Þ2 2 ð1:42 1Þ
ð1:41 1Þ 5 1:23

Hence,

p2ðlowerÞ 5 1:23 p1 5 ð1:23Þ100 kPa 5 123 kPa ß

p2ðlowerÞ

This Example illustrates the use of
Eq. 13.49 for obtaining oblique shock
data from the flow deflection.The Excel workbook for oblique

shocks is convenient for
performing these calculations.
(Alternatively, the normal shock rela-
tions and oblique shock relations
Excel add-ins, available on the Web
site, are useful for these calculations.)
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Consider an isentropic wave as shown in Fig. 13.31a. (It happens to be a com-
pression wave, but the analysis that follows applies to both expansion and compres-
sion waves.) The speed changes from V to V1 dV, with deflection dθ. As with the
oblique shock analysis for Fig. 13.28a, it is convenient to orient the xy coordinates
orthogonal to the wave, as shown in Fig. 13.31b. For this infinitesimal control volume,
we can write the basic equations (continuity, momentum, and the first and second laws
of thermodynamics). Comparing the isentropic wave control volume of Fig. 13.31b to
the control volume for an oblique shock shown in Fig. 13.28, we see that the control
volumes have similar features. However, an isentropic wave differs from an oblique
shock wave in two important ways:

� The wave angle is α 5 sin21ð1=MÞ, instead of angle β for the oblique shock.

� The changes in velocity and in density, pressure, etc., and the deflection angle, are
all infinitesimals.

The second factor is the reason that the flow, which is adiabatic, is isentropic.
With these two differences in mind we repeat the analysis that we performed for

the oblique shock. The continuity equation is

5 0ð1Þ
@

@t

Z
CV

ρ dV---1
Z

CS

ρ~V �d~A 5 0 ð4:12Þ

Assumption: (1) Steady flow.

Then

f2ρV sin α Ag1 fðρ1 dρÞðV1 dVÞ sinðα2 dθÞAg 5 0

or

ρV sin α 5 ðρ1 dρÞðV1 dVÞ sinðα2 dθÞ ð13:50Þ
Next we consider the momentum equation for motion normal and tangent to the
wave. We look first at the tangential, y component

FSy
 	 FBy �

∂
∂t�CV

 Vy dV 	 �
CS

 Vy V � dA

� 0(2) � 0(1)

 ρ  ρu ð4:18bÞ

Assumption: (2) Negligible body forces.

Then

0 5 V cos αf2ρV sin αAg1 ðV1 dVÞ cosðα2 dθÞfðρ1 dθÞðV1 dVÞ sinðα2 dθÞAg

(a) Isentropic compression waves (b) Isentropic expansion waves (c) Isentropic expansion at a corner

Fig. 13.30 Isentropic compression and expansion waves.
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or, using continuity (Eq. 13.50),

V cos α 5 ðV1 dVÞ cosðα2 dθÞ
Expanding and simplifying [using the facts that, to first order, in the limit as
dθ-0; cosðdθÞ-1, and sinðdθÞ-dθ], we obtain

dθ 52
dV

V tan α

But sin α 5 1=M, so tan α 5 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p
, and

dθ 52
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p dV

V
ð13:51Þ

We skip the analysis of the normal, x component of momentum, and move on to the
first law of thermodynamics, which is

Q � Ws � Wshear � Wother �
∂
∂t�CV

 e dV 	 �
CS

 (e 	 pv) V � dA

� 0(4) � 0(5) � 0(5) � 0(5)  � 0(1)

 ρ  ρ ð4:56Þ

where

e � u 	 	 gz

� 0(6)
V 2

2

Assumptions: (4) Adiabatic flow.
(5) No work terms.
(6) Negligible gravitational effect.

For our control volume we obtain (using h � u1 pv, where v represents the specific
volume)

0 5

�
h1

V2

2

��
2ρV sin αA

�

1

�
ðh1 dhÞ1 ðV1 dVÞ2

2

�
fðρ1 dρÞðV1 dVÞsinðα2 dθÞAg

This can be simplified, using continuity (Eq. 13.50), to

h1
V2

2
5 ðh1 dhÞ1 ðV1 dVÞ2

2

(a) Isentropic wave (b) Isentropic wave in wave coordinates

V
V + dV

d V

V + dV

y

x

α

α
θ

CV

 – dα θ

Fig. 13.31 Isentropic wave control volume.

13.7 Oblique Shocks and Expansion Waves 761



Expanding and simplifying, in the limit to first order, we obtain

dh 52V dV

If we confine ourselves to ideal gases, dh 5 cp dT, so

cp dT 52V dV ð13:52Þ

Equation 13.52 relates differential changes in temperature and velocity. We can
obtain a relation between M and V using V 5 Mc 5 M

ffiffiffiffiffiffiffiffiffiffi
kRT

p
. Differentiating (and

dividing the left side by V and the right by M
ffiffiffiffiffiffiffiffiffiffi
kRT

p
),

dV

V
5

dM

M
1

1

2

dT

T

Eliminating dT using Eq. 13.52,

dV

V
5

dM

M
2

1

2

V dV

cpT
5

dM

M
2

1

2

dV

V

V2

cpT

0
@

1
A 5

dM

M
2

1

2

dV

V

M2c2

cpT

0
@

1
A

dV

V
5

dM

M
2

1

2

dV

V

M2 kRT

cpT

0
@

1
A 5

dM

M
2

1

2

dV

V
M2 ðk2 1Þ

Hence,

dV

V
5

2

21M2ðk2 1Þ
dM

M
ð13:53Þ

Finally, combining Eqs. 13.51 and 13.53,

dθ 52
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p

21M2ðk2 1Þ
dM

M
ð13:54Þ

We will generally apply Eq. 13.54 to expansion waves, for which dθ is negative, so it is
convenient to change variables, dω �2dθ. Equation 13.54 relates the differential change
in Mach number through an isentropic wave to the deflection angle. We can integrate
this to obtain the deflection as a function of Mach number, to within a constant of
integration. We could integrate Eq. 13.54 between the initial and final Mach numbers
of a given flow, but it will be more convenient to integrate from a reference state, the
critical speed (M5 1) to Mach number M, with ω arbitrarily set to zero at M5 1,

Z ω

0

dω 5

Z M

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p

21M2ðk2 1Þ
dM

M

leading to the Prandtl-Meyer supersonic expansion function,

ω 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
ðM2 2 1Þ

r !
2 tan21ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p
Þ ð13:55Þ

We use Eq. 13.55 to relate the total deflection caused by isentropic expansion fromM1

to M2,

Deflection 5 ω2 2ω1 5 ωðM2Þ2ωðM1Þ
Appendix E.6 presents a table of values of the Prandtl-Meyer supersonic expansion
function, ω, as a function of Mach number M for air (k 5 1.4) for a limited range of
Mach numbers. The associated Excel workbook, Isentropic Expansion Wave
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Relations, can be used to print a larger table of values for air and other ideal gases. The
reader is urged to download the isentropic expansion wave relations Excel add-in from
the Web site; it can be used for solving Eq. 13.55 for the Prandtl-Meyer expansion
function ω, or M.

We have already indicated that the flow is isentropic. We can verify this by using
the second law of thermodynamics,

Q
A

∂
∂t�CV

 s dV 	 �
CS

 s V � dA 
 �
CS

dA( )
� 0(1) � 0(4)

1
T

 ρ   ρ ð4:58Þ

The wave is reversible, so Eq. 4.58 for our control volume is

sf2ρV sin αAg1 ðs1 dsÞfðρ1 dρÞðV1 dVÞsinðα2 dθÞAg 5 0

and using continuity (Eq. 13.50), this reduces to

ds 5 0

The flow is demonstrated to be isentropic. Hence, stagnation properties are constant
and the local isentropic stagnation property equations (Section 12.3) will be useful
here.

p0
p

5 11
k2 1

2
M2

� �k=ðk21Þ
ð12:21aÞ

T0

T
5 11

k2 1

2
M2 ð12:21bÞ

ρ0
ρ

5 11
k2 1

2
M2

� �1=ðk21Þ
ð12:21cÞ

Equation 13.55, together with Eqs. 12.21a through 12.21c, can be used for analyzing
isentropic expansion or compression waves. (We never got around to deriving the
normal component of momentum—the above analysis provides a complete set of
equations.) A problem involving expansion waves is solved in Example 13.13.

Example 13.13 EXPANSION WAVE ON AN AIRFOIL

The airplane of Example 13.12 (speed of 600 m/s in air at 4�C and 100 kPa, with a sharp leading edge with included
angle δ 5 6�) now has an angle of attack α 5 6�. Find the pressures on the upper and lower surfaces of the airfoil
immediately after the leading edge.

Given: Air flow over sharp leading edge with:

p1 5 100 kPa δ 5 63

T1 5 43C α 5 63

V1 5 600m=s

Find: Pressures on upper and lower surfaces.

Solution:
For an angle of attack of 6� of an airfoil with leading edge angle 6�, the
deflection angles are θu 5 3� and θl 5 9� as shown.

θl = 9°

θu = 3°
βl
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(a) Upper surface—isentropic expansion

First compute the speed of sound,

c1 5
ffiffiffiffiffiffiffiffiffiffiffiffi
kRT1

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:43 287

N�m
kg�K 3 277 K3

kg�m
s2 �N

s
5 334 m=s

Then the upstream Mach number is

M1 5
V1

c1
5

600 m=s

334 m=s
5 1:80

For M1 5 1.80, the Prandtl-Meyer function ω1 is obtained from

ω1 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
ðM2

1 2 1Þ
r !

2 tan21ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 2 1
q

Þ ð13:55Þ

so

ω1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41 1

1:42 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:42 1

1:41 1
ð1:802 2 1Þ

r !
2 tan21ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:802 2 1

p
Þ 5 20:7�

The Prandtl-Meyer function value on the upper surface, ωu, is then

ωu 5 ω1 1 θu 5 20:7� 1 3� 5 23:7�

For this Prandtl-Meyer function value, M2ðupperÞ is obtained from Eq. 13.55:

ωu 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
M2

2ðupperÞ
2 1

� 	r !
2 tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

2ðupperÞ
2 1Þ

q� 	

This can be solved using manual iteration or interpolation, or by using, for example, Excel’s Goal Seek function,

M2ðupperÞ 5 1:90

Finally, we can find p2ðupperÞ from repeated use of Eq. 12.21a,

p2ðupperÞ 5
p2ðupperÞ
p0

p0
p1

p1 5

��
11

k2 1

2
M2

1

�k=ðk21Þ��
11

k2 1

2
M2

2ðupperÞ

�k=ðk21Þ�
p1

5 f½11 ð0:2Þ1:802�3:5=½11 ð0:2Þ1:902�3:5g3 100 kPa

so

p2ðupperÞ 5 85:8 kPa ß

p2ðupperÞ

(b) Lower surface—oblique shock

For M1 5 1.80 and θ1 5 9�, we obtain βl from

tan θl 5
2 cot βlðM2

1 sin
2 βl 2 1Þ

M2
1ðk1 cos 2βlÞ1 2

ð13:49Þ

and find

βl 5 42:8�

Then we can find M1nðlowerÞ ,

M1nðlowerÞ 5 M1 sin βl 5 1:803 sin 42:8� 5 1:223
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Example 13.13 hints at the approach we can use to obtain lift and drag coefficients
of a supersonic wing, illustrated in Example 13.14.

From the oblique-shock pressure ratio, Eq. 13.48d, at M1nðlowerÞ 5 1:223,

p2ðlowerÞ
p1

5
2k

k1 1
M2

1nðlowerÞ 2
k2 1

k1 1
5

23 1:4

ð1:41 1Þ ð1:223Þ
2 2

ð1:42 1Þ
ð1:41 1Þ 5 1:58

Hence,

p2ðlowerÞ 5 1:58p1 5 ð1:58Þ100 kPa

5 158 kPa ß

p2ðlowerÞ

This Example illustrates the use of
Eq. 13.55 and the isentropic stagnation
relations for analysis of isentropic
expansion waves and the use of Eq.
13.49 for an oblique shock.The Excel workbooks for isen-

tropic expansion waves and
oblique shocks are convenient for
performing these calculations.
(Alternatively, the normal and oblique
shock relations, and the isentropic
expansion wave Excel add-ins,
available on the Web site, are useful
for these calculations.)

Example 13.14 LIFT AND DRAG COEFFICIENTS OF A SUPERSONIC AIRFOIL

The airplane of Example 13.13 has a symmetric diamond cross section (sharp leading and trailing edges of angle
δ 5 6�). For a speed of 600 m/s in air at 4�C and 100 kPa, find the pressure distribution on the upper and lower
surfaces, and the lift and drag coefficients for an angle of attack of α 5 6�.

Given: Air flow over symmetric section shown with:

p1 5 100 kPa δ 5 6�

T1 5 4�C α 5 6�

V1 5 600 m=s

Find: Pressure distribution, and lift and drag coefficients.

Solution:
We first need to obtain the pressures on the four surfaces of the airfoil. We have already obtained in Example 13.13
the data for Region 2u and Region 2l:

M2ðupperÞ 5 1:90 p2ðupperÞ 5 85:8 kPa ß

p2ðupperÞ

M2ðlowerÞ 5 1:489 p2ðlowerÞ 5 158 kPa ß

p2ðlowerÞ

(Note that M2ðlowerÞ 5 1:489 is obtained from M1n 5 1:223 in Example 13.13 by direct use of Eqs. 13.48a and 13.47b.)
In addition, for Region 2u, we found the Prandtl-Meyer function to be 23.7�. Hence, for Region 3u, we can find the
value of the Prandtl-Meyer function from the deflection angle. For 6� leading and trailing edges, the airfoil angles at
the upper and lower surfaces are each 174�. Hence, at the upper and lower surfaces the deflections are each 6�.

For Region 3u,

ω3ðupperÞ 5 ω2ðupperÞ 1 θ 5 23:7� 1 6� 5 29:7�

Region 2u

Region 3u

Region 3lRegion 2l
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For this Prandtl-Meyer function value, M3ðupperÞ is obtained from Eq. 13.55,

ω3ðupperÞ 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
M2

3ðupperÞ
2 1

� 	r !
2 tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

3ðupperÞ
2 1

q� 	

This can be solved using manual iteration or interpolation, or by using, for example, Excel’s Goal Seek function,

M3ðupperÞ 5 2:12

Finally, we can find p3ðupperÞ from repeated use of Eq. 12.21a,

p3ðupperÞ 5
p3ðupperÞ
p0

p0
p1

p1 5

��
11

k2 1

2
M2

1

�k=ðk21Þ��
11

k2 1

2
M2

3ðupperÞ

�k=ðk21Þ�
p1

5 11 ð0:2Þ1:802 �3:5
= 11 ð0:2Þ2:122 �3:5n o

3 100 kPa

so

p3ðupperÞ 5 60:9 kPa ß

p3ðupperÞ

For Region 3l, we first need to find the Prandtl-Meyer function in the previous region, Region 2l. For
M2ðlowerÞ 5 1:489, we find from Eq. 13.55,

ω2ðlowerÞ 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1

�
M2

2ðlowerÞ 2 1
	r !

2 tan21
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
2ðlowerÞ

2 1
q 	

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41 1

1:42 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:42 1

1:41 1
ð1:4892 2 1Þ

r !
2 tan21ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4892 2 1

p
Þ

so

ω2ðlowerÞ 5 11:58�

Hence, for Region 3l,

ω3ðlowerÞ 5 ω2ðlowerÞ 1 θ 5 11:58� 1 6� 5 17:6�

and M3ðlowerÞ is obtained from Eq. 13.55,

ω3ðlowerÞ 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1

�
M2

3ðlowerÞ
2 1
	r !

2 tan21
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
3ðlowerÞ

2 1
q 	

Once again, this can be solved using manual iteration or interpolation, or by using, for example, Excel’s Goal Seek
function,

M3ðlowerÞ 5 1:693

Finally, we can find p3ðlowerÞ from repeated use of Eq. 12.21a,

p3ðlowerÞ 5
p3ðlowerÞ
p02

p02
p2ðlowerÞ

p2ðlowerÞ 5

��
11

k2 1

2
M2

2ðlowerÞ

�k=ðk21Þ��
11

k2 1

2
M2

3ðlowerÞ

�k=ðk21Þ�
p2ðlowerÞ

5 f 11 ð0:2Þ1:4892 �3:5
= 11 ð0:2Þ1:6932 �3:5g3 158 kPa

Hence,

p3ðlowerÞ 5 117 kPa ß

p3ðlowerÞ
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(Note that we cannot use p0, the stagnation pressure of the incoming flow for computing this pressure, because the
flow experienced a shock before reaching the lower surface.)

To compute the lift and drag coefficients, we need the lift and drag force.
First we find the vertical and horizontal forces with respect to coordinates orthogonal to the airfoil.
The vertical force (assuming the chord c and span s are in meters) is given by

FV 5 s
c

2
f(p2ðlowerÞ 1 p3ðlowerÞ Þ2 (p2ðlowerÞ 1 p3ðupperÞ Þg

FV 5 sðmÞ cðmÞ
2

fð1581 117Þ2 ð85:81 60:9ÞgðkPaÞ 5 64:2 sc kN

and the horizontal force by

FH 5 s
c

2
tan 3�f(p2ðupperÞ 1 p2ðlowerÞ Þ2 (p3ðupperÞ 1 p3ðlowerÞ Þg

FH 5 sðmÞ cðmÞ
2

tan 3�fð85:81 158Þ2 ð60:91 117ÞgðkPaÞ 5 1:73 sc kN

The lift and drag forces (per unit plan area) are then

FL 5 FV cos 6� 2FH sin 6� 5 63:6 sc kN

and

FD 5 FV sin 6� 1FH cos 6� 5 8:42 sc kN

The lift and drag coefficients require the air density,

ρ 5
p

RT
5 1003 103

N

m2
3

1

287

kg�K
N�m 3

1

277 K
5 1:258 kg=m3

The lift coefficient is then

CL 5
FL

1

2
ρV2sc

5 23 63:63 103 N3
1

1:258

m3

kg

3
1

ð600Þ2
s2

m2
3

kg�m
N�s2 5 0:281 ß

CL

and the drag coefficient is

CD 5
FD

1

2
ρV2sc

5 23 8:423 103 N3
1

1:258

m3

kg

1

ð600Þ2
s2

m2

3
kg�m
N�s2 5 0:037 ß

CD

(Note that instead of using 1
2 ρV

2 in the denominator of the
coefficients, we could have used 1

2 kpM2.) The lift-drag ratio is
approximately 7.6.

p3(lower)

p3(upper)

p2(lower)

p2(upper)

FV

FH

This Example illustrates the use of
oblique shock and isentropic expansion
wave equations to determine the
pressure distribution on an airfoil.ü We did not need to analyze the flow
after the trailing expansion waves
and oblique shock—unlike subsonic
flow, the downstream condition has
no effect on the airfoil.ü Unlike a subsonic flow, a supersonic
flow can generate drag even in the
absence of boundary layers and flow
separation.ü Note that, unlike a subsonic flow, a
supersonic flow can negotiate a
sharp corner, even if we include the
effect of a viscous boundary layer
(as we have not done here). This is
because an expanding supersonic
flow has a negative pressuregradient, i.e., it is not adverse!

ü An actual airfoil is not likely to have
planar surfaces, so more sophisti-
cated techniques than we can cover
here are needed. However, this
example illustrates the kind of
results to be expected whenanalyzing a supersonic airfoil.The Excel workbooks for oblique

shocks and isentropic expansion
waves are convenient for performing
these calculations. (Alternatively, the
normal and oblique shock relations,
and the isentropic expansion wave
Excel add-ins, available on the Web
site, are useful for these calculations.)
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*This topic applies to sections that may be omitted without loss of continuity in the text material.

13.8 Summary and Useful Equations
In this chapter, we:

ü Developed a set of governing equations (continuity, the momentum equation, the first and second laws of thermodynamics, and
equations of state) for one-dimensional flow of a compressible fluid (in particular an ideal gas) as it may be affected by area
change, friction, heat exchange, and normal shocks.

ü Simplified these equations for isentropic flow affected only by area change, and developed isentropic relations for analyzing
such flows.

ü Simplified the equations for flow through a normal shock, and developed normal-shock relations for analyzing such flows.
ü Simplified the equations for flow affected only by friction, and developed the Fanno-line relations for analyzing such flows.
ü Simplified the equations for flow affected only by heat exchange, and developed the Rayleigh-line relations for analyzing such

flows.
ü Introduced some basic concepts of two-dimensional flow: oblique shocks and expansion waves.

While investigating the above flows we developed insight into some interesting compressible flow phenomena, including:

ü Use of Ts plots in visualizing flow behavior.
ü Flow through, and necessary shape of, subsonic and supersonic nozzles and diffusers.
ü The phenomenon of choked flow in converging nozzles and C-D nozzles, and the circumstances under which shock waves develop

in C-D nozzles.
ü *The phenomena of choked flow in flows with friction and flows with heat exchange.
ü Computation of pressures and lift and drag coefficients for a supersonic airfoil.

Note: Most of the Useful Equations in the table below have a number of constraints or limitations—be sure to refer
to their page numbers for details! In particular, most of them assume an ideal gas, with constant specific heats.

Useful Equations

One-dimensional flow equations:
ρ1V1A1 5 ρ2V2A2 5 ρVA 5 �m 5 constant

Rx 1 p1A1 2 p2A2 5 �mV2 2
�mV1

δQ
dm

1 h1 1
V2

1

2
5 h2 1

V2
2

2

�mðs2 2 s1Þ$
Z
CS

1

T

_Q

A

 !
dA

p 5 ρRT

Δh 5 h2 2 h1 5 cpΔT 5 cpðT2 2T1Þ

Δs 5 s2 2 s1 5 cp ln
T2

T1

2R ln
p2
p1

(13.1a)

(13.1b)

(13.1c)

(13.1d)

(13.1e)

(13.1f)

(13.1g)

Page 694

Isentropic relations:
[Note: These equations are a little cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

p0
p

5 f ðMÞ

T0

T
5 f ðMÞ

ρ0
ρ

5 f ðMÞ

A

A*
5 f ðMÞ

(13.7a)

(13.7b)

(13.7c)

(13.7d)

Page 700

Page 701
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Pressure ratio for choked converging
nozzle, pe/p0|choked:

pe
p0






choked

5
p*

p0
5

2

k1 1

� �k=ðk21Þ
(13.8) Page 706

Mass flow rate for choked converging
nozzle: �m choked 5 Aep0

ffiffiffiffiffiffiffiffiffi
k

RT0

s
2

k1 1

� �ðk11Þ=2ðk21Þ
(13.9a) Page 706

Mass flow rate for choked converging
nozzle (SI units):

�m choked 5 0:04
Aep0ffiffiffiffiffiffi
T0

p (13.9b) Page 706

Mass flow rate for choked converging
nozzle (English Engineering units):

�m choked 5 76:6
Aep0ffiffiffiffiffiffi
T0

p (13.9c) Page 706

Mass flow rate for choked converging-
diverging nozzle: �m choked 5 Atp0

ffiffiffiffiffiffiffiffiffi
k

RT0

s
2

k1 1

� �ðk11Þ=2ðk21Þ
(13.10a) Page 710

Mass flow rate for choked converging-
diverging nozzle (SI units):

�m choked 5 0:04
Atp0ffiffiffiffiffiffi
T0

p (13.10b) Page 711

Mass flow rate for choked converging-
diverging nozzle (English Engineering
units):

�m choked 5 76:6
Atp0ffiffiffiffiffiffi
T0

p (13.10c) Page 711

Normal shock relations:
[Note: These equations are too cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

M2 5 f ðM1Þ
p02
p01

5 f ðM1Þ

T2

T1
5 f ðM1Þ

p2
p1

5 f ðM1Þ

ρ2
ρ1

5
V1

V2
5 f ðM1Þ

(13.20a)

(13.20b)

(13.20c)

(13.20d)

(13.20e)

Page 721

Page 722

Useful relations for determining the
normal shock location in converging-
diverging nozzle:

pe
p01

Ae

At

5
pe
p0e

Ae

Ae*

p02
p01

5
At

Ae

Ae

Ae*

(13.22)

(13.23)

Page 726

Fanno-line relations (friction):
[Note: These equations are too cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

fLmax

Dh

5 f ðMÞ

T

T*
5 f ðMÞ

V

V*
5

ρ*
ρ

5 f ðMÞ

(13.34a)

(13.34b)

(13.34c)

Page 737
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p

p*
5 f ðMÞ

p0
p0*

5 f ðMÞ

(13.34d)

(13.34e)

Isothermal flow relations (friction):
[Note: These equations are too cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

p2
p1

5
ρ2
ρ1

5
V1

V2

5
M1

M2

T02

T01

5 f
M1

M2

� �

fL

Dh

5 f
M1

M2

� �

(13.42a)

(13.42b)

(13.42c)

Page
W-26

Rayleigh-line relations (heat transfer):
[Note: These equations are too cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

p

p*
5 f ðMÞ

T

T*
5 f ðMÞ

ρ*
ρ

5
V

V*
5 f ðMÞ

T0

T*
0

5 f ðMÞ

p0
p*0

5 f ðMÞ

(13.44a)

(13.44b)

(13.44c)

(13.44d)

(13.44e)

Page 747

Page 748

Geometric relations, oblique shock:
M1n 5

V1n

c1
5 M1 sin β

M2n 5
V2n

c2
5 M2 sin ðβ2 θÞ

(13.47a)

(13.47b)

Page 753

Oblique shock relations:
[Note: These equations are too cum-
bersome for practical use by hand. They
are listed (and tabulated and plotted for
air) in Appendix E. You are urged to
download the Excel add-ins from the
Web site for use in computing with these
equations.]

M2n 5 f ðM1nÞ
p02
p01

5 f ðM1nÞ

T2

T1
5 f ðM1nÞ

p2
p1

5 f ðM1nÞ

ρ2
ρ1

5
V1n

V2n

5 f ðM1nÞ

(13.48a)

(13.48b)

(13.48c)

(13.48d)

(13.48e)

Page 754

Relation of β, θ, and M1 for oblique
shock: tan θ 5

2 cot βðM2
1 sin

2 β2 1Þ
M2

1ðk1 cos 2βÞ1 2
(13.49) Page 757

Prandtl-Meyer expansion function, ω:

ω 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
ðM2 2 1Þ

r !

2 tan21ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p
Þ

(13.55) Page 762

770 Chapter 13 Compressible Flow



References
1. HP 48G Series User’s Guide, Hewlett-Packard Company,
Corvallis Division, 1000 N.E. Circle Blvd., Corvallis, OR 97330.
2. Isentropic Calculator (http://www.aoe.vt.edu/aoe3114/calc.
html), William Devenport, Aerospace and Ocean Engineer-
ing, Virginia Polytechnic Institute and State University.
3. Hermann, R., Supersonic Inlet Diffusers. Minneapolis,
MN: Minneapolis-Honeywell Regulator Co., Aeronautical
Division, 1956.
4. Runstadler, P.W., Jr., “Diffuser Data Book,” Creare, Inc.,
Hanover, NH, Technical Note 186, 1975.
5. Seddon, J., and E. L. Goldsmith, Intake Aerodynamics.
New York: American Institute of Aeronautics and
Astronautics, 1985.

6. Shapiro, A. H., The Dynamics and Thermodynamics of
Compressible Fluid Flow, Vol. 1. New York: Ronald Press,
1953.
7. Zucrow, M. J., and J. D. Hoffman, Compressible Flow,
Vol. 1. New York: Wiley, 1976.
8. Baals, D. W., and W. R. Corliss, Wind Tunnels of
NASA. Washington, D.C.: National Aeronautics and Space
Administration, SP-440, 1981.
9. Pope, A., and K. L. Goin,High-Speed Wind Tunnel Testing.
New York: Krieger. 1978.
10. Glass, I.I., “Some Aspects of Shock-Wave Research,”
AIAA J., 25, 2, February 1987, pp. 214�229.

Case Study

The X-43A/Hyper-X Airplane

The X-43A/Hyper-X at M5 7 (CFD image showing pressure
contours). (Courtesy of NASA.)

Superman is faster than a speeding bullet. So how fast
is that? It turns out that the highest speed of a bullet is
about 1500 m/s, or about Mach 4.5 at sea level. Can
humans keep up with Superman? If we’re in orbit we
can (What is the Mach number of the Space Shuttle in
orbit?—it’s a trick question!), because there’s no
drag—once we get up to speed, we can stay there—but
flying at hypersonic speeds (i.e., above aboutM5 5) in
the atmosphere requires tremendous engine thrust
and an engine that can function at all at such speeds. In
2004, an air-breathing X-43A managed to fly at almost
Mach 10, or about 7000 mph. The hypersonic scramjet
engine in this airplane is actually integrated into the
airframe, and the entire lower surface of the vehicle is
shaped to make the engine work. The bulge on the
underside in the figure is the engine. Unlike the tur-
bojet engines used in many jet aircraft, which have fans
and compressors as major components, the scramjet,

amazingly, has no moving parts, so if you were to look
inside it there wouldn’t be much to see! Instead it uses
geometry to develop a shock train that reduces the
speed of the airflow from hypersonic to supersonic
velocities. The scramjet, which is essentially a ramjet
with supersonic combustion, doesn’t need to slow the
flow down to subsonic speeds. The compression ram
on the undersurface of the aircraft slows the flow down
from hypersonic to supersonic speed before it reaches
the engine. It does this by causing a sequence of
oblique shocks (which we discussed in this chapter)
that successively slow the flow down and also increase
the air density. As the supersonic, relatively high-den-
sity air passes through the engine, hydrogen fuel is
injected and combusts, creating tremendous thrust at
the exhaust. Once at hypersonic speed, the combustion
process is self-sustaining.
One of the problems the engineers faced was how

to start the engine. First, the airplane has to be
accelerated above Mach 4 by conventional means (by
a jet engine or rocket, or by piggy-backing another
aircraft), and then the scramjet fuel can be started and
ignited. This sounds simple enough, but the ignition
process has been compared to “lighting a match in a
hurricane”! The solution was to ignite using a mixture
of pyrophoric silane (which auto-ignites when exposed
to air) and hydrogen, then switch to pure hydrogen.
The X-43A/Hyper-X is experimental, but in future we

may expect to see scramjets in military applications
(aircraft and missiles), then possibly in commercial
aircraft. Conceivably, you could live in New York, go to
a meeting in Los Angeles, and be back in New York for
dinner!
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Problems
Isentropic Flow—Area Variation

Most of the problems in this chapter involve computation of
isentropic, Fanno, Rayleigh, normal shock, oblique shock, or
isentropic expansion wave effects. TheWeb site for the text has
associated Excel workbooks for each of these phenomena, and
these are recommended for use while solving the problems (the
Web site also has Excel add-in functions, which the reader is
urged to download and install). To avoid needless duplication,
the computer symbol will only be used next to problems when
Excel has an additional benefit (e.g., for graphing).

13.1 Air is extracted from a large tank in which the tem-
perature and pressure are 70�C and 101 kPa (abs), respec-
tively, through a nozzle. At one location in the nozzle the
static pressure is 25 kPa and the diameter is 15 cm. What is
the mass flow rate? Assume isentropic flow.

13.2 Steam flows steadily and isentropically through a nozzle.
At an upstream section where the speed is negligible, the
temperature and pressure are 900�F and 900 psia. At a section
where the nozzle diameter is 0.188 in., the steam pressure is
600 psia. Determine the speed and Mach number at this sec-
tion and themass flow rate of steam. Sketch the passage shape.

13.3 Steam flows steadily and isentropically through a nozzle.
At an upstream section where the speed is negligible, the
temperature and pressure are 450�C and 6 MPa (abs). At a
section where the nozzle diameter is 2 cm, the steam pres-
sure is 2 MPa (abs). Determine the speed and Mach number
at this section and the mass flow rate of steam. Sketch the
passage shape.

13.4 Nitrogen flows through a diverging section of duct with
A15 0.15 m2 and A25 0.45 m2. If M15 0.7 and p15 450 kPa,
find M2 and p2.

13.5 Nitrogen flows through a diverging section of duct with
A15 0.15 m2 and A25 0.45 m2. If M15 1.7 and T15 30�C,
find M2 and T2.

13.6 At a section in a passage, the pressure is 150 kPa (abs),
the temperature is 10�C, and the speed is 120 m/s. For
isentropic flow of air, determine the Mach number at the
point where the pressure is 50 kPa (abs). Sketch the passage
shape.

13.7 At a section in a passage, the pressure is 30 psia, the
temperature is 100�F, and the speed is 1750 ft/s. At a section
downstream the Mach number is 2.5. Determine the pressure
at this downstream location for isentropic flow of air. Sketch
the passage shape.

