Software

From theory to implementation

DANIEL GALIN

PEARSON

Software Quality Assurance

PEARSON

Education

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison Wesley, we craft high quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

Software Quality
Assurance

From theory to implementation

Daniel Galin

A
AA4

PEARSON

P ——

Addison
Wesley

Harlow, England « London « New York « Boston « San Francisco « Toronto « Sydney « Singapore « Hong Kong
Tokyo « Seoul « Taipei « New Delhi « Cape Town « Madrid « Mexico City « Amsterdam « Munich « Paris « Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies around the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2004
© Pearson Education Limited 2004

The right of Daniel Galin to be identified as the
author of this work has been asserted by him in accordance
with the Copyright, Designs, and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1T 4LP.

All trademarks used herein are the property of their respective owners. The use

of any trademark in this text does not vest in the author or publisher any
trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 0201 70945 7

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

Galin, Daniel,
Software quality assurance / Daniel Galin.
p. cm.
Includes bibliographical references and index.
ISBN 0-201-70945-7
1. Computer software--Quality control. L. Title.

QA76.76.Q35G35 2003
005.1'068'5--dc21
2003050668

1098765432
09 08 07 06 05

Typeset in 10/12pt Sabon by 30.
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn

The publisher’s policy is to use paper manufactured from sustainable forests.

To my parents,
Blima and Elchanan,
who inspired me with their love of learning,
scholarship, and teaching

Contents

Preface

Unique features of this text
The book’s audience

Acknowledgements

Publisher’s acknowledgements

About the author

Guides for special groups of readers
Guide to readers interested in ISO 9000-3 requirements
Guide to readers interested in ASQ’S CSQE body of knowledge

Part |

Chapter 1

1.1
1.2

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6

Introduction

The software quality challenge

The uniqueness of software quality assurance

The environments for which SQA methods
are developed

Summary

Review questions

Topics for discussion

What is software quality?

What is software?

Software errors, faults and failures
Classification of the causes of software errors
Software quality — definition

XVil
XViil
X1X
XX
xx1
xxil
xxiil
xxiil
XX1v

11
12
12

14

15
16
19
24

Software quality assurance — definition and objectives 25

Software quality assurance and software engineering

Summary

Selected bibliography
Review questions
Topics for discussion

30

32
32
33

<.

SUEe))

Chapter 3 Software quality factors 35

3.1 The need for comprehensive software quality

requirements 36
3.2 Classifications of software requirements into
software quality factors 37
3.3 Product operation software quality factors 38
3.4 Product revision software quality factors 41
3.5 Product transition software quality factors 43
3.6 Alternative models of software quality factors 44
3.7 Who is interested in the definition of quality
requirements? 47
3.8 Software compliance with quality factors 49
Summary 51
Selected bibliography 52
Review questions 52
Topics for discussion 54

Chapter 4 The components of the software quality

assurance system — overview 56

4.1 The SQA system — an SQA architecture 57
4.2 Pre-project components 60
4.3 Software project life cycle components 61
4.4 Infrastructure components for error prevention

and improvement 65
4.5 Management SQA components 68
4.6 SQA standards, system certification, and

assessment components 69
4.7 Organizing for SQA - the human components 70
4.8 Considerations guiding construction of an

organization’s SQA system 72

Part Il Pre-project software quality components 75

Chapter 5 Contract review 77
5.1 Introduction: the CFV Project completion

celebration 78

5.2 The contract review process and its stages 79

5.3 Contract review objectives 80

5.4 Implementation of a contract review 82

5.5 Contract review subjects 85

5.6 Contract reviews for internal projects 85

Chapter 6

6.1
6.2
6.3
6.4

Part IlI

Chapter 7

7.1
7.2

7.3
7.4

Chapter 8

8.1
8.2

Summary 87

Selected bibliography 88
Review questions 89
Topics for discussion 89
Appendix 5A: Proposal draft reviews —

subjects checklist 92
Appendix 5B: Contract draft review —

subjects checklist 94
Development and quality plans 95
Development plan and quality plan objectives 97
Elements of the development plan 97
Elements of the quality plan 101
Development and quality plans for small projects

and for internal projects 103
Summary 106
Selected bibliography 108
Review questions 109
Topics for discussion 110
Appendix 6A: Software development risks and

software risk management 112

SQA components in the project life cycle 119

Integrating quality activities in the

project life cycle 121
Classic and other software development

methodologies 122
Factors affecting intensity of quality assurance

activities in the development process 131
Verification, validation and qualification 133
A model for SQA defect removal effectiveness

and cost 135
Summary 143
Selected bibliography 145
Review questions 146
Topics for discussion 147
Reviews 149
Review objectives 150

Formal design reviews (DRs) 152

<

SUEe))

x

SUEe))

8.3
8.4
8.5

Chapter 9

9.1
9.2
9.3
9.4
9.5

Chapter 10

10.1
10.2
10.3
10.4

Chapter 11

11.1
11.2
11.3
11.4

Peer reviews

A comparison of the team review methods
Expert opinions

Summary

Selected bibliography

Review questions

Topics for discussion

Appendix 8A: DR report form

Appendix 8B: Inspection session findings report form
Appendix 8C: Inspection session summary report

Software testing — strategies

Definition and objectives
Software testing strategies
Software test classifications
White box testing

Black box testing
Summary

Selected bibliography
Review questions

Topics for discussion

Software testing — implementation

The testing process

Test case design

Automated testing

Alpha and beta site testing programs
Summary

Selected bibliography

Review questions

Topics for discussion

Assuring the quality of software
maintenance components

Introduction

The foundations of high quality
Pre-maintenance software quality components
Maintenance software quality assurance tools
Summary

Selected bibliography

Review questions

Topics for discussion

158
168
170
171
172
172
174
175
176
177

178

180
182
187
189
197
209
211
212
213

216

217
232
235
245
247
249
250
251

254

255
257
261
264
273
275
275
277

Chapter 12

12.1
12.2
12.3
12.4

12.5

Chapter 13

13.1
13.2
13.3

13.4

Part IV

Chapter 14

14.1
14.2
14.3
14.4

Assuring the qualitg of external

participants’ contributions 279
Introduction: the HealthSoft case 280
Types of external participants 282
Risks and benefits of introducing external

participants 283
Assuring quality of external participants’

contributions: objectives 286
SQA tools for assuring the quality of external

participants’ contributions 287
Summary 293
Selected bibliography 295
Review questions 295
Topics for discussion 296

CASE tools and their effect on software

quality 298
What is a CASE tool? 299
The contribution of CASE tools to software

product quality 302
The contribution of CASE tools to software

maintenance quality 304
The contribution of CASE tools to improved project

management 304
Summary 305
Selected bibliography 306
Review questions 306
Topics for discussion 307

Software quality infrastructure

components 309
Procedures and work instructions 311
The need for procedures and work instructions 312
Procedures and procedures manuals 313
Work instructions and work instruction manuals 316
Procedures and work instructions: preparation,
implementation and updating 317
Summary 318
Selected bibliography 319
Review questions 319
Topics for discussion 320

Appendix 14A: Design review procedure 322

X,

SUEe))

X,

SUEe))

Chapter 15

15.1
15.2

Chapter 16

16.1

16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

Chapter 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

Supporting quality devices

Templates

Checklists

Summary

Selected bibliography
Review questions
Topics for discussion

Staff training and certification

Introduction: Surprises for the “3S”

development team
The objectives of training and certification
The training and certification process
Determining professional knowledge requirements
Determining training and updating needs
Planning training and updating programs
Defining positions requiring certification
Planning the certification processes
Delivery of training and certification programs
Follow-up subsequent to training and certification
Summary
Selected bibliography
Review questions
Topics for discussion

Corrective and preventive actions

Introduction: the “3S” development team revisited
Corrective and preventive actions — definitions
The corrective and preventive actions process
Information collection

Analysis of collected information

Development of solutions and their implementation
Follow-up of activities

Organizing for preventive and corrective actions
Summary

Selected bibliography

Review questions

Topics for discussion

325

326
329
332
333
333
334

335

336
337
338
338
339
340
340
341
342
344
345
346
347
347

349

350
351
352
353
354
356
359
360
361
362
362
363

Chapter 18

18.1
18.2

18.3
18.4
18.5
18.6
18.7

Chapter 19

19.1
19.2
19.3
19.4
19.5
19.6

PartV

Chapter 20

20.1
20.2

20.3
20.4

Configuration management 365

Software configuration, its items and its management 367
Software configuration management — tasks and

organization 369
Software change control 371
Release of software configuration versions 373
Provision of SCM information services 380
Software configuration management audits 380
Computerized tools for managing software

configuration 381
Summary 382
Selected bibliography 383
Review questions 384
Topics for discussion 384
Documentation control 387
Introduction: where is the documentation? 388
Controlled documents and quality records 389
The controlled documents list 392
Controlled document preparation 393
Issues of controlled document approval 393
Issues of controlled document storage and retrieval 394
Summary 395
Selected bibliography 396
Review questions 397
Topics for discussion 397

Management components of software

quality 399
Project progress control 401
The components of project progress control 402
Progress control of internal projects and external
participants. 404

Implementation of project progress control regimes 405
Computerized tools for software progress control 406

Summary 408
Selected bibliography 409
Review questions 410

Topic for discussion 411

X,

SUEe))

Xiv Chapter 21 Software quality metrics 412

o 21.1 Objectives of quality measurement 414
=] 21.2 Classification of software quality metrics 415
@ 21.3 Process metrics 416
iy 21.4 Product metrics 420
21.5 Implementation of software quality metrics 427
21.6 Limitations of software metrics 432
Summary 434
Selected bibliography 436
Review questions 438
Topics for discussion 440
Appendix 21A: The function point method 442
Chapter 22 Costs of software quality 449
22.1 Objectives of cost of software quality metrics 450
22.2 The classic model of cost of software quality 451
22.3 An extended model for cost of software quality 455
22.4 Application of a cost of software quality system 458
22.5 Problems in the application of cost of software
quality metrics 462
Summary 463
Selected bibliography 465
Review questions 465
Topics for discussion 468

Part VI Standards, certification and assessment 471

Chapter 23 Quality management standards 475
23.1 The scope of quality management standards 476
23.2 ISO 9001 and ISO 9000-3 477
23.3 Certification according to ISO 9000-3 481
23.4 Capability Maturity Models - CMM and CMMI

assessment methodology 485

23.5 The Bootstrap methodology 490
23.6 The SPICE project and the ISO/IEC 15504

software process assessment standard 492

Summary 497

Selected bibliography 499

Review questions 500

Topics for discussion 501

Appendix 23A: CMMI process areas 502

Appendix 23B: ISO/IEC 15504 model processes 505

Chapter 24

24.1
24.2

24.3
24.4

Part VIl

Chapter 25

25.1
25.2

25.3

Chapter 26

26.1
26.2
26.3
26.4

SQA project process standards —

IEEE software engineering standards 507
Structure and content of IEEE software engineering
standards 509
IEEE/EIA Std 12207 - software life cycle processes 510
IEEE Std 1012 - verification and validation 514
IEEE Std 1028 - reviews 519
Summary 521
Selected bibliography 524
Review questions 524
Topics for discussion 525

Appendix 24A: IEEE Software Engineering Standards 526
Appendix 24B: MIL-STD-498: list of Data Item

Descriptions (DIDs) 528
Appendix 24C: Task structure for a primary process

according to IEEE/EIA Std 12207 — example 528
Organizing for quality assurance 539

Management and its role in software

quality assurance 543
Top management’s quality assurance activities 544
Department management responsibilities for quality

assurance 549
Project management responsibilities for quality

assurance 550
Summary 551
Selected bibliography 552
Review questions 553
Topics for discussion 554

The SQA unit and other actors in the SQA

system 555
The SQA unit 556
SQA trustees and their tasks 563
SQA committees and their tasks 563
SQA forums - tasks and methods of operation 564
Summary 565
Review questions 568

Topics for discussion 568

x
<

SUEe))

x
=

SUEe))

Epilogue The future of SQA

Facing the future: SQA challenges
Facing the future: SQA capabilities

Author index

Subject index

570

571
574

577
580

Preface

The opening of the new Denver International Airport (DIA) in February
1995 was a day of celebration for Colorado citizens but it was certainly the
end of a traumatic period for the information technology industry. DIA was
planned to be the largest airport in the United States, to serve 110 000 000
passengers annually by 2020, to handle 1750 flights daily through 200 gates
and 12 operating runways. Operations at DIA were delayed by 16 months,
mainly due to the failure of the software-based baggage handling system,
causing estimated total losses of $2 billion. Moreover, the baggage handling
system finally put into service was substantially downscaled in comparison
to the system originally specified. Although several other colossal failures of
software systems unfortunately have been recorded since 19935, the failure of
IT technology at DIA was especially traumatic to the profession, whether
due to the scale of the losses or the public interest and criticism it raised.

Many SQA professionals, including the author, believe that had appro-
priate software quality assurance systems been applied to the project at its
start, a failure of this scale would not have occurred or, at least, its losses
would have been dramatically reduced. The methods and tools discussed in
this book, especially the risk management procedures, could have identified
the severity of the situation at very early stages and enabled timely employ-
ment of the appropriate corrective measures throughout the project. Other
SQA tools could probably have assured completion of the system on schedule
and in full compliance with its specifications.

According to the author’s conception of software quality assurance, an
acceptable level of software quality can be achieved by:

m Combined application of a great variety of SQA components.

m Special emphasis on quality in the early phases of software development,
including the pre-project phase.

m Performance of comprehensive SQA activities to control the quality of the
work carried out by external participants (subcontractors, suppliers of
reused software modules and COTS software products, and the cus-
tomers themselves in cases where they carry out parts of the project).

m Extension of SQA activities to project schedules and budget control,
based on the expectation that functional requirements, schedule and
budget plans behave according to the principle of communicating vessels,
that is, a failure (or reduced level of achievement) in one of these three
fluid components induces immediate failure in the others.

This conception of software quality assurance guides us throughout the book.

Xviii

adejald

Unique features of this text

The following features of this book are of special importance:

A broad view of SQA

Comprehensive discussion of SQA implementation issues
Comprehensive coverage of SQA topics

State-of-the-art topics.

A detailed discussion of these features follows.

A broad view of SQA

The book extends discussion of SQA issues much beyond the classic bound-
aries of custom-made software development by large established software
houses. It dedicates significant attention to the other software development
and maintenance environments that reflect the current state of the industry:

In-house software development by information systems departments. The
book discusses SQA of in-house projects, situations where traditional
customer—supplier relations are missing or vague, and outlines recom-
mended solutions to the attendant risks (see Sections 5.6 and 6.4.2).
COTS software packages. COTS software packages represent a growing
proportion of software packages used throughout the industry. Assurance
of the quality of these packages, which are integrated directly into the cus-
tomer’s software systems, has become an important issue (see Chapter 12).
Small projects and small organizations. Issues related to software devel-
opment by small organizations and the execution of small software
projects are likewise dealt with in the book (see Section 6.4.1).

Comprehensive discussion of SQA implementation issues
Stress is placed throughout the book on organization, control and other
aspects arising in the implementation of SQA components:

Specialized chapter sections and subsections dealing with implementation
processes.

Examples that refer to real-life situations, especially those involving
implementation issues, are integrated into the text.

Implementation tips related to special implementation problems are inte-
grated into most of the chapters.

Topics for discussion, found at the conclusion of each chapter, encourage
the reader to suggest innovative solutions to implementation issues.

Comprehensive coverage of SQA topics
The book is very comprehensive in the range of SQA subjects covered. It
includes topics rarely if ever covered in other SQA texts. These topics include:

Procedures and work instructions, their preparation, implementation and
updating (Chapter14).

Supporting quality devices, that is, templates and checklists, their prepa-
ration, implementation and updating (Chapter 15).

Costs of software quality, estimated according to the classic quality costs
model in addition to a new extended model that better represents the spe-
cial nature of software quality costs (Chapter 22).

The SQA unit and other actors in the SQA framework, specifically the
activities and responsibilities of active and occasional bodies that pro-
mote SQA issues within the organization: the SQA unit, SQA trustees,
SQA committees and SQA forums (Chapter 26).

State-of—the-art topics
The text emphasizes up-to-date SQA topics:

Automated testing, including a discussion of the various types of auto-
mated tests and their implementation, concluding with a review of the
advantages and disadvantages of automated testing (Section 10.3).
Computerized SQA tools, discussed in conjunction with almost all SQA
components mentioned in the book. A special chapter (Chapter 13),
entirely dedicated to computerized tools, reviews CASE tool issues.
Special emphasis is placed on techniques that dramatically improve the
performance of SQA tools, such as automated testing, software configu-
ration management and documentation control.

International SQA standards. Two chapters (Chapters 23 and 24) are
dedicated to a survey of recent developments in software quality man-
agement standards and project process standards.

A downloadable Instructor’s Guide, PowerPoint Slides and additional test-
ing material are also available free of charge to lecturers and tutors adopting
the main book. They can be accessed at www.booksites.net/galin.

The book’s audience

The book is intended to meet the needs of a wide audience of readers inter-
ested in software quality assurance. We can identify four main groups of
such readers, as follows:

Managers of software development departments, project managers
and others

Those attending or presenting vocational training courses

University and college students

Practitioners involved in quality issues of software development and
maintenance.

In addition, there are special groups of readers who are addressed on page
XXiil.

adejald

Acknowledgements

This book has benefited from comments by software consumers as well as
questions from students in the many courses I have taught at the Technion,
Israel Institute of Technology, the Ruppin Academic Center and elsewhere.
They helped me improve my explanations and inspired many of my exam-
ples. Others helped by directly answering questions or supplying valuable
articles, books and other material. Their numbers prevent my mentioning all
their names. I am grateful to each.

Special thanks to Andrea Shustarich, representative of Pearson
Education in Israel, who encouraged me to write this book and followed its
progress. My editor, Keith Mansfield, a senior acquisition editor at Pearson
Education in the UK, also deserves special recognition for his cooperation,
continuous guidance and valuable advice throughout the long months of
writing. I would especially like to express my appreciation to Nicola
Chilvers, responsible for production of this book at Pearson Education,
whose efficiency and amiable manner made working together such pleasure.
In addition, T wish to express my appreciation to Nina Reshef, who edited
my drafts with devotion and contributed substantially to the book’s read-
ability and accuracy.

Finally, I wish to say how grateful T am to my family, my wife Amira
Galin, my daughter Michal Nisanson and my son Yoav Galin for their con-
tinuous support and encouragement as well as for their important comments
on the book’s drafts.

Publisher’s acknowledgements

We are grateful to the following for permission to reproduce copyright material:

Figure 7.1 adapted from Royce, W.W. (1970) Managing the Development of
large Software Systems: Concepts and Techniques, Proceedings of the IEEE
WESCON, August 1970 and Softrware Engineering Economics by Boehm,
B.W. © 1981. Reprinted by permission of Pearson Education, Inc., Upper
Saddle River, NJ. Figure 7.3 adapted from Boehm, B.W. (1988) A Spiral
Model of Software Development and Enhancement, Computer, Vol. 21, No.
5, pp. 61-72; Figure 7.4 adapted from Boehm, B.W. (1998) Using the Win-
Win Spiral Model: A case study, Computer, Vol. 31, No. 7, pp. 33-44; Table
8.3 and Table 21.11 from Japan’s Software Factories: A Challenge to U.S.
Management by Michael A. Cusumano, copyright 1991 by Oxford
University Press, Inc. Used by permission of Oxford University Press, Inc.;
Table 10.6 adapted from Dustin/Rashka/Paul, Automated Software Testing:
Introduction, Management and Performance, Table 2.4 (p. 53), © Pearson
Education, Inc. Reprinted by permission of Pearson Education, Inc.; Table
23.1 and Table 23.2 reproduced with the permission of BSI under licence no.
2003SK/0025. British Standards can be obtained from BSI Customer
Services, 389 Chiswick High Road, London W4 4AL (Tel. +44 (0) 208 996
9001). Figure 23.2 Capacity Maturity Model by Paulk et al. © Reprinted by
permission of Pearson Education, Inc., Upper Saddle River, NJ. Table 23.5
and 23.6 adapted from Jung, H.-W., Hunter, R., Goldenson, D.R. and El-
Eman, K. (2001) Finding the Phase 2 of the SPICE Trials, Software Process
Improvement and Practice, 7(6) pp. 205-42. © John Wiley & Sons Limited.
Reproduced with permission. Figure 24.1 reprinted with permission from
IEE Std 1045-19992 by IEEE. The IEEE disclaims any responsibility or lia-
bility resulting from the placement and use in the described manner.

BSI for the eight principles of ISO 9000.3 and the structure of the ISO/IEC
TR 15504 Standard (under licence number 2003DH0143), and IEEE for
IEEE Std. 10278 (reviews) © 1994 IEEE and list of IEEE Software
Engineering Standards.

In some instances we have been unable to trace the owners of copyright
material, and we would appreciate any information that would enable us to
do so.

About the author

Dr Daniel Galin received his B.Sc. in Industrial and Management
Engineering, and his M.Sc. and D.Sc. in Operations Research from the
Faculty of Industrial and Management Engineering, the Technion, Israel
Institute of Technology, Haifa, Israel. He serves on the faculty of the Ruppin
Academic Center, where he is the current Head of Information Systems
Studies.

Dr Galin acquired his expertise in SQA through teaching, writing and
consulting in the field. He teaches courses in software quality assurance and
information systems at the Ruppin Academic Center, Information Systems
Studies, at the Faculty of Computer Sciences, the Technion, Haifa and at the
College of Administration, Tel-Aviv.

Dr Galin co-authored (with Dr Z. Bluvband) the book Software Quality
Assurance. His many papers have been published in professional journals,
the majority in English-language journals. All his former books on analysis
and design of information systems and software quality assurance were written
in Hebrew and published by Israel’s leading publishers.

Dr Galin’s professional experience of over 20 years includes consulting
on numerous projects in software quality assurance as well as analysis and
design of information systems.

Guides for special groups
of readers

Among the readers interested in software quality assurance, one can distin-
guish two special groups:

B Readers interested in ISO 9000-3 requirements
m Readers interested in the American Society for Quality’s (ASQ) CSQE
(Certified Software Quality Engineer) body of knowledge.

The following tables direct the reader to the chapters and sections relevant
to their interests.

Guide to readers interested in ISO 9000-3 requirements

The reader interested in ISO 9000-3 requirements will find a comprehensive
discussion of standard ISO issues in Chapter 23. In addition, related materi-
al is spread throughout the book, as detailed in the following table. The ISO
9000-3 requirements numbers quoted are taken from the outline of ISO/IEC
9000-3:2001 (final draft).

1SO 9000-3 1SO 9000-3 requirements: Book references
requirements: subject (chapter/section)
chapter
4. Quality 4.1 General requirements Ch. 4
management 4.2 Documentation requirements Ch. 19
system
5. Management 5.1 Management commitments Sec. 25.1
responsibilities 5.2 Customer focus Sec. 25.1.1

5.3 Quality policy Sec. 25.1.1

5.4 Planning Ch. 25

5.5 Responsibility authority and communication ~ Ch. 25

5.6 Management review Sec. 25.1.3
6. Resource 6.1 Provision of resources Sec. 25.1.1
management 6.2 Human resources Ch. 16

6.3 Infrastructure Secs 10.3, 11.4,

Chs 13, 14, 15,

Secs 18.7,19.5, 20.4
6.4 Work environment Sec. 1.2

XXiv

slapeal Jo sdnoig jeinads 10) SapIng

1SO 9000-3
requirements:
chapter

1SO 9000-3 requirements:
subject

Book references
(chapter/section)

7. Product realization

8. Measurement,
analysis and
improvement

7.1 Planning of product realization

7.2 Customer-related processes

7.3 Design and development

7.4 Purchasing

7.5 Production and service provision

7.6 Control of monitoring and measuring devices
8.1 General

8.2 Monitoring and measurement

8.3 Control of non-conforming product

8.4 Analysis of data
8.5 Improvement

Chs 6, 23, 24

Chs 3,5,6,12,20
Chs 7,8,9, 10,
Sec. 18.3

Ch.12

Chs 11, 12,

Secs 18.4-18.6,
Ch. 20

Sec. 18.1

Secs 21.1, 21.2,
22.1-22.3

Secs 21.3, 21.4,
22.4,22.5

Secs 21.5, 22.4,
22.5,26.1

Sec. 17.6
Ch.17

Guide to readers interested in ASQ’s CSQE body of knowledge

Almost all the elements of the CSQE (Certified Software Quality Engineer)
body of knowledge, as outlined in ASQ (American Society for Quality) Item
B0110, are included in the book. The following table directs the reader to
the relevant chapters and sections.

CSQE body of CSQE body of knowledge: Book references
knowledge: subject (chapter/section)
chapter
I. General A. Standards Sec. 2.1, Ch. 23
knowledge, conduct, B. Quality philosophy and principles Secs 2.4, 2.5
and ethics C. Organizational and interpersonal techniques Ch. 25
D. Problem-solving tools and processes Secs 6.2, 6.3,
App. 6A
E. Professional conduct and ethics -
II. Software quality A. Planning Ch. 6, Secs 7.4,
management 17.2,17.3
B. Tracking Ch. 6,
Secs 17.4-17.8,
Ch. 18

C. Organizational and professional software
quality training

Sec. 11.4, Ch. 16

Il. Software processes A. Development and maintenance methods Sec. 7.1,
Chs 8,11, 13,19
Secs 18.3-18.7,

Ch. 25

B. Process and technology change management

CSQE body of CSQE body of knowledge: Book references
knowledge: subject (chapter/section)
chapter
IV. Software project A. Planning Chs 3, 5, 6,
management Secs 7.2,12.2,
App. 21A
B. Tracking Chs 20, 22, 25
C. Implementation Secs 7.4,12.3,12.4,

V. Software metrics,
measurement and
analytical methods

VI. Software
inspection, testing,
verification and
validation

VII. Software audits

VIII. Software
configuration
management

. Measurement methods
. Analytical methods
. Software measurement

O W >

. Inspection
. Testing
. Verification and validation

O w >

>

. Audit types
. Audit methodology

W

(@]

. Audit planning
A. Planning and configuration identification

B. Configuration control, status accounting
and reporting

Ch. 20, Sec. 22.4

Secs 21.1, 21.2
Sec. 21.5
Ch. 21

Ch. 8, Sec. 25.1.3
Chs 9+10

Sec. 7.3, Chs 8, 10,
Sec. 18.3, Ch. 24

Secs 23.3,26.1.4
Ch. 17, Secs 23.3,
26.1.4

Secs 23.3,26.1.4

Secs 18.1, 18.2,
18.4
Secs 18.3, 18.5

be
x
<

slapeal Jo sdnois jeidxads 10) saping

Introduction

The software quality challenge

1.1 The uniqueness of software quality assurance 4
1.2 The environments for which SQA methods are developed 7
Summary 11
Review questions 12
Topics for discussion 12

Two basic questions should be raised before we proceed to list the variety of
subjects and details of the book:

(1)

(2)

Is it justified to devote a special book to software quality assurance (SQA)
or, in other words, can we not use the general quality assurance textbooks
available that are applicable to numerous areas and industries?

Having decided to develop specialized books for software quality assur-
ance, at which of the various environments of software development, from
amateurs’ hobby to professionals” work, should we aim our main efforts?
Put simply, what are the unique characteristics of the SQA environment?

The objective of this chapter is to answer these questions by exploring the
related issues.

After completing this chapter, you will be able to:

Identify the unique characteristics of software as a product and as pro-
duction process that justify separate treatment of its quality issues.

Recognize the characteristics of the environment where professional soft-
ware development and maintenance take place.

Explain the main environmental difficulties faced by software develop-
ment and maintenance teams as a result of the environment in which
they operate.

asuaeyd Ayjenb atemyos syl 1 ‘ IS

1.1 The uniqueness of software quality assurance

“Look at this,” shouted my friend while handing me Dagal Features’s
Limited Warranty leaflet. “Even Dagal Features can’t cope with software
bugs.” He pointed to a short paragraph on page 3 of the leaflet that states
the conditions of the warranty for AMGAL, a leading Software Master product
sold all over the world. The leaflet states the following:

LIMITED WARRANTY

Dagal Features provides no warranty, either expressed or implied, with
respect to AMGAL?’s performance, reliability or fitness for any specified
purpose. Dagal Features does not warrant that the software or its docu-
mentation will fulfil your requirements. although Dagal Features has
performed thorough tests of the software and reviewed the documenta-
tion, Dagal Features does not provide any warranty that the software and
its documentation are free of errors. Dagal Features will in no case be
liable for any damages, incidental, direct, indirect or consequential,
incurred as a result of impaired data, recovery costs, profit loss and third
party claims. the software is licensed “as is”. the purchaser assumes the
complete risk stemming from application of the AMGAL program, its
quality and performance.

If physical defects are discovered in the documentation or the CD on
which AMGAL is distributed, Dagal Features will replace, at no charge,
the documentation or the CD within 180 days of purchase, provided
proof of purchase is presented.

“Is the AMGAL software really so special that its developers are incapable
of meeting the challenge of assuring a bug-free product?” continued my
friend. “Do other software packages limit their warranties in the same way?”

Though Dagal Features and AMGAL are fictitious, an examination of
the warranties offered by other software developers reveals a similar pattern.
No developer will declare that its software is free of defects, as major man-
ufacturers of computer hardware are wont to do. This refusal actually
reflects the essential elemental differences between software and other industrial
products, such as automobiles, washing machines or radios. These differ-
ences can be categorized as follows:

(1) Product complexity. Product complexity can be measured by the num-
ber of operational modes the product permits. An industrial product,
even an advanced machine, does not allow for more than a few thou-
sand modes of operation, created by the combinations of its different
machine settings. Looking at a typical software package one can find
millions of software operation possibilities. Assuring that the multitude
of operational possibilities is correctly defined and developed is a major
challenge to the software industry.

(2)

Product visibility. Whereas the industrial products are visible, software
products are invisible. Most of the defects in an industrial product can be
detected during the manufacturing process. Moreover the absence of a
part in an industrial product is, as a rule, highly visible (imagine a door
missing from your new car). However, defects in software products
(whether stored on diskettes or CDs) are invisible, as is the fact that parts
of a software package may be absent from the beginning.

Product development and production process. Let us now review the
phases at which the possibility of detecting defects in an industrial prod-
uct may arise:

(a) Product development. In this phase the designers and quality assur-
ance (QA) staff check and test the product prototype, in order to
detect its defects.

(b) Product production planning. During this phase the production
process and tools are designed and prepared. In some products there
is a need for a special production line to be designed and built. This
phase thus provides additional opportunities to inspect the product,
which may reveal defects that “escaped” the reviews and tests con-
ducted during the development phase.

(c) Manufacturing. At this phase QA procedures are applied to detect
failures of products themselves. Defects in the product detected in the
first period of manufacturing can usually be corrected by a change in
the product’s design or materials or in the production tools, in a way
that eliminates such defects in products manufactured in the future.

In comparison to industrial products, software products do not benefit
from the opportunities for detection of defects at all three phases of the
production process. The only phase when defects can be detected is the
development phase. Let us review what each phase contributes to the
detection of defects:

(a) Product development. During this phase, efforts of the development
teams and software quality assurance professionals are directed
toward detecting inherent product defects. At the end of this phase
an approved prototype, ready for reproduction, becomes available.

(b) Product production planning. This phase is not required for the soft-
ware production process, as the manufacturing of software copies
and printing of software manuals are conducted automatically. This
applies to any software product, whether the number of copies is
small, as in custom-made software, or large, as in software packages
sold to the general public.

(c) Manufacturing. As mentioned previously, the manufacturing of
software is limited to copying the product and printing copies of the
software manuals. Consequently, expectations for detecting defects
are quite limited during this phase.

daueinsse Ajljenb alemyos jo ssauanbiunay] 1°1 ‘ w

asuaeyd Ayjenb atemyos syl 1 ‘ o

The differences affecting the detection of defects in software products versus
other industrial products are shown in Table 1.1 and Frame 1.1.

It should be noted that significant parts of advanced machinery as well
as of household machines and other products include embedded software
components (usually termed “firmware”) that are integrated into the prod-
uct. These software components (the firmware) share the same
characteristics of the software products mentioned above. It follows that the
comparison shown above should actually be that of software products ver-
sus other industrial products and non-software components of industrial
products that include firmware. Hereinafter, when mentioning software, we
will mean software products as well as firmware.

The fundamental differences between the development and production
processes related to software products and those of other industrial products
warrant the creation of a different SQA methodology for software. The need
for special tools and methods for the software industry is reflected in the pro-
fessional publications as well in special standards devoted to SQA, such as
ISO 9000-3, “Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software”. This point is supported by the fact
that targeted guidelines have not been prepared by ISO for other industries,

Table 1.1: Factors affecting defect detection in software products vs. other industrial products

Characteristic Software products Other industrial products

Complexity Usually, very complex product Degree of complexity much

Visibility of product

Nature of development
and production process

allowing for very large number
of operational options

Invisible product, impossible
to detect defects or omissions
by sight (e.g. of a diskette or
CD storing the software)

Opportunities to detect defects
arise in only one phase,
namely product development

lower, allowing at most a few
thousand operational options

Visible product, allowing
effective detection of defects
by sight

Opportunities to detect
defects arise in all phases of
development and production:
Product development
Product production
planning
Manufacturing

m The uniqueness of the software development process

m High complexity, as compared to other industrial products

m Invisibility of the product

m Opportunities to detect defects (“bugs”) are limited to the product

development phase

and the only other targeted guidelines have been prepared for services (ISO
9004-2, “Quality management and quality systems elements: Guidelines for
the services”).

The great complexity as well as invisibility of software, among other
product characteristics, make the development of SQA methodology and its
successful implementation a highly professional challenge.

1.2 The environments for which SQA methods are
developed

The software developed by many individuals and in different situations ful-
fills a variety of needs:

m Pupils and students develop software as part of their education.
m Software amateurs develop software as a hobby.

m Professionals in engineering, economics, management and other fields
develop software to assist them in their work, to perform calculations,
summarize research and survey activities, and so forth.

m Software development professionals (systems analysts and programmers)
develop software products or firmware as a professional career objective
while in the employment of software houses or by software development
and maintenance units (teams, departments, etc.) of large and small
industrial, financial and other organizations.

All those who participate in these activities are required to deal with soft-
ware quality problems (“bugs”). However, quality problems in their most
severe form govern the professional software development.

This book is devoted, therefore, to defining and solving many of the soft-
ware quality assurance (SQA) problems confronted by software development
and maintenance professionals. However, all other types of software devel-
opers can find portions of the book applicable to and recommended for their
own software development efforts.

Let us begin with the examination of the environment of professional soft-
ware development and maintenance (hereafter “the SQA environment”), as it
is a major consideration in the development of SQA methodologies and their
implementation. The main characteristics of this environment are as follows:

(1) Contractual conditions. As a result of the commitments and conditions
defined in the contract between the software developer and the customer,
the activities of software development and maintenance need to cope with:

m A defined list of functional requirements that the developed software
and its maintenance need to fulfill.

m The project budget.

m The project timetable.

padojanap ale spoylaw YOS Y21YM 10j SJUSWUOIIAUD 3Y] T'T ‘ ~

(0]

asuaeyd Ayjenb atemyos syl 1

The managers of software development and maintenance projects need
to invest a considerable amount of effort in the oversight of activities in
order to meet the contract’s requirements.

Subjection to customer—supplier relationship. Throughout the process of
software development and maintenance, activities are under the over-
sight of the customer. The project team has to cooperate continuously
with the customer: to consider his request for changes, to discuss his crit-
icisms about the various aspects of the project, and to get his approval
for changes initiated by the development team. Such relationships do not
usually exist when software is developed by non-software professionals.

Required teamwork. Three factors usually motivate the establishment of
a project team rather than assigning the project to one professional:

m Timetable requirements. In other words, the workload undertaken
during the project period requires the participation of more than one
person if the project is to be completed on time.

m The need for a variety of specializations in order to carry out the project.

m The wish to benefit from professional mutual support and review for
the enhancement of project quality.

Cooperation and coordination with other software teams. The carrying-
out of projects, especially large-scale projects, by more than one team is
a very common event in the software industry. In these cases, coopera-
tion may be required with:

m Other software development teams in the same organization.

m Hardware development teams in the same organization.

m Software and hardware development teams of other suppliers.

m Customer software and hardware development teams that take part
in the project’s development.

An outline of cooperation needs, as seen from the perspective of the
development team, is shown in Figure 1.1.

Interfaces with other software systems. Nowadays, most software sys-
tems include interfaces with other software packages. These interfaces
allow data in electronic form to flow between the software systems, free
from keying in of data processed by the other software systems. One can
identify the following main types of interfaces:

® Input interfaces, where other software systems transmit data to your
software system.

m Output interfaces, where your software system transmits processed
data to other software systems.

® Input and output interfaces to the machine’s control board, as in med-
ical and laboratory control systems, metal processing equipment, etc.

Salary processing software packages provide good examples of typical
input and output interfaces to other software packages — see Figure 1.2.
First let us look at the input interface. In order to calculate salaries, one
needs the employees’ attendance information, as captured by the time

Hardware
development
team

Other
supplier’s
development
team

Software
development
team

Software
development
team

Our software
development
team

Software
development
organization

Other
supplier’s
development
team

Cooperation and
coordination

Other
supplier’s

development
team

Other
supplier’s
development
team

Customer’s
development
team

Figure 1.1: A cooperation and coordination scheme for a software development team of a large-
scale project

clocks placed at the entrance to the office building and processed later
by the attendance control software system. Once a month, this informa-
tion (the attendance lists including the overtime data) is transmitted
electronically from the attendance control system to the salary process-
ing system. This information transmission represents an input interface
for the salary processing software system; at the same time it represents
an output interface to the attendance control system. Now, let us examine
the output interface of our system. One of the outputs of the salary
processing system is the list of “net” salaries, after deduction of the
income tax and other items, payable to the employees. This list, including
the employees’ bank account details, has to be sent to the banks. The
transmission of the list of salary payments is done electronically, repre-
senting an output interface for the salary processing system and an input
interface for the bank’s account system.

O

padojanap ale spoylaw YOS Y21Yym J0j SJUSWUOIIAUS 3yl T'T

[EE
o

asuaeyd Ayjenb atemyos syl 1

Attendance
control
system

Input Interface v Monthly attendance report, including overtime calculations

Salary
processing
system

Output Interface v Money transfers to employees’ bank accounts

Bank
information
system

Figure 1.2: The salary software system — an example of software interfaces

(6) The need to continue carrying out a project despite team member
changes. It is quite common for team members to leave the team during
the project development period, whether owing to promotions to higher
level jobs, a switch in employers, transfers to another city, and so forth.
The team leader then has to replace the departing team member either
by another employee or by a newly recruited employee. No matter how
much effort is invested in training the new team member, “the show
must go on”, which means that the original project contract timetable
will not change.

(7) The need to continue carrying out software maintenance for an extend-
ed period. Customers who develop or purchase a software system expect
to continue utilizing it for a long period, usually for 5-10 years. During
the service period, the need for maintenance will eventually arise. In
most cases, the developer is required to supply these services directly.
Internal “customers”, in cases where the software has been developed
in-house, share the same expectation regarding the software mainte-
nance during the service period of the software system.

The environmental characteristics create a need for intensive and continuous
managerial efforts parallel to the professional efforts that have to be invest-
ed in order to assure the project’s quality, in other words to assure the
project’s success.

A summary of the main characteristics of the SQA environment is shown
in Frame 1.2.

A significant amount of software as well as firmware development is not
carried out subject to formal contracts or formal customer—supplier rela-
tionships, as mentioned in the first two SQA environment characteristics. This
type of activity usually concerns software developed in-house for internal use

m Summary of the main characteristics of SQA environment

Being contracted

Subjection to customer—supplier relationship

Requirement for teamwork

Need for cooperation and coordination with other development teams
Need for interfaces with other software systems

Need to continue carrying out a project while the team changes

N O L W N

Need to continue maintaining the software system for years

or for marketing as software packages and in-house development of firm-
ware. The relationships between the marketing department that initiates and
defines the qualifications of a new product and the respective in-house soft-
ware development department often resemble a contract and customer—
supplier relationship. The same applies to internal requests for a new soft-
ware system or for the upgrading of current software or firmware to be
implemented by the organization’s software department. Actual relation-
ships between the internal “customers” and the development departments
are found to vary greatly when measured by a formal-informal scale. Some
managers claim that the closer the relationships to the formal form, the
greater the prospects for the project’s success.

Summary

(1) The uniqueness of software quality assurance.

The fundamental differences between software products (including firmware) and
other products are caused by the higher product complexity, by the invisibility of
software and by the nature of the product development and production process.
These differences create the need for an SQA methodology and tools for SQA that
will meet the special and different challenges for the development and operation of
quality assurance for software.

(2) The environments for which SQA methods were developed.

The SQA methods and tools discussed in this book are specially aimed at the needs
of professional software development and maintenance, activities where quality
problems appear in their most severe form, and where the most painful losses are
expected. Therefore any method or tool to be applied is subject to the environmen-
tal characteristics of their activities, namely:

Contract conditions and commitments defining the contents and timetable.
The conditions of the customer—supplier relationship, as realized by the need
for consultation with the customer and the acquisition of his approval.

Arewwing ‘ =

[EE
N

asuaeyd Ayjenb atemyos syl 1 ‘

Teamwork requirements.

Need for cooperation and coordination with other software and hardware devel-
opment teams both internally and externally.

Need for interfaces with other software systems.

Need to continue carrying out a project when team members change.

Need to conduct maintenance of the software system for several years.

These environmental characteristics also apply to internal development of software
and firmware, though only informal contract or informal customer—supplier rela-
tionships exist in these cases. These characteristics demand that intensive and
continuous managerial efforts be expended in parallel to the professional efforts
that have to be invested in order to ensure the project’s quality or, in other words,
to assure the project’s success.

Review questions

1.1

1.2

13

There are three major differences between software products and other industrial
products.

(1) Identify and describe the differences.
(2) Discuss the ways in which these differences affect SQA.

Itis claimed that no significant SQA activities are expected to take place during the
phase of production planning for software products.

(1) Discuss this claim.
(2) Compare the required production planning fora new automobile model with the
production planning efforts required for a new release of a software product.

Seven issues characterize the professional software development and mainte-
nance environment.

(1) Identify and describe these characteristics.

(2) Which of these environmental characteristics mainly affect the professional
efforts required for carrying out software development and maintenance proj-
ects? List the characteristics and explain why a professional effort is needed.

(3) Which of these environmental characteristics mainly affect the managerial
efforts required for carrying out software development and maintenance proj-
ects? List the characteristics and explain why such efforts are needed.

Topics for discussion

1.1

1.2

Educational systems are assumed to prepare the students to cope with real-life
conditions. Examine the procedural requirements of a software development proj-
ect or final software project, and determine which of the requirements could be
considered as preparatory to professional life situations as discussed above.

Referring to the seven environmental characteristics of software development and

13

1.4

1.5

1.6

maintenance, consider the characteristics of future software products, discussing
whether the professional and managerial burden of coping with these characteris-
tics in future is expected to be higher or lower when compared with the current
performance of these activities.

The interfaces of a salary processing system are exhibited in Figure 1.2.

(1) Suggest what are the main benefits of applying computerized interfaces
instead of transferring printouts.

(2) Give two additional examples where input interfaces are applied.

(3) Give two additional examples where output interfaces are applied.

(4) Suggest additional situations where the use of input and output interfaces is
not applied and should be recommended.

