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1.1 Introduction

• A control is any feature which determines a relationship between 

depth and discharge. The uniform flow itself may be thought of as a 

control, since from a resistance equation such as Manning’s we may, 

given the depth, calculate the discharge.

• However, uniform flow is not, of course, associated with particular 

localized features in the channel, it is the state which the flow tends 

to assume in a long uniform channel when NO OTHER CONTROLS

are present. If there are other controls they tend to pull the flow away 

from the uniform condition, and there will be a transition-which may 

be gradual or abrupt between the two states of flow.

• In this chapter, the gradually-varied flow will be considered.



Types of Channel Slopes

The channel slopes can be classified as follows:

• A mild slope is one on which uniform flow is subcritical,

• A steep slope is one on which uniform flow is supercritical,

• A critical slope is one on which uniform flow is critical.

• Let yo and yc designate the uniform and critical depths for a given 

discharge Q, respectively, then we can write that:

Mild slope → yo>yc

Steep slope → yo<yc

Critical slope→ yo= yc

• The classification of the slope will depend on the roughness, on the 

magnitude of the slope itself, and to a lesser extent on the discharge. 

Same slope, depending on the roughness of the channel bottom can be 

mild, critical or steep.



Critical Slope, Sc

• On the other hand, a critical slope can be defined by using the Manning 

equation as:

Where Ac, Pc, Rc are the area, wetted perimeter, and hydraulic radius of the 

flow computed by using the critical depth yc, for the discharge Q, 

respectively.

Then, the classification of slopes become:

Mild slope →So < Sc Horizontal slope →So=0

Steep slope → So>Sc Adverse slope →So < 0

Critical slope→ So= Sc
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1.3 Basic Assumptions and Equations of GVF

There are two basic assumption used in GVF. These are:

1.In gradually-varied flow , we can use resistance equations such as 

Chezy’s or Manning’s to describe the state of flow provided that the 

slope S is interpreted as the slope of the total energy lines, Sf.

2.In gradually-varied flow, it may be assumed that the streamlines are 

almost straight and parallel. This means that the pressure distribution is 

hydrostatic, i.e.:
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• Now let’s examine the flow in order to obtain a complete description 

of the longitudinal flow variation within a non uniform transition 

region.

• The energy equation at any cross section is 

the derivative with respect to x gives:
g2

v
yzH

2



RC

V
S

g

v
yz

dx

d

dx

dH
f 2

22

2











fof SSS
dx

dz

g

V
y

dx

d
---

2

2











or



Or it can be written in terms of specific energy E as:

On the other hand:

For a given Q, E=E(y), and the derivative of E with 

respect to y is:
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Therefore dE/dy and dE/dx become:

It can also be written as:                                         
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Therefore the equations of the gradually-varied flow are:

and

This is the differential equation for y=y(x), but it is NOT in general 

explicitly soluble, but many numerical methods have been developed for 

its solution, which will be considered later. Meanwhile we will consider 

certain general questions relating to the solution.

fo SS
dx

dE
-

 21 r

fo

F

SS

dx

dy




 



1.4 Water Surface Profiles (Longitudinal Profiles)

It is important to systematically classify the water surface profiles in a 

channel before computation of flow profiles is carried out. Such 

classification helps to get an overall understanding of how the flow depth 

varies in a channel. It also helps to detect any mistakes made in the flow 

computation.

The variation of water surface profile can be obtained without solving the 

equation of GVF:

For a specified value of Q, both Fr and Sf are functions of the depth, y. In 

fact, both Fr and Sf will decrease as y increases. Recalling the definitions for 

the normal depth, yo ,and the critical depth, yc , the following inequalities can 

be stated. 
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Remember that:

. 

For a given discharge, Q, and depth of flow y:
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Similarly’ let’s examine So and Sf wrt yo and y:

in GVF: and for uniform flow Sf=S0

Therefore, for a given discharge, Q, and depth of flow y:
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A gradually varied flow profile is classified based on the channel slope, 

and the magnitude of flow depth, y in relation to y0 and yc . The channel 

slope is classified based on the relative magnitudes of the normal depth, 

y0 and the critical depth, yc.

• y 0 > y c : "Mild slope" (M)

• y 0 < y c : "Steep slope" (S)

• y 0 = y c : "Critical slope" (C)

• S 0 =0 : "Horizontal slope" (H)

• S 0 <0 : "Adverse slope" (A).

