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• The purpose of any analysis is to know how the structure responds to a given loading and 

there by evaluate the stresses and deformations. 
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Carrying out Elastic Analysis: Results ... 
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So far in the course analysis 

are based on linear elastic 
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Most reinforced concrete structures are designed for internal forces found by elastic theory with 

methods such as slope deflection, moment distribution, and matrix analysis. 

There is an apparent inconsistency in determining the design moments based on an elastic 

analysis, while doing the design based on a limit state design procedure, where the structural 

design is based on inelastic section behavior. 

Analysis 

 Factored loads 

 Elastic Analysis 

Design  

 The tensile reinforcement is proportioned on the 

assumption that its well beyond its yielding point at 

failure. (Ductile Design or εs≥ 4.313‰) 

 Concrete stress distribution across the section is non-

linear. 

 
Although the analysis and design basis 

are contradictory, it will be a safe and 

to a degree a conservative design. 
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The methods of analysis provided on EC-2 are for the  purpose to establish the distribution of 

either internal forces and moments, or stresses, strains and displacements, over the whole or 

part of a structure. 

1. Linear Elastic 

Analysis (section 5.4 

– EC2) 

• Based on the theory of elasticity.  

• Suitable for both SLS and ULS. 

• Assumption: 

i. uncracked cross sections 

ii. linear stress-strain (ε vs σ) relationships and, 

iii. mean values of the elastic modulus [E]. 

• For thermal deformation, settlement and shrinkage effects at the 

(ULS),a reduced stiffness corresponding to the cracked sections may 

be assumed. 

• For the (SLS) gradual evolution of cracking should be considered 

(eg. rigorous deflection calculation). 

THIS IS THE 

TYPE OF 

ANALYSIS BEING 

CARRIED OUT 

SOFAR. 



Methods of Analysis Allowed in EC-2 

April 23, 2020 Addis Ababa institute of Technology 

7 

2. Linear Elastic 

Analysis with Limited 

Redistribution 

(section 5.5) 

• Suitable for ULS. 

• The moments at ULS calculated using a linear elastic analysis may be 

redistributed, provided that the resulting distribution of moments remains in 

equilibrium with the applied loads. 

• Redistribution of bending moments may be carried out without explicit check 

on the rotation capacity, provided that: 

     0,5 ≤l1/ l2 ≤2,0 

     Ratio of redistribution δ=M1/M2<1, is 

 δ≥k1+ k2xu/d for fck≤50 MPa 

 δ≥k3+ k4xu/d for fck> 50 MPa 

 δ≥k5 for reinforcement class B & C 

 δ≥k6 for reinforcement class A 

 
xu is the depth of the neutral axis at the ultimate limit state after redistribution. 

recommended value for k1 is 0,44, for k2 is 1,25(0,6+0,0014/εcu2), for k3 = 0,54, for k4 = 

1,25(0,6+0,0014/εcu2), for k5 = 0,7 and k6 = 0,8  

WILL BE 

INTRODUCED IN 

THE FOLLWING 

CHAPTER OF 

THE COURSE 
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Plastic Analysis 

(section 5.6) 

• Suitable for ULS. 

• Suitable for SLS if compatibility is ensured. 

• When a beam yields in bending, an increase in curvature does not produce an 

increase in moment resistance. Analysis of beams and structures made of such 

flexural members is called Plastic Analysis. 

• This is generally referred to as limit analysis, when applied to reinforced 

concrete framed structures, and plastic analysis when applied to steel structures 

 

non-Linear 

Analysis 

(section 5.7) 

• Nonlinear analysis may be used for both ULS and SLS, provided that equilibrium 

and compatibility are satisfied and an adequate non-linear behavior for materials 

is assumed. 

• The non-linear analysis procedures are more complex and therefore very time 

consuming. 

• The analysis maybe first Or second order. 

 

 

 

 

 

WILL BE 

INTRODUCED 

IN THIS 

CHAPTER OF 

THE COURSE 

IT IS 

BEYOUND 

THE SCOPE 

OF THE 

COURSE 
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Curvature: Introduction 

Beam loaded in bending. Segment of the beam 
loaded in bending. 

Relationship between bending 
moment M and curvature K for 
beam with linear elastic 
homogeneous material. 

But is Concrete a Homogenous, elastic 
material? 

Then how do we determine the moment 
curvature relationship for it? 

Why do we even bother compute the M – K 
relationship in the first place?  
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For a beam with homogeneous cross-section, which is loaded in bending is shown below. 

...... From Elastic Theory

Where:

E= the modulus of elasticity

I=the moment of inertia of the cross-section

K=the local curvature=1/R

M
K
E I



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Reinforced concrete is not homogeneous because it is composed of steel and concrete 

which have different values for the elastic modulus; however, it is possible to identify 

an equivalent homogeneous concrete section with an equivalent moment of inertia. 

