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Chapter 1
Gradually-Varied Flow



1.1 Introduction

* A control is any feature which determines a relationship between

depth and discharge. The uniform flow itself may be thought of as a
control, since from a resistance equation such as Manning’s we may,
given the depth, calculate the discharge.

However, uniform flow is not, of course, associated with particular
localized features in the channel, it is the state which the flow tends
to assume in a long uniform channel when NO OTHER CONTROLS
are present. If there are other controls they tend to pull the flow away
from the uniform condition, and there will be a transition-which may
be gradual or abrupt between the two states of flow.

In this chapter, the gradually-varied flow will be considered.



Types of Channel Slopes

The channel slopes can be classified as follows:
A mild slope is one on which uniform flow is subcritical,

A steep slope is one on which uniform flow is supercritical,
A critical slope is one on which uniform flow is critical.

Let y, and y, designate the uniform and critical depths for a given
discharge Q, respectively, then we can write that:

Mild slope — y,>Y,
Steep slope — y,<y.
Critical slope— y, =Y,

The classification of the slope will depend on the roughness, on the
magnitude of the slope itself, and to a lesser extent on the discharge.
Same slope, depending on the roughness of the channel bottom can be
mild, critical or steep.



Critical Slope, S,

* On the other hand, a critical slope can be defined by using the Manning
equation as:
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Where A, P, R, are the area, wetted perimeter, and hydraulic radius of the
flow computed by using the critical depth y,, for the discharge Q,
respectively.

Then, the classification of slopes become:
Mild slope —S, < S, Horizontal slope —S,=0

Steep slope — S,>S, Adverse slope —S, <0
Critical slope— S,= S,



1.3 Basic Assumptions and Equations of GVF

There are two basic assumption used in GVF. These are:

1.In gradually-varied flow , we can use resistance equations such as
Chezy's or Manning’s to describe the state of flow provided that the
slope S is interpreted as the slope of the total energy lines, S..
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2.In gradually-varied flow, it may be assumed that the streamlines are

almost straight and parallel. This means that the pressure distribution is
hydrostatic, i.e.:

Sf or Sf _

P=yy



* Now let's examine the flow in order to obtain a complete description
of the longitudinal flow variation within a non uniform transition
region.

 The energy equation at any cross section is
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Or it can be written in terms of specific energy E as:
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For a given Q, E=E(y), and the derivative of E with
respectto vy is:

dE 1 Q° dA  foranopen-channel flow




Therefore dE/dy and dE/dx become:
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It can also be written as:
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Therefore the equations of the gradually-varied flow are:

CZ;—E:SO-Sf and
X

dy S-S,
dx (1-F?)

This is the differential equation for y=y(x), but it is NOT in general
explicitly soluble, but many numerical methods have been developed for
its solution, which will be considered later. Meanwhile we will consider
certain general questions relating to the solution.




1.4 Water Surface Profiles (Longitudinal Profiles)

It is important to systematically classify the water surface profiles in a
channel before computation of flow profiles is carried out. Such
classification helps to get an overall understanding of how the flow depth
varies in a channel. It also helps to detect any mistakes made in the flow
computation.

The variation of water surface profile can be obtained without solving the

equation of GVF:
dy S, -S,
dx (1-F?)

For a specified value of Q, both F, and S; are functions of the depth, y. In
fact, both F. and S; will decrease as y increases. Recalling the definitions for
the normal depth, y, ,and the critical depth, y, , the following inequalities can
be stated.




Remember that: £ = Ve =1 = V. =gy,
gy

For a given discharge, Q, and depth of flow y:

I= y>yc >Fr<l and IF y<y0 >Fr>1
Vv, Vive



Similarly’ let's examine S, and S; wrty, and y:
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Therefore, for a given discharge, Q, and depth of flow y:

in GVF: Sf:(
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A gradually varied flow profile is classified based on the channel slope,
and the magnitude of flow depth, y in relation to y, and y, . The channel
slope is classified based on the relative magnitudes of the normal depth,
Yo and the critical depth, y..

* Yo>Y,: "Mild slope” (M)

* y,<Y,: "Steep slope" (S)

* y,=Y,: "Critical slope" (C)

+ S, =0: "Horizontal slope" (H)
« S, <0:"Adverse slope" (A).

It may be noted here that slope is termed as "sustainable” slope when
S, >0 because flow under uniform conditions can occur for such a
channel. Slope is termed as "unsustainable” when S <0 since uniform
flow conditions can never occur in such a channel.



Flow profiles associated with mild, steep, critical, horizontal, and adverse
slopes are designated as M, S, C, H and A profiles, respectively.

*For a given discharge and channel, the normal depth y,, and critical depth
y. can be computed. The flow area can be divided into 3 regions by the
Normal Depth Line (NDL), the Critical Depth Line (CDL), and channel

bottom.

*The space above the channel bed can be divided into three zones
depending upon the inequality defined by equations:

@ Y >Yof S <S,

—— NDL
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* Therefore, the water surface profiles can be determined by using the
equation of GVF together with these inequalities.

dy S-S,
dx (1-F?)
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Mild Slope
Zone 1: y>y>y,

y>y,= S,<S, and y>y.  =F <1
Therefore :

v _ SO_S; _>dy -T50 . y willincreasein the flow direction.
ax 1-F, dx +

The lowerlimitis the normaldepthline.

