
Example 3.2 Flat slabs

The following floor plan is intended to be a flat slab system. The slab thickness is 200mm thick and supports a characteristic dead load of 2.7 KN/m2 in addition to self-weight and a characteristic live load of 3 KN/m². The slab is provided on edge beams of b_w = 300 mm and h=400mm and all columns are 300mm by 300mm. Design the slab system using C20/25, S = 400.

Solution:

Step 1: Material property

$$fcd = \frac{0.85 * 20}{1.5} = 11.33Mpa$$

$$fctk, 0.05 = 1.5Mpa$$

$$fctm = 2.2Mpa$$

$$rc = 1.5$$

$$fck = 20Mpa, fcu = 25Mpa$$

Rebar: fyk = 400Mpa

$$fyd = \frac{fyk}{1.15} = 347.83Mpa$$

$$\varepsilon yd = \frac{fyd}{Es} = \frac{347.83}{200} = 1.74\%_0$$

Step 2: Depth check for deflection

- \triangleright According to ACI code minimum thickness of slabs without interior beams: without drop panels for f_{yk} = 400 Mpa
 - Exterior panels with edge beams = I_n /33

Slab considered to have edge beam if $\alpha_f = \frac{I_b}{I_s} > 0.8$

for this case
$$\alpha_f = \frac{I_b}{I_s} = \frac{20.33 \times 10^8}{19.33 \times 10^8} = 1.05 > 0.80k!$$

(see the computation of I_b and I_s on page 6)

- Interior panels = $I_n/33$

L_n is the length of the clear span in longer direction.

- For edge panel $L_n = 5500 300 = 5200$ mm
- For edge panel $L_n = 6000 300 = 5700$ mm

$$d = \frac{l_n}{33} = \frac{5700}{33} = 172.73mm$$

$$h = d + \cos er + \frac{\theta}{2} = 172.73 + 15 + \frac{12}{2} = 193.7 mm < 200 mm \text{ ok!}$$

Step 3: Loading

Dead load:

> Self-weight $\rightarrow 0.2 * 25 = 5 \text{ KN/m}^2$

► Imposed dead load \rightarrow 2.7 KN/m²

 $G_k = 7.7 \text{ KN/m}^2$

Variable Load:

 \triangleright Live load $Q_k = 3 \text{ KN/m}^2$

Design load:

 \Rightarrow $Gd = 1.35 * Gk = 1.35 * 7.7 = 10.39 \text{ KN/m}^2$

 \rightarrow $Od = 1.5 * Ok = 1.5 * 3 = 4.5 \text{ KN/m}^2$

ightharpoonup Therefore Pd =14.89 KN/m²

Step 4: Limitations to direct design method

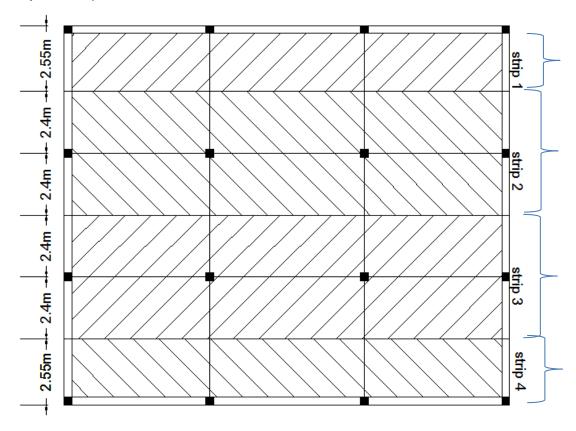
1. 3 span in each direction..... Ok!

2.
$$\frac{L_y}{L_x} = \frac{5.5}{4.8} = 1.15 < 2 \rightarrow and \frac{6}{4.8} = 1.25 < 2....Ok!$$

3. Successive span length in each direction shall not differ by more than 1/3 of longer span.

$$6-5.5=0.5<\frac{1}{3}x6=2\cdots Ok!$$

- 4. All loads must be due to gravity only (By assuming there are no lateral loads on our slab) Ok!
- 5. Factored live load must be less than twice of the factored dead load


$$\frac{LL}{DL}$$
 < 2 \Rightarrow $\frac{4.5}{10.395}$ = 0.43 < 2 \cdots Ok!

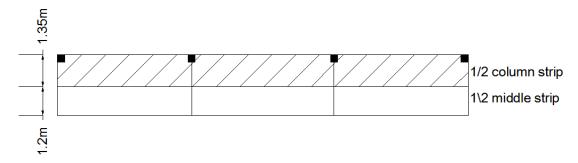
- 6. Maximum offset of column from either axis between center-line of successive columns shall not exceed 10% of the span in direction of offset Ok!
- 7. For a panel with beams between supports on all sides the relative stiffness of the beams in the two perpendicular direction given by

 $(\alpha_1.\ell_2^2)/(\alpha_2.\ell_1^2)$ Shall not be less than 0.2 or greater than 5 Ok!