(5) Would you advise all information transfers from one organization to another
be performed by computerized interface? Discuss the reasons behind your
answer.

The need to carry out work by a team demands additional investment in coordina-
tion of the team members. Discuss whether these managerial efforts could be
saved if the work were performed as a “one-man job”.

It is clear that a software development project carried out by a software house for
a specific customer is carried out under content and timetable obligations, and is
subject to the customer—supplier relationship.

(1) Discuss whether a customer—supplier relationship is expected when the soft-
ware developed is to be sold to the public as a software package.

(2) Discuss whether a customer—supplier relationship is expected when software
is developed for in-house use, as in the case where a software development
department develops an inventory program for the company’s warehouses.

(3) Some managers claim that the closer relationships are to a formal pattern, the
greater the prospects are for the project’s success. Discuss whether imple-
menting customer—supplier relationships in the situations mentioned in (1)
and (2) are a benefit for the company (referring to the internal customer and
supplier) or an unnecessary burden to the development team.

It has been claimed that environmental characteristics create the need for inten-
sive and continuous managerial efforts parallel to the professional efforts that
have to be invested in order to ensure the project’s quality or, in other words, to
assure the project’s success. Discuss the reasons behind this claim, including an
analysis of the managerial effort created by each of the SQA environmental char-
acteristics.

[EE
w

uoIssnasIp 104 soidoy ‘

What is software quality?

2.1 What is software? 15
2.2 Software errors, faults and failures 16
2.3 Classification of the causes of software errors 19
2.4 Software quality — definition 24
2.5 Software quality assurance - definition and objectives 25
2.5.1 Software quality assurance definitions 26
2.5.2 Software quality assurance vs. software quality control 28
2.5.3 The objectives of SQA activities 29
2.6 Software quality assurance and software engineering 30
Summary 30
Selected bibliography 32
Review questions 32
Topics for discussion 33

Before we proceed to study the components of the SQA system, the basic
concepts and objectives of software quality assurance should be discussed.
Later, it will be possible to examine how and to what extent various method-
ologies and tools conform to these concepts and objectives.

After completing this chapter, you will be able to:

Define software, software quality and software quality assurance.
Distinguish between software errors, software faults and software failures.
Identify the various causes of software errors.

Explain the objectives of software quality assurance activities.
Distinguish and explain the difference between software quality assur-
ance and quality control.

Explain the relationship between software quality assurance and software
engineering.

2.1 What is software?

Intuitively, when thinking about software, we imagine an accumulation of
programming language instructions and statements or development tool
instructions, that together form a program or software package. This pro-
gram or software package is usually referred to as the “code”. Is it enough
to take care of the code in order to assure the quality of the services provid-
ed by the software program? Are additional elements necessary to assure
their quality and thus assure the operational success of the software system?

As a preliminary answer, let us review the IEEE definition for “software”
(IEEE, 1991), shown in Frame 2.1.

m Software — IEEE definition

Software is:
Computer programs, procedures, and possibly associated documentation and
data pertaining to the operation of a computer system.

The IEEE definition of software, which is almost identical to the ISO defini-
tion (ISO, 1997, Sec. 3.11 and ISO/IEC 9000-3 Sec. 3.14), lists the following
four components of software:

m Computer programs (the “code”)

m Procedures

B Documentation

m Data necessary for operating the software system.

All four components are needed in order to assure the quality of the software
development process and the coming years of maintenance services for the
following reasons:

m Computer programs (the “code”) are needed because, obviously, they
activate the computer to perform the required applications.

B Procedures are required, to define the order and schedule in which the pro-
grams are performed, the method employed, and the person responsible for
performing the activities that are necessary for applying the software.

m Various types of documentation are needed for developers, users and
maintenance personnel. The development documentation (the require-
ments report, design reports, program descriptions, etc.) allows efficient
cooperation and coordination among development team members and
efficient reviews and inspections of the design and programming prod-
ucts. The user’s documentation (the “user’s manual”, etc.) provides a
description of the available applications and the appropriate method for

[EE
Ul

¢9lemljos st leymWm 1°¢

[EE
(o)}

¢Aenb aiemyos si1eym ¢

their use. The maintenance documentation (the “programmer’s software
manual”, etc.) provides the maintenance team with all the required infor-
mation about the code, and the structure and tasks of each software
module. This information is used when trying to locate causes of software
failures (“bugs”) or to change or add to existing software.

®m Data including parameters, codes and name lists that adapt the software
to the needs of the specific user are necessary for operating the software.
Another type of essential data is the standard test data, used to ascertain
that no undesirable changes in the code or software data have occurred,
and what kind of software malfunctioning can be expected.

To sum up, software quality assurance always includes, in addition to code
quality, the quality of the procedures, the documentation and the necessary
software data.

2.2 Software errors, faults and failures

m “We’ve used the Simplex HR software in our Human Resources Department
for about three years and we have never had a software failure.”

m “I started to use Simplex HR two months ago; we had so many failures
that we are considering replacing the software package.”

B “We have been using the same software package for almost four years.
We were very satisfied throughout the period until the last few months,
when we suddenly faced several severe failures. The Support Center of
the software house from which we bought the package claims that they
have never encountered failures of the type we experienced even though
they serve about 700 customers who utilize Simplex HR.”

All these views, expressed by participants in a human resources management
conference, refer to the same software package. Is it possible for such a vari-
ation in users’ experience with failure to appear with the same software
package? Can a software package that successfully served an organization for
a long period “suddenly” change its nature (quality) and become “bugged”?

The answer to these questions is yes, and it is rooted in the characteris-
tics of software.

The origin of software failures lies in a software error made by a pro-
grammer. An error can be a grammatical error in one or more of the code lines,
or a logical error in carrying out one or more of the client’s requirements.

However, not all software errors become software faults. In other words,
in some cases, the software error can cause improper functioning of the soft-
ware in general or in a specific application. In many other cases, erroneous
code lines will not affect the functionality of the software as a whole; in a
part of these cases, the fault will be corrected or “neutralized” by subsequent
code lines.

We are interested mainly in the software failures that disrupt our use of
the software. This requires us to examine the relationship between software
faults and software failures. Do all software faults end with software fail-
ures? Not necessarily: a software fault becomes a software failure only when
it is “activated” — when the software user tries to apply the specific, faulty
application. In many situations, a software fault is never activated due to the
user’s lack of interest in the specific application or to the fact that the com-
bination of conditions necessary to activate the fault never occurs.

Example 1: The “Pharm-Plus” software package
“Pharm-Plus”, a software package developed for the operations required of
a pharmacy chain, included several software faults, such as the following:

(a) The chain introduced a software requirement to avoid the current sale
of goods to customers whose total debts will exceed $200 upon com-
pletion of the current sale. Unfortunately, the programmer erroneously
put the limit at $500, a clear software fault. However, a software failure
never occurred as the chain’s pharmacies do not offer credit to their cus-
tomers, that is, sales are cash sales or credit card sales.

(b) Another requirement introduced was the identification of “super cus-
tomers”. These were defined as those customers of the pharmacy who
made a purchase at least once a month, the average value of that pur-
chase made in the last M months (e.g., 12 months) being more than N
times (e.g., five times) the value of the average customer’s purchase at the
pharmacy. It was required that once “super customers” reached the
cashier, they would be automatically identified by the cash register. (The
customers could then be treated accordingly, by receiving a special dis-
count or gift, for example.) The software fault (caused by the system
analyst) was that “super customers” could be identified solely by the
value of their current purchase. In other words, customers whose regu-
lar purchases consisted of only one or two low-cost items could
mistakenly be identified as “super customers”.

At this particular chain, this software fault never turned into a software fail-
ure because its pharmacies, which allow for cash sales or credit card sales
only, were unconcerned about identifying their customers, and were thus
uninterested in applying the “super customer” option. This was the case for
several years until the management of a new pharmacy decided to promote
sales by developing customer—pharmacy relationships, and chose to imple-
ment the “super customer” option offered by “Pharm-Plus”. The pharmacy
defined a “super customer” to be a person whose average purchase in the
last three months (M = 3) was over 10 times (N = 10) the value of the aver-
age purchase made in the pharmacy. In order to execute their marketing
strategy, management began to distribute a pharmacy ID card to their cus-
tomers, who were asked to show the card to the cashier. The cashiers were

[EE
~

Sainjie) pue s)Nej ‘siold alemyos 7'z

[EE
oo

¢Aenb aiemyos si1eym ¢

instructed to give special treatment to customers who were identified by the
cash register as “super customers”. It was soon observed that customers who
entered the pharmacy for the first time as well as those who were recognized
as frequent purchasers of only one or two items were identified as “super
customers”. In this case, the severe software fault turned into a severe soft-
ware failure. Obviously, circumstances could have hidden this serious case of
a severe software fault forever.

Example 2: The “Meteoro-X” meteorological equipment firmware

The software requirements for “Meteoro-X” meteorological equipment
firmware (software embedded in the product) were meant to block the
equipment’s operation when its internal temperature rose above 60°C. A
programmer error resulted in a software fault when the temperature limit
was coded as 160°. This fault could cause damage when the equipment was
subjected to temperatures higher than 60°. Because the equipment was used
only in those coastal areas where temperatures never exceeded 60°, the soft-
ware fault never turned into a software failure.

These examples should adequately make the point that only a portion of the
software faults, and in some cases only a small portion of them, will turn
into software failures in either the early or later stages of the software’s appli-
cation. Other software faults will remain hidden, invisible to the software
users, yet capable of being activated when the situation changes.

Figure 2.1 illustrates the relationships between software errors, faults
and failures. In this figure, the development process yields 17 software
errors, only eight of which become software faults. Of these faults, only three
turnout to be software failures.

Importantly, developers and users have different views of the software
product regarding its internal defects. While developers are interested in soft-
ware errors and faults, their elimination, and the ways to prevent their
generation, software users are worried about software failures.

Software development process

ii iiii ii TR
TR TN I

> > *

> software error O software fault * software failure

Figure 2.1: Software errors, sotware faults and software failures

2.3 Classification of the causes of software errors

As software errors are the cause of poor software quality, it is important to
investigate the causes of these errors in order to prevent them. A software
error can be “code error”, a “procedure error”, a “documentation error”, or
a “software data error”. It should be emphasized that the causes of all these
errors are human, made by systems analysts, programmers, software testers,
documentation experts, managers and sometimes clients and their represen-
tatives. Even in rare cases where software errors may be caused by the
development environment (interpreters, wizards, automatic software gener-
ators, etc.), it is reasonable to claim that it is human error that caused the
failure of the development environment tool. The causes of software errors
can be further classified as follows according to the stages of the software
development process in which they occur.

(1) Faulty definition of requirements

The faulty definition of requirements, usually prepared by the client, is
one of the main causes of software errors. The most common errors of this
type are:

m Erroneous definition of requirements.
m Absence of vital requirements.

m Incomplete definition of requirements. For instance, one of the require-
ments of a municipality’s local tax software system refers to discounts
granted to various segments of the population: senior citizens, parents of
large families, and so forth. Unfortunately, a discount granted to students
was not included in the requirements document.

m Inclusion of unnecessary requirements, functions that are not expected to
be needed in the near future.

(2) Client—developer communication failures

Misunderstandings resulting from defective client-developer communication
are additional causes for the errors that prevail in the early stages of the
development process:

® Misunderstanding of the client’s instructions as stated in the requirement
document.

B Misunderstanding of the client’s requirements changes presented to the
developer in written form during the development period.

® Misunderstanding of the client’s requirements changes presented orally to
the developer during the development period.

B Misunderstanding of the client’s responses to the design problems pre-
sented by the developer.

[EE
\O

S10119 9JBM}JOS JO S9SNBI Y] JO UOIIRIISSR]) €°C

N
(@]

¢Aenb aiemyos si1eym ¢

Lack of attention to client messages referring to requirements changes
and to client responses to questions raised by the developer on the part of
the developer.

(3) Deliberate deviations from software requirements

In several circumstances, developers may deliberately deviate from the doc-
umented requirements, actions that often cause software errors. The errors
in these cases are byproducts of the changes. The most common situations of
deliberate deviation are:

The developer reuses software modules taken from an earlier project
without sufficient analysis of the changes and adaptations needed to cor-
rectly fulfill all the new requirements.

Due to time or budget pressures, the developer decides to omit part of the
required functions in an attempt to cope with these pressures.

Developer-initiated, unapproved improvements to the software, intro-
duced without the client’s approval, frequently disregard requirements
that seem minor to the developer. Such “minor” changes may, eventual-
ly, cause software errors.

(4) Logical design errors

Software errors can enter the system when the professionals who design the
system — systems architects, software engineers, analysts, etc. — formulate the
software requirements. Typical errors include:

Definitions that represent software requirements by means of erroneous
algorithms.

Process definitions that contain sequencing errors. For example, the soft-
ware requirements for a firm’s debt-collection system define the
debt-collection process as follows. Once a client does not pay his debts,
even after receiving three successive notification letters, the details are to
be reported to the sales department manager who will decide whether to
proceed to the next stage, referral of the client to the legal department.
The systems analyst defined the process incorrectly by stating that after
sending three successive letters followed by no receipt of payment, the
firm would include the name of the client on a list of clients to be han-
dled by the legal department. The logical error was caused by the
analyst’s erroneous omission of the sales department phase within the
debt-collection process.

Erroneous definition of boundary conditions. For example, the client’s
requirements stated that a special discount will be granted to customers
who make purchases more than three times in the same month. The ana-
lyst erroneously defined the software process to state that the discount
would be granted to those who make purchases three times or more in
the same month.

® Omission of required software system states. For example, a real-time
computerized apparatus is required to react according to a combination
of temperatures and pressures. The analyst did not define the needed
reaction when the temperature is over 120°C and the pressure is between
6 and 8 atmospheres.

= Omission of definitions concerning reactions to illegal operation of the
software system. For example, in a computerized theater ticketing system
operated by the customer with no human operator interface, the software
system is required to limit the sales to 10 tickets per customer.
Accordingly, any request for the purchase of more than 10 tickets is “ille-
gal”. In his design, the analyst included a message stating that sales are
limited to 10 tickets per customer, but did not define the system’s reaction
to the case where a customer (who might not have listened carefully to
the message) keys in a number higher than 10. When performing the ille-
gal request, a system “crash” is to be expected as no computerized
reaction was defined for this illegal operation.

(5) Coding errors

A broad range of reasons cause programmers to make coding errors. These
include misunderstanding the design documentation, linguistic errors in the
programming languages, errors in the application of CASE and other devel-
opment tools, errors in data selection, and so forth.

(6) Non-compliance with documentation and coding instructions
Almost every development unit has its own documentation and coding stan-
dards that define the content, order and format of the documents, and the
code created by team members. To support this requirement, the unit devel-
ops and publicizes its templates and coding instructions. Members of the
development team or unit are required to comply with these requirements.

One may ask why non-compliance with these instructions should cause
software errors. The quality risks of non-compliance result from the special
characteristics of the software development environment, discussed in
Chapter 1. Even if the quality of the “non-complying” software is accept-
able, future handling of this software (by the development and/or
maintenance teams) is expected to increase the rate of errors:

B Team members who need to coordinate their own codes with code mod-
ules developed by “non-complying” team members can be expected to
encounter more than the usual number of difficulties when trying to
understand the software developed by the other team members.

®m Individuals replacing the “non-complying” team member (who has
retired or been promoted) will find it difficult to fully understand his or
her work.

m The design review team will find it more difficult to review a design pre-
pared by a non-complying team.

N
-

S10119 9JBM}JOS JO S9SNBI Y] JO UOIIRIISSR]) €°C

iAenb artemyos siieym ¢ ‘ NS

m The test team will find it more difficult to test the module; consequently,
their efficiency is expected to be lower, leaving more errors undetected.
Moreover, team members required to correct the detected errors can be
expected to encounter greater difficulties when doing so. They may leave
some errors only partially corrected, and even introduce new errors as a
result of their incomplete grasp of the other team members” work.

Maintenance teams required to contend with the “bugs” detected by
users and to change or add to the existing software will face difficulties
when trying to understand the software and its documentation. This is
expected to result in an excessive number of errors and the expenditure
of an excessive amount of maintenance effort.

(7) Shortcomings of the testing process

Shortcomings of the testing process affect the error rate by leaving a greater
number of errors undetected or uncorrected. These shortcomings result from
the following causes:

m Incomplete test plans leave untreated portions of the software or the
application functions and states of the system.

m Failures to document and report detected errors and faults.

m Failure to promptly correct detected software faults as a result of inap-
propriate indications of the reasons for the fault.

m Incomplete correction of detected errors due to negligence or time pressures.

(8) Procedure errors

Procedures direct the user with respect to the activities required at each
step of the process. They are of special importance in complex software
systems where the processing is conducted in several steps, each of which
may feed a variety of types of data and allow for examination of the inter-
mediate results.

For example, “Eiffel”, a chain of construction materials stores, has
decided to grant a 5% discount to customers, who are billed once a month.
The discount is offered to customers whose total purchases in the last
12 months exceed $1 million. Nevertheless, Eiffel’s management has decid-
ed to withdraw this discount from customers who returned goods valued in
excess of 10% of their purchases during the last three months. The chain’s
billing system is decentralized, so that every store processes the monthly
invoices independently. Table 2.1 presents a comparison of correct and
incorrect procedures regarding application of the discount.

(9) Documentation errors
The documentation errors that trouble the development and maintenance
teams are errors in the design documents and in the documentation

Table 2.1: “Eiffel” billing procedures — correct and incorrect discount procedures
Correct procedure Incorrect procedure

At the beginning of each month, Eiffel’s central At the end of each year, Eiffel’s central

information processing department: information processing department:

(1) Collects the sales data and returned (1) Collects the previous year’s sales data
goods data for the previous month for for each of the customers from all the
each of its customers from all the stores in chain’s stores.
the chain. (2) Calculates the cumulative purchases

(2) Calculates the cumulative purchases of of each customer for the previous year
each customer for the last 12 months in in all the chain’s stores.
all the chain’s stores. (3) Prepares a list of all customers whose

(3) Calculates the percentage of returned purchases exceed $1 million and
goods for the last 3 months of each distributes it to all the stores.
customer in all the chain’s stores.

(4) Prepares a list of all the customers who At the end of the each quarter, the
deserve the 5% discount and distributes it individual store’s information processing
to each store before the end of the month. unit:

At the beginning of the month the individual (1) Calculates the percentage of goods

store’s information processing unit: returned during the last quarter for

each customer.
(1) Processes the monthly purchases for each (2) Prepares a list of all customers whose

of the customers. returned goods for the last quarter

(2) Calculates the discount according to the exceed 10% of that quarter’s purchase.
updated list that was received at the end
of the previous month. At the beginning of the month, the store’s

information processing unit:

(1) Processes the monthly purchases for
each of the customers.

(2) Calculates the discount according to the
last year’s purchase data in all the
stores, and according to the store’s
records of returns in the last quarter.

integrated into the body of the software. These errors can cause addi-
tional errors in further stages of development and during maintenance.

Another type of documentation error, one that affects mainly the users,
is an error in the user manuals and in the “help” displays incorporated in the
software. Typical errors of this type are:

m Omission of software functions.

m Errors in the explanations and instructions given to users, resulting in
“dead ends” or incorrect applications.

m Listing of non-existing software functions, that is, functions planned in
the early stages of development but later dropped, and functions that
were active in previous versions of the software but cancelled in the cur-
rent version.

N
w

S10119 91BM}JOS JO S9SNBI Y] JO UOIIRIISSR]) €°C

¢Aenb aiemyos si1eym ¢ ‘ N

Frame 2.2 summarizes the causes of software errors.

m The nine causes of software errors

Faulty requirements definition

Client—developer communication failures

Deliberate deviations from software requirements

Logical design errors

Coding errors

Non-compliance with documentation and coding instructions
Shortcomings of the testing process

Procedure errors

ECEECOIN O R

Documentation errors

2.4 Software quality — definition

Our introduction to software components and to errors and their causes, and
our knowledge that errors harm the quality of the software, have prepared
us to define our target — software quality.

The definition suggested by IEEE (IEEE, 1991) shown in Frame 2.3 is
the definition we have chosen to apply in this text.

m Software quality — IEEE definition

Software quality is:
1. The degree to which a system, component, or process meets specified
requirements.

2. The degree to which a system, component, or process meets customer or
user needs or expectations.

Frame 2.3 offers two alternative definitions of software quality, held by
the founders of modern quality assurance, Philip B. Crosby and Joseph M.
Juran. Each definition reflects a different conception of software quality:

B “Quality means conformance to requirements” (Crosby, 1979).

® “(1) Quality consists of those product features which meet the needs of
customers and thereby provide product satisfaction.
(2) Quality consists of freedom from deficiencies” (Juran, 1988).

Crosby’s definition of software quality refers to the degree to which the written
software meets the specifications prepared by the customer and his professional

team. This means that errors included in the software specification are not
considered and do not reduce the software quality, a characteristic that can
be considered the approach’s deficiency.

Juran’s definition is aimed at achieving customer satisfaction, and views
the fulfillment of customers’ real needs as the true goal of software quality.
Adopting the second definition demands that the developer invest significant
professional efforts in examining and correcting, if necessary, the customer’s
requirements specifications. The main deficiency of this definition is the fact
that it frees the customer of any professional responsibility for the accuracy
and completeness of the software specifications. Also, following this con-
ception, the customer is allowed to express his real needs, which may differ
from the project specifications on one or more issues, at a very late stage of
the project, even at the final stage. As a result, difficulties are expected to
arise during the development process of the project, especially when attempt-
ing to prove how well the program fulfills the user’s needs.

Additional aspects of software quality are included in the definition sug-
gested by Pressman (Pressman, 2000, sec. 8.3), shown in Frame 2.4.

m Software quality — Pressman’s definition

Software quality is defined as:

Conformance to explicitly stated functional and performance requirements,
explicitly documented development standards, and implicit characteristics
that are expected of all professionally developed software.

Pressman’s definition suggests three requirements for quality assurance
that are to be met by the developer:

m Specific functional requirements, which refer mainly to the outputs of the
software system.

m The software quality standards mentioned in the contract.

® Good Software Engineering Practices (GSEP), reflecting state-of-the-art
professional practices, to be met by the developer even though not explic-
itly mentioned in the contract.

In effect, Pressman’s definition provides operative directions for testing the
degree to which the requirements are met.

2.5 Software quality assurance — definition and objectives

In this section we discuss:

m The alternative SQA definitions

m Software quality assurance compared with software quality control
m The objectives of SQA.

S9AI129[q0 pue uoljulsp — ddueinsse Ajjenb alemyos g°¢ ‘ N

¢Aenb aiemyos si1eym ¢ ‘ N

2.5.1 Software quality assurance definitions

One of the most commonly used definitions of software quality assurance
(SQA) is offered by the IEEE Glossary (IEEE, 1991), cited in Frame 2.5.

m Software quality assurance — The IEEE definition

Software quality assurance is:

1. A planned and systematic pattern of all actions necessary to provide

adequate confidence that an item or product conforms to established
technical requirements.

. A set of activities designed to evaluate the process by which the products

are developed or manufactured. Contrast with quality control.

This definition may be characterized in the following:

Plan and implement systematically. SQA is based on planning and the
application of a variety of actions that are integrated into all the stages of
the software development process. This is done in order to substantiate
the client’s confidence that the software product will meet all the techni-
cal requirements.

Refer to the software development process.

Refer to the specifications of the technical requirements.

Despite its emphasis on planning and systematic implementation, the IEEE
definition restrains the scope of SQA in several directions, excluding main-
tenance and timetable and budget issues. This author adopts a broader
conception of SQA that, of course, affects its definition. A broader defini-
tion, though placing additional burdens on the SQA function, is expected to
yield better results and greater customer satisfaction. The main deviations
from the IEEE definition are:

SQA should not be limited to the development process. Instead, it should
be extended to cover the long years of service subsequent to product
delivery. Adding issues directly related to the software product introduces
quality issues that integrate software maintenance functions into the
overall conception of SQA.

SQA actions should not be limited to the technical aspects of the func-
tional requirements, but should include also activities that deal with
scheduling and the budget. The reasoning behind this expansion in scope
is the close relationship between timetable or budget failure and the meet-
ing of functional technical requirements. Very often, when projects are
under severe time constraints, professionally “dangerous” changes that
can seriously harm the prospects of meeting the functional requirements
are made in the project schedule. Similar undesirable results can be expect-
ed with projects that are under budgetary constraints and unable to cope
with the inadequate resources allocated to the project and its maintenance.

The resulting expanded SQA definition is shown in Frame 2.6.

m SQA - expanded definition

Software quality assurance is:

A systematic, planned set of actions necessary to provide adequate
confidence that the software development process or the maintenance
process of a software system product conforms to established functional
technical requirements as well as with the managerial requirements of keeping
the schedule and operating within the budgetary confines.

The expanded SQA definition corresponds strongly with the concepts at
the foundation of the ISO 9000 standards regarding SQA (see the various
requirements of ISO 9000-3, 1997). The expanded definition also corre-
sponds to the main outlines of the Capacity Maturity Model (CMM) for
software (Paulk er al., 1993; Tingey, 1997).

Table 2.2 compares elements of the expanded SQA definition with:

m The IEEE SQA definition
m The relevant ISO 9000-3 sections
m CMM requirements.

This book adopts the expanded definition of SQA, which will serve as the basis
for the inclusion and evaluation of various components of the SQA system.

Table 2.2 The expanded SQA definition — comparisons with other versions

Relevant SEI-CMM
requirements

No. SQA expanded
definition

IEEE SQA Relevant sections
definition from ISO 9000-3

1 Systematic, planned +
actions are required

Management

responsibilities (4.1)
Quality system (4.2)
Contract review (4.3)

Software quality
management
Requirement management
Software project planning
Software tracking and
oversight

2 Deals with the +
process of software
development

Contract review (4.3) Requirement management
Design control (4.4) Software project planning
Control of customer-supplied Software tracking and

product (4.7) oversight

Process control (4.9) Software configuration

Inspection and testing (4.10) management

Control of non-conforming Software product

product (4.13) engineering

Control of quality records Peer review

(4.16) Software subcontractor

Statistical techniques (4.20) management
Quantitative process
management

Software quality
management

S9AI129[q0 pue uoljulep — ddueinsse Ajjenb alemyos g°¢ ‘ N

N
(0]

¢Aenb aiemyos si1eym ¢ ‘

Table 2.2 Continued

No. SQA expanded IEEE SQA Relevant sections Relevant SEI-CMM
definition definition from 1SO 9000-3 requirements
3 Deals with software Contract review — Requirement management
maintenance management concerns Software project planning
(re. the product) (4.3.20) Software tracking and
Process control (4.9) oversight
Servicing (4.19) Software product

Statistical techniques (4.20) engineering
Quantitative process

management
Software quality
management
4 Deals with + Contract review (4.3) Requirement management
functional technical Design control (4.4) Software project planning
requirements Control of customer-supplied Software tracking and
product (4.7) oversight

Inspection and testing (4.10) Software configuration
Control of non-conforming ~ management
product (4.13) Software product
engineering
Peer reviews
Software subcontractor

management
5 Deals with Contract review — Requirement management
scheduling management concerns Software project planning
requirements (4.3.20) Software tracking and
Identifying the schedule oversight
(4.4.29)
Suppliers’ review of
progress of software
development (4.4.3)
6 Deals with Identifying the schedule Requirement management
budgetary controls (4.4.29) Software project planning
Software tracking and
oversight

2.5.2 Software quality assurance vs. software quality control

Two phrases are constantly repeated within the context of software quality:

“Quality control” and “quality assurance”. Are they synonymous? How are

they related? According to the IEEE software quality assurance definition (see

Frame 2.5), “quality control” is to be contrasted with “quality assurance”.
These two terms represent separate and distinct concepts:

® Quality control is defined as “a set of activities designed to evaluate the
quality of a developed or manufactured product” (IEEE, 1991); in other
words, activities whose main objective is the withholding of any product
that does not qualify. Accordingly, quality control inspection and other

activities take place as the development or manufacturing of the product
is completed yet before the product is shipped to the client.

m The main objective of quality assurance is to minimize the cost of guar-
anteeing quality by a variety of activities performed throughout the
development and manufacturing processes/stages. These activities prevent
the causes of errors, and detect and correct them early in the development
process. As a result, quality assurance activities substantially reduce the
rate of products that do not qualify for shipment and, at the same time,
reduce the costs of guaranteeing quality in most cases.

In sum:

(1) Quality control and quality assurance activities serve different objectives.

(2) Quality control activities are only a part of the total range of quality
assurance activities.

2.5.3 The objectives of SQA activities

The objectives of SQA activities refer to the functional, managerial and eco-
nomic aspects of software development and software maintenance. These
objectives are listed in Frame 2.7.

The objectives of SQA activities

Software development (process-oriented):

1. Assuring an acceptable level of confidence that the software will conform
to functional technical requirements.

2. Assuring an acceptable level of confidence that the software will conform
to managerial scheduling and budgetary requirements.

3. Initiating and managing of activities for the improvement and greater
efficiency of software development and SQA activities. This means
improving the prospects that the functional and managerial requirements
will be achieved while reducing the costs of carrying out the software
development and SQA activities.

Software maintenance (product-oriented):

1. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to the functional technical requirements.

2. Assuring with an acceptable level of confidence that the software
maintenance activities will conform to managerial scheduling and
budgetary requirements.

3. Initiating and managing activities to improve and increase the efficiency of
software maintenance and SQA activities. This involves improving the prospects
of achieving functional and managerial requirements while reducing costs.

S9AI129[q0 pue uoljulep — ddueinsse Ajjenb alemyos g°¢ ‘ 3

¢Anenb atemyos sieym ¢ ‘ 3

2.6 Software quality assurance and software engineering
According to the IEEE (1991), software engineering is defined as follows:

(1) The application of a systematic, disciplined, quantifiable approach to
the development, operation and maintenance of software; that is, the
application of engineering to software.

(2) The study of approaches as in (1).

The characteristics of software engineering, especially the systematic, disci-
plined and quantitative approach at its core, make the software engineering
environment a good infrastructure for achieving SQA objectives. The
methodologies and tools that are applied by software engineering determine,
to a considerable extent, the level of quality to be expected from the software
process and the maintenance services. Therefore, it is desirable that when
making decisions about software methodologies and tools, SQA considera-
tions be added to the efficiency and economy considerations associated with
software engineering.

It is commonly accepted that cooperation between software engineers
and the SQA team is the appropriate way to achieve efficient and economic
development and maintenance activities that, at the same time, assure the
quality of the product of these activities.

Summary

(1) Define software, software quality and software quality assurance.

Software, from the SQA perspective, is the combination of computer programs (the
“code”), procedures, documentation, and data necessary for operating the software
system. The combination of all four components is needed to assure the quality of
the development process as well as the ensuing long years of maintenance.
Software quality, according to Pressman’s definition, is the degree of confor-
mance to specific functional requirements, specified software quality
standards, and Good Software Engineering Practices (GSEP).

Software quality assurance: this book adopts an expanded definition of the
widely accepted |IEEE definition of software quality assurance. According to the
expanded definition, software quality assurance is the systematic, planned set
of actions necessary to provide adequate confidence that a software develop-
ment or maintenance process conforms to established functional technical
requirements as well as the managerial requirements of keeping to schedules
and operating within the budget.

(2) Distinguish between software errors, software faults and software failures.

Software errors are sections of the code that are partially or totally incorrect as
a result of a grammatical, logical or other mistake made by a systems analyst, a
programmer, or another member of the software development team.

Software faults are software errors that cause the incorrect functioning of the
software during a specific application.

Software faults become software failures only when they are “activated”, that
is, when a user tries to apply the specific software section that is faulty. Thus,
the root of any software failure is a software error.

(3) Identify the various causes of software errors.

There are nine causes of software errors: faulty requirements definition, client—
developer communication failures, deliberate deviations from software require-
ments, logical design errors, coding errors, non-compliance with documentation
and coding instructions, shortcomings of the testing process, procedure errors, and
documentation errors. It should be emphasized that all causes of error are human,
the work of systems analysts, programmers, software testers, documentation
experts, and even clients and their representatives.

(4) Explain the objectives of software quality assurance activities.
The objectives of SQA activities for software development and maintenance are:

(1) Assuring, with acceptable levels of confidence, conformance to functional tech-
nical requirements.

(2) Assuring, with acceptable levels of confidence, conformance to managerial
requirements of scheduling and budgets.

(3) Initiating and managing activities for the improvement and greater efficiency of
software development and SQA activities.

(5) Distinguish and explain the differences between software quality assurance and
quality control.

Quality control is a set of activities carried out with the main objective of withhold-
ing products from shipment if they do not qualify. In contrast, quality assurance is
meant to minimize the costs of quality by introducing a variety of activities through-
out the development and maintenance process in order to prevent the causes of
errors, detect them, and correct them in the early stages of development. As a
result, quality assurance substantially reduces the rates of non-qualifying products.

(6) Explain the relationship between software quality assurance and software engineering.

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software. The charac-
teristics of software engineering, especially its systematic, disciplined and
quantitative approach, make software engineering a good environment for achiev-
ing SQA objectives. It is commonly accepted that cooperation between software
engineers and the SQA team is the way to achieve efficient and economic develop-
ment and maintenance activities that, at the same time, assure the quality of the
products of these activities.

Arewwing ‘ w

iAenb artemyos siieym ¢ ‘ N

Selected bibliography

o =

Crosby, P. B. (1979) Quality is Free, McGraw-Hill, New York.

IEEE (1991) “IEEE Std 610.12-1990 - IEEE Standard Glossary of Software
Engineering Terminology”, Corrected Edition, February 1991, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards — Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn. International Organization for Standardization (ISO), Geneva.

ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering —
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

Juran, J. M. (1988) Juran’s Quality Control Handbook, 4th edn, J. M. Juran,
Editor in Chief; I. M. Gryne, Associate Editor. McGraw-Hill, New York.
Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V. (1993) Capability
Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, ESC-TR-93-
177, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
Pressman, R. S. (2000) Software Engineering — A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.
Tingey, M. O. (1997) Comparing ISO 9000, Malcolm Baldridge, and the SEI
CMM for Software. A Reference and Selection Guide, Prentice Hall, Upper
Saddle River, NJ.

Review questions

2.1

2.2

2.3

2.4

A software system comprises four main components.

(1) List the four components of a software system.

(2) How does the quality of each component contribute to the quality of the
developed software?

(3) How does the quality of each component contribute to the quality of the soft-
ware maintenance?

(1) Define software error, software fault and software failure. Explain the differ-
ences between these undesirable software statuses.

(2) Suggest a situation where a new type of software failure (“bug”) appears in a
software package that has been serving 300 clients for the first time six years
since the software package was first sold to the public.

(1) List and briefly describe the various causes of software errors.

(2) Classify the causes of error according to the groups responsible for the error:
the client’s staff, the systems analysts, the programmers, the testing staff — or
is it a shared responsibility belonging to more than one group?

What are the differences between the IEEE definition of SQA and the expanded
definition used in this book?

2.5 Mr Johnson is a customer of the Adams and Lincoln stores belonging to the
Eiffel chain (see Section 2.3). His purchase records and returned goods records are

as follows:
Adams Store Lincoln Store
Purchases Returned goods Purchases Returned goods
Month ($000) ($000) ($000) ($000)
Jan 2000 100 20 60 5
Feb 2000 120 10 40 -
Mar 2000 10 - 30 10
Apr 2000 80 5 50 10
May 2000 30 - 20 -
Jun 2000 60 20 30 10
Jul 2000 10 N 40 -
Aug 2000 60 5 10 -
Sep 2000 20 - 20 5
Oct 2000 20 5 40 10
Nov 2000 40 - 20 -
Dec 2000 20 - 60 5
Jan 2001 30 10 40 -
Feb 2001 60 5 30 5
Mar 2001 20 5 40 10

(1) Find for which of the months — Jan. 2001, Feb. 2001 or Mar. 2001 — does
Mr Johnson qualify for the 5% discount? What is the sum discounted?
Calculate according to the correct procedure.

(2) According to the erroneous procedures, find for which of the months — Jan.
2001, Feb. 2001 or Mar. 2001 - does Mr Johnson qualify for the 5% discount
in the Adams store and in the Lincoln store? What is the sum discounted?

2.6 According to the IEEE definition of SQA, quality control (QC) is not equated with
quality assurance (QA).

(1) In what respects does QC vary from QA?
(2) Why can QC be considered part of QA?

2.7 Examine the definitions of SQA and the objectives of SQA activities.

(1) Isthere a correspondence between the two definitions?
(2) Ifyes, show how the objectives of SQA activities aim at the implementation of
the SQA concepts.

Topics for discussion

2.1 A programmer claims that because only a small proportion of software errors turn
into software failures, it is unnecessary to make substantial investments in the pre-
vention and elimination of software errors.

(1) Do you agree with this view?
(2) Discuss the outcome of accepting these views.

uoIssnasIp 104 soidoy ‘ "t

¢Aenb aiemyos si1eym ¢ ‘ N

2.2

N
W

2.4

2.5

George Wise is an exceptional programmer. Testing his software modules reveals
very few errors, far fewer than the team’s average. He keeps his schedule promptly,
and only rarely is he late in completing his task. He always finds original ways to
solve programming difficulties, and uses an original, individual version of the coding
style. He dislikes preparing the required documentation, and rarely does it according
to the team’s templates.

A day after completing a challenging task, on time, he was called to the office
of the department’s chief software engineer. Instead of being praised for his
accomplishments (as he expected), he was warned by the company’s chief soft-
ware engineer that he would be fired unless he began to fully comply with the
team’s coding and documentation instructions.

(1) Doyou agree with the position taken by the department’s chief software engineer?
(2) Ifyes, could you suggest why his or her position was so decisive?

Pressman’s definition of quality requires the client to specify the software require-
ments because only documented requirements are binding for the developer. Any
omissions or errors made by the client are considered as his or her fault, and not
listed among the developer’s errors.

(1) How can a client be sure that his or her organization has the professional
capabilities to cope with this issue?

(2) In what ways can the developer support the client in this matter?

(3) Suggest pro and con arguments to Pressman’s definition of the client’s
responsibility.

Itis claimed that the expanded definition of SQA supports those who are interest-

ed in increasing client satisfaction.

(1) Do you agree with this claim?
(2) Ifyes, provide arguments to substantiate your position.

(1) Examine the correct and erroneous procedures determining the discount qual-
ification outlined in Table 2.1.
(2) List the procedure errors.

Software quality factors

3.1
3.2

3.3
3.4
3.5
3.6

3.7
3.8

The need for comprehensive software quality requirements
Classifications of software requirements into software
quality factors

Product operation software quality factors

Product revision software quality factors

Product transition software quality factors

Alternative models of software quality factors

3.6.1 Formal comparison of the alternative models

3.6.2 Comparison of the factor models — content analysis
3.6.3 Structure of the alternative factor models

Who is interested in the definition of quality requirements?
Software compliance with quality factors

Summary

Selected bibliography
Review questions
Topics for discussion

36

37
38
41
43
44
44
46
47
47
49

51
52
52
54

We have already established (see Chapter 2) that the requirements document
is one of the most important elements for achieving software quality. Here we
ask: What is a “good” software requirements document? We want to explore
what subjects and aspects of software use should be covered in the document.

This chapter is, therefore, dedicated to the review of the wide spectrum

of aspects of software use that may be operative throughout the life cycle of
software systems. Some SQA models suggest that the wide spectrum of

requirements should be classified into 11 to 15 factors (subject areas) that
can be amalgamated into three or four categories.
After completing this chapter, you will be able to:

m Explain the need for comprehensive requirements documents and char-
acterize the contents of such documents.
m Explain the structure (categories and factors) of McCall’s classic factor
model.

si01oej Ajjjenb asemyos ¢ ‘ W

m List the factors, other than those included in McCall’s model, that are
suggested by the alternative SQA models.
m Identify who is interested in the definition of quality requirements.

3.1 The need for comprehensive software quality
requirements

E “Our new sales information system seems okay, the invoices are correct,
the inventory records are correct, the discounts granted to our clients
exactly follow our very complicated discount policy, but our new sales
information system frequently fails, usually at least twice a day, each time
for twenty minutes or more. Yesterday it took an hour and half before we
could get back to work Imagine how embarrassing it is to store
managers Softbest, the software house that developed our comput-
erized sales system, claims no responsibility”

m “Just half a year ago we launched our new product — the radar detector.
The firmware RD-8.1, embedded in this product, seems to be the cause for
its success. But, when we began planning the development of a European
version of the product, we found out that though the products will be
almost similar, our software development department needs to develop
new firmware; almost all the design and programming will be new.”

m “Believe it or not, our software package ‘Blackboard’ for schoolteachers,
launched just three months ago, is already installed in 187 schools. The
development team just returned from a week in Hawaii, their vacation
bonus. But we have been suddenly receiving daily complaints from the
‘Blackboard’ maintenance team. They claim that the lack of failure-
detection features in the software, in addition to the poor programmer’s
manual, have caused them to invest more than the time estimated to deal
with bugs or adding minor software changes that were agreed as part of
purchasing contracts with clients.”

B “The new version of our loan contract software is really accurate. We
have already processed 1200 customer requests, and checked each of the
output contracts. There were no errors. But we did face a severe unex-
pected problem - training a new staff member to use this software takes
about two weeks. This is a real problem in customers’ departments suf-
fering from high employee turnover The project team says that as
they were not required to deal with training issues in time, an additional
two to three months of work will be required to solve the problem.”

There are some characteristic common to all these “but’s”:

m All the software projects satisfactorily fulfilled the basic requirements for
correct calculations (correct inventory figures, correct average class’s
score, correct loan interest, etc.).

m All the software projects suffered from poor performance in important
areas such as maintenance, reliability, software reuse, or training.

m The cause for the poor performance of the developed software projects in
these areas was the lack of predefined requirements to cover these impor-
tant aspects of the software’s functionality.

The need for a comprehensive definition of requirements

There is a need for a comprehensive definition of requirements that will
cover all attributes of software and aspects of the use of software, including
usability aspects, reusability aspects, maintainability aspects, and so forth in
order to assure the full satisfaction of the users.

The great variety of issues related to the various attributes of software
and its use and maintenance, as defined in software requirements documents,
can be classified into content groups called quality factors. We expect the
team responsible for defining the software requirements of a software system
to examine the need to define the requirements that belong to each factor.
Software requirement documents are expected to differ in the emphasis
placed on the various factors, a reflection of the differences to be found
among software projects. Thus, we can expect that not all the factors will be
universally “represented” in all the requirements documents.

The next sections deal with the classification of quality requirements
into quality factors. Obviously, only the major approaches to this topic will
be covered.

3.2 C(lassifications of software requirements into software
quality factors

Several models of software quality factors and their categorization in factor
categories have been suggested over the years. The classic model of software
quality factors, suggested by McCall, consists of 11 factors (McCall et al.,
1977). Subsequent models, consisting of 12 to 15 factors, were suggested by
Deutsch and Willis (1988) and by Evans and Marciniak (1987). The alter-
native models do not differ substantially from McCall’s model. The McCall
factor model, despite the quarter of a century of its “maturation”, continues
to provide a practical, up-to-date method for classifying software require-
ments (Pressman, 2000).

McCall’s factor model

McCall’s factor model classifies all software requirements into 11 software
quality factors. The 11 factors are grouped into three categories — product
operation, product revision and product transition — as follows:

B Product operation factors: Correctness, Reliability, Efficiency, Integrity,
Usability.