13.8 Oxygen flows into an insulated duct with initial condi-
tions of 200 kPa, 420 K, and 200 m/s. The area changes from
A15 0.6 m2 to A25 0.5 m2. Compute M1, p01, and T01

. Is this
duct a nozzle or a diffuser? Calculate the exit conditions
(pressure, temperature, and Mach number) provided that
there are no losses.

13.9 Air is flowing in an adiabatic system at 20 lbm/s. At one
section, the pressure is 30 psia, the temperature is 1200�F,
and the area is 8 in2. At a downstream section, M25 1.2.

Sketch the flow passage. Find the exit area provided the flow
is reversible.

13.10 Air flows isentropically through a converging-diverging
nozzle from a large tank containing air at 250�C. At two
locations where the area is 1 cm2, the static pressures are 200
kPa and 50 kPa. Find the mass flow rate, the throat area, and
the Mach numbers at the two locations.

13.11 Air flows steadily and isentropically through a passage.
At section 1 , where the cross-sectional area is 0.02m2, the air
is at 40.0 kPa (abs), 60�C, and M 5 2.0. At section 2 down-
stream, the speed is 519 m/s. Calculate the Mach number at
section 2 . Sketch the shape of the passage between sections

1 and 2 .

13.12 Air flows steadily and isentropically through a passage
at 150 lbm/s. At the section where the diameter is D 5 3 ft,
M 5 1.75, T 5 32�F, and p 5 25 psia. Determine the speed
and cross-sectional area downstream where T 5 225�F.
Sketch the flow passage.

13.13 Air, at an absolute pressure of 60.0 kPa and27�C, enters a
passage at 486 m/s, where A 5 0.02 m2. At section 2 down-
stream, p5 78.8 kPa (abs). Assuming isentropic flow, calculate
the Mach number at section 2 . Sketch the flow passage.

13.14 Air flows adiabatically through a duct. At the entrance,
the static temperature and pressure are 310 K and 200 kPa,
respectively. At the exit, the static and stagnation tempera-
tures are 294 K and 316 K, respectively, and the static
pressure is 125 kPa. Find (a) the Mach numbers of the flow at
the entrance and exit and (b) the area ratio A2/A1.

13.15 Atmospheric air (101 kPa and 20�C) is drawn into a
receiving pipe via a converging nozzle. The throat cross-sec-
tion diameter is 1 cm. Plot the mass flow rate delivered for the
receiving pipe pressure ranging from 100 kPa down to 5 kPa.

13.16 For isentropic flow of air, at a section in a passage, A5
0.25 m2, p 5 15 kPa (abs), T 5 10�C, and V 5 590 m/s. Find
the Mach number and the mass flow rate. At a section
downstream the temperature is 137�C and the Mach number
is 0.75. Determine the cross-sectional area and pressure at
this downstream location. Sketch the passage shape.

13.17 A passage is designed to expand air isentropically to
atmospheric pressure from a large tank in which properties
are held constant at 40�F and 45 psia. The desired flow rate is
2.25 lbm/s. Assuming the passage is 20 ft long, and that the
Mach number increases linearly with position in the passage,
plot the cross-sectional area and pressure as functions of
position.

13.18 Repeat Problem 13.15 if the converging nozzle is
replaced with a converging-diverging nozzle with an exit
diameter of 2.5 cm (same throat area).

13.19 Air flows isentropically through a converging nozzle
into a receiver where the pressure is 250 kPa (abs). If
the pressure is 350 kPa (abs) and the speed is 150m/s at the
nozzle location where the Mach number is 0.5, determine
the pressure, speed, and Mach number at the nozzle throat.
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13.20 Air flows isentropically through a converging nozzle
into a receiver in which the absolute pressure is 35 psia. The
air enters the nozzle with negligible speed at a pressure of 60
psia and a temperature of 200�F. Determine the mass flow
rate through the nozzle for a throat diameter of 4 in.

13.21 Air flows through a diverging duct. At the entrance to
the duct, the Mach number is 1 and the area is 0.2 m2. At
the exit to the duct, the area is 0.5 m2. What are the two
possible exit Mach numbers for this duct?

13.22 Air is flowing steadily through a series of three tanks.
The first very large tank contains air at 650 kPa and 35�C. Air
flows from it to a second tank through a converging nozzle
with exit area 1 cm2. Finally the air flows from the second tank
to a third very large tank through an identical nozzle. The flow
rate through the two nozzles is the same, and the flow in them
is isentropic. The pressure in the third tank is 65 kPa. Find the
mass flow rate, and the pressure in the second tank.

13.23 Air flowing isentropically through a converging nozzle
discharges to the atmosphere. At the section where the
absolute pressure is 250 kPa, the temperature is 20�C and the
air speed is 200 m/s. Determine the nozzle throat pressure.

13.24 Air flows from a large tank ðp 5 650 kPa ðabsÞ;
T 5 550�CÞ through a converging nozzle, with a throat area
of 600 mm2, and discharges to the atmosphere. Determine
the mass rate of flow for isentropic flow through the nozzle.

13.25 Air flowing isentropically through a converging nozzle
discharges to theatmosphere.Ata section thearea isA5 0.05m2,
T5 3.3�C, and V5 200 m/s. If the flow is just choked, find the
pressure and the Mach number at this location. What is
the throat area? What is the mass flow rate?

13.26 A converging nozzle is connected to a large tank that
contains compressedair at 15�C.Thenozzleexit area is 0.001m2.
The exhaust is discharged to the atmosphere. To obtain a
satisfactory shadow photograph of the flow pattern leaving the
nozzle exit, the pressure in the exit plane must be greater than
325 kPa (gage). What pressure is required in the tank? What
mass flow rate of air must be supplied if the system is to run
continuously? Show static and stagnation state points on a Ts

diagram.

13.27 Air, with p0 5 650 kPa (abs) and T0 5 350 K, flows
isentropically through a converging nozzle. At the section in
the nozzle where the area is 2:63 1023 m2, the Mach number
is 0.5. The nozzle discharges to a back pressure of 270 kPa
(abs). Determine the exit area of the nozzle.

13.28 Airflows througha convergingduct.At the entrance, the
static temperature is 450�R, the static pressure is 45 psia,
the stagnation pressure is 51 psia, and the area is 4 ft2. At the
exit, the area is 3 ft2.Assuming isentropic flow through the duct,
what are the exit temperature and the mass flow rate of air
through the duct?

13.29 Air at 0�C is contained in a large tank on the space
shuttle. A converging section with exit area 13 1023 m2 is
attached to the tank, through which the air exits to space at a
rate of 2 kg/s. What are the pressure in the tank, and the
pressure, temperature, and speed at the exit?

13.30 A large tank supplies air to a converging nozzle that
discharges to atmospheric pressure. Assume the flow is

reversible and adiabatic. For what range of tank pressures will
the flow at the nozzle exit be sonic? If the tank pressure is 600
kPa (abs) and the temperature is 600 K, determine the mass
flow rate through the nozzle, if the exit area is 1:293 1023 m2.

13.31 Nitrogen is stored in a large chamber at 450 K and
150 kPa. The gas leaves the chamber through a converging-
only nozzle with an outlet area of 30 cm2. The ambient room
pressure is 100 kPa, and the flow through the nozzle is
isentropic. What is the mass flow rate of the nitrogen? If the
room pressure could be lowered, what is the maximum
possible mass flow rate for the nitrogen?

13.32 A large tank initially is evacuated to 210 kPa (gage).
(Ambient conditions are 101 kPa at 20�C.) At t 5 0, an
orifice of 5mm diameter is opened in the tank wall; the vena
contracta area is 65 percent of the geometric area. Calculate
the mass flow rate at which air initially enters the tank. Show
the process on a Ts diagram. Make a schematic plot of mass
flow rate as a function of time. Explain why the plot is
nonlinear.

13.33 A 50-cm-diameter spherical cavity initially is evac-
uated. The cavity is to be filled with air for a combustion
experiment. The pressure is to be 45 kPa (abs), measured
after its temperature reaches Tatm. Assume the valve on the
cavity is a converging nozzle with throat diameter of 1 mm,
and the surrounding air is at standard conditions. For how
long should the valve be opened to achieve the desired final
pressure in the cavity? Calculate the entropy change for the
air in the cavity.

13.34 Air flows isentropically through a converging nozzle
attached to a large tank,where the absolute pressure is 171kPa
and the temperature is 27�C. At the inlet section the Mach
number is 0.2. The nozzle discharges to the atmosphere; the
discharge area is 0.015 m2. Determine the magnitude and
direction of the force that must be applied to hold the nozzle
in place.

13.35 Consider a “rocket cart” propelled by a jet supplied
from a tank of compressed air on the cart. Initially, air in the
tank is at 1.3 MPa (abs) and 20�C, and the mass of the cart
and tank is M0 5 25 kg. The air exhausts through a con-
verging nozzle with exit area Ae 5 30 mm2. Rolling resis-
tance of the cart is FR 5 6N; aerodynamic resistance is
negligible. For the instant after air begins to flow through the
nozzle: (a) compute the pressure in the nozzle exit plane,
(b) evaluate the mass flow rate of air through the nozzle, and
(c) calculate the acceleration of the tank and cart assembly.

13.36 A stream of air flowing in a duct (A 5 5 3 1024 m2) is
at p 5 300 kPa (abs), has M 5 0.5, and flows at�m 5 0:25 kg=s. Determine the local isentropic stagnation tem-
perature. If the cross-sectional area of the passage were reduced
downstream, determine the maximum percentage reduction of
area allowablewithout reducing the flow rate (assume isentropic
flow). Determine the speed and pressure at the minimum area
location.

13.37 Anair-jet-driven experimental rocket of 25 kgmass is to
be launched from the space shuttle into space. The tempera-
ture of the air in the rocket’s tank is 125�C. A converging
section with exit area 25 mm2 is attached to the tank, through
which the air exits to space at a rate of 0.05 kg/s. What is the
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pressure in the tank, and the pressure, temperature, and air
speed at the exit when the rocket is first released?What is the
initial acceleration of the rocket?

13.38 Air enters a converging-diverging nozzle at 2MPa (abs)
and 313 K. At the exit of the nozzle, the pressure is 200 kPa
(abs). Assume adiabatic, frictionless flow through the nozzle.
The throat area is 20 cm2. What is the area at the nozzle exit?
What is the mass flow rate of the air?

13.39 Hydrogen is expanded adiabatically, without friction
from 100 psia, at 540�F, and at negligible velocity to 20 psia
via a converging-diverging nozzle. What is the exit Mach
number?

13.40 Acylinder of gas used for welding contains helium at 20
MPa (gage) and room temperature. The cylinder is knocked
over, its valve is broken off, and gas escapes through a con-
verging passage. The minimum flow diameter is 10 mm at the
outlet section where the gas flow is uniform. Find (a) the mass
flow rate at which gas leaves the cylinder and (b) the instan-
taneous acceleration of the cylinder (assume the cylinder axis
is horizontal and its mass is 65 kg). Show static and stagnation
states and the process path on a Ts diagram.

13.41 A converging nozzle is bolted to the side of a large tank.
Air inside the tank is maintained at a constant 50 psia and
100�F. The inlet area of the nozzle is 10 in.2 and the exit area is
1 in.2 The nozzle discharges to the atmosphere. For isentropic
flow in the nozzle, determine the total force on the bolts, and
indicate whether the bolts are in tension or compression.

13.42 An insulated spherical air tank with diameter D 5 2 m
is used in a blowdown installation. Initially the tank is
charged to 2.75 MPa (abs) at 450 K. The mass flow rate of air
from the tank is a function of time; during the first 30 s of
blowdown 30 kg of air leaves the tank. Determine the air
temperature in the tank after 30 s of blowdown. Estimate the
nozzle throat area.

13.43 An ideal gas, with k5 1.25, flows isentropically through
the converging nozzle shown and discharges into a large duct
where the pressure is p2 5 25 psia. The gas is not air and the
gas constant, R, is unknown. Flow is steady and uniform at all
cross sections. Find the exit area of the nozzle,A2, and the exit
speed, V2.

A2

V2

p2 = 25 psiaA1 = 1 ft2

  1 = 0.1 lbm/ft3ρ
p1 = 35 psia

V1 = 500 ft /s

P13.43

13.44 A jet transport aircraft, with pressurized cabin, cruises
at 11 km altitude. The cabin temperature and pressure
initially are at 25�C and equivalent to 2.5 km altitude. The
interior volume of the cabin is 25 m3. Air escapes through a
small hole with effective flow area of 0.002 m2. Calculate
the time required for the cabin pressure to decrease by 40
percent. Plot the cabin pressure as a function of time.

13.45 At some point upstream of the throat of a converging-
diverging duct, air flows at a speed of 50 ft/s, with pressure

and temperature of 15 psia and 70�F, respectively. If the
throat area is 1 ft2, and the discharge from the duct is
supersonic, find the mass flow rate of air, assuming friction-
less, adiabatic flow.

13.46 A converging-diverging nozzle is attached to a very
large tank of air in which the pressure is 150 kPa and
the temperature is 35�C. The nozzle exhausts to the atmo-
sphere where the pressure is 101 kPa. The exit diameter of the
nozzle is 2.75 cm. What is the flow rate through the nozzle?
Assume the flow is isentropic.

13.47 A large insulated tank, pressurized to 620 kPa (gage),
supplies air to a converging nozzle which discharges to
atmosphere. The initial temperature in the tank is 127�C.
When flow through the nozzle is initiated, what is the Mach
number in the exit plane of the nozzle?What is the pressure in
the exit planewhen the flow is initiated?Atwhat condition will
the exit-plane Mach number change? How will the exit-plane
pressure vary with time? Howwill flow rate through the nozzle
varywith time?Whatwouldyouestimate theair temperature in
the tank to be when flow through the nozzle approaches zero?

13.48 Air escapes from a high-pressure bicycle tire through a
hole with diameter d 5 0.254 mm. The initial pressure in the
tire is p1 5 620 kPa (gage). (Assume the temperature remains
constant at 27�C.) The internal volume of the tire is approxi-
mately 4:263 1024 m3, and is constant. Estimate the time
needed for the pressure in the tire to drop to 310 kPa (gage).
Compute the change in specific entropy of the air in the tire
during this process. Plot the tire pressure as a function of time.

13.49 At the design condition of the system of Problem
13.46, the exit Mach number isMe 5 2.0. Find the pressure in
the tank of Problem 13.46 (keeping the temperature con-
stant) for this condition. What is the flow rate? What is the
throat area?

13.50 When performing tests in a wind tunnel at conditions
near Mach 1, the effects of model blockage become very
important. Consider a wind tunnel with a test section of 1 ft2

cross section. If the test section conditions are M5 1.20 and
T5 70�F, how much area blockage could be tolerated before
the flow choked in the test section? If a model with 3 in.2

projected frontal area were inserted in the tunnel, what
would the air velocity be in the test section?

13.51 A pitot static probe is placed in a converging-diverging
duct through which air flows. The duct is fed by a reservoir
kept at 20�C. If the probe reads a static pressure of 75 kPa
and a stagnation pressure of 100 kPa at a location where the
area is 0.00645 m2, what is the local velocity and the mass
flow rate of air?

13.52 Aconverging-divergingnozzle,witha throat areaof 2 in.2,
is connected to a large tank inwhich air is kept at a pressureof 80
psia and a temperature of 60�F. If the nozzle is to operate at
design conditions (flow is isentropic) and the ambient pressure
outside the nozzle is 12.9 psia, calculate the exit area of the
nozzle and the mass flow rate.

13.53 A converging-diverging nozzle, designed to expand air
to M 5 3.0, has a 250 mm2 exit area. The nozzle is bolted to
the side of a large tank and discharges to standard atmo-
sphere. Air in the tank is pressurized to 4.5 MPa (gage) at
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750 K. Assume flow within the nozzle is isentropic. Evaluate
the pressure in the nozzle exit plane. Calculate the mass flow
rate of air through the nozzle.

13.54 Methane is stored in a tank at 75 psia and 80�F. It
discharges to another tank via a converging-only nozzle, with
exit area 1 in.2. What is the initial mass flow rate of methane
when the discharge tank is at a pressure of (a) 15 psia, and
(b) 60 psia?

13.55 Air, at a stagnation pressure of 7.20 MPa (abs) and a
stagnation temperature of 1100 K, flows isentropically
through a converging-diverging nozzle having a throat area
of 0.01 m2. Determine the speed and the mass flow rate at the
downstream section where the Mach number is 4.0.

13.56 Air is to be expanded through a converging-diverging
nozzle by a frictionless adiabatic process, from a pressure of
1.10 MPa (abs) and a temperature of 115�C, to a pressure of
141 kPa (abs). Determine the throat and exit areas for a well-
designed shockless nozzle, if the mass flow rate is 2 kg/s.

13.57 Air flows isentropically through a converging-diverging
nozzle attached to a large tank, in which the pressure is 251
psia and the temperature is 500�R. The nozzle is operating at
design conditions for which the nozzle exit pressure, pe, is
equal to the surrounding atmospheric pressure, pa. The exit
area of the nozzle is Ae 5 1:575 in:2. Calculate the flow rate
through the nozzle. Plot the mass flow rate as the tempera-
ture of the tank is progressively increased to 2000�R (all
pressures remaining the same). Explain this result (e.g.,
compare the mass flow rates at 500�R and 2000�R).

13.58 A small, solid fuel rocket motor is tested on a thrust
stand. The chamber pressure and temperature are 4 MPa and
3250 K. The propulsion nozzle is designed to expand the
exhaust gases isentropically to a pressure of 75 kPa. The
nozzle exit diameter is 25 cm. Treat the gas as ideal with
k 5 1:25 andR 5 300 J=ðkg�KÞ. Determine the mass flow
rate of propellant gas and the thrust force exerted against the
test stand.

13.59 Nitrogen, at a pressure and temperature of 371 kPa (abs)
and400K, enters a nozzlewithnegligible speed.Theexhaust jet
is directed against a large flat plate that is perpendicular to the
jet axis. Theflow leaves the nozzle at atmospheric pressure. The
exit area is 0.003 m2. Find the force required to hold the plate.

13.60 A liquid rocket motor is fueled with hydrogen and
oxygen. The chamber temperature and absolute pressure are
3300 K and 6.90 MPa. The nozzle is designed to expand the
exhaust gases isentropically to a design back pressure cor-
responding to an altitude of 10 km on a standard day. The
thrust produced by the motor is to be 100 kN at design
conditions. Treat the exhaust gases as water vapor and
assume ideal gas behavior. Determine the propellant mass
flow rate needed to produce the desired thrust, the nozzle
exit area, and the area ratio, Ae/At.

13.61 A small rocket motor, fueled with hydrogen and oxy-
gen, is tested on a thrust stand at a simulated altitude of 10
km. The motor is operated at chamber stagnation conditions
of 1500 K and 8.0 MPa (gage). The combustion product is
water vapor, which may be treated as an ideal gas. Expansion
occurs through a converging-diverging nozzle with design

Mach number of 3.5 and exit area of 700 mm2. Evaluate the
pressure at the nozzle exit plane. Calculate the mass flow
rate of exhaust gas. Determine the force exerted by the
rocket motor on the thrust stand.

13.62 A CO2 cartridge is used to propel a small rocket cart.
Compressed gas, stored at 35 MPa and 20�C, is expanded
through a smoothly contoured converging nozzle with 0.5
mm throat diameter. The back pressure is atmospheric.
Calculate the pressure at the nozzle throat. Evaluate the
mass flow rate of carbon dioxide through the nozzle.
Determine the thrust available to propel the cart. How much
would the thrust increase if a diverging section were added to
the nozzle to expand the gas to atmospheric pressure? What
is the exit area? Show stagnation states, static states, and the
processes on a Ts diagram.

13.63 A rocket motor is being tested at sea level where the
pressure is 14.7 psia. The chamber pressure is 175 psia,
the chamber temperature is 5400�R, and the nozzle has a
throat area of 1 in2. The exhaust gas has a ratio of specific
heats of k5 1.25 and a gas constant R5 70.6 ft�lbf/lbm��R.
Assuming adiabatic, frictionless flow in the nozzle, deter-
mine (a) the nozzle exit area and velocity and (b) the thrust
generated.

13.64 If the rocket motor of Problem 13.63 is modified by
cutting off the diverging portion of the nozzle, what will be
the exit pressure and thrust?

13.65 Consider the converging-diverging option of Problem
13.62. To what pressure would the compressed gas need to be
raised (keeping the temperature at 20�C) to develop a thrust
of 15N? (Assume isentropic flow.)

Normal Shocks

13.66 Testing of a demolition explosion is to be evaluated.
Sensors indicate that the shockwave generated at the instant of
explosion is 30MPa (abs). If the explosion occurs in air at 20�C
and 101 kPa, find the speed of the shock wave, and the tem-
perature and speed of the air just after the shock passes. As an
approximationassumek5 1.4. (Why is this an approximation?)

13.67 A standing normal shock occurs in air which is flowing
at a Mach number of 1.75. What are the pressure and tem-
perature ratios across the shock? What is the increase in
entropy across the shock?

13.68 Air flows into a converging duct, and a normal shock
stands at the exit of the duct. Downstream of the shock, the
Mach number is 0.54. If p2/p15 2, compute the Mach number
at the entrance of the duct and the area ratio A1/A2.

13.69 A normal shock occurs when a pitot-static tube is
inserted into a supersonic wind tunnel. Pressures measured
by the tube are p02 5 10 psia and p2 5 8 psia. Before the
shock, T1 5 285�R and p1 5 1.75 psia. Calculate the air speed
in the wind tunnel.

13.70 A large tank containing air at 125 psia and 175�F is
attached to a converging-diverging nozzle that has a throat
area of 1.5 in.2 through which the air is exiting. A normal
shock sits at a point in the nozzle where the area is 2.5 in.2.
The nozzle exit area is 3.5 in.2. What are the Mach numbers
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just after the shock and at the exit? What are the stagnation
and static pressures before and after the shock?

13.71 A total-pressure probe is placed in a supersonic wind
tunnel where T 5 530�R and M 5 2.0. A normal shock
stands in front of the probe. Behind the shock, M2 5 0.577
and p2 5 5.76 psia. Find (a) the downstream stagnation
pressure and stagnation temperature and (b) all fluid prop-
erties upstream from the shock. Show static and stagnation
state points and the process path on a Ts diagram.

13.72 Air flows steadily through a long, insulated constant-area
pipe.At section 1 ,M15 2.0,T15 140�F, andp15 35.9psia.At
section 2 , downstream from a normal shock, V2 5 1080 ft/s.
Determine the density andMach number at section 2 . Make a
qualitative sketch of the pressure distribution along the pipe.

13.73 A wind tunnel nozzle is designed to operate at a Mach
number of 5. To check the flow velocity, a pitot probe is
placed at the nozzle exit. Since the probe tip is blunt, a
normal shock stands off the tip of the probe. If the nozzle
exit static pressure is 10 kPa, what absolute pressure should
the pitot probe measure? If the stagnation temperature
before the nozzle is 1450 K, what is the nozzle exit velocity?

13.74 Air approaches a normal shock at V15 900 m/s, p15 50
kPa, and T15 220 K. What are the velocity and pressure after
the shock?What would the velocity and pressure be if the flow
were decelerated isentropically to the same Mach number?

13.75 Air with stagnation conditions of 150 psia and 400�F
accelerates through a converging-diverging nozzle with throat
area 3 in.2. A normal shock is located where the area is 6 in.2.
What is theMach number before and after the shock?What is
the rate of entropy generation through the nozzle, if there
is negligible friction between the flow and the nozzle walls?

13.76 Air approaches a normal shock at M1 5 2.5, with
T01 5 1250�R and p1 5 20 psia. Determine the speed and
temperature of the air leaving the shock and the entropy
change across the shock.

13.77 Air undergoes a normal shock. Upstream, T1 5 35�C, p1
5 229 kPa (abs), andV1 5 704 m/s. Determine the temperature
and stagnation pressure of the air stream leaving the shock.

13.78 A normal shock stands in a constant-area duct. Air
approaches the shock with T01 5 550 K, p01 5 650 kPa ðabsÞ,
and M1 5 2.5. Determine the static pressure downstream
from the shock. Compare the downstream pressure with that
reached by decelerating isentropically to the same subsonic
Mach number.

13.79 A normal shock occurs in air at a section where V1 5
2000 mph, T1 5215�F, and p1 5 5 psia. Determine the speed
and Mach number downstream from the shock, and the
change in stagnation pressure across the shock.

13.80 Air approaches a normal shock with T1 5 27.5�F,
p1 5 14.7 psia, and V1 5 1750 mph. Determine the speed
immediately downstream from the shock and the pressure
change across the shock. Calculate the corresponding pres-
sure change for a frictionless, shockless deceleration between
the same speeds.

13.81 A supersonic aircraft cruises at M 5 2.2 at 12 km
altitude. A pitot tube is used to sense pressure for calculating

air speed. A normal shock stands in front of the tube.
Evaluate the local isentropic stagnation conditions in front of
the shock. Estimate the stagnation pressure sensed by the
pitot tube. Show static and stagnation state points and
the process path on a Ts diagram.

13.82 The Concorde supersonic transport flew at M 5 2.2 at
20 km altitude. Air is decelerated isentropically by the
engine inlet system to a local Mach number of 1.3. The air
passed through a normal shock and was decelerated further
to M 5 0.4 at the engine compressor section. Assume, as a
first approximation, that this subsonic diffusion process was
isentropic and use standard atmosphere data for freestream
conditions. Determine the temperature, pressure, and stag-
nation pressure of the air entering the engine compressor.

13.83 Stagnation pressure and temperature probes are
located on the nose of a supersonic aircraft. At 35,000 ft
altitude a normal shock stands in front of the probes. The
temperature probe indicates T0 5 420�F behind the shock.
Calculate the Mach number and air speed of the plane.
Find the static and stagnation pressures behind the shock.
Show the process and the static and stagnation state points
on a Ts diagram.

13.84 The NASA X-43A Hyper-X experimental hypersonic
vehicle flew at Mach 9.68 at an altitude of 110,000 ft. Stag-
nation pressure and temperature probes were located on the
nose of the aircraft. A normal shock wave stood in front of
these probes. Estimate the stagnation pressure and tem-
perature measured by the probes.

13.85 Equations 13.20 are a useful set of equations for
analyzing flow through a normal shock. Derive another
useful equation, the Rankine-Hugoniot relation,

p2
p1

5

ðk1 1Þ ρ2
ρ1

2 ðk2 1Þ

ðk1 1Þ2 ðk2 1Þ ρ2
ρ1

and use it to find the density ratio for air as p2=p1-N.

13.86 A supersonic aircraft cruises at M 5 2.7 at 60,000 ft
altitude. A normal shock stands in front of a pitot tube on the
aircraft; the tube senses a stagnation pressure of 10.4 psia.
Calculate the static pressure and temperature behind the
shock. Evaluate the loss in stagnation pressure through
the shock. Determine the change in specific entropy across the
shock. Show static and stagnation states and the process path
on a Ts diagram.

13.87 An aircraft is in supersonic flight at 10 km altitude on a
standard day. The true air speed of the plane is 659 m/s.
Calculate the flight Mach number of the aircraft. A total-
head tube attached to the plane is used to sense stagnation
pressure which is converted to flight Mach number by an on-
board computer. However, the computer programmer has
ignored the normal shock that stands in front of the total-
head tube and has assumed isentropic flow. Evaluate the
pressure sensed by the total-head tube. Determine the
erroneous air speed calculated by the computer program.

13.88 A supersonic aircraft flies atM1 5 2.7 at 20 km altitude
on a standard day. Air enters the engine inlet system, where it
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is slowed isentropically to M2 5 1.3. A normal shock occurs
at that location. The resulting subsonic flow is decelerated
further to M4 5 0.40. The subsonic diffusion is adiabatic but
not isentropic; the final pressure is 104 kPa (abs). Evaluate
(a) the stagnation temperature for the flow, (b) the pressure
change across the shock, (c) the entropy change, s4 2 s1, and
(d) the final stagnation pressure. Sketch the process path on a
Ts diagram, indicating all static and stagnation states.

13.89 A blast wave propagates outward from an explosion. At
large radii, curvature is small and the wave may be treated as a
strong normal shock. (The pressure and temperature rise
associated with the blast wave decrease as the wave travels
outward.) At one instant, a blast wave front travels atM5 1.60
with respect to undisturbed air at standard conditions. Find
(a) the speed of the air behind the blast wave with respect to
the wave and (b) the speed of the air behind the blast wave as
seen by an observer on the ground. Draw a Ts diagram for the
process as seen by an observer on the wave, indicating static
and stagnation state points and property values.

Supersonic Channel Flow with Shocks

13.90 Consider a supersonic wind tunnel starting as shown.
The nozzle throat area is 1.25 ft2, and the test section design
Mach number is 2.50. As the tunnel starts, a normal shock
stands in the divergence of the nozzle where the area is
3.05 ft2. Upstream stagnation conditions are T0 5 1080�R
and p0 5 115 psia. Find the minimum theoretically possible
diffuser throat area at this instant. Calculate the entropy
increase across the shock.
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13.91 Air enters a wind tunnel with stagnation conditions of
14.7 psia and 75�F. The test section has a cross-sectional area
of 1 ft2 and a Mach number of 2.3. Find (a) the throat area of
the nozzle, (b) the mass flow rate, (c) the pressure and
temperature in the test section, and (d) the minimum pos-
sible throat area for the diffuser to ensure starting.

13.92 Air flows through a converging-diverging nozzle with
Ae/At 5 3.5. The upstream stagnation conditions are atmo-
spheric; the back pressure is maintained by a vacuum pump.
Determine the back pressure required to cause a normal
shock to stand in the nozzle exit plane and the flow speed
leaving the shock.

13.93 A supersonic wind tunnel is to be operated at M 5 2.2
in the test section. Upstream from the test section, the nozzle
throat area is 0.07 m2. Air is supplied at stagnation condi-
tions of 500 K and 1.0 MPa (abs). At one flow condition,
while the tunnel is being brought up to speed, a normal shock

stands at the nozzle exit plane. The flow is steady. For this
starting condition, immediately downstream from the shock
find (a) the Mach number, (b) the static pressure, (c) the
stagnation pressure, and (d) the minimum area theoretically
possible for the second throat downstream from the test
section. On a Ts diagram show static and stagnation state
points and the process path.

13.94 A converging-diverging nozzle is attached to a large
tank of air, in which T01 5 300 K and p01 5 250 kPa (abs). At
the nozzle throat the pressure is 132 kPa (abs). In the diverging
section, the pressure falls to 68.1 kPa before rising suddenly
across a normal shock. At the nozzle exit the pressure is 180
kPa. Find the Mach number immediately behind the shock.
Determine the pressure immediately downstream from the
shock. Calculate the entropy change across the shock. Sketch
the Ts diagram for this flow, indicating static and stagnation
state points for conditions at the nozzle throat, both sides of
the shock, and the exit plane.

13.95 A converging-diverging nozzle expands air from 250�F
and 50.5 psia to 14.7 psia. The throat and exit plane areas are
0.801 and 0.917 in.2, respectively. Calculate the exit Mach
number. Evaluate the mass flow rate through the nozzle.

13.96 A converging-diverging nozzle, with throat area At 5
1.0 in.2, is attached to a large tank in which the pressure and
temperature are maintained at 100 psia and 600�R. The nozzle
exit area is 1.58 in.2 Determine the exit Mach number at
design conditions. Referring to Fig. 13.12, determine the back
pressures corresponding to the boundaries of Regimes I, II,
III, and IV. Sketch the corresponding plot for this nozzle.

13.97 A converging-diverging nozzle is designed to produce a
Mach number of 2.5 with air. What operating pressure ratios
(pb/pt inlet) will cause this nozzle to operate with isentropic flow
throughout and supersonic flow at the exit (the so-called “third
critical point”), with isentropic flow throughout and subsonic
flow at the exit (the “first critical point”), and with a normal
shock at the nozzle exit (the “second critical point”)?

13.98 Oxygen flows through a converging-diverging nozzle
with a exit-to-throat area ratio of 3.0. The stagnation pres-
sure at the inlet is 120 psia, and the back pressure is 50 psia.
Compute the pressure ratios for the nozzle and demonstrate
that a normal shock wave should be located within the
diverging portion of the nozzle. Compute the area ratio at
which the shock occurs, the pre- and post-shock Mach
numbers, and the Mach number at the nozzle exit.

13.99 A converging-diverging nozzle, with Ae/At 5 4.0, is
designed to expand air isentropically to atmospheric pres-
sure. Determine the exit Mach number at design conditions
and the required inlet stagnation pressure. Referring to Fig.
13.20, determine the back pressures that correspond to the
boundaries of Regimes I, II, III, and IV. Sketch the plot of
pressure ratio versus axial distance for this nozzle.