Asy —y, S —5, ﬁ%%O
X

y willapproachthe NDL asymptotically.
The upperlimitis @asy — 9F — 0,andS;— 0

" % —§, and water surface wouldlooklike :
X



Zone 2: y,>y>y,

y<y,= S >5, and y>y_, = F <1 Therefore:
dy:SO_S; ¥ -0 y willdecreasein the flow direction.
ax 1-F dx +

The upperlimitis the normaldepthline.

dx
y willapproachthe NDL asymptotically.

The lowerlimitisCDL,asy -y, ,F,.—> 1

g dy — oo meansdepthbecomesvertical

dx
Thisis physicallyimpossible Therefore,momentariy S.— 0

andhence ﬂ has a finite value.

dx
The water surface wouldlook like:



Zone 3: y>y >y

y<y,= S >5, and y<y, = F >1 Therefore:

dy:SO_Sg — ﬂ=:>0 .y willincreasein the flow direction.
ax 1-F dx -

The upperlimitis the criticaldepthline.

Asy -y, = % has a finite value.
X

The lowerlimitisy — 0. Thisresultis of little practicalinterest,
since zero depth never actually occurs.
The water surface wouldlooklike:
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Mild Slope

On a mild slope, the possible water surface profiles are:

Horizontal gsymptote
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Water-surface profile on a mild slope

 Consider a long mild channel taking water from a lake, and ending
with a free fall. The water surface profile would look like:

Conjugate curve
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Steep Slope

* On a steep slope, the possible water surface profiles are:

Horizontal asymptote




Water-surface profile on a steep slope

 Consider a long steep channel taking water from a lake, and ending
with a free fall. The water surface profile would look like:

Conjugate curve
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Critical Slope

On a critical slope, the possible water surface
profiles are:

Horizonte| asymptote




Horizontal Slope

On a horizontal slope, the possible water surface
profiles are:

Ye Horizonto]



Adverse Slope

On an adverse slope, the possible water surface
profiles are:
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From the cases examined here, we can obtain certain principles that
can be applied to all cases;

1.The sign of can be readily determined from the equation and the
Inequalities:

d_y:so—sf
dx 1-F’
y>YO} S <S5, )/>_J/C} Fr<1
Y <Y, S;>S, J/<J/c}Fr>1

2.\When the water surface approaches the uniform depth line, it does so
asymptotically.

3.When the water surface approaches the CDL, it meets this line at a
fairly finite angle



4.

5.

If the curve includes a critical section, and if the flow is
subcritical upstream (as in case of M, curve) then a that
critical section is produced by a feature such as a free
overfall. But if the flow is supercritical upstream (as in M,
curve) the control cannot come from the critical section,
and indeed such a section will probably not occur in reality
but will be bypassed by a hydraulic jump.

Above all, every profile exemplifies the important principle
that subcritical flow is controlled from downstream (e.g, M,
and M, curves) and supercritical flow from upstream (e.g.

the M, curve). In fact these profiles owe their existence to

the action of upstream or downstream controls.



Occurence of Critical Flow

Consider a special case that Sy=S;.
This means that either

aQy o
(1_52)3 - So Sf

dy .
o 0 — Uniform flow,or F =1 —> Any real physical meaning

Consider a long channel of two sections: one of mild upstream and one
of steep slope downstream.

The flow will gradually change from subcritical at a great distance
upstream to supercritical at a great distance downstream, passing
through critical at some intermediate pt.

In the transition region upstream of 0, that is between sections (A) and
(O), the depth is less than y,, and the velocity is greater than uniform
flow. On the other hand, between sections (O) and (B), the depth is
greater than y,, and the velocity is less than uniform flow.
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Therefore somewhere between sections (A) and (B), S~S, . Hence
F =1, and flow will be critical. Flow will be critical at Section (O)..



« Critical flow occurs at the outflow from a lake into a steep channel or
through a constriction in width: this last results shows that it will also
occur at the head of a steep slope which is proceeded by a mild
slope.



1.6 Interaction of Local features and
Longitudinal Profiles

In treatment of elementary discharge problem (given Sg,n,
and available specific energy, E, and determine Q), a
difficulty arise which is a characteristic of nonuniform
channel. The difficulty is: the engineer is given only a
numerical value of channel bottom slope, and must decide
himself/herself whether it is mild or steep. In order to
determine it, one must know the discharge. This is not a
serious difficulty. One can assume a type of slope and
determine the discharge and then check the assumption
and hence proceeds accordingly. However, a more
general form of this problem is related with controls.

It has been discussed that controls are important as the
points of origin for longitudinal profiles.



« But in previous discussions, the controls are all been
nominated and their functioning described in advance. In
practice this is never true: the engineer dealing with a
specific problem is given only the description of certain
channel features and must decide whether and how they
will act as controls.

* In this respect, it is important to observe that while any
control present will influence and help to determine the
whole flow profile, the profile in its turn may be said to
Influence the control, in a sense that the form of the
profile may determine whether a certain feature acts as a
control or not.



The most familiar example of this action is the
“drowning” of a control as in case of flow profile behind a
sluice gate; the S; curve behind it would fill all the
upstream channel and drown the lake outlet, which
would be no longer be a critical section.

The general principle which emerges is that a control
may be drowned and deprived of its function by a
stronger control downstream.

A further example of this feature is shown in figure
below.



For the lowest profile shown in this figure, both weirs are acting
as critical flow controls: as the discharge increases the hydraulic
jump moves upstream, becoming weaker as it does so, until
finally it vanishes.

Increasing
discharge
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as discharge incredses

P —
o

The only trace of it being a depression over the upstream weir.
This weir is now drowned and flow over it is no longer critical.