B Product revision factors: Maintainability, Flexibility, Testability.

m Product transition factors: Portability, Reusability, Interoperability.

s1030e) Alljenb a1emyjos ojul sjuawalinbal a1em}jos JO SUoIIedISSe) T'€ ‘ N

si01oej Ajjjenb asemyos ¢ ‘ o

McCall’s model and its categories are illustrated by the McCall model of
software quality factors tree (see Figure 3.1).

The next three sections are dedicated to a detailed description of the
software quality factors included in each of McCall’s categories.

3.3 Product operation software quality factors

According to McCall’s model, five software quality factors are included in the
product operation category, all of which deal with requirements that directly
affect the daily operation of the software. These factors are as follows.

Correctness

Correctness requirements are defined in a list of the software system’s
required outputs, such as a query display of a customer’s balance in the sales
accounting information system, or the air supply as a function of temperature
specified by the firmware of an industrial control unit. Output specifications
are usually multidimensional; some common dimensions include:

m The output mission (e.g., sales invoice printout, and red alarms when
temperature rises above 250°F).

Quality software

2
(%
operation

Efficiency

Figure 3.1: McCall’s factor model tree
Source: Based on McCall et al., 1977

The required accuracy of those outputs that can be adversely affected by
inaccurate data or inaccurate calculations.

The completeness of the output information, which can be adversely
affected by incomplete data.

The up-to-dateness of the information (defined as the time between the
event and its consideration by the software system).

The availability of the information (the reaction time, defined as the time
needed to obtain the requested information or as the requested reaction
time of the firmware installed in a computerized apparatus).

The standards for coding and documenting the software system.

Example
The correctness requirements of a club membership information system
consisted of the following:

The output mission: A defined list of 11 types of reports, four types of
standard letters to members and eight types of queries, which were to be
displayed on the monitor on request.

The required accuracy of the outputs: The probability for a non-accurate
output, containing one or more mistakes, will not exceed 1%.

The completeness of the output information: The probability of missing
data about a member, his attendance at club events, and his payments will
not exceed 1%.

The up-to-dateness of the information: Not more than two working days
for information about participation in events and not more than one
working day for information about entry of member payments and per-
sonal data.

The availability of information: Reaction time for queries will be less

than two seconds on average; the reaction time for reports will be less
than four hours.

The required standards and guidelines: The software and its documenta-
tion are required to comply with the client’s guidelines.

Reliability

Reliability requirements deal with failures to provide service. They determine
the maximum allowed software system failure rate, and can refer to the
entire system or to one or more of its separate functions.

Examples
(1) The failure frequency of a heart-monitoring unit that will operate in a

hospital’s intensive care ward is required to be less than one in 20 years.
Its heart attack detection function is required to have a failure rate of
less than one per million cases.

s1030e) Alljenb aiemyjos uoijesado 1onpold €°€ ‘ 3

si01oej Ajjjenb asemyos ¢ ‘ 3

(2) One requirement of the new software system to be installed in the main
branch of Independence Bank, which operates 120 branches, is that it
will not fail, on average, more than 10 minutes per month during the
bank’s office hours. In addition, the probability that the off-time (the
time needed for repair and recovery of all the bank’s services) be more
than 30 minutes is required to be less than 0.5%.

Efficiency
Efficiency requirements deal with the hardware resources needed to perform
all the functions of the software system in conformance to all other require-
ments. The main hardware resources to be considered are the computer’s
processing capabilities (measured in MIPS — million instructions per second,
MHz or megahertz — million cycles per second, etc.), its data storage capa-
bility in terms of memory and disk capacity (measured in MBs — megabytes,
GBs — gigabytes, TBs — terabytes, etc.) and the data communication capabil-
ity of the communication lines (usually measured in KBPS - kilobits per
second, MBPS — megabits per second, and GBPS — gigabits per second). The
requirements may include the maximum values at which the hardware
resources will be applied in the developed software system or the firmware.
Another type of efficiency requirement deals with the time between
recharging of the system’s portable units, such as, information systems units
located in portable computers, or meteorological units placed outdoors.

Examples

(1) A chain of stores is considering two alternative bids for a software sys-
tem. Both bids consist of placing the same computers in the chain’s
headquarters and its branches. The bids differ solely in the storage vol-
ume: 20 GB per branch computer and 100 GB in the head office
computer (Bid A); 10 GB per branch computer and 30 GB in the head
office computer (Bid B). There is also a difference in the number of com-
munication lines required: Bid A consists of three communication lines
of 28.8 KBPS between each branch and the head office, whereas Bid B
is based on two communication lines of the same capacity between each
branch and the head office. In this case, it is clear that Bid B is more effi-
cient than Bid A because fewer hardware resources are required.

(2) An outdoor meteorological unit, equipped with a 1000 milli-ampere
hour cell, should be capable of supplying the power requirements of the
unit for at least 30 days. The system performs measurements once per
hour, logs the results, and transmits the results once a day to the mete-
orological center by means of wireless communication.

Integrity

Integrity requirements deal with the software system security, that is, require-
ments to prevent access to unauthorized persons, to distinguish between the
majority of personnel allowed to see the information (“read permit”) and a

limited group who will be allowed to add and change data (“write permit”),
and so forth.

Example

The Engineering Department of a local municipality operates a GIS
(Geographic Information System). The Department is planning to allow cit-
izens access to its GIS files through the Internet. The software requirements
include the possibility of viewing and copying but not inserting changes in
the maps of their assets as well as any other asset in the municipality’s area
(“read only” permit). Access will be denied to plans in progress and to those
maps defined by the Department’s head as limited access documents.

Usability

Usability requirements deal with the scope of staff resources needed to train
a new employee and to operate the software system. For more about usabil-
ity see Juristo et al. (2001), Donahue (2001) and Ferre et al. (2001).

Example

The software usability requirements document for the new help desk
system initiated by a home appliance service company lists the following
specifications:

(a) A staff member should be able to handle at least 60 service calls a day.

(b) Training a new employee will take no more than two days (16 training
hours), immediately at the end of which the trainee will be able to han-
dle 45 service calls a day.

3.4 Product revision software quality factors

According to the McCall model of software quality factors, three quality fac-
tors comprise the product revision category. These factors deal with those
requirements that affect the complete range of software maintenance activi-
ties: corrective maintenance (correction of software faults and failures),
adaptive maintenance (adapting the current software to additional circum-
stances and customers without changing the software) and perfective
maintenance (enhancement and improvement of existing software with
respect to locally limited issues). These are as follows.

Maintainability

Maintainability requirements determine the efforts that will be needed by
users and maintenance personnel to identify the reasons for software fail-
ures, to correct the failures, and to verify the success of the corrections. This
factor’s requirements refer to the modular structure of software, the internal
program documentation, and the programmer’s manual, among other items.

S1030e) AJljenb a1em}jos uoISIA3L }oNpoId '€ ‘ ha

si01oe} A1jenb atemyos ¢ ‘ o

Example
Typical maintainability requirements:

(a) The size of a software module will not exceed 30 statements.

(b) The programming will adhere to the company coding standards and
guidelines.

Flexibility

The capabilities and efforts required to support adaptive maintenance activ-
ities are covered by the flexibility requirements. These include the resources
(i.e. in man-days) required to adapt a software package to a variety of cus-
tomers of the same trade, of various extents of activities, of different ranges
of products and so on. This factor’s requirements also support perfective
maintenance activities, such as changes and additions to the software in
order to improve its service and to adapt it to changes in the firm’s technical
or commercial environment.

Example

TSS (teacher support software) deals with the documentation of pupil achieve-
ments, the calculation of final grades, the printing of term grade documents,
and the automatic printing of warning letters to parents of failing pupils. The
software specifications included the following flexibility requirements:

(a) The software should be suitable for teachers of all subjects and all school
levels (elementary, junior and high schools).

(b) Non-professionals should be able to create new types of reports accord-
ing to the schoolteacher’s requirements and/or the city’s education
department demands.

Testability

Testability requirements deal with the testing of an information system as
well as with its operation. Testability requirements for the ease of testing are
related to special features in the programs that help the tester, for instance by
providing predefined intermediate results and log files. Testability require-
ments related to software operation include automatic diagnostics performed
by the software system prior to starting the system, to find out whether all
components of the software system are in working order and to obtain a
report about the detected faults. Another type of these requirements deals
with automatic diagnostic checks applied by the maintenance technicians to
detect the causes of software failures.

Example

An industrial computerized control unit is programmed to calculate various
measures of production status, report the performance level of the machin-
ery, and operate a warning signal in predefined situations. One testability

requirement demanded was to develop a set of standard test data with
known system expected correct reactions in each stage. This standard test
data is to be run every morning, before production begins, to check whether
the computerized unit reacts properly.

3.5 Product transition software quality factors

According to McCall, three quality factors are included in the product tran-
sition category, a category that pertains to the adaptation of software to
other environments and its interaction with other software systems.

Portability

Portability requirements tend to the adaptation of a software system to other
environments consisting of different hardware, different operating systems,
and so forth. These requirements make it possible to continue using the same
basic software in diverse situations or to use it simultaneously in diverse
hardware and operating systems situations.

Example

A software package designed and programmed to operate in a Windows
2000 environment is required to allow low-cost transfer to Linux and
Windows NT environments.

Reusability

Reusability requirements deal with the use of software modules originally
designed for one project in a new software project currently being developed.
They may also enable future projects to make use of a given module or a group
of modules of the currently developed software. The reuse of software is
expected to save development resources, shorten the development period, and
provide higher quality modules. These benefits of higher quality are based on
the assumption that most of the software faults have already been detected by
the quality assurance activities performed on the original software, by users of
the original software, and during its earlier reuses. The issues of software reuse
became a subject of software industry standards (see IEEE, 1999).

Example

A software development unit has been required to develop a software system
for the operation and control of a hotel swimming pool that serves hotel
guests and members of a pool club. Although the management did not define
any reusability requirements, the unit’s team leader, after analyzing the infor-
mation processing requirements of the hotel’s spa, decided to add the
reusability requirement that some of the software modules for the pool
should be designed and programmed in a way that will allow its reuse in the
spa’s future software system, which is planned to be developed next year.

s1030e) Ajljenb aiemyjos uonisues} 19npoid G°€ ‘ 5

s10)oe) Alljenb aiemyos ¢ ‘ R

These modules will allow:

m Entrance validity checks of membership cards and visit recording.
m Restaurant billing.
B Processing of membership renewal letters.

Interoperability

Interoperability requirements focus on creating interfaces with other soft-
ware systems or with other equipment firmware (for example, the firmware
of the production machinery and testing equipment interfaces with the pro-
duction control software). Interoperability requirements can specify the
name(s) of the software or firmware for which interface is required. They can
also specify the output structure accepted as standard in a specific industry
or applications area.

Example

The firmware of a medical laboratory’s equipment is required to process its
results (output) according to a standard data structure that can then serve as
input for a number of standard laboratory information systems.

3.6 Alternative models of software quality factors

Two factor models, appearing during the late 1980s, considered to be
alternatives to the McCall classic factor model (McCall et al., 1977),
deserve discussion:

m The Evans and Marciniak factor model (Evans and Marciniak, 1987).
m The Deutsch and Willis factor model (Deutsch and Willis, 1988).

3.6.1 Formal comparison of the alternative models

A formal comparison of the factor models reveals:

m Both alternative models exclude only one of McCall’s 11 factors, namely
the testability factor.

m The Evans and Marciniak factor model consists of 12 factors that are
classified into three categories.

m The Deutsch and Willis factor model consists of 15 factors that are clas-
sified into four categories.

Taken together, five new factors were suggested by the two alternative factor
models:

m Verifiability (by both models)
m Expandability (by both models)

m Safety (by Deutsch and Willis)
B Manageability (by Deutsch and Willis)
m Survivability (by Deutsch and Willis).

The factors included in the various factor models are compared in Table 3.1.
The additional factors are defined as follows.

Verifiability (suggested by Evans and Marciniak)

Verifiability requirements define design and programming features that
enable efficient verification of the design and programming. Most verifiabil-
ity requirements refer to modularity, to simplicity, and to adherence to
documentation and programming guidelines.

Expandability (suggested by Evans and Marciniak, and Deutsch

and Willis)

Expandability requirements refer to future efforts that will be needed to
serve larger populations, improve service, or add new applications in order

to improve usability. The majority of these requirements are covered by
McCall’s flexibility factor.

Safety (suggested by Deutsch and Willis)

Safety requirements are meant to eliminate conditions hazardous to opera-
tors of equipment as a result of errors in process control software. These
errors can result in inappropriate reactions to dangerous situations or to the
failure to provide alarm signals when the dangerous conditions to be detect-
ed by the software arise.

Table 3.1: Comparison of McCall’s factor model and alternative models

Alternative factor models

Software quality McCall’s classic Evans and Deutsch and

No. factor model Marciniak Willis

1 Correctness + + +

2 Reliability + + +

3 Efficiency + + +

4 Integrity + + +

5 Usability + + +

6 Maintainability + + +

7 Flexibility + + +

8 Testability +

9 Portability + + +
10 Reusability + + +
11 Interoperability + + +
12 Verifiability + +
13 Expandability + +
14 Safety +
15 Manageability +
16 Survivability +

51012e) Alljenb 21eM1J0S JO S|apOW SANRUIBNY 9°€ ‘ &

si01oej Ajjjenb asemyos ¢ ‘ N

Example
In a chemical plant, a computerized system controls the flow of acid accord-
ing to pressure and temperature changes occurring during production. The
safety requirements refer to the system’s computerized reactions in cases of
dangerous situations and also specify what kinds of alarms are needed in
each case.

Manageability (suggested by Deutsch and Willis)

Manageability requirements refer to the administrative tools that support
software modification during the software development and maintenance
periods, such as configuration management, software change procedures,

and the like.

Example

“Chemilog” is a software system that automatically logs the flows of chem-
icals into various containers to allow for later analysis of the efficiency of
production units. The development and issue of new versions and releases of
“Chemilog” are controlled by the Software Development Board, whose
members act according to the company’s software modifications procedure.

Survivability (suggested by Deutsch and Willis)

Survivability requirements refer to the continuity of service. These define the
minimum time allowed between failures of the system, and the maximum
time permitted for recovery of service, two factors that pertain to service
continuity. Although these requirements may refer separately to total and to
partial failures of services, they are especially geared to failures of essential
functions or services. Significant similarity exists between the survivability
factor and the reliability factor described in McCall’s model.

Example

Taya operates a national lottery, held once a week. About 400000 to 700 000
bets are placed weekly. The new software system the customer (the Taya
National Lottery) has ordered will be highly computerized and based on a
communication system that connects all the betting machines to the central
computer. To its other high reliability requirements, Taya has added the fol-
lowing survivability requirement: The probability that unrecoverable damage
to the betting files will occur in case of any system failure is to be limited to
less than one in a million.

3.6.2 Comparison of the factor models — content analysis

After comparing the contents of the factor models, we find that two of the
five additional factors, Expandability and Survivability, actually resemble
factors already included in McCall’s factor model, though under different
names, Flexibility and Reliability. In addition, McCall’s Testability factor can
be considered as one element in his own Maintainability factor.

This implies that the differences between the three factor models are
much smaller than initially perceived. That is, the alternative factor models
add only three “new” factors to McCall’s model:

m Both models add the factor Verifiability.
m The Deutsch and Willis model adds the factors Safety and Manageability.

3.6.3 Structure of the alternative factor models

Nevertheless, despite their similarities, the categories employed by the alter-
native factor models and the classification of the specific factors into these
categories differ from those offered by McCall’s model. Table 3.2 compares
the structure of the three models according to the factors and their classifi-
cation into the categories.

3.7 Whois interested in the definition of quality
requirements?

Naturally, one might think that only the client is interested in thoroughly
defining his requirements in order to assure the quality of the software prod-
uct he contracted. The requirements document he prepares does indeed serve
as a fundamental protection against low quality. However, our analysis of
the various quality factors indicates how the software developer can add
requirements that represent his own interest. Following are some examples:

(1) Reusability requirements. In cases where the client anticipates develop-
ment in the near future of an additional software system having strong
similarities to the present software, the client will himself initiate reusabil-
ity requirements. In other cases, the client is interested in reusing parts of
software systems that were developed earlier in a new system. However,
it is more likely that the developer, who serves a great variety of clients,
will recognize the potential benefits of reuse, and will enter reusability
into the list of requirements to be fulfilled by the project team.

(2) Verifiability requirements. These requirements are meant to improve the
design reviews and software tests carried out during software develop-
ment. Their aim is to save development resources and they are,
therefore, of interest to developers. The client, however, is usually unin-
terested in placing requirements that deal with the internal activities of
the developer team.

Some quality factors not included in the typical client’s requirements docu-
ment may, in many cases, interest the developer. The following list of quality
factors usually interest the developer whereas they may raise very little inter-
est on the part of the client:

m Portability
® Reusability
m Verifiability.

iSsiuawalinbal Ajijenb jo uoniuyap ayl ul paisalalul S| oym L€ ‘ 3

0
<

X X X X

uojeydepy ?JuewWIOoyIdd ugisaq

juswasSeueyy asuey) duewiopdd

X Auiqeaining
AmigeasSeuepy

Ayajeg

funiqepuedxy
Aunigenuapn

Aiqesadosaiu)
Anjiqesnay
elOod

finqelsa
finigixa)4
Aniqeurejurep

<

Angesn
X Au8aju|

fouaniyy3
X Ainqerjay
$S9UI9110)

Jeuoinduny $10)0€}

Ayjenb aiemyos

$9110531) |apoL SBIUIDIB| PUB SUBAJ

3 Software quality factors

$3110833) Japou SI|jIM pue yasinag

S|apouw aAljeuld)|e
3y} Jo S10308e4

uoljisuel} 1dnpold

uolsiAal 1onpold

uoljesado 1on pold

sal1089)ed
1opow s J1e)oW

S|9powW 3AI}eUIS} R 931U} Y} SIA-D-SIA |3POU 103IB) S,]|BDI JO 21n3dNIIS 3y} jo uostedwo) :z°€ d)qel

So, one can expect that a project will be carried out according to two
requirements documents:

m The client’s requirements document
m The developer’s additional requirements document.

3.8 Software compliance with quality factors

Throughout the software development process, the extent to which the
process complies with the requirements of the various quality factors is
examined by design reviews, software inspections, software tests, and so
forth. Comprehensive discussions of design reviews, software testing, soft-
ware quality metrics and other tools for verifying and validating the quality
of software are provided in the balance of this book.

Furthermore, the software product’s compliance to the requirements
belonging to the various quality factors is measured by software quality met-
rics, measures that quantify the degree of compliance. In order to allow for
valid measurements of compliance, sub-factors have been defined for those
quality factors that represent a wide range of attributes and aspects of soft-
ware use. Software quality metrics are suggested for each of these
sub-factors. Chapter 21 is dedicated to the subject of software metrics.

Table 3.3 presents some of these sub-factors, the majority of which were
suggested by Evans and Marciniak (1987).

Table 3.3: Factors and sub-factors

Factor model Software quality Sub-factors
factors

McCall’s model: Correctness Accuracy

Product operation Completeness

category Up-to-dateness

Availability (response time)
Coding and documentation guidelines
compliance (consistency)

Reliability System reliability
Application reliability
Computational failure recovery
Hardware failure recovery

Efficiency Efficiency of processing
Efficiency of storage
Efficiency of communication
Efficiency of power usage (for portable units)

Integrity Access control
Access audit

Usability Operability
Training

s1030e) Ajljenb yum soueljdwod alemyos 8¢ ‘ v

()]
o

si01oej Ajjjenb asemyos ¢

Table 3.3 Continued

Factor model

McCall’s model:
Product revision
category

McCall’s model:
Product transition
category

Factors of the

alternative models

Software quality
factors

Maintainability

Flexibility

Testability

Portability

Reusability

Interoperability

Verifiability

Expandability

Safety

Manageability

Survivability

Sub-factors

Simplicity

Modularity

Self-descriptiveness

Coding and documentation guidelines
compliance (consistency)

Document accessibility

Modularity

Generality

Simplicity

Self-descriptiveness

User testability

Failure maintenance testability
Traceability

Software system independence
Modularity
Self descriptive

Modularity

Document accessibility
Software system independence
Application independence

Self descriptive

Generality

Simplicity

Commonality

System compatibility

Software system independence
Modularity

Coding and documentation guidelines
compliance (consistency)

Document accessibility

Traceability

Modularity

Extensibility

Modularity

Generality

Simplicity

Self-descriptiveness

Avoidance of hazardous operating situations
Unsafe conditions alarm reliability

Completeness and ease of support of
infrastructure services for software
modification in the development process

Completeness and ease of support of
infrastructure services for software
modification in the maintenance activities

System reliability

Application reliability
Computational failure recovery
Hardware failure recovery

As you have probably noticed, several sub-factors relate to more than
one factor. This reflects the fact that some attributes contribute to successful
compliance in more than one aspect of software use. For example, simplici-
ty (a sub-factor) contributes to maintainability, flexibility, reusability and
expandability factors.

Summary

(1) The need for comprehensive requirements documents and their contents.

Many cases of low customer satisfaction are situations where software projects
have satisfactorily fulfilled the basic requirements of correctness, while suffering
from poor performance in other important areas such as maintenance, reliability,
software reuse, or training. One of the main causes for these lapses is the lack of
defined requirements pertaining to these aspects of software functionality.
Therefore, there is a need for the comprehensive definition of requirements that will
cover all aspects of software use throughout all stages of the software life cycle.

Factor models define the broad spectrum of software requirements. We expected
that those individuals who define software requirements will refer to each factor
and, accordingly, examine the need to incorporate the respective requirements in
their requirements documents.

(2) The structure (categories and factors) of McCall’s classic factor model.

McCall’s factor model classifies all software requirements into 11 software quality
factors. The 11 factors are grouped into three categories — product operation, prod-
uct revision and product transition — as follows:

Product operation factors: Correctness, Reliability, Efficiency, Integrity, Usability.
Product revision factors: Maintainability, Flexibility, Testability.
Product transition factors: Portability, Reusability, Interoperability.

(3) The additional factors suggested by alternative factor models.

The two factor models from the late 1980s, alternatives to the McCall classic factor
model, are:

The Evans and Marciniak factor model.
The Deutsch and Willis factor model.

These alternative models suggest adding five factors to McCall’s model. Two of
these factors are very similar to two of McCall’s factors; only three factors are “new”:

Both models add the factor Verifiability.
The Deutsch and Willis model adds the factors Safety and Manageability.

Arewwing ‘ v

si03oey Ajjjenb asemyos ¢ ‘ N

(4) Those interested in defining software quality requirements.

The client is not the only party interested in thoroughly defining the requirements
that assure the quality of the software product. The developer is often interested in
adding requirements that represent his own interests, such as reusability, verifia-
bility and portability requirements. These may not, however, be of interest to the
client. Thus, one can expect that a project will be carried out according to two
requirements documents:

The client’s requirements document
The developer’s additional requirements document.

Selected bibliography

1. Deutsch, M. S. and Willis, R. R. (1988) Software Quality Engineering, A Total
Technical Management Approach, Ch. 3, Prentice Hall, Englewood Cliffs, NJ.

2. Donahue G. M. (2001) “Usability and the bottom line”, IEEE Software, 18 (1),
31-37.

3. Evans, M. W. and Marciniak, J. J. (1987) Software Quality Assurance and
Management, Chs 7 and 8, John Wiley & Sons, New York.

4. Ferre, X., Juristo, N., Windl, H. and Constantine, L. (2001) “Introducing usability”,
IEEE Software, 18 (1), 20-21.

5. IEEE (1999) “IEEE Std 1517-1999 - IEEE Standard for Information Technology
— Software Life Cycle Processes — Reuse Processes”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

6. Juristo, N., Windl, H. and Constantine, L. (2001) “Usability basics for software
developers”, IEEE Software, 18 (1), 22-29.

7. McCall, J., Richards, P. and Walters, G. (1977) Factors in Software Quality, Vols
1-3, NTIS AD-A049-014, 015, 055, November 1977.

8. Pressman, R. S. (2000) Software Engineering — A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, Ch. 19, McGraw-Hill International,
London.

9. Vincent, J., Waters, A. and Sinclair, J. (1988) Software Quality Assurance, Vol.
2, A Program Guide, Appendix B, Prentice Hall, Englewood Cliffs, NJ.

Review questions

3.1 (1) What are the three factor categories belonging to McCall’s factor model?
(2) What factors are included in each of the categories?

3.2 The software requirement document for the tender for development of “Super-lab”,
a software system for managing a hospital laboratory, consists of chapters according
to the required quality factors as follows: correctness, reliability, efficiency, integrity,
usability, maintainability, flexibility, testability, portability, reusability and interoper-
ability. In the following table you will find sections taken from the mentioned
requirements document. For each section, fill in the name of the factor that best fits
the requirement (choose only one factor per requirements section).

No.

10

Section taken from the software requirements document

The probability that the “Super-lab” software system will
be found in a state of failure during peak hours
(9 am to 4 pm) is required to be below 0.5%.

The “Super-lab” software system will enable direct transfer
of laboratory results to those files of hospitalized patients
managed by the “MD-File” software package.

The “Super-lab” software system will include a module
that prepares a detailed report of the patient’s laboratory
test results during his or her current hospitalization.
(This report will serve as an appendix to the family
physician’s file.) The time required to obtain this printed
report will be less than 60 seconds; the level of accuracy
and completeness will be at least 99%.

The “Super-lab” software to be developed for hospital
laboratory use may be adapted later for private
laboratory use.

The training of a laboratory technician, requiring no more
than three days, will enable the technician to reach level C
of “Super-lab” software usage. This means that he or she
will be able to manage reception of 20 patients per hour.

The “Super-lab” software system will record a detailed
users’ log. In addition, the system will report attempts
by unauthorized persons to obtain medical information
from the laboratory test results database. The report will
include the following information: network
identification of the applying terminal, system code

of the employee who requested that information, day
and time of attempt, and type of attempt.

The “Super-lab” subsystem that deals with billing patients
for their tests may eventually be used as a subsystem in
the “Physiotherapy Center” software package.

The “Super-lab” software system will process all the
monthly reports for the hospital departments’
management, the hospital management, and the hospital
controller according to Appendix D of the

development contract.

The software system should be able to serve 12 work-
stations and eight automatic testing machines with a single
model AS20 server and a CS25 communication server

that will be able to serve 25 communication lines. This
hardware system should conform to all availability
requirements as listed in Appendix C.

The “Super-lab” software package developed for the
Linux operating system should be compatible for
applications in a Windows NT environment.

Requirements factor

(9]
w

suollsanb mainay

€]
~

si01oej Ajjjenb asemyos ¢

3.3
3.4

3.5

3.6

What differentiates the Evans and Marciniak model from the Deutsch and Willis model?
Consider McCall’s model and the Deutsch and Willis model.

(1) What are the formal differences between the models?

(2) What are the content differences between the models?

(3) What new subjects were actually added by the Evans and Marciniak model to
McCall’s model?

Southcottage Inc. is a manufacturer of washing machines and dishwashers. The
requirements document for the new control unit included the following specifications:

(@ The firmware should be suitable for all six variations of model 2002 washing
machines.

(b) The water level control module of the washing machine should be suitable for
use as a water level control module in the new model 2002 dishwasher.

(1) To which of the factors do the above requirements belong?
(2) Explain your answer.

Some people claim that testability and verifiability are actually different names for
the same factor.

(1) Do you agree?
(2) If not, could you explain why?

Topics for discussion

3.1

3.2

3.3

Four “but” complaints are mentioned in Section 3.1. All of them reflect items miss-
ing from the requirement documents.

(1) To which factors do the missing requirements belong?
(2) Canyou suggest software quality requirements that could fill the gap?

Some professionals claim that increased software usability necessarily involves
decreased efficiency. Others claim no dependence between software efficiency
and usability.

(1) Do you agree with the first or the second group?
(2) Discuss your answer.

The City of Mountain View has decided to develop a software package that will
serve the youth clubs operated by the city. The software’s main tasks will be:

Follow-up of monthly payments of the members.

Preparing lists of participants in the various courses offered by the clubs.
Production of reminder notices to course participants who fail to appear regularly.
Statistical reports about membership and participation in club activities.

The city already implements the following software packages:

Tax collection
Public library

3.4

3.5

School follow-up and achievements control
Water consumption billing.

The City Council has asked the Information Technology Unit to report to the coun-
cil about the possibilities for reuse of the city software packages already available
to the city in the youth club software package.

(1) Could you suggest which modules of the existing city software packages could
be reused in the new software? List your assumptions about the contents of
the existing software packages and the required new software.

(2) Could you grade the reused modules suggested in (1) according to the scope
of adaptation efforts required to apply the reused module in the youth club
software package?

Itis said that failure to meet the interoperability requirements can negatively affect
the correctness level of the software system, and even can cause non-conformance
with correctness requirements.

(1) Elaborate on the above statement and explain the mentioned interconnec-
tions between factors.
(2) Provide an example of a situation where such effects are to be expected.

It is claimed that with respect to subjects where qualitative and quantitative
requirements can be defined, the quantitative alternatives should be preferred.

(1) Provide three examples each of alternative qualitative and quantitative
requirements.

(2) Explain why the customer should prefer the quantitative option.

(3) Explain why the software developer should prefer the quantitative option.

(9a
Ul

uoIssnasIp 104 soidoy ‘

The components of the

software quality assurance

system — overview

4.1 The SQA system — an SQA architecture
4.2 Pre-project components
4.2.1 Contract review
4.2.2 Development and quality plans
4.3 Software project life cycle components
4.3.1 Reviews
4.3.2 Expert opinions
4.3.3 Software testing
4.3.4 Software maintenance components
4.3.5 Assurance of the quality of the external
participant’s work
4.4 Infrastructure components for error prevention
and improvement
4.4.1 Procedures and work instructions
4.4.2 Supporting quality devices

4.4.3 Staff training, instruction and certification

4.4.4 Preventive and corrective actions
4.4.5 Configuration management
4.4.6 Documentation control

4.5 Management SQA components
4.5.1 Project progress control
4.5.2 Software quality metrics
4.5.3 Software quality costs

4.6 SQA standards, system certification, and assessment

components
4.6.1 Quality management standards
4.6.2 Project process standards
4.7 Organizing for SQA - the human components
4.7.1 Management’s role in SQA
4.7.2 The SQA unit
4.7.3 SQA trustees, committees and forums
4.8 The considerations guiding construction of an
organization’s SQA system

57
60
60
60
61
61
62
63
63

64

65
65
66
66
66
67
67
68
68
68
69

69
69
70
70
70
71
71

72

This chapter, the final chapter of the introductory portion of the text, is ded-
icated to a schematic overview of the wide range of SQA components
available to planners of an intra-organizational SQA system. As a local sys-
tem, an intra-organizational SQA system bears “local colors”, which are
affected by the characteristics of the organization, its development projects,
software maintenance activities, and professional staff. The concise descrip-
tion of SQA components is followed by a discussion of the considerations
guiding construction of an organization’s SQA system. This glimpse will
allow you to obtain some preliminary understanding about the potential
contribution of each component, about the entire range of components, and
about the system as a defined entity.

4.1 The SQA system — an SQA architecture

An SQA system always combines a wide range of SQA components, all of
which are employed to challenge the multitude of sources of software errors
and to achieve an acceptable level of software quality. As stated in Chapter
1, the task of SQA is unique in the area of quality assurance due to the spe-
cial characteristics of software. In addition, the environment in which
software development and maintenance is undertaken directly influences the
SQA components (see Chapter 1).
SQA system components can be classified into six classes:

m DPre-project components. To assure that (a) the project commitments have
been adequately defined considering the resources required, the schedule
and budget; and (b) the development and quality plans have been cor-
rectly determined.

m Components of project life cycle activities assessment. The project life
cycle is composed of two stages: the development life cycle stage and the
operation—maintenance stage.

The development life cycle stage components detect design and pro-
gramming errors. Its components are divided into the following four
sub-classes:

— Reviews

— Expert opinions

— Software testing.
The SQA components used during the operation-maintenance phase
include specialized maintenance components as well as development life
cycle components, which are applied mainly for functionality improving
maintenance tasks.

An additional sub-class of SQA project life cycle components deals with

assuring the quality of project parts performed by subcontractors and other
external participants during project development and maintenance.

m Components of infrastructure error prevention and improvement. The
main objectives of these components, which are applied throughout the

91N32911YydJe YOS ue — WaisAs yDS 9yl 1'% ‘ v

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ P

entire organization, are to eliminate or at least reduce the rate of errors,
based on the organization’s accumulated SQA experience.

m Components of software quality management. This class of components
is geared toward several goals, the major ones being the control of devel-
opment and maintenance activities and the introduction of early
managerial support actions that mainly prevent or minimize schedule and
budget failures and their outcomes.

m Components of standardization, certification, and SQA system assess-
ment. These components implement international professional and
managerial standards within the organization. The main objectives of this
class are (a) utilization of international professional knowledge, (b)
improvement of coordination of the organizational quality systems with
other organizations, and (c) assessment of the achievements of quality
systems according to a common scale. The various standards may be clas-
sified into two main groups: (a) quality management standards, and (b)
project process standards.

®m Organizing for SQA — the human components. The SQA organizational
base includes managers, testing personnel, the SQA unit and practition-
ers interested in software quality (SQA trustees, SQA committee members
and SQA forum members). All these actors contribute to software quali-
ty; their main objectives are to initiate and support the implementation of
SQA components, detect deviations from SQA procedures and method-
ology, and suggest improvements.

The entire range of SQA system components by its classes is presented in
Frame 4.1.

m SQA system component classes

Pre-project quality components

Project life cycle quality components

Infrastructure error preventive and improvement components
Software quality management components

Standardization, certification and SQA assessment components
Organizing for SQA — the human components

The spectrum of SQA components presented in this book reflects the
comprehensive conception of SQA adopted by the author (see Frame 2.6).
Accordingly, several of the SQA components presented here are unique to
this volume, and not found in other SQA texts.

A graphic illustration of SQA system components as the SQA architec-
ture is presented in Figure 4.1. Included are references to the chapters that
discuss each component in detail. An overview of the system immediately
follows.

(&)
N

4.1 The SQA system — an SQA architecture

#°9C 23S — SWNio4 VOS

__ £€°9C "29S — S93NIWwWo) YOS __

T'9T "29S — $99]SNIL YOS __

1°9¢ *29S —1uN vOS __

ST "YD - Juswaseuey

sjusuodwod uewny - aseq jeuoijeziuesiQ

7T°Yd €W @y 114l k] 0z 'Y 61°W o 3 3 3
6T °Yd Z1°4D 9T 'Y ST°U 3
spiepuejs spiepuejs 51500 souPW 1013u02 Jo13u0d = o suome Winsun I #1°4d
ssad0ud Juswaseuew Ayenb Aenb ssaiSoud uolje- uoneINSyUoy a1 S Sliioddns $3INpadoid
199(04d Anenp 9I1eM0S leMyos 129/01d juawnioqg 1 0 i g i
spiepuels juswasSeuew Ayjend sjuauodwod ainpniisesul Ajjend

3

> % ey

= g o 7 :

& 3 of 0@ » W n W
S3 83 s gz 83 29
gy) T2 © 9 ® < o &
~g =2 58 &5 g 53

= > S o @ <.

m. g o S m

o
g @ @
@
sjuauodwod yOS 81242 8y1) J3l01g
9w
ueld Ayjenb pue [T}
Siug ueyd juswdojansp M3IARI 10BIIUOD 4-21d
U,
0dyq, 19(01d mauw,.ov
Yog 02 YO
19800, uod”
Uy S\

“The software quality shrine” — the SQA architecture

Figure 4.1

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ 3

4.2 Pre-project components

The SQA components belonging here are meant to improve the preparatory
steps taken prior to initiating work on the project itself:

m Contract review
m Development and quality plans.

4.2.1 Contract review

Software may be developed within the framework of a contract negotiated
with a customer or in response to an internal order originating in another
department. An internal order may entail a request for developing a
firmware software system to be embedded within a hardware product, an
order for a software product to be sold as a package, or an order for the
development of administrative software to be applied within the company.
In all these instances, the development unit is committed to an agreed-upon
functional specification, budget and schedule.

Accordingly, contract review activities must include a detailed examina-
tion of (a) the project proposal draft and (b) the contract drafts. Specifically,
contract review activities include:

m Clarification of the customer’s requirements

m Review of the project’s schedule and resource requirement estimates

m Evaluation of the professional staff’s capacity to carry out the proposed
project

m Evaluation of the customer’s capacity to fulfill his obligations

m Evaluation of development risks.

A similar approach is applied in the review of maintenance contracts. Such
reviews take into account that besides error corrections, maintenance servic-
es include software adaptation and limited software development activities
for the sake of performance improvement (termed “functionality improve-
ment maintenance”).

4.2.2 Development and quality plans

Once a software development contract has been signed or a commitment
made to undertake an internal project for the benefit of another department
of the organization, a plan is prepared of the project (“development plan”)
and its integrated quality assurance activities (“quality plan”). These plans
include additional details and needed revisions based on prior plans that pro-
vided the basis for the current proposal and contract. It is quite common for
several months to pass between the tender submission and the signing of the
contract. During this period, changes may occur in staff availability, in pro-
fessional capabilities, and so forth. The plans are then revised to reflect the
changes that occurred in the interim.

The main issues treated in the project development plan are:

Schedules

Required manpower and hardware resources

Risk evaluations

Organizational issues: team members, subcontractors and partnerships
Project methodology, development tools, etc.

Software reuse plans.

The main issues treated in the project’s quality plan are:

Quality goals, expressed in the appropriate measurable terms

m Criteria for starting and ending each project stage

m Lists of reviews, tests, and other scheduled verification and validation
activities.

4.3 Software project life cycle components

The project life cycle is composed of two stages: the development life cycle
stage and the operation—maintenance stage.

Several SQA components enter the software development project life
cycle at different points. Their use should be planned prior to the project’s
initiation. The main components are:

Reviews

Expert opinions

Software testing

Software maintenance

Assurance of the quality of the subcontractors’ work and the customer-
supplied parts.

4.3.1 Reviews

The design phase of the development process produces a variety of docu-
ments. The printed products include design reports, software test documents,
software installation plans and software manuals, among others. Reviews
can be categorized as formal design reviews (DRs) and peer reviews.

Formal design reviews (DRs)

A significant portion of these documents requires formal professional
approval of their quality as stipulated in the development contract and
demanded by the procedures applied by the software developer. It should be
emphasized that the developer can continue to the next phase of the devel-
opment process only on receipt of formal approval of these documents.

syuauodwod 91942 a)1) 109loid asemyos €'y ‘ N

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ N

Ad hoc committees whose members examine the documents presented by
the development teams usually carry out formal design reviews (widely known
as “DRs”). The committees are composed of senior professionals, including
the project leader and, usually, the department manager, the chief software
engineer, and heads of other related departments. The majority of participants
hold professional and administrative ranks higher than the project leader. On
many occasions, the customer’s representative will participate in a DR (this
participation is generally indicated among the contractual arrangements).

The DR report itself includes a list of required corrections (termed
“action items”). When a design review committee sits in order to decide
upon the continuation of the work completed so far, one of the following
options is usually open for consideration:

® Immediate approval of the DR document and continuation to the next
development phase.

m Approval to proceed to the next development phase after all the action
items have been completed and inspected by the committee’s representative.

® An additional DR is required and scheduled to take place after all the action
items have been completed and inspected by the committee’s representative.

Peer reviews

Peer reviews (inspections and walkthroughs) are directed at reviewing short
documents, chapters or parts of a report, a coded printout of a software
module, and the like. Inspections and walkthroughs can take several forms
and use many methods; usually, the reviewers are all peers, not superiors,
who provide professional assistance to colleagues. The main objective of
inspections and walkthroughs is to detect as many design and programming
faults as possible. The output is a list of detected faults and, for inspections,
also a defect summary and statistics to be used as a database for reviewing
and improving development methods.

Because a peer’s participation is usually voluntarily and viewed as a sup-
plement to the regular workload, “reciprocity” considerations frequently
enter. Thus, a current participant is expected to initiate a future inspection
or walkthrough in which other colleagues will probably exchange roles
regarding the inspection activities.

4.3.2 Expert opinions

Expert opinions support quality assessment efforts by introducing additional
external capabilities into the organization’s in-house development process.
Turning to outside experts may be particularly useful in the following situations:

m Insufficient in-house professional capabilities in a given area.

® In small organizations in many cases it is difficult to find enough suitable
candidates to participate in the design review teams. In such situations,
outside experts may join a DR committee or, alternatively, their expert
opinions may replace a DR.

® In small organizations or in situations characterized by extreme work
pressures, an outside expert’s opinion can replace an inspection.

m Temporary inaccessibility of in-house professionals (waiting will cause
substantial delays in the project completion schedule).

®m In cases of major disagreement among the organization’s senior profes-
sionals, an outside expert may support a decision.

4.3.3 Software testing

Software tests are formal SQA components that are targeted toward review
of the actual running of the software. The tests are based on a prepared list
of test cases that represent a variety of expected scenarios. Software tests
examine software modules, software integration, or entire software packages
(systems). Recurrent tests (usually termed “regression tests”), carried out
after correction of previous test findings, are continued till satisfactory
results are obtained. The direct objective of the software tests, other than
detection of software faults and other failures to fill the requirements, is the
formal approval of a module or integration setup so that either the next pro-
gramming phase can be begun or the completed software system can be
delivered and installed.

Software testing programs are constructed from a variety of tests, some
manual and some automated. All tests have to be designed, planned and
approved according to development procedures. The test report will include
a detailed list of the faults detected and recommendations about the perform-
ance of partial or complete recurrent tests following a subsequent round of
corrections based on the test findings. (The advantages and disadvantages of
automated testing are discussed later.) It is recommended that software tests
be carried out by an independent, outside testing unit rather than by the proj-
ect team, as the project team will naturally find it difficult to detect faults they
failed to detect during development as well as to avoid conflicts of interest.

4.3.4 Software maintenance components

Software maintenance services vary in range and are provided for extensive
periods, often several years. These services fall into the following categories:

m Corrective maintenance — User’s support services and correction of soft-
ware code and documentation failures.

m Adaptive maintenance — Adaptation of current software to new circum-
stances and customers without changing the basic software product.
These adaptations are usually required when the hardware system or its
components undergo modification (additions or changes).

m Functionality improvement maintenance — The functional and perform-
ance-related improvement of existing software, carried out with respect
to limited issues.

(o)}
w

syuauodwod 91942 a)1) 109loid asemyos €'y

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ ?;

Software maintenance services should meet all kinds of quality requirements,
particularly functionality and scheduling requirements (generally decided
together with the customer) as well as budget limitations (determined by the
service provider). The provision of ongoing maintenance services involves the
application of a great variety of SQA components. The main SQA components
employed in the quality assurance of the maintenance system are as follows.

Pre-maintenance components
B Maintenance contract review
B Maintenance plan.

Software development life cycle components

These components are applied for functionality improvement and adaptive
maintenance tasks, activities whose characteristics are similar to those of the
software development process.

Infrastructure SQA components

Maintenance procedures and instructions

Supporting quality devices

Maintenance staff training, retraining, and certification
Maintenance preventive and corrective actions
Configuration management

Control of maintenance documentation and quality records.

Managerial control SQA components
® Maintenance service control

B Maintenance quality metrics

B Maintenance quality costs.

The above corresponding SQA components for the software development
process have been described briefly in other sections of this overview. We
will return to them in greater detail in the chapters dedicated to the individ-
ual topics.