 

This is done by means of 

an equivalent transformed 

cross section. 

 

A3=(As2*(n-1))

As2

h A1

As1

A2=(As1*(n-1))

b

A3=(As2*(n-1))

As2 x

A1

h

As1

A2=(As1*n)

b

 

 

 

 
 

 

 

 

 

 

 
 

 

 

Uncracked 

Fully-Cracked 

To have the same 

material property 

of concrete across 

the RC section the 

reinforcement is 

transformed in to 

an equivalent 

concrete area 

using the modular 

ratio n=Es/Ec 



Curvature: RC section 

It is important: 

• to study the ductility of members 

• to understand the development of plastic hinge, and 

• to account for the redistribution of elastic moments that occurs in 
most reinforced concrete structures before collapse. 
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The curve M-K may be calculated for every given cross-section in reinforced concrete; 

this is typically done by the calculation of some salient points: 

A. M and K just before the appearance of the 

flexural crack in the cross-section 

B. M and K just after the appearance of the 

flexural crack 

C. M and K when steel start to yield 

D. M and K when failure is reached (normally due 

to the crushing of the compression concrete) 

A Typical M-K diagram for a RC section. 

A 

C 

B 

D 
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Basic 

Assumptions 

• Parabolic-rectangular stress block for concrete in compression 

is assumed. 

• Tensile strength of concrete is neglected. 

• Plane section remains plane before and after bending.  

• Elasto-Plastic stress strain relationship is assumed for 

reinforcement steel in tension. 

• Steel is perfectly bonded with concrete. 

Basic 

Considerations 

• Equilibrium of forces shall be maintained. 

• Compatibility of Strains shall be maintained. 

• Stress-Strain relationship has to be satisfied . 



Procedures in Establishing the 
M-K Relationship 

The general steps to  be followed in computing the moment curvature 
relationship of RC section are as follows. 

1. Assume the strain of the outer most fiber of concrete.[εc] 

2. Assume the N.A. depth. [x] 

3. From the linear strain distribution across the section compute the strain 
of the reinforcement bar in tension and the corresponding stress in it. [εs1 
and σs1] 

4. Compute the total compressive and tensile forces. [Cc and Ts] 

5. Check equilibrium of forces.[Cc=Ts or Cc≠Ts] 

6. Determine  lever arm [z] and calculate the moment [M] and the 
corresponding curvature [K]. 
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Example 1.1 : For RC beam section with b/h=200/400mm, casted out of C20/25 concrete and 

reinforced by s-400. determine the moment curvature relationship of the section? 

a) 3φ14 

b) 3φ24 

[Use cover to longitudinal reinforcement bar 33mm] 

Solution: a) 3φ14 

Step1: Summarize the given parameters 

Material C20/25 fck=20MPa; fcd=11.33MPa;   

 fctm=2.2MPa; Ecm=30,000MPa 

 

 S-400 fyk=400MPa; fyd=347.83MPa;  

  Es=200,000MPa; εy=1.74‰ 

 

 Modular ratio, n= Es/ Ecm=6.67 

 

Geometry d=h-cover- φ/2=400-33-7=360mm 

 As1=3xπx(7mm)2=461.81mm2 

Step2: Compute the cracking moment and corresponding 

curvature. [Mcr, Kcr] 

I. Uncracked section properties. 

 

 

 

The neutral axis depth of the uncracked section 
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II. Cracked section properties 

 

 

 

 

 

 

 

 

 

The neutral axis depth of the cracked section  

From equilibrium of forces carried by the concrete in the 

compression zone and the tension force carried by the 

transformed concrete area in tension we have the following 

expression. 

 

 

 

 

 

 

 

 

 

 

The second moment of the area of the cracked section 
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III. Compute the cracking moment. 

 

 

 

 

 

 

 

 

 

IV. Compute the curvature just before cracking. 

 

 

 

 

 

 

 

 

V. Compute the curvature just after cracking. 
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Step3: Compute the yielding moment and corresponding curvature. 

[My, Ky] 

 

 

 

 

 

 

 

 

 

 

Assuming 0< εcm <2‰ and from force equilibrium. 

 

 

 

 

 

From the strain profile 

 

 

 

From the simplified equations discussed in chapter two of RC-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step4: Compute the ultimate moment and corresponding 

curvature. [Mu, Ku] 

 

 

 

 

 

 

 

 

 

 

Assuming a compression failure εcm =3.5‰, εy < εs <25‰ and from 

force equilibrium. 
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From the simplified equations discussed in chapter two of RC-1 
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From the two equations above we can solve for  to be 1.208. Assumption correct!
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Step5: Plot the moment vs curvature diagram. 

Home take Bonus exam: 

Redo example1.1 considering the role of concrete in the tension zone of the reinforced concrete section.. 