It may be noted here that slope is termed as "sustainable" slope when 

S0 >0 because flow under uniform conditions can occur for such a 

channel. Slope is termed as "unsustainable" when  S ≤0 since uniform 

flow conditions can never occur in such a channel. 



Flow profiles associated with mild, steep, critical, horizontal, and adverse

slopes are designated as M, S, C, H and A profiles, respectively.

•For a given discharge and channel, the normal depth y0, and critical depth 

yc can be computed. The flow area can be divided into 3 regions by the 

Normal Depth Line (NDL), the Critical Depth Line (CDL), and channel 

bottom.

•The space above the channel bed can be divided into three zones 

depending upon the inequality defined by equations:
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• Therefore, the water surface profiles can be determined by using the 

equation of GVF together with these inequalities.
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Mild Slope
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Zone 2:  y0>y>yc
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Zone 3:  y0>yc>y
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Mild Slope

On a mild slope, the possible water surface profiles are:



Water-surface profile on a mild slope

• Consider a long mild channel taking water from a lake, and ending 

with a free fall. The water surface profile would look like:



Steep Slope

• On a steep slope, the possible water surface profiles are: 



Water-surface profile on a steep slope

• Consider a long steep channel taking water from a lake, and ending 

with a free fall. The water surface profile would look like:



Critical Slope

On a critical slope, the possible water surface 

profiles are:



Horizontal Slope

On a horizontal slope, the possible water surface 

profiles are:



Adverse Slope

On an adverse slope, the possible water surface 

profiles are:



From the cases examined here, we can obtain certain principles that 

can be applied to all cases; 

1.The sign of  can be readily determined from the equation and the 

inequalities:

2.When the water surface approaches the uniform depth line, it does so 

asymptotically.

3.When the water surface approaches the CDL, it meets this line at a 

fairly finite angle 
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4. If the curve includes a critical section, and if the flow is 

subcritical upstream (as in case of M2 curve) then a that 

critical section is produced by a feature such as a free 

overfall. But if the flow is supercritical upstream (as in M3

curve) the control cannot come from the critical section, 

and indeed such a section will probably not occur in reality 

but will be bypassed by a hydraulic jump.

5. Above all, every profile exemplifies the important principle 

that subcritical flow is controlled from downstream (e.g, M1

and M2 curves) and supercritical flow from upstream (e.g. 

the M3 curve). In fact these profiles owe their existence to 

the action of upstream or downstream controls.



Occurence of Critical Flow
Consider a special case that S0=Sf: 

This means that either

• Consider a long channel of two sections: one of mild upstream and one 

of steep slope downstream.

• The flow will gradually change from subcritical at a great distance 

upstream to supercritical at a great distance downstream, passing 

through critical at some intermediate pt.

• In the transition region upstream of 0, that is between sections (A) and 

(O), the depth is less than y01 and the velocity is greater than uniform 

flow. On the other hand, between sections (O) and (B), the depth is 

greater than y02 and the velocity is less than uniform flow.
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Therefore somewhere between sections (A) and (B), Sf=S0.. Hence 

Fr=1, and flow will be critical. Flow will be critical at Section (O).. 



• Critical flow occurs at the outflow from a lake into a steep channel or 

through a constriction in width: this last results shows that it will also 

occur at the head of a steep slope which is proceeded by a mild 

slope.



1.6 Interaction of Local features and 

Longitudinal Profiles

In treatment of elementary discharge problem (given S0,n, 

and available specific energy, E, and determine Q), a 

difficulty arise which is a characteristic of nonuniform 

channel. The difficulty is: the engineer is given only a 

numerical value of channel bottom slope, and must decide 

himself/herself whether it is mild or steep.  In order to 

determine it, one must know the discharge. This is not a 

serious difficulty.  One can assume a type of slope and 

determine the discharge and then check the assumption 

and hence proceeds accordingly.  However, a more 

general form of this problem is related with controls.

It has been discussed that controls are important as the 

points of origin for longitudinal profiles.



• But in previous discussions, the controls are all been 

nominated and their functioning described in advance. In 

practice this is never true: the engineer dealing with a 

specific problem is given only the description of certain 

channel features and must decide whether and how they 

will act as controls. 