1.7 The Effect of a Choke on the Flow Profile

« The above discussion has dealt with the effect of a
changing flow profile on a particular feature; it is also
useful to consider this interaction in the converse way —
l.e., to consider the effect on the flow profile of some
feature as it is gradually converted into control by some
continuous change in the discharge or in the geometry of
the feature. This latter type of change is un-likely to
occur in physical reality, but a consideration of its effect
makes a useful, if artificial, exercise for a designer
seeking to determine a suitable size fore some channel
feature.



 An example of great practical interest is provided by a
local width contraction (e.g; bridge piers or a culvert) in a
long uniform channel of mild slope. Suppose that initially
the contraction is not a very severe one and the flow can
be passed through it without requiring more specific
energy that the upstream flow possesses; i.e; without
choking. The flow within the contraction is therefore
subcritical, as Is the uniform flow for a great distance
upstream and downstream (See figure below; Fig. a). If
now the contraction width is gradually reduced, a point is
reached where the available specific energy Is just
sufficient to pass to the flow through the contraction in
the critical condition (Fig.b). This is the threshold of the
choking condition, where the contraction becomes a
control.
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We now consider what happens if the contraction is
narrowed even further. First, the flow within the
contraction remains critical; this fact is of prime
Importance. Clearly there is no reason why this flow
should return to sub-critical, for the condition which
originally produced critical flow is now being pushed to
even further extremes; on the other hand, the flow
cannot pass to supercritical either. There is therefore no
alternative to the maintenance of critical flow. Assuming
for the moment that the discharge remains constant, it is
seen that the discharge per unit width g within the
contraction must increase, so that the critical depth vy,
must also increase; it follows that the specific energy
E=3y./2 will increase, within the contraction and
upstream, so that the upstream depth must increase and
an M, curve will appear upstream (Fig. c).



This behavior accords well with the intuitive notion that a
severe constriction in the channel will cause the water to
“back up” or “head up” so as to force the required
discharge through the constriction.

We can now examine more critically the assumption that
the discharge remains constant. Consider the channel as
a whole, including the source of the flow, as in Fig. d. In
this sketch is shown the whole the whole extent of the
M, curve of Fig. c; if it “runs out”, as shown, before
reaching the source, then the choking of the contraction
has produced only a local disturbance which does not
alter the discharge. On the other hand, if the contraction
were made severe enough for the M, curve to reach
right back to the lake, the discharge would be reduced
somewhat.

In order to calculate the amount of this reduction it is
necessary to calculate the shape of the M, curve;



1.8 Specific Energy Changes Near Controls

« First, it is important to see that the choking and backing
up shown in above Figs.(c) and (d) is independent of
energy dissipation, and would occur even the walls of
the contraction were streamlined so as to eliminate
energy loss. Nevertheless, energy concepts are useful in
discussing certain consequences of the choking process.
It can be easily shown that in the M; curve the specific
energy E increases in the downstream direction; it is this
process which supplies the extra specific energy needed
to pass the flow through the contraction. Further
downstream, however, the flow must return to uniform,
and to the appropriate value of E.



« The extra specific energy which was acquired upstream
must therefore be given up, even Iif there is no energy loss
In the contraction itself. And If there is no such energy
loss, the required drop in E can occur only through the
downstream development of supercritical flow (in which E
decreases downstream) followed by a hydraulic jump. The
total energy line therefore behaves as shown in Fig. d.

« Similar reasoning would apply to a control such as a sluice
gate, shown in Figure below. The argument is not of
course limited to the case where the undisturbed flow is
uniform; in this figure the undisturbed flow (in the absence
of the sluice gate) is an M, curve and the process of
departure from and return to this curve is essentially
similar to that shown for uniform flow in Fig. d.
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« It Is noteworthy that in the present case the upstream
profile produced by the sluice gate is itself an M, curve,
although at a higher level than the original one. Reduction
of the sluice-gate opening would raise the upstream profile
even further until it represented uniform flow; further
reduction in the opening would produce an M; curve.
Downstream of the hydraulic jump the profile is, of course,
unaltered by the presence of the sluice gate.

 The preceding discussion has dealt with two types of
control the barrier type, such as a weir or sluice gate, and
the choked-constriction type, in which critical flow occurs
within the constriction. Both have the effect, when placed
on a mild slope, of forcing a rise in the upstream water
level and total energy line, and this can occur without any
energy dissipation at the control itself,



 But It Is conceivable that the same backing-up effect
could arise simply from some feature which causes
energy dissipation without acting as a control. Typical of
such features are obstacles such as bridge piers which
dissipate energy but present only a moderate degree of
contraction to the flow.

« Control of upstream flow is the essence of the action
here discussed; it is therefore mainly applicable on mild
slopes where the undisturbed flow is sub-critical. When
the slope is steep the action of control is to create an S,
curve upstream, which may move upstream and drown
the source. The end result may therefore be similar to
that on a mild slope, although the details of the
mechanism are different.



1.9 Computation of Gradually Varied Flow

The computation of gradually-varied flow profiles involves basically
the solution of dynamic equation of gradually varied flow. The main
objective of computation is to determine the shape of flow profile.

Broadly classified, there are three methods of computation;
namely:

The graphical-integration method,
The direct-integration method,
Step method.

The graphical-integration method is to integrate the . dynamic
equation of gradually varied flow by a graphical procedure. There
are various graphical integration methods. The best one is the
Ezra Method.



The direct-integration method: Thje differentia equation of GVF
can not be expressed explicitly in terms of y for all types of flow
cross section; hence a direct and exact integration of the equation
Is practically impossible. In this method, the channel length under
consideration is divided into short reaches, and the integration is
carried out by short range steps.