April 23, 2020 Addis Ababa institute of Technology 

20 

Example 1.1 : For RC beam section with b/h=200/400mm, casted out of C20/25 concrete and 

reinforced by s-400. determine the moment curvature relationship of the section? 

a) 3φ14 

b) 3φ24 

[Use cover to longitudinal reinforcement bar 33mm] 

Solution: b) 3φ24 

Step1: Summarize the given parameters 

Material C20/25 fck=20MPa; fcd=11.33MPa;   

 fctm=2.2MPa; Ecm=30,000MPa 

 

 S-400 fyk=400MPa; fyd=347.83MPa;  

  Es=200,000MPa; εy=1.74‰ 

 

 Modular ratio, n= Es/ Ecm=6.67 

 

Geometry d=h-cover- φ/2=400-33-12=355mm 

 As1=3xπx(12mm)2=1356.48mm2 

Step2: Compute the cracking moment and corresponding 

curvature. [Mcr, Kcr] 

I. Uncracked section properties. 
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II. Cracked section properties 

 

 

 

 

 

 

 

 

 

The neutral axis depth of the cracked section  

From equilibrium of forces carried by the concrete in the 

compression zone and the tension force carried by the 

transformed concrete area in tension we have the following 

expression. 

 

 

 

 

 

 

 

 

 

 

The second moment of the area of the cracked section 

 

 

 

 

 

 

 

 

 

 

 

 

III. Compute the cracking moment. 

 

 

 

 

 

 

 

 

 

IV. Compute the curvature just before cracking. 

 

 

 

 

 

 

 

 

V. Compute the curvature just after cracking. 
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4

2

=  

12770000
= =0.34464 10 mm  

30000 1235089593.48

cr

c I

M

E I

Nmm

N
mm

mm



 



cr

-6 -1

cr
4

2

=  

14580000
= =1.605 10 mm  

30000 302858916.6

cr

c II

M

E I

Nmm

N
mm

mm



 


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Step3: Compute the yielding moment and corresponding curvature. 

[My, Ky] 

 

 

 

 

 

 

 

 

 

 

Assuming 2‰< εcm <3.5‰ and from force equilibrium. 

 

 

 

 

 

From the strain profile 

 

 

 

From the simplified equations discussed in chapter two of RC-1 

 

 

 

 

 

4.08‰>3.5‰, implies that the concrete in the compression zone 

has crushed even before the reinforcement in the tension zone has 

yielded. 

Hence the section has reached its ultimate moment capacity, along 

with the corresponding curvature, before the yielding of the 

reinforcement. 

 

 

 

 

 

 

 

Step4: Compute the ultimate moment and corresponding 

curvature. [Mu, Ku] 

 

 

 

 

 

 

 

 

 

 

Assuming a compression failure εcm =3.5‰, εs < εy and from force 

equilibrium. 

    

    

   Where εs is in ‰ 

 

From the strain profile 

 

 

 

From the simplified equations discussed in chapter two of RC-1 

 

 

 

 

 

 

 

 

 

 

 

1.74

cm cm
x

cm y cm

k
 

  
 

 
3.5

3.5
x

s

k





1

1 347.83

11.33 200 35

1356.48
0.587

5

c cd s yd
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c
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Cc Ts

f bd A f

A f

f bd










  

 

3 2
0.587

3

From the two equations above we can solve for  to be 4.08

cm
c x

cm

cm

k







 
  

 

1 1

1

( )

1356.48 2

11.33 200 355

00000
0.33725

c cd s s s s s

s s s
c s

cd

Cc Ts

f bd A A E

A

f bd

  

 
 



 











 

3 2
0.33725

3

From the two equations above we can solve for  to be 1.636 ... Assumption correct!

cm
c x s

cm

s

k


 




 
  

 

3.5
0.681 ... Indicates a brittle failure!

3.5 1.636

355 0.681 241.755

x

x

k

x d k mm

 


    

(3 4) 2
0.283

2 (3 2)
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c x

cm cm

k
 


 

  
  

 
( ) 355(1 0.101) 254.43

c
z d mm    

1
( ) 112.93

u s s s
M A E z kNm  

3
6 13.5 10

14.477 10
241.755

cm
u

mm
x mm





 

   
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Step5: Plot the moment vs curvature diagram. 

Observation: 

• Failure type vs moment curvature relationship 

• Reinforcement in tension zone  vs Ductility   

• Ultimate capacity vs Ductility 
Question: 

• How would you improve the ductility of  the section in (b)? 

• How would you improve the moment capacity  of  the 

section in (a) with out compromising its ductility? 



Rotation Capacity 

• Introduction 

• Rotational Capacity According  EC-2 
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Rotation Capacity: Introduction 
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• The designer adopting limit/plastic analysis in concrete must calculate the inelastic rotation capacity 
it undergoes at plastic-hinge locations.  