• In this respect, it is important to observe that while any 

control present will influence and help to determine the 

whole flow profile, the profile in its turn may be said to 

influence the control, in a sense that the form of the 

profile may determine whether a certain feature acts as a 

control or not.



• The most familiar example of this action is the

“drowning” of a control as in case of flow profile behind a

sluice gate; the S1 curve behind it would fill all the

upstream channel and drown the lake outlet, which

would be no longer be a critical section.

• The general principle which emerges is that a control

may be drowned and deprived of its function by a

stronger control downstream.

A further example of this feature is shown in figure

below.



For the lowest profile shown in this figure, both weirs are acting 

as critical flow controls: as the discharge increases the hydraulic 

jump moves upstream, becoming weaker as it does so, until 

finally it vanishes. 

The only trace of it being a depression over the upstream weir. 

This weir is now drowned and flow over it is no longer critical.



1.7 The Effect of a Choke on the Flow Profile

• The above discussion has dealt with the effect of a

changing flow profile on a particular feature; it is also

useful to consider this interaction in the converse way –

i.e., to consider the effect on the flow profile of some

feature as it is gradually converted into control by some

continuous change in the discharge or in the geometry of

the feature. This latter type of change is un-likely to

occur in physical reality, but a consideration of its effect

makes a useful, if artificial, exercise for a designer

seeking to determine a suitable size fore some channel

feature.



• An example of great practical interest is provided by a

local width contraction (e.g; bridge piers or a culvert) in a

long uniform channel of mild slope. Suppose that initially

the contraction is not a very severe one and the flow can

be passed through it without requiring more specific

energy that the upstream flow possesses; i.e; without

choking. The flow within the contraction is therefore

subcritical, as is the uniform flow for a great distance

upstream and downstream (See figure below; Fig. a). If

now the contraction width is gradually reduced, a point is

reached where the available specific energy is just

sufficient to pass to the flow through the contraction in

the critical condition (Fig.b). This is the threshold of the

choking condition, where the contraction becomes a

control.





We now consider what happens if the contraction is

narrowed even further. First, the flow within the

contraction remains critical; this fact is of prime

importance. Clearly there is no reason why this flow

should return to sub-critical, for the condition which

originally produced critical flow is now being pushed to

even further extremes; on the other hand, the flow

cannot pass to supercritical either. There is therefore no

alternative to the maintenance of critical flow. Assuming

for the moment that the discharge remains constant, it is

seen that the discharge per unit width q within the

contraction must increase, so that the critical depth yc

must also increase; it follows that the specific energy

E=3yc/2 will increase, within the contraction and

upstream, so that the upstream depth must increase and

an M1 curve will appear upstream (Fig. c).



• This behavior accords well with the intuitive notion that a 

severe constriction in the channel will cause the water to 

“back up” or “head up” so as to force the required 

discharge through the constriction.

• We can now examine more critically the assumption that 

the discharge remains constant. Consider the channel as 

a whole, including the source of the flow, as in Fig. d. In 

this sketch is shown the whole the whole extent of the 

M1 curve of Fig. c; if it “runs out”, as shown, before 

reaching the source, then the choking of the contraction 

has produced only a local disturbance which does not 

alter the discharge. On  the other hand, if the contraction 

were made severe enough for the M1 curve to reach 

right back to the lake, the discharge would be reduced 

somewhat.

• In order to calculate the amount of this reduction it is 

necessary to calculate the shape of the M1 curve;



1.8 Specific Energy Changes Near Controls

• First, it is important to see that the choking and backing

up shown in above Figs.(c) and (d) is independent of

energy dissipation, and would occur even the walls of

the contraction were streamlined so as to eliminate

energy loss. Nevertheless, energy concepts are useful in

discussing certain consequences of the choking process.

It can be easily shown that in the M1 curve the specific

energy E increases in the downstream direction; it is this

process which supplies the extra specific energy needed

to pass the flow through the contraction. Further

downstream, however, the flow must return to uniform,

and to the appropriate value of E.



• The extra specific energy which was acquired upstream

must therefore be given up, even if there is no energy loss

in the contraction itself. And if there is no such energy

loss, the required drop in E can occur only through the

downstream development of supercritical flow (in which E

decreases downstream) followed by a hydraulic jump. The

total energy line therefore behaves as shown in Fig. d.