> The direct design method (DDM) can be used.

Step 5: Analysis

Due to symmetry strip-1 & strip-4 are similar and


Strip -2 & strip 3 are similar.

Strip -1 (along axis -1)

i. Compute
$$l_2$$
, $\ell_2 = \frac{4.8}{2} + \frac{0.3}{2} = 2.4 + 0.15 = 2.55 mm$

ii. Compute
$$L_n l_n = \begin{cases} 5500 - 300 = 5200mm & \frac{b}{n} \ axes \ A \ and \ B \ , C \ and \ D \\ 6000 - 300 = 5700mm & \frac{b}{n} \ axes \ B \ and \ C \end{cases}$$
 iii. Compute $L_x l_x = 4.8m$ The minimum panel dimensions

 $l_x = \frac{4.8}{4} = 1.2$

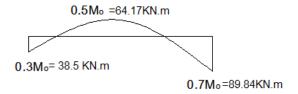
Compute static moments

$$M_o = \frac{P_d l_2 l_n^2}{8}$$

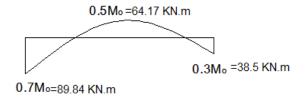
• Between axis A & B or C & D

$$M_0 = \frac{14.89 \times 2.55 \times 5.2^2}{8} = 128.34 \text{KN.m}$$

Between axis B & C

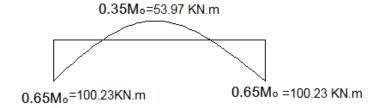

$$M_0 = \frac{14.89x2.55x5.7^2}{8} = 154.2KN.m$$

- v. Longitudinal distribution of Mo
 - a. Between axis A & B or C & D


$$M_{o} = 128.34 KN.m$$

N. B:-It is case-4, slabs without beam between interior supports and with edge beam.

- For panel between axis A and B



For panel between axis C and D

b. Between axis B &C

$$M_o = 153.38 KN.m$$

N.B Since there is a beam on the column strip some amount of the column strip moment will be resisted by the beam

$$\alpha_f = \frac{4E_{cb} \frac{I_b}{l}}{4E_{cb} \frac{I_b}{l}}$$

Since "I" is the same for both the beam and slab and $\,E_{cb}=E_{cs}\,$

$$\alpha_f = \frac{I_b}{I_s}$$

$$h = 400mm$$

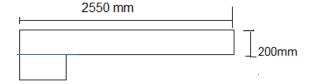
$$hs = 200mm$$

$$hw = 200mm$$

$$bw = 300mm$$

$$t = \min(hw, 4hs) = 200mm$$

$$\overline{y} = \frac{(500x200)x300 + (300x200)x100}{(500x200) + (300x200)} = 225mm$$


$$I_s = \frac{1}{12}bh^3$$

$$= \frac{1}{12}x2550x200^3$$

$$= 1.7x10^9 = 1700x10^6 mm$$

$$I_b = \frac{1}{12}x300x200^3 + (300x200)(225 - 100)^2 + \frac{1}{12}x500x200^3 + (500x200)(175 - 100)^2$$

$$= 1137.5x10^6 + 895.83x10^6$$
$$= 2033.33x10^6 mm^4$$

$$I_s = \frac{1}{12}x2550x200^3 = 1700x10^6 mm^4$$

$$\alpha = \frac{I_b}{I_s} = \frac{2033.33x10^6}{1700x10^6} = 1.196$$

Calculate
$$\alpha_f(\frac{l_2}{l_1})$$

 $\ell_2 = 4.8 mFor \ panel \ between \ axis \ A \ \& \ B \ or \ C \ \& \ D$

- $\ell_1 = 6.0m$ for panel between axis B & C.

- For panel between axis A & B and C & D

$$\alpha_f(\frac{\ell_2}{\ell_1}) = 1.196(\frac{4.8}{5.5})$$

= 1.045 > 1.0

For panel between axis B & D

$$\alpha_f(\frac{\ell_2}{\ell_1}) = 1.196(\frac{4.8}{6})$$
= 0.957 < 1.0

- vi. Transverse distribution of moments (i.e. to column and middle strip)
 - For panel between axis A & B and C & D
 - a. Interior negative moment beam, M=89.84 KN.m
 - There is intermediate beam

$$\alpha_f(\frac{\ell_2}{\ell_1}) \ge 1.0$$

$$\frac{\ell_2}{\ell_1} = \frac{4.8}{5.5} = 0.87$$

- There is intermediate beam, 78.9 % (interpolated form table)