• This is critical in situation where moment redistribution is going to be implemented. 

But this plastic rotation is not confined to 
one cross section but is distributed over a 
finite length referred to as the hinging 
length. (lp) 

The total inelastic rotation θpl can be found 
by multiplying the average curvature by the 
hinging length: 

    

:

0.5 0.05

In which z is the distance from the point of 

maximum moment to the nearest point of zero moment

u
pl u y p

y

p

M
l

M

where

l d z

  
 

   
 

 

One way to calculate this rotation capacity 
is making use of the moment-curvature 
relationship established for a given section. 



Rotation Capacity: According  EC-2 
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• According to EC-2, verification of the plastic rotation in the ultimate limit state is considered to be 
fulfilled, if it is shown that under the relevant action the calculated rotation, θpl,s, is less than or 
equal to the allowable plastic rotation, θ pl,d 

• In the simplified procedure, the allowable plastic rotation may be determined by multiplying the basic 

value of allowable rotation by a correction factor kλ that depends on the shear slenderness. 

The recommended basic value of allowable rotation, for  steel Classes B and C (the use of Class A 

steel is not recommended for plastic analysis) and concrete strength classes less than or equal to 

C50/60 and C90/105 are given 

The values apply for a shear slenderness λ = 3,0. For different values of shear slenderness θpl,d should 

be multiplied by kλ 

/ 3

:

 is the ratio of the distance between point of zero and maximum moment after redistribution and effective depth, d.

As a simplification  may be calculated for the concordant design values

k

where

 







 of the bending moment and shear.

/ ( )
sd sd
M V d  



Rotation Capacity: According  EC-2 
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Continuous Beams 

Analysis of Continuous beams  

Design of Continuous beams  
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Continuous Beams: Analysis 
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• Continuous beams and one-way slabs are indeterminate structures for which 
variable/live load variation has to be considered. This is because permanent/dead 
load is always there but variable might vary during the life time of these 
structures. 

How variable loads are arranged and over the continuous beam depend on two things 
according to EC1990. 

1. The design situation 

a. Persistent or Transient 

b. accidental 

2. The relevant limit state 

a. ultimate limit state of strength (STR 

b. The limit states of equilibrium (EQU) 

c. strength at ULS with geotechnical actions (STR/GEO) 

 Affects both  variable 

load arrangement 

and load combination 

values 



Continuous Beams: Analysis 
LOAD ARRANGEMNT OF ACTIONS: IN RELATION TO INFLUENCE LINES 
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The largest moment in continuous beams or one-way slabs or frames occur when some spans are 

loaded and the others are not. Influence lines are used to determine which spans should be 

loaded and which spans should not be to find the maximum load effect. 

The figure (a) shows influence line for moment at 

B. The loading pattern that will give the largest 

positive moment consists of load on all spans 

having positive influence ordinates. Such loading 

is shown in figure (b) and is called alternate span 

loading or checkerboard loading. 

The maximum negative moment at C results 

from loading all spans having negative influence 

ordinate as shown in figure (d) and is referred 

as an adjacent span loading. 



Continuous Beams: Analysis 
LOAD ARRANGEMNT OF ACTIONS: IN RELATION TO INFLUENCE LINES 
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Similarly, loading for maximum shear may be obtained 

by loading spans with positive shear influence ordinate 

as shown.  

Affects both  variable 

load arrangement 

and load combination 

values 



Continuous Beams: Analysis 
LOAD ARRANGEMNT OF ACTIONS: According Eurocode 
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In building structures, any of the following sets of simplified load arrangements may be used at 

ULS and SLS. 

• The more critical of: 

a) Alternative spans carrying γGGk+ γQQk  

with other spans loaded with γGGk and 

b) All spans carrying γGGk+ γQQk 

• Or the more critical of: 

a) Alternative spans carrying γGGk+ γQQk with 

other spans loaded with γGGk and 

b)  Any two adjacent spans carrying γGGk+ γQQk 
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Example 1.2 : Given the three span beam (shown below) subjected to the following loads: 

 Self-weight    Gk1 

 Permanent imposed load   Gk2 

 Service imposed load   Qk1 

 

 

 

 

Identify the load arrangement to come up with  

a) bending moment verification at mid span of BC (STR) 

b) verification of holding down against the uplift of bearings at end span A is as follows. (EQU) 

Solution: [a] 

Solution: [b] 

1.0 is more 

conservative 

but possible. 



Continuous Beams: Design 
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After obtaining the maximum load effects of continuous beams, the design of 

continuous beam sections is carried out in the same procedure as discussed in 

reinforced concrete structures I course for no moment redistribution. 

SIMPLE! 