4.3.5 Assurance of the quality of the external participant’s
work

Subcontractors and customers frequently join the directly contracted devel-
opers (the “supplier”) in carrying out software development projects. The
larger and more complex the project, the greater the likelihood that external
participants will be required, and the larger the proportion of work trans-
mitted to them (subcontractors, suppliers of COTS software and the
customer). The motivation for turning to external participants lies in any

number of factors, ranging from the economic to the technical to personnel-
related interests, and reflects a growing trend in the allocation of the work
involved with completing complex projects. The contribution of external
participants may therefore vary. The assignment may thus concern carrying
out phased tasks such as programming or testing, or the entire range of tasks
required by a development stage of the project.

Most of the SQA controls applied to external participants are defined in
the contracts signed between the relevant parties. If an external participant’s
work is performed using software assurance standards below those of the
supplier’s, risks of not meeting schedule or other requirements are intro-
duced into the project. Hence, special software assurance efforts are required
to establish effective controls over the external participant’s work. Special
SQA efforts are needed to assure the quality of the hardware, software, staff
and training supplied by the customer.

4.4 Infrastructure components for error prevention and
improvement

The goals of SQA infrastructure are the prevention of software faults or, at
least, the lowering of software fault rates, together with the improvement of
productivity. SQA infrastructure components are developed specifically to
this end. These components are devised to serve a wide range of projects and
software maintenance services. During recent years, we have witnessed the
growing use of computerized automatic tools for the application of these
components. This class of SQA components includes:

Procedures and work instructions
Templates and checklists

Staff training, retraining, and certification
Preventive and corrective actions
Configuration management
Documentation control.

4.4.1 Procedures and work instructions

Quality assurance procedures usually provide detailed definitions for the
performance of specific types of development activities in a way that assures
effective achievement of quality results. Procedures are planned to be gener-
ally applicable and to serve the entire organization. Work instructions, in
contrast, provide detailed directions for the use of methods that are applied
in unique instances and employed by specialized teams.

Procedures and work instructions are based on the organization’s accu-
mulated experience and knowledge; as such, they contribute to the correct
and effective performance of established technologies and routines. Because

juswanoldwi pue uojjuaAald 1043 10) Sjusuodwod aindnIISeIU| 'Y ‘ a

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ A

they reflect the organization’s past experience, constant care should be taken
to update and adjust those procedures and instructions to current techno-
logical, organizational, and other conditions.

4.4.2 Supporting quality devices

One way to combine higher quality with higher efficiency is to use support-
ing quality devices, such as templates and checklists. These devices, based as
they are on the accumulated knowledge and experience of the organization’s
development and maintenance professionals, contribute to meeting SQA
goals by:

m Saving the time required to define the structure of the various documents
or prepare lists of subjects to be reviewed.

m Contributing to the completeness of the documents and reviews.

® Improving communication between development team and review com-
mittee members by standardizing documents and agendas.

4.4.3 Staff training, instruction and certification

The banality of the statement that a trained and well-instructed professional
staff is the key to efficient, quality performance, does not make this obser-
vation any less true. Within the framework of SQA, keeping an
organization’s human resources knowledgeable and updated at the level
required is achieved mainly by:

® Training new employees and retraining those employees who have
changed assignments.

m Continuously updating staff with respect to professional developments
and the in-house, hands-on experience acquired.

m Certifying employees after their knowledge and ability have been
demonstrated.

4.4.4 Preventive and corrective actions

Systematic study of the data collected regarding instances of failure and suc-
cess contributes to the quality assurance process in many ways. Among them
we can list:

m Implementation of changes that prevent similar failures in the future.

m Correction of similar faults found in other projects and among the activ-
ities performed by other teams.

® Implementing proven successful methodologies to enhance the probabili-
ty of repeat successes.

The sources of these data, to mention only a few, are design review reports,
software test reports, and customers’ complaints. It should be stressed, how-
ever, that for these data to make a substantial contribution to quality, they
must be systematically collected and professionally analyzed.

4.4.5 Configuration management

The regular software development and maintenance operations involve
intensive activities that modify software to create new versions and releases.
These activities are conducted throughout the entire software service period
(usually lasting several years) in order to cope with the needed corrections,
adaptations to specific customer requirements, application improvements,
and so forth. Different team members carry out these activities simultane-
ously, although they may take place at different sites. As a result, serious
dangers arise, whether of misidentification of the versions or releases, loss of
the records delineating the changes implemented, or loss of documentation.
Consequently failures may be caused.

Configuration management deals with these hazards by introducing pro-
cedures to control the change process. These procedures relate to the
approval of changes, the recording of those changes performed, the issuing
of new software versions and releases, the recording of the version and
release specifications of the software installed in each site, and the preven-
tion of any changes in approved versions and releases once they are issued.
Most configuration management systems implement computerized tools to
accomplish their tasks. These computerized systems provide the updated and
proper versions of the installed software for purposes of further development
or correction. Software configuration procedures generally authorize an
administrator or a configuration management committee to manage all the
required configuration management operations.

4.4.6 Documentation control

SQA requires the application of measures to ensure the efficient long-term
availability of major documents related to software development (“con-
trolled documents”). The purpose of one type of controlled document — the
quality record — is mainly to provide evidence of the SQA system’s perform-
ance. Documentation control therefore represents one of the building blocks
of any SQA system.

Documentation control functions refer mainly to customer requirement
documents, contract documents, design reports, project plans, development
standards, etc. Documentation control activities entail:

Definition of the types of controlled documents needed
Specification of the formats, document identification methods, etc.
Definition of review and approval processes for each controlled document

m
m
m
m Definition of the archive storage methods.

juswanoldwi pue uojjuaAald 1043 10) Sjusuodwod aindnIISeIU| 'Y ‘ A

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ %

Controlled documents contain information important to the long-term
development and maintenance of the software system, such as software test
results, design review (DR) reports, problem reports, and audit reports.
Quality records mainly contribute to the system’s ability to respond to cus-
tomer claims in the future.

4.5 Management SQA components

Managerial SQA components support the managerial control of software
development projects and maintenance services. Control components include:

m Project progress control (including maintenance contract control)
m Software quality metrics
m Software quality costs.

4.5.1 Project progress control

The main objective of project progress control components is to detect the
appearance of any situation that may induce deviations from the project’s
plans and maintenance service performance. Clearly, the effectiveness and
efficiency of the corrective measures implemented is dependent on the time-
ly discovery of undesirable situations.

Project control activities focus on:

Resource usage
Schedules
Risk management activities

The budget.

4.5.2 Software quality metrics

Measurement of the various aspects of software quality is considered to be
an effective tool for the support of control activities and the initiation of
process improvements during the development and the maintenance phases.
These measurements apply to the functional quality, productivity, and orga-
nizational aspects of the project.

Among the software quality metrics available or still in the process of
development, we can list metrics for:

Quality of software development and maintenance activities
Development teams’ productivity

Help desk and maintenance teams’ productivity

Software faults density

Schedule deviations.

4.5.3 Software quality costs

The quality costs incurred by software development and application are,
according to the extended quality costs model, the costs of control (preven-
tion costs, appraisal costs, and managerial preparation and control costs)
combined with the costs of failure (internal failure costs, external failure
costs, and managerial failure costs). Management is especially interested in
the total sum of the quality costs. It is believed that up to a certain level,
expanding the resources allocated to control activities yields much larger
savings in failure costs while reducing total quality costs. Accordingly, man-
agement tends to exhibit greater readiness to allocate funds to profitable
proposals to improve application of existing SQA system components and
further development of new components.

With respect to the specific SQA strategy applied, analysis of software
quality costs can direct SQA efforts to the improvement of activities that
cause significant failures with their attendant high failure costs or, alter-
natively, to make expensive control activities more efficient. This analysis,
by directing attention to the teams whose activities keep their quality costs
substantially below the average, enables others to learn from them and
reproduce their success. Concomitantly, quality cost analysis can help
identify those teams whose ineffective quality assurance efforts result in
higher than average quality costs. The results can then be used to help the
teams improve.

4.6 SQA standards, system certification, and assessment
components

External tools offer another avenue for achieving the goals of software quali-
ty assurance. Specifically, the main objectives of this class of components are:

(1) Utilization of international professional knowledge.
(2) Improvement of coordination with other organizations’ quality systems.

(3) Objective professional evaluation and measurement of the achievements
of the organization’s quality systems.

The standards available may be classified into two main sub-classes: quality
management standards and project process standards. Either or both of the
two sub-classes can be required by the customer and stipulated in the accom-
panying contractual agreements.

4.6.1 Quality management standards

The organization can clearly benefit from quality standards of the second
sub-class that guide the management of software development, maintenance,

SjuauO0duWI0d JUBWSSISSE puR ‘U0IILII11Id) WIISAS ‘Spiepuels WOS 9°% ‘ &

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ S

and infrastructure. These standards focus on what is required and leave the
decision about how to achieve it to the organization. The application of a
managerial quality system provides a fairly objective assessment of the orga-
nization’s achievements. Organizations that comply with quality
achievement requirements can then seek SQA certification. The most famil-
iar examples of this type of standard are:

m SEI CMM assessment standard
m ISO 9001 and ISO 9000-3 standards.

4.6.2 Project process standards

Project process standards are professional standards that provide method-
ological guidelines (dealing with the question of “how”) for the development
team. Well-known examples of this type of standards are:

m IEEE 1012 standard
m ISO/IEC 12207 standard.

4.7 Organizing for SQA — the human components

The preceding section pointed out that SQA components cannot be applied
in an organizational vacuum: they require an organizational base. This base
includes the organization’s management, software testing personnel and
SQA units in addition to professionals and other practitioners interested in
software quality (SQA trustees, SQA committee members and SQA forum
members). All these form the organizational software quality framework or,
in our terms, the SQA organizational base. The main objectives of the SQA
organizational base are as follows:

m To develop and support implementation of SQA components.
m To detect deviations from SQA procedures and methodology.
m To suggest improvements to SQA components.

Although the entire SQA organizational base shares these objectives, each
segment of the organizational base concentrates on specific tasks.

4.7.1 Management’s role in SQA

The responsibilities of top management (through the executive in charge of
software quality), departmental management and project management
include the following:

m Definition of the quality policy
m Effective follow-up of quality policy implementation

Allocation of sufficient resources to implement quality policy
Assignment of adequate staff

Follow-up of compliance of quality assurance procedures
Solutions of schedule, budget and customer relations difficulties.

4.7.2 The SQA unit

This unit and software testers are the only parts of the SQA organizational base
that devote themselves full-time to SQA matters. All other segments of the SQA
organizational base (managerial and professional staff) contribute only some of
their time to software quality issues. Thus, the SQA unit’s task is to serve as the
main moving force, initiator, and coordinator of the SQA system and its appli-
cation. This task can be broken down into a number of primary roles:

m Preparation of annual quality programs

m Consultation with in-house staff and outside experts on software
quality issues

m Conduct of internal quality assurance audits

m Leadership of quality assurance various committees

m Support of existing quality assurance infrastructure components and their
updates, and development of new components.

4.7.3 SQA trustees, committees and forums

SQA trustees are members of development and maintenance teams who have
a special interest in software quality and are prepared to devote part of their
time to these issues. Their contributions include:

Solving team or unit local quality problems

Detecting deviations from quality procedures and instructions
Initiating improvements in SQA components

Reporting to the SQA unit about quality issues in their team or unit.

SQA committee members are members of various software development and
maintenance units, and are usually appointed for term or ad hoc service. The
main issues dealt with by the committees are:

m Solution of software quality problems.

® Analysis of problem and failure records as well as other records, followed
by initiation of corrective and preventive actions when appropriate.

m Initiation and development of new procedures and instructions; updating
existing materials.

m Initiation and development of new SQA components and improvement of
existing components.

sjusuodwod uewny sy} — YOS 104 SuiziuediQ /L'y ‘ iy

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ N

SQA forums are composed of professionals and practitioners who meet
and/or maintain an Internet site on a voluntary basis for discussion of qual-
ity issues pertaining to development and maintenance processes. They share
their experiences and difficulties as well as try to initiate improvements in the
software process. The forums can therefore be considered as important
sources of information and SQA initiatives.

4.8 Considerations guiding construction of an
organization’s SQA system

Software quality assurance systems differ among themselves, showing the
flexibility inherent in the construction of such systems. Moreover, variations
in the characteristics of the particular organizations using SQA systems are
reflected in the considerations applied, which means that different organiza-
tions employ different SQA systems.

Decisions regarding the organization’s software quality management sys-
tem fall into two main categories:

(a) The SQA organizational base

(b) The SQA components to be implemented within the organization and
the extent of their use.

These decisions are affected by a number of fundamental considerations that
reflect the characteristics of (a) the organization, (b) the software develop-
ment projects and maintenance services to be performed, and (c) the
organization’s professional staff. The main considerations are as follows.

Organizational considerations:

m The type of software development clientele. Possible clienteles include
buyers of software packages, customers of custom-made software pack-
ages, and internal clientele (the organization’s departments and
sub-units).

m The type of software maintenance clientele. The maintenance clienteles
may differ substantially from the software development clienteles. For
example, an internal maintenance unit may serve purchased software
packages or custom-made software specially developed for the organiza-
tion’s departments by software houses. Also, a software house may
employ a subcontractor to maintain its software packages sold to clients
during the warranty period and afterwards.

m The range of products. The possible situations vary from a wide range of
products to a limited range that includes specialized products and/or services.

m The size of the organization. A common measure of the size of an organ-
ization is the number of professionals employed. In general, the larger the

number of professionals occupied by the organization, the greater the
number of different specializations, and the greater the variety of SQA
components developed and applied.

m The degree and nature of cooperation with other organizations carrying
out related projects. The range of cooperative options available covers
organizations that carry out entire projects independently (no cooperation),
organizations that undertake projects with partners, and organizations
that employ subcontractors to complete specific parts of a project.
Usually, the greater the cooperation the greater the number of required
SQA components.

= Optimization objectives. The organization is required to select SQA com-
ponents while taking into account the optimal combined contribution in
the following areas: (a) software quality, (b) team productivity, (c) process
efficiency, and (d) financial savings.

Project and maintenance service considerations:

m The level of software complexity and difficulty. Complexity and difficul-
ties can be caused by the algorithms applied, the project’s size, the variety
of development tools used, interfaces to other software and firmware sys-
tems required, and so forth.

m The degree of staff experience with project technology. Experience can
reduce the resources required, the rate of software errors, and the time
required for project completion. Usually, the greater the staff’s experi-
ence, the fewer the SQA components required.

m The extent of software reuse in new projects. Higher proportions of soft-
ware reuse allow for the reduction of SQA efforts (staff, finances, time,
etc.) and the employment of fewer SQA components within the project.

Professional staff considerations:

m Professional qualifications. In general, a highly qualified professional
staff usually enables a reduction in the SQA efforts required to complete
and maintain a project.

m Level of acquaintance with team members. How well acquainted the
team members are with each other and the level of acquaintance of the
department with the team members represents an oft-neglected SQA con-
sideration. Teams can be composed of individuals who have worked
together for a long time, or who have only recently met. At the same time,
teams may contain differing proportions of recently hired employees.
Projects performed by teams who have not worked together or have
served the organization for only a short time require greater and more
intense SQA efforts due to the uncertainty surrounding the members’
ability to cooperate and coordinate among themselves as well as the
uncertainty about their professional experience and qualifications.

wa1sAs yDS S.uoljeziuedio ue JO UOI}INIISUOD SUIPINS SUOIJRIBPISUO) 81 ‘ 3

walsAs aoueinsse Aljenb a1em)jos jo syuauodwo) ¥ ‘ IN

Frame 4.2 summarizes the main considerations listed above.

m The main considerations affecting the use of the

SQA components

Organizational considerations

Type of software development clientele
Type of software maintenance clientele
Range of software products

Size of the organization

Degree and nature of cooperation with other organizations carrying out
related projects

Optimization objectives

Project and maintenance service considerations

Level of complexity and difficulty
Degrees of experience with the project technology
Extent of software reuse in the new projects

Professional staff considerations

Professional qualifications
Level of acquaintance with team members

part Il

Pre-project software quality
components

Contract review

5.1 Introduction: the CFV Project completion celebration 78
5.2 The contract review process and its stages 79
5.3 Contract review objectives 80
5.3.1 Proposal draft review objectives 80
5.3.2 Contract draft review objectives 82
5.4 Implementation of a contract review 82
5.4.1 Factors affecting the extent of a contract review 82
5.4.2 Who performs a contract review? 83
5.4.3 Implementation of a contract review for a major proposal 83
5.5 Contract review subjects 85
5.6 Contract reviews for internal projects 85
Summary 87
Selected bibliography 88
Review questions 89
Topics for discussion 89
Appendix 5A: Proposal draft reviews — subjects checklist 92
Appendix 5B: Contract draft review — subjects checklist 94

A bad contract is always an undesirable event. From the viewpoint of SQA,
a bad contract — usually characterized by loosely defined requirements, and
unrealistic budgets and schedules — is expected to yield low-quality software.
So, it is natural for an SQA program to begin its preventive quality assurance
efforts with a review of the proposal draft and, later, the contract draft
(“contract review” covers both activities). The two reviews are aimed at
improving the budget and timetable that provide the basis for the proposal
and the subsequent contract, and revealing potential pitfalls at an early
enough stage (in the proposal draft and in the contract draft).

This chapter is dedicated to the study of the objectives of contract review
and the wide range of review subjects that correspond to these objectives. The
contract review process originates in the customer—supplier relationship, and
is expected to make a substantial contribution to internal projects as well.

N
oo

MolAal]Deljuo) 9

After completing this chapter, you will be able to:

Explain the two contract review stages.

List the objectives of each stage of the contract review.

Identify the factors that affect the extent of the review.

Identify the difficulties in performing a major contract review.

Explain the recommended avenues for implementing a major contract review.
Discuss the importance of carrying out a contract review for internal projects.

5.1 Introduction: the CFV Project completion celebration

A happy gathering of the CFV project team at a popular restaurant down-
town was called to celebrate the successful completion of a 10-month project
for Carnegie Fruits and Vegetables, a produce wholesaler. The new informa-
tion system registers product receipts from growers, processes clients’ orders
and produce shipments to clients (greengrocers and supermarkets), bills
clients, and calculates payments made to the growers.

The team members were proud to emphasize that the project was conducted
in full as originally scheduled. The team was especially jubilant as earlier that
morning each member had received a nice bonus for finishing on time.

The third speaker, the software company’s Vice President for Finance,
altered the pleasant atmosphere by mentioning that this very successful project
had actually lost about $90000. During his remarks, he praised the planners
for their good estimates of the resources needed for the analysis and design
phase, and for the plans for broad reuse of software from other systems that
were, this time, completely realized. “The only phase where our estimates
failed was one of the project’s final phases, the client’s instruction, that where
the client’s staff are instructed on how to use the new information system. It
now appears that no one had read the relevant RFP (requirement for pro-
posal) section carefully enough. This section stated in a rather innocuous
manner that the personnel in all the CFV branches where the software was
to be installed would be instructed in its use by the software supplier.” After
a short pause he continued thus: “Nobody tried to find out how many
branches our client operates. Nobody mentioned that CFV operates 19
branches — six of them overseas — before signing the contract!” He continued:
“We tried to renegotiate the installation and instruction budget items with
the client, but the client insisted on sticking to the original contract.”
Though no names were mentioned, it was clear that he blamed the sales
negotiating team for the loss.

Similar, and in many cases much heavier, losses stem from sloppily writ-
ten proposals or poorly understood contracts. Shallow and quick resource
estimates, as well as exaggerated software sales efforts, have led to unrealis-
tic schedules and budgets, or to unrealistic professional commitments. A
proposal suffering from one of these faults or, worse, a combination of them
and that later becomes a contract provides a certain recipe for project or

service failure. It is clear that unrealistic professional commitments lead to
failure to achieve the required software quality. Furthermore, in most cases,
schedule and budget failures are accompanied by lower than acceptable soft-
ware quality, due to pressures exerted on team members by management “to
save time” and “to save resources”. We can quite unrestrictedly state that
such excessive pressures eventually lead to high rates of software failure.

Contract review is the software quality element that reduces the proba-
bility of such undesirable situations. Contract review is a requirement by the
ISO 9001 standard and ISO 9000-3 Guidelines (see Sec. 4.3 of ISO (1997)
and Sec. 7.2 of ISO/IEC (2001)). See Oskarsson and Glass (1996) for a dis-
cussion of some application aspects of contract review.

5.2 The contract review process and its stages

Several situations can lead a software company (“the supplier”) to sign a
contract with a customer. The most common are:

(1) Participation in a tender.

(2) Submission of a proposal according to the customer’s RFP.

(3) Receipt of an order from a company’s customer.

(4) Receipt of an internal request or order from another department in

the organization.

Contract review is the SQA component devised to guide review drafts of
proposal and contract documents. If applicable, contract review also pro-
vides oversight of the contacts carried out with potential project partners and
subcontractors. The review process itself is conducted in two stages:

m Stage One — Review of the proposal draft prior to submission to the
potential customer (“proposal draft review”). This stage reviews the final
proposal draft and the proposal’s foundations: customer’s requirement
documents, customer’s additional details and explanations of the
requirements, cost and resources estimates, existing contracts or contract
drafts of the supplier with partners and subcontractors.

m Stage Two — Review of contract draft prior to signing (“contract draft
review”). This stage reviews the contract draft on the basis of the pro-
posal and the understandings (including changes) reached during the
contract negotiations sessions.

The processes of review can begin once the relevant draft document has been
completed. The individuals who perform the review thoroughly examine the
draft while referring to a comprehensive range of review subjects. A check-
list is very helpful for assuring the full coverage of relevant subjects (see
Appendices SA and 5B).

sa8e)S S}l pue $S9204d M3IABI JORIIUOD BYL 7°6 ‘ 3

0
o

MolAal]Deljuo) 9

After the completion of a review stage it is required that the necessary

changes, additions and corrections are introduced by the proposal team
(after the proposal draft review) and by the legal department (after the con-
tract draft review).

5.3 Contract review objectives

As can be expected, the two contract review stages have different objectives,
which we detail in the following.

5.3.1 Proposal draft review objectives

The objective of the proposal draft review is to make sure that the following
activities have been satisfactorily carried out.

(1)

Customer requirements have been clarified and documented.

RFP documents and similar technical documents can be too general and
imprecise for the project’s purposes. As a result, additional details
should be obtained from the customer. Clarifications of vague require-
ments and their updates should be recorded in a separate document that
is approved by both the customer and the software firm.

Alternative approaches for carrying out the project have been examined.

Often, promising and suitable alternatives on which to present a propos-
al have not been adequately reviewed (if at all) by the proposal team. This
stipulation refers especially to alternatives encompassing software reuse,
and partnerships or subcontracting with firms that have specialized
knowledge or staff that can qualify for meeting the proposal’s terms.

Formal aspects of the relationship between the customer and the soft-
ware firm have been specified.

The proposal should define formalities that include:

Customer communication and interface channels
Project deliverables and acceptance criteria
Formal phase approval process

Customer design and test follow-up method
Customer change request procedure.

Identification of development risks.

Development risks, such as insufficient professional know-how regard-
ing the project’s professional area or the use of required development
tools, need to be identified and resolved. For a comprehensive descrip-
tion of identification of software risk items and methods for risk
management actions, see Appendix 6A.

Adequate estimation of project resources and timetable.

Resources estimation refers to professional staff as well as the project’s
budget, including subcontractors’ fees. Scheduling estimates should take into
account the time requirements of all the parties participating in the project.

Implementation tip

In some situations, a supplier deliberately offers a below-cost proposal,
considering factors such as sales potential. In these cases, where the proposal is
based on realistic estimates of schedule, budget and professional capabilities,
the loss incurred is considered to be a calculated loss, not a contract failure.

(6) Examination of the company’s capacity with respect to the project.

This examination should consider professional competence as well as
the availability of the required team members and development facilities
on the scheduled time.

(7) Examination of the customer’s capacity to meet his commitments.

This examination refers to the customer’s financial and organizational
capacities, such as personnel recruitment and training, installation of the
required hardware, and upgrading of its communications equipment.

(8) Definition of partner and subcontractor participation.

This covers quality assurance issues, payment schedules, distribution of
project income/profits, and cooperation between project management
and teams.

(9) Definition and protection of proprietary rights.

This factor is of vital importance in cases where reused software is insert-
ed into a new package or when rights for future reuse of the current
software need to be decided. This item also refers to the use of propri-
etary files of data crucial for operating the system and security measures.

The objectives of a proposal draft review are summarized in Frame 5.1.

m Proposal draft review objectives

The nine proposal draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. Customer requirements have been clarified and documented.

2. Alternative approaches for carrying out the project have been examined.

w

Formal aspects of the relationship between the customer and the software
firm have been specified.

Identification of development risks.

Adequate estimation of project resources and timetable have been prepared.
Examination of the firm’s capacity with respect to the project.

Examination of the customer’s capacity to fulfill his commitments.

Definition of partner and subcontractor participation conditions.

e

Definition and protection of proprietary rights.

S9AI1129[(0 M3IAS] 1DBIIUOD) €°G ‘ K

82

MolAal]Deljuo) 9

5.3.2 Contract draft review objectives

The objectives of the contract draft review are to make sure that the follow-
ing activities have been performed satisfactorily:

(1) No unclarified issues remain in the contract draft.

(2) All the understandings reached between the customer and the firm are to be
fully and correctly documented in the contract and its appendices. These
understandings are meant to resolve all the unclarified issues and differences
between the customer and the firm that have been revealed so far.

(3) No changes, additions, or omissions that have not been discussed and
agreed upon should be introduced into the contract draft. Any change,
whether intentional or not, can result in substantial additional and
unanticipated commitments on the part of the supplier.

The objectives of a contract draft review are summarized in Frame 5.2.

m Contract draft review objectives

The three contract draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. No unclarified issues remain in the contract draft.

2. All understandings reached subsequent to the proposal are correctly
documented.

3. No “new” changes, additions, or omissions have entered the contract draft.

5.4 Implementation of a contract review

Contract reviews vary in their magnitude, depending on the characteristics
of the proposed project. This complexity may be either technical or organi-
zational. Accordingly, different levels of professional effort are justified for
the various contract reviews. Special professional efforts are required for
major proposals.

5.4.1 Factors affecting the extent of a contract review

The most important project factors determining the extent of the contract
review efforts required are:

®m Project magnitude, usually measured in man-month resources.

m Project technical complexity.

m Degree of staff acquaintance with and experience in the project area.
Acquaintance with the project area is frequently linked with software
reuse possibilities; in cases where a high proportion of software reuse is
possible, the extent of the review is reduced.

m Project organizational complexity. The greater the number of organiza-
tions (i.e., partners, subcontractors, and customers) taking part in the
project, the greater the contract review efforts required.

We may therefore assume that “simple” contract reviews will be carried out
by one reviewer, who will focus on a few subjects and invest little time in his
review. However, a large-scale contract review may require the participation
of a team to examine a wide range of subjects, a process demanding the
investment of many working hours.

5.4.2 Who performs a contract review?

The task of contract review can be completed by various individuals, listed
here in ascending order, according to the complexity of the project:

m The leader or another member of the proposal team.
The members of the proposal team.

® An outside professional or a company staff member who is not a mem-
ber of the proposal team.

m A team of outside experts. Usually, a contract review team composed of
outside experts is called in, especially for major proposals (see Section
5.4.3). Outside experts may be called also for contract reviews in small
software development organizations that are unable to find enough ade-
quate team members in their staff.

5.4.3 Implementation of a contract review for a major proposal

Major proposals are proposals for projects characterized by at least some of
the following: very large-scale project, very high technical complexity, new
professional area for the company, and high organizational complexity (real-
ized by a great number of organizations, i.e., partners, subcontractors, and
customers, that take part in the project). Implementation of a contract
review process for a major project usually involves substantial organization-
al difficulties. Some avenues for overcoming these difficulties are suggested
here, following a review of the factors that introduce difficulties to a smooth
completion of the task.

The difficulties of carrying out contract reviews for major proposals
Almost everybody agrees that contract review is a major procedure for
reducing the risks of major project failures. Several substantial, fundamental,

M3IA3J 108JIUO0D B JO uoleluawa)dw| #°g ‘ ®

(0]
~

MolAal]Deljuo) 9

and inherent difficulties in performing the contract review exist, especially for
those situations requiring a review of a major proposal.

Time pressures. Both stages of the contract review, proposal draft review
and contract draft review are usually performed when the tender team is
under considerable time pressures. As a result, each stage of the contract
review has to be completed within a few days to allow for the subsequent
corrections of documents to take place.

Proper contract review requires substantial professional work.
Professional performance of each stage of the contract review requires
investment of substantial professional expertise (the amount of time
required varies, of course, according to the nature of the project).

The potential contract review team members are very busy. The potential
members of the contract review team are often senior staff members and
experts who usually are committed to performing their regular tasks at
the very time that the review is needed. Freeing professional staff can
therefore be a significant logistical problem.

Recommended avenues for implementing major contract reviews

The careful planning of contract reviews is required for their successful com-
pletion. As should be clear by now, this holds doubly for major contract
reviews. It is recommended that the following steps be taken to facilitate the
review process.

The contract review should be scheduled. Contract review activities
should be included in the proposal preparation schedule, leaving suffi-
cient time for the review and the ensuing corrections to be made.

A team should carry out the contract review. Teamwork makes it possi-
ble to distribute the workload among the team members so that each
member of the contract review team can find sufficient time to do his or
her share (which may include preparing a written report that summarizes
his or her findings and recommendations).

A contract review team leader should be appointed. It is important that
the responsibility for organizing, managing and controlling the contract
review activities be defined, preferable by appointing a team leader. The
activities of the team leader include:

— Recruitment of the team members

— Distribution of review tasks among the team’s members

— Coordination between the members of the review team

— Coordination between the review team and the proposal team

— Follow-up of activities, especially compliance with the schedule

— Summarization of the findings and their delivery to the proposal team.

Implementation tip

As contract reviews may impose a substantial workload and additional
pressures on the proposal team, thought should be given to when it may be
appropriate to abstain from conducting a contract review. Such situations may
occur with small-scale projects, or small- to medium-scale cost-plus projects.
Contract review procedures should therefore define those types of projects for
which a contract review is not obligatory.

For other defined types of “simple” projects, it is recommended that
authority be given to a senior manager to make the decision as to whether to
perform the review.

5.5 Contract review subjects

Contract reviews examine many subjects, based on the contract review
objectives. Checklists are useful devices for helping review teams to organize
their work and achieve high coverage of the relevant subjects. It is clear that
many of the subjects on these lists are irrelevant for any specific project. At
the same time, even a comprehensive checklist may exclude some important
subjects relevant to a given project proposal. It is the task of the contract
review team, but especially of its leader, to determine the list of subjects per-
tinent for the specific project proposal.

Lists of contract review subjects, classified according to contract review
objectives, are presented in the appendices to this chapter:

m Appendix 5A: Proposal draft review — subjects checklist
m Appendix 5B: Contract draft review — subjects checklist.

5.6 Contract reviews for internal projects

A substantial number, if not the majority, of software projects are internal
projects — “in-house” projects — carried out by one unit of an organization
for another unit of the same organization. In such cases, the software devel-
opment unit is the supplier, while the other unit can be considered the
customer. Typical internal projects and their in-house customers are listed in
Table 5.1.

Frequently, internal software development projects are not based on
what would be considered a complete customer—supplier relationship. In
many cases, these projects are based on general agreements, with goodwill
playing an important role in the relationships between the two units. It fol-
lows that the developing unit will perform only a short and “mild” contract
review, or none at all.

s103(oud |eUIBIUI 1O) SMIIARI }0RIIUOD) 9°G ‘ x

o0
(o)

MolAal]Deljuo) 9

Table 5.1: Typical internal projects and their in-house customers

Type of internal
project

(1) Administrative or

operative software to be
applied internally

(2) Software packages

originally intended to be
sold to the public as
“off-the-shelf” packages

The in-house
customers

Administration and
operating units

Software marketing
department

Project examples

Sales and inventory systems
Financial resource
management systems

Human resource management

systems

Computer games
Educational software
Word processors
Sales and inventory

management software
packages

Electronic instrumentation
and control products
Household amusement
equipment and machinery
Advanced toys

Electronic and mechanical
product development
departments

(3) Firmware to be
embedded in the
company’s products

Unfortunately, loose relationships are usually characterized by insuffi-
cient examination of the project’s requirements, its schedule, resources and
development risks. As a result, the following problems are likely to arise:

(1) Inadequate definition of project requirements.
(2) Poor estimates of required resources.

(3) Poor timetable/scheduling.

(4) Inadequate awareness of development risks.

As this list indicates, we can easily conclude that in-house projects performed
for internal customers are more prone to failure than are outside-contracted
projects. The potential disadvantages of the loose relationships evidenced by
internal projects are shown in Table 5.2.

It could be concluded that the customer—supplier relationship and con-
tract review which proved to be fruitful for external projects should be
applied for internal projects as well. The chances of avoiding the above-
mentioned potential problems can be considerably improved by implement-
ing procedures that will define:

® An adequate proposal for the internal project

m Applying a proper contract review process for internal projects

B An adequate agreement between the internal customer and the internal
supplier.

Table 5.2: Disadvantages of “loose relationships” internal projects

Subject Disadvantages to the Disadvantages to the
internal customer internal developer
(1) Inadequate definition Implementation deviates Higher than average change

@

of project
requirements

Poor estimate of
required resources

from needed applications
Low satisfaction

Unrealistic expectations
about project feasibility

requirements
Wasted resources due to
introducing avoidable changes

Substantial deviations from
development budget

Friction between units induced
by requirements for budget
additions

(3) Poortimetable Missing scheduled dates Development activities are
for beginning distribution under time pressures and tend
of new products to suffer from low quality
Late project completion causes
delays in freeing staff for their
next project
(4) Inadequate awareness = Customer unprepared for Tardy initiation of efforts to

of development risks

project risks and their
consequences

overcome difficulties

Summary

(1) Explain the two contract review stages.

Proposal draft review. This stage reviews the final proposal draft and the docu-
ments on which it is based: customer documents and customer’s detailed
explanations of the requirements, resource and financial estimates, existing
contracts with partners and subcontractors, etc.

Contract draft review. This stage reviews the contract draft on the basis of the
proposal and the understandings reached during the subsequent negotiations.

(2) List the objectives of contract review.

The objectives of the proposal draft review are to make sure that the following activ-
ities have been completed satisfactorily:

Customer requirements have been clarified and documented.
Alternatives for carrying out the project have been examined.

A formal relationship with the customer has been defined.

Development risks have been identified.

Resources and schedules for the project have been adequately estimated.
The company’s capacity to perform the project has been examined.

The customer’s capacity to fulfill his commitments has been examined.
Partner and subcontractor participation has been defined.

Proprietary rights have been defined and protected.

Mewwns‘ X

0
oo

MolAal]Deljuo) 9

The objectives of the contract draft review are to guarantee satisfactory completion
of the following activities:

No unclarified issues remain in the contract draft.
All understandings subsequent to the proposal are correctly documented.
No changes, additions, or omissions are to be found.

(3) Identify the factors that affect the extent of the contract review.

The efforts to be expended on the contract review depend on the characteristics of
the project. The most important factors are the project magnitude and complexity,
the staff’'s acquaintance with and experience in the project area, and the number
of additional organizations carrying out the project (partners, subcontractors, and
the customer).

(4) \dentify the difficulties in performing a major contract review.

The main difficulties are the pressures of time and the need to invest substantial
professional working hours when the contract review team member is already occu-
pied by other commitments.

(5) Explain the recommended avenues for implementing a major contract review.

To conduct a proper major contract review, one should abide by the following
guidelines:

The contract review should be part of the proposal preparation schedule.
The contract review should be carried out by a team.
A contract review leader should be appointed.

(6) Discuss the importance of carrying out a contract review for internal projects.

The loose relationships maintained between the internal customer and the internal
developer increase the probability of project failure. This trend can be reduced by
adequate procedures that will define the preparation and by applying the same
guidelines used for external project contract review.

Selected bibliography

1. 1SO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards — Part 3: Guidelines for the Application of ISO 9001:1994 to the
Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn, International Organization for Standardization, Geneva.

2. ISO/TIEC (2001) “ISO 9000-3:2001 Software and System Engineering —
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

3. Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Ch. 3, Prentice Hall, Upper Saddle River, NJ.

Review questions

5.1

5.2
5.3

5.4

5.5

5.6

5.7

5.8

The CFV case is described at the beginning of this chapter. From the Vice
President’s short speech, it can be understood that the proposal preparation was
conducted as follows: (a) a negotiating team was appointed by the management,
(b) a proposal was prepared by the negotiating team, (c) management approved
the proposal before it was presented to the customer, (d) management signed
the contract.

(1) Can you suggest steps that would reduce the possible losses caused by a
faulty contract?

(2) What relevant contract review subjects, listed in Appendices 5A and 5B, could
have revealed the contract faults described in the CFV case?

List the various aspects involved with the examination of the customer’s capabilities.
One of the objectives of a contract review is to examine development risks.

(1) List the most common types of development risks.
(2) What proposal team activities are required regarding each of the revealed
development risks?

The extent of a contract review depends on the project’s characteristics.

(1) Describe an imaginary project that requires an intensive and comprehensive
contract review.

(2) Describe an imaginary project where a small-scale contract review would
be adequate.

Performing a contract review raises many difficulties.

(1) List the “built-in” difficulties to carrying out a large-scale contract review.
(2) Listthe steps that should be taken to make a large-scale contract review feasible.

List those issues involved with estimating the resources required for a project that
should be considered by the contract review team.

List the supplier's capability issues that should be considered by the contract
review team.

List the partner and subcontractor participation issues that should be considered
by the contract review team.

Topics for discussion

5.1

MJS, Mount Jackson Systems, signed a contract to develop a comprehensive CRM
(Customer Relations Management) system for a large food preparation corpora-
tion. In order to fulfill the project’s requirements, MJS employed three
subcontractors. MJS’s experience with the subcontractors turned out to be trou-
blesome, especially in regard to not keeping timetables, high rates of software
faults of all kinds, and many interface faults with system parts developed by other

uoIssnasIp 104 soidoy ‘ X

\O
o

MolAal]Deljuo) 9

5.2

5.3

5.4

5.5

participants in the project. The head of the software quality assurance unit stated
that if his unit had carried out the contract review procedure, most of the described
problems would have been averted.

(1) What contract review subject is relevant to this case?
(2) What process would you recommend when applying a contract review in
this case?

An SQA professional claims: “I find all the reasons given for a proposal draft review
to be justified. | also believe that a review contributes to the quality of the pro-
posal, especially in clarifying and precisely defining requirements, and in
preparing more realistic estimates, among other issues. However, once the pro-
posal has been presented to the customer, there is no need for a contract draft
review. The task of reviewing the final negotiations results and the final version of
the contract should be left to the legal department and to management.”

(1) Do you agree with the above statement? List your arguments.
(2) In what situations is a contract draft review not necessary?
(3 In what situations is a contract draft review absolutely necessary?

Many organizations do not apply their contract review procedures to internal proj-
ects even though they perform comprehensive contract reviews for all their
external projects.

(1) List arguments that support this approach.

(2) List arguments that oppose this approach.

(3) Suggest types of internal projects where omission of a contract review could
result in severe damage to the organization (mention the main components of
damage listed for each project type).

One of the objectives of a contract review is to examine the customer’s capability
of fulfilling his commitments. Accordingly, a comprehensive list of contract review
subjects is suggested in Appendix 5A. Some managers believe that because the sup-
plier can sue the customer in the event that he does not fulfill his commitments,
there is no justification to invest resources in reviewing the customer’s capabilities.

(1) Do you agree with these managers?

(2) Ifyou disagree, list your arguments in favor of a comprehensive examination
of the customer’s capabilities.

(3) Canyou describe a real or imaginary situation where a customer’s capability
failures could create substantial direct and indirect damages to the software
developer (“the supplier”)?

A contract draft review of a properly prepared contract document is expected
to yield no negative findings. Still, in reality, discrepancies in contracts do
appear frequently.

(1) List real cases and common situations where such discrepancies could arise.
(2) In what situations are discrepancies in the contract draft expected to be least
likely?

5.6

5.7

5.8

5.9

The examination of alternatives is one of the major tasks of a proposal team, espe-
cially for tender proposals. However, in many cases, important alternatives are
omitted or neglected by the proposal team.

(1) List real cases and common situations where negligence in defining and
examining important alternatives can be expected.
(2) In what situations are these types of discrepancies least likely to occur?

National Software Providers is very interested in the newly developing area of B
(Business Intelligence) for electronic commerce firms. As the company is very keen
to gain experience in this area, they were especially interested in winning a tender
issued by one of the leading cosmetics manufacturers. The proposal team esti-
mated that in order to win the contract, their proposal should not exceed the sum
of $650 000. Accordingly, their quotation was $647 000. As all the team members
were aware that the cost of completing the project by the company’s inexperienced
development department would substantially exceed this sum, they decided that
there was little use in investing efforts to estimate the actual costs of the project.

(1) Do you agree with the team’s decision not to estimate the project’s costs?
(2) Ifyou disagree, what are your arguments in favor of estimating the costs?

Consider the case of a custom-made software package developed by a supplier
according to the unique RFP (request for proposal) specifications of the customer.

(1) What proprietary issues are expected in such a project?
(2) What security issues related to the proprietary rights listed in your answer to
(1) should be examined?

Contract review subjects include a variety of financial issues.

(1) Why should an SQA activity such as contract review be so heavily involved in
financial issues?

(2) Isitlikely that an SQA unit member will be able to review the financial issues?
Who do you believe should do it, and how should the review be organized?

5.10 A contract review can be performed by “insiders” (members of the organization’s

proposal team or other staff members) or by “outsiders”.

(1) What are the advantages and disadvantages of employing outsiders com-
pared with insiders for a proposal draft review?

(2) What are the advantages and disadvantages of employing outsiders com-
pared with insiders for a contract draft review?

5.11 A medium-sized firm submits 5-10 proposals per month, 10%-20% of which

eventually evolve into development contracts. The company takes care to per-
form a thorough project draft review for each of the proposals.

(1) Do the proposal draft reviews performed for each of the individual projects
guarantee that the company will be capable of carrying out all the proposals
that eventually evolve into development contracts? List your arguments.

(2) If your answer to (1) is negative, what measures should be taken to reduce
the risk of being unable to perform the contracts?

uoIssnasIp 104 soidoy ‘ 2

O
N

MolAal]Deljuo) 9

Appendix 5A Proposal draft reviews — subjects checklist

Proposal draft
review objective

1. Customer requirements have
been clarified and documented

2. Alternative approaches for
carrying out the project have
been examined

3. Formal aspects of the
relationship between the
customer and the software
firm have been specified

Proposal draft review subjects

1.1
1.2

1.3

1.4

1.5
1.6

1.7

1.8

1.9

1.10

2.1
2.2
2.3

2.4
2.5

3.1

3.2
3.3

3.4

3.5

3.6

3.7

3.8

The functional requirements.

The customer’s operating environment (hardware,
data communication system, operating system, etc.).
The required interfaces with other software packages
and instrument firmware, etc.

The performance requirements, including workloads
as defined by the number of users and the
characteristics of use.

The system’s reliability.

The system’s usability, as realized in the required
training time for an operator to achieve the required
productivity. The total of training and instruction
efforts to be carried out by the supplier, including
number of trainees and instructed stuff, locations
and duration.

The number of software installations to be
performed by the supplier, including locations.

The warranty period, extent of supplier liability, and
method of providing support.

Proposals for maintenance service provision
extending beyond the warranty period, and its
conditions.

Completion of all the tender requirements, including
information about the project team, certification and
other documents, etc.

Integrating reused and purchased software.
Partners.