The step method: In general, for step methods, the channel is
divided into short reaches. The computation is carried step by step
from one end of the reach to the other.

There is a great variety of step methods. Some methods appear
superior to others in certain respects, but no one method has been
found to be the best in all application. The most commonly 1sed
step methods are:

Direct-Step Method,
Standart-step Method.



1.9.1 The Direct Step Method (DSM)

In direct step method, distance is calculated from the depth.

It is only applicable to prismatic channels. The energy equation
between two sections is:

v’ Vi . &
zl+y1+a15:22+y2+a25+Sfo

Assume that a,=a,=1 z,-z,=S,AX, Then above
equation can be written as:

S,AX + E, =E #S,Ax

Solving for Ax:



* The distance between two sections can be calculated from:

V2
A y+oa—

* The slope of energy-grade line can be computed from
Manning’'s Equation as:

2V /2
n<vlyV — 1




Consider the M2 profile in a channel section. Suppose that we want to
calculate the length of M2-profile for a given discharge Q, and channel
section.
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 We know that the depth will be changing between the limits y <y <y,.

« On the other hand the distance between two sections can be written as:



AX = Ey-6 = i and
S-S, S,-S, S-S,

_ 1 n2\/2

Sf = E(SH t SfZ) St = RAT3

Start from a control section. In this case the control section is the
downstream section where critical flow occurs.

Nominate a series values of y, between the range of y <y <y,

Calculate the values of R, V, E, and S; corresponding to these
assumed depths.

Calculate Ax for each interval between successive values of y



NOTE:

If flow is subcritical computation is from downstream towards
upstream.

If flow is supercritical computation is from upstream towards
downstream.

If one of the depth is uniform depth for the section under
consideration, then 1% off value of normal depth y, must be taken.
For example for profiles like M1 and S2 where normal depth is
approached asymptotically from above 1.01 y,, and for profiles such
as M2 and S3, where normal depth is approached asymptotically
from belove 0.99 y, must be taken.



The best thing is to prepare a table as follows:

y |A [P |R=AP |U E |S | = |Ax |x
(m) | (m2) |(m) (M) | (mis) |(m) St | (m) | (m)
Yc

Yl

Y2

Y3




1.9.2 The Standard-Step Method

In this method, the depth is calculated from distance.

Applicable to both nonprismatic and prismatic channels. It is a trial and
error process ,
V2

*Assume Y,, compute H,: H,=2,+Yy,+ oo
9

o i ’ 1

Also compute: Hy =H,+h; =H, + E(Sﬂ + sz)Ax
1_

*Where hy =2 SrX

*Compare H, to H,'.
if H,=H, thenassumedy,is O.K.

But, if H2 7£—|1' , then assume another value of y,



Improve your initial estimate by this amount:

H where H,=H,-H,

e

Ay, = S

1-Fr; $ 3% Ay
2 2

For natural rivers, instead of depth v, it is preferable to use the height h
of the water level above some fixed datum. This height, h=z+y, is
known as the STAGE. Hence total head at a section can be written as:

V2 V2
=y+z+g—=h+ag—
H=y+z+a 2 h+a 2



In nonprismatic channels, the hydraulic elements are no langer
independent of the distance along the channel

In natural channels, it is generally necessary to conduct a field
survey to collect data required at all sections considered in the
computation.

The computation is carried on by steps from station to station where
the hydraulic characteristics have been determined. In such cases
the distance between stations is given, and the procedure is to
determine the depth of flow at the stations.



1.9.3 Direct-Integration Methods

We have seen that the flow equation
dy _ So B Sf
dx 1-FF°

is true for all forms of channel section, provided that the Froude number
F. is properly defined by the equation:

and the velocity coefficient, a = 1, channel slope 6 is small enough so
that cos 6 =1.

We now rewrite certain other elements of this equation with the aim of
examining the possibility of a direct integration. It is convenient to use
here the conveyance K and the section factor Z.



The Conveyance of a channel section, K:

If a large number of calculations are to be made, it is convenient to
introduce the concept of “conveyance” of a channel in order to calculate
the discharge. The “conveyance” of a channel indicated by the symbol K
and defined by the equation Q

Q = KS*? or K=——=
JS

This equation can be used to compute the conveyance when the
discharge and slope of the channel are given.

When the Chézy formula is used: K = CARY?

where c is the Chézy’s resistance factor. Similarly when the Manning
formula is used 1

K==AR?*"
N



» When the geometry of the water area and resistance factor or
roughness coefficient are given,

One of the above formula can be used to calculate K. Since the
Manning formula is used extensively in most of the problems, in
following discussion the second expression will be used. Either K
alone or the product Kn can be tabulated or plotted as a function of
depth for any given channel section: the resulting tables or curves
can then be used as a permanent reference, which will immediately
yields values of depth for a given Q, S and n. This conveyance factor
concept is widely used for uniform flow computation.

