

Hydraulics I

Zerihun Alemayehu Rm. E119B

Course Content

- Properties of Fluids
- Hydrostatics
- Fluid Kinematics
- Basics of Fluid Dynamics

Chapter 1 Properties of Fluids

Hydraulics I

Zerihun Alemayehu Rm. E119B

Definitions

- Fluids (liquids and gases): a substance which deforms continuously, or flows, when subjected to shear stress.
- Fluid Mechanics: The study of liquids and gasses at rest (statics) and in motion (dynamics)
- Engineering applications
 - Dams and reservoirs
 - Water supply pipelines
 - Groundwater movement
 - Runoff in parking lots
 - Pumps, filters, rivers, etc.

Fluid Properties

Density

Density: mass of substance per unit volume (kg/m³)

- Mass per unit volume (e.g., @ 20 °C, 1 atm)
 - $\begin{array}{lll} \mbox{ Water} & \rho_{water} & = 1000 \mbox{ kg/m}^3 \\ \mbox{ Mercury} & \rho_{Hg} & = 13,500 \mbox{ kg/m}^3 \\ \mbox{ Air} & \rho_{gir} & = 1.22 \mbox{ kg/m}^3 \end{array}$
- Densities of liquids are nearly constant (incompressible) for constant temperature
- Specific volume = 1/density

Specific Weight

Specific Weight: the force exerted by the earth's gravity up on a unit volume of substance

$$\gamma = \rho g$$
 $[N/m^3]$

• Weight per unit volume (e.g., @ 20 °C, 1 atm)

$$\gamma_{water}$$
 = (998 kg/m³)(9.807 m²/s)
= 9790 N/m³
= (1.205 kg/m³)(9.807 m²/s)
= 11.8 N/m³

Specific Gravity/Relative density

Ratio of fluid density to that of water at STP (@ 20 °C, 1 atm)

$$SG_{liquid} = \frac{\rho_{liquid}}{\rho_{water}} = \frac{\rho_{liquid}}{9790 \text{ kg / m}^3}$$

$$SG_{gas} = \frac{\rho_{gas}}{\rho_{air}} = \frac{\rho_{gas}}{1.205 \text{ kg / m}^3}$$

$$SG_{water} = 1$$

$$SG_{Hg} = 13.6$$

$$SG_{air} = 1$$

Water

Air

Mercury

Viscosity

- By the virtue of cohesion and interaction between fluid molecules offers resistance to relative motion (shear deformation).
- Newton's law of viscosity: shear stress and viscosity

$$\tau = \mu \frac{du}{dy}$$

 τ is shear stress N/m², μ is coefficient of dynamic viscosity (Ns/m²), and du/dy velocity of gradient (radians/s)

Viscosity

Dynamic viscosity (μ). It is the shear force per unit area required to drag one layer of fluid with unit velocity past another layer a unit distance away.

Unit = kg/m.s or N.s/m² Poise (p) = 0.1 kg/m.s

Kinematic viscosity (v): defined as the ratio dynamic viscosity to mass density.

Unit: m²/s

Stokes (st) = $0.0001 \text{ m}^2/\text{s}$

Compressibility and elasticity

- Deformation per unit of pressure change
- Bulk modulus of elasticity= $E_v = -\frac{dp}{dV/V} = \frac{dp}{d\rho/\rho}$
- For water $E_v = 2.2$ GPa, 1 MPa pressure change = 0.05% volume change Water is relatively incompressible

Vapor Pressure

- Partial pressure of liquid escaping molecules
- Vapor pressure increases with temperature
- Pressure at which a liquid will boil for given temp.
- The saturated vapor pressure for water at 20° C is $2.45 \times 10^{5} \text{ N/m}^{2}$

Surface Tension

- Cohesion → small tensile forces at the interface between liquid and air called surface tension
- Adhesion > Cohesion → capillary rise
- Adhesion < cohesion → capillary depression
- σ, water= 0.073 N/m (@ 20°C)

Capillary Rise/depression

$$\Delta h = \frac{4\sigma\cos\theta}{\gamma d}$$

Example 1

• **Given:** Pressure of 2 MPa is applied to a mass of water that initially filled 1000-cm³ volume.

 $E = 2.2x10^9 Pa$

• **Find:** Volume after the pressure is applied.

Solution

$$E_{v} = -\frac{\Delta p}{\Delta V / V}$$

$$\Delta V = -\frac{\Delta p}{E_{v}} V$$

$$= -\frac{2x10^{6} Pa}{2.2x10^{9} Pa} 1000 cm^{3}$$

$$= -0.909 cm^{3}$$

$$V_{final} = V + \Delta V$$

$$= 1000 - 0.909$$

$$V_{final} = 999.01 cm^{3}$$

Example 2

The density of an oil at 20° C is 850 kg/m³. Find its relative density and kinematic viscosity if the dynamic viscosity is 5 x 10^{-3} kg/ms.

- Solution:
- Relative density, $\sigma = \rho$ of oil/ ρ of water

 $= 850/10^3$

= 0.85

• Kinematic viscosity, $v = \mu/\rho$

 $= 5 \times 10^{-3}/850$

 $= 5.88 \times 10^{-6} \text{m}^2/\text{s}$

Example 3

IF the velocity distribution of a viscous liquid ($\mu = 0.9$ Ns/m²) over a fixed boundary is given by $u = 0.68y-y^2$ in which u is the velocity in m/s at a distance y metres above the boundary surface, determine the shear stress at the surface and at y = 0.34 m.

If the above velocity distribution occurred in a pipe of 3 cm diameter, find the total resistance over a length of 100 m.

Example 3 Solution

- $u = 0.68y y^2$
- du/dy = 0.68 2y; hence $(du/dy)_{y=0} = 0.68 \text{ s}^{-1}$ and $(du/dy)_{y=0.34} = 0$
- Dynamic viscosity of the fluid, u = 0.9 Ns/m²
- From Newton's equation

$$\tau = \mu(\text{du/dy}) \text{, shear stress (y)}_{\text{y=o}} = 0.9 \text{ x } 0.68$$

$$= 0.612 \text{ N/m}^2$$
 and at y = 0.34 m, τ = 0.

Example 4

• Find: Capillary rise between two vertical glass plates 1 mm apart. σ = 7.3x10⁻² N/m. L is into the page.

$$\begin{split} \sum F_{vertical} &= 0 \\ 2\sigma l - h l t \gamma &= 0 \\ h &= \frac{2\sigma}{t\gamma} \\ &= \frac{2*7.3x10^{-2}}{0.001*9810} \\ h &= 0.0149 \, m \\ h &= 14.9 \, mm \end{split}$$

Example 5

- **Find:** The formula for the gage pressure within a spherical droplet of water?
- Solution: Surface tension force is resisted by the force due to pressure on the cut section of the drop

$$p(\pi r^2) = 2\pi r \sigma$$

(a) Half of spherical droplet