For cases with moment 

redistribution, the procedures 

will be presented and 

illustrated in the subsequent 

sections  
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Example 1.3 : A continues beam with b/h 250/450 is to be constructed out of C20/25 concrete and reinforced 

with S400 reinforcement bar . The beam supports a factored permanenet  load of 14.5 KN/m including its own 

self-weight and a factored variable load of 29 KN/m. Take cover to stirrup to be 25 mm.  

Design the beam 

a) Without moment redistribution 

b) With 20% moment redistribution 

USE φ8 and φ20 bars as web and longitudinal reinforcement  

 Solution:  

Step1: Summarize the given parameters 

Material C20/25 fck=20MPa; fcd=11.33MPa;  

 fctm=2.2MPa;   

 Em=30,000MPa 

 S-400 fyk=400MPa;   

 fyd=347.83MPa;   

 Es=200,000MPa; εy=1.74‰ 

Geometry d=h-cover- (φstiruup +φlongitiudinal/2) 

   =450-25-(8+10)=407mm 

Load  1.35Gk=14.5 kN/m 

 1.50Qk=29.0 kN/m 

Step2: Identify the cases for maximum action effect on 

(span and support moments) 

Case1: when the whole section is loaded 

 

 

 

 

 

Case2: alternate span loading (max. span moment at AB and CD) 

 

 

 

 

 

 

 

 

 

 

 

Case3: alternate span loading (max. span moment at BC) 
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Case4: two adjacent spans loading (max. support moment at B or C)  

 

 

 

 

 

 

 

 

 

 

 

 

Moment envelop: (superimposing the above four cases for the 

respective maximum moment) 

 

 

 

 

 

 

 

 

 

 

Step3: Design the beam section according to the procedures 

discussed in RC1 using the either the design chart or design table 

 

a) Support B and C (-ve moment) 

 

Msd=172.99 kNm 

 

µ𝑠𝑑 =
𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑2
=

172.99 ∗ 106

11.33 ∗ 250 ∗ 4072
= 0.369 >  µ𝑠𝑑,𝑙𝑖𝑚

= 0.295     𝑫𝒐𝒖𝒃𝒍𝒆 𝒓𝒆𝒊𝒏𝒇𝒐𝒓𝒄𝒆𝒅 

𝐾𝑧,𝑙𝑖𝑚 = 0.814 

𝑀𝑠𝑑 ,𝑙𝑖𝑚 = µ𝑠𝑑 ,𝑙𝑖𝑚 𝑓𝑐𝑑𝑏𝑑
2 = 0.295 ∗ 11.33 ∗ 250 ∗ 4072 = 138.414 𝐾𝑁𝑚 

𝑍 = 𝐾𝑧,𝑙𝑖𝑚 ∗ 𝑑 = 0.814 ∗ 407 = 331.298 𝑚𝑚 

𝐴𝑠1 =
𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑍𝑓𝑦𝑑
+

𝑀𝑠𝑑 ,𝑠 − 𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑓𝑦𝑑 (𝑑 − 𝑑2)
=

138.414 ∗ 106

347.8 ∗ 331.298
+

 172.99 − 138.414 ∗ 106

347.8 ∗ (407 − 43)

= 1474.28 𝑚𝑚2 

𝒖𝒔𝒆 𝟓⌀𝟐𝟎 

 Check the number of bars that can be placed on the single row. 

Setting one 45 mm gap to insert a vibrator and making the other gaps equal to 25 mm 

20𝑛 + 45 + 25 𝑛 − 2 = 250 − 2 ∗ 25 − 2 ∗ 8 

20𝑛 + 45 + 25𝑛 − 50 = 184 

 𝑛 = 4.2 

A maximum of 4 bars can be supported. Therefore, arrange the bars in to 2 rows. 

Check the number of bars that can be placed on the single 

row. 

Setting on 45 mm gap to insert a vibrator and making the 

other gaps equal to 25 mm 

Revise d 
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Revise the effective depth for the reinforcement arrangement  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compression reinforcement design 

 Check if the reinforcement has yielded  

 

 

 

 

 

 

 Calculate the stress in the concrete at the level of 

 compression reinforcement to avoid double counting 

 of area. 

 

 

 

 

 

 

 

 

 

 