C.S moment =
$$0.789x89.84 = 70.88$$
KN.m $(1-0.789) = 0.211$

Half M.S moments =
$$0.211x89.84 = 18.96KN.m$$

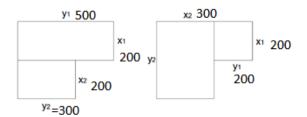
b. Positive moment, M=64.17 KN.m

$$\alpha_f(\frac{\ell_2}{\ell_1}) \ge 1.0$$

$$\frac{\ell_2}{\ell_1} = \frac{4.8}{5.5} = 0.87$$

- 78.9% of moment to column strip

C.S moment =
$$0.789 \times 64.17 = 50.63 \text{ KN.m}$$


Half M.S moments =
$$0.211x64.17 = 13.54KN.m$$

c. Exterior negative moment, M=38.50 KN.m

$$- \alpha_f(\frac{\ell_2}{\ell_1}) \ge 1.0$$

- There is edge beam $\beta_t \neq 0$

Calculate
$$\beta = \frac{c}{2I_s}$$

$$c = \sum \left[(1 - 0.63 \frac{x}{y}) * \frac{x^3 y}{3} \right]$$

$$N.B Always \ x < y$$

Case 1:

$$c_1 = \left[(1 - 0.63 * \frac{0.2}{0.5}) * (\frac{0.2^3 * 0.5}{3}) \right] + \left[(1 - 0.63 * \frac{0.2}{0.3}) * (\frac{0.2^3 * 0.3}{3}) \right]$$

$$= (0.748 * 0.00133) + (0.58 + 0.0008)$$

$$= 0.00097 + 0.00046$$

$$= 1.43 * 10^{-3} m^4$$

Case 2:

$$\begin{split} c_1 &= [(1 - 0.63 * \frac{0.2}{0.2}) * (\frac{0.2^3 * 0.3}{3})] + [(1 - 0.63 * \frac{0.2}{0.4}) * (\frac{0.3^3 * 0.4}{3})] \\ &= (0.37 * 0.00053) + (0.5275 + 0.0036) \\ &= 0.0002 + 0.00140 \\ &= 2.10 * 10^{-3} m^4 \\ c &= \max\left(c_1, c_2\right) \\ c &= 2.10 * 10^{-3} m^4 \end{split}$$

- Calculate Is

$$I_s = \frac{1}{12} *b *h^3$$

$$I_s = \frac{1}{12} *2.55 *0.2^3$$

$$= 1.7 *10^{-3} m^4$$

$$\beta_t = \frac{C}{2*I_s} = \frac{2.1*10^{-3}}{2*1.7*10^{-3}}$$
$$= 0.618$$

Percentage of column strip moment can be determined by interpolation.

for
$$\beta_t = 0.618$$
, $\alpha_{f1} \frac{l^2}{l1} \ge 1$, and $\frac{l^2}{l1} = 0.5 \rightarrow 97.528$
for $\beta_t = 0.618$, $\alpha_{f1} \frac{l^2}{l1} \ge 1$, and $\frac{l^2}{l1} = 1 \rightarrow 93.82$
for $\frac{l^2}{l1} = 0.872$ and the values obtained above $\rightarrow 94.76$
C.S moment = $0.948*38.5$
= $36.5KNm$
M.S moment = $0.052*38.5$
= $2.00KNm$

• For panel between axis B & C

a) Interior negative moment, M = 100.23 KN.m

inerpoliate for
$$\alpha_{f1}^{l2}/l_1 = 0$$
, and $\frac{l2}{l1} = 0.8 \rightarrow 75$
inerpoliate for $\alpha_{f1}^{l2}/l_1 \ge 1$, and $\frac{l2}{l1} = 0.8 \rightarrow 81$
inerpoliate for $\alpha_{f1}^{l2}/l_1 = 0.957$, and the values obtained above $\rightarrow 80.742$
C.S moment = $0.8074*100.23$
= $80.93KNm$
M.S moment = $0.1926*100.23$
= $19.3KNm$

b) Positive moment, M = 53.97 KN.m

inerpoliate for
$$\alpha_{f1}$$
 $^{l2}/_{l1} = 0$, and $\frac{l2}{l1} = 0.8 \rightarrow 60$
inerpoliate for α_{f1} $^{l2}/_{l1} \ge 1$, and $\frac{l2}{l1} = 0.8 \rightarrow 81$
inerpoliate for α_{f1} $^{l2}/_{l1} = 0.957$, and the values obtained above $\rightarrow 80.097$
C.S moment = $0.801*53.97$
= $43.23KNm$
M.S moment = $0.194*53.97$