Customer’s undertaking to perform in-house
development of some project tasks.
Subcontractors.

Adequate comparison of alternatives.

A coordination and joint control committee,
including its procedures.

The list of documentation that has to be delivered.
The customer’s responsibilities re provision of
facilities, data, and answers to the team’s inquiries.
Indication of the required phase approval by the
customer and the approval procedure.

Customer participation (extent and procedures) in
progress reviews, design reviews, and testing.
Procedures for handling customer change requests
during development and maintenance stages,
including method of costing introduction of changes.
Criteria for project completion, method of approval,
and acceptance.

Procedures for handling customer complaints and
problems detected after acceptance, including
non-conformity to specifications detected after the
warranty period.

Proposal draft
review objective

4. l|dentification of
development risks

5. Adequate estimation of
resources and timetable

6. Examination of the firm’s
capacity to perform the project

7. Examination of customer’s
capacity to fulfill his
commitments

Proposal draft review subjects

3.9

3.10

3.11
3.12

4.1

4.2

5.1

5.2

5.3

5.4

6.1
6.2

6.3

6.4

6.5

7.1

7.2

7.3
7.4

Conditions for granting bonuses for earlier project
completion and penalties for delays.

Conditions to be complied with, including financial
arrangements if part of or the entire project is
cancelled or temporarily halted upon the customer’s
initiative. (Issues include the expected damages to
the firm if such actions are taken at various stages of
the project.)

Service provision conditions during warranty period.
Software maintenance services and conditions,
including customer’s obligation to update his
version of the software as per supplier's demands.

Risks re software modules or parts that require
substantial acquisition of new professional
capabilities.

Risks re possibility of not obtaining needed
hardware and software components according to
schedule.

Man-days required for each project phase and their
cost. Do the estimates include spare resources to
cover for corrections following design reviews, tests,
and so forth?

Do the estimates of man-days include the required
work to prepare the required documentation,
especially the documentation to be delivered to the
customer?

Manpower resources needed to fulfill warranty
obligations and their cost.

Does the project schedule include time required for
reviews, tests, etc. and making the required
corrections?

Professional pool of knowledge.

Availability of specialized staff (on schedule and in
the required numbers).

Availability of computer resources and other
development (including testing) facilities (on
schedule and in the required numbers).

Ability to cope with the customer requirements
demanding use of special development tools or
software development standards.

Warranty and long-term software maintenance
service obligations.

Financial capability, including contract payments
and additional internal investments.

Supply of all the facilities, data and responses to
staff queries as they arise.

Recruitment and training of new and existing staff.
Capacity to complete all task commitments on time
and to the requisite quality.

O
w

1SIPP3Y? $123[gNns — smalaal Yeup jesodoid s xipuaddy

\O
~

MolAal]Deljuo) 9

Proposal draft
review objective

8. Definition of partner and
subcontractor participation
conditions

9. Definition and protection of
software proprietary rights

Proposal draft review subjects

8.1

8.2

8.3

8.4

9.1

9.2

9.3

9.4

Allocation of responsibility for completion of tasks
by the partners, subcontractors, or the customer,
including schedule and method of coordination.
Allocation of payments, including bonuses and
penalties, among partners.

Subcontractor payment schedule, including bonuses
and penalties.

Quality assurance of work performed by
subcontractors, partners and the customer,
including participation in SQA activities (e.g., quality
planning, reviews, tests).

Securing proprietary rights to software purchased
from others.

Securing proprietary rights to data files purchased
from others.

Securing proprietary rights to future reuse of
software developed in custom-made projects.
Securing proprietary rights to software (including
data files) developed by the firm (the supplier) and
his subcontractors during the development period
and while in regular use by the client.

Appendix 5B Contract draft review — subjects checklist

Contract draft
review objective

1. No unclarified issues remain
in the contract draft

2. All understandings reached
subsequent to the proposal
are correctly documented

3. No “new” changes, additions,
or omissions have entered the
contract draft

Contract draft review subjects

1.1

1.2

2.1

2.2

2.3
2.4

3.1

3.2

Supplier's obligations as defined in the contract
draft and its appendices.

Customer’s obligations as defined in the contract
draft and its appendices.

Understandings about the project’s functional
requirements.

Understandings about financial issues, including
payment schedule, bonuses, penalties, etc.
Understandings about the customer’s obligations.
Understandings about partner and subcontractor
obligations, including the supplier's agreements
with external parties.

The contract draft is complete; no contract section or
appendix is missing.

No changes, omissions and additions have been
entered into the agreed document, regarding the
financial issues, the project schedule, or the
customer and partners’ obligations.

Development and
quality plans

6.1
6.2
6.3
6.4

Development plan and quality plan objectives
Elements of the development plan
Elements of the quality plan
Development and quality plans for small projects and for
internal projects
6.4.1 Development plans and quality plans for small projects
6.4.2 Development plans and quality plans for
internal projects

Summary

Selected bibliography
Review questions
Topics for discussion

Appendix 6A: Software development risks and software
risk management

6A.1 Software development risks

6A.2 Risk management activities and measures

6A.3 The risk management process

97
97
101

103
104

105

106
108
109
110

112
112
113
115

Imagine that you have just been appointed head of a sizable project. As is
often the case in the software industry, you come under serious time pres-
sures from the very first day. Because you were a member of the proposal
team and participated in most of the meetings held with the customer’s rep-
resentatives, you are confident that you know all that is necessary to do the
job. You intend to use the proposal plans and internal documents that the
team had prepared as your development and quality plans. You are prepared
to rely on these materials because you know that the proposal and its esti-
mates, including the timetable, staff requirements, list of project documents,
scheduled design reviews, and list of development risks have all been thor-
oughly reviewed by the contract review team.

sue)d Ayjjenb pue juswdojansqg 9 ‘ L

You are therefore a bit disappointed that at this crucial point of the proj-
ect, the Development Department Manager demands that you immediately
prepare new and separate project development plans (“development plan”)
and project quality plans (“quality plan”). When you claim that the com-
pleted proposal and its appendices could serve as the requested plans, the
manager insists that they be updated, with new and more comprehensive
topics added to guarantee the plans’ adequacy. “By the way,” the manager
mentions almost as an aside, “don’t forget that a period of seven months has
elapsed between the proposal preparation and the final signing of the con-
tract. Such a period is a hell of time in our trade”

You should expect that your department manager is right. The effort
invested in preparing the development and quality plans will certainly be
beneficial. You may discover that some team members will not be available
at the scheduled dates due to delays in completion of their current assign-
ments, or that the consulting company that had agreed to provide
professional support in a highly specialized and crucial area has suffered
heavy losses and gone bankrupt in the interim. These are just two of the
types of problems that can arise.

To sum up, the project needs development and quality plans that:

B Are based on proposal materials that have been re-examined and thor-
oughly updated.

m Are more comprehensive than the approved proposal, especially with
respect to schedules, resource estimates, and development risk evaluations.

Include additional subjects, absent from the approved proposal.

B Were prepared at the beginning of the project to sound alerts regarding
scheduling difficulties, potential staff shortages, paucity of development
facilities, problems with meeting contractual milestones, modified devel-
opment risks, and so on.

Development and quality plans are major elements needed for project com-
pliance with 9000.3 standards (see Sections 4.2 and 4.4 of ISO (1997) and
Sections 7.1 and 7.3 of ISO/IEC (2001), and with the IEEE 730 standard
(IEEE, 1998). It is also an important element in the Capability Maturity
Model (CMM) for assessment of software development organization matu-
rity (see Paulk et al., 1995, Sec. 7.2; Humphrey, 1989; Felschow, 1999).
Given their importance, these plans deserve a special chapter.

Therefore, this chapter is dedicated to the study of project development
and quality plans, their objectives and elements.

After completing this chapter, you will be able to:

m Explain the objectives of a development plan and a quality plan.
m Identify the elements of a development plan.
m Identify the elements of a quality plan.

Identify the major software risk items.

Explain the process of software risk management.

Discuss the importance of development and quality plans for small projects.
Discuss the importance of development and quality plans for internal
projects.

6.1 Development plan and quality plan objectives

Planning, as a process, has several objectives, each of which is meant to pre-
pare adequate foundations for the following:

(1)

Scheduling development activities that will lead to the successful and
timely completion of the project, and estimating the required manpow-
er resources and budget.

Recruiting team members and allocating development resources (accord-
ing to activity schedules and manpower resource requirement estimates).

Resolving development risks.
Implementing required SQA activities.

Providing management with data needed for project control.

6.2 Elements of the development plan

Based on the proposal materials, the project’s development plan is prepared
to fulfill the above objectives. The following elements, each applicable to dif-
ferent project components, comprise a project development plan.

(1)

Project products
The development plan includes the following products:

m Design documents specifying dates of completion, indicating those
items to be delivered to the customer (“deliverables”)

m Software products (specifying completion date and installation site)

m Training tasks (specifying dates, participants and sites).

Project interfaces
Project interfaces include:

m Interfaces with existing software packages (software interface)

m Interfaces with other software and/or hardware development teams
that are working on the same system or project (i.e., cooperation and
coordination links)

m Interfaces with existing hardware (hardware interface).

ueld Jusawdo)aAap 9y} Jo SJusWa3 79 ‘ N

sue)d Ayjjenb pue juswdojansqg 9 ‘ 3

(3)

®

&

Project methodology and development tools to be applied at each phase
of the project

Implementation tip

When evaluating the suitability of proposed project methodology and
development tools, one should also take into account the professional
experience of the staff, including the subcontractors’ personnel, even
if temporary.

Software development standards and procedures
A list should be prepared of the software development standards and
procedures to be applied in the project.

The mapping of the development process

Mapping of the development process involves providing detailed defini-
tions of each of the project’s phases. These descriptions include
definitions of inputs and outputs, and the specific activities planned.
Activity descriptions include:

(a) An estimate of the activity’s duration. These estimates are highly
dependent on the experience gained in previous projects.

(b) The logical sequence in which each activity is to be performed,
including a description of each activity’s dependence on previously
completed activities.

(c) The type of professional resources required and estimates of how
much of these resources are necessary for each activity.

Implementation tip

SQA activities, such as design review and software tests, should be

included among the scheduled project activities. The same applies to the
design and code correction activities. Failing to schedule these activities
can cause unanticipated delays in the initiation of subsequent activities.

Several methods are available for scheduling and graphically present-
ing the development process. One of the most commonly used methods is
the GANTT chart, which displays the various activities by horizontal bars
whose lengths are proportional to the activity’s duration. The bars repre-
sent the activities themselves, and are placed vertically, according to their
planned initiation and conclusion. Several computerized tools can prepare
GANTT charts in addition to producing lists of activities by required time
for their beginning and conclusion, and so forth.

More advanced scheduling methodologies, such as CPM and PERT,
both of which belong to the category of critical path analysis, take

sequence dependencies into account in addition to duration of activities.
They enable calculation of the earliest and latest acceptable start times
for each activity. The difference between start times determines the activ-
ity’s scheduling flexibility. Special attention is awarded to those activities
lacking scheduling flexibility (which explains their being called “critical
path” activities), and whose tardy completion may cause delay in the
conclusion of the entire project.

Several software packages, used in conjunction with these method-
ologies, support the planning, reporting and follow-up of project
timetables. An example of a software package of this type is Microsoft
Project™. For a more detailed discussion of scheduling, refer to the lit-
erature dealing with project management.

Project milestones
For each milestone, its completion time and project products (docu-
ments and code) are to be defined.

Project staff organization
The organization plan comprises:

®m Organizational structure: definition of project teams and their tasks,
including teams comprised of a subcontractor’s temporary workers.

m Professional requirements: professional certification, experience in a
specific programming language or development tool, experience with
a specific software product and type, and so forth.

® Number of team members required for each period of time, according
to the activities scheduled. It is expected that teams will commence their
activities at different times, and that their team size may vary from one
period to the next, depending on the planned activities.

® Names of team leaders and team members. Difficulties are expected
to arise with respect to the long-term assignment of staff members to
teams because of unanticipated changes in their current assignments.
Therefore, the names of staff are required to help keep track of their
participation as team members.

Implementation tip

The long-term availability of project staff should be carefully examined. Lags
in completing former assignments may result in delays in joining the project
team, which increases the risk of failing to meet project milestones. In
addition, staff “evaporation” caused by resignations and/or promotions,
phenomena that are particularly frequent in the software industry, can
cause staff shortages. Therefore, estimates of staff availability should be
examined periodically to avoid “surprises”. Early warning of unforeseen
staff shortages makes it easier to resolve the problem.

ueld Jusawdo)aAap 9y} Jo SJusWa3 79 ‘ <

100

sue)d Ayjenb pue juswdojansg 9 ‘

o)

o

(10)

Development facilities

Required development facilities include hardware, software and hard-
ware development tools, office space, and other items. For each facility,
the period required for its use should be indicated on the timetable.

Development risks

Development risks are inherent in any project. To understand their perva-
siveness, and how they can be controlled, we should first define the
concept. A development risk is “a state or property of a development task
or environment, which, if ignored, will increase the likelihood of project
failure” (Ropponen and Lyytinen, 2000). Typical development risks are:

m Technological gaps — Lack of adequate and sufficient professional
knowledge and experience to carry out the demands of the develop-
ment contract.

m Staff shortages — Unanticipated shortfalls of professional staff.

m Interdependence of organizational elements — The likelihood that
suppliers of specialized hardware or software subcontractors, for
example, will not fulfill their obligations on schedule.

The top 10 major software risk items, as listed by Boehm and Ross
(1989), are shown in the Appendix to this chapter in Table 6A.1.
Systematic risk management activities should be initiated to deal with
them. The risk management process includes the following activities:
risk identification, risk evaluation, planning of risk management
actions (RMAs), implementation of RMAs, and monitoring of RMAs.
Software RMAs are incorporated in the development plan.

For further discussion of software development risks and software
risk management, see Appendix 6A.

The growing importance of software risk management is expressed
in the spiral model for software development. To cope with this type of
risk, a special phase dedicated to software risk assessment is assigned
to every cycle of the spiral (Boehm, 1988, 1998).

Control methods

In order to control project implementation, the project manager and the
department management apply a series of monitoring practices when
preparing progress reports and coordinating meetings. A comprehensive
discussion of project control methods is found in Chapter 19.

Project cost estimation

Project cost estimates are based on proposal costs estimates, followed
by a thorough review of their continued relevance based on updated
human resource estimates, contracts negotiated with subcontractors
and suppliers, and so forth. For instance, part of the project, planned
to be carried out by an internal development team, needs to be per-
formed by a subcontractor, due to unavailability of the team. A change
of this nature is usually involved in a substantial additional budget.

The elements comprising a development plan are listed in Frame 6.1.

m The elements comprising a development plan

[EEY
= O

2 N ey o R

Project products, specifying “deliverables”
Project interfaces

Project methodology and development tools
Software development standards and procedures
Map of the development process

Project milestones

Project staff organization

Required development facilities

Development risks and risk management actions
Control methods

. Project cost estimates

Development plan approval
Development plan review and approval is to be completed according to the
procedures applied within the organization.

6.3 Elements of the quality plan

All or some of the following items, depending on the project, comprise the
elements of a project quality plan:

(1)

Quality goals

The term “quality goals” refers to the developed software system’s sub-
stantive quality requirements. Quantitative measures are usually
preferred to qualitative measures when choosing quality goals because
they provide the developer with more objective assessments of software
performance during the development process and system testing.
However, one type of goal is not totally equivalent to the other. The pos-
sible replacement of qualitative with quantitative measures is illustrated
in the following example.

Example

A software system to serve the help desk operations of an electrical appli-
ance manufacturer is to be developed. The help desk system (HDS) is
intended to operate for 100 hours per week. The software quality assur-
ance team was requested to prepare a list of quantitative quality goals
appropriate to certain qualitative requirements, as shown in Table 6.1.

ueyd Ayjenb ayj jo syuswald €9 ‘ §

102

sue)d Ayjenb pue juswdojansg 9 ‘

Table 6.1: Help desk requirements and quantitative goals

HDS qualitative
requirements

The HDS should be
user friendly

The HDS should be
very reliable

The HDS should
operate continuously

The HDS should be
highly efficient

The HDS should
provide high quality
service to the
applying customers

Related quantitative quality goals

A new help desk operator should be able to learn the details
of the HDS following a course lasting less than 8 hours, and
to master operation of the HDS in less than 5 working days.

HDS availability should exceed 99.5% (HDS downtime should not
exceed 30 minutes per week).

The system’s recovery time should not exceed 10 minutes in 99%
of cases of HDS failure.

An HDS operator should be able to handle at least 100 customer
calls per 8-hour shift.

Waiting time for an operator response should not exceed

30 seconds in 99% of the calls. Achievement of this goal depends
on the combination of software features and number of
workstations installed and operated.

The quality goals should reflect the major acceptance criteria indicated
in the customer’s requirement document (i.e., the RFP document). As
such, quality goals serve as measures of the successful achievement of the
customer’s quality requirements.

Planned review activities

The quality plan should provide a complete listing of all planned review
activities: design reviews (DRs), design inspections, code inspections,
and so on, with the following determined for each activity:

m The scope of the review activity

m The type of the review activity

m The schedule of review activities (as defined by its priority and the
succeeding activities of the project process)

m The specific procedures to be applied

m Who is responsible for carrying out the review activity?

Planned software tests

The quality plan should provide a complete list of planned software
tests, with the following designated for each test:

m The unit, integration or the complete system to be tested

m The type of testing activities to be carried out, including specification
of computerized software tests to be applied

m The planned test schedule (as defined by its priority and the succeed-
ing activities of the project process)

m The specific procedures to be applied
m Who is responsible for carrying out the test.

(4) Planned acceptance tests for externally developed software

A complete list of the acceptance tests planned for externally developed
software should be provided within the quality plan. Items to be includ-
ed are (a) purchased software, (b) software developed by subcontractors,
and (c¢) customer-supplied software. The acceptance tests for externally
developed software should parallel those used for internally developed
software tests.

(5) Configuration management

The quality plan should specify configuration management tools and
procedures, including those change-control procedures meant to be
applied throughout the project.

The required software quality plan elements are listed in Frame 6.2.

m Elements of a software quality plan

List of quality goals

Review activities

Software tests

Acceptance tests for software externally developed

v A W N P

Configuration management tools and procedures

The quality plan document, its format and approval

The quality plan may be prepared as part of the development plan or as an
independent document. In some cases, the plan is divided into several docu-
ments by item category, such as DR plan, testing plan, and plan for
externally developed software acceptance tests. Review and approval of the
quality plan should be conducted according to the organization’s standard
procedures for such plans.

6.4 Development and quality plans for small projects
and for internal projects

It is quite natural for project leaders to try to evade the “hassle” of prepar-
ing a development plan and a quality plan (and the hustle surrounding
reviews and plan approvals). This behavior reflects the tendency to avoid
“bureaucracy work” and the sweeping control that customers may attempt

s199/01d Jeusalul Joj pue s1a3(oid jjews 1oy sueld Ayjenb pue juswdo)ansag %9 ‘ §

sue)d Ayjenb pue juswdojansg 9 ‘ §

to exercise. This tendency is especially common in two different situations:
small projects and internal projects. The argument for preparing these plans
for such projects is discussed in the following two sections.

6.4.1 Development plans and quality plans for small projects

Does a project of only 40 working days’ duration, to be performed by one
professional and completed within 12 weeks, justify the investment of a
man-day in order to prepare full-scale development and quality plans?

Does a project to be implemented by three professionals, with a total
investment of 30 man-days and completed within five weeks, require full-
scale plans?

It should be clear that the development and quality plan procedures applica-
ble to large projects cannot be automatically applied to small projects.
Special procedures are needed. These procedures determine how to treat the
project in question with respect to the plans:

(1)

(2)

(3)

Cases/situations where neither development nor quality plans are
required, e.g. projects requiring 15 man-days.

Cases/situations where the decision to prepare the plans is left to the
project leader’s discretion. One example could be a project requiring less
than 50 man-days where no significant software risk item had been iden-
tified — in this case it might be decided that no plans will be prepared.
Another example could be a small but complicated project that has to be
completed within 30 days, in which there is a heavy penalty on not being
completed on time. In this case, planning is needed in order to cope with
the project difficulties.

Cases/situations where development and quality plans are obligatory.

A list of elements recommended for inclusion in development and quality
plans for small projects is shown in Frame 6.3.

m Recommended elements of development and quality

plans for small projects

The development plan:

Project products, indicating “deliverables”
Project benchmarks
Development risks

Estimates of project costs

The quality plan:

Quality goals

Several advantages to “planned” small projects over “unplanned” proj-
ects can be identified, even for “reduced” plans:

(1) A more comprehensive and thorough understanding of the task is attained.
(2) Greater responsibility for meeting obligations can be assigned.

(3) It becomes easier for management and customers to share control of the
project and to identify unexpected delays early on.

(4) Better understandings with respect to the requirements and timetable
can be reached between the developer and the customer.

6.4.2 Development plans and quality plans for internal projects

Internal projects are those projects intended for use by other departments in
the organization or by the entire organization, as well as those projects deal-
ing with software package development for the software market. Common
to all these project types is the fact that no external body participates as cus-
tomer in their development. Internal projects can be of medium or large
scale. Yet even in these cases, there is a tendency to avoid preparation of ade-
quate development and quality plans. The following example illustrates the
negative consequences of an “unplanned” internal project.

Example

The Marketing Department of Toyware Ltd, a new computer games manu-
facturer, had planned to hit the market with “Super-Monster 20007, the
firm’s new, advanced computer game, during the upcoming Christmas sea-
son. The Software Development Department claimed that work on the game
should commence immediately in order to complete the project on time.
Therefore, preparation of a proposal for discussion by the Marketing and
Software Development Departments, and the subsequent preparation of
development and quality plans, were not viewed as necessary. The
Development Department estimated the project budget at $240 000, which
was transferred to the Department. According to the marketing timetable,
system tests were to be completed no later than 1 October so as to allow the
Marketing Department to carry out the required promotion and advertising
campaigns in time for the Christmas sales season.

As the project progressed, it appeared that there might be a delay, but
only at the end of June was it obvious that a three-month delay could not
be avoided. The promotional and advertising activities that had taken place
before 30 June thus became worthless. The project was finally completed
at the end of February. The project’s cost overrun was significant — actual
costs exceeded $385 000 — but most painful was the company’s lost oppor-
tunity to exploit the Christmas market. Last week, the company’s
management decided to avoid any future internal computer game develop-
ment projects.

s199/01d Jeusalul Joj pue s1a3(oid jjews 1oy sueld Ayjenb pue juswdo)ansqg %9 ‘ §

106

sue)d Ayjenb pue juswdojansg 9 ‘

This example makes clear that preparation of full-scale development and
quality plans for internal projects — in addition to regular monitoring — can
be highly beneficial for implementation of internal projects as well.

Software development departments can enjoy the following advantages
of plan preparation:

(1) Avoiding budget overruns. This is of special importance where the prof-
it center system is applied.

(2) Avoiding damage to other projects caused by delays in release of profes-
sionals occupied in an internal project.

(3) Avoiding loss of market status, especially regarding the firm’s reputa-
tion, caused by delayed completion of external projects triggered by late
completion of internal projects.

Internal “customers” can enjoy the following advantages:

(1) Smaller deviations from planned completion dates and smaller budget
overruns.

(2) Better control over the development process, including earlier identifica-
tion of possible delays that enables the search for and resolution of
their causes.

(3) Fewer internal delay damages.
The organization can enjoy these advantages:

(1) Reduced risk of market loss (i.e., opportunity window) due to late
arrival of the product.

(2) Reduced risk of being sued for late supply of products; hence, reduced
penalties for non-compliance with contract demands.

(3) Reduced risk of impairing the firm’s reputation as a reliable software
developer.

(4) Reduced risk of requesting a budget supplement.

Summary

(1) Explain the objectives of development and quality plans.

The plans’ objectives are to provide the basis for:
Scheduling development activities
Recruiting team members and allocating development facilities
Resolving development risks
Implementing required SQA activities
Providing management with needed data for project control.

(2) Identify the elements of a development plan.

Eleven types of elements constitute a development plan:
(1) Project products
(2) Project interfaces
(3) Project methodology and development tools
(4) Software development standards and procedures
(5) Mapping of the development process
(6) Project milestones
(7) Project staff organization
(8) Required development facilities
(9) Development risks
(10) Control methodology
(11) Project cost estimates.

(3) Identify the elements of a quality plan.

Five elements constitute a quality plan:

(1) Quality goals

(2) Planned review activities

(3) Planned software tests

(4) Planned acceptance tests for externally developed software
(5) Planned configuration management.

(4) Identify the major software risk items.

Typical development risks are:
Technological gaps — lack of adequate and sufficient professional knowledge
Staff shortages
Interdependence on other organizations: suppliers, subcontractors, etc.

(5) Explain the process of software risk management.

The activities involved in risk management include planning, implementation, and
monitoring of implementation. The pertinent planning activities are identification of
SRIs, evaluation of those SRIs, and planning RMAs to resolve the SRIs.

(6) Discuss the benefits of preparing development and quality plans for small projects

For small development projects (of not less than 15 man-days), preparation of
development and quality plans is optional. However, one should consider the sub-
stantial advantages obtained by the plan’s developer. The main advantages of plan
preparation are improvements in the developer’s understanding of the task, and
greater commitment to complete the project as planned. In addition, the plan doc-
uments contribute to a better understanding between the developer and the
customer, and easier and more effective project control.

107

Arewwing ‘

108

sue)d Ayjenb pue juswdojansg 9 ‘

7)

Discuss the benefits of preparing development and quality plans for
internal projects.

It is recommended that internal projects, undertaken on behalf of other depart-
ments and for development of software packages geared toward the market, be
treated as “regular projects”. This implies that full-scale development and quality
plans are to be prepared. Their benefits include:

(@) The development department will avoid losses incurred by unrealistic timeta-
bles and budgets, as well as the consequent damage to other projects and to
the firm’s reputation.

(b) The internal “customer” will enjoy reduced risk of late completion and budget
overruns in addition to and by improved project control and coordination with
the developer.

(c) The firm will enjoy reduced risk of its software product’s late entry into the mar-
ket, reduced risk of a decline in its reputation resulting from late supply, and
reduced risk of budget overruns.

Selected bibliography

1

2

10

11

12

Barki, H., Rivard, S. and Talbot, J. (1993). “Toward an assessment of software
development risk™, Journal of Management Information Systems, 10(2), 203-225.
Boehm, B. W. (1988). “A spiral model of software development and enhance-
ment”, Computer, 21(5), 61-72.

Boehm, B. W. (1991). “Software risk management: principles and practices”,
IEEE Software, January, 32-41.

Boehm, B. W. (1998). “Using the Win-Win spiral model: a case study”,
Computer, 31(7), 33-44.

Boehm, B. W. and Ross, R. (1989). “Theory-W project management: principles
and examples”, IEEE Transactions on Software Engineering, 15, 902-916.
Carnegie-Mellon University Software Engineering Institute (1994) The
Capability Maturity Model: Guidlines for Improving the Software Process,
Addison-Wesley, Reading, MA.

Felschow, A. (1999). “Understanding the Capability Maturity Model (CMM)
and the role of SQA in Software Development Maturity”, in G. G. Schulmeyer
and J. I. McManus (eds), Handbook of Software Quality Assurance, 3rd edn,
Prentice Hall, Upper Saddle River, NJ, pp. 329-350.

Hall, E. M. (1998) Managing Risk — Methods for Software Systems
Development, Addison-Wesley, Reading, MA.

Humphrey, W. S. (1989) Managing the Software Process, Addison-Wesley,
Reading, MA.

IEEE (1998) “IEEE Std 730-1998 — IEEE Standard for Software Quality
Assurance Plans”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York,

IEEE (2001) “IEEE Std 1540-2001 — IEEE Standard for Software Life Cycle
Processes - Risk Management”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.
ISO (1997) ISO 9000-3:1997(E), Quality Management and Quality Assurance
Standards — Part 3: Guidelines for the Application of ISO 9001:1994 to the

13

14

15

16

17

18

19

Development, Supply, Installation and Maintenance of Computer Software, 2nd
edn. International Organization for Standardization (ISO), Geneva.

ISO/IEC (2001) “ISO 9000-3:2001 Software and System Engineering —
Guidelines for the Application of ISO 9001:2000 to Software, Final draft”,
International Organization for Standardization (ISO), Geneva, unpublished
draft, December 2001.

Jones, C. (1994) Assessment and Control of Software Risks, Yourdon Press,
Prentice Hall, Upper Saddle River, NJ.

Karolak, D. W. (1996) Software Engineering Risk Management, IEEE Computer
Society Press, Los Alamitos, CA.

Keil, M., Cule, P. C., Lyytinen, K. and Schmidt, R. C. (1998). “A framework for
identifying software project risks”, Communications of the ACM, 41(11),
76-83.

Oskarsson, O. and Glass, R. L. (1996) An ISO 9000 Approach to Building
Quality Software, Ch. 3, Prentice Hall. Upper Saddle River, NJ.

Paulk, M. C., Weber, C. V., Curtis, B. and Chrissis, M. B. (1995). The Capability
Maturity Model: Guidelines for Improving the Software Process, Addison-
Wesley, Reading, MA.

Ropponen, J. and Lyytinen, K. (2000) “Components of Software Development
Risk: How to Address Them? A Project Manager Survey”, IEEE Transactions on
Software Engineering, 26 (2), pp. 98-111.

Review questions

6.1

6.2

6.3

6.4

Significant similarity exists between the proposal draft review and the develop-
ment plan.

(1) Compare these documents with reference to the subjects reviewed.
(2) Compare these documents while referring to the aim of preparing the individ-
ual documents.

Development and quality plans have five objectives.

(1) Canyou list the objectives?
(2) Suggest ways in which each objective contributes to the successful and time-
ly completion of the project.

Some development elements are included in the requirement document, yet are
not compiled by development planners.

(1) Which elements of the development plan belong to this category?
(2) Explain the importance of gathering this information from the customer’s
documents.

Development process mapping is one of the most important elements of the
development plan.

(1) List the possible phases of the development process.

(2) List possible inputs and outputs for each of the phases suggested in (1).

(3) What components of each activity, as associated with each project phase,
should be described in the development plan?

[EEN
suollsanb mainay ‘ 3

110

sue)d Ayjenb pue juswdojansg 9 ‘

6.5

6.6

6.7

6.8

The project’s organization is an important element of the development plan.

(1) Listthe components of the organization element.

(2) Which of the components in (1) are based on components of project mapping?

(3) Why is it necessary to mention team members by name? Isn’t it sufficient to
list the number of team members by their expertise as required for each phase
of the project?

Boehm and Ross (1989) mentioned 10 major software risk items.

(1) Canvyou list the 10 SRIs?

(2) For each of the SRIs mentioned in (1), suggest the three most effective RMAs
for handling them (refer to Table 6A.2 in the Appendix to this chapter). Explain
your choice.

Only four out of the 11 elements of a development plan and only one out of five of
the quality plan are considered obligatory for small projects.

(1) Do you agree with this choice? If yes, list your main arguments.
(2) If you do not agree with this choice, present your improved list and explain
your choice.

“Preparing full-scale development and quality plans for internal projects, and
applying regular full customer—supplier relationships for the implementation of
internal projects, is highly beneficial to both sides.”

(1) Explain the benefits of these procedures to the developer.
(2) Explain the benefits to internal customers.

Topics for discussion

6.1

6.2

“As long as the proposal was properly prepared and approved, following an ade-
quate contract review, there is no justification for redoing all this work. Its resource
estimates and schedule can serve as the project’s plan” You often hear claims
like this one.

(1) Do you agree with this claim? If not, list your arguments against it.

(2) Suggest situations where it is clear that the proposal and its materials can
serve as development and quality plans.

(3) Suggest situations where it is clear that the proposal and its materials cannot
serve as development and quality plans.

Martin Adams, an experienced project leader at David’s Software Ltd, a medium-
sized software house, has been appointed project leader for development of an
advanced help desk software system for a leading home appliance maintenance
service. This is the 12th help desk system developed by his department in the last
three years.

The current project is somewhat special with respect to its timetable. The con-
tract with the customer was signed six days after submission of the proposal, and
the development team is scheduled to begin working at full capacity, with eight

team members, 10 days later. The contract offers a significant early completion
bonus for each week below 26 weeks, but determines high late completion penal-
ties for each week after 30 weeks.

In a meeting with his superior, Adams claims that the comprehensive propos-
al documentation “as is”, which has been thoroughly checked by the contract
review team, should serve as the project’s development and quality plans. His
superior does not agree with him and demands that he immediately prepare com-
prehensive project and quality plans, according to company procedures.

(1) Do you agree with Adams? If yes, list the arguments that support his claim.

(2) Do you agree with his superior? If yes, list the arguments that support the
superior’s claim.

(3) Considering the circumstances of the project, what, in your opinion, should be
done in this case?

(4) Comparing the circumstances described here to those of the opening anec-
dote, are there any justifications for different recommendations?

6.3 This topic refers to Section 6A.3 in the Appendix to this chapter. An experienced
project leader has identified six SRIs inherent in his project and estimated their
Est(dam) and Prob(mat). The results are listed in the following table:

No. SRIs Prob(mat) Est(dam) (S)

1 Networking at the customer’s 23 sites will not 0.2 150 000
be completed on time

2 Subcontracted modules will fail the 0.5 12 000
acceptance tests

3 The programming team will be 2-3 0.7 50 000
programmers short for more than 2 months

4 The software quality assurance activities will 0.05 600 000
fail to detect major software errors in the
complicated discount module; these errors
will be discovered by the customer during the
guarantee period

5 The final test of the user’s guide will detect 0.3 2500
significant errors that will cause a delay of
more than 2 weeks in delivery to the customer

6 The planned server’s capacity will be found 0.25 40 000
insufficient in the final system tests

(1) Determine the priorities for these SRIs, using the formula given in Section 6A. 3.

(2) Canyou suggest an alternative method for prioritizing the SRIs?

(3) Determine the SRl priorities according to the alternative method. Compare the
resulting priority list with that obtained in (1), and discuss the implications of
the differences, if any.

[EEN
uoIssnasIp 104 soidoy ‘ =

112

sue)d Ayjenb pue juswdojansg 9 ‘

6.4 Itis said that three of the quality plan’s elements must be coordinated with an ele-
ment of the development plan — the mapping of the development process.

(1) Canyou identify these elements?
(2) Explain the nature of the required coordination.

o
5,1

Quoting from Section.6.3: “Quantitative measures are usually preferred to qualita-
tive measures when choosing quality goals because they provide the developer
with more objective assessments of software performance during the develop-
ment process and system testing. However, one type of goal is not totally
equivalent to the other.”

(1) How are quantitative goals applied during the development process?
(2) Explain in what way quantitative goals enable more objective evaluation of
performance when compared with qualitative goals.

Appendix 6A Software development risks and software risk
management

6A.1 Software development risks

Several lists of potential software development risks (“software risk items”
or SRIs) are mentioned in the literature. Ropponen and Lyytinen (2000) have
classified software risk items into the following six classes:

Scheduling and timing risks

System functionality risks

Requirement management risks

)

)

) Subcontracting risks

)

) Resource usage and performance risks
)

Personnel management risks.

Boehm and Ross (1989) suggest a list of the 10 major software risk items.
Table 6A.1 shows how this list can be integrated with the six risk classes pro-
posed by Ropponen and Lyytinen (2000).

Methodologies for identification of software risk items have been
offered by Boehm (1991), Keil et al., (1998), Ropponen and Lyytinen (2000),
Barki et al., (1993) and IEEE (2001). One of the most effective tools for iden-
tifying and evaluating software risk items is specialized checklists, also
mentioned by several authors.

Karolak (1996) and Jones (1994) have broadened the scope of software
risk items to include strategic risk, such as marketing risks and financial
risks. This author believes that despite the importance of strategic risks, they
are beyond the scope of software quality assurance and thus beyond the
scope of this book.

Table 6A.1: The top 10 software risk items

No. Software risk No. Software risk item Description
class (Ropponen (Boehm and Ross)
and Lyytinen)
1 Personnel 1 Personnel shortfalls Lack and turnover of
management risks qualified personnel
2 Scheduling and timing 2 Unrealistic schedules Incorrectly estimated (too
and budgets low) development time
and budget
3 System functionality 3 Developing wrong Development of software
software functions functions that are not
needed or are incorrectly
specified
4 Developing wrong user Inadequate or difficult
interface user interface (GUI)
4 Requirement 5 Gold plating Addition of unnecessary
management features (“whistles and
bells”) due to
professional interests,
pride, or user demands
6 Continuing stream of Uncontrolled and
requirement changes unpredictable changes in
system functions and
features
5 Subcontracting 7 Shortfalls in externally Poor quality of externally
furnished components delivered system
components
8 Shortfalls in externally Poor quality or
performed tasks unpredictable
accomplishment of
externally performed
tasks
6 Resource usage and 9 Real-time performance Poor system performance
performance shortfalls
10 Straining computer Inability to implement the

science capabilities

system due to lack of
technical solutions
and/or computing power

6A.2 Risk management activities and measures

Various activities and measures (usually termed “risk management actions” or
RMAs) can be taken. The purposes of RMAs are to prevent software risks, to
achieve early identification of software risk items, and to resolve them.

Boehm and Ross (1989), Boehm (1991), Ropponen and Lyytinen
(2000), and Karolak (1996), among others, have suggested a wide variety of
risk management actions (see Table 6A.2).

JudWaSeurW S 31BMY0S pue SYSi JuawdolaAap alemyos Y9 xipuaddy ‘ 5

114 Table 6A.2: Commonly recommended risk management actions and their contributions

Contribution of the RMA

No. Software risk management Prevention Early identification ~ Resolution
action (RMA) of SRI of SRI

Internal RMA

1 Application of detailed and thorough X
analysis to requirements and
estimated schedules and costs

Efficient project organization, X
adequate staff and team size

3 Personnel training X

4 Arranging for and training X
replacements to take over in case of
turnover and unanticipated workloads

5 Arranging for user participation in X
the development process

sue|d Ayjenb pue juswdojanaqg 9 ‘

6 Applying efficient change control X
(change requests screening)

7 Applying intensive software quality X
assurance measures such as
inspections, design reviews, and
benchmarking

8 Periodic checking for timely X
availability of firm professionals
currently occupied with other projects

9 Arranging for participation of X
professional staff members having
knowledge and experience with SRIs

10 Scheduling SRI-related activities as X
early as possible to provide leeway in
case of difficulties

11 Prototyping SRI-related modules or X
project applications

12 Preparing scenarios for complicated X
SRI-related modules or project
applications

13 Simulating SRI-related modules X

or project applications

Subcontracting RMA

1 Preparing comprehensive and X
thorough contracts with
subcontractors and suppliers,
including contract reviews

2 Participating in internal progress X
control and software quality
assurance activities of subcontractors
to be incorporated in the contract

Table 6A.2 Continued

Contribution of the RMA

No. Software risk management Prevention Early identification ~ Resolution
action (RMA) of SRI of SRI
3 Arranging for “loans” of professionals X

with specialized knowledge and
experience if the need arises

4 Hiring consultants to support the X
team in the absence of sufficient
know-how and experience

Customer RMA

1 Formulating comprehensive and X
thorough contracts with customers,
including contract reviews

2 Negotiating with the customer to X
change requirements re risky parts
of the project

3 Negotiating with the customer to change X
schedules re risky parts of the project

These risk management actions can be grouped into the following classes:

m Internal risk management actions, applied within the software developing
organization.

®m Subcontracting risk management actions, dealing with the relationship
between the software developer and his subcontractors and suppliers.

m Customer risk management actions, dealing with the relationship
between the software developer and the customer.

Implementation tip

In planning RMAs, one should be aware that:
m Some RMAs can prevent, identify or resolve SRIs of various types.
B Some SRIs can be treated by several RMAs.

m The efficiency of an RMA varies significantly with different projects and in
different environments.

6A.3 The risk management process

The risk management process combines planning activities, implementation
activities and monitoring activities. Elaine M. Hall (1998) has written a book
dedicated mainly to this process.

JudWaSeuRW XS 2I1BMY0S puR SYSI JuawdolaAap alemyos Y9 xipuaddy ‘ E

116

sue)d Ayjenb pue juswdojansg 9 ‘

Planning activities

Several planning activities are aimed to initiate those risk management

actions that can respond to the software risks identified and evaluated earli-

er. Similar planning activities (although not to the same degree of

thoroughness) are part of the proposal draft review process (see Chapter 5).
The respective planning activities include:

m Identification of software risk items

The main tool supporting identification of SRIs is those checklists that
specify the team, project and customer situations that are likely to bring
about software risks. Checklists of this type have been suggested by
Boehm and Ross (1989), Boehm (1991), Barki et al. (1993), and
Ropponen and Lyytinen (2000).

Identification of software risk items should begin with the actual
start of the project (pre-project stage) and be repeated periodically
throughout the project until its completion.

m Evaluation of the identified SRIs
Evaluation of the identified SRIs is concerned mainly with:

— Estimating the probability that a software risk will materialize if no
RMA is taken — i.e., Prob(mat)

— Estimating damages in case an SRI does materialize — i.e., Est(dam).

Estimates of Prob(mat) and Est(dam) can be based on experience gained
in earlier projects, by means of simulation models, and so forth.

Evaluation should be followed by determination of priorities regard-
ing the SRIs and their resolution. It should be clear that an SRI displaying
a high Prob(mat) and high Est(dam) is of high priority and that an SRI
displaying a low Prob(mat) and low Est(dam) is of low priority.

One common method used to prioritize SRIs is by calculating their
expected damage, termed “risk exposure” — Exp(risk) — where:

Exp(risk) = Est(dam) x Prob(mat)

®m Planning RMAs

It is incumbent upon the software risk team to consider alternative ways

to resolve the identified SRIs. RMAs include a range of internal, subcon-

tractor and customer actions. Table 6A.2 provides a list of possible

RMAs and their contributions to the prevention or resolution of SRIs.
In preparing the recommended list of RMAs, the planning team

should consider:

— The priority assigned to the SRI

— The expected results of a planned RMA (complete or partial resolution)

— The costs and organizational efforts required for implementation of
the RMA.

Implementation
Implementation of a risk management plan requires that the staff members
be assigned personally responsible for each RMA and its implementation

schedule.

Monitoring implementation of the risk management plan
Systematic, periodic activities are required to monitor implementation of the
risk management plan. The aim of the monitoring activities is to:

m Determine the efficiency of the RMAs
m Update the risk evaluation by considering newly identified SRIs.

The process of software risk management is illustrated in Figure 6A.1.

New project

!

. Risk identification
Pre-project
and assessment
. Planning and
- .FI’(lannmg Al t updating risk | _
>| rskmanagemen management |
activities .
activities
Ongoing .
projects ~Implementmg
risk management
¢ actions
(risk resolution)
Identifying and
— assessing new ¢
software risks _
Monitoring
| software risk
| management
activities
Required results
achieved Evaluate Unsatisfactory results
monitoring
results

Figure 6A.1: The software risk management process

JudWaSeurW S 31BMY0S pue SYSi JuawdolaAap alemyos Y9 xipuaddy ‘ E

SQA components in the
project life cycle

The project life cycle encompasses two stages: the development life cycle stage
and the operation-maintenance stage. Most of the SQA components to be
reviewed in Part IIT support at least one of the phases comprising these stages.

Development life cycle SQA components are meant to detect design
and programming errors in the design and programming (coding) phases.
The components applied in this stage belong to one of the following four
sub-classes:

m Formal design reviews

m Peer reviews

B Expert opinions

m Software testing.