13.100 A normal shock occurs in the diverging section of a
converging-diverging nozzle where A 5 25 cm2 and M 5
2.75. Upstream, T0 5 550 K and p0 5 700 kPa (abs). The
nozzle exit area is 40 cm2. Assume the flow is isentropic
except across the shock. Determine the nozzle exit pressure,
throat area, and mass flow rate.
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13.101 Air flows adiabatically from a reservoir, where T 5
60�C and p 5 600 kPa (abs), through a converging-diverging
nozzle with Ae/At 5 4.0. A normal shock occurs where
M 5 2.42. Assuming isentropic flow before and after the
shock, determine the back pressure downstream from the
nozzle. Sketch the pressure distribution.

13.102 A converging-diverging nozzle is designed to expand
air isentropically to atmospheric pressure from a large tank,
where T0 5 150�C and p0 5 790 kPa (abs). A normal shock
stands in the diverging section, where p 5 160 kPa (abs) and
A5 600 mm2. Determine the nozzle back pressure, exit area,
and throat area.

13.103 A converging-diverging nozzle, with design pressure
ratio pe/p0 5 0.128, is operated with a back pressure condi-
tion such that pb/p0 5 0.830, causing a normal shock to stand
in the diverging section. Determine the Mach number at
which the shock occurs.

13.104 Air flows through a converging-diverging nozzle,
with Ae/At 5 3.5. The upstream stagnation conditions are
atmospheric; the back pressure is maintained by a vacuum
system. Determine the range of back pressures for which a
normal shock will occur within the nozzle and the corre-
sponding mass flow rate, if At 5 500 mm2.

13.105 A converging-diverging nozzle, with Ae/At 5 1.633, is
designed to operate with atmospheric pressure at the exit
plane. Determine the range(s) of inlet stagnation pressures
for which the nozzle will be free from normal shocks.

13.106 Air flows through a converging-diverging nozzle with
Ae/At 5 1.87. Upstream, T01 5 240�F and p01 5 100 psia.
The back pressure is maintained at 40 psia. Determine the
Mach number and flow speed in the nozzle exit plane.

13.107 A normal shock occurs in the diverging section of a
converging-diverging nozzle where A 5 4.0 in.2 and M 5
2.00. Upstream, T01 5 1000�R and p01 5 100 psia. The noz-
zle exit area is 6.0 in.2 Assume that flow is isentropic except
across the shock. Find the nozzle exit pressure. Show the
processes on a Ts diagram, and indicate the static and stag-
nation state points.

13.108 Consider flow of air through a converging-diverging
nozzle. Sketch the approximate behavior of the mass flow
rate versus back pressure ratio, pb/p0. Sketch the variation of
pressure with distance along the nozzle, and the Ts diagram
for the nozzle flow, when the back pressure is p*.

13.109 Air enters a converging-diverging nozzle with an area
ratio of 1.76. Entrance stagnation conditions are 150 psia and
200�F. A normal shock stands at a location where the area is
1.2 times the throat area. Determine the exit Mach number
and static pressure. What is the design point exit pressure?

13.110 A stationary normal shock stands in the diverging
section of a converging-diverging nozzle. The Mach number
ahead of the shock is 3.0. The nozzle area at the shock is
500 mm2. The nozzle is fed from a large tank where the
pressure is 1000 kPa (gage) and the temperature is 400 K.
Find the Mach number, stagnation pressure, and static
pressure after the shock. Calculate the nozzle throat area.
Evaluate the entropy change across the shock. Finally, if the

nozzle exit area is 600 mm2, estimate the exit Mach number.
Would the actual exit Mach number be higher, lower, or the
same as your estimate? Why?

13.111 Air flows adiabatically from a reservoir, where
T01 5 60�C and p01 5 600 kPa ðabsÞ, through a converging-
diverging nozzle. The design Mach number of the nozzle is
2.94. A normal shock occurs at the location in the nozzle
where M 5 2.42. Assuming isentropic flow before and after
the shock, determine the back pressure downstream from the
nozzle. Sketch the pressure distribution.

*13.112 Air flows through a converging-diverging nozzle with
an area ratio of 2.5. Stagnation conditions at the inlet are
1 MPa and 320 K. A constant-area, adiabatic duct with
L/D5 10 and f5 0.03 is attached to the nozzle outlet.
(a) Compute the back pressure that would place a normal
shock at the nozzle exit. (b) What back pressure would place
the normal shock at the duct exit? (c) What back pressure
would result in shock-free flow?

*13.113 Consider the setup of Problem 13.112, except that the
constant-area duct is frictionless and no longer adiabatic. A
normal shock stands at the duct exit, after which the tem-
perature is 350 K. Calculate the Mach number after the
shock wave, and the heat addition in the constant-area duct.

*13.114 A normal shock stands in a section of insulated
constant-area duct. The flow is frictional. At section 1 ,
some distance upstream from the shock, T1 5 470�R. At
section 4 , some distance downstream from the shock, T4 5
750�R and M4 5 1.0. Denote conditions immediately
upstream and downstream from the shock by subscripts 2
and 3 , respectively. Sketch the pressure distribution along
the duct, indicating clearly the locations of sections 1
through 4 . Sketch a Ts diagram for the flow. Determine the
Mach number at section 1 .

*13.115 A supersonic wind tunnel must have two throats, with
the second throat larger than the first. Explain why this must
be so.

*13.116 A normal shock stands in a section of insulated
constant-area duct. The flow is frictional. At section 1 ,
some distance upstream from the shock, T1 5 668�R,
p01 5 78:2 psia, and M1 5 2.05. At section 4 , some distance
downstream from the shock, M4 5 1.00. Calculate the air
speed, V2, immediately ahead of the shock, where T2 5
388�F. Evaluate the entropy change, s4 2 s1.

Flow with Friction

13.117 Nitrogen is discharged from a 30-cm-diameter duct at
M25 0.85, T25 300 K, and p25 200 kPa. The temperature
at the inlet of the duct is T15 330 K. Compute the pressure at
the inlet and the mass flow rate.

13.118 Room air is drawn into an insulated duct of constant
area through a smoothly contoured converging nozzle.
Room conditions are T 5 80�F and p 5 14:7 psia. The duct
diameter is D 5 1 in. The pressure at the duct inlet (nozzle
outlet) is p1 5 13 psia. Find (a) the mass flow rate in the duct
and (b) the range of exit pressures for which the duct exit
flow is choked.

*These problems require material from sections that may be omitted without loss of continuity in the text material.
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13.119 Air from a large reservoir at 25 psia and 250�F flows
isentropically through a converging nozzle into an insulated
pipe at 24 psia. The pipe flow experiences friction effects.
Obtain a plot of the Ts diagram for this flow, until M 5 1.
Also plot the pressure and speed distributions from the
entrance to the location at which M 5 1.

13.120 Repeat Problem 13.119 except the nozzle is now a
converging-diverging nozzle delivering the air to the pipe at
2.5 psia.

13.121 A5-mduct 35 cmindiameter containsoxygenflowingat
the rate of 40 kg/s. The inlet conditions are p15 200 kPa and
T15 450K.Theexitpressure isp25 160kPa.Calculate the inlet
and exit Mach number, and the exit stagnation pressure and
temperature. Determine the friction factor, and estimate the
absolute roughness of the duct material.

13.122 Air flows steadily and adiabatically from a large tank
through a converging nozzle connected to an insulated con-
stant-area duct. The nozzle may be considered frictionless.
Air in the tank is at p 5 145 psia andT 5 250�F. The abso-
lute pressure at the nozzle exit (duct inlet) is 125 psia.
Determine the pressure at the end of the duct, if the tem-
perature there is 150�F. Find the entropy increase.

13.123 A Fanno-line flow apparatus in an undergraduate
fluid mechanics laboratory consists of a smooth brass tube of
7.16 mm inside diameter, fed by a converging nozzle. The lab
temperature and uncorrected barometer reading are 23.5�C
and 755.1 mm of mercury. The pressure at the exit from the
converging nozzle (entrance to the constant-area duct) is
220.8 mm of mercury (gage). Compute the Mach number at
the entrance to the constant-area tube. Calculate the mass
flow rate in the tube. Evaluate the pressure at the location in
the tube where the Mach number is 0.4.

13.124 Measurements aremade of compressible flow in a long
smooth 7.16 mm i.d. tube. Air is drawn from the surroundings
(20�C and 101 kPa) by a vacuum pump downstream. Pressure
readings along the tube become steady when the downstream
pressure is reduced to 626 mm Hg (vacuum) or below. For
these conditions, determine (a) the maximum mass flow rate
possible through the tube, (b) the stagnation pressure of the air
leaving the tube, and (c) the entropy change of the air in the
tube. Show static and stagnation state points and the process
path on a Ts diagram.

13.125 Air flows through a smooth well-insulated 4-in.-
diameter pipe at 600 lbm/min. At one section the air is at 100
psia and 80�F. Determine the minimum pressure and the
maximum speed that can occur in the pipe.

13.126 Nitrogen at stagnation conditions of 105 psia and
100�F flows through an insulated converging-diverging noz-
zle without friction. The nozzle, which has an exit-to-throat
area ratio of 4, discharges supersonically into a constant area
duct, which has a friction length fL/D5 0.355. Determine the
temperature and pressure at the exit of the duct.

13.127 A converging-diverging nozzle discharges air into an
insulated pipe with area A 5 1 in2. At the pipe inlet,
p 5 18:5 psia ; T 5 100�F, and M 5 2.0. For shockless flow
to a Mach number of unity at the pipe exit, calculate the exit
temperature, the net force of the fluid on the pipe, and the
entropy change.

13.128 Air is drawn from the atmosphere (20�C and 101 kPa)
through a converging nozzle into a long insulated 20-mm-
diameter tube of constant area. Flow in the nozzle is isentropic.
The pressure at the inlet to the constant-area tube is
p1 5 99.4 kPa. Evaluate the mass flow rate through the tube.
CalculateT* andp* for the isentropic process.CalculateT* and
p* for flow leaving the constant-area tube. Show the corre-
sponding static and stagnation state points on a Ts diagram.

13.129 Air flows through a converging nozzle and then a
length of insulated duct. The air is supplied from a tank
where the temperature is constant at 59�F and the pressure is
variable. The outlet end of the duct exhausts to atmosphere.
When the exit flow is just choked, pressure measurements
show the duct inlet pressure and Mach number are 53.2 psia
and 0.30. Determine the pressure in the tank and the tem-
perature, stagnation pressure, and mass flow rate of the
outlet flow, if the tube diameter is 0.249 in. Show on a Ts

diagram the effect of raising the tank pressure to 100 psia.
Sketch the pressure distribution versus distance along the
channel for this new flow condition.

13.130 A constant-area duct is fed by a converging-only
nozzle. The nozzle receives air from a large chamber at
p15 600 kPa and T15 550 K. The duct has a friction length
of 5.3, and it is choked at the exit. What is the pressure at the
end of the duct? If 80 percent of the duct is removed, and
the conditions at station 1 and the friction factor remain
constant, what is the new exit pressure and Mach number?
Sketch both of these processes on a Ts diagram.

13.131 We wish to build a supersonic wind tunnel using an
insulated nozzle and constant-area duct assembly. Shock-
free operation is desired, with M1 5 2.1 at the test section
inlet and M2 5 1.1 at the test section outlet. Stagnation
conditions are T0 5 295 K and p0 5 101 kPa ðabsÞ. Calcu-
late the outlet pressure and temperature and the entropy
change through the test section.

13.132 Consider adiabatic flow of air in a constant-area pipe
with friction. At one section of the pipe, p0 5 100 psia, T0 5

500�R, and M 5 0.70. If the cross-sectional area is 1 ft2 and
the Mach number at the exit is M2 5 1, find the friction force
exerted on the fluid by the pipe.

13.133 For the conditions of Problem 13.122, find the length,
L, of commercial steel pipe of 2 in. diameter between sec-
tions 1 and 2 .

13.134 Consider the laboratory Fanno-line flow channel of
Problem 13.123. Assume laboratory conditions are 22.5�C
and 760 mm of mercury (uncorrected). The manometer
reading at a pressure tap at the end of the converging nozzle
is 211.8 mm of mercury (gage). Calculate the Mach number
at this location. Determine the duct length required to attain
choked flow. Calculate the temperature and stagnation
pressure at the choked state in the constant-area duct.

13.135 A 2 ft 3 2 ft duct is 40 ft long. Air enters at M15 3.0
and leaves at M25 1.7, with T25 500�R and p25 110 psia.
Find the static and stagnation conditions at the entrance.
What is the friction factor for the duct?

13.136 Air flows in a 3-in. (nominal) i.d. pipe that is 10 ft
long. The air enters with a Mach number of 0.5 and a tem-
perature of 70�F. What friction factor would cause the flow
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to be sonic at the exit? If the exit pressure is 14.7 psia and the
pipe is made of cast iron, estimate the inlet pressure.

13.137 For the conditions of Problem 13.132, determine the
duct length. Assume the duct is circular and made from
commercial steel. Plot the variations of pressure and Mach
number versus distance along the duct.

13.138 Using coordinates T/T0 and ðs2 s�Þ=cp, where s* is
the entropy at M 5 1, plot the Fanno line starting from the
inlet conditions specified in Example 13.8. Proceed toM 5 1.

13.139 Consider the flow described in Example 13.8. Using
the flow functions for Fanno-line flow of an ideal gas, plot
static pressure, temperature, and Mach number versus L/D
measured from the tube inlet; continue until the choked state
is reached.

13.140 Using coordinates T/T* and ðs2 s�Þ=cp, where s* is
the entropy at M 5 1, plot the Fanno line for air flow for
0:1,M, 3:0.

13.141 Air flows through a 40 ft length of insulated constant-
area duct with D 5 2.12 ft. The relative roughness is
e=D 5 0:002. At the duct inlet, T1 5 100� F and p1 5

17:0 psia. At a location downstream, p2 5 14.7 psia, and the
flow is subsonic. Is sufficient information given to solve for
M1 and M2? Prove your answer graphically. Find the mass
flow rate in the duct and T2.

13.142 Air brought into a tube through a converging-
diverging nozzle initially has stagnation temperature and
pressure of 550 K and 1.35 MPa (abs). Flow in the nozzle is
isentropic; flow in the tube is adiabatic. At the junction
between the nozzle and tube the pressure is 15 kPa. The tube
is 1.5 m long and 2.5 cm in diameter. If the outlet Mach
number is unity, find the average friction factor over the tube
length. Calculate the change in pressure between the tube
inlet and discharge.

13.143 For the conditions of Problem 13.127, determine the
duct length. Assume the duct is circular and made from
commercial steel. Plot the variations of pressure and Mach
number versus distance along the duct.

13.144 A smooth constant-area duct assembly ðD 5
150 mmÞ is to be fed by a converging-diverging nozzle from a
tank containing air at 295 K and 1.0 MPa (abs). Shock-free
operation is desired. The Mach number at the duct inlet is to
be 2.1 and the Mach number at the duct outlet is to be 1.4.
The entire assembly will be insulated. Find (a) the pressure
required at the duct outlet, (b) the duct length required, and
(c) the change in specific entropy. Show the static and stag-
nation state points and the process path on a Ts diagram.

*13.145 Natural gas is to be pumped through 60 mi of 30-in.-
diameter pipe with an average friction factor of 0.025. The
temperature of the gas remains constant at 140�F, and
the mass flow rate is 40 lbm/s. The downstream pressure
of the gas is 150 kPa. Estimate the required entrance pressure,
and the power needed to pump the gas through the pipe.

*13.146 Air flows through a 1-in.-diameter, 10-ft-long tube.
The friction factor of the tube is 0.03. If the entrance con-
ditions are 15 psia and 530�R, calculate the mass flow rate for
(a) incompressible flow (using the methods of Chapter 8),

(b) adiabatic (Fanno) flow, and (c) isothermal flow. Assume
for parts (b) and (c) that the exit pressure is 14.7 psia.

*13.147 A 15-m umbilical line for an astronaut on a space
walk is held at a constant temperature of 20�C. Oxygen is
supplied to the astronaut at a rate of 10 L/min, through a
1-cm tube in the umbilical line with an average friction factor
of 0.01. If the oxygen pressure at the downstream end is
30 kPa, what does the upstream pressure need to be? How
much power is needed to feed the oxygen to the astronaut?

*13.148 Air enters a 15-cm-diameter pipe at 15�C, 1.5 MPa,
and 60 m/s. The average friction factor is 0.013. Flow is
isothermal. Calculate the local Mach number and the dis-
tance from the entrance of the channel, at the point where
the pressure reaches 500 kPa.

*13.149 In long, constant-area pipelines, as used for natural
gas, temperature is constant. Assume gas leaves a pumping
station at 350 kPa and 20�C atM5 0.10. At the section along
the pipe where the pressure has dropped to 150 kPa, calcu-
late the Mach number of the flow. Is heat added to or
removed from the gas over the length between the pressure
taps? Justify your answer: Sketch the process on a Ts dia-
gram. Indicate (qualitatively) T01

, T02
, and p02.

*13.150 A clean steel pipe is 950 ft long and 5.25 in. inside
diameter. Air at 80�F, 120 psia, and 80 ft/s enters the pipe.
Calculate and compare the pressure drops through the pipe for
(a) incompressible, (b) isothermal, and (c) adiabatic flows.

*13.151 Air enters a horizontal channel of constant area at
200�F, 600 psia, and 350 ft/s. Determine the limiting pressure
for isothermal flow. Compare with the limiting pressure for
frictional adiabatic flow.

Flow with Heat Exchange

*13.152 Natural gas (molecular mass Mm 5 18 and k 5 1.3) is
to be pumped through a 36 in. i.d. pipe connecting two
compressor stations 40 miles apart. At the upstream station
the pressure is not to exceed 90 psig, and at the downstream
station it is to be at least 10 psig. Calculate the maximum
allowable rate of flow (ft3/day at 70�F and 1 atm) assuming
sufficient heat exchange through the pipe to maintain the gas
at 70�F.

13.153 Air from a large reservoir at 25 psia and 250�F flows
isentropically through a converging nozzle into a frictionless
pipe at 24 psia. The flow is heated as it flows along the pipe.
Obtain a plot of the Ts diagram for this flow, until M 5 1.
Also plot the pressure and speed distributions from the
entrance to the location at which M 5 1.

13.154 Air enters a constant-area duct with M15 3.0 and
T15 250 K. Heat transfer decreases the outlet Mach number
to M25 1.60. Compute the exit static and stagnation tem-
peratures, and find the magnitude and direction of the heat
transfer.

13.155 Repeat Problem 13.153 except the nozzle is now a
converging-diverging nozzle delivering the air to the pipe at
2.5 psia.

13.156 Consider frictionless flow of air in a constant-area
duct. At section 1 , M1 5 0.50, p1 5 1.10 MPa (abs), and

*These problems require material from sections that may be omitted without loss of continuity in the text material.

780 Chapter 13 Compressible Flow



T01 5 333 K. Through the effect of heat exchange, the Mach
number at section 2 is M2 5 0.90 and the stagnation tem-
perature is T02

5 478 K. Determine the amount of heat
exchange per unit mass to or from the fluid between sections

1 and 2 and the pressure difference, p1 2 p2.

13.157 Air flows without friction through a short duct of con-
stant area. At the duct entrance, M1 5 0.30, T1 5 50�C, and
ρ1 5 2:16 kg=m3. As a result of heating, the Mach number
and pressure at the tube outlet areM25 0.60 and p25 150 kPa.
Determine the heat addition per unit mass and the entropy
change for the process.

13.158 Air enters a 6-in.-diameter duct with a velocity of 300
ft/s. The entrance conditions area 14.7 psia and 200�F. How
much heat must be added to the flow to yield (a) maximum
static temperature at the exit, and (b) sonic flow at the exit?

13.159 Liquid Freon, used to cool electronic components,
flows steadily into a horizontal tube of constant diameter,D5
0.65 in. Heat is transferred to the flow, and the liquid boils and
leaves the tube as vapor. The effects of friction are negligible
compared with the effects of heat addition. Flow conditions
are shown. Find (a) the rate of heat transfer and (b) the
pressure difference, p1 2 p2.

21

D = 0.65 in.Flow

Q
•

h1 = 25 Btu/lbm
  1 = 100 lbm/ft3

 m = 1.85 lbm/s•
ρ

h2 = 65 Btu/lbm
  2 = 0.840 lbm/ft3ρ
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13.160 Air flows through a 5-cm inside diameter pipe with
negligible friction. Inlet conditions are T1 5 15�C, p1 5 1
MPa (abs), and M1 5 0.35. Determine the heat exchange per
kg of air required to produceM2 5 1.0 at the pipe exit, where
p2 5 500 kPa.

13.161 Air flows at 1.42 kg/s through a 100-mm-diameter duct.
At the inlet section, the temperature and absolute pressure are
52�C and 60.0 kPa. At the section downstream where the flow
is choked, T2 5 45�C. Determine the heat addition per unit
mass, the entropy change, and the change in stagnation pres-
sure for the process, assuming frictionless flow.

13.162 Consider frictionless flow of air in a duct of constant
area, A 5 0.087 ft2. At one section, the static properties are
500�R and 15.0 psia and the Mach number is 0.2. At a section
downstream, the static pressure is 10.0 psia. Draw a Ts dia-
gram showing the static and stagnation states. Calculate the
flow speed and temperature at the downstream location.
Evaluate the rate of heat exchange for the process.

13.163 Nitrogen flows through a frictionless duct. At the
entrance of the duct, the conditions areM15 0.75,T01

5 500�R,
and p15 24 psia. At the exit of the duct the pressure is p25 40
psia. Determine the direction and the amount of the heat
transfer with the nitrogen.

13.164 A combustor from a JT8D jet engine (as used on the
Douglas DC-9 aircraft) has an air flow rate of 15 lbm/s. The
area is constant and frictional effects are negligible.

Properties at the combustor inlet are 1260�R, 235 psia, and
609 ft/s. At the combustor outlet, T 5 1840�R and M 5
0.476. The heating value of the fuel is 18,000 Btu/lbm; the
air-fuel ratio is large enough so properties are those of air.
Calculate the pressure at the combustor outlet. Determine
the rate of energy addition to the air stream. Find the mass
flow rate of fuel required; compare it to the air flow rate.
Show the process on a Ts diagram, indicating static and
stagnation states and the process path.

13.165 Consider frictionlessflowof air in aductwithD5 10 cm.
At section 1 , the temperature andpressure are 0�Cand70kPa;
the mass flow rate is 0.5 kg/s. How much heat may be added
without choking the flow? Evaluate the resulting change in
stagnation pressure.

13.166 Aconstant-area duct is fedwith air from a converging-
diverging nozzle. At the entrance to the duct, the following
properties are known: p01 5 800 kPa ðabsÞ, T01 5 700 K, and
M1 5 3.0. A short distance down the duct (at section 2 ) p2 5
46.4 kPa. Assuming frictionless flow, determine the speed and
Mach number at section 2 , and the heat exchange between
the inlet and section 2 .

13.167 Air flows steadily and without friction at 1.83 kg/s
through a duct with cross-sectional area of 0.02 m2. At the
duct inlet, the temperature and absolute pressure are 260�C
and 126 kPa. The exit flow discharges subsonically to
atmospheric pressure. Determine the Mach number, tem-
perature, and stagnation temperature at the duct outlet and
the heat exchange rate.

13.168 20 kg/s of air enters a 0.06 m2 duct at a pressure of
320 kPa, and a temperature of 350 K. Find the exit conditions
(pressure, temperature, and Mach number) if heat is added
to the duct at a rate of 650 kJ/kg of air.

13.169 Air enters a frictionless, constant-area duct with
p15 135 kPa, T15 500 K, and V15 540 m/s. How much heat
transfer is needed to choke the flow? Is the heat transfer into
or out of the duct?

13.170 In the frictionless flow of air through a 100-mm-
diameter duct, 1.42 kg/s enters at 52�C and 60.0 kPa (abs).
Determine the amount of heat that must be added to choke
the flow, and the fluid properties at the choked state.

13.171 Air flows without friction in a short section of con-
stant-area duct. At the duct inlet, M1 5 0.30, T1 5 50�C,
and ρ1 5 2:16 kg=m3. At the duct outlet, M2 5 0.60. Deter-
mine the heat addition per unit mass, the entropy change, and
the change in stagnation pressure for the process.

13.172 Air, from an aircraft inlet system, enters the engine
combustion chamber, where heat is added during a frictionless
process in a tube with constant area of 0.01 m2. The local
isentropic stagnation temperature andMach number entering
the combustor are 427K and 0.3. Themass flow rate is 0.5 kg/s.
When the rate of heat addition is set at 404 kW, flow leaves the
combustor at 1026 K and 22.9 kPa (abs). Determine for this
process (a) the Mach number at the combustor outlet, (b) the
static pressure at the combustor inlet, and (c) the change in
local isentropic stagnation pressure during the heat addition
process. Show static and stagnation state points and indicate
the process path on a Ts diagram.
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13.173 Air enters a frictionless, constant-area duct with
M15 2.0, T15 300�R, and p15 70 psia. Heat transfer occurs
as the air travels down the duct. A converging section
(A2/A35 1.5) is placed at the end of the constant area duct
and M35 1.0. Assuming isentropic flow (aside from the heat
transfer through the duct), calculate the amount and direc-
tion of heat transfer.

13.174 Consider steady, one-dimensional flow of air in a
combustor with constant area of 0.5 ft2, where hydrocarbon
fuel, added to the air stream, burns. The process is equivalent to
simple heating because the amount of fuel is small compared
to the amount of air; heating occurs over a short distance so that
friction is negligible. Properties at the combustor inlet are
818�R,200psia, andM5 0.3. The speedat the combustor outlet
must not exceed 2000 ft/s. Find the properties at the combustor
outlet and the heat addition rate. Show the process path on aTs
diagram, indicating static and stagnation statepoints before and
after the heat addition.

13.175 Flow in a gas turbine combustor is modeled as steady,
one-dimensional, frictionless heating of air in a channel of
constant area. For a certain process, the inlet conditions are
500�C, 1.5 MPa (abs), and M 5 0.5. Calculate the maximum
possible heat addition. Find all fluid properties at the outlet
section and the reduction in stagnation pressure. Show the
process path on a Ts diagram, indicating all static and stag-
nation state points.

13.176 A supersonic wind tunnel is supplied from a high-
pressure tank of air at 25�C. The test section temperature is
to be maintained above 0�C to prevent formation of ice
particles. To accomplish this, air from the tank is heated
before it flows into a converging-diverging nozzle which
feeds the test section. The heating is done in a short section
with constant area. The heater output is _Q 5 10 kW. The
design Mach number in the wind tunnel test section is to
be 3.0. Evaluate the stagnation temperature required at the
heater exit. Calculate the maximum mass flow rate at which
air can be supplied to the wind tunnel test section. Deter-
mine the area ratio, Ae/At.

13.177 Consider steady flow of air in a combustor where ther-
mal energy is added by burning fuel. Neglect friction. Assume
thermodynamic properties are constant and equal to those of
pure air. Calculate the stagnation temperature at the burner
exit. Compute the Mach number at the burner exit. Evaluate
the heat addition per unit mass and the heat exchange rate.
Express the rate of heat addition as a fraction of the maximum
rate of heat addition possible with this inlet Mach number.

Combustor

A = 0.0185 m2

1 2
Q____

dm
δ

T1 = 604 K T2 = 900 K
p1 = 557 kPa (abs)
M1 = 0.4

Flow

1 21 2

P13.177

13.178 Ajet transport aircraft cruises atM5 0.85 at an altitude
of 40,000 ft. Air for the cabin pressurization system is taken

aboard through an inlet duct and slowed isentropically to 100
ft/s relative to the aircraft. Then it enters a compressor, where
its pressure is raised adiabatically to provide a cabin pressure
equivalent to 8000 ft altitude. The air temperature increase
across the compressor is 170�F. Finally, the air is cooled to 70�F
(in a heat exchanger with negligible friction) before it is added
to the cabin air. Sketch a diagram of the system, labeling all
components and numbering appropriate cross sections. Deter-
mine the stagnation and static temperature and pressure at each
cross section. Sketch to scale and label aTs diagram showing the
static and stagnation state points and indicating the process
paths. Evaluate the work added in the compressor and the
energy rejected in the heat exchanger.

13.179 Frictionless flow of air in a constant-area duct dis-
charges to atmospheric pressure at section 2 . Upstream at
section 1 , M1 5 3.0, T1 5 215�R, and p1 5 1.73 psia.
Between sections 1 and 2 , 48.5 Btu/lbm of air is added to
the flow. Determine M2 and p2. In addition to a Ts diagram,
sketch the pressure distribution versus distance along the
channel, labeling sections 1 and 2 .

Oblique Shocks and Expansion Waves

13.180 Show that as the upstream Mach number approaches
infinity, the Mach number after an oblique shock becomes

M2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 1

2ksin2ðβ2 θÞ

s

13.181 Air at 400 K and 100 kPa is flowing at a Mach number
of 1.8 and is deflected through a 14� angle. The directional
change is accompanied by an oblique shock. What are the
possible shock angles? For each of these shock angles, what
is the pressure and temperature after the shock?

13.182 Consider supersonic flow of air at M1 5 3.0. What is
the range of possible values of the oblique shock angle β?
For this range of β, plot the pressure ratio across the shock.

13.183 Supersonic air flow at M1 5 2.5 and 80 kPa (abs) is
deflected by an oblique shock with angle β 5 35�. Find the
Mach number and pressure after the shock, and the deflection
angle. Compare these results to those obtained if instead the
flow had experienced a normal shock. What is the smallest
possible value of angle β for this upstream Mach number?

13.184 The temperature and Mach number before an
oblique shock are T1 5 10�C and M1 5 3.25, respectively,
and the pressure ratio across the shock is 5. Find the
deflection angle, θ, the shock angle, β, and the Mach number
after the shock, M2.

13.185 The air velocities before and after an oblique shock
are 1250 m/s and 650 m/s, respectively, and the deflection
angle is θ 5 35�. Find the oblique shock angle β, and the
pressure ratio across the shock.

13.186 An airfoil has a sharp leading edge with an included
angle of δ 5 60�. It is being tested in a wind tunnel running at
1200 m/s (the air pressure and temperature upstream are 75
kPa and 3.5�C). Plot the pressure and temperature in the
region adjacent to the upper surface as functions of angle of
attack, α, ranging from α5 0� to 30�. What are the maximum
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pressure and temperature? (Ignore the possibility of a detached
shock developing if α is too large; see Problem 13.189.)

α

P13.186, P13.189

13.187 An airfoil at zero angle of attack has a sharp leading
edge with an included angle of 20�. It is being tested over a
range of speeds in a wind tunnel. The air temperature
upstream is maintained at 15�C. Determine the Mach num-
ber and corresponding air speed at which a detached normal
shock first attaches to the leading edge, and the angle of the
resulting oblique shock. Plot the oblique shock angle β as a
function of upstream Mach number M1, from the minimum
attached-shock value through M1 5 7.

13.188 The wedge-shaped airfoil shown has chord c 5 1.5 m
and included angle δ 5 7�. Find the lift per unit span at a Mach
number of 2.75 in air for which the static pressure is 70 kPa.

c = 1.5 m

δ

P13.188, P13.205

13.189 The airfoil of Problem 13.186 will develop a
detached shock on the lower surface if the angle of attack, α,
exceeds a certain value. What is this angle of attack? Plot the
pressure and temperature in the region adjacent to the lower
surface as functions of angle of attack, α, ranging from α 5
0� to the angle at which the shock becomes detached. What
are the maximum pressure and temperature?

13.190 An oblique shock causes a flow that was atM5 4 and
a static pressure of 75 kPa to slow down to M 5 2.5. Find the
deflection angle and the static pressure after the shock.

13.191 The wedge-shaped airfoil shown has chord c5 2 m and
angles δlower 5 15� and δupper 5 5�. Find the lift per unit span at
a Mach number of 2.75 in air at a static pressure of 75 kPa.

δupper = 5°

c = 2 m

δlower = 15°

P13.191

13.192 Air flows at a Mach number of 3.3, with static con-
ditions of 100�F and 20 psia. An oblique shock is observed at
an angle of 45� relative to the flow. Calculate the post-shock
conditions (pressure, temperature, Mach number). What is
the deflection angle for the flow? Is this a strong or a weak
shock?

13.193 Air entering the inlet of a jet engine is turned
through an angle of 8�, creating an oblique shock. If the
freestream flow of air is at Mach 4 and 8 psia, what is the
pressure after the oblique shock? What would the pressure
be if the flow were through two separate 4� wedges instead of
a single 8� wedge?

13.194 Air having an initial Mach number of 2.3 and static
conditions of 14.7 psia and 80�F is turned through an angle of
10�. The resulting shock at the corner is reflected from the
opposite wall, turning the flow back 10� to its original
direction. Calculate the pressure, temperature, and Mach
number after the initial and reflected shock waves.