Since the conveyance K is a function of the depth of flow y, it may be

assumed that: , N
where K =0y

C, = coefficient, and
N = a parameter called hydraulic exponent



Taking the logarithms of both sides of above eq. And then differentiating
ith ttoy:
WINTESPEBLY: 20nK = Niny +(nC,

d(enK) _ N N zyd(ZnK)
dy 2y dy
On the other hand: from Manning’s Eq.
K _ EARZ/?)
n

Taking the logarithm of both sides and differentiating with respect to y:

‘nK = %fnR +/nA-/nn

d(fnK) _ 2 drR 1 dA
dy 3R dy A dy




 The derivative of hydraulic radius with respect to y:

dR _1dA AdA T RdP
dy Pdy P°dy P Pdy

d(énK)_El(T_Rde T 2T 21dP T

dy 3R\P Pdy) A 3A 3Pdy A

d(¢nK) _ N SN =2y d(/nK)

dy 2y dy

d(/nK) _ 1 £5T - de
dy 3A dy

N=2Y[5T_or P
3A dy




 This is the general Eq. for the hydraulic exponent N. If the channel
cross section is known N can be calculated accordingly provided that
the derivative dP/dy can be evaluated. For most channels, except for
channels with abrupt changes in cross-sectional form and for closed
conduits with gradually closing top, a logarithmic plot of K as ordinate
against the depth as abscissa will appear approximately as straight
line. Thus if any two points with coordinates (K, y,) and (K,, y,) are
taken from the straight line, the approximate value of N may be
computed by the following Eq.

Iog(KllKZ)

N = 2
log(y, /y,)




+ For wide rectangular channels: R =Yy
« The Chézy Equation gives the value of K as:

K?=C°A°R =C*b’y’y =C°b’y’ > N=3
* On the other hand the Manning Equation gives the value of K as:

K2 iA 2 R43 _be J/ 1 bzylo/s
n’ - n?

—> N =10/3



The Section Factor: Z

The Section Factor: Z is especially used for critical flow computation.
However it becomes useful to transform the GVF equation into a
form which can be integrated directly.

We now consider the Froude number

2
F2 . Q T
ro 3
g A
Since this term equals unity at critical flow, then

QZ A3

g T

C

A_, T.are the values of Aand T at critical flow..

(N



* By definition we introduce the concept of section factor as

22:’4_3 or ZZ:AzézAzD and Z=/4\/E
T
» The section factor for critical flow becomes -2 _ A _ Q°

. g
s o L, = g for critical flow only.

Vg

Since the section factor z is a function of depth, the equation
indicates that there is only one possible critical depth for maintaining
the given discharge in a channel and similarly that, when the depth is
fixed, there can be only one discharge that maintains the critical flow
and makes the depth critical in that given channel section.




* Since the section factor z is a function of the depth of flow y, it may
be assumed that Z2=C,y"

Where C, is a coefficient and M is a parameter called the hydraulic
exponent. Taking the logarithms on both sides of above equation and
then differentiating with respect to y:

d(tnZ) M M =2y d(énZ)zzd(énZ)

dy 2y dy d(‘ny)

3

Now taking the logarithms on both sides of Eq. z° = -

2'nZ =3'nA—-/nil

Take the derivative with respect to y:




dtnZ) 3 dA 1 dT 3 s Lar

dy 2Ady 2T dy 2A 2T ady

 Then M becomes::

Mo Y 3_I__AdT
A T dy

* This is a general equation for the hydraulic exponent M, which is a
function of the channel section and the depth of flow.

* For a given channel section M can be computed directly from this
expression, provided that the derivative dT/dy can be evaluated.
However, approximate values of M for any channel section may be
obtained from the following equation:



M = 2Iog(lezz)
log(y,/y,)

where z, and z, are section factors for any two depths y, and y, of
the given section, i.e.:

3 3
Z]_z:i and 22:_2
T, T,

For rectangular sections: A=by, and T=Db, hence section factor
becomes:

ZZ _ b3y
b

3

=0’y =>M=3




Now, coming back to the computation of gradually varied flow; the
term, (S,-S; )may be written as

S
S,-S, =8,|1-°2F
0 f O[ Sj

0

Q

/s

Therefore  S; _Q°IK* _K,
S, Q/K: K¢

Q

s,

On the other hand K = and for uniform flow K, =

K2
And hence S,-S, = 80(1— Ozj
K

Also, it is assumed that K = C; y’V and K=C, yN

0



Therefore

K2
o515 |

On the other hand:

QT Q1 Z;

F? = =
" g A g 2 Z°
2
because for critical flow: ZCZ — O_
g

Also itis assumed that 72 =C, "




Therefore Froude number can be written as:
Y M
F2 _ CZyC _ &
ro C M T
2y Yy
Finally the Gradually Varied Flow Eq. takes the form:

N
(Yo
Q_SO_SI‘_ 14
dx 1-F7? =5 M
X — I, 1 &

Yy



Bresse’s Method:

Wide rectangular channel,

From Chezy’'seqn:, K=CAJR  A=by

3 34,3
Z° _A DY =b’y’ =>M=3
T b
Therefore, the GVF Equation becomes: g—i

Manipulating this equation we can integrate it.

Applicable only to wide rectangular channels. Assumptions:

Chézy’s formula is applicable and Chézy’s C is constant.