Operation—maintenance stage SQA components include special components
to be applied for corrective maintenance but also development life cycle SQA
components that can also be used for functionality improvement mainte-
nance tasks.

An additional sub-class of SQA components, other than those listed
above, deals with assuring the quality of project parts performed by subcon-
tractors and other external participants during the project life cycle. The
importance of this sub-class stems from the high risks associated with func-
tional failures and the failure to keep to the project timetable. Both types of
risk are directly related to the difficulty of controlling the external partici-
pants’ performance.

The project characteristics determine which SQA components enter the
project life cycle at any particular point. To guarantee their effectiveness, the
choice of components is decided upon prior to the project’s initiation.

The first chapter of this part, Chapter 7, is dedicated to a general dis-
cussion of the integration of software quality assurance components within
each phase of the project’s life cycle. A model for assessing the effectiveness
and costs of integration is also presented in this chapter.

Chapter 8 discusses the review components of the design phase: formal
design reviews, peer review and expert opinions.

Chapters 9 and 10 are dedicated to software testing issues, with
Chapter 9 focusing on testing strategies and Chapter 10 on software testing

120

31242 9411 199f04d 3y) ul Susuodwod YOS || Med ‘

implementation. Among the implementation issues discussed are manual and
automated testing.

Chapter 11 deals with SQA components appropriate to the opera-
tion—maintenance stage. Although functionality improvement and adaptive
maintenance tasks employ primarily development life cycle SQA components
(see Chapters 8-10), corrective maintenance, the subject of this chapter, has
distinctive requirements and special SQA components.

Chapter 12, the final chapter in this part, explores the SQA issues raised
by the participation of external participants in a project.

Integrating quality activities in
the project life cycle

7.1 Classic and other software development methodologies 122
7.1.1 The software development life cycle (SDLC) model 123
7.1.2 The prototyping model 125
7.1.3 The spiral model 127
7.1.4 The object-oriented model 129
7.2 Factors affecting intensity of quality assurance activities in
the development process 131
7.3 \Verification, validation and qualification 133
7.4 A model for SQA defect removal effectiveness and cost 135
7.4.1 The data 135
7.4.2 The model 137
Summary 143
Selected bibliography 145
Review questions 146
Topics for discussion 147

The first part of this chapter is dedicated to the various software develop-
ment models in current use. The remaining sections deal with the objectives
of the software quality assurance activities conducted throughout the project
life cycle, their integration in the development process, and the factors con-
sidered before applying them.

One might inquire why not begin with SQA activities and omit the dis-
cussion of the software development models? This question is not simply
rhetorical. Software development models provide a coordinated set of con-
cepts and methodologies needed to implement software development. As
such, they include definitions of the main activities needed for development,
the appropriate sequence for their performance, and their milestones. By
deciding what models are to be applied, the project leader determines how
the project will be carried out. Most quality assurance activities take place in
conjunction with the completion or examination of activity milestones,
which require review of the product development activities previously

-
N
N

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

completed. Therefore, SQA professionals should be acquainted with the var-
ious software engineering models in order to be able to prepare a quality
plan that is properly integrated into the project plan.

The rest of the first part of the chapter deals with the factors affecting
the choice of software quality activities to be integrated in the development
process. The following four chapters (Chapters 8 to 11) deal with the spe-
cific software quality methodologies to be applied at each phase of the
development stage and in the operation—-maintenance stage.

The second part of the chapter is dedicated to a model for assessing a
plan for SQA defect-removal effectiveness and cost. The model, a multiple
filtering model, is based on data acquired from a survey of defect origins,
percentages of defect removal achieved by various quality assurance activi-
ties, and the defect-removal costs incurred at the various development
phases. The model enables quantitative comparison of quality assurance
policies as realized in quality assurance plans.

After completing this chapter, you will be able to:

m Describe the various software development models and discuss the dif-
ferences between them.

m Explain the considerations affecting intensity of applying quality assur-
ance activities.

m Explain the different aspects of verification, validation and qualification
associated with quality assurance activities.

m Describe the model for the SQA plan’s defect-removal effectiveness
and cost.

m Explain possible uses for the model.

7.1 Classic and other software development methodologies
Four models of the software development process are discussed in this section:

The Software Development Life Cycle (SDLC) model
The prototyping model

The spiral model

The object-oriented model.

The models presented here are not merely alternatives; rather, they represent
complementary view of software development or refer to different develop-
ment contexts.

The Software Development Life Cycle model (the SDLC model) is the
classic model (still applicable today); it provides the most comprehensive
description of the process available. The model displays the major building
blocks for the entire development process, described as a linear sequence. In the
initial phases of the software development process, product design documents

are prepared, with the first version of the computer program completed
and presented for evaluation only at quite a late stage of the process. The
SDLC model can serve as a framework within which the other models are
presented.

The prototyping model is based on replacement of one or more SDLC
model phases by an evolutionary process, where software prototypes are
used for communication between the developer and the users and cus-
tomers. Prototypes are submitted to user representatives for evaluation. The
developer then continues development of a more advanced prototype,
which is also submitted for evaluation. This evolutionary process continues
till the software project is completed or the software prototype has reached
the desired phase. In this case, the rest of the development process can be
carried out according to a different methodology, for example the classic
SDLC model.

The spiral model provides a methodology for ensuring effective per-
formance at each of the SDLC model phases. It involves an iterative process
that integrates customer comments and change requirements, risk analysis
and resolution, and software system planning and engineering activities. One
or more iterations of the spiral model may be required to complete each of
the project’s SDLC phases. The associated engineering tasks may be per-
formed according to any one model or a combination of them.

The object-oriented model incorporates large-scale reuse of software by
integrating reusable modules into new software systems. In cases where no
reusable software modules (termed objects or components) are available, the
developer may perform a prototyping or SDLC process to complete the
newly developed software system.

All four models will be presented in detail in the next four sections.
Detailed discussions of the respective methodologies are available in the soft-

ware engineering and system analysis literature, particularly Pressman
(2000) and Kendall and Kendall (1999).

7.1.1 The software development life cycle (SDLC) model

The classic Software Development Life Cycle (SDLC) model is a linear
sequential model that begins with requirements definition and ends with reg-
ular system operation and maintenance. The most common illustration of
the SDLC model is the waterfall model, shown in Figure 7.1.

The model shown in Figure 7.1 presents a seven-phase process, as follows:

B Requirements definition. For the functionality of the software system to
be developed, the customers must define their requirements. In many
cases the software system is part of a larger system. Information about
the other parts of the expanded system helps establish cooperation
between the teams and develop component interfaces.

®m Analysis. The main effort here is to analyze the requirements’ implica-
tions to form the initial software system model.

salSojopoylaw Jusawdo]aAap 21eMYOS JaYlo pue disse)) 1°/ ‘ §

-
N
~

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

REQUIREMENTS
DEFINITION

3

Y

ANALYSIS

N y

DESIGN

N y

CODING

\ Y

SYSTEM TESTS

A

Y

INSTALLATION
AND CONVERSION

Y

OPERATION AND
MAINTENANCE

< [
<

Figure 7.1: The waterfall model
Source: After Boehm (1981) and Royce (1970) (© 1970 IEEE)

m Design. This stage involves the detailed definition of the outputs, inputs
and processing procedures, including data structures and databases, soft-
ware structure, etc.

m Coding. In this phase, the design is translated into a code. Coding
involves quality assurance activities such as inspection, unit tests and
Integration tests.

B System tests. System tests are performed once the coding phase is com-
pleted. The main goal of testing is to uncover as many software errors as
possible so as to achieve an acceptable level of software quality once cor-
rections have been completed. System tests are carried out by the
software developer before the software is supplied to the customer. In
many cases the customer performs independent software tests (“accept-
ance tests”) to assure him or herself that the developer has fulfilled all the
commitments and that no unanticipated or faulty software reactions are
anticipated. It is quite common for a customer to ask the developer to

join him or her in performing joint system tests, a procedure that saves
the time and resources required for separate acceptance tests.

m Installation and conversion. After the software system is approved, the
system is installed to serve as firmware, that is, as part of the information
system that represents a major component of the expanded system. If the
new information system is to replace an existing system, a software con-
version process has to be initiated to make sure that the organization’s
activities continue uninterrupted during the conversion phase.

® Regular operation and maintenance. Regular software operation begins
once installation and conversion have been completed. Throughout the
regular operation period, which usually lasts for several years or until a
new software generation appears on the scene, maintenance is needed.
Maintenance incorporates three types of services: corrective — repairing
software faults identified by the user during operation; adaptive — using
the existing software features to fulfill new requirements; and perfective
- adding new minor features to improve software performance.

The number of phases can vary according to the characteristics of the proj-
ect. In complex, large-scale models, some phases are split, causing their
number to grow to eight, nine or more. In smaller projects, some phases may
be merged, reducing the number of phases to six, five or even four phases.

At the end of each phase, the outputs are examined and evaluated by the
developer and, in many cases, by the customer as well. Possible outcomes of
the review and evaluation include:

m Approval of the phase outputs and progress on to the next phase, or
m Demands to correct, redo or change parts of the last phase; in certain
cases, a return to earlier phases is required.

The width of the lines connecting the rectangular boxes in the illustration
reflects the relative probabilities of the different outcomes. Thus, the most
commonly performed process is a linear sequence (no or only minor correc-
tions). We should note, however, that the model emphasizes direct
development activities and does not indicate customer stakes in the develop-
ment process.

The classic waterfall model was suggested by Royce (1970) and later
presented in its commonly known form by Boehm (1981). It provides the
foundations for the majority of the major software quality assurance stan-
dards employed, such as IEEE Std 1012 (IEEE, 1998) and IEEE Std 12207
(IEEE, 1996, 1997a, 1997b), to mention just two.

7.1.2 The prototyping model

The prototyping methodology makes use of (a) developments in information
technology, namely, advanced application generators that allow for fast
and easy development of software prototypes, combined with (b) active

salSojopoylaw Jusawdo]aAap 21eMYOS JaYlo pue disse)) 1°/ ‘ E

-
N
(o)}

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

participation in the development process by customers and users capable of
examining and evaluating prototypes.

When applying the prototyping methodology, future users of the system
are required to comment on the various versions of the software prototypes
prepared by the developers. In response to customer and user comments, the
developers correct the prototype and add parts to the system on the way to
presenting the next generation of the software for user evaluation. This
process is repeated till the prototyping goal is achieved or the software sys-
tem is completed. A typical application of the prototyping methodology is
shown in Figure 7.2.

REQUIREMENTS
DETERMINATION
BY CUSTOMER

!

PROTOTYPE
DESIGN

!

PROTOTYPE
IMPLEMENTATION

!

A

PROTOTYPE
EVALUATION
BY CUSTOMER

DEMANDS FOR
CORRECTIONS, CHANGES
AND ADDITIONS

REQUIREMENTS
FULFILLED ?

SYSTEM TESTS
AND ACCEPTANCE
TESTS

!

SYSTEM
CONVERSION

Y

SYSTEM OPERATION
AND MAINTENANCE

Figure 7.2: The prototyping model

Prototyping can be applied in combination with other methodologies or as a
“stand alone” methodology. In other words, the extent of prototyping can
vary, from replacement of one SDLC (or other methodology) phase up to
complete prototyping of the entire software system.

Prototyping as a software development methodology has been found to
be efficient and effective mainly for small- to medium-sized software devel-
opment projects. The main advantages and deficiencies of prototyping over
the complete SDLC methodology, summarized in Frame 7.1, result from the
user’s intense involvement in the software development process. Such
involvement facilitates the user’s understanding of the system while it limits
the developer’s freedom to introduce innovative changes in the system.

Prototyping versus SDLC methodology — advantages and
disadvantages (mainly for small to medium-sized projects)

Advantages of prototyping:

M Shorter development process

m Substantial savings of development resources (man-days)

m Better fit to customer requirements and reduced risk of project failure
[

Easier and faster user comprehension of the new system

Disadvantages of prototyping:
m Diminished flexibility and adaptability to changes and additions

B Reduced preparation for unexpected instances of failure

7.1.3 The spiral model

The spiral model, as revised by Boehm (1988, 1998), offers an improved
methodology for overseeing large and more complex development projects
displaying higher prospects for failure, typical of many projects begun in the
last two decades. It combines an iterative model that introduces and empha-
sizes risk analysis and customer participation into the major elements of
SDLC and prototyping methodologies.

According to the spiral model, shown in Figure 7.3, software develop-
ment is perceived to be an iterative process; at each iteration, the following
activities are performed:

m Planning

®m Risk analysis and resolution

m Engineering activities according to the stage of the project: design, cod-
ing, testing, installation and release

m Customer evaluation, including comments, changes and additional
requirements, etc.

salSojopoyaw Jusawdo]aAap 21eMOS JaYlo pue disse)) 1°/ ‘ §

-
N
(0]

91242 3411 199f04d ay) uil saniAnde Ayjenb SunjeiSayul £

Planning Risk analysis and resolution
Analysis of customer’s Risk evaluation
requirements and of customer’s
project planning requirements
Planning

basedon -
customers "
comments s,

Risk evaluation
,- of customer’s

“.- comments

-* and changes

________ Initial
prototype

) ~._Advanced
prototype

Customer’s evaluation
comments and change

requirements

Detailed design,
coding, testing
and release

Evaluation by customer Engineering

Figure 7.3: The spiral model (Boehm, 1988)
Source: After Boehm (1988) (© 1988 IEEE)

An advanced spiral model, the Win-Win Spiral model (Boehm, 1998),
enhances the Spiral model (Boehm, 1988) still further. The advanced model
places extra emphasis on communication and negotiation between the cus-
tomer and the developer. The model’s name refers to the fact that by using this
process, the customer “wins” in the form of improved chances to receive the
system most satisfying to his needs, and the developer “wins” in the form of
improved chances to stay within the budget and complete the project by the
agreed date. This is achieved by increasing emphasis on customer participation
and on engineering activities. These revisions in the development process are
shown graphically by two sections of the spiral dedicated to customer partici-
pation: the first deals with customer evaluation and the second with customer
comments and change requirements. Engineering activity is likewise shown in
two sections of the spiral: the first is dedicated to design and the second to con-
struction. By evaluating project progress at the end of each of these sections,
the developer is able to better control the entire development process.

Accordingly, in the advanced spiral model, shown in Figure 7.4, the fol-
lowing six activities are carried out in each iteration:

Customer’s Planning Requirements Planning Risk analysis
comments based on analysis and
and change customer’s project planning