13.195 A wedge-shaped projectile (half angle is 10�) is
launched through air at 1 psia and 10�F. If the static pressure
measurement on the surface of the wedge is 3 psia, calculate
the speed at which the projectile is moving through the air.

13.196 Air at Mach 2 and 1 atmosphere is turned through an
expansion of 16�, followed by another turn of 16�, causing an
oblique shock wave. Calculate the Mach number and pres-
sure downstream of the oblique shock.

13.197 Air at Mach 2.0 and 5 psia static pressure is turned
through an angle of 20�. Determine the resulting static
pressure and stagnation pressure when the turning is
achieved through (a) a single oblique shock, (b) two oblique
shocks, each turning the flow 10�, and (c) an isentropic
compression wave system.

13.198 Air flows isentropically at M 5 2.5 in a duct. There is
a 7.5� contraction that triggers an oblique shock, which in
turn reflects off a wall generating a second oblique shock.
This second shock is necessary so the flow ends up flowing
parallel to the channel walls after the two shocks. Find the
Mach number and pressure in the contraction and down-
stream of the contraction. (Note that the convex corner will
have expansion waves to redirect the flow along the upper
wall.)

M = 2.5
7.5°

P13.198

13.199 The geometry of the fuselage and engine cowling near
the inlet to the engine of a supersonic fighter aircraft is
designed so that the incoming air at M 5 3 is deflected
7.5 degrees, and then experiences a normal shock at the engine
entrance. If the incoming air is at 50 kPa, what is the pressure
of the air entering the engine? What would be the pressure if
the incoming air was slowed down by only a normal shock?
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13.200 Air flows at Mach number of 1.5, static pressure 95
kPa, and is expanded by angles θ1 5 15� and θ2 5 15�, as
shown. Find the pressure changes.

θ

θ

1 = 15°

2 = 15°

P13.200, P13.203

13.201 A flow at M 5 2.5 is deflected by a combination of
interacting oblique shocks as shown. The first shock pair is
aligned at 30� to the flow. A second oblique shock pair
deflects the flow again so it ends up parallel to the original
flow. If the pressure before any deflections is 50 kPa, find the
pressure after two deflections.

M = 2.5
30°

P13.201

13.202 Compare the static and stagnation pressures pro-
duced by (a) an oblique shock and (b) isentropic compres-

sion waves as they each deflect a flow at a Mach number of
3.5 through a deflection angle of 35� in air for which the static
pressure is 50 kPa.

13.203 Find the incoming and intermediate Mach numbers
and static pressures if, after two expansions of θ1 5 15�

and θ2 5 15�, the Mach number is 4, and static pressure is
10 kPa.

13.204 Find the lift and drag per unit span on the airfoil
shown for flight at a Mach number of 1.75 in air for which the
static pressure is 50 kPa. The chord length is 1 m.

α = 18°

P13.204, P13.207

13.205 Consider the wedge-shaped airfoil of Problem
13.188. Suppose the oblique shock could be replaced by

isentropic compression waves. Find the lift per unit span at
the Mach number of 2.75 in air for which the static pressure
is 70 kPa.

13.206 Find the drag coefficient of the symmetric, zero
angle of attack airfoil shown for a Mach number of 2.0 in air
for which the static pressure is 95 kPa and temperature is
0�C. The included angles at the nose and tail are each 10�.

P13.206, P13.208

13.207 Plot the lift and drag per unit span, and the lift/drag
ratio, as functions of angle of attack for α 5 0� to 18�, for the
airfoil shown, for flight at a Mach number of 1.75 in air
for which the static pressure is 50 kPa. The chord length
is 1 m.

13.208 Find the lift and drag coefficients of the airfoil of
Problem 13.206 if the airfoil now has an angle of attack of 12�.

13.209 An airplane is flying at Mach 5 at an altitude of
16,764 m, where T15 216.67 K and p15 9.122 kPa. The air-
plane uses a scramjet engine. Two oblique shocks are formed
in the intake 2 prior to entering the combustion chamber

3 at supersonic speed. The inlet and exit areas are equal,
A15A55 0.2 m2. Calculate the stagnation temperature,
T2/T1, and the Mach number in the intake 2 .

A1

M1= 5

θ =10° 
1

2
3

4
5

P13.209, P13.210, P13.211

13.210 Two oblique shocks are formed in a scramjet engine
intake prior to entering the combustion chamber. The inlet
Mach number is M15 5, the incoming air temperature is
T15 216.67 K, p15 9.122 kPa, and A15 0.2m2. Calculate M3

in the combustion chamber 3 if M25 4.0.

13.211 An airplane is flying at Mach 5, where T15 216.67 K.
Oblique shocks form in the intake prior to entering the
combustion chamber 3 . The nozzle expansion ratio is
A5/A45 5. The inlet and exit areas are equal,A15A55 0.2m2.
Assuming isentropic flow with M25 4, M35 3.295, and
M45 1.26, calculate the exit Mach number and the exhaust jet
velocity 5 . Hint: Calculate the temperature ratios in each
section.
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Appendix A
Fluid Property Data

A.1Specific Gravity
Specific gravity data for several common liquids and solids are presented in Figs. A.1a
and A.1b and in Tables A.1 and A.2. For liquids specific gravity is a function of
temperature. (Density data for water and air are given as functions of temperature in
Tables A.7 through A.10.) For most liquids specific gravity decreases as temperature
increases. Water is unique: It displays a maximum density of 1000 kg/m3 (1.94 slug/ft3)
at 4�C (39�F). The maximum density of water is used as a reference value to calculate
specific gravity. Thus

SG � ρ
ρH2O

ðat 4�CÞ

Consequently the maximum SG of water is exactly unity.
Specific gravities for solids are relatively insensitive to temperature; values given in

Table A.1 were measured at 20�C.
The specific gravity of seawater depends on both its temperature and salinity. A

representative value for ocean water is SG5 1.025, as given in Table A.2.
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Table A.1
Specific Gravities of Selected Engineering Materials

(a) Common Manometer Liquids at 20�C

Liquid Specific Gravity

E.V. Hill blue oil 0.797
Meriam red oil 0.827
Benzene 0.879
Dibutyl phthalate 1.04
Monochloronaphthalene 1.20
Carbon tetrachloride 1.595
Bromoethylbenzene (Meriam blue) 1.75
Tetrabromoethane 2.95
Mercury 13.55

Source: Data from References [1�3].
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Fig. A.1 Specific gravity of water and mercury as functions of temperature. (Data from Refer-
ence [1].) (The specific gravity of mercury varies linearly with temperature. The variation is given
by SG5 13.60 2 0.00240 T when T is measured in degrees C.)
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Table A.2
Physical Properties of Common Liquids at 20�C

Liquid Isentropic Bulk Modulusa (GN/m2) Specific Gravity (—)

Benzene 1.48 0.879
Carbon tetrachloride 1.36 1.595
Castor oil 2.11 0.969
Crude oil — 0.82�0.92
Ethanol — 0.789
Gasoline — 0.72
Glycerin 4.59 1.26
Heptane 0.886 0.684
Kerosene 1.43 0.82
Lubricating oil 1.44 0.88
Methanol — 0.796
Mercury 28.5 13.55
Octane 0.963 0.702
Seawaterb 2.42 1.025
SAE 10W oil — 0.92
Water 2.24 0.998

Source: Data from References [1, 5, 6].
aCalculated from speed of sound; 1 GN/m25 109 N/m2 (1 N/m25 1.45 3 1024 lbf/in.2).
bDynamic viscosity of seawater at 20�C is μ 5 1:083 1023 N � s=m2. (Thus, the kinematic viscosity of sea-

water is about 5 percent higher than that of freshwater.)

Table A.1
Specific Gravities of Selected Engineering Materials (continued)

(b) Common Materials

Material Specific Gravity (—)

Aluminum 2.64
Balsa wood 0.14
Brass 8.55
Cast Iron 7.08
Concrete (cured) 2.4a

Concrete (liquid) 2.5a

Copper 8.91
Ice (0�C) 0.917
Lead 11.4
Oak 0.77
Steel 7.83
Styrofoam (1 pcfb) 0.0160
Styrofoam (3 pcf) 0.0481
Uranium (depleted) 18.7
White pine 0.43

Source: Data from Reference [4].
adepending on aggregate.
bpounds per cubic foot.
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A.2 Surface Tension
The values of surface tension, σ, for most organic compounds are remarkably similar
at room temperature; the typical range is 25 to 40 mN/m. Water is higher, at about
73 mN/m at 20�C. Liquid metals have values in the range between 300 and 600 mN/m;
mercury has a value of about 480 mN/m at 20�C. Surface tension decreases with
temperature; the decrease is nearly linear with absolute temperature. Surface tension
at the critical temperature is zero.

Values of σ are usually reported for surfaces in contact with the pure vapor of the
liquid being studied or with air. At low pressures both values are about the same.

Table A.3
Properties of the U.S. Standard Atmosphere

Geometric Altitude (m) Temperature (K) p/pSL (—) ρ/ρSL(—)

2500 291.4 1.061 1.049
0 288.2 1.000a 1.000b

500 284.9 0.9421 0.9529
1,000 281.7 0.8870 0.9075
1,500 278.4 0.8345 0.8638
2,000 275.2 0.7846 0.8217
2,500 271.9 0.7372 0.7812
3,000 268.7 0.6920 0.7423
3,500 265.4 0.6492 0.7048
4,000 262.2 0.6085 0.6689
4,500 258.9 0.5700 0.6343
5,000 255.7 0.5334 0.6012
6,000 249.2 0.4660 0.5389
7,000 242.7 0.4057 0.4817
8,000 236.2 0.3519 0.4292
9,000 229.7 0.3040 0.3813
10,000 223.3 0.2615 0.3376
11,000 216.8 0.2240 0.2978
12,000 216.7 0.1915 0.2546
13,000 216.7 0.1636 0.2176
14,000 216.7 0.1399 0.1860
15,000 216.7 0.1195 0.1590
16,000 216.7 0.1022 0.1359
17,000 216.7 0.08734 0.1162
18,000 216.7 0.07466 0.09930
19,000 216.7 0.06383 0.08489
20,000 216.7 0.05457 0.07258
22,000 218.6 0.03995 0.05266
24,000 220.6 0.02933 0.03832
26,000 222.5 0.02160 0.02797
28,000 224.5 0.01595 0.02047
30,000 226.5 0.01181 0.01503
40,000 250.4 0.002834 0.003262
50,000 270.7 0.0007874 0.0008383
60,000 255.8 0.0002217 0.0002497
70,000 219.7 0.00005448 0.00007146
80,000 180.7 0.00001023 0.00001632
90,000 180.7 0.000001622 0.000002588

Source: Data from Reference [7].
apSL 5 1:013253 105 N=m2 ðabsÞ ð514:696 psiaÞ.
bρSL 5 1:2250 kg=m3ð50:002377 slug=ft3Þ.
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A.3The Physical Nature of Viscosity
Viscosity is a measure of internal fluid friction, i.e., resistance to deformation. The
mechanism of gas viscosity is reasonably well understood, but the theory is poorly
developed for liquids. We can gain some insight into the physical nature of viscous
flow by discussing these mechanisms briefly.

The viscosity of a Newtonian fluid is fixed by the state of the material. Thus
μ 5 μðT; pÞ. Temperature is the more important variable, so let us consider it first.
Excellent empirical equations for viscosity as a function of temperature are available.

Effect of Temperature on Viscosity

a. Gases

All gas molecules are in continuous random motion. When there is bulk motion
due toflow, the bulkmotion is superimposedon the randommotions. It is thendistributed
throughout the fluid by molecular collisions. Analyses based on kinetic theory predict

Table A.4
Surface Tension of Common Liquids at 20�C

Liquid
Surface Tension,

σ (mN/m)a Contact Angle, θ (degrees)

(a) In contact with air

θ

Air
Liquid

Benzene 28.9
Carbon tetrachloride 27.0
Ethanol 22.3
Glycerin 63.0
Hexane 18.4
Kerosene 26.8
Lube oil 25�35
Mercury 484 140
Methanol 22.6
Octane 21.8
Water 72.8 B0

Source: Data from References [1, 5, 8, 9].

(b) In contact with water

θ

Water

Liquid

Benzene 35.0
Carbon tetrachloride 45.0
Hexane 51.1
Mercury 375 140
Methanol 22.7
Octane 50.8

Source: Data from References [1, 5, 8, 9].
a1 mN/m5 1023 N/m.
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μ ~
ffiffiffiffi
T

p

The kinetic theory prediction is in fair agreement with experimental trends, but the
constant of proportionality and one or more correction factors must be determined;
this limits practical application of this simple equation.

If two or more experimental points are available, the data may be correlated using
the empirical Sutherland correlation [7]

μ 5
bT1=2

11 S=T
ðA:1Þ

Constants b and S may be determined most simply by writing

μ 5
bT3=2

S1T

or

T3=2

μ
5

1

b

� �
T1

S

b

(Compare this with y5mx 1 c.) From a plot of T 3/2/μ versus T, one obtains the
slope, 1/b, and the intercept, S/b. For air,

b 5 1:4583 1026 kg

m�s�K1=2

S 5 110:4 K

These constants were used with Eq. A.1 to compute viscosities for the standard
atmosphere in [7], the air viscosity values at various temperatures shown in
Table A.10, and using appropriate conversion factors, the values shown in Table A.9.

b. Liquids

Viscosities for liquids cannot be estimated well theoretically. The phenomenon of
momentum transfer by molecular collisions is overshadowed in liquids by the effects
of interacting force fields among the closely packed liquid molecules.

Liquid viscosities are affected drastically by temperature. This dependence on
absolute temperature may be represented by the empirical equation

μ 5 AeB=ðT2CÞ ðA:2Þ
or the equivalent form

μ 5 A10B=ðT2CÞ ðA:3Þ
where T is absolute temperature.

Equation A.3 requires at least three points to fit constants A, B, and C. In theory it
is possible to determine the constants from measurements of viscosity at just three
temperatures. It is better practice to use more data and to obtain the constants from a
statistical fit to the data.

However a curve-fit is developed, always compare the resulting line or curve with
the available data. The best way is to critically inspect a plot of the curve-fit compared
with the data. In general, curve-fit results will be satisfactory only when the quality of
the available data and that of the empirical relation are known to be excellent.

Data for the dynamic viscosity of water are fitted well using constant values
A 5 2:4143 1025 N�s=m2, B5 247.8 K, and C5 140 K. Reference [10] states that
using these constants in Eq. A.3 predicts water viscosity within 62.5 percent over the
temperature range from 0�C to 370�C. Equation A.3 and Excel were used to compute
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the water viscosity values at various temperatures shown in Table A.8, and using
appropriate conversion factors, the values shown in Table A.7.

Note that the viscosity of a liquid decreases with temperature, while that of a gas
increases with temperature.
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1 N·s/m2 = 0.0209 lbf·s/ft2
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Fig. A.2 Dynamic (absolute) viscosity of common fluids as a function of
temperature. (Data from References [1, 6, and 10].)

The graphs for air and water were computed from the Excel workbook Absolute
Viscosities, using Eq. A.1 and Eq. A.3, respectively. The workbook can be used
to compute viscosities of other fluids if constants b and S (for a gas) or A, B, and
C (for a liquid) are known.

Effect of Pressure on Viscosity

a. Gases

The viscosity of gases is essentially independent of pressure between a few hundredths
of an atmosphere and a few atmospheres. However, viscosity at high pressures
increases with pressure (or density).
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Fig. A.3 Kinematic viscosity of common fluids (at atmospheric pressure) as a function of temperature. (Data
from References [1, 6, and 10].)

b. Liquids

The viscosities of most liquids are not affected by moderate pressures, but large
increases have been found at very high pressures. For example, the viscosity of water
at 10,000 atm is twice that at 1 atm. More complex compounds show a viscosity
increase of several orders of magnitude over the same pressure range.

More information may be found in Reid and Sherwood [11].
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A.4Lubricating Oils
Engine and transmission lubricating oils are classified by viscosity according to stan-
dards established by the Society of Automotive Engineers [12]. The allowable viscosity
ranges for several grades are given in Table A.5.

Viscosity numbers with W (e.g., 20W) are classified by viscosity at 0�F. Those
without W are classified by viscosity at 210�F.

Multigrade oils (e.g., 10W-40) are formulated to minimize viscosity variation with
temperature. High polymer “viscosity index improvers” are used in blending these
multigrade oils. Such additives are highly non-Newtonian; they may suffer permanent
viscosity loss caused by shearing.

Special charts are available to estimate the viscosity of petroleum products as a
function of temperature. The charts were used to develop the data for typical lubri-
cating oils plotted in Figs. A.2 and A.3. For details, see [15].

A.5Properties of Common Gases, Air and Water

Table A.5
Allowable Viscosity Ranges for Lubricants

Engine Oil

SAE
Viscosity
Grade

Max.
Viscosity (cP)a

at Temp. (�C)

Viscosity (cSt)b at 100�C

Min Max

0W 3250 at 230 3.8 —
5W 3500 at 225 3.8 —

10W 3500 at 220 4.1 —
15W 3500 at 215 5.6 —
20W 4500 at 210 5.6 —
25W 6000 at 25 9.3 —
20 — 5.6 ,9.3
30 — 9.3 ,12.5
40 — 12.5 ,16.3
50 — 16.3 ,21.9

Axle and Manual
Transmission
Lubricant

SAE
Viscosity
Grade

Max. Temp. (�C)
for Viscosity of

150,000 cP

Viscosity (cSt) at 100�C

Min Max

70W 255 4.1 —
75W 240 4.1 —
80W 226 7.0 —
85W 212 11.0 —
90 — 13.5 ,24.0
140 — 24.0 ,41.0
250 — 41.0 —

Automatic
Transmission
Fluid (Typical)

Maximum
Viscosity (cP) Temperature (�C)

Viscosity (cSt) at 100�C

Min Max

50000 240 6.5 8.5
4000 223.3 6.5 8.5
1700 218 6.5 8.5

Source: Data from References [12�14].
acentipoise5 1 cP 5 1 mPa � s 5 1023 Pa � s ð52:093 1025 lbf � s=ft2Þ.
bcentistoke5 1026 m2/s (5 1.08 3 1025 ft2/s).
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Table A.6
Thermodynamic Properties of Common Gases at STPa

Gas
Chemical
Symbol

Molecular
Mass, Mm

� Rb

J

kg�K
� � cp

J

kg�K
� � cv

J

kg�K
� k 5

cp
cv

ð�Þ

� Rb

ft�lbf
lbm �R

� � cp
Btu

lbm �R

� � cv
Btu

lbm �R

�

Air — 28.98 286.9 1004 717.4 1.40 53.33 0.2399 0.1713
Carbon dioxide CO2 44.01 188.9 840.4 651.4 1.29 35.11 0.2007 0.1556
Carbon monoxide CO 28.01 296.8 1039 742.1 1.40 55.17 0.2481 0.1772
Helium He 4.003 2077 5225 3147 1.66 386.1 1.248 0.7517
Hydrogen H2 2.016 4124 14,180 10,060 1.41 766.5 3.388 2.402
Methane CH4 16.04 518.3 2190 1672 1.31 96.32 0.5231 0.3993
Nitrogen N2 28.01 296.8 1039 742.0 1.40 55.16 0.2481 0.1772
Oxygen O2 32.00 259.8 909.4 649.6 1.40 48.29 0.2172 0.1551
Steamc H2O 18.02 461.4 B2000 B1540 B1.30 85.78 B0.478 B0.368

Source: Data from References [7, 16, 17].
aSTP5 standard temperature and pressure, T5 15�C5 59�F and p5 101.325 kPa (abs)5 14.696 psia.
bR � Ru/Mm; Ru5 8314.3 J/(kgmol �K)5 1545.3 ft � lbf/(lbmol � �R); 1 Btu5 778.2 ft � lbf.
cWater vapor behaves as an ideal gas when superheated by 55�C (100�F) or more.
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Table A.7
Properties of Water (U.S. Customary Units)

Temperature,
T (�F)

Density,
ρ (slug/ft3)

Dynamic
Viscosity,
μ (lbf�s/ft2)

Kinematic
Viscosity,
ν (ft2/s)

Surface
Tension,
σ (lbf/ft)

Vapor
Pressure,
pv (psia)

Bulk
Modulus,
Ev (psi)

32 1.94 3.68E-05 1.90E-05 0.00519 0.0886 2.92E 1 05
40 1.94 3.20E-05 1.65E-05 0.00514 0.122
50 1.94 2.73E-05 1.41E-05 0.00509 0.178
59 1.94 2.38E-05 1.23E-05 0.00504 0.247
60 1.94 2.35E-05 1.21E-05 0.00503 0.256
68 1.94 2.10E-05 1.08E-05 0.00499 0.339
70 1.93 2.05E-05 1.06E-05 0.00498 0.363 3.20E 1 05
80 1.93 1.80E-05 9.32E-06 0.00492 0.507
90 1.93 1.59E-05 8.26E-06 0.00486 0.699
100 1.93 1.43E-05 7.38E-06 0.00480 0.950
110 1.92 1.28E-05 6.68E-06 0.00474 1.28
120 1.92 1.16E-05 6.05E-06 0.00467 1.70 3.32E 1 05
130 1.91 1.06E-05 5.54E-06 0.00461 2.23
140 1.91 9.70E-06 5.08E-06 0.00454 2.89
150 1.90 8.93E-06 4.70E-06 0.00448 3.72
160 1.89 8.26E-06 4.37E-06 0.00441 4.75
170 1.89 7.67E-06 4.06E-06 0.00434 6.00
180 1.88 7.15E-06 3.80E-06 0.00427 7.52
190 1.87 6.69E-06 3.58E-06 0.00420 9.34
200 1.87 6.28E-06 3.36E-06 0.00413 11.5 3.08E 1 05
212 1.86 5.84E-06 3.14E-06 0.00404 14.7

--------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------

Table A.8
Properties of Water (SI Units)

Temperature,
T (�C)

Density,
ρ (kg/m3)

Dynamic
Viscosity,
μ (N � s/m2)

Kinematic
Viscosity,
ν (m2/s)

Surface
Tension,
σ (N/m)

Vapor
Pressure,
pv (kPa)

Bulk
Modulus,
Ev (GPa)

0 1000 1.76E-03 1.76E-06 0.0757 0.661 2.01
5 1000 1.51E-03 1.51E-06 0.0749 0.872
10 1000 1.30E-03 1.30E-06 0.0742 1.23
15 999 1.14E-03 1.14E-06 0.0735 1.71
20 998 1.01E-03 1.01E-06 0.0727 2.34 2.21
25 997 8.93E-04 8.96E-07 0.0720 3.17
30 996 8.00E-04 8.03E-07 0.0712 4.25
35 994 7.21E-04 7.25E-07 0.0704 5.63
40 992 6.53E-04 6.59E-07 0.0696 7.38
45 990 5.95E-04 6.02E-07 0.0688 9.59
50 988 5.46E-04 5.52E-07 0.0679 12.4 2.29
55 986 5.02E-04 5.09E-07 0.0671 15.8
60 983 4.64E-04 4.72E-07 0.0662 19.9
65 980 4.31E-04 4.40E-07 0.0654 25.0
70 978 4.01E-04 4.10E-07 0.0645 31.2
75 975 3.75E-04 3.85E-07 0.0636 38.6
80 972 3.52E-04 3.62E-07 0.0627 47.4
85 969 3.31E-04 3.41E-07 0.0618 57.8
90 965 3.12E-04 3.23E-07 0.0608 70.1 2.12
95 962 2.95E-04 3.06E-07 0.0599 84.6
100 958 2.79E-04 2.92E-07 0.0589 101
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Table A.9
Properties of Air at Atmospheric Pressure (U.S. Customary Units)

Temperature,
T (�F)

Density,
ρ (slug/ft3)

Dynamic
Viscosity,
μ (lbf � s/ft2)

Kinematic
Viscosity,
ν (ft2/s)

40 0.00247 3.63E-07 1.47E-04
50 0.00242 3.69E-07 1.52E-04
59 0.00238 3.74E-07 1.57E-04
60 0.00237 3.74E-07 1.58E-04
68 0.00234 3.79E-07 1.62E-04
70 0.00233 3.80E-07 1.63E-04
80 0.00229 3.85E-07 1.68E-04
90 0.00225 3.91E-07 1.74E-04
100 0.00221 3.96E-07 1.79E-04
110 0.00217 4.02E-07 1.86E-04
120 0.00213 4.07E-07 1.91E-04
130 0.00209 4.12E-07 1.97E-04
140 0.00206 4.18E-07 2.03E-04
150 0.00202 4.23E-07 2.09E-04
160 0.00199 4.28E-07 2.15E-04
170 0.00196 4.33E-07 2.21E-04
180 0.00193 4.38E-07 2.27E-04
190 0.00190 4.43E-07 2.33E-04
200 0.00187 4.48E-07 2.40E-04

--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------------------------

Table A.10
Properties of Air at Atmospheric Pressure (SI Units)

Temperature,
T (�C)

Density,
ρ (kg/m3)

Dynamic
Viscosity,
μ (N � s/m2)

Kinematic
Viscosity,
ν (m2/s)

0 1.29 1.72E-05 1.33E-05
5 1.27 1.74E-05 1.37E-05

10 1.25 1.76E-05 1.41E-05
15 1.23 1.79E-05 1.45E-05
20 1.21 1.81E-05 1.50E-05
25 1.19 1.84E-05 1.54E-05
30 1.17 1.86E-05 1.59E-05
35 1.15 1.88E-05 1.64E-05
40 1.13 1.91E-05 1.69E-05
45 1.11 1.93E-05 1.74E-05
50 1.09 1.95E-05 1.79E-05
55 1.08 1.98E-05 1.83E-05
60 1.06 2.00E-05 1.89E-05
65 1.04 2.02E-05 1.94E-05
70 1.03 2.04E-05 1.98E-05
75 1.01 2.06E-05 2.04E-05
80 1.00 2.09E-05 2.09E-05
85 0.987 2.11E-05 2.14E-05
90 0.973 2.13E-05 2.19E-05
95 0.960 2.15E-05 2.24E-05

100 0.947 2.17E-05 2.29E-05
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Appendix B
Equations of Motion
in Cylindrical
Coordinates
The continuity equation in cylindrical coordinates for constant density is
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Normal and shear stresses in cylindrical coordinates for constant density and viscosity
are
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The Navier�Stokes equations in cylindrical coordinates for constant density and
viscosity are
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θ component:
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Appendix C
Videos for Fluid
Mechanics

Referenced in the text are the following videos available at www.wiley.com/college/pritchard.

Chapter 2

Fluid as a Continuum

Streaklines

Streamlines

Molecular Interactions
at the Interface

Shrinking Soap Film

Soap Film Burst

Wetted and Non-wetted
Surfaces

Capillary Rise

Examples of Flow over
a Sphere

Internal Laminar Flow
in a Tube

The Space Shuttle: An
External Turbulent Flow

Boundary Layer Flow

Streamlined Flow over
an Airfoil

Streamlines around a Car

Laminar and Turbulent
Flow

Compressible Flow:
Shock Waves

Chapter 3

Hydraulic Force
Amplification

Chapter 4

Mass Conservation:
Filling a Tank

Momentum Effect:
A Jet Impacting
a Surface

Chapter 5

An Example of Stream-
lines/Streaklines

Particle Motion in
a Channel

Particle Motion over a
Cylinder

Linear Deformation

CFD: Turbulent Flow
in a Channel

800

www.wiley.com/college/pritchard


CFD: Flow Past a Cylinder

CFD: Fully Turbulent
Duct Flow

Chapter 6

An Example of Irrota-
tional Flow

Chapter 7

Flow Around a Sphere 1

Flow Around a Sphere 2

Geometric, Not Dynamic,
Similarity: Flow Past a
Block 1

Geometric, Not Dynamic,
Similarity: Flow Past a
Block 2

Chapter 8

The Reynolds Transition
Experiment

Variable Viscosity Experi-
ment (Animation)

Variable Viscosity Experi-
ment: Pressure Drop

Laminar Pipe Flow:
Velocity Profile

Pipe Flow: Laminar

Pipe Flow: Transitional

Pipe Flow: Turbulent

Fully-Developed Pipe
Flow

Laminar Flow Exiting
from a Tube

The Glen Canyon Dam: A
Turbulent Pipe Flow

Computer Simulation:
Turbulent Channel Flow 1

Computer Simulation:
Turbulent Channel Flow 2

Computer Simulation:
Turbulent Channel Flow 3

Flow Visualization: Laser
Induced Fluorescence

Laser Doppler Anemo-
metry (Animation)

Chapter 9

Flow around an Airfoil

Flow Separation on an
Airfoil

Laminar and Turbulent
Boundary Layers

Growth of the Boundary
Layer

Effect of Viscosity on
Boundary Layer Growth

Examples of Boundary
Layer Growth

Flow Separation: Sudden
Expansion

Flow Separation: Airfoil

Flow about a Sports Car

Plate Normal to the Flow

An Object with a High
Drag Coefficient

Examples of Flow around
a Sphere

Laminar and Turbulent
Flow Past a Sphere

Flow Separation on
a Cylinder

Vortex Trail behind
a Cylinder

Low Reynolds Number
Flow over a Cylinder

Flow Separation behind a
Cylinder

Flow past a Model A and a
Sports Car

Flow Past an Airfoil
(a5 0

o)

Flow Past an Airfoil
(a5 10

o)

Flow Past an Airfoil
(a5 20

o)

Wing Tip Vortices

Leading Edge Slats

Chapter 10

Flow in an Axial Flow
Compressor (Animation)

Chapter 11

A Turbulent Channel
(Animation)

The Glen Canyon Dam:
A Source of Turbulent
Channel Flow

A Laminar Hydraulic
Jump
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Chapter 12

Sound Waves (Animation)

Shock Waves over a
Supersonic Airplane

Shock Waves due to a
Projectile

Chapter 13

Shock Waves over a
Supersonic Airplane

Shock Waves due to a
Projectile

The following videos were developed by the National Committee for Fluid Mechanics
Films (NCFMF) and are referenced as “Classic Videos” in the text. They may all be
viewed for free at http://web.mit.edu/hml/ncfmf.html or linked to from www.wiley.
com/college/pritchard.

These videos are supplied by:

Encyclopaedia Britannica Educational Corporation
331 North La Salle Street
Chicago, IL 60654

Aerodynamic Generation of Sound (44 min, principals: M. J. Lighthill,
J. E. Ffowcs-Williams)
Boundary Layer Control (25 min, principal: D. C. Hazen)
Cavitation (31 min, principal: P. Eisenberg)
Channel Flow of a Compressible Fluid (29 min, principal: D. E. Coles)
Deformation of Continuous Media (38 min, principal: J. L. Lumley)
Eulerian and Lagrangian Descriptions in Fluid Mechanics (27 min, principal:
J. L. Lumley)
Flow Instabilities (27 min, principal: E. L. Mollo-Christensen)
Flow Visualization (31 min, principal: S. J. Kline)
The Fluid Dynamics of Drag (4 parts, 120 min, principal: A. H. Shapiro)
Fundamentals of Boundary Layers (24 min, principal: F. H. Abernathy)
Low-Reynolds-Number Flows (33 min, principal: Sir G. I. Taylor)
Magnetohydrodynamics (27 min, principal: J. A. Shercliff)
Pressure Fields and Fluid Acceleration (30 min, principal: A. H. Shapiro)
Rarefied Gas Dynamics (33 min, principals: F. C. Hurlbut, F. S. Sherman)
Rheological Behavior of Fluids (22 min, principal: H. Markovitz)
Rotating Flows (29 min, principal: D. Fultz)
Secondary Flow (30 min, principal: E. S. Taylor)
Stratified Flow (26 min, principal: R. R. Long)
Surface Tension in Fluid Mechanics (29 min, principal: L. M. Trefethen)
Turbulence (29 min, principal: R. W. Stewart)
Vorticity (2 parts, 44 min, principal: A. H. Shapiro)
Waves in Fluids (33 min, principal: A. E. Bryson)

For a list of additional videos onfluidmechanics, visit www.wiley.com/college/pritchard.

802 Appendix C Videos for Fluid Mechanics

www.wiley.com/college/pritchard
www.wiley.com/college/pritchard
www.wiley.com/college/pritchard
http://web.mit.edu/hml/ncfmf.html


Appendix D
Selected Performance
Curves for Pumps
and Fans

D.1Introduction
Many firms, worldwide, manufacture fluid machines in numerous standard types and
sizes. Each manufacturer publishes complete performance data to allow application of
its machines in systems. This Appendix contains selected performance data for use in
solving pump and fan system problems. Two pump types and one fan type are
included.

Choice of a manufacturer may be based on established practice, location, or cost.
Once a manufacturer is chosen, machine selection is a three-step process:

1. Select a machine type, suited to the application, from a manufacturer’s full-line
catalog, which gives the ranges of pressure rise (head) and flow rate for each
machine type.