R=y

/&\
Y )

Therefore K2 = C?A?R = C?h?y?y = C?h?%y* = N =3

3

/&\

Y )

3



S,dX =

Adding and subtracting (

dy

W EGERE
1-| Yo
y
I
S,dx = 1—(y] _(

3
J/oj

y

Rearrange it and multiply and
3

y j

divide by (y—
0

dy




S dx =

Let U=

S dx =

S x =

Y

o

or

=dady =y,au

3

Yo

1-U°

y, du

S, dXx =

1 [Ye
Yo

1- 3
[y
Yo

change variables

Integrating

+C




Let ¢ be the integral of ¢ = fldu

vi+u+l 1 ., /3
b = j 1

—Kn ——1tan
(v-17 /3 2u +1

Therefore, the distance between any two
section becomes:

4 — = h

L =X, =X, é’o (uz_ul)‘l_[ﬁl (4)2_(')1)&

0



Bakhmeteff Method

 Bakhmeteff improved Bresse’s method as follows:

-
od_y:So_Sf —s So Let FrZZﬂSf

dx 1-F2 ° 1-F? S
_ S
Therefore @ _g _ So  Then we can write that:
ax 4. ,BSf
S,
S, S N
1 1P, On the other hand, we can wite that: —- = (y"j
dx = *dy S, y
S, 1_°r
S

0

Hence dx becomes:



N
y
-A%5) ”
ax =Y 4 Add and subtract (ﬁj
N
") y
1— 0
y
y N
-45)
ax = &y 4

s, N
1_(yoj
' 4

N N
N (yo j _ (yo j and rearrange as:
Y Y

_ -
20
S,ax =|1- 4
1_ o

G




N
Now multiple and divide by (Lj

1_a—ﬂ{

Yo

S,ax =

S,ax =

N
;
4

Yo

/y\

\ Vo /

N

¥

:

/y\

\ Vo /

ay

Let

and rearrange as.

U =

o

=dady =y,au



* Integrating

for [ 2)1- =2 oy

1-u

X =§{u—(l—,3)j au }

N
5 1-u

Therefore, the distance between any two
section becomes:

L=X,-X, = Z—"{(u2 — Uy )—(1—B)YF(u,, N)-F(u,N)J}

0



* Here we are assuming that 3 is constant

S; Q°T S, Q°T
F2: —f: = 0
r 'BSO gA3:>'B S. gA’
and hence
02
Q:CA«\/RS,: Sf :CZAZR

Therefore 3 becomes:

S, CARQT SCT SC°T

p Q>  gA° gP g P




* If T/b Is constant, then 3 will be constant.

* For example, for a rectangular channel,
T=Db, and P=b+2y, hence

T b b B 1
P b+2y b(1+2yj 1+2y/b

 And T/b becomes constant only for wide
rectangular channel.



* For a triangular channel: T=2zy

! P =2V1+2%y

r 2z  Z
P 2J1+z%y ~i1+Z2?

= constant




* The Integral in the equation Is designhated
by F(u,N), that Is

. F(u,N):_fl_dEN = Varied-Flow Function

* The values of F(u,N) have been obtained
numerically, and are given in tabular form
for N ranging from 2.2 to 9.8.



Example on Bakhmeteff Method:
Water is taken from a lake by a triangular channel,with side slope

of 1V:2H. The channel has a bottom slope of 0.01, and a Manning’s
roughness coefficient of 0.014. The lake level is 2.0 m above the
channel entrance, and the channel ends with a free fall. Determine :

1.The discharge in the channel,

2.The water-surface profile and the length of it by using the direct-

integration method.
\V

2m]'

M
"'-l-’::::-"::::".

n=0.014, S,=0.01

W
!"-..




a) To determine the discharge, assume that the channel slope is
steep. Then at the head of steep slope, the depth is critical depth.

Hence 2=Emin
A_y A_y
A=2y? P=2J5y, R=—=-",T=4y, D=—=~
Y v8y P 5 Y T 2
2:Efyc+%=yc+%:%yc =Y. =1.6 m.
2 3 3
A, =2x(1.6) =5.12m? Q" _A _(12) =20.97

g 7. 4x1.6

c

= Q=14.34m’/s let's computethe normaldepth:

2/3 2/3
Ao A 2Ys [ 2V | j501
- JS, = 14.34="70 : 0.01
n [p] ° 0.014(2y0\/§

Yy =1.716 = y,=1.225m<y_=1.6m ..steep slope &

Q=14.34m’/s

o



2. The water-surface profile and the length of it by using the direct-
integration method.

 The water surface profile will be S2 type, and the depth of flow will
change between the limits: 1.01y,sy<y...

 Since T/P is constant for triangular channels, we can use
Bakhmeteff's method. Let's compute the value of [3:

2
,stoc ! Q=CA,\R,S, A0:3.0m2
g
R, =0.5476m, T=49m, P=5.48m
2
C=6459 = ,B:SOC i
g P

~ 0.01x64.6°x4.9
9.81x5.48

; 3.80




 Let's obtain the value of N

N = 2y(5r 2dej R= P=2yJ5

3A ady J5
2y Y
N = 5x4y — 22— x2./5
3x2y ( NG j
N = % =5.333



To obtain the values of F(u,N) we have to use tables with

interpolation.
y (m) u=yly, F(u,5.333)
1.6 1.31 0.0811
1.237 1.01 0.622
A -0.296 0.5411
Interpolation:

Foru=1.30 and N=56 —
Foru=1.32and N=5 —

Hence by interpolation:
Foru=1.31and N=5 —

F(1.30, 5)=0.100 and

F(1.32, 5)=0.093

F(1.31, 5)=0.0965




o Similarly:

« Foru=1.30andN=54 —  F(1.30,5.4)=0.081 and
« Foru=1.32andN=54 — F(1.32, 5.4)=0.093

* Hence by interpolation:

« Foru=1.31and N=5.333 —  F(1.31, 5)=0.0811

L=x,—X = %{(Uz _Ul)_(1_18)[F(U2’N)_F(U’N)]}
1.225
L= m{(— 0.296)—(1-3.8)0.5411} =149.34 m

* Therefore, the length of S2 profile is 150 m.