requirements

comments

Risk evaluation
,- of customer’s

,~° requirements
Customer’s o q

comments s,
and change “~. .,

~ ~
~

requirements s, .
A

Risk evaluation
.- of customer’s

.- comments

-~ and changes

Defining
CUEITMETS ====jj===2=2/l====
requirements

~~~~~ Initial
-~ prototype
design

evaluation =~~~ Advanced
> prototype

. design

7/ Constructing

. advanced \ *«_Detailed

’ rototype ¥ design

Constructing protolyp _ System g

Customer’s initial implementation

evaluation prototype Construction Design

Figure 7.4: The advanced spiral model (Boehm, 1998)
Source: After Boehm (1988) (© 1988 IEEE)

Customer’s specification of requirements, comments and change demands
Developer’s planning activities

Developer’s risk analysis and resolution

Developer’s design activities

Developer’s construction activities pertaining to coding, testing, installa-
tion and release

Customer’s evaluation.

7.1.4 The object-oriented model

The object-oriented model differs from the other models by its intensive
reuse of software components. This methodology is characterized by its easy
integration of existing software modules (called objects or components) into
newly developed software systems. A software component library serves this
purpose by supplying software components for reuse.

So, according to the object-oriented model as shown in Figure 7.5, the
development process begins with a sequence of object-oriented analyses and
designs. The design phase is followed by acquisition of suitable components

129

salSojopoyaw Jusawdo]aAap 21eMOS JaYlo pue disse)) 1°/



-
w
o

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £

from the reusable software library, when available. “Regular” development
is carried out otherwise. Copies of newly developed software components
are then “stocked” in the software library for future reuse. It is expected that
the growing software component stocks in the reusable software library will
allow substantial and increasing reuse of software, a trend that will allow
taking greater advantage of resources as follows:

m Economy - The cost of integrating a reusable software component is
much lower than the cost of developing new components.
B Improved quality — Used software components are expected to contain

considerably fewer defects than newly developed software components
due to detection of faults by former users.

Requirements
definition

!

Object-oriented
analysis

!

Object-oriented
A design

!

Reusability survey of

Reusable

Not components library components B
library Addition
accepted to library
Component
Availability not available Requirements
el definition
in library I
Analysis and
Reusable e
component is |
available X
Coding
Customer’s
evaluation I
System » Component
construction | tests
Installation * Development of a
and conversion System new component
¢ tests

Operation and
maintenance

Figure 7.5: The object-oriented model



m Shorter development time — The integration of reusable software compo-
nents reduces scheduling pressures.

Thus, the advantages of the object-oriented methodology over other
methodologies will grow as the storage of reusable software grows.

7.2 Factors affecting intensity of quality assurance
activities in the development process

Project life cycle quality assurance activities are process oriented, in other
words, linked to completion of a project phase, accomplishment of a project
milestone, and so forth. The quality assurance activities will be integrated into
the development plan that implements one or more software development
models — the waterfall, prototyping, spiral, object-oriented or other models.
Quality assurance planners for a project are required to determine:

m  The list of quality assurance activities needed for a project.
m For each quality assurance activity:
— Timing
— Type of quality assurance activity to be applied
— Who performs the activity and the resources required. It should be
noted that various bodies may participate in the performance of qual-
ity assurance activities: development team and department staff

members together with independent bodies such as external quality
assurance team members or consultants

— Resources required for removal of defects and introduction of changes.

In some development plans, one finds quality assurance activities spread
throughout the process, but without any time allocated for their performance
or for the subsequent removal of defects. Someone probably assumed that a
late afternoon meeting would be sufficient for performing the quality
assurance activities and the corrections to be made. As nothing is achieved
without time, the almost guaranteed result is delay, caused by the
“unexpectedly” long duration of the quality assurance process. Hence, the
time allocated for quality assurance activities and the defects correction work
that follow should be examined.

The intensity of the quality assurance activities planned, indicated by the
number of required activities, is affected by project and team factors, as
shown in Frame 7.2.

Sa1lIAI0R doueInsse Ajjenb jo Ajisuajul Suidayje sioldeq 7°/ ‘ ‘:“



-
w
N

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

Factors affecting the required intensity of quality

assurance activities

Project factors:

Magnitude of the project
Technical complexity and difficulty
Extent of reusable software components

Severity of failure outcomes if the project fails

Team factors:

Professional qualification of the team members
Team acquaintance with the project and its experience in the area
Availability of staff members who can professionally support the team

Familiarity with the team members, in other words the percentage of new
staff members in the team

The following two examples can illustrate how these factors can influ-

ence quality assurance activities.

Example 1

A software development team has planned the quality assurance activities for
its new consumer club project. The current project contract, signed with a
leading furniture store, is the team’s 11th consumer club project dealing in
the last three years. The team estimates that about seven man-months need
to be invested by the two team members assigned to the project, whose dura-
tion is estimated at four months. It is estimated that a reusable components
library can supply 90% of the project software.

Three quality assurance activities were planned by the project leader.

The quality assurance activities and their duration are listed in Table 7.1.

Table 7.1: Duration of quality assurance activities — the consumer club example

No.

Quality assurance activity Duration of Duration of
quality assurance corrections and
activity (days) changes (days)
Design review of requirements definition 0.5 1
Inspection of the design 1 1

System test of completed software package 4 2




The main considerations affecting this plan are:

Degree of team acquaintance with the subject
High percentage of software reuse

Size of the project (in this case, medium)
Severity of failure results if the project fails.

Example 2
The real-time software development unit of a hospital’s information systems
department has been assigned to develop an advanced patient monitoring
system. The new monitoring unit is to combine of patient’s room unit with
a control unit. The patient’s room unit is meant to interface with several
types of medical equipment, supplied by different manufacturers, which
measure various indicators of the patient’s condition. A sophisticated control
unit will be placed at the nurses’ station, with data to be communicated to
cellular units carried by doctors.

The project leader estimates that 14 months will be required to complete
the system; a team of five will be needed, with an investment of a total of 40
man-months. She estimates that only 15% of the components can be
obtained from the reusable component library. The SDLC methodology was
chosen to integrate application of two prototypes of the patient’s room unit
and two prototypes of the control unit for the purpose of improving com-
munication with the users and enhancing feedback of comments at the
analysis and design phases.

The main considerations affecting this plan are:

m High complexity and difficulty of the system

m Low percentage of reusable software available

m Large size of the project

m High severity of failure outcomes if the project fails.

The quality assurance activities and their duration, as defined by the project
leader, are listed in Table 7.2.

7.3 Verification, validation and qualification

Three aspects of quality assurance of the software product (a report, code, etc.)
are examined under the rubrics of verification, validation and qualification.
IEEE Std 610.12-1990 (IEEE, 1990) defines these aspects as follows:

m  “Verification — The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.”

uorieslyijenb pue uonepijea ‘uonedIYLIBA €7/ ‘ g



134

91242 3J1) 199f04d ay3 ul saniAnde Ayjenb SuneiSayul / ‘

Table 7.2: Duration of quality assurance activities — the patient monitoring system example

No. Quality assurance activity Duration of Duration of
quality assurance  corrections and
activity (days) changes (days)

1 Design review of requirements definition 2 1

2 Design review of analysis of patient’s room unit 2 2

3 Design review of analysis of control unit 1 2

4 Design review of preliminary design 1 1

5 Inspection of design of patient’s room unit 1 2

6 Inspection of design of control unit 1 3

7 Design review of prototype of patient’s room unit 1 1

8 Design review of prototype of control unit 1 1

9 Inspection of detailed design for each software 3 3
interface component

10  Design review of test plans for patient’s room 3 1
unit and control unit

11 Unit tests of software code for each interface 4 2
module of patient’s room unit

12 Integration test of software code of patient’s 3 3
room unit

13 Integration test of software code of control unit 2 3

14  System test of completed software system 10 5

15 Design review of user’s manual 3 2

m  “Validation — The process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
specified requirements.”

B “Qualification — The process used to determine whether a system or com-
ponent is suitable for operational use.”

According to the IEEE definitions, verification examines the consistency of
the products being developed with products developed in previous phases.
When doing so, the examiner follows the development process and assumes
that all the former development phases have been completed correctly,
whether as originally planned or after removal of all the discovered defects.
This assumption forces the examiner to disregard deviations from the cus-
tomer’s original requirements that might have been introduced during the
development process.

Validation represents the customer’s interest by examining the extent of
compliance to his or her original requirements. Comprehensive validation
reviews tend to improve customer satisfaction from the system.

Qualification focuses on operational aspects, where maintenance is the
main issue. A software component that has been developed and documented



according to professional standards and style and structure convention pro-
cedures is expected to be much easier to maintain than one that provides
marvelous coding improvisations yet does not follow known coding style
procedures and so forth.

Planners are required to determine which of these aspects should be
examined in each quality assurance activity.

7.4 A model for SQA defect removal effectiveness
and cost

The model deals with two quantitative aspects of an SQA plan consisting of
several defect detection activities:

(1) The plan’s total effectiveness in removing project defects.

(2) The total costs of removal of project defects.

The plan itself is to be integrated within a project’s development process.

7.4.1 The data

The application of the model is based on three types of data, described under
the following headings.

Defect origin distribution

Defect origins (the phase in which defects were introduced) are distributed
throughout the development process, from the project’s initiation to its com-
pletion. Surveys conducted by major software developers, such as IBM and
TRW, summarized by Boehm (1981, Chapter 24) and Jones (1996, Chapter
3), reveal a similar pattern of defect distribution. Software development pro-
fessionals believe that this pattern has not changed substantially in the last
two decades. A characteristic distribution of software defect origins, based
on Boehm (1981) and Jones (1996), is shown in Table 7.3.

Table 7.3: A characteristic distribution of software defect origins

No. Software development phase Average percentage of
defects originating
in phase
1 Requirements specification 15%
2 Design 35%
3 Coding (coding 30%, integration 10%) 40%
4 Documentation 10%

1502 puR SSIUDAIIIBYS |BAOWI 129)9p YOS 10) |]apow Y 7/ ‘ Q



-
w
(o)}

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

Defect removal effectiveness

It is assumed that any quality assurance activity filters (screens) a certain per-
centage of existing defects. It should be noted that in most cases, the
percentage of removed defects is somewhat lower than the percentage of
detected defects as some corrections (about 10% according to Jones, 1996)
are ineffective or inadequate. The remaining defects, those undetected and
uncorrected, are passed to successive development phases. The next quality
assurance activity applied confronts a combination of defects: those remain-
ing after previous quality assurance activities together with “new” defects,
created in the current development phase. It is assumed that the filtering
effectiveness of accumulated defects of each quality assurance activity is not
less than 40% (i.e., an activity removes at least 40% of the incoming
defects). Typical average defect filtering effectiveness rates for the various
quality assurance activities, by development phase, based on Boehm (1981,
Chapter 24) and Jones (1996, Chapters 3 and 5), are listed in Table 7.4.

Cost of defect removal

Data collected about development project costs show that the cost of
removal of detected defects varies by development phase, while costs rise
substantially as the development process proceeds. For example, removal of
a design defect detected in the design phase may require an investment of 2.5
working days; removal of the same defect may require 40 working days dur-
ing the acceptance tests. Several surveys carried out by IBM, TRW, GTE,
Boehm and others, summarized by Boehm (1981, Chapter 4), estimate the
relative costs of correcting errors at each development phase. Estimates of
effectiveness of software quality assurance tools and relative costs of defect
removal are provided by Boehm and Basili (2001). Although defect removal
data are quite rare, professionals agree that the proportional costs of defect
removal have remained constant since the surveys conducted in the 1970s
and 1980s. Representative average relative defect-removal costs, based on
Boehm (1981) and Pressman (2000, Chapter 8), are shown in Table 7.5.

Table 7.4: Average filtering (defect removal) effectiveness by quality assurance activities

No. Quality assurance activity Average defect filtering
effectiveness rate

1 Requirements specification review 50%
2 Design inspection 60%
3 Design review 50%
4 Code inspection 65%
5 Unit test 50%
6 Unit test after code inspection 30%
7 Integration test 50%
8 System tests / acceptance tests 50%
9 Documentation review 50%




Table 7.5: Representative average relative defect-removal costs

No. Software development phase Average relative

A R W N

defect cost
(cost units)

Requirements specification 1
Design 2.5
Unit tests 6.5
Integration tests 16
System tests / acceptance tests / system documentation review 40
Operation by customer (after release) 110

7.4.2 The model

The model is based on the following assumptions:

The development process is linear and sequential, following the waterfall
model.

A number of “new” defects are introduced in each development phase.
For their distributions, see Table 7.3.

Review and test software quality assurance activities serve as filters,
removing a percentage of the entering defects and letting the rest pass to
the next development phase. For example, if the number of incoming
defects is 30, and the filtering efficiency is 60%, then 18 defects will be
removed, while 12 defects will remain and pass to be detected by the next
quality assurance activity. Typical filtering effectiveness rates for the var-
ious quality assurance activities are shown in Table 7.4.

At each phase, the incoming defects are the sum of defects not removed
by the former quality assurance activity together with the “new” defects
introduced (created) in the current development phase.

The cost of defect removal is calculated for each quality assurance activ-
ity by multiplying the number of defects removed by the relative cost of
removing a defect (see Table 7.5).

The remaining defects, unfortunately passed to the customer, will be
detected by him or her. In these circumstances, full removal entails the
heaviest of defect-removal costs.

In the model, each of the quality assurance activities is represented by a filter
unit, as shown for Design in Figure 7.6.

The model presents the following quantities:

m POD = Phase Originated Defects (from Table 7.3)
m PD = Passed Defects (from former phase or former quality assurance activity)

1502 puR SSIUDAIIIBYD |BAOWI 129)9p YOS 10 |]apow Y 77/ ‘ zo



-
w
(0]

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

Design ¢

35 21.2
—> Phase

originated
defects

35

Passed Filter
defects effectiveness
75 50%

Removed
defects
21.3

Cost of

defects

removal
2.5

Total
removal
cost
53.2 units

Figure 7.6: A filter unit for defect-removal effectiveness: example

%FE = % of Filtering Effectiveness (also termed % screening effective-
ness) (from Table 7.4)

RD = Removed Defects

CDR = Cost of Defect Removal (from Table 7.5)

TRC = Total Removal Cost: TRC = RD x CDR.

The first illustration of the model applies to a standard quality assurance
plan (“standard defects filtering system”) that is composed of six quality
assurance activities (six filters), as shown in Table 7.6.

A process-oriented illustration of the standard quality assurance plan

model is provided in Figure 7.7.

Table 7.6: Standard quality assurance plan

No. Quality assurance activity Defect removal Cost of removing

N Ot W

effectiveness a detected defect
(cost units)

Requirement specification review 50% 1
Design review 50% 2.5
Unit test — code 50% 6.5
Integration test 50% 16
Documentation review 50% 16
System test 50% 40

Operation phase 100% 110




Requirement specification

15— POD=15 | PD=0 | %FE=50
RD=7.5
CDR=1

TRC=7.5cu

35 —»{ POD=35 | PD=7.5 | %FE=50
RD = 21.3
CDR=2.5

TRC=53.2cu

30 —»| POD=30 | PD=21.2 | %FE=50
RD = 25.6
CDR=6.5
TRC=166.4cu

Design

Unit test

(

Integration test
10 —»{ POD=10 | PD=25.6 | %FE=50
RD=17.8
CDR=16

TRC = 284.8cu

Documentation
10 —»{ POD=10 | PD=17.8 | %FE=50
RD=13.9
CDR=16

TRC=1222.4cu

System tests

17.8

POD=0 | PD=13.9 | %FE=

50

RD =

7

CDR =140

TRC =280cu

Operation
POD=0 | PD=6.9 |%FE=100
RD = 6.9
CDR=110

TRC=759cu

Figure 7.7: Defect-removal effectiveness and costs — standard plan model of the process of

removing 100 defects

139

1502 puR SSIUDAIIIBYS |BAOWI 129)9p YOS 10) |]apow Y 7/ ‘



140

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

A comprehensive quality assurance plan (“comprehensive defects filter-
ing system”) achieves the following:

(1) Adds two quality assurance activities, so that the two are performed in
the design phase as well as in the coding phase.

(2) Improves the “filtering” effectiveness of other quality assurance activities.

The comprehensive quality assurance plan can be characterized as shown in
Table 7.7.

Figure 7.8 provides a process-oriented illustration of the comprehensive
plan model.

A comparison of the outcomes of the standard software quality plan ver-
sus the comprehensive plan is revealing. The results of the comparison are
shown in Table 7.8.

The main conclusions drawn from the comparison are:

(1) The standard plan successfully removes only 57.6% (28.8 defects out of
50) of the defects originated in the requirements and design phase, com-
pared to 90.2% for the comprehensive plan, before coding begins. This
is to be expected as a direct result of the more intensive defect-removal
efforts that characterize the comprehensive plan.

(2) The comprehensive plan, as a whole, is much more economical than the
standard plan as it saves 41% of total resources invested in defect
removal, compared to the standard plan.

(3) Compared to the standard plan, the comprehensive plan makes a greater
contribution to customer satisfaction by drastically reducing the rate of
defects detected during regular operations (from 6.9% to 2.6%).

Table 7.7: Comprehensive quality assurance plan

No. Quality assurance activity Defect-removal Cost of removing
effectiveness a detected defect
(cost units)

1 Requirement specification review 60% 1
2 Design inspection 70% 2.5
3 Design review 60% 2.5
4 Code inspection 70% 6.5
5 Unit test — code 40% 6.5
6 Integration test 60% 16
7 Documentation review 60% 16
8 System test 60% 40
9 Operation phase 100% 110




Requirement specification

15— pPoD=15 | PD=0 [ %FE=60
RD=9
CDR=1
TRC=9cu
Design inspection J Design review ¢
35— PoD=35 | Pp=6 [w%FE=70 H 123 [ PoD=0 [PD=123] %FE=60 4.9
RD = 28.7 RD=7.4
CDR=2.5 CDR=2.5
TRC=71.8cu TRC=18.5cu
Code inspection + J Unit test ¢
30 —{ PoD=30 [ PD=49 | %FE=70 |- 105 [ Pop=0 [Pp=105] %rE=s40 }— 63
MY RD = 4.2
CDR=6.5 R s
TRC =158.6cu TRC = 27.3cu

Integration test *

10 —| PoD=10 | PD=6.3 | %FE=60
RD=09.8
CDR=16

TRC =156.8cu

Documentation

10 —| po=10 | PD=6.5 | %FE=60
RD=9.9
CDR=16

TRC=158.4cu

System tests

POD =0 | PD=6.6 | %FE=60 2.6
RD =4

CDR =40

TRC=160cu

PoD=0 | PD=2.6 [%FE=100
RD=2.6
CDR=110

TRC = 286¢cu

Figure 7.8: Defect-removal effectiveness and costs — comprehensive plan model of the process
of removing 100 defects

In general, the quantitative results of the comparison comply nicely with the
SQA approach. The comparison also supports the belief that additional
investments in quality assurance activities yield substantial savings in defect
removal costs.

Alternative models dealing with the cumulative effects of several quality
assurance activities are discussed by Pressman (2000, Chapter 8) and Perry
(1995, Chapter 2).

141

1502 puR SSIUDAIIIBYS |BAOWI 129)9p YOS 10) |]apow Y 7/



7°9%701 %0°00T €eLll %0°00T 1ejol

98¢ %9°C 69/ %6°9 uoljesado Suunp pa1dalap s1949Q

#7092 %1°L6 €Y710T %T°€6 Sa1}1A1}oe ddueinsse Ayjenb jeusajul oy jejop
091 %o 08¢ %0°Z 159) WalsAs 8
7°8G1 %6°6 7°cee %6°ET M3IA3J Uol3eIUSWNI0Q /
8941 %86 8'78¢C %8 L1 1$9) uofjei3aly| 9
€/C %CY %7°991 %9°9¢ 9p0od —1saun S
9891 %7 vC - - uoldadsul apo) i
S'81 %YL (3 %E 1T M3IABI USISa(Q <
8’1/ %L°8C - - uolpdadsul ugisaq I4
6 %6 WA %G, MaIA31 uoljed1dads sjuswalinbay 1

(s)un 1s0) s)9)0p S)09J9p paAowal (s)un 3s0) s}29)09p $109J9p panowsal
Suinowsal Jo 3s0) J0 aSejuadiad Sulnowsal Jo 150D J0 aSejuadiad

ue)d aaisuayaidwo) uejd piepuels Ajaoe dueinsse Ayjjend ‘o

sue)d @sueinsse Ayjenb aAisuayaidwod pue piepue)s ay} jo uosuedwo) :g8°/ 3jqel

m 7 Integrating quality activities in the project life cycle



Summary 143

(1) Describe the various software development models and discuss the differences
between them.

Four models of software development process are discussed in this chapter:
The Software Development Life Cycle (SDLC) model
The prototyping model
The spiral model
The object-oriented model.

Mewwng‘

The classic SDLC model is a linear sequential model comprising several phases,
beginning with requirements definition and concluding with regular system opera-
tion and maintenance.

At the end of each phase, outputs are reviewed and evaluated by the develop-
er as well as, in many cases, by the customer. The outcomes range from approval of
the phase results and continuation to the next phase, to demands to correct, redo
or alter parts of the respective phase.

The waterfall model can be viewed as the basic framework for the other models,
which can be considered as complementary and represent different perspectives of
the process, or as referring to diverse development contexts.

According to the prototyping methodology, the developed system’s users are
required to comment on versions of the software prototypes prepared by the devel-
opers. The developers thereafter correct the prototype and incorporate additional
parts into the system. This process is repeated till the software system is complet-
ed or till the goal of prototyping is achieved.

The main advantages of the prototyping over the SDLC model, for small to medium-
sized projects, are the shorter development process, substantial savings in devel-
opment resources, better fit to customer requirements, reduced risk of project
failure, and clearer user comprehension of the new system.

The spiral model provides an improved methodology for larger and more com-
plex projects. This improvement is achieved by introducing and emphasizing
elements of risk analysis and customer participation in the development process.
Each of the model’s iterations includes planning, risk analysis and resolution, engi-
neering, and customer evaluation.

The advanced spiral model (the Win—Win model) places extra emphasis on com-
munication and negotiation between customer and developer. The customer wins
by improving chances to receive a system that satisfies most of his needs while the
developer wins by improving chances of completing the project within budgetary
and timetable constraints.

The object-oriented model deals with the situation of intensive reuse of soft-
ware components. According to this model, the development process begins with a
sequence of object-oriented analysis and design activities. The design phase is fol-
lowed by acquisition of a reusable software library together with “regular”
development of the unavailable software components. Copies of newly developed
software components are “stocked” in the library for future reuse.



144

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

(2) Explain the considerations affecting application of quality assurance activities.

The decision about the number of quality assurance activities to be applied is affect-
ed by project and team factors. Project factors include project magnitude, its
complexity and difficulty, extent of reusable software components, and the severity
of the outcomes if the project fails. Team factors include its professional qualifica-
tions as well as acquaintance with the project and related experience, availability of
professional support, and staff familiarity with team members.

(3) Explain the different aspects of verification, validation and qualification for quali-
ty assurance activities.

Quality assurance activities examine three different aspects of quality by means of
software product verification, validation and qualification.
Verification examines the consistency of current development activities with the
products from previous phases. Doing so enables the examiner to confirm
whether the developer has fulfilled his requirements while disregarding devia-
tions from the original requirements that may have arisen during development.
Validation represents the customer’s interests by examining the extent to which
the customer’s original requirements have been fulfilled.
Qualification focuses on operational aspects, where maintenance is the main
issue. Qualification reviews project application of professional standards and
coding procedures, based on the assumption that applying these standards
facilitates maintenance.

Quality assurance activity planners are required to determine which of these
aspects should be examined in each of the planned quality assurance activities.

(4) Describe the model for SQA defect removal effectiveness and cost.

The model deals with two quantitative aspects of an SQA plan designed for a spe-
cific project:

(1) Total effectiveness of defect removal.

(2) Total cost of defect removal.

The model is based on the following assumptions:
The development process is linear and sequential (the waterfall model).
A number of “new” defects are introduced in each development phase.
Various review and test software assurance activities serve as filters, removing
a percentage of the entering defects while allowing the rest to pass to the next
software assurance activity.
Incoming defects are the sum of defects passed from the former quality assur-
ance activity together with “new” defects created in the current development
phase.
The cost of defect removal is calculated by multiplying the number of defects
removed by the relative cost of removing a defect.
Defects passed to the customer will be detected by him or her; their full removal
at this phase will incur heavy costs.



(5)

Explain possible uses for the model.

The model allows calculating estimates of the cost of decisions regarding the qual-
ity assurance plan, e.g.:
Addition or elimination of a quality assurance activity from a given plan.
Application of current quality assurance procedures activity versus application
of a more efficient yet more costly procedure.

Utilization of the model thus enables comparison of SQA policies/strategies and
activity plans.

Selected bibliography

1.

2.

10.

11.

12.

13.

14.

Boehm, B. W. (1981) Software Engineering Economics, Ch. 4 Prentice Hall,
Upper Saddle River, NJ.

Boehm, B. W. (1988) “A spiral model of software development and enhance-
ment”, Computer, 21(5), 61-72.

. Boehm, B. W. (1998) “Using the Win-Win spiral model: a case study”,

Computer, 31(7), 33-44.

. Boehm, B. and Basili, V. R. (2001) “Software defect reduction — Top 10 list”,

Computer, 34(1) 135-137.

. IEEE (1990) “IEEE Std 610.12-1990 - IEEE Standard Glossary of Software

Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

. IEEE (1996) “IEEE/EIA Std 12207.0-1996 - IEEE/EIA Standard — Industry

Implementation of International Standard ISO/IEC 12207:1995”, in IEEE
Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

. IEEE (1997a) “IEEE/EIA Std 12207.1-1997 - IEEE/EIA Guide - Industry

Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes — Life Cycle Data”, in IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York.

. IEEE (1997b) “IEEE/EIA Std 12207.1-1997 — IEEE/EIA Guide — Industry

Implementation of International Standard ISO/IEC 12207:1995, Software Life
Cycle Processes — Implementation Considerations”, in IEEE Software
Engineering Standards Collection, The Institute of Electrical and Electronics
Engineers, New York.

. IEEE (1998) “IEEE Std 1012-1998 — IEEE Standard for Software Verification

and Validation”, in IEEE Software Engineering Standards Collection, The
Institute of Electrical and Electronics Engineers, New York.

Jones, C. (1996) Applied Software Measurement — Assuring Productivity and
Quality, 2nd edn, McGraw-Hill, New York.

Kendall, K. E. and Kendall, J. E. (1999) Systems Analysis and Design, 4th edn,
Prentice Hall, Upper Saddle River, NJ.

Perry, W. (1995) Effective Methods for Software Testing, John Wiley & Sons,
New York.

Pressman, R. S. (2000) Software Engineering — A Practitioner’s Approach.
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.
Royce, W. W. (1970) “Managing the development of large software systems:
concepts and techniques”, Proceedings of IEEE WESCON, August 1970.

145

Aydei3ol)qiq pa12919s



146

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

Review questions

7.1 Referring to the SDLC model:

7.2

7.3

7.4

7.5

7.6

@

@
€)

What are the seven basic phases of the development process suggested by
the model?

Suggest situations where the number of process phases should be reduced.

Suggest situations where the number of process phases should be increased.

With respect to the prototyping methodology:

@
@

€)

List the conditions necessary for the prototyping model to be applied.

Can you suggest an imaginary project ideally suitable for the prototyping
methodology?

Can you suggest an imaginary project that is obviously unsuitable for the pro-
totyping methodology?

Comparing the SDLC and prototyping methodologies:

6]
@

€)

List the advantages of prototyping compared to the SDLC methodology for
development of small to medium-sized projects.

Explain why the advantages of prototyping cannot be realized for large soft-
ware systems.

In what ways can prototyping support the development of large-scale projects?

Referring to the spiral model:

@

@

Describe the four activities to be repeated in each iteration of the develop-
ment process. Explain why the four activities designated are to be repeated in
each iteration of the development process.

What new activities were added to the classic SDLC model and what is their
main contribution to the success of projects?

Comparing the SDLC and spiral models:

@
@
€)

Explain the advantages of the spiral model as compared with the SDLC model.
What characteristics of a project enable these advantages to be best realized?
Provide three examples of projects that would obviously benefit from applica-
tion of the spiral model.

With respect to verification, validation and qualification:

@
@

€©)

Explain the differences between these three aspects of SQA activities.

Can a project that successfully passed verification and validation reviews but
failed part of the qualification review adequately supply users with the infor-
mation needed? Explain your answer.

In which respects is the project described in (2) inferior to a project that
passed all three reviews? In what way will this difference affect operation of
the software system?



7.7

7.8

Theoretically, verification reviews should be sufficient. Still, SQA professionals rec-
ommend performance of validation and qualification reviews as well.

(1) What do they expect to gain by adding a validation review?
(2) What do they expect to gain by adding a qualification review?

Referring to the model for defect removal efficiency and costs:

(1) What assumptions rest at the foundations of the model?
(2) Which three of the model’s data components are based on published
survey results?

Topics for discussion

7.1

7.2

7.3

7.4

Consider the expected severity of software system failure.

(1) What are the main issues that cause the degree of severity?

(2) Referring to your answer to (1), can you list three examples of software devel-
opment projects displaying highly severe failures?

(3) Referring to your answer to (1), can you list three examples of software devel-
opment projects displaying low-severity failures?

A software development firm is planning a new airport luggage control project. The
system is to control luggage transfer from the terminal to the planes, from the
planes to the terminal’s luggage release system, and from plane to plane (for tran-
sit passengers). The airport requires the highest reliability for the system and
wishes to initiate several new applications that have yet to be implemented in
another airport.

(1) What SQA methodology should be implemented for this project? List
your arguments.

(2) Would you recommend integration of additional methodologies in the plan? If
yes, what are they and what are their main contributions to the project?

HRS Ltd is a software house that specializes in human resource management pack-
ages sold mainly to small and medium-sized organizations. Its incentive control
and management recruitment software packages are already very popular.

(1) What methodology should be applied by HRS? List your arguments.

(2) The company wishes to penetrate the area of custom-made human resource
management software systems for large organizations such as banks and gov-
ernment agencies. What methodology or combination of methodologies can
best fit their new needs?

Software reuse has become an important factor in the software development
industry.

(1) Explain the advantages of software reuse.

(2) How can a software development firm organize for efficient software reuse?

(3) What similar trends can you identify in manufacturing industries (automo-
biles, home appliances, etc.)?

147

uoIssnasIp 104 soidoy ‘



148

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

7.5 Finding herself under time and budget pressures, a project leader has decided to
introduce an “economy plan” that limits the quality assurance activities to a stan-
dard design review, as required by the contract with the customer (50% filter), and
a comprehensive system test (60% filter). Considering the model’s contribution to
defect-removal efficiency and costs:

(1) What are the expected savings, if any, in resources invested for defect
removal during the development process as opposed to the standard quality
assurance plan?

(2) What are the expected effects of the “economy plan” on customer
satisfaction? Support your answer with a quantitative comparison to the
standard plan.

(3) Compare the overall results of the “economy plan” to the results of the stan-
dard and comprehensive plans.

(4) Based on your answer to (3), can you suggest some general rules about
choosing the preferred quality assurance plan?



Reviews

8.1 Review objectives 150
8.2 Formal design reviews (DRs) 152
8.2.1 The participants in a DR 153
8.2.2 Preparations for a DR 154
8.2.3 The DR session 155
8.2.4 Post-review activities 156
8.3 Peer reviews 158
8.3.1 Participants of peer reviews 160
8.3.2 Preparations for a peer review session 162
8.3.3 The peer review session 163
8.3.4 Post-peer review activities 165
8.3.5 The efficiency of peer reviews 165
8.3.6 Peerreview coverage 168
8.4 A comparison of the team review methods 168
8.5 Expert opinions 170
Summary 171
Selected bibliography 172
Review questions 172
Topics for discussion 174
Appendix 8A: DR report form 175
Appendix 8B: Inspection session findings report form 176
Appendix 8C: inspection session summary report 177

A common product of the software development process, especially in its
analysis and design phases, is a design document in which the progress of the
development work performed is recorded. The system analyst or analysts
who prepared the document will check it repeatedly, it is to be assumed, in
order to detect any possible error that might have entered. In addition, devel-
opment team leaders are also expected to examine this document and its
details so as to detect any remaining errors before granting their approval.



SM3IAD
(al
NSy 8 3

However, it is clear that because these professionals were involved in pro-
ducing the document, they are unlikely to detect some of their own errors
irrespective of the number of checks. Therefore, only others — such as peers,
superiors, experts, and customer’s representatives (those having different
experiences and points of view, yet not directly involved in creating the doc-
ument) — are capable of reviewing the product and detecting the errors
unnoticed by the development team.
As defined by IEEE (1990), a review process is:

“A process or meeting during which a work product, or set of work prod-
ucts, is presented to project personnel, managers, users, customers, or
other interested parties for comment or approval.”

As these documents are products of the project’s initial phases, reviews
acquire special importance in the SQA process because they provide early
detection and prevent the passing of design and analysis errors “down-
stream”, to stages where error detection and correction are much more
intricate, cumbersome, and therefore costly.

Several methodologies can be implemented when reviewing documents.
In this chapter, the following methods will be discussed:

m Formal design reviews
m Peer reviews (inspections and walkthroughs)
m Expert opinions.

Standards for software reviews are the subject of IEEE Std 1028 (IEEE, 1997).

It should be noted that successful implementations of inspections and
walkthroughs also detect defects in the coding phase, where the appropriate
document reviewed is the code printout.

A case study of the contribution of formal design reviews and inspec-
tions to software quality is presented by MacFarland (2001).

After completing this chapter, you will be able to:

m Explain the direct and indirect objectives of review methodologies.

m Explain the contribution of external experts to the performance of
review tasks.

m Compare the three major review methodologies.

8.1 Review objectives

Several objectives motivate reviews. The review’s direct objectives deal with
the current project, whereas its indirect objectives, more general in nature,
deal with the contribution of the review proper to the promotion of team
members’ professional knowledge and the improvement of the development
methodologies applied by the organization.



The main review objectives are presented in Frame 8.1.

Jri i Review objectives

Direct objectives

m To detect analysis and design errors as well as subjects where corrections,
changes and completions are required with respect to the original
specifications and approved changes.

m To identify new risks likely to affect completion of the project.

m To locate deviations from templates and style procedures and conventions.
Correction of these deviations is expected to contribute to improved
communication and coordination resulting from greater uniformity of
methods and documentation style.

m To approve the analysis or design product. Approval allows the team to
continue to the next development phase.

Indirect objectives

m To provide an informal meeting place for exchange of professional
knowledge about development methods, tools and techniques.

m To record analysis and design errors that will serve as a basis for future
corrective actions. The corrective actions are expected to improve
development methods by increasing effectiveness and quality, among other
product features. (For more about corrective actions, see Chapter 17.)

The various review methods differ in the emphasis attached to the dif-
ferent objectives and in the extent of success achievable for each objective.
Therefore, for better “filtering out” of errors and greater long-term impacts,
a double or even triple “net”, constructed from among the range of review
methods available, should be applied.

Reviews are not activities to be conducted haphazardly. Procedural order
and teamwork lie at the heart of formal design reviews, inspections and walk-
throughs. Each participant is expected to emphasize his or her area of
responsibility or specialization when making comments. At each review ses-
sion, one individual is assigned the task of inscribing mutually agreed
remarks. The subsequent list of items should include full details of defect loca-
tion and description, documented in a way that will later allow full retrieval
by the development team. However, because of the human propensity to try
to design solutions on the spot and, often, to digress to tangential issues or,
even worse, to personal matters during the course of a meeting, a coordina-
tor is needed to maintain control of the discussion and keep it on track.

In general, the knowledge that an analysis or design product will be
reviewed stimulates the development team to work at their maximum. This
represents a further contribution of reviews to improved product quality.

. —_-
S9AI1D3(q0 MaINSY T°8 ‘ o



152

SM3INDY 8

In the following, the various review methods are presented. A compari-
son of team review methods is the subject of Section 8.4; expert opinions are
discussed in Section 8.5.

8.2 Formal design reviews (DRs)

Formal design reviews, variously called “design reviews”, “DRs” and “for-
mal technical reviews (FTR)”, differ from all other review instruments by
being the only reviews that are necessary for approval of the design product.
Without this approval, the development team cannot continue to the next
phase of the software development project. Formal design reviews may be
conducted at any development milestone requiring completion of an analy-
sis or design document, whether that document is a requirement
specification or an installation plan. A list of common formal design reviews
1s given in Frame 8.2.

Jliiiv2 Some common formal design reviews

DPR — Development Plan Review

SRSR — Software Requirement Specification Review
PDR — Preliminary Design Review

DDR — Detailed Design Review

DBDR — Data Base Design Review

TPR — Test Plan Review

STPR — Software Test Procedure Review
VDR — Version Description Review
OMR — Operator Manual Review

SMR — Support Manual Review

TRR — Test Readiness Review

PRR — Product Release Review

IPR — Installation Plan Review

Sauer and Jeffery (2000) discuss a broad range of factors affecting the
effectiveness of DRs, based on research results and a wide-ranging survey of
the literature. Our discussion of formal design reviews will focus on:

The participants
The prior preparations
The DR session

[
[
[
m The recommended post-DR activities.



8.2.1 The participants in a DR

All DRs are conducted by a review leader and a review team. The choice of
appropriate participants is of special importance because of their power to
approve or disapprove a design product.

The review leader

Because the appointment of an appropriate review leader is a major factor
affecting the DR’s success, certain characteristics are to be looked for in a
candidate for this position:

m Knowledge and experience in development of projects of the type reviewed.
Preliminary acquaintance with the current project is not necessary.

m Seniority at a level similar to if not higher than that of the project leader.
m A good relationship with the project leader and his team.
B A position external to the project team.

Thus, appropriate candidates for review team leadership include the devel-
opment department’s manager, the chief software engineer, the leader of
another project, the head of the software quality assurance unit and, in cer-
tain circumstances, the customer’s chief software engineer.

Implementation tip

In some cases, the project leader is appointed as the review leader, the main
justification for this decision being his or her superior knowledge of the
project’s material. In most cases, this choice proves to be undesirable
professionally. A project leader who serves as the review team leader tends,
whether intentionally or nor, to limit the scope of the review and avoid incisive
criticism. Review team members tend to be chosen accordingly. Appointments
of this type usually undermine the purpose for the review and only delay
confrontation with problems to a later, more sensitive date.

Small development departments and small software houses typically
have substantial difficulties finding an appropriate candidate to lead the
review team. One possible solution to this predicament is the appointment
of an external consultant to the position.

The review team

The entire review team should be selected from among the senior members
of the project team together with appropriate senior professionals assigned
to other projects and departments, customer—user representatives, and in
some cases, software development consultants. It is desirable for non-project
staff to make up the majority of the review team.

(SYQ@) SmalAal usdIsap |ewlod '8 ‘ o



154

SM3INDY 8

An important, oft-neglected issue is the size of the review team. A review
team of three to five members is expected to be an efficient team, given the
proper diversity of experience and approaches among the participants are
assured. An excessively large team tends to create coordination problems,
waste review session time and decrease the level of preparation, based on a
natural tendency to assume that others have read the design document.

8.2.2 Preparations fora DR

Although preparations for a DR session are to be completed by all three
main participants in the review — the review leader, the review team and the
development team — each participant is required to focus on distinct aspects
of the process.

Review leader preparations
The main tasks of the review leader in the preparation stage are:

m To appoint the team members

m  To schedule the review sessions

m To distribute the design document among the team members (hard copy,
electronic file, etc.).

It is of utmost importance that the review session be scheduled shortly after
the design document has been distributed to the review team members.
Timely sessions prevent an unreasonable length of time from elapsing before
the project team can commence the next development phase and thus reduce
the risk of going off schedule.

Review team preparations

Team members are expected to review the design document and list their
comments prior to the review session. In cases where the documents are siz-
able, the review leader may ease the load by assigning to each team member
review of only part of the document.

An important tool for ensuring the review’s completeness is the check-
list. In addition to the general design review checklist, checklists dedicated to
the more common analysis and design documents are available and can be
constructed when necessary. Checklists contribute to the design review’s
effectiveness by reminding the reviewer of all the primary and secondary
issues requiring attention. For a comprehensive discussion of checklists, see
Chapter 15.

Development team preparations

The team’s main obligation as the review session approaches is to prepare a
short presentation of the design document. Assuming that the review team
members have read the design document thoroughly and are now familiar



with the project’s outlines, the presentation should focus on the main pro- 155
fessional issues awaiting approval rather than wasting time on description of
the project in general.

Implementation tip

One of the most common techniques used by project leaders to avoid
professional criticism and undermine review effectiveness is the
comprehensive presentation of the design document. This type of
presentation excels in the time it consumes. It exhausts the review team and
leaves little time, if any, for discussion. All experienced review leaders know
how to handle this phenomenon.

In cases where the project leader serves as the review leader, one can observe
especially potent tactics aimed at stymieing an effective review: appointment
of a large review team combined with a comprehensive and long presentation.

(SYQ@) SmalAal usdIsap |ewlod '8 ‘

8.2.3 The DR session

The review leader’s experience in leading the discussions and sticking to the
agenda is the key to a successful DR session. A typical DR session agenda
includes:

(1) A short presentation of the design document.
(2) Comments made by members of the review team.

(3) Verification and validation in which each of the comments is discussed
to determine the required actions (corrections, changes and additions)
that the project team has to perform.

(4) Decisions about the design product (document), which determines the
project’s progress. These decisions can take three forms:

®m Full approval — enables immediate continuation to the next phase
of the project. On occasion, full approval may be accompanied
by demands for some minor corrections to be performed by the proj-
ect team.

m Partial approval — approval of immediate continuation to the next
phase for some parts of the project, with major action items (correc-
tions, changes and additions) demanded for the remainder of the
project. Continuation to the next phase of these remainder parts will
be permitted only after satisfactory completion of the action items.
This approval can be given by the member of the review team
assigned to review the completed action items, by the full review team
in a special review session, or by any other forum the review leader
thinks appropriate.

® Denial of approval — demands a repeat of the DR. This decision is
applied in cases of multiple major defects, particularly critical defects.



SM3IAD
w
IRy 8 o~

8.2.4 Post-review activities

Apart from the DR report, the DR team or its representative is required
to follow up performance of the corrections and to examine the corrected
sections.

The DR report
One of the review leader’s responsibilities is to issue the DR report immedi-
ately after the review session. Early distribution of the DR report enables the
development team to perform the corrections earlier and minimize the atten-
dant delays to the project schedule.

The report’s major sections contain:

B A summary of the review discussions.

m The decision about continuation of the project.

m A full list of the required actions — corrections, changes and additions that
the project team has to perform. For each action item, the anticipated
completion date and project team member responsible are listed.

® The name(s) of the review team member(s) assigned to follow up per-
formance of corrections.

The form shown in Appendix 8A presents the data items that need to be
documented for an inclusive DR report.

The follow-up process

The person appointed to follow up the corrections, in many cases the review
leader him or herself, is required to determine whether each action item has
been satisfactorily accomplished as a condition for allowing the project to
continue to the next phase. Follow-up should be fully documented to enable
clarification of the corrections in the future, if necessary.

Implementation tip

Unfortunately, the entire or even parts of the DR report are often worthless,
whether because of an inadequately prepared review team or because of
intentional evasion of a thorough review. It is fairly easy to identify such cases
from the characteristics of the review report:

m An extremely short report, limited to documented approval of the design
product, listing no detected defects.

m A short report, approving continuation to the next project phase in full,
listing several minor defects but no action items.

m A report listing several action items of varied severity, but no indication of
follow-up (correction schedule, etc.), and no available documented follow-
up activities.



Pressman (2000, Chapter 8) lists guidelines for completing a successful 157
DR, while focusing on infrastructure, preparations for a DR, and conduct of
a DR session are summarized in Frame 8.3. Pressman’s golden “guidelines”
for formal design reviews also apply to inspection and walkthrough sessions.

Pressman’s 13 “golden guidelines” for a successful design
review (based on Pressman 2000, Chapter 8)

Design review infrastructure

Develop checklists for each type of design document, or at least for the
common ones.

Train senior professionals to treat major technical as well as review process
issues. The trained professionals serve as a reservoir for DR teams.

(SYQ@) SmalAal usdIsap |ewlod '8

Periodically analyze past DR effectiveness regarding defect detection to
improve the DR methodology.

Schedule the DRs as part of the project activity plan and allocate the
needed resources as an integral part of the software development
organization’s standard operating procedures.

The design review team

Review teams should be limited in size, with 3—5 members usually being
the optimum.

The design review session

Discuss professional issues in a constructive way while refraining from
personalizing those issues. This demands keeping the discussion
atmosphere free of unnecessary tension.

Keep to the review agenda. Drifting from the planned agenda usually
interferes with the review’s efficiency.

Focus on detection of defects by verifying and validating the participants’
comments. Refrain from discussing possible solutions to the detected
defects so as to save time and avoid wandering from the agenda.

In cases of disagreement about the significance of an error, it is desirable
to end the debate by noting the issue and shifting its discussion to
another forum.

Properly document the discussions, especially details of the participants’
comments and the results of their verification and validation. This step is
especially important if the documentation is to serve as input or a basis for
preparation of the review report.

The duration of a review session should not exceed two hours.



SM3IAD -
Y 8 | &

Post-review activities

H Prepare the review report, which summarizes the issues discussed and the
action items.

m Establish follow-up procedures to ensure the satisfactory performance of
all the corrections included in the list of action items.

The formal design review process is illustrated in Figure 8.1.
The next section deals with peer review methods, and discusses the two
most commonly used methods: inspection and walkthrough.

8.3 Peerreviews

Two peer review methods, inspections and walkthroughs, are discussed in
this section. The major difference between formal design reviews and peer
review methods is rooted in their participants and authority. While most par-
ticipants in DRs hold superior positions to the project leader and customer
representatives, participants in peer reviews are, as expected, the project
leader’s equals, members of his or her department and other units. The other
major difference lies in degree of authority and the objective of each review
method. Formal design reviews are authorized to approve the design docu-
ment so that work on the next stage of the project can begin. This authority
is not granted to the peer reviews, whose main objectives lie in detecting
errors and deviations from standards.

Today, with the appearance of computerized design tools, including
CASE tools, on the one hand, and systems of vast software packages on the
other hand, some professionals tend to diminish the value of manual reviews
such as inspections and walkthroughs. Nevertheless, past software surveys as
well as recent empirical research findings provide much convincing evidence
that peer reviews are highly efficient as well as effective methods.

What differentiates a walkthrough from an inspection is the level of for-
mality, with inspection the more formal of the two. Inspection emphasizes
the objective of corrective action. Whereas a walkthrough’s findings are lim-
ited to comments on the document reviewed, an inspection’s findings are also
incorporated into efforts to improve development methods per se.
Inspections, as opposed to walkthroughs, are therefore considered to con-
tribute more significantly to the general level of SQA.

Inspection is usually based on a comprehensive infrastructure, including:

m Development of inspection checklists developed for each type of design doc-
ument as well as coding language and tool, which are periodically updated.

m Development of typical defect type frequency tables, based on past find-
ings, to direct inspectors to potential “defect concentration areas”.



The development
team

The review leader

The review team

1. Review schedule

> Tfaam 2. Document for
> appointment, review
Prepare the schedule review Read the
design »| and preparing document
document The design agenda
product
+ Presentation
Prepare a of the design product Comments
presentation
YVYY

Formal review session

Corrected design
product — to be
reviewed again

Carry out

No approval
(Major corrections
required)

major <
corrections

Carry out
major

Non-approved parts of project —
major corrections to be carried out

v

Review report

Full approval
(No corrections
required)

Is the
document
approved?

Partial approval
v (Major corrections required)

corrections of
non-approved

Approved parts

arts Corrected
P parts of
A design
product
> Corrections reviewed
Document
parts not Follow-up
Are the
approved
corrected parts report
approved?
Document
parts
Cany out approved
next :
development |
phase -

Figure 8.1: The formal design review process

m Training of competent professionals in inspection process issues, a
process that makes it possible for them to serve as inspection leaders
(moderators) or inspection team members. The trained employees serve
as a reservoir of professional inspectors available for future projects.

159

SMaIA3] 193d £°8



160

SM3INDY 8

m Periodic analysis of the effectiveness of past inspections to improve the
inspection methodology.

®m Introduction of scheduled inspections into the project activity plan and
allocation of the required resources, including resources for correction of
detected defects.

The inspection and walkthrough processes described here are the more com-
monly employed versions of these methods. Organizations often modify
these methods, with adaptations representing “local color”, that is, the char-
acter of the development and SQA units, the software products developed,
team structure and composition, and the like. It should be noted that in
response to this variability, especially in walkthrough procedures, differences
between the two methods are easily blurred. This state of affairs has con-
vinced some specialists to view walkthroughs as a type of inspection, and
vice versa.

The debate over which method is preferable has yet to be resolved, with
proponents of each arguing for the superiority of their favored approach.
Based on their survey of studies of each method, Gilb and Graham (1993)
conclude that as an alternative to inspections, walkthroughs display “far
fewer defects found but at the same cost”.

Our discussion of peer review methods will thus focus on:

Participants of peer reviews

Requisite preparations for peer reviews
The peer review session

Post-peer review activities

Peer review efficiency

Peer review coverage.

With minor adaptations, the principles and process of design peer reviews
can also be successfully applied to code peer reviews.

Design and code inspections, as procedural models, were initially described
and formulated by Fagan (1976, 1986). As to walkthroughs, Yourdon (1979)
provides a thorough and detailed discussion of the related principles
and processes.

8.3.1 Participants of peer reviews

The optimal peer review team is composed of three to five participants. In
certain cases, the addition of one to three further participants is acceptable.
All the participants should be peers of the software system designer-author.
A major factor contributing to the success of a peer review is the group’s
“blend” (which differs between inspections and walkthroughs).

A recommended peer review team includes:

B A review leader
m The author
m Specialized professionals.



The review leader

The role of review leader (“moderator” in inspections, “coordinator’ in
walkthroughs) differs only slightly by peer review type. Candidates for this
position must:

(1) Be well versed in development of projects of the current type and famil-
iar with its technologies. Preliminary acquaintance with the current
project is not necessary.

(2) Maintain good relationships with the author and the development team.
(3) Come from outside the project team.

(4) Display proven experience in coordination and leadership of profession-
al meetings.

(5) For inspections, training as a moderator is also required.

The author
The author is, invariably a participant in each type of peer review.

Specialized professionals
The specialized professionals participating in the two peer review methods
differ by review. For inspections, the recommended professionals are:

A designer: the systems analyst responsible for analysis and design of the
software system reviewed.

® A coder or implementer: a professional who is thoroughly acquainted
with coding tasks, preferably the leader of the designated coding team.
This inspector is expected to contribute his or her expertise to the detec-
tion of defects that could lead to coding errors and subsequent software
implementation difficulties.

B A tester: an experienced professional, preferably the leader of the
assigned testing team, who focuses on identification of design errors usu-
ally detected during the testing phase.

For walkthroughs, the recommended professionals are:

m A standards enforcer. This team member, who specializes in development
standards and procedures, is assigned the task of locating deviations from
those standards and procedures. Errors of this type substantially affect the
team’s long-term effectiveness, first because they cause extra difficulties for
new members joining the development team, and later because they will
reduce the effectiveness of the team that will maintain the system.

B A maintenance expert who is called upon to focus on maintainability, flex-
ibility and testability issues (see Chapter 3), and to detect design defects
capable of impeding correction of bugs or performance of future changes.
Another area requiring his or her expertise is documentation, whose com-
pleteness and correctness are vital for any maintenance activity.

SM3IAD) 199d €£°8 ‘ §



162

SM3INDY 8

A user representative. Participation of an internal (when the customer is
a unit in the same firm) or an external user’s representative in the walk-
through team contributes to the review’s validity because he or she
examines the software system from the point of view of the user-
consumer rather than the designer—supplier. In cases where a “real” user
is not available, as in the development of a COTS software package, a
team member may take on that role and focus on validity issues by com-
paring of the original requirements with the actual design.

Team assignments

Conducting a review session requires, naturally, assignment of specific tasks
to the team members. Two of these members are the presenter of the docu-
ment and the scribe, who documents the discussions.

The presenter. During inspection sessions, the presenter of the document
is chosen by the moderator; usually, the presenter is not the document’s
author. In many cases the software coder serves as the presenter because
he or she is the team member who is most likely to best understand the
design logic and its implications for coding. In contrast, for most walk-
through sessions, it is the author, the professional most intimately
acquainted with the document, who is chosen to present it to the group.
Some experts claim that an author’s assignment as presenter may affect
the group members’ judgement; therefore, they argue that the choice of a
“neutral” presenter is to be preferred.

The scribe. The team leader will often — but not always — serve as the
scribe for the session, and record the noted defects that are to be correct-
ed by the development team. This task is more than procedural; it
requires thorough professional understanding of the issues discussed.

8.3.2 Preparations for a peer review session

The review leader and the team members are to assiduously complete their
preparation, with the type of review determining their scope.

Peer review leader’s preparations for the review session
The main tasks of the review leader in the preparation stage are:

To determine, together with the author, which sections of the design doc-
ument are to be reviewed. Such sections can be:

— The most difficult and complex sections

— The most critical sections, where any defect can cause severe damage
to the program application and thus to the user

— The sections prone to defects.

To select the team members.



m To schedule the peer review sessions. It is advisable to limit a review ses-
sion to two hours; therefore, several review sessions should be scheduled
(up to two sessions a day) when the review task is sizable. It is important
to schedule the sessions shortly after the pertinent design document sec-
tions are ready for inspection. This proximity tends to minimize the scope
and/or number of design additions based on parts of the document that
might be found defective later in the scheduled review. Moreover, for the
process to unfold smoothly, the inspection’s review leader should sched-
ule an overview meeting for his team.

m To distribute the document to the team members prior to the review session.

Peer review team’s preparations for the review session
The preparations required of an inspection team member are quite thorough,
while those required of a walkthrough team member are brief.

Inspection team members are expected to read the document sections to
be reviewed and list their comments before the inspection session begins.
This advance preparation is meant to guarantee the session’s effectiveness.
They will also be asked to participate in an overview meeting. At this meet-
ing, the author provides the inspection team members with the necessary
relevant background for reviewing the chosen document sections: the proj-
ect in general, the logic, processes, outputs, inputs, and interfaces. In cases
where the participants are already well acquainted with the material, an
overview meeting may be waived.

An important tool supporting the inspector’s review is a checklist. In
well-established development departments, one can find specialized check-
lists dedicated to the more common types of development documents (see
Chapter 15).

Prior to the walkthrough session, team members briefly read the materi-
al in order to obtain a general overview of the sections to be reviewed, the
project and its environment. Participants lacking preliminary knowledge of
the project and its substantive area will need far more preparation time. In
most organizations employing walkthroughs, team participants are not
required to prepare their comments in advance.

8.3.3 The peer review session

A typical peer review session takes the following form. The presenter reads
a section of the document and adds, if needed, a brief explanation of the
issues involved in his or her own words. As the session progresses, the par-
ticipants either deliver their comments to the document or address their
reactions to the comments. The discussion should be confined to identifica-
tion of errors, which means that it should not deal with tentative solutions.
Unlike inspection sessions, the agenda of the typical walkthrough session
opens with the author’s short presentation or overview of the project and the
design sections to be reviewed.

163

SMaIA3] 193d £°8



164

SM3INDY 8

During the session, the scribe should document each error recognized by
location and description, type and character (incorrect, missing parts or extra
parts). The inspection session scribe will add the estimated severity of each
defect, a factor to be used in the statistical analysis of defects found and for the
formulation of preventive and corrective actions. The error severity classifica-
tion appearing in Appendix C of MIL-STD-498 (DOD, 1994) and presented in
Table 8.1, provides an accepted framework for classifying error severity.

Concerning the length of inspection and walkthrough sessions, the same
rules apply as to DRs: sessions should not exceed two hours in length, or
schedule for more than twice daily. Pressman’s “golden guidelines” for con-
ducting successful DR sessions are also helpful here (see Frame 8.3).

Session documentation
The documentation produced at the end of an inspection session is much
more comprehensive than that of a walkthrough session.

Two documents are to be produced following an inspection session and
subsequently distributed among the session participants:

(1) Inspection session findings report. This report, produced by the scribe,
should be completed and distributed immediately after the session’s clos-
ing. Its main purpose is to assure full documentation of identified errors