𝑠𝑜 𝑑 = 450 − 61 = 389 𝑚𝑚 

µ𝑠𝑑 =
𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑
2

=
172.99 ∗ 106

11.33 ∗ 250 ∗ 3892
= 0.403 >  µ𝑠𝑑 ,𝑙𝑖𝑚 = 0.295      𝑫𝒐𝒖𝒃𝒍𝒆 𝒓𝒆𝒊𝒏𝒇𝒐𝒓𝒄𝒆𝒅 

𝐾𝑧,𝑙𝑖𝑚 = 0.814 

𝑀𝑠𝑑 ,𝑙𝑖𝑚 = µ𝑠𝑑 ,𝑙𝑖𝑚 𝑓𝑐𝑑𝑏𝑑
2 = 0.295 ∗ 11.33 ∗ 250 ∗ 3892 = 126.48 𝐾𝑁𝑚 

 𝑍 = 𝐾𝑧,𝑙𝑖𝑚 ∗ 𝑑 = 0.814 ∗ 389 = 316.646 𝑚𝑚 

𝐴𝑠1 =
𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑍𝑓𝑦𝑑
+

𝑀𝑠𝑑 ,𝑠 − 𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑓𝑦𝑑 (𝑑 − 𝑑2)
=

126.48 ∗ 106

347.8 ∗ 316.646
+

 172.99 − 126.442 ∗ 106

347.8 ∗ (389 − 43)
= 1534.84 𝑚𝑚2 

𝒖𝒔𝒆 𝟓⌀𝟐𝟎 

𝑑2

𝑑
=

43

389
= 0.1           𝜀𝑠2 = 2.6‰  (𝑟𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑐ℎ𝑎𝑟𝑡)  

𝜀𝑠2 = 2.6‰ > 𝜀𝑦𝑑  𝑢𝑠𝑒 𝑓𝑦𝑑 = 347.826    

𝜀𝑐𝑠2 = 2.6‰ ≥ 2‰   , Therefore, we take      

𝜀𝑐 = 3.5‰  𝑎𝑛𝑑 𝜎𝑐𝑑 ,𝑠2 = 11.33 𝑚𝑝𝑎 

𝐴
𝑠2=

1
(𝜎𝑠2−𝜎𝑐𝑑 ,𝑠2)

(
𝑀𝑠𝑑𝑠−𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑑−𝑑2
)

=
1

 347.826 − 11.33 
(
 172.99 − 138.44 ∗ 106

 389 − 43 
= 399.48 𝑚𝑚2 

𝒖𝒔𝒆 𝟐⌀𝟐𝟎 
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b) Span AB and/or CD (+ve moment)  

 Msds=146.28 KNm 

 

Since the design moment is not far in magnitude from the one 

discussed in [a], its best if we assume two layers of reinforcement 

with 5φ20 bars.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compression reinforcement design 

 Check if the reinforcement has yielded  

 

 

 

 

 

 

  

 

 

 

𝑠𝑜 𝑑 = 450 − 61 = 389 𝑚𝑚 

µ𝑠𝑑 =
𝑀𝑠𝑑

𝑓𝑐𝑑𝑏𝑑
2

=
146.28 ∗ 106

11.33 ∗ 250 ∗ 3892
= 0.34128 > µ𝑠𝑑 ,𝑙𝑖𝑚 = 0.295      𝐷𝑜𝑢𝑏𝑙𝑒 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑 

𝐾𝑧,𝑙𝑖𝑚 = 0.814 

𝑀𝑠𝑑 ,𝑙𝑖𝑚 = µ𝑠𝑑 ,𝑙𝑖𝑚 𝑓𝑐𝑑𝑏𝑑
2 = 0.295 ∗ 11.33 ∗ 250 ∗ 3892 = 126.442 𝐾𝑁𝑚 

𝑍 = 𝐾𝑧,𝑙𝑖𝑚 ∗ 𝑑 = 0.814 ∗ 389 = 316.646 𝑚𝑚 

𝐴𝑠1 =
𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑍𝑓𝑦𝑑
+

𝑀𝑠𝑑 ,𝑠 − 𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑓𝑦𝑑(𝑑 − 𝑑2)
=

126.442 ∗ 106

347.8 ∗ 316.646
+

 146.28 − 126.442 ∗ 106

347.8 ∗ (389 − 43)
= 1312.972𝑚𝑚2 

𝑢𝑠𝑒 5⌀20 

𝑑2

𝑑
=

43

389
= 0.1           𝜀𝑠2 = 2.6‰  (𝑟𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑐ℎ𝑎𝑟𝑡)  

𝜀𝑠2 = 2.6‰ > 𝜀𝑦𝑑  𝑢𝑠𝑒 𝑓𝑦𝑑 = 347.826 

Calculate the stress in the concrete at the 

level of compression reinforcement to avoid 

double counting of area. 

𝜀𝑐𝑠2 = 2.6‰ ≥ 2‰   , Therefore, we take      

𝜀𝑐 = 3.5‰  𝑎𝑛𝑑 𝜎𝑐𝑑,𝑠2 = 11.33 𝑚𝑝𝑎 

𝐴
𝑠2=

1
(𝜎𝑠2−𝜎𝑐𝑑 ,𝑠2)

 
𝑀𝑠𝑑𝑠−𝑀𝑠𝑑 ,𝑙𝑖𝑚

𝑑−𝑑2
 
 

=
1

 347.826 − 11.33 
(
 146.28 − 138.44 ∗ 106

 389 − 43 
 

= 170.07 𝑚𝑚2 

𝒖𝒔𝒆 𝟐⌀𝟐𝟎 
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c) Span BC (+ ve moment) 

Span BC is selected of all the three positive bending moments as its 

higher in values. 