2. Choose an appropriate machine model and driver speed from a master selector
chart, which superposes the head and flow rate ranges of a series of machines on
one graph.

3. Verify that the candidate machine is satisfactory for the intended application, using
a detailed performance curve for the specific machine.

It is wise to consult with experienced system engineers, either employed by the
machine manufacturer or in your own organization, before making a final purchase
decision.

Many manufacturers currently use computerized procedures to select a machine
that is most suitable for each given application. Such procedures are simply automated
versions of the traditional selection method. Use of the master selector chart and the
detailed performance curves is illustrated below for pumps and fans, using data from
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one manufacturer of each type of machine. Literature of other manufacturers differs
in detail but contains the necessary information for machine selection.

D.2 Pump Selection
Representative data are shown in Figs. D.1 through D.10 for Peerless1 horizontal split
case single-stage (series AE) pumps and in Figs. D.11 and D.12 for Peerless multi-
stage (series TU and TUT) pumps.

Figures D.1 and D.2 are master pump selector charts for series AE pumps at 3500
and 1750 nominal rpm. On these charts, the model number (e.g., 6AE14) indicates the
discharge line size (6 in. nominal pipe), the pump series (AE), and the maximum
impeller diameter (approximately 14 in.).

Figures D.3 through D.10 are detailed performance charts for individual pump
models in the AE series.

Figures D.11 and D.12 are master pump selector charts for series TU and TUT
pumps at 1750 nominal rpm. Data for two-stage pumps are presented in Fig. D.11,
while Fig. D.12 contains data for pumps with three, four, and five stages.

Each pump performance chart contains curves of total head versus volume flow
rate; curves for several impeller diameters—tested in the same casing—are presented
on a single graph. Each performance chart also contains curves showing pump effi-
ciency and driver power; the net positive suction head (NPSH) requirement, as it
varies with flow rate, is shown by the curve at the bottom of each chart. The best
efficiency point (BEP) for each impeller may be found using the efficiency curves.

Use of the master pump selector chart and detailed performance curves is illus-
trated in Example D.1.

Example D.1 PUMP SELECTION PROCEDURE

Select a pump to deliver 1750 gpm of water at 120 ft total head. Choose the appropriate pump model and driver
speed. Specify the pump efficiency, driver power, and NPSH requirement.

Given: Select a pump to deliver 1750 gpm of water at 120 ft total head.

Find: (a) Pump model and driver speed.
(b) Pump efficiency.
(c) Driver power.
(d) NPSH requirement.

Solution:
Use the pump selection procedure described in Section D-1. (The numbers below correspond to the numbered steps
given in the procedure.)

1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog,
which is not reproduced here. The Peerless product line catalog specifies a maximum delivery and head of
2500 gpm and 660 ft for series AE pumps. Therefore the required performance can be obtained; assume the
selection is to be made from this series.)

1Peerless Pump Company, P.O. Box 7026, Indianapolis, IN 46207-7026.

804 Appendix D Selected Performance Curves for Pumps and Fans



D.3Fan Selection
Fan selection is similar to pump selection. A representativemaster fan selection chart is
shown in Fig. D.13 for a series of Howden Buffalo2 axial-flow fans. The chart shows the
efficiency of the entire series of fans as a function of total pressure rise and flow rate.
The series of numbers for each fan indicates the fan diameter in inches, the hub diameter
in inches, and the fan speed in revolutions perminute. For instance, a 54-26-870 fan has a
fan diameter of 54 in., a hub diameter of 26 in., and should be operated at 870 rpm.

Normally, final evaluation of suitability of the fan model for the application would
be done using detailed performance charts for the specific model. Instead, we use the
efficiencies from Fig D.13, which are indicated by the shading of the different zones on
the map. To calculate the power requirement for the fan motor, we use the following
equation:

3ðhpÞ 5 QðcfmÞ3Δpðin:H2OÞ
63503 η

A sample fan selection is presented in Example D.2.

Example D.2 FAN SELECTION PROCEDURE

Select an axial flow fan to deliver 30,000 cfm of standard air at 1.25 in. H2O total pressure. Choose the appropriate
fan model and driver speed. Specify the fan efficiency and driver power.

Given: Select an axial flow fan to deliver 30,000 cfm of standard air at 1.25 in. H2O total head.

Find: (a) Fan size and driver speed.
(b) Fan efficiency.
(c) Driver power.

Solution:
Use the fan selection procedure described in Section D-1. (The numbers below correspond to the numbered steps
given in the procedure.)

2. Consult the master pump selector chart. The desired operating point is not within any pump contour on the 3500
rpm selector chart (Fig. D.1). From the 1750 rpm chart (Fig. D.2), select a model 6AE14 pump. From the per-
formance curve for the 6AE14 pump (Fig. D.6), choose a 13-in. impeller.

3. Verify the performance of the machine using the detailed performance
chart. On the performance chart for the 6AE14 pump, project up from
the abscissa at Q 5 1750 gpm. Project across from H 5 120 ft on the
ordinate. The intersection is the pump performance at the desired
operating point:

η � 85:8 percent 3 � 64 hp

From the operating point, project down to the NPSH requirement
curve. At the intersection, read NPSH � 17 ft.

2Howden Buffalo Inc., 2029 W. DeKalb St., Camden, SC 29020.

This completes the selection process
for this pump. One should consult with
experienced system engineers to verify
that the system operating condition
has been predicted accurately and the
pump has been selected correctly.
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1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog,
which is not reproduced here. Assume the fan selection is to be made from the axial fan data presented in Fig.
D.13.)

2. Consult the master fan selector chart. The desired operating point
is within the contour for the 48-21-860 fan on the selector chart
(Fig. D.13). To achieve the desired performance requires driving the
fan at 860 rpm.

3. Verify the performance of the machine using a detailed performance
chart. To determine the efficiency, we consult Fig D.13 again. We
estimate an efficiency of 85 percent. To determine the motor power
requirement, we use the equation given above:

3 5
Q3Δp

63503 η
5

30;000 cfm3 1:25 in: H2O

63503 0:85
5 6:95 hp

This completes the fan selection pro-
cess. Again, one should consult with
experienced system engineers to verify
that the system operating condition
has been predicted accurately and the
fan has been selected correctly.
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Appendix E
Flow Functions for
Computation of
Compressible Flow

E.1Isentropic Flow
Isentropic flow functions are computed using the following equations:

T0

T
5 11

k2 1

2
M2 ð12:21bÞ=ð13:7bÞ
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5 11
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Representative values of the isentropic flow functions for k 5 1.4 are presented in
Table E.1 and plotted in Fig. E.1.
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This table was computed from the Excel workbook Isentropic Relations. The
workbook contains a more detailed, printable version of the table and can be
easily modified to generate data for a different Mach number range, or for a
different gas.

This graph was generated from the Excel workbook. The workbook can be
modified easily to generate curves for a different gas.
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Fig. E.1 Isentropic flow functions.

Table E.1
Isentropic Flow Functions (one-dimensional flow, ideal gas, k 5 1.4)

M T/T0 p/p0 r/r0 A/A*

0.00 1.0000 1.0000 1.0000 N
0.50 0.9524 0.8430 0.8852 1.340
1.00 0.8333 0.5283 0.6339 1.000
1.50 0.6897 0.2724 0.3950 1.176
2.00 0.5556 0.1278 0.2301 1.688
2.50 0.4444 0.05853 0.1317 2.637
3.00 0.3571 0.02722 0.07623 4.235
3.50 0.2899 0.01311 0.04523 6.790
4.00 0.2381 0.006586 0.02766 10.72
4.50 0.1980 0.003455 0.01745 16.56
5.00 0.1667 0.001890 0.01134 25.00
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E.2 Normal Shock
Normal-shock flow functions are computed using the following equations:
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Representative values of the normal-shock flow functions for k 5 1.4 are presented in
Table E.2 and plotted in Fig. E.2.

This table was computed from the Excel workbook Normal-Shock Relations. The
workbookcontainsamoredetailed,printableversionof the tableandcanbemodified
easily to generate data for a different Mach number range, or for a different gas.

Table E.2
Normal-Shock Flow Functions (one-dimensional flow, ideal gas, k 5 1.4)

M1 M2 p02/p01 T2/T1 p2/p1 r2/r1

1.00 1.000 1.000 1.000 1.000 1.000
1.50 0.7011 0.9298 1.320 2.458 1.862
2.00 0.5774 0.7209 1.687 4.500 2.667
2.50 0.5130 0.4990 2.137 7.125 3.333
3.00 0.4752 0.3283 2.679 10.33 3.857
3.50 0.4512 0.2130 3.315 14.13 4.261
4.00 0.4350 0.1388 4.047 18.50 4.571
4.50 0.4236 0.09170 4.875 23.46 4.812
5.00 0.4152 0.06172 5.800 29.00 5.000
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This graph was generated from the Excel workbook. The workbook can be
modified easily to generate curves for a different gas.
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Fig. E.2 Normal-shock flow functions.
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E.3 Fanno-Line Flow
Fanno-line flow functions are computed using the following equations:
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Representative values of the Fanno-line flow functions for k 5 1.4 are presented in
Table E.3 and plotted in Fig. E.3.

This table was computed from the Excel workbook Fanno-Line Relations. The
workbookcontainsamoredetailed,printableversionof the tableandcanbemodified
easily to generate data for a different Mach number range, or for a different gas.

Table E.3
Fanno-Line Flow Functions (one-dimensional flow, ideal gas, k 5 1.4)

M p0/p0* T/T* p/p* V/V* fLmax/Dh

0.00 N 1.200 N 0.0000 N
0.50 1.340 1.143 2.138 0.5345 1.069
1.00 1.000 1.000 1.000 1.000 0.0000
1.50 1.176 0.8276 0.6065 1.365 0.1361
2.00 1.688 0.6667 0.4083 1.633 0.3050
2.50 2.637 0.5333 0.2921 1.826 0.4320
3.00 4.235 0.4286 0.2182 1.964 0.5222
3.50 6.790 0.3478 0.1685 2.064 0.5864
4.00 10.72 0.2857 0.1336 2.138 0.6331
4.50 16.56 0.2376 0.1083 2.194 0.6676
5.00 25.00 0.2000 0.08944 2.236 0.6938
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This graph was generated from the Excel workbook. The workbook can be
modified easily to generate curves for a different gas.
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Fig. E.3 Fanno-line flow functions.
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E.4 Rayleigh-Line Flow
Rayleigh-line flow functions are computed using the following equations:
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Representative values of the Rayleigh-line flow functions for k 5 1.4 are presented in
Table E.4 and plotted in Fig. E.4.

This table was computed from the Excel workbook Rayleigh-Line Relations. The
workbook contains a more detailed, printable version of the table and can be
easily modified to generate data for a different Mach number range, or for a
different gas.

Table E.4
Rayleigh-Line Flow Functions (one-dimensional flow, ideal gas, k 5 1.4)

M T0/T0
* p0/p0* T/T* p/p* V/V*

0.00 0.0000 1.268 0.0000 2.400 0.0000
0.50 0.6914 1.114 0.7901 1.778 0.4444
1.00 1.000 1.000 1.000 1.000 1.000
1.50 0.9093 1.122 0.7525 0.5783 1.301
2.00 0.7934 1.503 0.5289 0.3636 1.455
2.50 0.7101 2.222 0.3787 0.2462 1.539
3.00 0.6540 3.424 0.2803 0.1765 1.588
3.50 0.6158 5.328 0.2142 0.1322 1.620
4.00 0.5891 8.227 0.1683 0.1026 1.641
4.50 0.5698 12.50 0.1354 0.08177 1.656
5.00 0.5556 18.63 0.1111 0.06667 1.667
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This graph was generated from the Excel workbook. The workbook can be
modified easily to generate curves for a different gas.
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Fig. E.4 Rayleigh-line flow functions.
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E.5 Oblique Shock
Oblique-shock flow functions are computed using the following equations:

M2
2n
5

M2
1n
1

2

k2 1
2k

k2 1
M2

1n
2 1

ð13:48aÞ

p02
p01

5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

2
64

3
75
k=ðk21Þ

2k

k1 1
M2

1n
2

k2 1

k1 1

� �1=ðk21Þ ð13:48bÞ

T2

T1

5

11
k2 1

2
M2

1n

� �
kM2

1n
2

k2 1

2

� �
k1 1

2

� �2

M2
1n

ð13:48cÞ

p2
p1

5
2k

k1 1
M2

1n
2

k2 1

k1 1
ð13:48dÞ

ρ2
ρ1

5
V1n

V2n

5

k1 1

2
M2

1n

11
k2 1

2
M2

1n

ð13:48eÞ

Representative values of the oblique-shock flow functions for k 5 1.4 are presented in
Table E.5 (identical to Table E.2 except for the Mach number notations).

The deflection angle θ, oblique-shock angle β, and Mach number M1 are related
using the following equation:

tan θ 5
2 cot βðM2

1 sin2β2 1Þ
M2

1ðk1 cos 2βÞ1 2
ð13:49Þ

Representative values of angle θ are presented in Table E.6.

Table E.5
Oblique-Shock Flow Functions (ideal gas, k 5 1.4)

M1n M2n p02/p01 T2/T1 p2/p1 r2/r1

1.00 1.000 1.0000 1.000 1.000 1.000
1.50 0.7011 0.9298 1.320 2.458 1.862
2.00 0.5774 0.7209 1.687 4.500 2.667
2.50 0.5130 0.4990 2.137 7.125 3.333
3.00 0.4752 0.3283 2.679 10.33 3.857
3.50 0.4512 0.2130 3.315 14.13 4.261
4.00 0.4350 0.1388 4.047 18.50 4.571
4.50 0.4236 0.09170 4.875 23.46 4.812
5.00 0.4152 0.06172 5.800 29.00 5.000
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Tables E.5 and E.6 were computed from the Excel workbook Oblique-Shock
Relations. The workbook contains a more detailed, printable version of the
tables and can be modified easily to generate data for a different Mach number
range, or for a different gas.

Table E.6
Oblique-Shock Deflection Angle θ (deg) (ideal gas, k 5 1.4)

Mach number M1

1.2 1.4 1.6 1.8 2 2.5 3 4 6 10 ‘

0 — — — — — — — — — — —
5 — — — — — — — — — — 4.16

10 — — — — — — — — 0.64 5.53 8.32
15 — — — — — — — 0.80 7.18 10.5 12.4
20 — — — — — — 0.77 7.44 12.4 15.1 16.5
25 — — — — — 1.93 7.28 12.9 17.1 19.3 20.6
30 — — — — — 7.99 12.8 17.8 21.5 23.4 24.5
35 — — — 1.41 5.75 13.2 17.6 22.2 25.6 27.3 28.3
40 — — 1.31 6.49 10.6 17.7 21.8 26.2 29.4 31.1 32.0
45 — — 5.73 10.7 14.7 21.6 25.6 29.8 33.0 34.6 35.5
50 — 3.28 9.31 14.2 18.1 24.9 28.9 33.1 36.2 37.8 38.8
55 — 6.18 12.1 16.9 20.7 27.4 31.5 35.8 39.0 40.7 41.6
60 1.61 8.20 13.9 18.6 22.4 29.2 33.3 37.8 41.1 42.9 43.9
65 3.16 9.27 14.6 19.2 23.0 29.8 34.1 38.7 42.3 44.2 45.3
70 3.88 9.32 14.2 18.5 22.1 28.9 33.3 38.2 42.1 44.2 45.4
75 3.80 8.29 12.5 16.2 19.5 25.9 30.2 35.3 39.5 41.8 43.1
80 3.01 6.25 9.34 12.2 14.8 20.1 23.9 28.7 32.8 35.2 36.6
85 1.66 3.36 5.03 6.61 8.08 11.2 13.6 16.8 19.7 21.6 22.7
90 0 0 0 0 0 0 0 0 0 0 0
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13.6 Isentropic Expansion Wave Relations
The Prandtl-Meyer supersonic expansion function, ω, is

ω 5

ffiffiffiffiffiffiffiffiffiffiffi
k1 1

k2 1

r
tan21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1

k1 1
ðM2 2 1Þ

r !
2 tan21ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 2 1

p
Þ ð13:55Þ

Representative values of angle ω are presented in Table E.7.

This table was computed from the Excel workbook Isentropic Expansion Wave
Relations. The workbook contains a more detailed, printable version of the table
and can be easily modified to generate data for a different Mach number range,
or for a different gas.

Table E.7
Prandtl-Meyer Supersonic Expansion Function ω (deg) (ideal gas, k 5 1.4)

M w (deg) M w (deg) M w (deg) M w (deg)

1.00 0.00 2.00 26.4 3.00 49.8 4.00 65.8
1.05 0.49 2.05 27.7 3.05 50.7 4.05 66.4
1.10 1.34 2.10 29.1 3.10 51.6 4.10 67.1
1.15 2.38 2.15 30.4 3.15 52.6 4.15 67.7
1.20 3.56 2.20 31.7 3.20 53.5 4.20 68.3
1.25 4.83 2.25 33.0 3.25 54.4 4.25 68.9
1.30 6.17 2.30 34.3 3.30 55.2 4.30 69.5
1.35 7.56 2.35 35.5 3.35 56.1 4.35 70.1
1.40 8.99 2.40 36.7 3.40 56.9 4.40 70.7
1.45 10.4 2.45 37.9 3.45 57.7 4.45 71.3
1.50 11.9 2.50 39.1 3.50 58.5 4.50 71.8
1.55 13.4 2.55 40.3 3.55 59.3 4.55 72.4
1.60 14.9 2.60 41.4 3.60 60.1 4.60 72.9
1.65 16.3 2.65 42.5 3.65 60.9 4.65 73.4
1.70 17.8 2.70 43.6 3.70 61.6 4.70 74.0
1.75 19.3 2.75 44.7 3.75 62.3 4.75 74.5
1.80 20.7 2.80 45.7 3.80 63.0 4.80 75.0
1.85 22.2 2.85 46.8 3.85 63.7 4.85 75.5
1.90 23.6 2.90 47.8 3.90 64.4 4.90 76.0
1.95 25.0 2.95 48.8 3.95 65.1 4.95 76.4
2.00 26.4 3.00 49.8 4.00 65.8 5.00 76.9
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Appendix F
Analysis of
Experimental
Uncertainty

F.1Introduction
Experimental data often are used to supplement engineering analysis as a basis for
design. Not all data are equally good; the validity of data should be documented
before test results are used for design. Uncertainty analysis is the procedure used to
quantify data validity and accuracy.

Analysis of uncertainty also is useful during experiment design. Careful study may
indicate potential sources of unacceptable error and suggest improved measurement
methods.

F.2Types of Error
Errors always are present when experimental measurements are made. Aside from
gross blunders by the experimenter, experimental error may be of two types. Fixed (or
systematic) error causes repeated measurements to be in error by the same amount
for each trial. Fixed error is the same for each reading and can be removed by proper
calibration or correction. Random error (nonrepeatability) is different for every
reading and hence cannot be removed. The factors that introduce random error are
uncertain by their nature. The objective of uncertainty analysis is to estimate the
probable random error in experimental results.

We assume that equipment has been constructed correctly and calibrated properly
to eliminate fixed errors. We assume that instrumentation has adequate resolution
and that fluctuations in readings are not excessive. We assume also that care is used in
making and recording observations so that only random errors remain.
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F.3 Estimation of Uncertainty
Our goal is to estimate the uncertainty of experimental measurements and calculated
results due to random errors. The procedure has three steps:

1. Estimate the uncertainty interval for each measured quantity.

2. State the confidence limit on each measurement.

3. Analyze the propagation of uncertainty into results calculated from experimental
data.

Below we outline the procedure for each step and illustrate applications with
examples.

Step 1 Estimate the measurement uncertainty interval. Designate the measured vari-
ables in an experiment as x1, x2, . . . , xn. One possible way to find the uncer-
tainty interval for each variable would be to repeat each measurement many
times. The result would be a distribution of data for each variable. Random
errors in measurement usually produce a normal (Gaussian) frequency dis-
tribution of measured values. The data scatter for a normal distribution is
characterized by the standard deviation, σ. The uncertainty interval for each
measured variable, xi, may be stated as 6nσi, where n 5 1, 2, or 3.

However, the most typical situation in engineering work is a “single-
sample” experiment, where only one measurement is made for each point [1].
A reasonable estimate of the measurement uncertainty due to random error in
a single-sample experiment usually is plus or minus half the smallest scale
division (the least count) of the instrument. However, this approach also must
be used with caution, as illustrated in the following example.

When repeated measurements of a variable are available, they are usually
normally distributed data, for which over 99 percent of measured values of
xi lie within63σi of the mean value, 95 percent lie within 62σi, and 68 percent
lie within 6σi of the mean value of the data set [2]. Thus it would be possible
to quantify expected errors within any desired confidence limit if a statistically
significant set of data were available.

Example F.1 UNCERTAINTY IN BAROMETER READING

The observed height of the mercury barometer column is h 5 752.6 mm. The
least count on the vernier scale is 0.1 mm, so one might estimate the probable
measurement error as 60.05 mm.

A measurement probably could not be made this precisely. The barometer
sliders and meniscus must be aligned by eye. The slider has a least count of
1 mm. As a conservative estimate, a measurement could be made to the
nearest millimeter. The probable value of a single measurement then would
be expressed as 752.6 6 0.5 mm. The relative uncertainty in barometric
height would be stated as

uh 5 6
0:5 mm

752:6 mm
5 60:000664 or 60:0664 percent

Comments:
1. An uncertainty interval of 60.1 per-
cent corresponds to a result speci-
fied to three significant figures; this
precision is sufficient for most engi-
neering work.2. The measurement of barometer
height was precise, as shown by the
uncertainty estimate. But was it
accurate? At typical room tempera-
tures, the observed barometer
reading must be reduced by a tem-
perature correction of nearly 3 mm!
This is an example of a fixed error
that requires a correction factor.

830 Appendix F Analysis of Experimental Uncertainty



The method of repeated measurements usually is impractical. In most
applications it is impossible to obtain enough data for a statistically significant
sample owing to the excessive time and cost involved. However, the normal
distribution suggests several important concepts:

1. Small errors are more likely than large ones.

2. Plus and minus errors are about equally likely.

3. No finite maximum error can be specified.

Step 2 State the confidence limit on each measurement. The uncertainty interval of
a measurement should be stated at specified odds. For example, one may write
h 5 752.6 6 0.5 mm (20 to 1). This means that one is willing to bet 20 to 1 that
the height of the mercury column actually is within 60.5 mm of the stated
value. It should be obvious [3] that “. . . the specification of such odds can only
be made by the experimenter based on . . . total laboratory experience. There
is no substitute for sound engineering judgment in estimating the uncertainty
of a measured variable.”

The confidence interval statement is based on the concept of standard
deviation for a normal distribution. Odds of about 370 to 1 correspond to 63σ;
99.7 percent of all future readings are expected to fall within the interval. Odds
of about 20 to 1 correspond to 62σ and odds of 3 to 1 correspond to 6σ
confidence limits. Odds of 20 to 1 typically are used for engineering work.

Step 3 Analyze the propagation of uncertainty in calculations. Suppose that mea-
surements of independent variables, x1, x2, . . . , xn, are made in the laboratory.
The relative uncertainty of each independently measured quantity is estimated
as ui. The measurements are used to calculate some result, R, for the
experiment. We wish to analyze how errors in the xis propagate into the cal-
culation of R from measured values.

In general, R may be expressed mathematically as R 5 R(x1, x2, . . . , xn).
The effect on R of an error in measuring an individual xi may be estimated by
analogy to the derivative of a function [4]. A variation, δxi, in xi would cause
variation δRi in R,

δRi 5
@R

@xi
δxi

The relative variation in R is

δRi

R
5

1

R

@R

@xi
δxi 5

xi
R

@R

@xi

δxi
xi

ðF:1Þ

Equation F.1 may be used to estimate the relative uncertainty in the result due
to uncertainty in xi. Introducing the notation for relative uncertainty, we obtain

uRi
5

xi
R

@R

@xi
uxi ðF:2Þ

How do we estimate the relative uncertainty in R caused by the combined
effects of the relative uncertainties in all the xis? The random error in each
variable has a range of values within the uncertainty interval. It is unlikely that
all errors will have adverse values at the same time. It can be shown [1] that the
best representation for the relative uncertainty of the result is

uR 5 6
x1
R

@R

@x1
u1

� �2
1

x2
R

@R

@x2
u2

� �2
1 � � �1 xn

R

@R

@xn
un

� �2" #1=2

ðF:3Þ
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F.4 Applications to Data
Applications to data obtained from laboratory measurements are illustrated in the
following examples.

Example F.2 UNCERTAINTY IN VOLUME OF CYLINDER

Obtain an expression for the uncertainty in determining the volume of a cylinder from measurements of its radius
and height. The volume of a cylinder in terms of radius and height is

V--- 5 V---ðr; hÞ 5 πr2h

Differentiating, we obtain

dV--- 5
@V---

@r
dr1

@V---

@h
dh 5 2πrh dr1 πr2 dh

since

@V---

@r
5 2πrh and

@V---

@h
5 πr2

From Eq. F.2, the relative uncertainty due to radius is

uV---; r 5
δV---r
V---

5
r

V---

@V---

@r
ur 5

r

πr2h
ð2πrhÞur 5 2ur

and the relative uncertainty due to height is

uV---; h 5
δV---h
V---

5
h

V---

@V---

@h
uh 5

h

πr2h
ðπr2Þuh 5 uh

The relative uncertainty in volume is then

uV--- 5 6½ð2urÞ2 1 ðuhÞ2�1=2 ðF:4Þ

Example F.3 UNCERTAINTY IN LIQUID MASS FLOW RATE

The mass flow rate of water through a tube is to be determined by collecting water in a beaker. The mass flow rate is
calculated from the net mass of water collected divided by the time interval,

�m 5
Δm

Δt
ðF:5Þ

where Δm 5 mf 2 me. Error estimates for the measured quantities are

Mass of full beaker; mf 5 4006 2 g ð20 to 1Þ
Mass of empty beaker; me 5 2006 2 g ð20 to 1Þ
Collection time interval;Δt 5 106 0:2 s ð20 to 1Þ

The relative uncertainties in measured quantities are

umf
5 6

2 g

400 g
5 60:005

Comment:
The coefficient 2, in Eq. F.4, shows that
the uncertainty in measuring cylinder
radius has a larger effect than the
uncertainty in measuring height. This
is true because the radius is squared in
the equation for volume.
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ume
5 6

2 g

200 g
5 60:01

uΔt 5 6
0:2 s

10 s
5 60:02

The relative uncertainty in the measured value of net mass is calculated from Eq. F.3 as

uΔm 5 6
mf

Δm

@Δm

@mf

umf

0
@

1
A
2

1
me

Δm

@Δm

@me

ume

0
@

1
A
22

4
3
5
1=2

5 6f½ð2Þð1Þð60:005Þ�2 1 ½ð1Þð21Þð60:01Þ�2g1=2

uΔm 5 60:0141

Because �m 5 �mðΔm;ΔtÞ, we may write Eq. F.3 as

u �
m 5 6

Δm
�m

@ �m
@Δm

uΔm

� �2
1

Δt
�m

@ �m
@Δt

uΔt

� �2" #1=2

ðF:6Þ

The required partial derivative terms are

Δm
�m

@ �m
@Δm

5 1 and
Δt
�m

@ �m
@Δt

521

Substituting into Eq. F.6 gives

u �
m 5 6f½ð1Þð60:0141Þ�2 1 ½ð21Þð60:02Þ�2g1=2

u �
m 5 60:0245 or 62:45 percent ð20 to 1Þ

Example F.4 UNCERTAINTY IN THE REYNOLDS NUMBER FOR WATER FLOW

The Reynolds number is to be calculated for flow of water in a tube. The computing equation for the Reynolds
number is

Re 5
4 �m
πμD

5 Reð �m ; D; μÞ ðF:7Þ

We have considered the uncertainty interval in calculating the mass flow rate. What about uncertainties in μ and D?
The tube diameter is given as D 5 6.35 mm. Do we assume that it is exact? The diameter might be measured to the
nearest 0.1 mm. If so, the relative uncertainty in diameter would be estimated as

uD 5 6
0:05 mm

6:35 mm
5 60:00787 or 60:787 percent

The viscosity of water depends on temperature. The temperature is estimated as T 5 24 6 0.5�C. How will the
uncertainty in temperature affect the uncertainty in μ? One way to estimate this is to write

uμðTÞ 5 6
δμ
μ

5
1

μ
dμ
dT

ð6δTÞ ðF:8Þ

Comment:
The 2 percent uncertainty interval in
time measurement makes the most
important contribution to the uncer-
tainty interval in the result.
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The derivative can be estimated from tabulated viscosity data near the nominal temperature of 24�C. Thus

dμ
dT

� Δμ
ΔT

5
μð253CÞ2μð233CÞ

ð252 23Þ3C 5 ð0:0008902 0:000933ÞN�s
m2

3
1

23C

dμ
dT

522:153 1025 N�s=ðm2 ��CÞ

It follows from Eq. F.8 that the relative uncertainty in viscosity due to temperature is

uμðTÞ 5
1

0:000911

m2

N�s 322:153 1025 N�s
m2 ��C 3 ð60:5

�
CÞ

uμðTÞ 5 60:0118 or 61:18 percent

Tabulated viscosity data themselves also have some uncertainty. If this is 61.0 percent, an estimate for the resulting
relative uncertainty in viscosity is

uμ 5 6½ð60:01Þ2 1 ð60:0118Þ2�1=2 5 60:0155 or 61:55 percent

The uncertainties in mass flow rate, tube diameter, and viscosity needed to compute the uncertainty interval for
the calculated Reynolds number now are known. The required partial derivatives, determined from Eq. F.7, are

�m
Re

@Re

@ �m 5
�m
Re

4

πμD
5

Re

Re
5 1

μ
Re

@Re

@μ
5

μ
Re

ð21Þ 4 �m
πμ2D

52
Re

Re
521

D

Re

@Re

@D
5

D

Re
ð21Þ 4 �m

πμD2
52

Re

Re
521

Substituting into Eq. F.3 gives

uRe 5 6
�m
Re

@Re

@ �m u �
m

2
4

3
5
2

1
μ
Re

@Re

@μ
uμ

2
4

3
5
2

1
D

Re

@Re

@D
uD

2
4

3
5
28<

:
9=
;

1=2

uRe 5 6 ½ð1Þð60:0245Þ�2 1 ½ð21Þð60:0155Þ�2 1 ½ð21Þð60:00787Þ�2
n o1=2

uRe 5 60:0300 or 63:00 percent

Comment:
Examples F.3 and F.4 illustrate two
points important for experiment
design. First, the mass of water col-
lected, Δm, is calculated from two
measured quantities, mf and me. For
any stated uncertainty interval in the
measurements of mf and me, the rela-
tive uncertainty in Δm can be decrea-
sed by making Δm larger. This might
be accomplished by using larger con-
tainers or a longer measuring interval,
Δt, which also would reduce the rela-
tive uncertainty in the measured Δt.
Second, the uncertainty in tabulated
property data may be significant. The
data uncertainty also is increased by
the uncertainty in measurement of
fluid temperature.
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Example F.5 UNCERTAINTY IN AIR SPEED

Air speed is calculated from pitot tube measurements in a wind tunnel. From the Bernoulli equation,

V 5
2ghρwater

ρair

� �1=2

ðF:9Þ

where h is the observed height of the manometer column.
The only new element in this example is the square root. The variation in V due to the uncertainty interval in h is

h

V

@V

@h
5

h

V

1

2

2ghρwater
ρair

0
@

1
A
21=2

2gρwater
ρair

h

V

@V

@h
5

h

V

1

2

1

V

2gρwater
ρair

5
1

2

V2

V2
5

1

2

Using Eq. F.3, we calculate the relative uncertainty in V as

uV 5 6
1

2
uh

� �2
1

1

2
uρwater

� �2
1 2

1

2
uρair

� �2" #1=2

If uh 5 60.01 and the other uncertainties are negligible,

uV 5 6
1

2
ð60:01Þ

2
4

3
5
28<

:
9=
;

1=2

uV 5 60:00500 or 60:500 percent

Comment:
The square root reduces the relative
uncertainty in the calculated velocity to
half that of uh.