• Similar reasoning would apply to a control such as a sluice

gate, shown in Figure below. The argument is not of

course limited to the case where the undisturbed flow is

uniform; in this figure the undisturbed flow (in the absence

of the sluice gate) is an M2 curve and the process of

departure from and return to this curve is essentially

similar to that shown for uniform flow in Fig. d.





• It is noteworthy that in the present case the upstream

profile produced by the sluice gate is itself an M2 curve,

although at a higher level than the original one. Reduction

of the sluice-gate opening would raise the upstream profile

even further until it represented uniform flow; further

reduction in the opening would produce an M1 curve.

Downstream of the hydraulic jump the profile is, of course,

unaltered by the presence of the sluice gate.

• The preceding discussion has dealt with two types of

control the barrier type, such as a weir or sluice gate, and

the choked-constriction type, in which critical flow occurs

within the constriction. Both have the effect, when placed

on a mild slope, of forcing a rise in the upstream water

level and total energy line, and this can occur without any

energy dissipation at the control itself,



• But it is conceivable that the same backing-up effect

could arise simply from some feature which causes

energy dissipation without acting as a control. Typical of

such features are obstacles such as bridge piers which

dissipate energy but present only a moderate degree of

contraction to the flow.

• Control of upstream flow is the essence of the action

here discussed; it is therefore mainly applicable on mild

slopes where the undisturbed flow is sub-critical. When

the slope is steep the action of control is to create an S1

curve upstream, which may move upstream and drown

the source. The end result may therefore be similar to

that on a mild slope, although the details of the

mechanism are different.



1.9 Computation of Gradually Varied Flow

• The computation of gradually-varied flow profiles involves basically 
the solution of dynamic equation of gradually varied flow. The main 
objective of computation is to determine the shape of flow profile.

• Broadly classified, there are three methods of computation; 
namely:

1. The graphical-integration method,

2. The direct-integration method,

3. Step method.

The graphical-integration method is to integrate the . dynamic 
equation of gradually varied flow by a graphical procedure. There 
are various graphical integration methods. The best one is the 
Ezra Method.



The direct-integration method: Thje differentia equation of GVF 
can not be expressed explicitly in terms of y for all types of flow 
cross section; hence a direct and exact integration of the equation 
is practically impossible. In this method, the channel length under 
consideration is divided into short reaches, and the integration is 
carried out by short range steps.

• The step method: In general, for step methods, the channel is 
divided into short reaches. The computation is carried step by step 
from one end of the reach to the other.

• There is a great variety of step methods. Some methods appear 
superior to others in certain respects, but no one method has been 
found to be the best in all application. The most commonly ısed 
step methods are:

1. Direct-Step Method, 

2. Standart-step Method.



1.9.1 The Direct Step Method (DSM)

• In direct step method, distance is calculated from the depth.

• It is only applicable to prismatic channels. The energy equation 

between two sections is:

• Assume that a1=a2=1 z1-z2=S0Dx, Then above 

equation can be written as:

• Solving for Dx:

•
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• The distance between two sections can be calculated from:

• The slope of energy-grade line can be computed from 

Manning’s Equation as:
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Consider the M2 profile in a channel section. Suppose that we want to 

calculate the length of M2-profile for a given discharge Q, and channel 

section.

• We know that the depth will be changing between the limits yc≤y <y0.

• On the other hand the distance between two sections can be written as:
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and

• Start from a control section. In this case the control section is the 
downstream section where critical flow occurs.

• Nominate a series values of y, between the range of yc≤y <y0

• Calculate the values of R, V, E, and Sf corresponding to these 
assumed depths.

• Calculate Δx for each interval between successive values of y
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• NOTE:

• If flow is subcritical computation is from downstream towards 

upstream.

• If flow is supercritical computation is from upstream towards 

downstream.

• If one of the depth is uniform depth for the section under 

consideration, then 1% off value of normal depth y0 must be taken. 

For example for profiles like M1 and S2 where normal depth is 

approached asymptotically from above 1.01 y0, and for profiles such 

as M2 and S3, where normal depth is approached asymptotically 

from belove 0.99 y0 must be taken. 
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The best thing is to prepare a table as follows:



1.9.2 The Standard-Step Method

In this method, the depth is calculated from distance.