𝑀𝑠𝑑=91.66 KN m  

𝜇𝑠𝑑, 𝑠 =
𝑀𝑠𝑑,𝑠

𝑓𝑐𝑑∗𝑏∗𝑑2 =  
91.66∗106

11.33∗250∗4072 

= 0.195 < 𝜇𝑠𝑑, 𝑙𝑖𝑚 = 0.295 

Singly reinforced section 

Kz =  0.89  read from chart  

𝐴𝑠1 =
1

𝑓𝑦𝑑
∗
𝑀𝑠𝑑, 𝑠

𝑧
 

𝐴𝑠1 =
1

347.8
∗
91.66 ∗ 106

0.89 ∗ 407
 

𝐴𝑠1 = 727.5 𝑚𝑚2 

Use 3φ20 

 

d) Span BC (- ve moment) 

 

Msd=38.84 kNm  

Use 2 φ 20, minimum reinforcements is proved to be sufficient.  

 

Step4: Detailing 

 



Plastic Hinges and Collapse Mechanisms 
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Therefore, Mechanism is defined as 

the formation & arrangement of 

plastic hinges and perhaps real 

hinges that permit the collapse in a 

structure  

Plastic Hinges and Collapse Mechanisms 
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 Statically Determinate Beam Statically Indeterminate Beam 

• Will fail if ONE plastic hinge develop. 

e.g. The simply supported beam shown below will fail 

, if P is increased until a plastic hinge is developed at 

the point of maximum moment (just underneath P),. 

 

• Will require  at least TWO plastic hinges to develop 

to fail. 

e.g. The fixed-end beam shown below can‟t fail unless 

the three hinges in the figure develop. 

 

 

 

 

 

 

 

e.g. The propped cantilever beam below is an 

example of a structure that will fail after two plastic 

hinges develop. 

 



Plastic Hinges and Collapse Mechanisms 
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• If the structure is statically indeterminate, it is still stable after the formation of a 

plastic hinge, and for further loading, it behaves as a modified structure with a hinge 

at the plastic hinge location (and one less degree of indeterminacy).  

• It can continue to carry additional loading (with formation of additional plastic 

hinges) until the limit state of collapse is reached on account of one of the following 

reasons: 

1. formation of sufficient number of plastic hinges, to convert the structure (or a 

part of it) into a „mechanism‟. 

2. limitation in ductile behavior (i.e., curvature  κ reaching the ultimate value 

κmax, or, in other words a plastic hinge reaching its ultimate rotation capacity) 

at any one plastic hinge location, resulting in local crushing of concrete at that 

section. 

 

From the discussion in the previous slide we can point out the following as an observation 
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For illustration let us see the behavior of an indeterminate beam shown below, It will be 

assumed for simplicity that the beam is symmetrically reinforced, so that the negative bending 

capacity is the same as the positive. 

Let the load P be increased gradually until 

the elastic moment at the fixed support, 

3PL/16 is just equal to the plastic moment 

capacity of the section, Mu. This load is 

At this load the positive moment under the 

load is 5/32 PL, as shown  

The beam still responds elastically 

everywhere but at the left support. At that 

point the actual fixed support can be 

replaced for purpose of analysis with a 

plastic hinge offering a known resisting 

moment Mu, which makes the beam 

statically determinate. 

The load can be increased further until the moment under 

the load also becomes equal to Mu, at which load the second 

hinge forms. The structure is converted into a mechanism, 

and collapse occurs.  

The magnitude of the load causing collapse is easily 

calculated from the geometry  

𝑀𝑢 +
𝑀𝑢

2
=

𝑃𝐿

4
 

𝑃 = 𝑃𝑢 =
6𝑀𝑢

𝐿
 

It is evident that an increase of 12.5% is possible beyond the 

load which caused the formation of the first plastic hinge, 

before the beam will actually collapse. 

  
16 5.33

3

u u

el

M M
P P

L L
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Example1.4: Compute the theoretical ultimate load the beam below can support interms of the plastic 

moment capacity of the beam section. Assume the conditions in the illustrative example above are 

also applicable here (symmetric reinforcement across the span of the beam)  

Given beam with loading and support condition 

Step1: Identify the location and magnitude of maximum 

moment in the elastic range (indicates the location of the 

first plastic hinges) 

If this is the case and assuming that the formed plastic hinges 

have enough rotational capacity, the next step is to come up 

with the ultimate load!.....How 

w

l

wl 2/24

l/2

wl 2/12 wl 2/12

first plastic hinges Although the plastic moment has been reached at the 

ends and plastic hinges are formed, the beams will not 

fail because it has , in effect, become a simple end 

supported beam for further load increment. 
Wp

Mp Mp

Wpl/2 Wpl/2

The load can now be increased on this “Simple” beam, 

and the moments at the ends will remain constant; 

however, the moment out in the span will increase at it 

would in a uniformly loaded simple beam as shown. 