F.5 Summary
A statement of the probable uncertainty of data is an important part of reporting experimental results completely and clearly. The

American Society of Mechanical Engineers requires that all manuscripts submitted for journal publication include an adequate

statement of uncertainty of experimental data [5]. Estimating uncertainty in experimental results requires care, experience, and

judgment, in common with many endeavors in engineering. We have emphasized the need to quantify the uncertainty of mea-

surements, but space allows including only a few examples. Much more information is available in the references that follow (e.g., [4,

6, 7]). We urge you to consult them when designing experiments or analyzing data.
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AppendixG
SI Units, Prefixes,
and Conversion Factors
Table G.1
SI Units and Prefixesa

SI Units Quantity Unit SI Symbol Formula

SI base units: Length meter m —
Mass kilogram kg —
Time second s —
Temperature kelvin K —

SI supplementary unit: Plane angle radian rad —
SI derived units: Energy joule J N �m

Force newton N kg �m/s2

Power watt W J/s
Pressure pascal Pa N/m2

Work joule J N �m
SI prefixes Multiplication Factor Prefix SI Symbol

1 000 000 000 000 5 1012 tera T
1 000 000 000 5 109 giga G

1 000 000 5 106 mega M
1 000 5 103 kilo k
0.01 5 1022 centib c
0.001 5 1023 milli m

0.000 001 5 1026 micro µ
0.000 000 001 5 1029 nano n

0.000 000 000 001 5 10212 pico p

aSource: ASTM Standard for Metric Practice E 380-97, 1997.
bTo be avoided where possible.
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G.1Unit Conversions

The data needed to solve problems are not always available in consistent units. Thus it
often is necessary to convert from one system of units to another.

In principle, all derived units can be expressed in terms of basic units. Then, only
conversion factors for basic units would be required.

In practice, many engineering quantities are expressed in terms of defined units, for
example, the horsepower, British thermal unit (Btu), quart, or nautical mile. Defini-
tions for such quantities are necessary, and additional conversion factors are useful in
calculations.

Basic SI units and necessary conversion factors, plus a few definitions and con-
venient conversion factors are given in Table G.2.

Table G.2
Conversion Factors and Definitions

Fundamental
Dimension English Unit Exact SI Value Approximate SI Value

Length 1 in. 0.0254 m —
Mass 1 lbm 0.453 592 37 kg 0.454 kg
Temperature 1�F 5/9 K —

Definitions:

Acceleration of gravity: g5 9.8066 m/s2 (5 32.174 ft/s2)
Energy: Btu (British thermal unit) � amount of energy required to raise the

temperature of 1 lbm of water 1�F (1 Btu5 778.2 ft � lbf)
kilocalorie � amount of energy required to raise the temperature of
1 kg of water 1 K(1 kcal5 4187 J)

Length: 1 mile5 5280 ft; 1 nautical mile5 6076.1 ft5 1852 m (exact)
Power: 1 horsepower � 550 ft � lbf/s
Pressure: 1 bar � 105 Pa
Temperature: degree Fahrenheit, TF 5 9

5TC 1 32 (where TC is degrees Celsius)
degree Rankine, TR5TF 1 459.67
Kelvin, TK5TC 1 273.15 (exact)

Viscosity: 1 Poise � 0.1 kg/(m � s)
1 Stoke � 0.0001 m2/s

Volume: 1 gal � 231 in.3 (1 ft35 7.48 gal)

Useful Conversion Factors:

Length: 1 ft5 0.3048 m
1 in.5 25.4 mm

Mass: 1 lbm5 0.4536 kg
1 slug5 14.59 kg

Force: 1 lbf5 4.448 N
1 kgf5 9.807 N

Velocity: 1 ft/s5 0.3048 m/s
1 ft/s5 15/22 mph
1 mph5 0.447 m/s

Pressure: 1 psi5 6.895 kPa
1 lbf/ft25 47.88 Pa
1 atm5 101.3 kPa
1 atm5 14.7 psi
1 in. Hg5 3.386 kPa
1 mm Hg5 133.3 Pa

Energy: 1 Btu5 1.055 kJ
1 ft � lbf5 1.356 J
1 cal5 4.187 J

Power: 1 hp5 745.7 W
1 ft � lbf/s5 1.356 W
1 Btu/hr5 0.2931 W

Area 1 ft25 0.0929 m2

1 acre5 4047 m2

Volume: 1 ft35 0.02832 m3

1 gal (US)5 0.003785 m3

1 gal (US)5 3.785 L
Volume flow rate: 1 ft3/s5 0.02832 m3/s

1 gpm5 6.309 3 10� 5 m3/s
Viscosity (dynamic) 1 lbf � s/ft25 47.88 N � s/m2

1 g/(cm � s)5 0.1 N � s/m2

1 Poise5 0.1 N � s/m2

Viscosity (kinematic) 1 ft2/s5 0.0929 m2/s
1 Stoke5 0.0001 m2/s
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Answers to
Selected Problems
1.5 M5 27.8 kg

1.7 t5 3W/gk

1.9 L5 0.249 m D5 0.487 m

1.13 y5 0.922 mm

1.17 a) kg �m2/s3, slug � ft2/s3 b) kg/m � s2, slug/ft � s2 c) kg/m � s2, slug/ft � s2
d) 1/s, 1/s e) kg �m2/s2, slug � ft2/s2 f) kg �m2/s2, slug � ft2/s2
g) kg �m/s, slug � ft/s h) kg/m � s2, slug/ft � s2 i) dimensionless

j) kg �m2/s, slug � ft2/s
1.19 a) 10.76 ft2/s b) 0.134 hp c) 0.43 Btu/lbm

1.21 a) 0.998 Btu/lbm � �R b) 67.1 mi/hr c) 305 in3

1.23 a) 0.0472 m3/s b) 0.0189 m3 c) 29.1 m/s d) 2.193 104 m2

1.25 a) 6.363 1023 ft3 b) 402 hp c) 1.044 lbf � s/ft2 d) 431 ft2

1.27 Q5 397 L/min

1.29 SG5 13.6 v5 7.373 1025 m3/kg γE5 847 lbf/ft3,

γM5 144 lbf/ft3

1.31 V5 86.5 m/s V5 58.2 m/s using wrong units

1.33 c5 2.36�R1/2 � in2 � s/ft3 _mmax 5 0:04
At � p0ffiffiffiffiffiffi

T0

p (SI units)

1.35 CD is dimensionless

1.37 c: N � s/m, lbf � s/ft k: N/m, lbf/ft f: N, lbf
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1.39 H(m)5 0.4572 3450(Q(m3/s))2

1.41 ρ5 1.066 3.473 1023 kg/m3 (60.328%)

1.43 ρ5 9306 27.2 kg/m3

1.45 t5 1, 5, 5 s Flow rate uncertainty565.0, 1.0, 1.0%

1.47 V--- 5 3503 102 6 m3 L5 1026 0.0153 mm (61.53%)

1.49 δx560.158 mm

1.51 H5 57.76 0.548 ft θmin5 31.4�

1.53 V5 2.50 in/min D5 1.76 in

2.1 1) 2D, Unsteady 2) 2D, Steady 3) 1D, Steady 4) 1D, Steady

5) 1D, Unsteady 6) 2D, Steady 7) 2D, Unsteady

8) 3D, Steady

2.3 2D ~V 5 0 (lower disk) ~V 5 ê θrω (upper disk)

Streamlines: y 5
cffiffiffi
x

p

2.5 A is irrelevant for streamline shapes; determines velocity magnitudes.

2.7 Streamlines: y 5 c x2 b
at

2.9 Streamlines: y 5
const

x1 B
A

2.11 Streamlines: x21 y25 c Vortex model of center of a tornado.

2.13 Streamlines: y5 cx Models a sink (see Chapter 6).

2.15 Streamline & pathline (steady flow): y 5
1

2
x2

2.17 ω 5
K

2πa

2.21 Lagrangian: x(t)5 2t1 1 y(t)5 12 t2

Pathlines: yðxÞ 5 12
ðx2 1Þ2

4
Streamlines: y(x,t)5 12 t(x2 1)

2.23 Pathlines: xðtÞ 5 e
t
5 yðtÞ 5 e

t2

50 Streamlines: yðx; tÞ 5 xt=5

2.25 Pathlines: y 5 4t1 1; x 5 3e0:05t
2

Streamlines: y 5 11
40

t
ln

x

3

� �
2.27 Streamlines: yðt0Þ 5 v0sinðωtÞðt2 t0Þ; xðt0Þ 5 u0ðt2 t0Þ
2.29 Streaklines: y 5 eðt2τÞ; x 5 eðt2τÞ10:1ðt22τ2Þ

Streamlines: y 5 x

1

ð11 0:2tÞ

2.31 Streamlines: y3 5 6x1 4 ð26:3m; 6mÞ ð31:7m; 4mÞ
2.33 Streamline: yðxÞ 5 5 lnðxÞ 1 1 At 5 s : ðem; 6mÞ At10 s : ðe2m; 11mÞ
2.35 At 2 s: (1.91 m, 2.8 m) At 3 s: (1.49 m, 3.0 m)

2.37 ν 5
buT3=2

11 Su=T
bu5 4.133 1029 m2/s �K3/2 Su5 110.4 K
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2.39 b5 1.523 1026 kg/m � s �K1/2 S5 102 K

2.41 F5 2.28 N

2.43 τyx5 0.313 lbf/ft2 (in positive x direction)

2.45 F5 17.1 lbf

2.47 L5 2.5 ft

2.49 t5 1.93 s

2.51 V 5
Mgd sin θ

μA
12 e

2
μA
Md

t

 !
V5 0.404 m/s μ5 1.08 N � s/m2

2.53 F5 2.83 N

2.55 rτ5 0 5 2:25 mm τrxtube 5 22:37 Pa τrxfilament
5 2:52 kPa

2.59 μ5 8.073 1024 N � s/m2

2.61 t5 4.00 s

2.63 T 5
2πμωhR3

a
ω 5

mga

2πR2μh
12 e

2
2πRμh

aðm1 1m2Þ
t

2
4

3
5 ωmax 5

mga

2πR2μh

2.65 ω 5
A

B
12 e2

B
C t

� �
ωmax5 25.1 rpm t5 0.671 s

2.67 _γ 5
ω
θ

T 5
2

3
πR3Vτyx

2.69 Bingham plastic μp5 0.652 N � s/m2

2.71 T 5
πμΔωR4

2a
P0 5

πμω0ΔωR4

2a
s 5

2aT

πμR4ωi

2.73 μ 5
2a cosðθÞT
πωtan3ðθÞH4

Castor Oil

2.75 T 5
2πμωR4

h

cos3ðαÞ
3

2 cosðαÞ1 2

3

� �

2.77 Δp5 2.91 kPa

2.79 A5 0.403 in b524.53 in21

2.83 a5 0 b5 2U c52U

2.85 V5 229 mph

2.87 Re5 1389 Tturb5 52�C

2.89 SG5 0.9 γ5 8830 N/m3 Laminar flow

2.91 V5 667 km/hr

3.1 p5 3520 psia t5 0.880 in

3.3 Δp5 6.72 mm Hg Δz5 173 m

3.5 F5 270 N T5 0.282 N

3.9 p5 316 kPa (gage) pSL5 253 kPa (gage)

3.11 SG5 1.75 pupper5 0.507 psig plower5 0.888 psig

3.13 Δρ/ρ5 4.55% Δp/p5 2.24%

3.15 p521.471 kPa (gage)
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3.17 p5 6.39 kPa (gage) h5 39.3 mm

3.19 p5 128 kPa (gage)

3.21 H5 17.75 mm

3.23 h5 1.67 in

3.25 Amplification factor5 5.78

3.27 p5 24.7 kPa (gage) h5 0.116 m

3.29 l5 1.600 m

3.31 l5 0.549 m

3.33 s5 6

3.35 h5 7.85 mm s5 0.308

3.37 l5 0.407 m

3.39 x5 0.1053 in

3.43 Δz5 270 m for 3% pressure drop Δz5 455 m for 5% density drop

3.45 ρ5 3.323 1023 kg/m3

3.47 F1atm5 14.7 kN F0.5atm5 52.6 kN

3.49 pA5 0.289 psig pB5 0.416 psig pC5 1.048 psig pair15 0.036 psig

pair25 0.668 psig

3.51 FR5 81.3 lbf yu5 0.938 ft

3.55 FR5 2.04 N

3.57 FR5 552 kN yu5 2.00 m xu5 2.50 m

3.59 F5 600 lbf

3.63 D5 8.66 ft

3.65 d5 2.66 m

3.67 SG5 0.542

3.69 FV5 831 kN

3.71 FV5 7.62 kN xuFV5 3.76 kN �m FA525.71 kN

3.73 FV5 2011 lbf xu5 1.553 ft

3.75 FV52ρgwR2π/4 xu5 4R/3π

3.77 FV5 1.833 107 N α5 19.9�

3.79 FV5 416 kN FH5 370 kN α5 48.3� F5 557 kN

3.81
FH
w

5
ρgR2

2

m

w
5 ρR2 11

3π
4

� �

3.85 M5 5080 lbm

3.87 M5 1895 lbm

3.89 h5 177 mm

3.91 SG 5 SGw

Fair

Fair 2Fnet
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3.93 V--- 5 2:52L six weights needed

3.97 FB5 1.893 10211 lbf V5 1.153 1023 ft/s (0.825 in/min)

3.99 h5 30.0 km

3.101 MB5 29.1 kg

3.105 D5 0.737 m

3.107 f5 0.288 cycle/s (ω5 1.81 rad/s)

3.109 F5 159.4 N

3.115 h5 aL/g

3.117 Cavitation does not occur.

3.119 Δp5 ρω2R2/2 ω5 7.16 rad/s

3.121 α5 13.30�

3.123 dy/dx520.25 p5 1052 1.96x (p: kPa, x: m)

3.125 T5 402 N Δp5 3.03 kPa

4.1 x5 1.63 ft x5 1.41 ft x5 0.400 ft

4.3 V5 0.577 m/s θ5 48.2�

4.5 V5 64.7 mph t5 4.21 s

4.7 Vdry5 32.4 mph Vwet5 21.2 mph

4.9 t5 1.08 hr

4.11 ΔU5 459 MJ ΔUSystem5 0 ΔT/Δt5 6.09�C/hr

4.13

Z
~V �d~A 5 30 m3=s ρ

Z
~Vð~V �d~AÞ 5 ð80î1 75ĵÞ kg �m=s2

4.15 Q 5 2
1

2
Vhw m:f: 5 2

1

3
ρV2whî

4.17 Q 5
1

2
umaxπR2 m:f: 5

1

3
ρu2maxπR

2 î

4.19 Vjet5 18.4 ft/s Vpipe5 1.60 ft/s

4.21 texit5 126 s tdrain5 506 s Qdrain5 0.0242 m3/s

4.23 Qcool5 441 gpm _mcool 5 2:213 105 lb=hr

_mmoist 5 1:013 105 lb=hr _mair 5 71600 lb=hr

4.25 Q520.2 m3/s (inwards flow)

4.27 t5 6.12 min

4.29 Q5 168 L/s V5 1.68 m/s w5 1.15 m

4.31 ρ5 0.267 kg/m3

4.33
_m

w
5

ρ2g sinðθÞh3
3μ

4.35 U5 1.5 m/s

4.37 Q5 1.053 1025 m3/s (10.45 mL/s) Vave5 0.139 m/s

umax5 0.213 m/s

4.39 vmin5 5.0 m/s
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4.41 _m 5 16:2 kg=s

4.43 @M---CV=@t 5 24:143 102 2 slug=s ð21:33 lbm=sÞ
@V---oil=@t 5 22:433 102 2ft3=s ð0:18 gal=sÞ

4.45 dρtank/dt520.2582 kg/m3/s

4.47 Q5 1.53 104 gal/s A5 4.923 107 ft2 (B1130 acres)

4.49 t3-25 45.6 s t2-15 59.5 s

4.51 dy/dt529.01 mm/s

4.53 Qcd5 4.503 1023 m3/s Qad5 6.03 1024 m3/s

Qbc5 1.653 1023 m3/s

4.55 t 5
8

5

tan2ðθÞy5=20ffiffiffiffiffi
2g

p
d2

tdrain5 2.55 min t12-65 2.10 min

t6-05 0.541 min

4.57 t500 kPa5 42.2 days p30 day (Exact)5 544 kPa p30 day (Saying)5 493 kPa

Δp5 51 kPa

4.59 mf2/mf15 1.2

4.61 mfx5 840 N mfy52277 N

4.63 V5 2785 mph (!) F5 17.7 lbf

4.65 F5 90.4 kN

4.67 T5 3.12 N

4.69 F5 35.7 lbf

4.71 Block slides Mmin5 7.14 kg

4.73 Mpayload5 671 kg

4.75 Rx 5 2ρV2 πD
2

4
ð11 sin θÞ 12

d

D

� �2
" #

Rx52314 N

4.77 F5 11.6 kN

4.79 Rx52668 N

4.81 Fy5 1.70 lbf

4.83 Ry5 4.05 kN

4.85 _mair 5 2060 lbm=s T5 65,400 lbf

4.87 V5 21.8 m/s

4.89 Rx524.68 kN Ry5 1.66 kN

4.91 V25 22 ft/s Δp5 12.6 psi

4.93 F5 2456 N

4.95 Rx5 1760 N

4.97 Fx5 779 N Fy52387 N

4.99 _mair 5 63:3 kg=s Vmax5 18.8 m/s Fdrag5 54.1 N

4.101 U15 10 m/s umax5 15 m/s Δp5 15 kPa
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4.103 Rx527.903 1024 N

4.105 F5 52.1 N

4.107 θ 5 sin21
α

12α

� �
Rx 5 2ρV2wh½12 ð12 2αÞ1=2�

4.109 h2/h5 (11 sinθ)/2

4.111 h5 0.55 ft (6.6 in.) F5 0.164 lbf

4.113 V 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 1 2gh
q

Rz 5 ρV0A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 1 2gh
q

Rz5 3.56 N (upwards)

4.115 M 5
ðV0 2V2 cos θÞρV0A1

g
M5 4.46 kg Mw5 2.06 kg

4.117 F5 1.14 kN

4.119 VðzÞ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 1 2gz
q

DðzÞ 5 D0

11
2gz

V2
0

� �1=4
V5 1.03 m/s

D5 2.62 mm

4.121 VðzÞ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 1 2gz
q

AðzÞ 5 A0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

2gz

V2
0

s z1=2 5
3V2

0

2g

4.123 pðrÞ2 patm 5
ρ
2

Q

2πRh

� �2

12
R

r

� �2
" #

4.125 h1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 1

2Q2

gb2h2

s

4.127 Rx52940 N Ry5 252 N

4.129 Rx52167 N

4.131 Rx521.73 kN

4.133 Fx 5 ρðV2UÞ2Að12 cos θÞ P 5 ρUðV2UÞ2Að12 cos θÞ
4.135 Rx5 4.24 kN t5 4.17 mm

4.137 U5V/2

4.139
_m2

_m3
5

1

2
U5 3.03 m/s

4.141 Ut5 15.8 m/s

4.143 UðtÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffi
gμkM
ρA

s

tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμkρA
M

r
1 tan h21

ffiffiffiffiffiffiffiffiffiffiffiffi
gμkM
ρA

s
1

V

 !" #

aðtÞ 5
ρ
�
V2UðtÞ

�2
A

M
2 gμk

4.145 θ5 19.7�

4.147 t5 22.6 s
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4.149 U5 22.5 m/s

4.151 V(1 s)5 5.13 m/s x(1 s)5 1.94 m

V(2 s)5 3.18 m/s x(2 s)5 3.47 m

4.153 a 5
ρðV2UÞ2A

M
2

kU

M

4.155 UðtÞ 5 U0e
2

4ρVA
M t aðtÞ 5 2

4ρVA
M

U0e
2

4ρVA
M t

4.157 t5 0.867 s xrest5 6.26 m

4.159 Q5 0.0469 m3/s

4.161 t5 126 s

4.163 Umax5 350 m/s ΔU/U5 1.08%

4.165 U 5 U0 2Ve ln 12
_mt

M0

� �
Mass fraction5 38.3%

4.167 mfuel5 38.1 kg

4.169 arfy5 169 m/s2 U 5 2 Ve 1
ðpe 2patmÞAe

_m

� �
ln

M0 2 _mt

M0

� �
2 gt

4.173 arfx 5
2ρV2A

M

1

11
2ρVA
M

t

2
664

3
775
2

t 5
M

2ρVA

4.175
U

V
5 12

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

2ρVA
M0

t

r

4.177 _minit 5 0:111 kg=s _mfinal 5 0:0556 kg=s t5 20.8 min

4.179
d2h

dt2
5 ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 2 2gh
q

2
dh

dt

� �2
A0V0

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0 2 2gh
q 2 g

4.181 @MCV/@t520.165 kg/s @PxCV/@t522.1 mN

Ratio524.623 1024%

4.185 Moment5 6.98 kN �m V5 24.3 m/s

4.187 Fx5 23.4 kN/222.8 kN Moment52468 kN �m

4.189 _ω 5
3

2ρAR3
2ωρVAR2 2

ρQRV

2

� �
ωmax5228.9 rad/s (2270 rpm)

4.191 T5 1.62 N �m ω5 113 rpm

4.193 T5 0.0722 N �m
4.195 T520.0161 N �m
4.197 ω5 6.04 rad/s (57.7 rpm) A5 1720 m2

4.199 Tshaft5 29.4 N �m Mx5 51.0 N �m My5 1.4 N �m
4.201 Ry 5 ρV2wh cos θ (applied below Point O) Equilibrium when θ5 0�

4.203 _Wm 5 80:0 kW

4.205 η5 79.0%
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4.207 δQ/dm527.32 Btu/lbm _Q 5 2146 Btu=s

4.209 Q5 279 gpm zmax5 212 ft Rx5 138 lbf

4.211 V5 70.3 m/s _Wmin 5 360 kW

5.1 a) Possible b) Not possible c) Not possible d) Not possible

5.3 Equation valid for steady and unsteady flow

Infinite number of solutions vðx; yÞ 5 6y2
y2

2

5.5 Equation valid for steady and unsteady flow

Infinite number of solutions vðx; yÞ 5 2 3xy2

5.7 Equation valid for steady and unsteady flow uðx; yÞ 5 9

2
x2y2 2

3

4
x4

5.9 Equation valid for steady and unsteady flow vðx; yÞ 5 2 10ex=5sin
y

5

� �

5.11
v
U

�
max

5 0:00167 ð0:167%Þ

5.13
v
U

�
max

5
3

8

δ
x

y

δ

� �2
2

1

2

y

δ

� �4� �
y

δ
5 1

v
U

�
max

5
3

8

δ
x

y

δ

� �2
2

1

2

y

δ

� �4� �

5.15 uðx; yÞ 5 3

2
Bx2y2 xy3=2 5 C

5.19 a) Possible b) Possible c) Possible

5.21 Vθ 5 2
Λsin θ
r2

1 f ðrÞ

5.25 ψ 5
Uy2

2h
y 5

hffiffiffi
2

p

5.27 Incompressible flow ψ 5 Aθ2B ln r

5.29 Two-dimensional, incompressible ψ 5 2
x4

4
1

3

2
x2z2 2

z4

4

5.31 ψ 5
Uy2

2δ
y

δ
5

1

2
at one-quarter flow rate

y

δ
5

1ffiffiffi
2

p at one-half flow rate

5.33 ψ 5 2
2Uδ
π

cos
πy
2δ

� � y

δ
5 0:460 at one-quarter flow rate

y

δ
5 0:667 at one-half flow rate

5.35 ψ 5 2
ωr2

2
1C Q520.001100 m3/s �m Q5 0.001100 m3/s �m

5.37 ψ 5 2C ln r1C1 Q520.0547 m3/s �m Q5 0.0547 m3/s �m
5.39 Possible flow field a5 69.9 m/s2

5.41 vðx; yÞ 5 2Að5x4y2 10x2y3 1 y5Þ a5 1.253 104 m/s2

5.43 v 5 Ay sin
2πt
T

� �

~ap;conv 5 A2sin2
2πt
T

� �
3 ðxî1 yĵÞ ~ap;local 5

2πA
T

cos
2πt
T

� �
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5.45 Incompressible ax 5 2
Λ2x

ðx2 1 y2Þ2 ay 5 2
Λ2y

ðx2 1 y2Þ2

a 5 2
100

r3

5.49 a 5 2
Q

2πh

� �2 1

r3
(Radial)

5.51
Dc

Dt

�
upstream

5 0
Dc

Dt

�
drift

5
1253 1026

hr

Dc

Dt

�
downstream

5
2503 1026

hr

5.53
DT

Dt
5 214:0

�F
min

5.59 apx 5 2
U2

4x

y

δ

� �2
apy 5 2

U2

4x

y

δ

� �2 y
x

apxmax 5 2
U2

4x

apymax 5 2
U2

4x

δ
x

ratio5 100

5.61 xy5 8 ~V 5 12î2 24ĵ ~V 5 6πî2 12πĵ (Local)
~V 5 72î1 144ĵ (Convective) ~V 5 9:8î1 106ĵ (Total)

5.63 Vz 5 v0 12
z

h

� �
apr 5

v20r

4h2
apz 5

v20
h

z

h
2 1

� �

5.65 v 5 v0 12
y

h

� �
~a 5

v20x

h2
î1

v20
h

y

h
2 1

� �
ĵ

5.67 xp 5 x0e
At yp 5 y0e

2At

5.69 a) Not irrotational b) Not irrotational c) Not irrotational

d) Not irrotational

5.71 Γ520.1 m2/s Γ520.1 m2/s

5.73 Not incompressible Not irrotational

5.75 Incompressible ~ω 5 20:5k̂
rad

s
Γ520.5 m2/s

5.77 Incompressible Irrotational

5.79 Incompressible Not irrotational

5.81 ~V 5 22yî2 2xĵ

5.83 ψ 5
A

2
ðy2 2 x2Þ1By Γ5 0

5.85 Γ 5 2UL
h

b
12

h

b

� �
Γ52UL/4 (h5 b/2) Γ5 0 (h5 b)

5.87 Zero linear deformation
@Vr

@z
1

@Vz

@r
5 2

2Vmaxr

R2
~ζ 5 2Vmax

2r

R2
êθ

5.91
dFmax

dV---
5 2μU

π
2δ

� �2 dFmax

dV---
5 21:85

kN

m3

5.93
dFmax

dV---
5 2

4μumax

R2
20.0134 lbf/ft3
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5.95 uðyÞ 5 JB

8μ
ðh2 2 4y2Þ

5.97 uðyÞ 5 2
εζ
μ
E V5 70.83 1026 m/s

6.1 ~a 5 9î1 7ĵ ft=s2 rp 5 20:125î2 0:544ĵ psi=ft

6.3 ~alocal 5 Bðî1 ĵÞ
~aconv 5 AðAx2BtÞî1AðAy1BtÞĵ
~atotal 5 ðA2x2ABt1BÞî1 ðA2y1ABt1BÞĵ
rp 5 6:99î2 14:0ĵ2 9:80k̂ kPa=m

6.5 ~a 5 1î1 7ĵ ft=s2 rp 5 20:0139î2 0:544ĵ psi=ft

6.7 ~alocal 5 2πAωcosð2πωtÞðxî2 yĵÞ
~aconv 5 A2sin2ð2πωtÞðxî1 yĵÞ
~atotal 5 ~alocal 1~aconv

~alocalð0Þ 5 12:6ðî2 ĵÞm=s2; ~aconvð0Þ 5 0m=s2

~alocalð0:5 sÞ 5 12:6ð2î1 ĵÞm=s2; ~aconvð0:5 sÞ 5 0m=s2

~alocalð1 sÞ 5 12:6ðî2 ĵÞm=s2; ~aconvð1 sÞ 5 0m=s2

rpð0Þ 5 225:1î1 25:1ĵ Pa=m

rpð0:5 sÞ 5 25:1î2 25:1ĵ Pa=m rpð1 sÞ 5 225:1î1 25:1ĵ Pa=m

6.9 Incompressible Stagnation point: (2.5, 1.5)

rp 5 2ρ½ð4x2 10Þî1 ð4y2 6Þĵ1 gk̂� Δp5 9.6 Pa

6.11
dp

dx
5 ρ

U2

L
12

x

L

� �
pout5 241 kPa (gage)

6.13 ar 5 2
V2

r

r

@p

@r
5 ρ

V2
r

r

6.15 apx 5
16v20x
D2

@p

@x
5 2

16ρv20x
D2

pð0Þ 5 8ρv20
L
D

� �2

~a 5 20:127êr 1 0êθ m=s2 ~a 5 20:127êr 1 0êθ m=s2

~a 5 20:0158êr 1 0êθ m=s2 rp 5 127êr 1 0êθ Pa=m

rp 5 127êr 1 0êθ Pa=m rp 5 15:8êr 1 0êθ Pa=m

6.17
@p

@x
5 2

ρu20e
2 x

2a 2e2
x
2a 2 1

	 

2a e2

x
a 2 e2

x
2a 1 1ð Þ3

p 5 p0 1
ρu20
2

12 1= 11 e2
x
a 2 e2

x
2a

	 
2h i

6.19 ax 5 2
2V2

i ðDo 2DiÞ

DiL 11
ðDo 2DiÞ

DiL
x

� �5 @p

@x

����
max

5 100 kPa=m L $ 4 m

6.21 rp 5 24:23î2 12:1ĵ N=m3 Streamlines:
x

h
12

y

h

� �
5 const

6.23 ~ap 5
q2

h

x

h
î1

y

h
2 1

� �
ĵ

h i @p

@x
5 2

ρq2x
h2

Fnet 5
ρq2b3L
12h2

q5 0.0432 m3/s/m2 Umax5 1.73 m/s

6.25 B520.6 m22 � s21 ~ap 5 6î1 3ĵm=s2 an5 6.45 m/s2
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6.27 B528 m23 � s21 Streamline: y52 10y3x21 5yx45238

~ap 5 4A2ðx2 1 y2Þ3 q
2

h
ðxî1 yĵÞ R5 0.822 m

6.29 rp 5
4ρU2

a
sin θðsin θ êr 2 cos θ êθÞ p(θ)522U2ρ sin2 θ

pmin5213.8 kPa

6.31 ar/g522800 @p/@r5 270 lbf/ft2/ft

6.33 ~ap 5 3î1 2ĵ m=s2 ~V 5 3î2 2ĵm=s

~at 5 1:16î2 0:771ĵ m=s2 @p/@s521.71 N/m2/m

6.35 ~ap 5 2î1 4ĵ ft=s2 R5 5.84 ft

6.37 ~ap 5 4î1 2ĵ ft=s2 R5 5.84 ft

6.39 pdyn5 475 Pa hdyn5 48.4 mm

6.41 F5 0.379 lbf F5 1.52 lbf

6.43 h5 628 mm

6.47 p0,j5 779 kPa (gage) p0,rel5 312 kPa (gage)

~Vabs 5 2:5î1 21:7ĵm=s p0,fixed5 237 kPa (gage)

6.49 p25 291 kPa (gage)

6.51 QðhÞ 5 πD2

4

ffiffiffiffiffiffiffiffi
2gh

p
h5 147 mm

6.53 pDiet5 4.90 kPa (gage) pRegular5 5.44 kPa (gage)

6.55 A 5 A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

11
2gðz1 2 zÞ

V2
1

vuuut
6.57 pr550 mm52404 Pa (gage)

6.59 p05 29.4 kPa (gage) Vrel5 24.7 m/s

6.61 Q5 304 gpm (0.676 ft3/s)

6.63 p 5 pN 1
1

2
ρU2ð12 4sin2 θÞ θ5 30�, 150�, 210�, 330�

6.67 Q5 18.5 L/s Rx522.42 kN

6.69 p15 11.7 kPa (gage) Rx5222.6 N

6.71 p25 17.6 kPa (gage) (132 mm Hg) p35 1.75 kPa (gage) (13.2 mm Hg)

Rx5 0.156 N Ry520.957 N

6.73 V25 3.05 m/s p0,25 4.65 kPa (gage) Fy5 11.5 N

6.77
h

h0
5 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2h0
D

d

� �4

2 1

( )vuuuut t

2
666664

3
777775

2

6.79 F5 83.3 kN
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6.81 _m 5 A
ffiffiffiffiffiffiffiffi
2pρ

p dM

dt
5 2ρw

dV---air
dt

Mw 5 ρwV---0
Vt

V---0
2 11 1:5

ffiffiffiffiffiffiffi
2p0
ρw

s
At

V---0

 !2
3

2
4

3
5

6.83 _m 5 A
ffiffiffiffiffiffiffiffi
2pρ

p dM

dt
5 2ρw

dV---air
dt

Mw 5 ρwV---0
Vt

V---0
2 11 1:70

ffiffiffiffiffiffiffi
2p0
ρw

s
At

V---0

" #0:5888<
:

9=
;