for correction and follow up. An example of such a report is provided
in Appendix 8B.

Table 8.1: Classification of design errors by severity
Severity Description

5 (critical) (1) Prevents accomplishment of essential capabilities.
(2) Jeopardizes safety, security or other critical requirements.

4 (1) Adversely affects the accomplishment of essential capabilities,
where no work-around solution is known.

(2) Adversely affects technical, cost or schedule risks to project or

system maintenance, where no work-around solution is known.

3 (1) Adversely affects the accomplishment of essential capabilities,
where a work-around solution is known.
(2) Adversely affects technical, cost or schedule risks to the
development project or to the system maintenance, where a work-
around solution is known.

2 (1) User/operator inconvenience that does not affect required mission
or operational essential capabilities.
(2) Inconvenience for development or maintenance personnel, but
does not prevent the realization of those responsibilities.

1 (minor) Any other effect.

Source: After DOD (1994)



(2) Inspection session summary report. This report is to be compiled by the
inspection leader shortly after the session or series of sessions dealing
with the same document. A typical report of this type summarizes the
inspection findings and the resources invested in the inspection; it like-
wise presents basic quality and efficiency metrics. The report serves
mainly as input for analysis aimed at inspection process improvement
and corrective actions that go beyond the specific document or project.
An example of an inspection session summary report appears in
Appendix 8C.

At the end of a session or series of walkthrough sessions, copies of the error
documentation — the “walkthrough session findings report” — should be
handed to the development team and the session participants.

8.3.4 Post-peer review activities

A fundamental element differentiating between the two peer review methods
discussed here is the issue of post-peer review.

The inspection process, contrary to the walkthrough, does not end with
a review session or the distribution of reports. Post-inspection activities are
conducted to attest to:

m  The prompt, effective correction and reworking of all errors by the
designer/author and his team, as performed by the inspection leader (or
other team member) in the course of the assigned follow-up activities.

m  Transmission of the inspection reports to the internal Corrective Action
Board (CAB) for analysis. This action initiates the corrective and pre-
ventive actions that will reduce future defects and improve productivity
(see Chapter 17).

A comparison of the peer review methods, participants and process elements
is presented in Figure 8.2.

8.3.5 The efficiency of peer reviews

The issue of defect detection efficiency of peer review methods proper and in
comparison to other SQA defect detection methods is constantly being
debated. Some of the more common metrics applied to estimate the efficien-
cy of peer reviews, as suggested in the literature, are:

B Peer review detection efficiency (average hours worked per defect detected).

m Peer review defect detection density (average number of defects detected
per page of the design document).

m Internal peer review effectiveness (percentage of defects detected by peer
review as a percentage of total defects detected by the developer).

SM3IAD) 199d €£°8 ‘ §



166

SM3INDY 8

PARTICIPANTS
Inspection
Moderator (scribe)

Coder or
Author implementer
(presenter)
Designer Tester

PROCESS

Organizational
preparations

v

Overview meeting

Y

Thorough review of
document

Y

Inspection session(s)

Inspection session report
Y Inspection summary report

Corrections
and reworking

Y

Follow-up of corrections
and reworking

Walkthrough
Coordinator (scribe)

Maintenance Standards
expert enforcer
Author User
(presenter) representative

Organizational
preparations

Y

Brief overview
reading

Y

Walkthrough session(s)

Walkthrough
session report

Figure 8.2: Inspection vs. walkthrough — participants and processes

The literature provides rather meager indications about findings inspection
effectiveness. Dobbins (1998) quotes Madachy’s findings from an analysis of
the design and code inspections conducted on the Litton project. Madachy’s
findings regarding the first two metrics cited above are presented in Table 8.2.

Dobbins (1998) also cites Don O’Neill’s 1992 National Software
Quality Experiment, conducted in 27 inspection laboratories operating in
the US. This experiment provides some insight into the code inspection
process, especially at the preparation stage. A total of 90 925 source code
lines were code-inspected, with the following results:



Table 8.2: The Litton project’s inspection efficiency according to Madachy

Inspection efficiency metrics

SM3IAD) 199d €£°8 ‘ 5

Total Defect Inspection
Type of No. of number of No.of Inspection  detection detection
document inspections  defects pages  resouces density efficiency
and major invested (defects/  (work-hours/
defects (work hours) page) major defect)
Design
inspections
Requirements 21 1243 552 328 2.25 3.69
description (89 major)
Requirements 32 2165 1065 769 2.03 6.57
analysis 117 major
High-level 41 2398 1652 1097 1.45 5.57
design (197 major)
Test 18 1495 1621 457 0.92 3.78
procedures (121 major)
Code
inspections
Code 150 7165 5047* 4612 1.42 5.97
(772 major)
*276 422 lines of code.
Source: After Dobbins (1998)
m Total number of defects detected 1849
® Number of major defects detected 242
m Total preparation time (minutes) 22828

Accordingly:

m Average preparation time per detected defect

12.3 minutes (0.2 hours)
B Average preparation time per detected major defect

94.3 minutes (1.57 hours)

Considering the different environments, a comparison of the defect densities
detected in the National Software Quality Experiment and those found in the
Litton project reveal relatively small differences, as shown below:

National Software
Quality Experiment

Litton Project

Total defect detection density (defects per KLOC*)
Major defect detection density (defects per KLOC*)

20.3
2.66

25.9
2.80

*KLOC = 1000 lines of code.



168

SM3INDY 8

The internal effectiveness of inspections is discussed by Cusumano (1991,
pp. 352-353), who reports the results of a study on the effectiveness of design
review, code inspection and testing at Fujitsu (Japan) for the period
1977-1982. After two decades, the findings are still of interest, even though
no efficiency metrics are provided. A comparison by year of inspection, pre-
sented in Table 8.3, shows substantial improvement in software quality
associated with an increased share of code inspection and design reviews and
a reduced share of software testing. The software quality is measured here by
the number of defects per 1000 lines of maintained code, detected by the users
during the first six months of regular software system use.

Though quantitative research results refer only to the inspection method,
we can expect to obtain similar results after application of the walkthrough
method. This assumption will one day have to be verified empirically for us
to be certain.

8.3.6 Peerreview coverage

Only a small percentage of the documents and total volume of code ever
undergoes peer review. Coverage of about 5-15% of document pages still
represents a significant contribution to total design quality because the fac-
tor that determines the benefits of peer review to total quality is not the
percentage of pages covered but the choice of those pages. Importantly, with
the increased usage of reused software, the number of document pages and
code lines demanding inspection is obviously declining. Frame 8.4 lists those
document sections that are recommended for inclusion in a peer review as
well as those that can be readily omitted.

8.4 A comparison of the team review methods
For practitioners and analysts alike, a comparison of the three team review

methods discussed in this chapter should prove interesting. Table 8.4 pres-
ents such a comparison.

Table 8.3: Code inspection effectiveness at Fujitsu according to Cusumano

Year Defect detection method Defects per 1000
Test % Design review % Code inspection % lines of maintained code
1977 85 - 15 0.19
1978 80 5 15 0.13
1979 70 10 20 0.06
1980 60 15 25 0.05
1981 40 30 30 0.04
1982 30 40 30 0.02

Source: After Cusumano (1991)



A3 Sections recommended to be included in or omitted from

Sections recommended for inclusion

peer reviews

Sections of complicated logic

Critical sections, where defects
severely damage essential
system capability

Sections dealing with new
environments

Sections designed by new or
inexperienced team members

Sections recommended for omission

Table 8.4: Comparison of the review methodologies

Properties

Main direct
objectives

Main indirect
objectives

Review leader

Participants

Project leader
participation

Specialized
professionals
in the team

Process of
review:

Overview
meeting
Participants’
preparations

Formal design reviews

(1) Detect errors

(2) Identify new risks
(3) Approve the
design document

Knowledge exchange

Chief software engineer
or senior staff member

Top-level staff
and customer
representatives

Yes

No

Yes — thorough

“Straightforward” sections
(no complications)

Sections of a type already
reviewed several times by the
team in similar past projects

Sections that, if faulty, are not
expected to affect functionality

Reused design and code

Repeated parts of the design
and code

Inspections Walkthroughs

(1) Detect errors Detect errors
(2) Identify deviations
from standards

(1) Knowledge exchange Knowledge exchange
(2) Support corrective
actions

Trained moderator

Coordinator (peer, the

(peer) project leader on
occasion)

Peers Peers

Yes Yes; usually as the

review’s initiator

(1) Designer (1) Standards enforcer

(2) Coder or implementer (2) Maintenance expert

(3) Tester (3) User representative

Yes Yes

Yes — thorough Yes — brief

169

SpoYlaWl MaIA3J Wea) ay} Jo uostedwod y #°8g ‘



170

SM3INDY 8

Table 8.4: Continued

Formal design reviews  Inspections Walkthroughs

Review Yes Yes Yes
session
Follow-up of  Yes Yes No
corrections

Infrastructure:
Formal No Yes No
training of
participants
Use of No Yes No
checklists

Error-related

Not formally required Formally required Not formally required

data collection

Review
documentation report

Walkthrough session
findings report

(1) Inspection session
findings report

(2) Inspection session
summary report

Formal design review

8.5 Expert opinions

The last review method we will discuss is the use of expert opinions. Expert
opinions, prepared by outside experts, support quality evaluation by intro-
ducing additional capabilities to the internal review staff. The organization’s
internal quality assurance activities are thereby reinforced. Outside experts
transmit their expertise by either:

Preparing an expert’s judgement about a document or a code section.

Participating as a member of an internal design review, inspection or
walkthrough team.

An outside expert’s judgement as well as his or her participation as an exter-
nal member of a review team is most beneficial in the following situations:

Insufficient in-house professional capabilities in a specialized area.
Temporary lack of in-house professionals for review team participation
due to intense workload pressures during periods when waiting will cause
substantial delays in the project completion schedule.

Indecisiveness caused by major disagreements among the organization’s
senior professionals.

In small organizations, where the number of suitable candidates for a
review team is insufficient.



Summary 171

(1) Explain the direct and indirect objectives of the review methodologies.

The direct objectives are:

B To detect analysis and design errors.

To identify new risks expected to affect the completion of the project.

To identify deviations from templates and style procedures.

To approve the analysis or design product, allowing the team to continue to the
next development phase.

Mewwng‘

The indirect objectives are:

m To serve as an informal meeting place for the exchange of knowledge about
development tools, techniques, experience with new tools, methods and relat-
ed items.

m To promote and support the improvement of development methods by supply-
ing new data for analysis of design errors.

(2) Explain the contribution of outside experts to the performance of review tasks.

An outside expert can support quality assessment efforts by evaluating a document
or a code section or by participating in an internal review team. Turning to outside
experts is useful in situations where in-house capabilities are insufficient in spe-
cialized areas, the professionals needed to form a review team are temporarily
unavailable, an insufficient number of suitable candidates are available (such as in
small organizations), and in cases when professional disagreements make it impos-
sible to reach a decision.

(3) Compare the objectives and participants of the three team review methods.

Three team review methods were discussed: formal design reviews, inspections
and walkthroughs. The direct objective common to all these methods is error detec-
tion. Other objectives, specific to formal design reviews, are identification of new
risks and, for inspections, identification of deviation from standards and support of
corrective actions. An additional objective, exclusive to DRs, is the approval of
design documents, meaning completion of the associated design stages. Another
indirect objective shared by all review methods is the exchange of professional
knowledge between participants.

The project leader participates in the review teams of every method. However,
while the other participants in the DR are superior, professionally or administra-
tively, to the team leader and customer representatives, participants in the other
review methods are all peers. Another major difference between the DR and the
peer review methods is the inclusion of specialized professionals in the team:
designers, coders or implementers and testers in inspections; standards enforcers,
maintenance experts and user representative in walkthroughs.



SM3IAD 3
may 8 | S

Selected bibliography

1.

2.

10.

11.

12.

13.

14.

15.

Biffi, S. (2000) “Using inspection data for defect estimation”, IEEE Software,
17(6), 36-43.

Cusumano, M. A. (1991) Japan’s Software Factories — A challenge to U.S.
Management, Oxford University Press, New York.

Dobbins, J. H. (1998) “Inspections as an up-front quality technique”, in G.G
Schulmeyer and J. I. McManus (eds), Handbook of Software Quality Assurance,
Prentice Hall, Harlow, Essex, UK.

DOD (1994) MIL-STD-498, US Department of Defense.

Fagan, M. E. (1976) “Design and code inspections to reduce errors in program
development”, IBM Systems Journal, 15(3), 182-211.

. Fagan, M. E. (1986) “Advances in software inspections”, IEEE Transactions on

Software Engineering, SE-12, (7), 744-751.
Gilb, T. and Graham, D. (1993) Software Inspection, Addison-Wesley, Harlow,
Essex, UK.

. Hollocker, C. P. (1990) Software Reviews and Audits Handbook, John Wiley &

Sons, New York.

IEEE (1990) “IEEE Std 610.12-1990 - IEEE Standard Glossary of Software
Engineering Terminology”, in IEEE Software Engineering Standards Collection,
The Institute of Electrical and Electronics Engineers, New York.

IEEE (1997) “IEEE Std 1028-1997 — IEEE Standard for Software Reviews”, in
IEEE Software Engineering Standards Collection, The Institute of Electrical and
Electronics Engineers, New York.

MacFarland, R. (2001) “Case study of an improvement program featuring
reviews and inspections”, Software Quality Professional (ASQ), 3(3), 26-29.
Pressman, R. S. (2000) Software Engineering — A Practitioner’s Approach,
European adaptation by D. Ince, 5th edn, McGraw-Hill International, London.
Sauer, C. and Jeffery, D. R. (2000) “The effectiveness of software development
technical reviews: behaviorally motivated program of research”, IEEE
Transactions on Software Engineering, 26(1), 1-14.

Shull, E, Rus, I. and Basili, V. (2000) “How perspective-based reading can
improve requirement inspections”, Computer, 33(7), 73-79.

Yourdon, E. (1979) Structured Walkthrough, 2nd edn, Prentice Hall
International, London.

Review questions

8.1 There are four direct objectives and two indirect objectives attached to the various

review methods.

(1) List the direct and indirect objectives of each review method surveyed.
(2) For each objective, indicate the review technique or techniques that con-
tribute(s) the most to achieving that objective.

8.2 One of the objectives of reviews is to identify deviations from templates and style

procedures and conventions.
Explain the importance of enforcing templates and sticking to style procedures
and conventions.



8.3

8.4

8.5

8.6

8.7

Some people claim that one of the justifications for a small design review team is
the need to schedule the review session within a few days after the design prod-
uct has been distributed to the team members.

(1) Could you list additional reasons for preferring small DR teams apart from the
anticipated delays in convening a DR session composed of large teams?

(2) What reasons motivate attempts to schedule the review session as soon as
possible after distribution of the design reports to the team members?

One can expect that in many cases, participants in an inspection session are able
to suggest solutions for a detected defect or, at least, point out possible directions
for its solution. While it is clear that these suggestions are crucial for the develop-
ment team, it is commonly recommended to avoid any discussion about solutions
during the inspection session.

(1) Listyour arguments in favor of this recommendation.
(2) What other kinds of cooperation between the moderator and the review team
would you prefer to observe in a session?

It is quite natural to expect participation of the document’s author (the designer)
in a review of any type.

(1) What are the arguments in favor of his or her participation?
(2) What are the differences in the part played and the status of the author in
each of the review methods discussed?

The preparations made by members of inspection teams are considered to be
of greater depth and thoroughness when compared with the preparations for
walkthroughs.

(1) What activities are included in such high levels of preparation?
(2) Do you think that inspection teams having 15 members can achieve similarly
high levels of preparation?

Pressman lists 13 golden guidelines for successful design review (see Frame 8.3).

(1) Four of the golden rules deal with design review infrastructure. Can you list
these golden guidelines and elaborate on the importance of the infrastructure
elements and how they affect software quality?

(2) It is often claimed that the six golden guidelines dealing with the design
review session are as applicable to inspection as they are to walkthrough ses-
sions. Can you list these common golden guidelines and explain the reasons
for their broad applicability?

[EEN
suollsanb mainay ‘ N



174

SM3INDY 8

Topics for discussion

8.1

8.2

8.3

8.4

A proposal for changing an inspection procedure involves adding a new reporting
requirement, as follows: “At the end of the session or the series of sessions, the
inspection leader will submit to management a copy of the inspection session
findings report and a copy of the inspection session summary report”.

(1) Consider the proposal and list possible arguments, pro and con, regarding
the change.

(2) Whatisyour recommendation - to add the new reporting requirement or not?
Explain.

David Martin has just finished his inspection coordinator course. After obtaining
his first appointment, he plans to add his personal secretary, who is not an IT pro-
fessional, to the inspection team for the purpose of serving as session scribe and
producing the required reports. He assumes that her participation will free him for
the coordination tasks and enable him to conduct the session successfully.

Is it advisable to employ a secretary who is not an information technology pro-
fessional as a scribe in an inspection session? List your arguments pro and con.

Compare the various review techniques.

(1) Inwhat aspects are design reviews more formal than inspections?
(2) Inwhat aspects are inspections more formal than walkthroughs?

The chapter offers three different methodologies for team review of design
documents.

(1) Which of the methodologies should a software development organization
choose?

(2) Can more than one method be chosen and applied for the same document?
Alternatively, is it recommended to apply all three methods? List your
arguments.



Appendix 8A DIEETS i

Design Review Report

DR date: The report was prepared by:
Project name:

The review document: Version:

The review team:

1 Summary of the discussions

# | Discussion subject Number of action items

2 The action items

#| Action items to be performed | Responsible | Completion | Approval of completion

employee date Date Signature

3 Decision regarding the design product

[ Full approval
[ Partial approval. Approval granted for continuation to the next phase of the following parts:

1 Denial of approval

Comments:

The report was approved by:

Name of participant |Date [Signature |Name of participant |Date | Signature

Approval of sucessful completion of all action items

Comments:

Name: Signature: Date:

wJoj Modal yq V8 xipuaddy ‘ a



176

SMaIARY 8

Laleisielh SE Inspection session findings report form

Inspection Session Findings Report

Session dates: The report was prepared by:

Project name:

The inspected document: Version:

The inspected document sections:

The inspection team:

1 The error list

# Error Error Error description
type nature
(W/M/E)*

Error
location

Error
severity

2 Follow-up decisions

a Follow-up will be carried out by:

b Re-inspection is recommended: Yes/No
c

3 Comments

*W = Wrong M = Missing E = Extra




laleis il Sl Inspection session summary report

Goldenbug Ltd.
Inspection Session Summary Report

Session date: 17/5

Project name: Oak Center

The inspected document: Detailed Design Version: 2

The inspected document sections: Ch. 5, Sec. 6.2-6.5 Total: (A) 21 pages pages/k text lines
The inspection team: Anita McMahon (inspection leader). John Woo, Ben Kinker

1 Resources invested (hours worked)

# | Team member Overview |Preparation| Inspection | Total Comments
meeting session (hours)
1 Inspection leader 1 3 2.5 6.5 including
Anita report
preparation
2 John 1 4 2 7
3 Ben 1 4 2 7
4
5
Total 3 11 6.5 (B) 20.5
2 Error summary
Error severity | Error nature Total Severity Total errors Comments
W M E* Errors factor (standardized)
5 — critical 1 1 16 16
4 2 2 8 16
3 3 3 4 12
2 2 2 2 4
1 - minor 4 1 2 7 1 7
Total 8 3 4 Q15 (D) 53

3 Defect detection metrics

@) Average defects per page = C/A= ;—i =0.48

(@) Average defects per page (standardized) = D/A = EERS 1.71

3) Defects detection efficiency (hours per defect) =B/C = % =1.37

4) Standardized defect detection efficiency (hours per standardized defect) =
205
B/D = =3 = 0.39

Prepared by: Anita McMahon Signature: _Anita McMahon Date: 8/5

*W = Wrong M = Missing E = Extra

Jodas Alewwins uoissas uoidadsu] Hg xipuaddy ‘ E



Software testing — strategies

9.1 Definition and objectives 180
9.2 Software testing strategies 182
9.3 Software test classifications 187
9.3.1 Classification according to testing concept 187
9.3.2 Classification according to requirements 188
9.4 White box testing 189
9.4.1 Data processing and calculation correctness tests 190
9.4.2 Correctness tests and path coverage 190
9.4.3 Correctness tests and line coverage 191
9.4.4 McCabe’s cyclomatic complexity metrics 194
9.4.5 Software qualification and reusability testing 196
9.4.6 Advantages and disadvantages of white box testing 197
9.5 Black box testing 197
9.5.1 Equivalence classes for output correctness tests 198
9.5.2 Other operation factor testing classes 201
9.5.3 Revision factor testing classes 205
9.5.4 Transition factor testing classes 207
9.5.5 Advantages and disadvantages of black box testing 208
Summary 209
Selected bibliography 211
Review questions 212
Topics for discussion 213

Software testing (or “testing”) was the first software quality assurance tool
applied to control the software product’s quality before its shipment or
installation at the customer’s premises. At first, testing was confined to the
final stage of development, after the entire package had been completed.
Later, as the importance of early detection of software defects penetrated
quality assurance concepts, SQA professionals were encouraged to extend
testing to the partial in-process products of coding, which led to software
module (unit) testing and integration testing.



Common to all testing activities is their application through the direct
running of code, free of review of development documents. Some authors
tend to broaden the scope of testing even further and consider all software
life cycle quality assurance activities as types of testing activities. In this
book, we limit the scope of testing to quality assurance activities performed
by running code.

Software testing is undoubtedly the largest consumer of software quality
assurance resources. In a survey performed in November 1994, Perry (1995)
found that on average, 24% of the project development budget was allocat-
ed to testing. In addition, 32% of the project management budget was slated
for testing activities. With respect to time resources, an average of 27% of
project time was schedule for testing. The survey’s participants also indicated
that they planned to allocate substantially more time (45% on average) to
testing but that the pressures typically arising toward the close of projects gen-
erally forced project managers to reduce the testing time scheduled.

Testing is certainly not the only type of SQA tool applied to software
code. Additional tools are code inspections and code walkthroughs, methods
implemented on code printout without actually running the program. These
procedures, which are similar to those applied in design inspection and walk-
throughs, yield good results in identifying code defects. Nevertheless, these
tools, because they are based solely on the review of documents, can never
replace testing, which examines the software product’s functionality in the
form actually used by the customer. For further discussion of these software
quality tools see Chapter 8.

This chapter is dedicated to testing strategies and test classifications.
After defining testing and its objectives, the chapter discusses testing strate-
gies and classifies them according to requirement types.

Additional material on testing can be found in the numerous papers and
books dealing with software testing. A sample of these sources are the books
by Beizer (1984), Perry (1995), Kit (1995), Jorgensen (1995), Kaner et al.
(1999), Rubin (1994) and Perry and Rice (1997). Another valuable source of
material on software testing can be found in the software engineering and
software quality assurance literature, such as Pressman (2000), Sommerville
(2001) and Hamlet and Maybee (2001), to mention but a few.

After completing this chapter, you will be able to:

m Explain testing objectives.

m Discuss the differences between the various testing strategies, their advan-
tages and disadvantages.

m Describe the concepts of black box testing and white box testing as well
as discuss their advantages and disadvantages.

m Define path coverage versus line coverage.

m Describe the various types of black box tests.

179

S9133]e1)S — SUl1}S9) 21BMYO0S ‘



180

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

9.1 Definition and objectives

The variety of definitions for software testing found in the literature reveals
the varied scope of the process, which may be constricted or broadened.
Quite broad in scope is Myers’ (1979, Chapter 10) classic definition:

“Testing is the process of executing a program with intention of
finding errors.”

According to this rather inclusive definition, activities ranging from code
checks performed by a team leader to trial runs of the software performed
by a colleague, as well as tests carried out by a testing unit, can all be con-
sidered testing activities.

Much more formal and controlled are the two definitions for testing sug-
gested by IEEE Std 610.12 (IEEE, 1990):

“(1) The process of operating a system or component under specified con-
ditions, observing or recording the results, and making an evaluation of
some aspect of the system or component. (2) The process of analyzing a
software item to detect the differences between existing and required con-
ditions (that is, bugs) and to evaluate the features of the software item.”

It should be noted that according to the second definition, running the pro-
gram as part of the testing process is not required.

The definition applied in this book stresses the formal operative charac-
teristics of testing. See Frame 9.1.

m Software tests — definition

Software testing is a formal process carried out by a specialized testing team
in which a software unit, several integrated software units or an entire
software package are examined by running the programs on a computer. All
the associated tests are performed according to approved test procedures on
approved test cases.

The words and phrases stressed in the definition allow us to compare the
key characteristics of software testing with those of other software quality
assurance life cycle tools:

m Formal — Software test plans are part of the project’s development and
quality plans, scheduled in advance and often a central item in the devel-
opment agreement signed between the customer and the developer. In other
words, ad hoc examination of software by a colleague or regular checks by
the programming team leader cannot be considered software tests.



Specialized testing team — An independent team or external consultants
who specialize in testing are assigned to perform these tasks mainly in
order to eliminate bias and to guarantee effective testing by trained pro-
fessionals. In addition, it is generally accepted that tests performed by the
developers themselves will yield poor results, as those individuals who
developed the original product will find it difficult to reveal errors that
they were unable to identify earlier. Still, unit tests continue to be per-
formed by developers in many organizations.

Running the programs — Any form of quality assurance activity that does
not involve running the software, for example code inspection, cannot be
considered as a test.

Approved test procedures — The testing process performed according to a
test plan and testing procedures that have been approved as conforming
to the SQA procedures adopted by the developing organization.

Approved test cases — The test cases to be examined are defined in full by
the test plan. No omissions or additions are expected to occur during test-
ing. In other words, once the process has begun, the tester is not allowed
to exercise discretion by omitting a test case he or she considers redun-
dant or by adding a new test case, promising though it may be.

Now that software testing has been defined and the substantial efforts and
resources involved have been recognized, we can turn to a discussion of the
objectives of software testing. These objectives are shown in Frame 9.2.

m Software testing objectives

Direct objectives

m To identify and reveal as many errors as possible in the tested software.

m To bring the tested software, after correction of the identified errors and
retesting, to an acceptable level of quality.

m To perform the required tests efficiently and effectively, within budgetary
and scheduling limitations.

Indirect objective

m To compile a record of software errors for use in error prevention (by

corrective and preventive actions).

It should be noted that omission of the frequently stated goal “to prove

that the software package is ready” is not accidental. This goal inherently
contradicts the first operative objective mentioned, and may influence or,
stated more accurately, bias the choice of tests and/or test cases. Myers
(1979) neatly summarized the issue: “If your goal is to show the absence of
errors you won’t discover many. If your goal is to show the presence of
errors, you will discover a large percentage of them.”

SaAld3[qo pue uoniuyaqd 1°6 ‘ 'o':o



182

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

The wording of the second objective reflects the fact that bug-free soft-
ware is still a utopian aspiration. Therefore, we prefer the phrase “acceptable
level of quality”, meaning that a certain percentage of bugs, tolerable to the
users, will remain unidentified upon installation of the software. This per-
centage obviously varies by software package and user, but must be lower for
high failure risk packages.

9.2 Software testing strategies

Although test methodologies may vary, often greatly, these are applied with-
in the framework of two basic testing strategies:

m To test the software in its entirety, once the completed package is avail-
able; otherwise known as “big bang testing”.

m To test the software piecemeal, in modules, as they are completed (unit
tests); then to test groups of tested modules integrated with newly com-
pleted modules (integration tests). This process continues until all the
package modules have been tested. Once this phase is completed, the
entire package is tested as a whole (system test). This testing strategy is
usually termed “incremental testing”.

Furthermore, incremental testing is also performed according to two basic
strategies: bottom-up and top-down. Both incremental testing strategies
assume that the software package is constructed of a hierarchy of software
modules. In top-down testing, the first module tested is the main module,
the highest level module in the software structure; the last modules to be
tested are the lowest level modules. In bottom-up testing, the order of test-
ing is reversed: the lowest level modules are tested first, with the main
module tested last.

Figure 9.1 illustrates top-down and bottom-up testing of an identical
software development project composed of 11 modules. In the upper part,
Figure 9.1(a), the software development process and its subsequent testing
are carried out bottom-up, in four stages, as follows:

m Stage 1: Unit tests of modules 1 to 7.
m Stage 2: Integration test A of modules 1 and 2, developed and tested in
stage 1, and integrated with module 8, developed in the current stage.

m Stage 3: Two separate integration tests, B, on modules 3, 4, 5 and 8, inte-
grated with module 9, and C, for modules 6 and 7, integrated with
module 10.

m Stage 4: System test is performed after B and C have been integrated with
module 11, developed in the current stage.



Integration C

Stage3 | ... M9 i M10 ]

| ! Integration A : A ; ; A A ;
Stage2 ! : b ;
Stage 1 ;E| M1 || M2 || M3 || M4 || M5 || M6 || M7 |

Stage1 | i1 E M11 N
H L v

Stage2 | i ! e M10 [ @i @

Stage 3 : :: M8 ; ::

Stage4 1 : Me || M7 |::
R 20 225 e E

Stage5 | M1 M2 :
__________________________ yoy e

Stage 6 | M3 || M4 || M5 |

(b) Top-down testing

Figure 9.1: Bottom-up (a) and top-down (b) testing — an illustration

In Figure 9.1(b), software development and testing are carried out top-down
in six stages. It should be apparent that the change of testing strategy
introduces major changes into the test schedule. The testing will be per-
formed as follows:

m Stage 1: Unit tests of module 11.

m Stage 2: Integration test A of module 11 integrated with modules 9 and
10, developed in the current stage.

—_
S9139]eJ)S 3UI1S9) AIeMYO0S C°6 ‘ ®



184

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

m Stage 3: Integration test B of A integrated with module 8, developed in
the current stage.

m Stage 4: Integration test C of B integrated with modules 6 and 7, devel-
oped in the current stage.

m Stage 5: Integration test D of C integrated with modules 1 and 2, devel-
oped in the current stage.

m Stage 6: System test of D integrated with modules 3, 4 and 5, developed
in the current stage.

The incremental paths shown in Figure 9.1 are only two of many possible
paths. The path in the examples is “horizontally sequenced” (“breadth first™),
although one could choose a path that is “vertically sequenced” (“depth
first”). If we were to alter the horizontal path of the top-down sequence shown
in Figure 9.1(b), to a vertical sequence, testing would be performed thus:

m Stage 1: Unit tests of module 11.

m Stage 2: Integration test A of the integration of module 11 with module
9, developed in the current stage.

m Stage 3: Integration test B of A with module 8, developed in the
current stage.

m Stage 4: Integration test C of B with modules 1 and 2, developed in the
current stage.

m Stage 5: Integration test D of C with module 10, developed in the
current stage.

m Stage 6: Integration test E of integration D with modules 6 and 7, devel-
oped in the current stage.

m Stage 7: System test is performed after E has been integrated with mod-
ules 3, 4 and 5, developed in the current stage.

Other path possibilities involve clustering of modules into one testing stage.
For example, for the top-down path of Figure 9.1(b), one might cluster mod-
ules 8, 1 and 2, and/or modules 10, 6 and 7.

Stubs and drivers for incremental testing
Stubs and drivers are software replacement simulators required for modules
not available when performing a unit or an integration test.

A stub (often termed a “dummy module”) replaces an unavailable lower
level module, subordinate to the module tested. Stubs are required for top-
down testing of incomplete systems. In this case, the stub provides the results
of calculations the subordinate module, yet to be developed (coded), is
designed to perform. For example, at stage 3 of the top-down example
shown in Figure 9.1(b), upper module 9, which activates module 8, is avail-
able; it has been tested and corrected at stage 2 of the testing. Stubs are
required to substitute for the subordinate level modules 1 and 2, which have
not been completed. This test setting is presented in Figure 9.2(a).



(a) Implementing top-down
tests (Stage 3 testing of the M9
example shown in Figure 9.1) +
M8 Module
on test
(b) Implementing bottom-up Stub of Stub of
tests (Stage 2 testing of the M1 M2
example shown in Figure 9.1)
Driver of
M9
M8 Module
on test
M1 M2

Figure 9.2: Use of stubs and drivers for incremental testing — examples

Like a stub, a driver is a substitute module but of the upper level mod-
ule that activates the module tested. The driver is passing the test data on to
the tested module and accepting the results calculated by it. Drivers are
required in bottom-up testing until the upper level modules are developed
(coded). For example, at stage 2 testing of the bottom-up example shown in
Figure 9.1(a), the lower level subordinate modules 1 and 2 are available; they
have been tested and corrected at stage 1 of the testing. A driver is required
to substitute for upper level module 9, which has not been completed. This
test setting/scenario is shown in Figure 9.2(b).

Implementation tip

Substantial savings of resources can be achieved by maintaining a stubs and
drivers’ library for future reuse.

Bottom-up versus top-down strategies

The main advantage of the bottom-up strategy is the relative ease of its per-
formance, whereas the main disadvantage is the lateness at which the
program as a whole can be observed (that is, at the stage following testing of
the last module). The main advantage of the top-down strategy is the possi-
bilities it offers to demonstrate the entire program functions shortly after

—_
S9139]eJ)S 3UI1S9) AIeMYO0S C°6 ‘ @



186

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

activation of the upper-level modules has been completed. In many cases, this
characteristic allows for early identification of analysis and design errors
related to algorithms, functional requirements, and the like. The main dis-
advantage of this strategy is the relative difficulty of preparing the required
stubs, which often require very complicated programming. Another disad-
vantage is the relative difficulty of analyzing the results of the tests.

Testing experts continue to debate over which strategy is preferable —
bottom-up or top-down. While the positions taken vary, it seems that the
strategy chosen is actually determined in most cases by the developers’ choice
of development — not test — strategy, that is, bottom-up or top-down. Clearly,
testers should follow the developers’ approach because it is crucial that test-
ing will be performed immediately after a module has been coded.
Implementation of a testing strategy that differs from the development strat-
egy will cause substantial delays in scheduling of the tests.

Big bang versus incremental testing
Unless the program is very small and simple, application of big bang testing
strategies displays severe disadvantages. Identification of error becomes quite
cumbersome with respect to immense quantities of software. Despite the vast
resources invested, the effectiveness of this approach is relatively meager. The
relatively low rate of big bang error identification justifies this conclusion.
Moreover, when confronted with an entire software package, error correc-
tion is often an onerous task, requiring consideration of the possible effects
of the correction on several modules at one and the same time. These con-
straints obviously make estimation of the required testing resources and
testing schedule a rather fuzzy endeavor. This also implies that prospects of
keeping on schedule and within the budget are substantially reduced when
applying this testing strategy.

In contrast to big bang testing, incremental testing presents several
advantages, the main ones being as follows:

(1) Incremental testing is usually performed on relatively small software
modules, as unit or integration tests. This makes it easier to identify
higher percentages of errors when compared with testing the entire soft-
ware package.

(2) Identification and correction of errors is much simpler and requires
fewer resources because it is performed on a limited volume of software.

To sum up, in incremental testing, a great part of the errors are identified and
corrected at an earlier stage of development and testing, which prevents
“migration” of escaped defects to a later, more complex stage in the devel-
opment where their correction would require significantly greater resources.

The main disadvantage of incremental testing is the quantity of pro-
gramming resources required for preparation of stubs and drivers for the
unit and integration tests. Another major disadvantage is the need to carry
out numerous testing operations for the same program (big bang testing
requires only a single testing operation).



It is generally accepted that incremental testing should be preferred
despite its disadvantages.

9.3 Software test classifications

Software tests may be classified according to the testing concept or to the
requirements classification in effect (see Chapter 3).

9.3.1 Classification according to testing concept

There is an ongoing debate over whether testing the functionality of software
solely according to its outputs is sufficient to achieve an acceptable level of
quality. Some claim that the internal structure of the software and the calcu-
lations (i.e., the underlying mathematical structure, also known as the
software “mechanism”) should be included for satisfactory testing. Based on
these two opposing concepts or approaches to software quality, two testing
classes have been developed:

= Black box (functionality) testing. Identifies bugs only according to soft-
ware malfunctioning as they are revealed in its erroneous outputs. In
cases that the outputs are found to be correct, black box testing disre-
gards the internal path of calculations and processing performed.

m White box (structural) testing. Examines internal calculation paths in
order to identify bugs. Although the term “white” is meant to emphasize
the contrast between this method and black box testing, the method’s
other name — “glass box testing” — better expresses its basic characteris-
tic, that of investigating the correctness of code structure.

The TIEEE (1990) definitions of both testing classes are shown in Frame 9.3.

m Black box and white box testing — IEEE definitions

Black box testing:

(1) Testing that ignores the internal mechanism of a system or component and
focuses solely on the outputs generated in response to selected inputs
and execution conditions.

(2) Testing conducted to evaluate the compliance of a system or component
with specified functional requirements.
White box testing:

Testing that takes into account the internal mechanism of a system or component.

SUOIIRIIJISSR]D 1S3) DIBMYOS £°6 ‘ §



188

S9133]e1)S — 3U1}S9) 2IBMYOS 6

When implemented, each concept approaches software testing different-
ly, as we shall see in Sections 9.4 and 9.5. In many cases both concepts are
applicable, although for some SQA requirements only one class of tests is
suitable. Due to cost considerations, most of the testing carried out current-

ly is black box testing, which is relatively less costly.

9.3.2 Classification according to requirements

Chapter 3 presents McCall’s classic model for classification of software qual-
ity requirements. His model has been extended here to the classification of
the tests carried out to ensure full coverage of the respective requirements.
The requirements and their corresponding tests are shown in Table 9.1.

Table 9.1: Software quality requirements and test classification

Factor Quality requirement
category  factor
Operation 1. Correctness

2. Reliability
3. Efficiency

4. Integrity

5. Usability

Revision 6. Maintainability
7. Flexibility
8. Testability

Transition 9. Portability
10. Reusability
11. Interoperability

Quality requirement
sub-factor

1.1 Accuracy and
completeness of outputs,
accuracy and
completeness of data

1.2 Accuracy and
completeness of
documentation

1.3 Availability
(reaction time)

1.4 Data processing and
calculations correctness

1.5 Coding and
documentation standards

5.1 Training usability
5.2 Operational usability

11.1 Interoperability with
other software

11.2 Interoperability
with other equipment

Test classification
according to requirements

1.1 Output correctness
tests

1.2 Documentation tests

1.3 Availability (reaction
time) tests

1.4 Data processing and
calculations correctness
tests

1.5 Software qualification
tests

2. Reliability tests

3. Stress tests (load tests,
durability tests)

4. Software system
security tests

5.1 Training usability tests
5.2 Operational usability
tests

6. Maintainability tests
7. Flexibility tests
8. Testability tests

9. Portability tests
10. Reusability tests
11.1 Software
interoperability tests
11.2 Equipment
interoperability tests




Application of white box and black box testing in the performance of
requirements tests has revealed the advantages and disadvantages of each
testing concept. More specifically, as already implied, white box tests of data
processing and calculation correctness can be replaced by black box tests of
output correctness. Maintainability tests can be implemented by both white
box and black box tests, as the findings of each testing concept are comple-
mentary. Tests for the other requirements, however, because of their specific
characteristics, can be implemented according to only one or the other con-
cept. The applicability of each testing concept for the various requirement
factors is presented in Table 9.2.

9.4 White box testing

Realization of the white box testing concept requires verification of every
program statement and comment. As shown in Table 9.2, white box testing
enables performance of data processing and calculations correctness tests,
software qualification tests, maintainability tests and reusability tests.

In order to perform data processing and calculation correctness tests
(“white box correctness test”), every computational operation in the
sequence of operations created by each test case (“path”) must be examined.
This type of verification allows us to decide whether the processing opera-
tions and their sequences were programmed correctly for the path in

Table 9.2: White box and black box testing for the various classes of tests

Test classification according to requirements White box  Black box
testing testing

1.1 Output correctness tests +
1.2 Documentation tests +
1.3 Availability (reaction time) tests +
1.4 Data processing and calculations correctness tests +

1.5 Software qualification tests +

2. Reliability tests +

3. Stress tests (load tests and durability tests) +

4. Software system security tests +
5.1 Training usability tests +
5.2 Operational usability tests +

6. Maintainability tests + +

7. Flexibility tests +

8. Testability tests +

9. Portability tests +
10. Reusability tests +

11.1 Software interoperability tests +

11.2 Equipment interoperability tests +

189

3u11sa1 xoq AaUYM %°6



190

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

question, but not for other paths. Turning to software qualification, the
focus here shifts to the examination of software code (including comments)
compliance with coding standards and work instructions. Maintainability
tests refer to special features, such as those installed for detection of causes
of failure, module structures that support software adaptations and software
improvements, etc. Reusability tests examine the extent that reused software
is incorporated in the package and the adaptations performed in order to
make parts of the current software reusable for future software packages.

Given these objectives of SQA tests and the orientation adopted by white
box testing, this section will deal with:

m White box data processing and calculations correctness tests and the
number of test cases required

B McCabe’s cyclomatic complexity metrics

m The performance of software qualification and reusability tests

®m The advantages and disadvantages of white box testing.

9.4.1 Data processing and calculation correctness tests

Applying the concept of white box testing, which is based on checking the
data processing for each test case, immediately raises the question of cover-
age of a vast number of possible processing paths and the multitudes of lines
of code. Two alternative approaches have emerged:

m  “Path coverage” — to plan our test to cover all the possible paths, where
coverage is measured by percentage of paths covered.

m “Line coverage” — to plan our tests to cover all the program code lines,
where coverage is measured by percentage of lines covered.

These two approaches are discussed in the following sections.

9.4.2 Correctness tests and path coverage

Different paths in a software module are created by the choice in condition-
al statements, such as IFF-THEN-ELSE or DO WHILE or DO UNTIL. Path
testing is motivated by the aspiration to achieve complete coverage of a pro-
gram by testing all its possible paths. Hence, the “path coverage” metrics
gauging a path test’s completeness is defined as the percentage of the pro-
gram paths executed during the test (activated by the test cases included in
the testing procedure).

While the concept of path testing naturally flows from application of the
white box testing concept, it is impractical in most cases because of the vast
resources required for its performance. Just how costly these applications
can be is illustrated in the following example.

Let us now calculate the number of possible paths created by a simple

module containing 10 conditional statements, each allowing for only two
options (e.g., [IF-THEN-ALSO and DO WHILE). This simple module con-



tains 1024 different paths. In other words, in order to obtain full path cover-
age for this module (probably 25-50 lines of code) one should prepare at least
1024 test cases, one for each possible path. A straightforward calculation of
the number of test cases required to test a software package that contains 100
modules of similar complexity (a total of 102 400 test cases) readily indicates
the impracticality of wide use of path testing. Hence, its application is direct-
ed mainly to high risk software modules, where the costs of failure resulting
from software error fully warrant the costs of path testing.

This situation has encouraged development of an alternative yet weaker
coverage concept — line coverage. The line coverage concept requires far
fewer test cases but, as expected, leaves most of the possible paths untested.
The subject of line coverage is discussed next.

9.4.3 Correctness tests and line coverage

The line coverage concept requires that, for full line coverage, every line of
code be executed at least once during the process of testing. The line cover-
age metrics for completeness of a line-testing (“basic path testing”) plan are
defined as the percentage of lines indeed executed — that is, covered — during
the tests.

To better grasp the essence of basic path testing of a program, reference
to a flow chart and a program flow graph can be helpful. In a flow chart,
diamonds present the options covered by conditional statements (decisions),
whereas rectangles or a succession of rectangles represent the software sec-
tions connecting those conditional statements. In program flow graphs,
nodes represent software sections and thus replace one or more flow chart
rectangles. The edges indicate the sequence of software sections. Nodes hav-
ing two or more leaving edges represent conditional statements. The
following example demonstrates a flow chart and a program flow graph for
a taximeter software module that calculates the taxi fares.

Example - the Imperial Taxi Services (ITS) taximeter

Imperial Taxi Services (ITS) serves one-time passengers and regular clients
(identified by a taxi card). The ITS taxi fares for one-time passengers are cal-
culated as follows:

(1) Minimal fare: $2. This fare covers the distance traveled up to 1000 yards
and waiting time (stopping for traffic lights or traffic jams, etc.) of up to
3 minutes.

(2) For every additional 250 yards or part of it: 25 cents.

(3) For every additional 2 minutes of stopping or waiting or part thereof:
20 cents.

(4) One suitcase: no charge; each additional suitcase: $1.
(5) Night supplement: 25%, effective for journeys between 21.00 and 06.00.

Su1S9) X0q SUYM #°6 ‘ 5



s31891e1)S — SUIISA) 2IBMYOS 6 ‘ S

Regular clients are entitled to a 10% discount and are not charged the night
supplement.

When planning the basic path testing plan of the new taximeter module,
a flow chart and a program flow graph for the taxi fare calculation process
were prepared. Each figure represents a calculation process that includes five
decisions, as shown in Figure 9.3.

A review of the ITS flow chart and program flow graph demonstrates
the difference between path testing and basic path testing as well as com-
paring the testing requirements of path coverage with those of line coverage.

As mentioned above, full path coverage requires that all the possible
paths be executed at least once. In the ITS flow chart (Figure 9.3), 24 differ-
ent paths may be indicated. In other words, in order to achieve full path
coverage of the software module we have to prepare at least 24 test cases,
which we list in Table 9.3.

Table 9.3: The Imperial Taxi example - the full list of paths

No. The path

1 1-2-3-5-6-8-9-11-12-17

2 1-2-3-5-6-8-9-11-13-14-15-17
3 1-2-3-5-6-8-9-11-13-14-16-17
4 1-2-3-5-6-8-10-11-17

5 1-2-3-5-6-8-10-11-13-14-15-17
6 1-2-3-5-6-8-10-11-13-14-16-17
7 1-2-3-5-7-8-9-11-12-17

8 1-2-3-5-7-8-9-11-13-14-15-17
9 1-2-3-5-7-8-9-11-13-14-16-17
10 1-2-3-5-7-8-10-11-12-17

11 1-2-3-5-7-8-10-11-13-14-15-17
12 1-2-3-5-7-8-10-11-13-14-16-17
13 1-2-4-5-6-8-9-11-12-17

14 1-2-4-5-6-8-9-11-13-14-15-17
15 1-2-4-5-6-8-9-11-13-14-16-17
16 1-2-4-5-6-8-10-11-12-17

17 1-2-4-5-6-8-10-11-13-14-15-17
18 1-2-4-5-6-8-10-11-13-14-16-17
19 1-2-4-5-7-8-9-11-12-17

20 1-2-4-5-7-8-9-11-13-14-15-17
21 1-2-4-5-7-8-9-11-13-14-16-17
22 1-2-4-5-7-8-10-11-12-17

23 1-2-4-5-7-8-10-11-13-14-15-17
24 1-2-4-5-7-8-10-11-13-14-16-17




1
Charge the minimal fare

D > 1000 D =1000

5
Waiting time

8
No. of suitcases

11
Regular client?

Yes

Print receipt

(b) Program flow graph of the
module

(a) Flow chart of the module

Figure 9.3: The ITS taxi fare calculation process - flow chart and program flow graph

Su1S9) X0q SUYM #°6 ‘ \5



s31891e1)S — SUIISA) 2IBMYOS 6 ‘ 3

In contrast, the program flow graph allows us to observe that full line
coverage of the ITS software module can be reached by inspecting the mini-
mum number of paths — a total of three — as listed in Table 9.4.

The proportion of test cases required to test the system by full line cov-
erage of three test cases (by basic path testing) versus full path coverage of
24 test cases is 1:8! This ratio grows rapidly with program complexity.

Support for the basic path testing strategy is provided by McCabe’s
cyclomatic complexity metrics, which besides being software complexity
metrics also serve to give an upper limit to the number of test cases needed
for full line coverage.

9.4.4 McCabe’s cyclomatic complexity metrics

The cyclomatic complexity metrics developed by McCabe (1976) measures
the complexity of a program or module at the same time as it determines
the maximum number of independent paths needed to achieve full line cov-
erage of the program. The measure is based on graph theory and is thus
calculated according to the program characteristics as captured by its pro-
gram flow graph.

An independent path is defined with reference to the succession of inde-
pendent paths accumulated, that is: “Any path on the program flow graph
that includes at least one edge that is not included in any of the former inde-
pendent paths”.

To illustrate this definition, let us refer once again to Figure 9.3. A set of
independent paths that achieves full line coverage of the program is listed in
Table 9.5.

Table 9.4: The Imperial Taxi example — the minimum number of paths

No. The path

1 1-2-3-5-6-8-9-11-12-17
23 1-2-4-5-7-8-10-11-13-14-15-17
24 1-2-4-5-7-8-10-11-13-14-16-17

Table 9.5: The ITS example - the set of independent paths to achieve full coverage

Path The path Edges added by the path Number of edges
no. added by the path
1 1-2-3-5-6-8-9-11-12-17 1-2, 2-3, 3-5, 5-6, 6-8, 8-9, 9

9-11, 11-12,12-17
2 1-2-3-5-6-8-9-11-13-14-15-17 11-13, 13-14, 14-15, 15-17 4

3 1-2-3-5-6-8-9-11-13-14-16-17 14-16, 16-17
4 1-2-4-5-7-8-10-11-13-14-15-17  2-4, 4-5, 5-7, 7-8, 8-10, 10-11 6




As mentioned above, the cyclomatic complexity metric V(G) also deter-
mines the maximum number of independent paths that can be indicated in
the program flow graph.

The cyclomatic complexity metric (V(G)) is expressed in three different
ways, all of which are based on the program flow graph:

(2) V(G =E-N+2
(3) V(G) =P+ 1

In these equations R is the number of regions in the program flow graph.
Any enclosed area in the graph is considered a region. In addition the area
around the graph not enclosed by it is counted as one additional region. E is
the number of edges in the program flow graph, N is the number of nodes in
the program flow graph, and P is the number of decisions contained in the
graph, represented by nodes having more than one leaving edge.

Example

Applying the above to the ITS taximeter module example described above,
we can obtain the values of the above parameters from Figure 9.3. We find
that R=6, E=21, N =17, and P = 5. Substituting these values into the met-
rics formulae we obtain:

(1) V(G)=R=6
(G =E-N+2=21-17+2=6
3) V(G)=P+1=5+1=6

S
<

The resulting metrics calculations indicate that the maximum number of
independent paths in the example is six. One realization of a maximal set of
six independent paths is shown in Table 9.6.

Several empirical studies of the relationships between the cyclomatic
complexity metrics and quality and testability characteristics have been car-

Table 9.6: The ITS example - the maximum set of independent paths

Path The path Edges added by the path Number of edges
no. added by the path
1 1-2-3-5-6-8-9-11-12-17 1-2, 2-3, 3-5, 5-6, 5-8, 8-9, 9
9-11, 11-12, 12-17

2 1-2-4-5-6-8-9-11-12-17 2-4, 4-5 2

3 1-2-3-5-7-8-9-11-12-17 5-7,7-8 2

4 1-2-3-5-6-8-10-11-12-17 8-10, 10-11 2

5 1-2-3-5-6-8-9-11-13-14-15-17  11-13, 13-14, 14-15, 15-17 4

6 1-2-3-5-6-8-9-11-13-14-16-17  14-16, 16-17 2

195

3u11sa1 xoq AaUYM %°6 ‘



196

S9133]e1)S — 3U1}S9) 2IBMYOS 6 ‘

ried out over the years. Some of the findings are summarized by Jones
(1996) as follows: “Empirical studies reveal that programs with cyclomat-
ic complexities of less than 5 are generally considered simple and easy to
understand. Cyclomatic complexities of 10 or less are considered not too
difficult; if 20 or more, the complexity is perceived as high. When the
McCabe value exceeds 50, the software for practical purposes becomes
untestable.” Other publications report no confirmation of the relationship
between the cyclomatic complexity metrics and the quality of the software,
or that the relationships found have not been supported statistically
(Fenton, 1995, pp. 279-281).

9.4.5 Software qualification and reusability testing

Software qualification testing
Although the subject of qualification was discussed in Section 7.3, the topic
was not exhausted. Qualification testing is of crucial importance for coding
in the development as well as maintenance stages. To quickly review, soft-
ware that qualifies is coded and documented according to standards,
procedures and work instructions. This makes it easier for the team leader to
check the software, for the replacement programmer to comprehend the
code and continue coding tasks, and for the maintenance programmer to
correct bugs and/or update or change the program upon request.

Software qualification testing ascertains whether software development
responded positively to questions reflecting a specific set of criteria:

m Does the code fulfill the code structure instructions and procedures, such
as module size, application of reused code, etc.?

m Does the coding style fulfill coding style procedures?

® Do the internal program documentation and “help” sections fulfill cod-
ing style procedures?

Specialized software packages (called code auditors) can now perform a por-
tion of the qualification tests by listing instances of non-conformity to coding
standards, procedures and work instructions. Other tests continue to rest on
trained personnel for their manual execution.

Software reusability testing

Software reusability substantially reduces project resources requirements and
improves the quality of new software systems. In doing so, reusability short-
ens the development period, which by itself benefits the software
development organization. Reusability testing supports these functions by
determining whether the packaging and documentation of the programs and
modules listed for reuse conform to the standards and procedures demand-
ed for inclusion in the reusable software library. Reusability testing is
actually one of the tools supporting the growth of software reuse.



9.4.6 Advantages and disadvantages of white box testing

The main advantages of white box testing are:

= Direct statement-by-statement checking of code enables determination of
software correctness as expressed in the processing paths, including
whether the algorithms were correctly defined and coded.

m It allows performance of line coverage follow-up (applying specialized
software packages) that provides the tester with lists of lines of code that
have not yet been executed. The tester can then initiate test cases to cover
these lines of code.

m It ascertains quality of coding work and its adherence to coding standards.
The main disadvantages of white box testing are:

m The vast resources utilized, much above those required for black box test-
ing of the same software package.

m The inability to test software performance in terms of availability
(response time), reliability, load durability, and other testing classes relat-
ed to operation, revision and transition factors.

The characteristics of white box testing limit its use to software modules of
very high risk and very high cost of failure, where it is highly important to
identify and fully correct as many of the software errors as possible.

9.5 Black box testing

Black box testing allows us to perform output correctness tests and most
classes of tests as shown in Table 9.2. Apart from output correctness tests (if
you are prepared to pay the extra costs, these could be performed by white
box data processing and calculation correctness tests) and maintainability
tests (that could be performed by white box tests), most of the other testing
classes are unique to black box testing. This explains the importance of black
box testing. Still, due to the special characteristics of each testing strategy
and the test classes unique to white box testing, black box testing cannot
automatically substitute for white box testing.
This section will thus deal with the following issues:

m Equivalence classes and their effect on the number of test cases required
for output correctness test.

m Performance methodology for other classes of black box tests.

m Advantages and disadvantages of black box testing.

For additional material on black box testing, Beizer (1995) is one of the
major sources available.

197

Sunsayl xoqde|g 56 ‘



s31891e1)S — SUIISA) 2IBMYOS 6 ‘ o

9.5.1 Equivalence classes for output correctness tests

Output correctness tests are, in most cases, among the tests that consume the
greater part of testing resources. In those frequent cases where output correctness
tests alone are performed, they consume all testing resources. Implementation of
other classes of tests depends on the nature of the software product and its future
users as well as on the developer’s procedures and decisions.

The output correctness tests apply the concept of test cases. Improved
choice of test cases can be achieved by the efficient use of equivalence class
partitioning, a method to be discussed here.

Equivalence class partitioning is a black box method aimed at increasing
the efficiency of testing and, at the same time, improving coverage of poten-
tial error conditions. An equivalence class (EC) is a set of input variable
values that produce the same output results or that are processed identical-
ly. EC boundaries are defined by a single numeric or alphabetic value, a
group of numeric or alphabetic values, a range of values, and so on. An EC
that contains only valid states is defined as a “valid EC”, whereas an EC that
contains only invalid states is defined as an “invalid EC”. In cases where a
program’s input is provided by several variables, valid and invalid ECs
should be defined for each variable.

According to the equivalence class partitioning method, test cases are
defined so that each valid EC and each invalid EC are included in at least one
test case. Test cases are defined separately for the valid and invalid ECs. In
defining a test case for the valid ECs, we try to cover as many as possible
“new” ECs (i.e., classes not included in any of the former test cases) in that
same test case. Test cases are added as long as there are uncovered ECs. As
a result of this process, the total number of required test cases to cover the
valid ECs is equal to and in most cases significantly below the number of
valid ECs. Note that in defining invalid ECs, we must assign one test case to
each “new” invalid EC, as only one invalid EC can be included in a test case.
A test case that includes more than one invalid EC may not allow the tester
to distinguish between the program’s separate reactions to each of the invalid
ECs. Hence, the number of test cases required for the invalid ECs equals the
number of invalid ECs.

Compared to the use of a random sample of test cases, equivalence class-
es save testing resources because they eliminate duplication of the test cases
defined for each EC. Importantly, as the equivalence class method is a black
box method, equivalence class partitioning is based on software specification
documentation, not on the code. Systematic constructing of equivalence class-
es for a program’s input variables increases the coverage of possible valid and
error conditions of input and thus improves the testing plan’s effectiveness.
Further improvement of testing effectiveness and efficiency is achieved by test-
ing for the boundary values of ECs, a subject we elaborate next.

Test cases and boundary values
According to the definition of equivalence classes, one test case should be
sufficient for each class. However, when equivalence classes cover a range of



values (e.g. monthly income, apartment area), the tester has a special inter-
est in testing border values when these are considered to be error prone. In
these cases, the preparation of three test cases — for mid range, lower bound-
ary and upper boundary values — is recommended.

Example — the Golden Splash Swimming Center

The following example illustrates the definition of (valid and invalid)
equivalence classes and the corresponding test case values. The software
module in question calculates entrance ticket prices for the Golden Splash
Swimming Center.

The Center’s ticket price depends on four variables: day (weekday, week-
end), visitor’s status (OT = one time, M = member), entry hour (6.00-19.00,
19.01-24.00) and visitor’s age (up to 16, 16.01-60, 60.01-120). The
entrance ticket price table is shown in Table 9.7.

The equivalence classes and the corresponding test case values for the
above example are presented in Tables 9.8 and 9.9.

A total of 15 ECs were defined for the ticket price module: nine valid
ECs and six invalid ECs. The test cases that correspond to these ECs apply
the representing values listed in Table 9.8. The test cases for these ECs,
including their boundary values, are presented in Table 9.9.

A total of 15 test cases cover all the defined ECs, including the respec-
tive EC boundary values:

m Three test cases for the valid ECs (for our example a total of nine valid
ECs were defined).

m Six test cases for the boundary value ECs (in our example, boundary test-
ing is applicable for only two of the four input variables).

m Six test cases for invalid ECs (for our example a total of six invalid ECs
were defined).

Table 9.7: Entrance ticket price table — the Golden Splash Swimming Center

Mon, Tue, Wed, Thurs, Fri Sat, Sun
Visitor’s status oT oT ] M ot oT ] ]
Entry hour 6.00— 19.01- 6.00— 19.01- 6.00— 19.01- 6.00— 19.01-
19.00 24.00 19.00 24.00 19.00 24.00 19.00 24.00

Ticket prices - §

Visitor’s age
0.0-16.00 5.00 6.00 2.50 3.00 7.50 9.00 3.50 4.00
16.01-60.00 10.00 12.00 5.00 6.00 15.00 18.00 7.00 8.00

60.01-120.00 8.00 8.00 4.00 4.00 12.00 12.00 5.50 5.50

199

Sunsayl xoqde|g 56 ‘



200 Table 9.8: Equivalence classes — the Golden Splash Swimming Center ticket price module

© Variable Valid Representing values Invalid Representing
equivalence Values for Boundary equivalence values for
g’ classes valid ECs  values classes invalid ECs
=+
= Day of w