Ven Te Chow Method

Ven Te Chow improved Bakhmeteff's method for all types of cross
sections as follows:

N

(Yo
X
(e
y

The gradually-varied flow equation can be written as

_11-(ly)
> So 1_(yo/y)N dy
N M
denominator by [ylj and second term in numerator by [%)
o= L ULy ) =1y el v (el yo)" |,
S (.y/yo )N -1

o

multiply by both numerator and




d
S, 1-(y/1y,)" g
Now let v = Y — ady =y, adu  then above equation becomes:
_ " _
(J/Cj yNM _ N
ax =Yool qy
S, 1-u

Adding and subtracting 1 to the numerator, dx becomes::



Rearrange to obtain

Integrate

O'X=y0 J,/Vo au
S, 1-u
M N
dx=& 1-— 1 -+ Yo | Y - au
S, 1-u v, 1-u
i u MU N—-—M
du u
x:ﬁ u—j —+ Ye j v du
S, - 1-u Yo ) 31-u

+ const.



 The first integral on the RHS of above eq. is designated by or

¢t au
F(u,N)Ejl_u

o

= Varied-Flow Function

N

The second integral may also be expressed in the form of the
varied-flow function. Let

NIJ J= N
V =U and ( 1)
J N
u=v’'" au=—v N av
N
J J-N
B “(N-M )+
N-M J




* Therefore:
“ d "I d
Xzﬁ u—j UN+[&j I d + const.

or

M
x=2e u—F(u,N)+/‘\//(ij F(v,J)|+ const.




Where the subscripts 1 and 2 refer to sections 1 and 2 respectively.
This eq. contains varied-flow functions, and its solution can be
simplified by the use of the varied-flow-function table. This table
gives values of F(u,N) for N ranging from 2.2 to 9.8. Replacing values
of uand N by corresponding values of .F(v,J).

In computing a flow profile, first the flow in the channel is analyzed,
and the channel is divided into a number of reaches. Then the length
of each reach is computed by the above Eq. from known or assumed
depths at the ends of the reach. The procedure of the computation is
as follows:

. Compute the normal depth y, and critical depth y, from the given
values of Q and s, n ,
Q- T

_ﬂ 2/3 :1:>y
O—nR \/870:y0 g A3 C




2. Determine the hydraulic exponents N and M for an estimated
average depth of flow in the reach under consideration. It is assumed
that the channel section under consideration has approximately
constant hydraulic exponents

* If any two depths in the section are known then

. |\|:2Iog(K1/K2) M:2|09(21/22)

, log(y, /y,) log(y, /y, )

« N and M can be computed from above expressions or use the
general formulas if dP/dy and dT/dy can be evaluated.

3. Compute J by

B N
N-M+1

J




. Compute values v = J/ and v =u""’ atthe two end
. Yo
sections of the reach

. From the varied-flow-function table, find values of F(u,N) and F(v,J).
. Compute the length of reach by the given equation obtained above.
In doing so a table can be prepared as follows

y u Y F(u,N) F(v,J)
Y1
Yo
Y3




Example on Ven Te Chow’s Method:

Water flows at a uniform depth of 3 m. in a trapezoidal channel. The
trapezoidal section has a bottom width of 5 m., and side slope of
1H:1V. The channel has a bottom slope of 0.001, and a Manning’s
roughness coefficient of 0.013. The channel ends with a free fall.
Determine the water-surface profile and the length of it by using the
direct-integration method.

AV

Yo=3 M
s A,
S,=0.001, n=0.013

W‘R



First, determine the discharge, and then the type of the slope:

Q:éRZ"”,/SO A=by+zy° =5x3+3°=24m°
n

P=b+2yV1+2? =5+2x3J/2 =13.46 m.

R = % =1.783m Q= %)is (1.783)"° \/0.001 =86 m* /s

To determine critical depth vy,

2 3 2
Q*_ A _By.+ye) _86° oo,
g T 5+2y. - 9.81

C

by trial and error y.=2.6m

Yo=3 m >y =2.6 m Therefore it is mild slope. Hence M2 profile occurs.

The depth changes between the limitsy, =2.6 m<y <0.99y, =297 m



 Let's compute the hydraulic exponents

m;%é
=2 1

K/
K K = A3

n
my
Y1

L=x2—x1=gf{<u2—ul>—[F<u2,N> F (. N)]{ych

Yo
In Vi

Yo

N

J[F(vz,n—F(vl,a)]}



Computation of Hydraulic Exponents N and M, n=0.013

y(m)|Am?) | P(m) | R(m) | T(m) K Z N M J
2,00(19,76 (12,35| 1,60 | 10,2 | 2078,9 | 27,50 | 3,71 | 3,95 | 3,19
2,97123,67 1340 1,77 110,94 | 2660,7 | 34,82

Computation of Length of M2 profile by using
Direct-Integration Method in one step

Yo=3.0m, y.=2.6 m, n=0.013, S,.0.001, N=3.7, M=3.6, J=3.2

y (m) u ' F(u,3.7) F(v,3.2) L (m)
2,60 0,87 | 0,85 1,05 1,043 | -341,781
2,97 099 | 099 | 1,7875 | 2,017

L=342 m




1.5 Side-Channel Spillways

A side-channel carries water away
from an overflow spillway in a channel
parallel to the spillway crest as

shown in figure.

The discharge over the entire width (L) of
an overflow spillway can be determined by
Eqg.(1), and the discharge through any
section of the side channel at a distance x
from the upstream end of

the channel is

Q :XCHS/Z

%A

o '}o’
!'}.0 b
b“ . A
ar »
- ; ’
Laed b
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o [
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The side-channel spillway must provide a slope steep enough to carry away the accumulating
flow in the channel. However, a minimum slope and depth at each point along the channel is
desired in order to minimize construction costs. For this reason, an accurate water surface

profile for the maximum design discharge is important in the side-channel spillway design.