6.87 Cc5 1/2

6.89 p5 1.83 psig

6.91 dQ/dt5 0.516 m3/s/s

6.93 Dj/D15 0.32

6.97 Bernoulli can be applied

6.99 Rotational flow Points on same streamline, so Δp52126 kPa

6.101 ψ 5
q

2π
tan21 y2 h

x2 h

� �
1 tan21 y1 h

x2 h

� �
1 tan21 y1 h

x1 h

� �
1 tan21 y2 h

x1 h

� �� �

φ 5 2
q

4π
ln½fðx2 hÞ2 1 ðy2 hÞ2gfðx2 hÞ2 1 ðy1 hÞ2gfðx1 hÞ2 1 ðy2 hÞ2g

fðx1 hÞ2 1 ðy1 hÞ2g�

uðxÞ 5 q

π
x2 h

ðx2 hÞ2 1 h2
1

x1 h

ðx1 hÞ2 1 h2

" #

6.103 ψ 5 2
K

4π
ln

fðx2 hÞ2 1 ðy2 hÞ2g
fðx2 hÞ2 1 ðy1 hÞ2g

fðx1 hÞ2 1 ðy1 hÞ2g
fðx1 hÞ2 1 ðy2 hÞ2g

" #

φ 5
K

2π
tan21 y2 h

x2 h

� �
2 tan21 y1 h

x2 h

� �
1 tan21 y1 h

x1 h

� �
2 tan21 y2 h

x1 h

� �� �

uðxÞ 5 Kh

π
1

ðx2 hÞ2 1 h2
2

1

ðx1 hÞ2 1 h2

" #

6.105 u(x,y)5 20xy32 20x3y v(x,y)5 30x2y22 5x42 5y4

φ(x,y)5 5x4y2 10x2 y31 y5

6.107 B523A φ(x,y)526Axy 13Ax2y 13Ay2Ay3

6.109 ψ 5
B

2
ðx2 2 y2Þ2 2Axy

6.111 ψ(x,y)5 20x3y32 6x5y2 6xy5

6.115 |V|5 x21 y2 ψ 5 3Ax2y2
B

3
x3

6.117 Q5 1.25 m3/s/m φ 5
B

2
ðy2 2 x2Þ

6.121 ψ 5 2
q

2π
θ2

K

2π
ln r ψ 5 2

q

2π
ln r2

K

2π
θ r. 9.77 m

p526.37 kPa (gage)

6.123 h5 0.162 m V5 44.3 m/s p52957 Pa (gage)
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6.125 Rx525.51 kN/m

6.127 Stagnations points: θ5 63�, 297� r5 1.82 m Δp5 317 Pa

7.1
gL

V2
0

;
σ

ρLV2
0

7.3
V2

0

gL

7.5
gL

V2
0

;
μ

ρV0L

7.7
ν

V0L
5

1

Re

� �

7.9
Δp

ρV
2
;
ν

DV
;
L

D

7.11 F ~V2

7.13 D 5 ρL2c3f
λ
L

� �

7.15
F

V2ρA
5 f

c

V

� �

7.17
τw
ρU2

5 f
μ

ρUL

� �

7.19
W

gρp3
;

σ
gρp3

7.21
u

u�
;
ν
yu�

7.23 V 5 C

ffiffiffiffiffiffi
σ
λρ

r

7.25
T

Fe
;
μe2ω
F

;
σe
F

7.27
W

D2ωμ
5 f

L

D
;
c

D

� �

7.29 E 5 V3f
nr

V

� �

7.31
Q

Vh2
5 f

ρVh
μ

;
V2

gh

� �

7.33 Four dimensionless groups, three repeating parameters,
μ

ρ
ffiffiffiffiffiffiffi
d3g

p
7.35

d

D
;

μ
ρVD

;
σ

ρDV2

7.37
d

D
;

μ
ρVD

;
σ

ρDV2
;
L

D

7.39
V2

gδ
;
μ2δ3

m2g
; θ;

A

δ2

7.41
3

ρD5ω3
max

;
μ

ρD2ωmax
;
H

D
;
h

D
;

f

ωmax
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7.43
δ
D

;
L

D
;
μωD3

T
;
Iω2

T

7.45
T

ρV2D3
;

μ
ρVD

;
ωD
V

;
d

D

7.47
_m

δρα
5 f

D

α

� �

7.49 Four primary dimensions _Q 5 ρV3L2f
cpΘ
V2

;
μ

ρVL

� �

7.51
dT

dt

Lcp
V3

5 f
c

cp
;

k

ρL2cp
;

μ
ρLV

� �

7.53 Π1 5
u

U
Π2 5

y

δ
Π3 5

ðdU=dyÞδ
U

Π4 5
ν
δU

7.55 Vw5 6.90 m/s Fair5 522 N

7.57 Vair.Vwater Vair5 15.1Vwater

7.59 Vm/Vp5 0.339 Fp5 213 N

7.61 pm5 1.934 MPa Fp5 43.4 kN

7.63 Vm5 20.0 ft/s Fp5 0.231 lbf

7.65 Dm5 12.81 cm ωm5 900 rpm

7.67 Vp5 20 ft/s ωp5 102 rpm

7.69 VH2O
5 0.0420 ft/s ΔpH2O

5 1.493 1023 psi

7.71 CDm
5 0.0970 Rem5Rep Fdp

5 468 N

7.73 Vm5 0.1875 m/s ωm5 0.9375 Hz at standard conditions

Vm5 0.286 m/s ωm5 1.43 Hz in hot air

Vm5 0.01262 m/s ωm5 0.0631 Hz in water

7.75 νm5 4.143 1028 m2/s

7.77 Vm5 29.4 m/s Fp/Fm5 0.270 pmin5 3.25 psi ptank5 11.4 psi

7.79 VR5 110 mph @ 40�F VR5 77.5 mph @ 150�F
VR5 181 mph using CO2

7.81
Vθ

ωr
5 g

μ
ρωr2

;ωτ
� �

honey takes less time than water to reach steady

state motion

7.83 Model 5
1

50
3Prototype Adequate Reynolds number not achievable

7.87 D5 245 N at 15 knots D5 435 N at 20 knots

7.89 hm5 13.8 J/kg Qm5 0.166 m3/s Dm5 0.120 m

7.91
Ft

ρω2D4
5 f1

V

ωD
;

g

ω2D

� �
T

ρω2D5
5 f2

V

ωD
;

g

ω2D

� �
3

ρω3D5
5 f3

V

ωD
;

g

ω2D

� �

7.93 K.E. ratio5 7.22
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8.1 Q5 5.173 1023 m3/s L5 3.122 5.00 m (turbulent)

L5 17.3 m (laminar)

8.3 Smallest turbulent first

Qlarge5 7.633 1024 m3/s Smallest, middle fully developed; largest only

fully developed if turbulent

Qmid5 4.583 1024 m3 /s Smallest fully developed; middle only fully

developed if turbulent

Qsmall5 3.053 1024 m3/s Smallest fully developed

8.7 V=umax 5 2=3

8.9 Q5 1.253 102 5 ft3/s (0.0216 in3/s)

8.11 τyx 5 21:88 Pa Q/b525.633 1026 m2/s

8.13 Q5 3.973 1029 m3/s (3.973 1026 L/s)

8.15 W5 0.397 ft dp/dx52176 psi/ft h5 2.513 1023 in.

8.19 V 5
Q

2πrh
dp

dr
5 2

6μQ
πrh3

p 5 patm 2
6μQ
πrh3

ln
r

R

� �
(p5 p0, r,R0)

8.21 n5 1.48 (dilatant)

8.23 @p/@x5292.6 Pa/m

8.25 uinterface5 15 ft/s

8.27 @p/@x522Uμ/a2 @p/@x5 2Uμ/a2

8.29 ν5 1.003 1024 m2/s

8.31 τ5 ρg sin (θ)(h2 y) Q/w5 217 mm3/s/mm Re5 0.163

8.33 y(umax)5 0.0834 in. umax5 2.08 ft/s Q/w5 0.934 gal/ft

8.35 U5 1.60 ft/s τyx5 5.583 1025 psi @p/@x5 5.363 1022 psi/ft

8.37
dV

dt
5 2

πwL
mh

V t5 1.06 s

8.39 3v 5
πμω2D3L

4a
3p 5

πDa3Δp2

12μL
3v 5 33p

8.39 Δp 5
6μLRω

a2
12

2Q

abRω

� �

3 5
μLbðRωÞ2

a
42

6Q

abRω

� �
η 5

6Q

abRω

12
2Q

abRω

� �

42
6Q

abRω

� �

8.43 t5 19.9 min. μ5 0.199 kg/m � s

8.45 B.C.: y5 0, u5U0; y5 h, τ5 0 u 5
ρg
μ

y2

2
2 hy

� �
1U0

8.49 r5 0.707R

8.51 Q5 1.433 1023 in3/s (0.0857 in3/min)

8.53 τ5 c1/r u 5
c1
μ

ln r1 c2 c1 5
μV0

lnðri=roÞ
c2 5 2

V0 ln ro
lnðri=roÞ
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8.55 r 5 R
1

2

ð12 k2Þ
lnð1=kÞ

� �1=2
8.57 % change52100/(11 ln k)

8.59 Rhyd 5 2
8μ
3πα

1

ðr0 1αzÞ3 2
1

r30

" #

8.61 uðrÞ 5 n

2kðn1 1Þ
@p

@x
r
n1 1
n 2R

n1 1
n

� �

Q 5
nπ

kðn1 1Þ
@p

@x
R

3n1 1
n

n

3n1 1
2

1

2

� �

U 5
n

kðn1 1Þ
@p

@x
R

n1 1
n

n

3n1 1
2

1

2

� �
@p/@x5253.1k kPa/m (n5 0.5),2 42.4k Pa/m (n5 1),2 3.89k Pa/m (n5 1)

8.63 μ0 5 2
a2b2

2μða2 1 b2Þ
@p

@x
Q 5 2

πa3b3

4μða2 1 b2Þ
@p

@x

Qpipe 5 2
πR4

8μ
@p

@x
Qelliptic 5 2

29πR4

104μ
@p

@x

8.67 F5 212 lbf (in both cases)

8.69 τw520.195 lbf/ft2 τw521.353 1023 psi

8.71 μ 5 2:4133 108
N � s
m2

8.73 n5 6.21 n5 8.55

8.75 βlam5 4/3 βturb5 1.02

8.77 α5 2

8.79 HlT5 1.33 m hlT5 13.0 J/kg

8.81 V15 3.70 m/s

8.83 ΔQ5 21 gpm (Q5 330 gpm)

8.85 V1 5 2 m=s

8.87 p25 1.68 MPa

8.89
du

dy
5 963 s21 τw5 3.583 1024 lbf/ft2 τw5 4.133 1024 lbf/ft2

8.91 f5 0.0390 Re5 3183 Turbulent

8.93 Maximum5 2.12% at Re5 10000 and e/D5 0.01

8.97 p25 171 kPa p25 155 kPa

8.99 Q5 0.0406 ft3/s (2.44 ft3/min, 18.2 gpm)

8.105 K5 9.383 1024

8.107 Q5 3.97 L/s Q5 3.64 L/s (ΔQ520.33L/s)

Q5 4.77 L/s (ΔQ5 0.80 L/s, a gain)

8.109 Δp5 23.7 psi K5 0.293
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8.111 hlm 5 ð12ARÞ2 V
2
1

2

8.113 V1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δp

ρð12AR2 2KÞ

s
Inviscid assumption: Lower indicated

flow/larger Δp

8.115 Q5 0.345 L/min d5 3.65 m

8.117 d5 6.13 m (or 6.16 m if α5 2, laminar)

8.119 Q5 7.663 1025 m3/s (0.0766 L/s) h5 545 mm h5 475 mm

8.123 h5 79.6 m Δp5 781 kPa

8.127 Δp5 0.848 in. H2O

8.129 VB5 4.04 m/s LA5 12.8 m (Not feasible!) Δp5 29.9 kPa

8.131 Δp/L5 7.513 1023 lbf/ft2/ft (round) Δp/L5 8.683 1023 lbf/ft2/ft (1:1)

(115.6%) Δp/L5 9.323 1023 lbf/ft2/ft (2:1) (124.1%)

Δp/L5 0.010 lbf/ft2/ft (3:1) (133.2%)

8.133 p15 179 psig

8.135 h5 1.51 m V5 9.41 m/s

8.137 V5 1.39 m/s Q5 6.80 m3/s (0.680 L/s)

8.139 L5 26.5 m

8.141 t5 18.3 min

8.143 Q5 0.0395 m3/s

8.145 dh/dt5 42.3 mm/s

8.147 Rate of downpour5 0.759 cm/min

8.153 Q5 6.683 1023 m3/s pmin5220.0 kPa (gage)

8.157 Q5 5.303 1024 m3/s Q5 5.353 1024 m3/s (diffuser)

8.159 L5 0.296 m

8.161 D5 56.0 mm

8.163 D5 5.02 5.1 cm (corresponds to standard 2 in. pipe)

8.165 D5 6 in. (nominal)

8.169 V 5 6:46 m=s pF5 705 kPa (gage) 35 832 kW τw5 88.6 Pa

8.171 dQ/dt520.524 m3/s/min

8.173 35 8.13 hp

8.175 Δp5 150 kPa

8.177 D5 48 mm Δp5 3840 kPa 3pump5 24.3 kW (32.6 hp)

8.179 Q5 5.583 1023 m3/s (0.335 m3/min) V5 37.9 m/s 35 8.77 kW

8.181 Cost5 $12,480/year

8.183 Q5 0.0419 m3/s Δp5 487 kPa 35 29.1 kW

8.185 Q5 2.31 m3/s
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8.187 Q05 0.00812 m3/s Q15 0.00286 m3/s Q25 0.00379 m3/s

Q35 0.00147 m3/s Q45 0.00526 m3/s

8.189 Q05 0.0942 ft3/s Q15 0.0704 ft3/s

Q25 0.0238 ft3/s Q35 0.0942 ft3/s

8.193 Δp5 25.8 kPa

8.195 Q5 1.49 ft3/s

8.197 Q5 0.00611 m3/s

8.199 Δt5 40.8 mm _mmin 5 0:0220 kg=s

8.203 Red5 1800 f5 0.0356 p252290 Pa (gage) (29.6 mm Hg)

9.3 xp5 4.14 in at takeoff xp5 2.93 in at cruise

9.5 U5 88.2 m/s for American golf ball U5 91.5 m/s for British golf ball

U5 16.9 m/s for soccer ball

9.9 A5U B5π/2δ C5 0

9.11
δ*
δ

5 0:375
θ
δ
5 0:139

9.13
δ*
δ

5 0:396
θ
δ
5 0:152

9.15 Linear:
θ
δ
5 0:167 Sinusoidal:

θ
δ
5 0:137 Parabolic:

θ
δ
5 0:133

9.17 Power:
δ*
δ

5 0:125;
θ
δ
5 0:0972 Parabolic:

δ*
δ

5 0:333;
θ
δ
5 0:133

9.19 _m 5 3:75 slug=s D5 12.50 lbf (more than Problem 9.18)

9.21 δ2* 5 0:125 in ΔU/U5 2.57%

9.23 U25 25.5 m/s Δp5215.8 Pa

9.25 Δp521.16 lbf/ft2

9.27 U25 91.0 ft/s p2520.0796 psig

9.29 δ2* 5 2:54 mm Δp52107 Pa FD5 2.00 N

9.35 y5 0.305 cm
dy

dx
5

1

2
ffiffiffiffiffiffiffiffi
Rex

p ηf u 2 f

f u
τw 5 0:00326

ρU2ffiffiffiffiffiffiffiffi
Rex

p

ReL5 3.333 105 θL5 0.0115 cm

9.39 θL5 0.01116 in FD5 0.1353 lbf

9.41 FD5 5.36 lbf (long way) FD5 9.79 lbf (short way)

9.43 FD5 4.433 1023 lbf (both sides) (twice as much as Problem 9.42)

9.45 FD5 2.143 1023 lbf (both sides) (higher than Problem 9.44)

9.47
δ
x
5

3:46ffiffiffiffiffiffiffiffi
Rex

p Cf 5
0:577ffiffiffiffiffiffiffiffi
Rex

p

9.49 FD5 0.557 N

9.51 τw 5 0:289
μU
x

ffiffiffiffiffiffiffiffi
Rex

p
FD 5 ρU2bθL FD5 0.0563 N
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9.53 τw 5 0:0297
ρU2

Re1=5x

FD 5 0:0360
ρU2bL

Re1=5x

FD5 2.34 N

9.55 U5 1.81, 2.42, 3.63, and 7.25 m/s

9.57 FD5 0.1114 lbf (both sides)

9.59 FD5 12.73 lbf (separate, both sides)

FD5 9.65 lbf (composite, both sides)

9.61
δ
x

5
0:353

Re1=5x

cf 5
0:0612

Re1=5x

FD5 2.41 N

9.63 δL5 31.3 mm τwL
5 0:798 Pa FD5 0.700 N

9.65 w25 80.3 mm

9.67 Δp5 6.16 Pa L5 0.233 m

9.69 mf 5
1

3
ρU2δW ðlinearÞ mf 5

1

2
ρU2δW ðsinusoidÞ

mf 5
8

15
ρU2δW ðparabolicÞ Linear profile separates first

9.73 U25 2.50 m/s Δp5 0.00370 in. H2O

9.79 FD5 2.19 lbf (separate, both sides)

FD5 1.660 lbf (composite, both sides)

9.81 FD5 7190 N 35 1.598 MW

9.83 ReL5 1.5473 107 xt5 53.3 mm FD5 98.0 N 35 15.3 kW

9.85 xt5 0.0745 m δ5 0.0810 m FD5 278 N

9.87 FD5 7.133 103 lbf Savings of $4000/year assuming fuel costs $1 per

gallon

9.91 FD5 13.69 kN 35 42.3 kW

9.93 di5 96.5 mm

9.95 D5 3.80 m (single), 2.20 m (three chutes) 21.01 g maximum

acceleration

9.97 B is 20.8% better than A (H.D)

9.99 She can cycle with the headwind, but she cannot reach the top speed with the
tailwind.

9.101 Uphill: Vmax5 9.47 km/hr without wind, Vmax5 8.94 km/hr with headwind

Downhill: Vmax5 63.6 km/hr without wind, Vmax5 73.0 km/hr with tailwind

Coasting downhill: Vmax5 58.1 km/hr without wind, Vmax5 68.1 km/hr with

tailwind

9.105 V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg sin θ

CDAρ cos2 θ

� �s
t5 1.30 mm

9.107 M5 0.0451 kg

9.111 FE5 6.72 mpg ΔQ5 1720 gal/yr (8.78%)
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9.113 V5 47.3 mph (1970’s car) V5 59.0 (current car)

9.115 ~U 5
Qs

~EN

6πμa
u520.053 m/s when a5 1 μm u520.0053 m/s

when a5 10 μm

9.117 CD5 1.17

9.119 V 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg

ρA
1

A1

A2

� �2
2 2 A1

A2

� �
1 1

2
64

3
75

vuuuut

9.121 FD 5 CDA
1

2
ρðV2UÞ2 T 5 CDA

1

2
ρðV2UÞ2R

3 5 CDA
1

2
ρðV2UÞ2U ωopt 5

V

3R

9.123 M5 1480 ft � lbf
9.125 Ecalm5 8.86 kcal Ewind5 12.79 kcal

9.127 V5 23.3 m/s Re5 48,200 FD5 0.111 N

9.129 x5 13.9 m

9.131 CD5 61.9 ρs5 3720 kg/m3 V5 0.731 m/s

9.133 M5 0.0471 kg

9.135 FD 5
7

9
CD

1

2
ρU2DH M 5

7

16
CD

1

2
ρU2DH2

FD
FDuniform

5
7

9

M

Muniform
5

7

8

9.137 CL5 1.01 CD5 0.0654

9.139 D5 7.99 mm y5 121 mm

9.141 t5 4.69 s x5 70.9 m

9.143 xmax5 48.7 m (both methods)

9.145 FD5 59.1 N ΔFC5 9.653 1024 kg/min

FE5 27.2 mpg (original design) FD5 213 N

ΔFC5 3.483 1022 kg/min FE5 21.9 mpg (cheaper design)

Rounded corner design rental is $9.69 cheaper, including cost of gasoline

9.147 CD5 0.606 V5 37.4 mph

9.149 Vb 5 Vw 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2FR

ρðCDuAu 1CDbAbÞ

s
Vb5 4.56 m/s (16.4 km/hr)

9.151 t5 4.93 s h5 30.0 m

9.153 x � 203 m

9.157 Δ35 16.3 kW (94%)

9.161 A5 8.30 m2 T5 1275 N 35 79.7 kW

9.163 M5 49.1 lbm 35 0.905 hp

9.165 M5 78.6 lbm 35 3.17 hp
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9.167 V5 192.0 mph

9.169 T5 17,300 lbf

9.171 V5 102 mph FD5 918 lbf 35 249 hp (minimum speed)

V5 204 mph FD5 485 lbf 35 264 hp (maximum speed)

9.173 θ5 3.42� L5 168 km

9.175 For a race car, effective; for a passenger car, not effective

9.181 FL5 0.0822 N5 0.175 mg FD5 0.471 N5 0.236 mg

9.183 ω5 14,0002 17,000 rpm x5 3.90 ft

9.185 ω5 3090 rpm

10.1 H5 135 m _W 5 994 kW

10.3 r25 6.04 cm b25 0.488 cm

10.5 _W 5 2:943 104hp H5 1455 ft

10.7 _W 5 210 hp H5 208 ft

10.9 Q5 1.62 m3/s H5 132 m _W 5 2100 kW

10.11 H05 117 m w25 45.78 m/s V25 49 m/s _W 5 374 kW

H5 76.4 m

10.13 β15 50� _W 5 4:453 104 hp H5 1408 ft

10.15 β15 61.3�

10.19 α25 79.3� _W 5 22:4 hp H5 169 ft

10.25 Q5 676 cfm H5 18.4 ft η5 82.6% Ns5 2.64

10.27 Ns 5 Π
1
2
3=Π

5
4
2

10.29 1 hp5 1.01 hpm Nscu
5 0.228 Ns(rpm, hpm, m)

10.31 _W 5 8:97 kW

10.33 H05 25.8 m η5 78.9% Qu5 1.07 m3/s Hu5 21.9 m

H0u5 56.6 m _Wu 5 292 kW

10.35 at least 6 pumps N � 473 rpm

10.37 Q5 4.583 107 L/day

10.47 D2/D15 0.8 Q25 4.03 m3/s

10.49 T25 48�C Q25 0.0500 m3/s H25 6.75 m

Inlet pressure must be increased 9.57 kPa to avoid cavitation

10.51 Q5 160.9 cfm

10.53 Q5 2.28 cfs

10.57 D5 6.0 in _W 5 890 hp

10.59 Q15 627 gpm

10.61 Q5 2705 gpm Le/Dvalve5 26900
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10.63 Qloss5 163 gpm (6.0% loss in 20 years)

Qloss5 221 gpm (8.2% loss in 40 years)

Qloss5 252 gpm (9.3% loss in 20 years)

Qloss5 490 gpm (18.1% loss in 40 years)

10.65 Qloss5 660 gpm (14.4% loss in 20 years)

Qloss5 856 gpm (18.7% loss in 40 years)

Qloss5 860 gpm (18.8% loss in 20 years)

Qloss5 1416 gpm (31.0% loss in 40 years)

10.67 _Winitial 5 191:2 kW _Wfull 5 286 kW

10.69 Hp5 123 ft An 11 in. 4AE12 pump would work

NPSHA5 82 ft.NPSHR � 5 ft

10.71 A 5TUT168 would work η � (0.86)35 0.6365 63.6%

10.75 Q5 2.30 ft3/s

10.77 10TU22C pumps would work Q5 15,700 gpm _W � 2870 hp

1 pump: Q � 6710 gpm _W � 224 hp

2 pumps: Q � 11,400 gpm _W � 1100 hp

3 pumps: Q � 14,200 gpm _W � 2110 hp

4 pumps: Q � 15,700 gpm _W � 2880 hp

10.79 Hlt125 8.84 m p25254.9 kPa (gage) _W 5 556W

31% decrease for 4 cm pipe

10.83 H5 120 ft _W 5 10:5 hp

10.85 H5 1.284 m H5 1.703 m at higher speed

10.87 Ae5 6.04 ft2 Q5 161.7 ft3/s ht5 2.01 in.

_W 5 3:13 hp η5 86.6%

10.91 N5 566 rpm Dm/Dp5 0.138 Q5 1.4183 104 gpm

10.93 _W 5 1:543 104 hp N5 356 rpm Nrun5 756 rpm

T5 2.143 105 ft � lbf Tstall5 4.043 105 ft � lbf
10.95 Nscu

5 55.7 Q5 34600 ft3/s

10.97 R5 1.643 m Dj5 37.0 cm _m 5 8830 kg=s

10.101 Hnet � 324 m Ns � 0.115 η� 87%

10.103 Vj5 117 ft/s Q5 2.53 ft3/s _W 5 60 hp

Optimum dj � 2.152 2.20 in

10.105 FT5 893 N (at rest) FT5 809 N (at speed)

10.107 D5 18.6 ft n5 241 rpm (4.02 rev/s) _W 5 72,700 hp

10.109 J5 0.748 CF5 0.0415 η5 77.1% CT5 0.00642

CP5 0.0036

10.111 U5 297 ft/s CP5 0.345

10.113 N5 153 rpm _W 5 144W
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10.117 _m 5 0:356 kg=s _W 5 0:244MW

10.119 N5 488 rpm _m 5 448 lbm=s T025 1266�F p025 70 psi

11.3 y5 6.68 ft

11.5 Vstream5 4 ft/s y5 2.52 ft

11.9 Vstream5 2.43 m/s Fr5 2

11.13 Q5 834 ft3/s

11.15 Ec5NA, 0.547 ft, 1.14 ft, 1.60 ft, 2.19 ft

11.17 yc5 2.20 ft Vc5 8.62 ft/s

11.19 y5 0.645 ft, 4.30 ft

11.21 yc5 3.53 ft

11.23 y5 1.30 ft

11.25 Δy5 0.0340 ft (y25 0.334 ft)

11.27 qmax5 16.3 m3/s/m

11.29 y25 0.0563 m V25 5.33 m/s

11.31 _Q 5 24:4 kW ΔT5 6.043 1024 �C

11.33 y25 4.04 m Hl5 1.74 m

11.35 y25 3.99 ft Hl5 1.14 ft

11.37 y25 10.3 m V25 2.19 m/s E15 32.8 m E25 10.5 m

11.39 ybefore5 0.0563 m yafter5 0.543 m

11.41 Vr5 7.17 ft/s (4.89 mph)

11.43 y5 1.24 m

11.45 y5 0.815 m

11.47 Sb5 1.863 1023

11.49 Sb5 1.603 1023

11.51 Q5 0.194 m3/s

11.53 y5 2.47 ft

11.55 y5 0.775 m

11.59 y5 5.66 m b5 2.67 m

11.63 There is no jump

11.67 Sc5 2.483 1023

11.69 q5 3.40 ft3/s/ft

11.71 Q5 26.6 ft3/s

11.73 H5 0.514 m

11.75 Cw5 1.45

12.1 T5 const. p decreases ρ decreases

(Irreversible adiabatic process)
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12.3 Δs520.137 Btu/lbm ��R so not feasible!

(violates 2nd law of thermodynamics)

12.5 T25 498�R Δs5 0.0161 Btu/lbm ��R
12.7 T25 860 K Δh5 542 kJ/kg Δs5 171.7 J/kg �K _m 5 1:845 kg=s

12.9 _W 5 8:26 kW

12.11 δQ/dm5 1104 kJ/kg at constant pressure

δQ/dm5 789 kJ/kg at constant volume

12.13 η5 58.8%

12.15 W5 176 MJ Ws5 228 MJ Ts (max)5 858 K Qs52317 MJ

12.17 _m 5 36:7 kg=s T25 572 K V25 4.75 m/s _W 5 23MW

12.19 Δt5 4 years

12.23 cH2
5 1305 m/s cHe5 1005 m/s cCH4

5 446 m/s cN2
5 349 m/s

cO2
5 267 m/s

12.25 Δt5 198 μs Ev5 12.7 GN/m2

12.27 x5 2.5 km

12.29 Δt5 531 s (8.85 min)

12.31 M5 0.776 V5 269 m/s (603 mph)

12.33 Δt5 4.66 s (July) Δt5 5.00 s (January)

12.35 25.42% (assuming stratospheric temperature)

19.08% (assuming sea level temperature)

12.37 x5 519 m

12.43 Δt5 116.1 s

12.45 V5 642 m/s (2110 ft/s)

12.47 V5 493 m/s Δt5 0.398 s

12.49 V5 515 m/s t5 6.92 s

12.51 Δx � 10432 1064 m

12.53 Density change, 1.21%, so incompressible

12.55 M5 0.142 (1%) M5 0.322 (5%) M5 0.464 (10%)

12.57 T05 2290 K

12.59 p05 1336 psia pdyn5 1106 psia

12.61 p05 44.2 kPa

12.63 pdyn5 54.3 kPa p05 152 kPa

12.65 p05 546 kPa h02 h5 178 kJ/kg T05 466 K

12.67 p02 p5 8.67 kPa V5 195 m/s V5 205 m/s Error using

Bernoulli5 5.13%

12.71 T05 const (isoenergetic) p0 decreases (irreversible adiabatic)

12.73 V5 890 m/s T05 677 K p05 212 kPa
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12.75 p05 119.7 kPa T05 8350�R

12.77 T01
5 812 K (539�C) T02

5 257 K (216.5�C) _Q 5 227:9 kW

Δs521186 J/kg-K

12.79 δQ/dm5 160 kJ/kg p025 385 kPa

12.81 _Q 5 33:5 Btu=s p025 2.71 psia

12.83 p015 698 kPa T01
5 1572 K (1299�C) p025 30 kPa

T02
5 1041 K (768�C) Δs5 485 J/kg-K

12.85 _m 5 1:833 1024kg=s

12.87 T*5 260 K p*5 24.7 MPa V*5 252 m/s

12.89 Tt5 2730 K pt5 25.5 MPa Vt5 1030 m/s

13.1 �m 5 3.18 kg/s

13.3 V5 781 m/s M5 1.35 _m 5 3:18 kg=s

13.5 M5 2.94 T5298�C

13.7 p25 6.52 psi

13.9 Converging duct A5 1.016 in2

13.11 M25 1.20 Supersonic diffuser

13.13 M25 1.20 Supersonic diffuser

13.19 pt5 250 kPa Vt5 252 m/s Mt5 0.883

13.21 M5 0.240 M5 2.44

13.23 pt5 166 kPa

13.25 p5 150 kPa M5 0.60 At5 0.0421 m2 _m 5 18:9 kg=s

13.27 At5 1.943 1023 m2

13.29 p05 817 kPa pe5 432 kPa Te5 288 K (245.5�C) Ve5 302 m/s

13.31 _m 5 0:807 kg=s _mmax 5 0:843 kg=s

13.33 Δt5 374 s (6.23 min) Δs5 232 J/kg �K
13.35 pe5 687 kPa _m 5 0:0921 kg=s arfx5 1.62 m/s2

13.37 p05 9.87 kPa (abs) pe5 5.21 kPa (abs) Te5 332 K (58.7�C)
Ve5 365 m/s ax5 1.25 m/s2

13.39 M5 1.706

13.41 Rx5 304 lbf (Tension)

13.43 A25 0.573 ft2 V25 667 ft/s

13.45 _m5 50.0 lbm/s

13.47 Me5 1 pe5 381 kPa Pressure and flow decrease asymptotically

Tf5 228 K (245�C)

13.49 p05 115 psia _m 5 1:53 lb=s At5 0.593 in2

13.51 V5 225 m/s _m 5 1:292 kg=s

13.53 pe5 125 kPa (abs) _m 5 0:401 kg=s
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13.55 V15 1300 m/s _m 5 87:4 kg=s

13.57 _m 5 3:57 lbm=s Mass flow rate decreases by a factor of 2

13.59 Rx5 950 N

13.61 pe5 88.3 kPa _m 5 0:499 kg=s Rx521026 N (to left)

13.63 Ae5 2.42 in2 Ve5 6925 ft/s Rx5 228 lbf

13.65 p05 44.6 MPa

13.67 p2/p15 3.41 T2/T15 1.50 Δs5 51.8 J/kg �K
13.69 V5 1666 ft/s

13.71 p15 1.28 psia ρ15 0.00653 lbm/ft3 V15 2260 ft/s T01
5 954�R

p015 10.0 psia T02
5 954�R p025 7.22 psia

13.73 p025 327 kPa V25 1558 m/s

13.75 M15 2.20 M25 0.547 Δs5 24.7 ft � lbf/lbm ��R
13.77 T25 520 K p025 1.29 MPa (abs)

13.79 M25 0.486 V25 541 mph (793 ft/s) Δp05 89.2 psi

13.81 T01
5 426 K p015 207 kPa (abs) p025 130 kPa (abs)

13.83 M15 2.48 V15 2420 ft/s p025 29.1 psia p25 24.3 psia

13.87 M15 2.20 p025 178 kPa V15 568 m/s (“Isentropic”)

13.89 V25 268 m/s (Relative to wave),52276 m/s (Relative to ground)

13.91 At5 (a) 0.456 ft2 _m 5 22:2 lbm=s p15 1.176 psia T15 260�R
As*5 0.782 ft2

13.93 M2d5 0.547 p2d5 512 kPa p02d5 628 kPa As*5 0.111 m2

13.95 Me5 1.452 _m 5 0:808 lbm=s

13.97 pb1/p05 0.965 pb2/p05 0.417 pb3/p05 0.0585

13.99 Me5 2.94 p05 3.39 MPa pb15 3.35 MPa pb25 1.00 MPa

pb35 101 kPa

13.101 pb5 301 kPa

13.103 M15 1.50

13.105 patm, p0, 112 kPa (abs); p0. 743 kPa (abs)