Applicable to both nonprismatic and prismatic channels. It is a trial and 

error process

•Assume y2, compute H2:

•Also compute:

•Where 

•Compare H2 to H2’:

•if                       then assumed y2 is O.K.

•But, if , then assume another value of y2
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Improve your initial estimate by this amount:

For natural rivers, instead of depth y, it is preferable to use the height h 

of the water level above some fixed datum. This height, h=z+y, is 

known as the STAGE. Hence total head at a section can be written as:
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• In nonprismatic channels, the hydraulic elements are no langer 

independent of the distance along the channel

• In natural channels, it is generally necessary to conduct a field 

survey to collect data required at all sections considered in the 

computation.

• The computation is carried on by steps from station to station where 

the hydraulic characteristics have been determined. In such cases 

the distance between stations is given, and the procedure is to 

determine the depth of flow at the stations.



1.9.3 Direct-Integration Methods

We have seen that the flow equation

is true for all forms of channel section, provided that the Froude number 

Fr is properly defined by the equation:

and the velocity coefficient, α = 1, channel slope q is small enough so 

that cos θ =1.

We now rewrite certain other elements of this equation with the aim of 

examining the possibility of a direct integration. It is convenient to use 

here the conveyance K and the section factor Z.
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The Conveyance of a channel section, K:

If a large number of calculations are to be made, it is convenient to 

introduce the concept of “conveyance” of a channel in order to calculate 

the discharge. The “conveyance” of a channel indicated by the symbol K 

and defined by the equation

This equation can be used to compute the conveyance when the 

discharge and slope of the channel are given.

When the Chézy formula is used:

where c is the Chézy’s resistance factor. Similarly when the Manning 

formula is used
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• When the geometry of the water area and resistance factor or 

roughness coefficient are given,

One of the above formula can be used to calculate K. Since the 

Manning formula is used extensively in most of the problems, in 

following discussion the second expression will be used. Either K 

alone or the product Kn can be tabulated or plotted as a function of 

depth for any given channel section: the resulting tables or curves 

can then be used as a permanent reference, which will immediately 

yields values of depth for a given Q, S and n. This conveyance factor 

concept is widely used for uniform flow computation.

Since the conveyance K is a function of the depth of flow y, it may be 

assumed that:

where 

C1 = coefficient, and

N = a parameter called hydraulic exponent

NyCK 1
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Taking the logarithms of both sides of above eq. And then differentiating 

with respect to y:

On the other hand: from Manning’s Eq.

Taking the logarithm of both sides and differentiating with respect to y:
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• The derivative of hydraulic radius with respect to y:
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• This is the general Eq. for the hydraulic exponent N. If the channel 

cross section is known N can be calculated accordingly provided that 

the derivative dP/dy  can be evaluated. For most channels, except for 

channels with abrupt changes in cross-sectional form and for closed 

conduits with gradually closing top, a logarithmic plot of K as ordinate 

against the depth as abscissa will appear approximately as straight 

line. Thus if any two points with coordinates (K1, y1) and (K2, y2) are 

taken from the straight line, the approximate value of N may be 

computed by the following Eq.
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• For wide rectangular channels:

• The Chézy Equation gives the value of K as:

• On the other hand the Manning Equation gives the value of K as:
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The Section Factor: Z

• The Section Factor: Z is especially used for critical flow computation. 

However it becomes useful to transform the GVF equation into a 

form which can be integrated directly.

• We now consider the Froude number

• Since this term equals unity at critical flow, then

• Ac, Tc are the values of A and T at critical flow..
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• By definition we introduce the concept of section factor as

• The section factor for critical flow becomes 

• or  for critical flow only.

Since the section factor z is a function of depth, the equation 

indicates that there is only one possible critical depth for maintaining 

the given discharge in a channel and similarly that, when the depth is 

fixed, there can be only one discharge that maintains the critical flow 

and makes the depth critical in that given channel section.
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• Since the section factor z is a function of the depth of flow y, it may 

be assumed that

Where C2 is a coefficient and M is a parameter called the hydraulic 

exponent. Taking the logarithms on both sides of above equation and 

then differentiating with respect to y:

Now taking the logarithms on both sides of Eq.
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Take the derivative with respect to y:



• Then M becomes::

• This is a general equation for the hydraulic exponent M, which is a 

function of the channel section and the depth of flow.