The flow profile in the side channel cannot be analyzed by the energy principle
(i.e., gradually-varied flow profile) because of the highly turbulent flow conditions

that cause excess energy loss in the channel.

However, an analysis based on the momentum between two adjacent sections,

a distance of Ax apart, in the side channel,

> F=p(Q+AQ)V +AV)-pQV Eq.(2)

where p is the density of water, V is the average velocity, and Q is the discharge
at the upstream section. The symbol A signifies the incremental change at

the adjacent downstream section.



The forces represented on the left-hand side of Eq.(2) usually include the weight component
of the water body between the two sections in the direction of the flow [(pgAAX)Sin 9] ,

the unbalanced hydrostatic forces

pgAy cos — pg(A+ AA)(V + ij cosé

and a friction force, F,, on the channel bottom. Here A is the water cross-sectional area, Y is the distance
between the centroid of the area and the water surface, and 0 is the angle of the channel slope.

The momentum equation may thus be written as

PIAAXSING +[pgAY — pg(A+ AANY + Ay)|cost — F; =p(Q+AQ)V +AV)—-pQV  Eq.(3)

Let S, =sind forareasonably small angle,and Q =Q,, V +AV =V,, A= (Ql +Q, )/(V1 +V2),

and Ff = yASfo ; the above equation may be simplified to

Ql(V1+V2)[ AQ)
Ay = — AV +V, — [+ S,AX —S; AX _
g(Q1+Q2) 2 Ql 0 f Eq.(4)



Where Ay is the change in water surface elevation between the two sections.
This equation is used to compute the water surface profile in the side channel.
The first term on the right-hand side represents the change in water surface
elevation between the two sections resulting from the impact loss caused by
the water falling into the channel. The middle term represents the change from
the bottom slope, and the last term represents the change caused by friction

in the channel. Relating the water surface profile to a horizontal datum, we may write

Ql(vl+vz)( AQJ
AZ = Ay —S,AX = — AV +V, — | =S, AX _
0 g(Q1+Q2) 2 Q, f Eq.(5)

Note that when Q, = Q, orwhen AQ =0, Eq.(5) reduces to

2 2
AZ = \2/2 — \2/1 —S; AX Eq.(6)
g g

which is the energy equation for constant discharge in an open channel as derived in
Computation of Gradually-Varied Flow.




Example

A 6-m overflow spillway discharge water into a side-channel spillway with a horizontal bottom slope. If
the overflow spillway (C=2.043 m2/s) is under a head of 1.28 meter, determine the depth change from
the end of the side channel (after it has collected all of the water from the overflow spillway) to a point
1.5 meter upstream. The concrete (n=0.013) side channel is rectangular with a 3-m bottom. The water

passes through critical depth at the end of the side channel.
Solution

The flow at the end of the side channel (Eq.(1)) is

Q=CL(H,)** =(2.043)(6)1.28)*"* =17.75 m*/sec

The flow at a point 1.5 meter upstream (Eq.(1)) is

Q = xC(H, )*"* = (4.5)(2.043)(1.28)*’* =13.31 m*®/sec
Solving for critical depth at the end of the channel, we have

g=Q/b=17.75/3=5.92 m*/s/m
y. =[o?/q]" =|(5.92 /{(9.82)}] * =1.528 m



The solution method employs a finite-difference solution scheme (Eq.(4)) and an iterative processs

can be employed to compute the upstream depth. The upstream depth (or depth change, Ay) is
estimated, and Eqg.(4) is solved for a depth change. The two depth changes are compared, and a
new estimate is made if they are not nearly equal. Table... displays the solution. Because side-
channel spillway profile computations involve implicit equations, computer algebra software (e.g.,

Mathcad, Maple, and Mathematic) or spreadsheet programs will prove very helpful.

IAX Ay Q,+Q, V,+V, IAQ AV S, Ay
0| 1.528 4.584] 17.75 3.872
1.5 -0.3 1.828) 5.484 13.31] 2.427 31.06) 6.299 4.44) 1.445] 0.824 0.001289 -0.755)
-0.755 2.583 7.749 14.31] 1.847, 27.62) 4.274) -1 0.580 0.949 0.000618 -0.093
IAX Ay Q,+Q, V. +V, IAQ AV S, Ay
0] 1.528 4.584] 17.75) 3.872
1.5 -0.755 2.283 6.849 13.31] 1.943] 31.06) 5.816) 4.44) 1.929 0.905 0.000729 -0.819
AX Ay Q,+Q, V,+V, AQ AV S, AY
0 1.528) 4,584 17.75] 3.872
1.5 -0.819 2.347 7.041 13.31] 1.890) 31.06) 5.763) 4.44 1.982 0.915 0.00068] -0.825
IAX Ay Q,+Q, V. +V, IAQ AV S, Ay
0 1.528| 4.584 17.75| 3.872
1.5 -0.825| 2.353 7.059 13.31] 1.886) 31.06) 5.758 4.44] 1.987 0.916 0.000675 -0.826)
IAX Ay Q.+Q, V. +V, AQ AV S, Ay
0 1.528] 4.584] 17.75] 3.872
1.5 -0.826 2.354 7.062 13.31) 1.885] 31.06) 5.757 4.44 1.987 0.916 0.000675 -0.826)