13.107 p35 66.6 psia

13.109 Me5 0.392 pe5 123.9 psia pd5 17.73 psia

13.111 pb5 301 kPa

13.113 Me5 0.627 δQ/dm5 57.8 kJ/kg

13.117 p15 396 kPa (abs) _m 5 47:6 kg=s

13.121 M15 0.601 M25 0.738 p025 230 kPa (abs) T02
5 482 K

f5 0.0241 e5 0.0776 cm

13.123 M15 0.200 _m 5 3:193 1023 kg=s p25 47.9 kPa (abs)

13.125 pmin5 18.5 psia Vmax5 1040 ft/s
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13.127 Te5 840�R (380�F) Rx5 13.3 lbf (to right) Δs5 0.359 Btu/lbm �R
13.129 p0t5 56.6 psia T25 433�R p025 27.8 psia _m 5 0:0316 lbm=s

13.131 T25 238 K p25 26.1 kPa (abs) Δs5 172 J/kg �K
13.133 L5 12.0 ft

13.135 p15 46.8 psia T15 282�R p015 1719 psia T01
5 789�R

f5 0.01572

13.137 L5 18.8 ft

13.141 T25 551�R _m 5 5:33 slug=s

13.143 L5 15.5 ft

13.145 p15 136.8 psia _W 5 24:9 hp

13.147 p15 30 kPa _W 5 0:131 μW

13.149 M25 0.233 Heat added

13.151 p25 198 psia (Isothermal) p25 153 psia (Adiabatic)

13.157 δQ/dm5 449 kJ/kg Δs5 0.892 kJ/kg �K
13.159 Note: ρ25 0.850 lbm/ft3 _Q 5 107 Btu=s Δp5 162 psi

With wrong ρ25 100 lbm/ft3: _Q 5 74 Btu=s Δp521 psi

13.161 δQ/dm5 18 kJ/kg Δs5 0.0532 kJ/kg �K Δp05 2.0 kPa

13.163 δQ/dm5295.2 Btu/lbm (negative sign indicates heat lost)

13.165 δQ/dm5 1.12 MJ/kg Δp05213.5 kPa

13.167 M25 0.50 T02
5 1556 K T25 1480 K _Q 5 1:86MJ=s

13.169 δQ/dm5 14.71 kJ/kg (heat added)

13.171 δQ/dm5 447 kJ/kg Δs5 0.889 kJ/kg �K Δp05 22 kPa

13.173 δQ/dm5 5.02 Btu/lbm (heat added)

13.175 δQ/dm5 364 kJ/kg Δp052182 kPa T02
5 1174 K

p025 1.60 MPa T25 978 K p25 0.844 MPa ρ25 3.01 kg/m3

13.177 M25 0.60 T02
5 966 K

δQ/dm5 343 kJ/kg (61.6% of max) _Q 5 4010 kW

13.179 M25 1.74 p25 4.49 psia

13.181 β5 49.7� p25 203 kPa T02
5 495 K (weak wave) β5 78.0�

p25 345 kPa T02
5 601 K (strong wave)

13.183 M25 1.95 p25 179 kPa M25 0.513 (Normal shock)

p25 570 kPa (Normal shock) βmin5 23.6�

13.185 β5 62.5� p2/p15 9.15

13.187 M15 1.42 V15 483 m/s β5 67.4�

13.189 α5 7.31� pmax5 931 kPa Tmax5 564�C

13.191 L/w5 183 kN/m

13.193 p5 16.93 psia (one shock) p5 16.99 psia (two shocks)
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13.195 V15 5230 ft/s

13.197 p5 14.21 psia (one shock) p5 14.02 psia (two shocks)

p5 13.97 psia (isentropic compression)

13.199 p5 690 kPa p5 517 kPa (Normal shock only)

13.201 p5 130 kPa

13.203 M15 3.05 p15 38.1 kPa M5 2.36 p5 110 kPa

13.205 L/w5 64.7 kN/m

13.209 T2/T15 1.429 M25 4.00

13.211 M55 3.23 V55 1656 m/s
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Index
Absolute metric (system of units), 12

Absolute pressure, 59

Absolute viscosity, 33

Acceleration:

convective, 187

gravitational, 13

local, 187

of particle in velocity field, 185, 187

cylindrical coordinates, 188

rectangular coordinates, 187

Accelerometer, 94

Adiabatic flow, see Fanno-line flow

Adiabatic process, 661

Adverse pressure gradient, 40, 252, 423, 442, 452, 457, 461,

496, 585, 698, W-24

Aging of pipes, 361

Alternate depths, 613

Anemometer:

Laser Doppler, 394

thermal, 399

Angle of attack, 442, 457, 459, 442, 566, 577

Angular deformation, 185, 190, 194

Angular-momentum principle, 99, 496, 498, 499

fixed control volume, 135

rotating control volume, W-11

Apparent viscosity, 35

Apparent shear stress, 350

Archimedes’ principle, 80

Area, centroid of, 70

second moment of, 71

product of inertia of, 72

Area ratio, 364

isentropic flow, 701

Aspect ratio:

airfoil, 464, 578

flat plate, 450

rectangular duct, 368

Atmosphere:

isothermal, 68

standard, 60, 67

Average velocity, 106, 332

parallel plates, 336, 340

pipe, 347, 387, 398

open channel, 605

Barometer, 36, 38, 66

Barotropic fluid, 42

Barrels, U.S. petroleum industry, 373, 418

Basic equation of fluid statics, 56

Basic equations for control volume, 104

angular-momentum principle, for inertial

control volume, 135

for rotating control volume, W-11

for Euler turbomachine, 499

conservation of mass, 104

first law of thermodynamics, 139

Newton’s second law (linear momentum), for control volume

moving with constant velocity, 126

for control volume with arbitrary acceleration, W-6

for control volume with rectilinear acceleration, 128

for differential control volume, 122

for nonaccelerating control volume, 110

second law of thermodynamics, 146

Basic laws for system, 98

angular-momentum principle, 99

conservation of mass, 98

first law of thermodynamics, 99

Newton’s second law (linear momentum), 98

differential form, 199

second law of thermodynamics, 99

Basic pressure-height relation, 59

Bearing, journal, 338

Bernoulli equation, 14, 124, 242

applications, 247

cautions on use of, 252

interpretation as an energy equation, 253

irrotational flow, 260

restrictions on use of, 124, 242, 252

unsteady flow, W-16

Bingham plastic, 35

867



Blasius’ solution, W-19

Blower, 367, 494, 510, 541

Body force, 29, 59

Borda mouthpiece, 288

Boundary layer, 40, 271, 331

displacement thickness, 425

effect of pressure gradient on, 442

flat plate, 425

integral thicknesses, 426

laminar:

approximate solution, 435

exact solution, W-19

momentum integral equation for, 428, 432, 433

momentum-flux profiles, 444

momentum thickness, 426

separation, 442

shape factor, 444

thickness, 425

transition, 425

turbulent, 439

velocity profiles, 444

Boundary-layer:

control, 460, 466, 471

thicknesses, 425

British gravitational (system of units), 412

Buckingham Pi theorem, 296, 582

Bulk (compressibility) modulus, 42, 668, 787

Bump, flow over, 620

Buoyancy force, 80

Camber, 460

Capillary effect, 36, 301

Capillary viscometer, 347

Cavitation, 42, 304, 526

Cavitation number, 304, 571

Center of pressure, 71, 72

Centrifugal pump, 495, 510

CFD, see Computational fluid dynamics

Chezy equation, 633

Choking, 705, 710, 730, W-26, W-29

Chord, 457, 460, 464

Circulation, 192, 267, 460, 464

Coanda effect, 155

Compressible flow, 42, 581, 586, 657, 689

basic equations for, 691

ideal gas, 694

flow functions for computation of, 818

Compressor, 494, 516, 582

Computational fluid dynamics, 201, 208

and Navier-Stokes equations, 201

applications of, 209

dealing with nonlinearity, 220

direct and iterative solutions, 221

finite difference method, 210

grid convergence, 219

iterative convergence, 222

Concentric-cylinder viscometer, 50, 52

Confidence limit, 830

Conical diffuser, 364, 393

Conjugate depth, 628

Conservation:

of energy, see First law of thermodynamics of mass, 99, 139, 143

of mass, 104

cylindrical coordinates, 177

rectangular coordinates, 175

Consistency index, 35

Contact angle, 36, 789

Continuity, see Conservation of mass

Continuity equation, differential form, 175

cylindrical coordinates, 177

rectangular coordinates, 175

Continuum, 21

Contraction coefficient, 286, 412

Control surface, 7

Control volume, 7, 97

rate of work done by, 140

Convective acceleration, 187

Converging-diverging nozzle, see Nozzle

Converging nozzle, see Nozzle

Conversion factors, 837

Couette flow, 339

Creeping flow, 405, 478

Critical conditions, compressible flow, 681

Critical depth, 616

Critical flow in open channel, 610, 614, 616, 617, 621

Critical pressure ratio, 681, 705

Critical Reynolds number, see Transition

Critical speed:

compressible flow, 681

open-channel flow, 617

Curl, 191

Cylinder:

drag coefficient, 453

inviscid flow around, 267, 271, 273

D’Alembert paradox, 38, 40, 271

Deformation:

angular, 185, 190, 194

linear, 185, 196

rate of, 5, 31, 195

Del operator:

cylindrical coordinates, 178, 261, W-2

rectangular coordinates, 175

Density, 5, 22

Density field, 22

Derivative, substantial, 186

Design conditions, see Nozzle

Differential equation, nondimensionalizing, 292

Diffuser, 363, 380, 471, 497

optimum geometries, 364

pressure recovery in, 363, 365

supersonic, 697, W-24

Dilatant, 35

Dilation, volume, 196

Dimension, 11

Dimensional homogeneity, 14

Dimensional matrix, 301

Dimensions of flow field, 24

Discharge coefficient, 389

flow nozzle, 391

orifice plate, 391

venturi meter, 393

weir, 647

Displacement thickness, 425

Disturbance thickness, see Boundary layer

Doppler effect, 398, 670

Doublet, 264

strength of, 267

Downwash, 464

Draft tube, 497, 552, 558

Drag, 38, 423, 445
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form, 40, 465

friction, 446, 450

induced, 464

parasite, 471

pressure, 40, 446, 450

profile, 465

Drag coefficient, 295, 446

airfoil, 458, 461

complete aircraft, 465

cylinder, 453

rotating, 474

flat plate normal to flow, 450

flat plate parallel to flow, 447

golf balls, 472

induced, 464

selected objects, 451

sphere, 451, 488

spinning, 472

streamlined strut, 457

supersonic airfoil, 765

supertanker, 449

vehicle, 312

Dynamic pressure, 244, 245

Dynamic similarity, 306

Dynamic viscosity, 33

Dyne, 12

Efficiency 314:

hydraulic turbine, 505

propeller, 566, 598

propulsive, 565

pump, 315, 316, 368, 504

wind turbine, 574, 579

Elementary plane flows, see Potential flow theory

End-plate, 466

Energy equation, for pipe flow, 356, 369. See also First law of

thermodynamics

Energy grade line, 257, 354, 640

English Engineering (system of units), 12

Enthalpy, 143, 581, 660

Entrance length, 331

Entropy, 661

Equation of state, 5, 693

ideal gas, 5, 659

Equations of motion, see Navier-Stokes equations

Equivalent length, 362

bends, 365

fittings and valves, 366

miter bends, 366

Euler equations, 201, 237

along streamline, 239

cylindrical coordinates, 237

normal to streamline, 239

rectangular coordinates, 237

streamline coordinates, 238

Eulerian method of description, 10, 188

Euler method, 210

Euler number, 304

Euler turbomachine equation, 499

Experimental uncertainty, 16, 829

Extensive property, 100

External flow, 42, 421

Fan, 367, 494, 510, 541

“laws,” 315, 545

selection procedure, 805

specific speed, 545

Fanno-line flow, 718, 727

basic equations for, 727

choking length, 742, W-25, W-26

effects on properties, 729

flow functions for computation of, 732, 737

normal shock formation in, W-26

Ts diagram, 729

Field representation, 23

First law of thermodynamics, 99, 139, 143

Fittings, losses in, see Head loss, in valves

and fittings

Flap, 466

Flat plate, flow over, 424

Float-type flow meter, 398

Flow behavior index, 35

Flow coefficient, 315, 389

flow nozzle, 391

orifice plate, 391

turbomachine, 505

Flow field, dimensions of, 24

Flow measurement, 387

internal flow, 387

direct methods, 387

linear flow meters, 397

electromagnetic, 398

float-type, 397

rotameter, 397

turbine, 397

ultrasonic, 398

vortex shedding, 398

restriction flow meters, 387

flow nozzle, 391

laminar flow element, 394

orifice plate, 391

venturi, 393

traversing methods, 399

laser Doppler anemometer, 399

thermal anemometer, 399

open-channel flow, 646

Flow meter, see Flow measurement

Flow nozzle, 390, 391

Flow visualization, 25, 311

Fluid, 4

Fluid machinery, 492

dynamic, see Turbomachine

fan, 494

performance characteristics, 516

positive displacement, 494, 548

propeller, 544, 558, 563

pump, 494, 548

turbine, 494, 496

Fluid particle, 10, 24

Fluid properties, 785

Fluid statics:

basic equation of, 56, 59

pressure-height relation, 59

Fluid system, 367, 529

Force:

body, 29, 57

buoyancy, 80

compressibility, 304

drag, 445

gravity, 303

hydrostatic, 69

Index 869



Force (continued )

on curved submerged surface, 76

on plane submerged surface, 69

inertia, 301, 303

lift, 445, 459

pressure, 39, 57, 303, 445

shear, 445

surface, 29, 57

surface tension, 36, 304

viscous, 303

Forced vortex, 193

Francis turbine, 497, 509, 558

Free surface, 601, W-2

Free vortex, 193, 366

Friction drag, see Drag

Friction factor, 357, 358, 359

Darcy, 358

data correlation for, 358, 359

Fanning, 358, 412

laminar flow, 360

smooth pipe correlation, 361

Frictionless flow:

compressible adiabatic, see Isentropic flow

compressible with heat transfer, see Rayleigh-line flow

incompressible, 237

Friction velocity, 321, 351

Froude number, 305, 308, 606, 610

Froude speed of advance, 323

Fully developed flow, 331

laminar, 332

turbulent, 350

Fully rough flow regime, 360

gc, 11, 13

Gage pressure, 59

Gas constant:

ideal gas equation of state, 5, 659, 794

universal, 659, 794

Geometric similarity, 306

Gibbs equations, 255, 662

Grade line, 257

energy, 257, 354, 380, 383

hydraulic, 257, 380, 383

Gradient, 58

Gradually varied flow, 641

Gravity, acceleration of, 11

Guide vanes, 497

Hayden-Rhodes Aqueduct, 601

Head, 258, 356, 500

gross, 554, 558

pump, 367, 504, 530, 536

net, 554, 558

shutoff, 511

Head coefficient, 314, 506, 583

Head loss, 355

in diffusers, 363

in enlargements and contractions, 363

in exits, 362

in gradual contractions, 363

in inlets, 362

major, 349, 357

minor, 349, 357, 361

in miter bends, 366

in nozzles, 363

in open-channel flow, 605, 612

hydraulic jump, 628

permanent (in flow meters), 394

in pipe bends, 365

in pipe entrances, 362

in pipes, 365

in sudden area changes, 363

total, 357

in valves and fittings, 366

Head loss coefficient, 362

Heat transfer, sign convention for, 99, 140

Hydraulic accumulator, 153

Hydraulic depth, 606, 610

Hydraulic diameter, 349, 368, 605, 734

Hydraulic grade line, 258, 354, 639

Hydraulic jump, 170, 252, 625

basic equation for, 627, 628

depth increase across, 627

head loss across, 628

Hydraulic power, 504, 548

Hydraulic systems, 69

Hydraulic turbine, 496, 552

Hydrometer, 92

Hydrostatic force, 69

on curved submerged surfaces, 76

on plane submerged surfaces, 69

Hydrostatic pressure distribution, 70

Hypersonic flow, 670, 771

Ice, 787

Ideal fluid, 261, 271

Ideal gas, 5, 22, 659

Impeller, 494, 542

Incomplete similarity, 308

Incompressible flow, 42, 105, 175, 180

Incompressible fluid, 38

Induced drag, 464

Inertial control volume, 110, 126

Inertial coordinate system, 111, 126

Intensive property, 100, 693

Internal energy, 504, 659

Internal flow, 43, 330

Inviscid flow, 38, 39, 192, 235

Irreversible process, 504, 661

Irrotational flow, 192, 259

Irrotationality condition, 260

Irrotational vortex, 193, 266

Isentropic expansion waves, 759

basic equations for, 760, 762

on an airfoil, 763

Prandtl-Meyer expansion function, 762, 828

Isentropic flow, 694

basic equations for, 675, 700

ideal gas, 695, 700

in converging-diverging nozzle, 709

in converging nozzle, 704

effect of area variation on, 694, 700

flow functions for computation of, 700, 818

in hs plane, 695

reference conditions for, 673, 699

Isentropic process, 662

Isentropic stagnation properties, 673

for ideal gas, 673, 674

Isothermal flow, W-29

Jet pump, 157

Journal bearing, 338
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Kaplan turbine, 497, 558

Kilogram force, 592

Kinematic similarity, 306

Kinematics of fluid motion, 184

Kinematic viscosity, 33

Kinetic energy coefficient, 355

Kinetic energy ratio, 327

Lagrangian method of description, 91, 188

Laminar boundary layer, 423, 434, W-19

flat plate approximate solution, 434

flat plate, exact solution, W-19

Laminar flow, 41, 330

between parallel plates, 332

both plates stationary, 332

one plate moving, 338

in pipe, 344

Laminar flow element (LFE), 394

Laplace’s equation, 213, 262

Lapse rate, 685

Lift, 423, 445, 459

Lift coefficient, 459

airfoil, 460

Darrieus rotor blade, 578

rotating cylinder, 474

spinning golf ball, 472

spinning sphere, 472

supersonic airfoil, 765

Lift/drag ratio, 462

Linear deformation, 185, 196

Linear momentum, see Newton’s second law of motion

Local acceleration, 187

Loss, major and minor, see Head loss

Loss coefficient, see Head loss

Lubricating oil, 787, 793

Mach angle, 672

Mach cone, 670

Mach number, 42, 292, 305, 665

Magnus effect, 422, 474

Major loss, see Head loss

Manning:

equation, 633

roughness coefficient, 634

Manometer, 38, 61

capillary effect in, 36

multiple liquid, 65

reservoir, 63

sensitivity, 38, 62

U-tube, 62
Material derivative, 186

Mean line, 459

Measurement, flow, see Flow measurement

Mechanical energy, 255, 349, 354, 369

Mechanical flow meter, see Flow measurement

Mechanical power, 500

Meniscus, 36, 301

Meridional velocity, 505

Meridional plane, 506

Meter, flow, see Flow measurement

Methods of description:

Eulerian, 10, 188

Lagrangian, 9, 188

Metric horsepower, 593

Mile, nautical, 837

Minor loss, see Head loss

Minor loss coefficient, see Head loss coefficient

Model studies, 305

Model test facilities, 317

Modulus of elasticity, 42

Molecular mass, 659, 794

Momentum:

angular, see Angular-momentum principle

coefficient, 410

linear, see Newton’s second law of motion

Momentum equation: 197

differential form, 199

for control volume moving with constant velocity, 126

for control volume with arbitrary acceleration, W-6

for control volume with rectilinear acceleration, 128

for differential control volume, 122

for inertial control volume, 110

for inviscid flow, 237

Momentum flux, 123

Momentum integral equation, 428, 432

for zero pressure gradient flow, 433

Momentum thickness, 426

Moody diagram, 359

Nappe, 646

National Transonic Facility (NTF), 318, 685

Nautical mile, 837

Navier-Stokes equations, 199

cylindrical coordinates, 798

numerical solution of, 201, 208

rectangular coordinates, 200

Net positive suction head, 520, 526

Network, pipe, 383

Newton, 12

Newtonian fluid, 32, 199

Newton’s second law of motion, 9, 98

Noncircular duct, 368

Noninertial reference frame, W-6, W-11

Non-Newtonian fluid, 32, 34

apparent viscosity, 35

consistency index, 35

flow behavior index, 35

power-law model, 35

pseudoplastic, 35

rheopectic, 35

thixotropic, 35

time-dependent, 35

viscoelastic, 35

Normal depth, 603, 631

Normal shock, 715

basic equations for, 716

effects on properties, 718

Fanno and Rayleigh interpretation, 718

flow functions for computation of, 719, 721

supersonic channel flow with, 724, W-24, W-26, W-29

Ts diagram, 717

Normal stress, 29, 57, 141, 200

No-slip condition, 4, 25, 40, 271, 333

Nozzle, 247, 252, 697

choked flow in, 706, 710

converging, 697, 704

converging-diverging, 709, 724, W-25

design conditions, 711, 725

incompressible flow through, 252, 554, 697

normal shock in, 724
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Nozzle (continued )

overexpanded, 712

underexpanded, 711

Oblique shock, 750

basic equations for, 753

comparison with normal shock, 754

deflection angle, 757, 826

flow functions for computation of, 754, 826

on an airfoil, 758

shock angle, 755

Ocean power, 20, 55, 97, 235, 290

One-dimensional flow, 24

Open-channel flow, 43, 600

critical flow, 610, 616, 621

energy equation for, 610

gradually varied depth, 603, 641

hydraulic jump, 603, 625

measurements in, 646

normal depth, 603, 631

rapidly varied flow, 610, 621

steady uniform flow, 631

total head, 613

Open channels

characteristics of, 603

geometric properties of, 606

Orifice, reentrant, 286

Orifice plate, 321, 389, 390, 391

Overexpanded nozzle, 712

Particle derivative, 186

Pascal, 836

Pathline, 25, 27

Pelton wheel, 497, 554

Permanent head loss, see Head loss

Physical properties, 785

Pipe:

aging, 362, 535

compressible flow in, see Fanno-line flow

head loss, see Head loss

laminar flow in, 304, 332, 344

noncircular, 368

roughness, 357, 359

standard sizes, 371

turbulent flow in, 330, 351

Pipe systems, 367, 383

networks, 383

pumps in, 367, 529

single-path, 369

Pi theorem, 296

Pitch, 566, 568

Pitot-static tube, 246

Pitot tube, 245

Planform area, 450, 457

Poise, 33, 837

Polar plot, lift-drag, 462

Potential, velocity, 261

Potential flow theory, 261

elementary plane flows, 264

doublet, 267

sink, 266

source, 266

uniform flow, 266

vortex, 266

superposition of elementary plane flows, 267

Potential function, 261

Power coefficient, 314, 498, 506, 522, 569

Power-law model, non-Newtonian fluid, 35

Power-law velocity profile, 352

Prandtl boundary layer equations, 320, W-19

Pressure, 57

absolute, 59

center of, 69, 71

dynamic, 244, 245

gage, 59

isentropic stagnation, see Isentropic stagnation properties

stagnation, 244, 245

static, 244

thermodynamic, 142, 200, 244

Pressure coefficient, 304, 458

Pressure distribution: 445

airfoil, 457, 461

automobile, 470

converging-diverging nozzle, 710, 725

converging nozzle, 705

cylinder, 474

cylinder, inviscid flow, 267, 271

diffuser, 363, 442

sphere, 40, 471

supersonic airfoil, 765

wing, 8

Pressure drag, see Drag

Pressure field, 56

Pressure force, 57

Pressure gradient, 58, 423

effect on boundary layer, 442

Pressure recovery coefficient, 363

ideal, 364

Pressure surface, 460

Pressure tap, 244, 258, 389

Primary dimension, 11, 297

Profile, velocity, see Velocity profile

Propeller, 496, 544, 563

actuator disk, 563

efficiency, 565, 569

pitch, 568

power coefficient, 569

propulsive efficiency, 565

solidity, 566

speed of advance coefficient, 568

thrust coefficient, 569

torque coefficient, 569

Properties, fluid, 785

air, 796

water, 785, 795

Propulsive efficiency, 565

Pseudoplastic, 35

Pump, 494

in fluid system, 367, 494

“laws,” 316

operating point, 502, 530

parallel operation, 521, 537

positive displacement, 548

selection procedure, 804

series operation, 521, 537

specific speed, 498, 505

variable-speed operation, 521, 538

Rankine propeller theory, 564

Rate of deformation, 5, 32, 195
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Rayleigh-line flow, 741

and normal shock, 718

basic equations for, 741

choking, 762, W-29

effects on properties, 743

flow functions for computation of, 746, 747

maximum heat addition, 742

Ts diagram, 742

Reentrant entrance, 363

Reference frame, noninertial, 129, W-6

Repeating parameter, 298

Reversible process, 582, 661

Reynolds experiment, 330

Reynolds number, 39, 292, 304

critical, see Transition

Reynolds stress, 350

Reynolds transport theorem, 103

Rheopectic, 35

Rigid-body, motion of fluid, W-1

Rotation, 184, 190

Rotor, turbomachine, 499

Roughness coefficient, Manning, 634

Roughness, pipe, 357, 359

Runner, turbomachine, 497

Secondary dimension, 11

Secondary flow, 365

Second law of thermodynamics, 99, 146

Separation, 40, 361, 423

Sequent depth, 627

Shaft work, 140

Shape factor, velocity profile, 444

Shear rate, 32

Shear stress, 4, 29

distribution in pipe, 346

Shear work, 141

Shock, normal, see Normal shock

Shock, oblique, see Oblique shock

Shockless entry flow, 501, 542

Shutoff head, 511

Significant figures, 3

Similarity:

dynamic, 306

geometric, 306

incomplete, 308

kinematic, 306

rules, 522

Similar velocity profiles, 433, W-19

Similitude, 290

Sink, 264

strength of, 265

Siphon, 248

SI units, 11, 836

prefixes, 836

Skin friction coefficient, 435, 633, W-21

Slope, bed, 603

Slug, 12

Sluice gate, 119, 249, 611

Solidity, 496, 566, 571, 575

Sound, speed of, 645, 668, 669

Source, 264

strength of, 265

Span, wing, 457, 463

Specific energy, 613

Specific energy diagram, 614

Specific gravity, 23, 785

Specific heat:

constant pressure, 660, 794

constant volume, 659, 794

Specific heat ratio, 660, 794

Specific speed, 316, 498, 505, 506

Specific volume, 142, 612, 659

Specific weight, 23

Speed of advance coefficient, 568

Speed of sound, 665

ideal gas, 669

solid and liquid, 668

Sphere:

drag coefficient, 452

flow around, 40

inviscid flow around, 40

pressure distribution, 453

Spin ratio, 471

Stability, 80

Stage, 494

Stagnation enthalpy, 581, 693

Stagnation point, 40, 271, 273, 423

Stagnation pressure, 245

isentropic, see Isentropic stagnation properties

Stagnation pressure probe, 245

Stagnation properties, see Isentropic stagnation

properties

Stagnation state, 673

Stagnation temperature, 681

Stall, wing, 460

Standard atmosphere, 60

properties of, 60, 788

Standard cubic foot (of gas), 18

Standard pipe sizes, 371

State:

equation of, 5

thermodynamic, 659

Static fluid, pressure variation in, 61

Static pressure, 244

Static pressure probe, 244

Static pressure tap, 244

Steady flow, 24, 106, 175, 180, 187, 631

Stoke, 33, 837

Stokes’ drag law, 451

Stokes’ theorem, 193

STP (standard temperature and pressure), 22, 294

Streakline, 25

Stream function, 180, 181

Streamline, 25

equation of, 26, 181

Streamline coordinates, 238, 241

Streamline curvature, 239, 470

Streamlining, 41, 456

Stream tube, 122, 253

Stress, 29

components, 30, 200, 798

compressive, 57

normal, 29, 141, 200, 798

notation, 30

shear, 29, 209, 798

sign convention, 30

yield, 34, 35

Stress field, 29

Stresses, Newtonian fluid, 200

Strouhal number, 398, 453

Substantial derivative, 186

Suction surface, 460
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Sudden expansion, 363

Superposition, of elementary plane flows, 267

direct method of, 267

inverse method of, 271

Surface force, 29

Surface tension, 36, 788

Surface waves, speed of, 606

System, 7, 117

System head curves, 530

System derivative, 100

relation to control volume, 103

Systems:

of dimensions, 11

of units, 11

Taylor series expansion, 57, 173, 177, 191, 198, 210, 216, 334, 429

Tds equations, 235, 661

Terminal speed, 9

Thermodynamic pressure, see Pressure

Thermodynamics, review of, 659

Thixotropic, 35

Three-dimensional flow, 24

Throat, nozzle, 698, 712

Thrust coefficient, 569

Timeline, 25

Torque coefficient, 498, 506, 569

Total head tube, 245

Trailing vortex, 464

Transition, 304, 331, 352, 360, 423, 452

Translation, 188

Transonic flow, 670

Ts diagram, 661, 695, 707

Turbine, 496

hydraulic, 496, 509, 552

impulse, 497, 554, 560

reaction, 497, 552, 557

specific speed, 498, 505, 534, 545

wind, 497, 562, 571

Turbine flow meter, 397

Turbomachine, 494

axial flow, 494, 512, 544

centrifugal, 494

fan, 494, 510

flow coefficient, 315, 498, 505, 522, 545

head coefficient, 314, 506

mixed flow, 494

pump, 494

power coefficient, 314, 498, 506, 522, 569, 574, 583

radial flow, 494, 501, 511

scaling laws for, 316

specific speed, 316, 498, 505

stage, 494

torque coefficient, 498, 506, 569

Turbulent boundary layer, approximate solution for flat plate, 439

Turbulent flow, 40, 330

Turbulent pipe flow, 349

fluctuating velocity, 350

mean velocity, 358

shear stress distribution, 349

velocity profile, 351

buffer layer, 352

logarithmic, 352

power-law, 352

velocity defect, 352

viscous sublayer, 352

wall layer, 351

Two-dimensional flow, 25

Uncertainty, experimental, 16, 829

Underexpanded nozzle, 711

Uniform flow at a section, 25, 106

Uniform flow field, 25

Uniform flow in open channel, 631

Units, 11, 836

Universal gas constant, 659, 794

Unsteady Bernoulli equation, W-16

Unsteady flow, 27, 109

Vapor pressure, 42

Vector, differentiation of, 175, 178, 187

Velocity diagram, 501

Velocity field, 23

Velocity measurement, see Flow measurement

Velocity potential, 261

Velocity profile, 33

in pipe flow, laminar, 346

turbulent, 351

Vena contracta, 362, 380, 388

Venturi flowmeter, 390, 393

Videotapes, fluid mechanics, 860

Viscoelastic, 5, 31, 35

Viscometer:

capillary, 347

concentric cylinder, 50, 52

cone-and-plate, 51

Viscosity, 5, 35

absolute (or dynamic), 33, 791

apparent, 35

kinematic, 33, 792

physical nature of, 789

Viscous flow, 5, 31, 38

Viscous sublayer, 352

Visualization, flow, 25, 311

Volume dilation, 196

Volume flow rate, 105

Vortex:

forced, 193

free, 193, 273

irrotational, 192, 266

strength of, 265

trailing, 463, 466

Vortex shedding, 325, 398, 453

Vorticity, 192

cylindrical coordinates, 192

Wake, 40, 423, 442, 445

Wall shear stress, 350, 360, 432, 442, W-20

Water hammer, 42, 323

Water, properties of, 785, 790, 793

Waves, capillary, 36

Wave power, 20, 55, 97, 171, 235, 290

Weber number, 305

Weight, 15

Weir, 646

broad crested, 646, 648

coefficient, 647

contracted rectangular, 647

suppressed rectangular, 646

triangular, 648
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Wetted area, 447

Wetted perimeter, 368, 605, 640

Windmill, 562, 605, 627, 632, 640

Wind power, 1, 329, 422, 492, 562, 657, 689

Wind tunnel, 306, 311, 317

supersonic, W-25

Wind turbine, 497, 571

efficiency, 574

Winglet, 466

Wing loading, 464

Wing span, 463

Work, rate of, 140

shaft, 140

shear, 141

sign convention for, 99, 140

Yield stress, 34

Zone:

of action, 671

of silence, 671
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