• For a given channel section M can be computed directly from this 

expression, provided that the derivative dT/dy can be evaluated. 

However, approximate values of M for any channel section may be 

obtained from the following equation:
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where z1 and z2 are section factors for any two depths y1 and y2 of 

the given section, i.e.:

For rectangular sections: A=by, and  T=b, hence section factor 

becomes:
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• Now, coming back to the computation of gradually varied flow; the 

term, (S0-Sf )may be written as

• On the other hand and for uniform flow 

• Therefore  

• And hence

• Also, it is assumed that and   
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• Therefore

• On the other hand:

• because for critical flow:

• Also it is assumed that
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Therefore Froude number can be written as:

Finally the Gradually Varied Flow Eq. takes the form:
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Bresse’s Method:

• Applicable only to wide rectangular channels. Assumptions:

• Wide rectangular channel, 

• Chézy’s formula is applicable and Chézy’s C is constant.

• From Chezy’s eq’n: , A=by 

• Therefore 

Therefore, the GVF Equation becomes:

Manipulating this equation we can integrate it.
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Adding and subtracting

Rearrange it and multiply and

divide by
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or

Let change variables

Integrating
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Let f be the integral of

Therefore, the distance between any two 

section becomes:
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Bakhmeteff Method

• Bakhmeteff improved Bresse’s method as follows:

• Let 

Therefore Then we can write that:

On the other hand, we can wite that:

Hence dx becomes:

2

r

o

f

o2

r

fo

F1

s

s
1

s
F1

ss

dx

dy





















o

f
r

S

S
F 2

o

f

o

f

o

S

S

S

S

S
dx

dy







1

1

dy

S

S

S

S

S
dx

f

f

0

0

0 1

1
1








N

of

y

y

S

S










0



Add and subtract

and rearrange as:  
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Now multiple and divide by

and rearrange as:
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• Integrating

Therefore, the distance between any two 

section becomes:
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• Here we are assuming that β is constant

and  hence

Therefore  becomes:
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• If T/b  is constant, then β will be constant.

• For example, for a rectangular channel, 

T=b, and P=b+2y, hence

• And T/b becomes constant only for wide 

rectangular channel.
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• For a triangular channel: T=2zy
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• The integral in the equation is designated 

by F(u,N), that is

• Varied-Flow Function

• The values of F(u,N) have been obtained 

numerically, and are given in tabular form

for N ranging from 2.2 to 9.8.
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Example on Bakhmeteff Method: 
Water is taken from a lake by a triangular channel,with side slope 

of 1V:2H. The channel has a bottom slope of 0.01, and a Manning’s 

roughness coefficient of 0.014. The lake level is 2.0 m above the 

channel entrance, and the channel ends with a free fall. Determine :

1.The discharge in the channel,

2.The water-surface profile and the length of it by using the direct-

integration method.

2 m

n=0.014,   S0=0.01

1

2

X



a) To determine the discharge, assume that the channel slope is 

steep. Then at the head of steep slope, the depth is critical depth. 

Hence 2=Emin 
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2.  The water-surface profile and the length of it by using the direct-

integration method.

• The water surface profile will be S2 type, and the depth of flow will 

change between the limits: 1.01y0≤y≤yc.

• Since T/P is constant for triangular channels, we can use 

Bakhmeteff’s method.  Let’s compute the value of :
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• Let’s obtain the value of N
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• To obtain the values of F(u,N) we have to use tables with 

interpolation.

• Interpolation:

• For u=1.30 and N=5   →      F(1.30, 5)=0.100 and

• For u=1.32 and N=5   →      F(1.32, 5)=0.093

• Hence by interpolation:

• For u=1.31 and N=5   →      F(1.31, 5)=0.0965

y (m) u=y/y0 F(u,5.333)

1.6 1.31 0.0811

1.237 1.01 0.622

D -0.296 0.5411



• Similarly:

• For u=1.30 and N=5.4   →      F(1.30, 5.4)=0.081 and

• For u=1.32 and N=5.4   →      F(1.32, 5.4)=0.093

• Hence by interpolation:

• For u=1.31 and N=5.333   →      F(1.31, 5)=0.0811

• Therefore, the length of S2 profile is 150 m.
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Ven Te Chow Method

• Ven Te Chow improved Bakhmeteff’s method for all types of cross 

sections as follows:

The gradually-varied flow equation can be written as

multiply by  both numerator and

denominator by             and second term in numerator by                      
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Now let                                                 then above equation becomes:

:

Adding and subtracting 1 to the numerator, dx becomes::
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Integrate
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• The first integral on the RHS of above eq. is designated by  or

The second integral may also be expressed in the form of the 

varied-flow function. Let

and
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• Therefore:
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• Where the subscripts 1 and 2 refer to sections 1 and 2 respectively. 