Mp Mp

Mp
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In order to come up with the ultimate load one could adopt a 

number methods, here under two of which are presented.   

Using the concept of section equilibrium Using the concept of super positioning  

Step2: Compute the theoretical ultimate load interims od the plastic moment capacity.   

Wp

Mp

Wpl/2 Wpl/2

Mp Mp

+

Wpl2/2

Mp

+

+ve

-ve

p

2

p

2

At l/2 bending moment has to reach m  inorder to form

 a plastic hinge.

hence, 2m = 
8

16

p

p

p

w l

m
w

l


Wp

Mp Mp

l/2

Wpl/2 Wpl/2

Wp=?

Mp

Mp

Wpl/2

2

0

2 4 2 2

16

o

p

p p p

p

p

M

w ll l l
M M w

M
w

l



      
        

      





Loading Capacity was increased by a 

fraction of 4/3 =16/12. 
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As seen in the previous section, the distribution of bending moments in a continuous 

beam (or frame) gets modified significantly in the inelastic phase.  

The term moment redistribution is generally used to refer to the transfer of moments to the 

less stressed sections as sections of peak moments yield on their ultimate capacity being 

reached (as witnessed in the example above).  

From a design viewpoint, this behavior can be taken advantage of by attempting to effect a 

redistributed bending moment diagram which achieves a reduction in the maximum moment 

levels (and a corresponding increase in the lower moments at other locations). 

Such an adjustment in the moment diagram often leads to the design of a more economical 

structure with better balanced proportions, and less congestion of reinforcement at the 

critical sections. 



Example1.5: Design the beam for flexure that is  shown below, with b/h = 200//400mm and carrying a 

design load of 24kN/m including its own weight;  

a) Without moment redistribution 

b) With  20% moment redistribution 

 

 

 

 

USE C20/25, S-400 and φ8 and  φ20 bars for stirrup and  longitudinal reinforcement respectively. 
Assume cover to stirrup to be 25mm 

Solution: [a] 

Step1: Summarize the given parameters 

Material C20/25 fck=20MPa; fcd=11.33MPa;  

 fctm=2.2MPa;   

 Em=30,000MPa 

 S-400 fyk=400MPa;   

 fyd=347.83MPa;   

 Es=200,000MPa; εy=1.74‰ 

Geometry d=h-cover- (φstiruup +φlongitiudinal/2) 

   =400-25-(8+10)=357mm 

Load  1.35Gk+1.50Qk=24.0 kN/m 

 

Step2: Compute the design action on the beam (Bending 

moment)  

 

 

24kN/m

A B

6m

36kNm

72kNm 72kNm

Step3: design the beam at the supports and mid span 

Carrying out the procedure for flexure design of 

rectangular RC section, we will have the following results 

 

 

 

 

 

 

 

 

Moment Reinforcement provided  

72kNm 

(support) 

3φ20 

36kNm 

(mid span) 

2φ20 

Step4: Detailing 

2φ20

1φ20 1φ20

2φ20
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Solution: [b] 

Step1: Summarize the given parameters 

Material C20/25 fck=20MPa; fcd=11.33MPa;  

 fctm=2.2MPa;   

 Em=30,000MPa 

 S-400 fyk=400MPa;   

 fyd=347.83MPa;   

 Es=200,000MPa; εy=1.74‰ 

Geometry d=h-cover- (φstiruup +φlongitiudinal/2) 

   =400-25-(8+10)=357mm 

Load  1.35Gk+1.50Qk=24.0 kN/m 

 

Moment redistribution up 20% is allowed. 

 

Step2: Select a critical section and carryout the moment 

redistribution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step3: design the beam at the supports and mid span 

Carrying out the procedure for flexure design of 

rectangular RC section, we will have the following 

results. 

But keep in mind the value μlim for 20%moment 
redistribution which is 0.205 

Design Moment before 

redistribution 

Design Moments after 

redistribution 

72kNm (support) 57.6kNm (support) 

36kNm (mid span) 50.4kNm (mid span) 

Step4: Detailing 

2φ20

2φ20
36kNm

Mspan

57.6kNm

72kNm 72kNm

57.6kNm

0.2 72 14.4

72 14.4 57.6

kNm kNm

kNm kNm kNm

 

 

2

0

24
72 57.6

2 2

50.4

o

span

span

M

l l
M

M kNm



  
     

   





24kN/m

57.6kNm

Mspan

72kN

Moment Reinforcement provided  

57.6kNm (support) 2φ20 

50.4kNm (mid span) 2φ20 
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Thank you for the kind attention! 

Questions? 

April 23, 2020 Addis Ababa institute of Technology 

51 