This eq. contains varied-flow functions, and its solution can be 

simplified by the use of the varied-flow-function table. This table 

gives values of F(u,N) for N ranging from 2.2 to 9.8. Replacing values 

of u and N by corresponding values of .F(v,J).

•

• In computing a flow profile, first the flow in the channel is analyzed, 

and the channel is divided into a number of reaches. Then the length 

of each reach is computed by the above Eq. from known or assumed 

depths at the ends of the reach. The procedure of the computation is 

as follows:

1. Compute the normal depth yo and critical depth yc from the given 

values of Q and so, n

oo ySR
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Q  32 /
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T

g
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2. Determine the hydraulic exponents N and M for an estimated 

average depth of flow in the reach under consideration. It is assumed 

that the channel section under consideration has approximately 

constant hydraulic exponents

• If any two depths in the section are known then

•

•

•

• N and M can be computed from above expressions or use the 

general formulas if dP/dy and dT/dy can be evaluated.

3. Compute J by 
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5. Compute values and at the two end 

sections of the reach

6. From the varied-flow-function table, find values of F(u,N) and F(v,J).

7. Compute the length of reach by the given equation obtained above.

• In doing so a table can be prepared as follows

0y
yu 

JNuv /

y u v F(u,N) F(v,J)

y1

y2

y3

D



Example on Ven Te Chow’s Method:

• Water flows at a uniform depth of 3 m. in a trapezoidal channel. The 

trapezoidal section has a bottom width of  5 m., and side slope of 

1H:1V. The channel has a bottom slope of  0.001, and a Manning’s 

roughness coefficient of 0.013. The channel ends with a free fall. 

Determine the water-surface profile and the length of it by using the 

direct-integration method.

b=5 m

1

1

y0=3 m

S0=0.001,  n=0.013



First, determine the discharge, and then the type of the slope:

To determine critical depth yc
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y0=3 m > yc=2.6 m  Therefore it is mild slope. Hence M2 profile occurs.

The depth changes between the limits yc = 2.6 m ≤ y ≤ 0.99y0 = 2.97 m



• Let’s compute the hydraulic exponents
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y (m) A (m2) P (m) R (m) T (m) K Z N M J

2,60 19,76 12,35 1,60 10,2 2078,9 27,50 3,71 3,55 3,19

2,97 23,67 13,40 1,77 10,94 2660,7 34,82

Computation of Hydraulic Exponents N and M, n=0.013

Computation of Length of M2 profile by using 

Direct-Integration Method in one step

y (m) u v F(u,3.7) F(v,3.2) L (m)

2,60 0,87 0,85 1,05 1,043 -341,781

2,97 0,99 0,99 1,7875 2,017

L=342 m

y0=3.0 m , yc=2.6 m, n=0.013, S0=0.001, N=3.7, M=3.6, J=3.2



1.5 Side-Channel Spillways

2/3

ax xCHQ 

A

A

x

L

A side-channel carries water away

from an overflow spillway in a channel

parallel to the spillway crest as

shown in figure.

The discharge over the entire width (L) of

an overflow spillway can be determined by

Eq.(1), and the discharge through any

section of the side channel at a distance x

from the upstream end of

the channel is

Eq.(1)



The side-channel spillway must provide a slope steep enough to carry away the accumulating

flow in the channel. However, a minimum slope and depth at each point along the channel is

desired in order to minimize construction costs. For this reason, an accurate water surface

profile for the maximum design discharge is important in the side-channel spillway design.

The flow profile in the side channel cannot be analyzed by the energy principle

(i.e., gradually-varied flow profile) because of the highly turbulent flow conditions

that cause excess energy loss in the channel.

However, an analysis based on the momentum between two adjacent sections,

a distance of ∆x apart, in the side channel,

Eq.(2)

where r is the density of water, V is the average velocity, and Q is the discharge

at the upstream section. The symbol ∆ signifies the incremental change at

the adjacent downstream section.

   QVVVQQF rDDr



The forces represented on the left-hand side of  Eq.(2) usually include the weight component 

of the water body between the two sections in the direction of the flow                            ,

the unbalanced hydrostatic forces

and a friction force, Ff, on the channel bottom. Here A is the water cross-sectional area,      is the distance 

between the centroid of the area and the water surface, and q is the angle of the channel slope.

The momentum equation may thus be written as 

Eq.(3)
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Let for a reasonably small angle, and ,

and ; the above equation may be simplified to

Eq.(4)

θSo sin    212121 /  ,Δ  , VVQQAVVVQQ 

xASF ff Dg

 
 

xSxS
Q

Q
VV

QQg

VVQ
y f0

1

2

21

211 DD






 D
D




D



Where Dy is the change in water surface elevation between the two sections.

This equation is used to compute the water surface profile in the side channel.

The first term on the right-hand side represents the change in water surface

elevation between the two sections resulting from the impact loss caused by

the water falling into the channel. The middle term represents the change from

the bottom slope, and the last term represents the change caused by friction

in the channel. Relating the water surface profile to a horizontal datum, we may write

Eq.(5)
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21 QQ  0Q DNote that when or when , Eq.(5) reduces to

Eq.(6)

which is the energy equation for constant discharge in an open channel as derived in

Computation of Gradually-Varied Flow. 
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Example

A 6-m overflow spillway discharge water into a side-channel spillway with a horizontal bottom slope. If 

the overflow spillway (C=2.043 m1/2/s) is under a head of 1.28 meter, determine the depth change from 

the end of the side channel (after it has collected all of the water from the overflow spillway) to a point 

1.5 meter upstream. The concrete (n=0.013) side channel is rectangular with a 3-m bottom. The water 

passes through critical depth at the end of the side channel.

Solution

The flow at the end of the side channel (Eq.(1)) is 

The flow at a point 1.5 meter upstream (Eq.(1)) is

Solving for critical depth at the end of the channel, we have

      sec/  75.1728.16043.2 32/32/3
mHCLQ a 

      sec/  31.1328.1043.25.4 32/32/3
mHxCQ a 

        m  528.181.9/92.5/

//m  92.53/75.17/

3/123/12
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DX Dy y A Q V Q1+Q2 V1+V2 DQ DV R Sf Dy

0 1.528 4.584 17.75 3.872

1.5 -0.3 1.828 5.484 13.31 2.427 31.06 6.299 4.44 1.445 0.824 0.001289 -0.755

-0.755 2.583 7.749 14.31 1.847 27.62 4.274 -1 0.580 0.949 0.000618 -0.093

DX Dy y A Q V Q1+Q2 V1+V2 DQ DV R Sf Dy

0 1.528 4.584 17.75 3.872

1.5 -0.755 2.283 6.849 13.31 1.943 31.06 5.816 4.44 1.929 0.905 0.000729 -0.819

DX Dy y A Q V Q1+Q2 V1+V2 DQ DV R Sf Dy

0 1.528 4.584 17.75 3.872

1.5 -0.819 2.347 7.041 13.31 1.890 31.06 5.763 4.44 1.982 0.915 0.00068 -0.825

DX Dy y A Q V Q1+Q2 V1+V2 DQ DV R Sf Dy

0 1.528 4.584 17.75 3.872

1.5 -0.825 2.353 7.059 13.31 1.886 31.06 5.758 4.44 1.987 0.916 0.000675 -0.826

DX Dy y A Q V Q1+Q2 V1+V2 DQ DV R Sf Dy

0 1.528 4.584 17.75 3.872

1.5 -0.826 2.354 7.062 13.31 1.885 31.06 5.757 4.44 1.987 0.916 0.000675 -0.826

The solution method employs a finite-difference solution scheme (Eq.(4)) and an iterative processs 

can be employed to compute the upstream depth. The upstream depth (or depth change, ∆y) is 

estimated, and Eq.(4) is solved for a depth change. The two depth changes are compared, and a 

new estimate is made if they are not nearly equal. Table... displays the solution. Because side-

channel spillway profile computations involve implicit equations, computer algebra software (e.g., 

Mathcad, Maple, and Mathematic) or spreadsheet programs will prove very helpful.