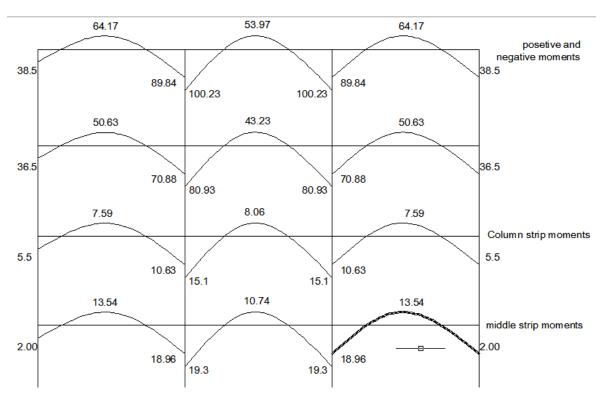
Note: If $\alpha_f(\frac{l_2}{l_1}) \ge 1.0$ 85% of the column strips moment goes to the beam and 15% to the slab.

- For panel between axis A & B or C & D, 85% of the column strip moment goes to beam and 15% to the slab.
- For panel between axis B & C

=10.74KNm

$$\frac{0.957 - 0.0}{x - 0} = \frac{1.0 - 0.0}{85 - 0}$$
$$x = \frac{0.957x85}{1} = 81.35\%$$

Therefore, 81.35% of column strip moment goes to the beam and 18.65% goes to the slab.

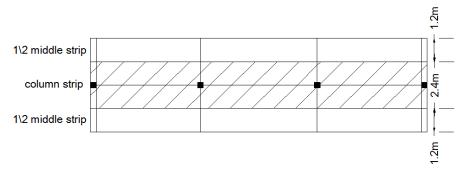

- For panel between axis A & B and C & D

Moment Location	Value	To beam (85%)	To slab (15%)
Exterior –ve moment	36.5	31.0	5.5
Positive moment	50.63	43.04	7.59
Interior –ve moment	70.88	60.248	10.632

For panel between axis B & C

Moment Location	Value	To beam	To slab
Interior –ve moment	80.93	65.43	15
Positive moment	43.23	35.17	8.06

Moment summary


Strip 2: [along axis 2]

i) Compute I2,
$$l2 = 4.8 / 2 + 4.8 / 2$$

= 4.8

ii) Compute In,

$$\ln = 5500 - 300 = 5200 mmb / n axis A & B and C & D$$

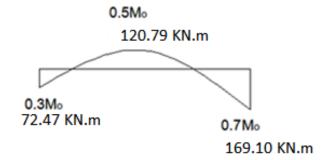
= $6000 - 300 = 5700 mmb / n axis B & C$

iii) Compute lx, $lx = \min(l2, ln) = 4.8m$

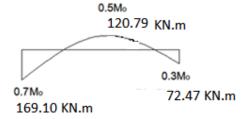
half a weidth of the column strip = $\frac{lx}{2}$ = 1.2m

iv) Compute the static moment, Mo.

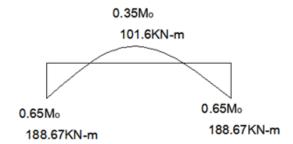
$$M_o = \frac{P_d * l_2 * l n^2}{8}$$


• Between axis A & B or C & D

$$M_o = \frac{14.89 * 4.8 * 5.2^2}{8}$$
$$= 241.58 KN - m$$


• Between axis A & B or C & D

$$M_o = \frac{14.89 * 4.8 * 5.7^2}{8}$$
$$= 290.26 KN - m$$


- v) Longitudinal distribution of Mo = 241.58KN-m
 - a) Between axis A & B or C & D
 - For panel between axis A and B,

- For panel between axis C and D

b. Between axis B &C M₀ =290.26KN-m

- vi) Transverse distribution of moments (i.e to column and middle strip)
 - For panel between axis A & B and C & D
 - a) Interior negative moment, M=169.1 KN-m
 - No intermediate beam $\rightarrow \alpha=0$
 - 75% of moment to column strip

$$C.S \ moment = 0.75*169.1$$

= 126.8KNm
half M.S moment = 0.125*169.1
= 21.14KNm

- b) Positive moment, M=120.79 KN-m
 - No intermediate beam $\rightarrow \alpha=0$
 - 60% of moment to column strip

$$C.S \ moment = 0.6*120.79$$

= 72.47 KNm
half M.S moment = 0.2*120.79
= 24.16 KNm

- c) Exterior negative moment, M=72.47 KN-m
 - No intermediate beam $\rightarrow \alpha=0$
 - There is edge beam $\rightarrow \beta_t \neq 0$

calculate
$$\beta_t = \frac{C}{2*I_s}$$

 $take c = 2.10*10^{-3} m^4$ (form previous calculation)

4800 mm

 $I_{s} = \frac{1}{12} * b * h^{3}$ $I_{s} = \frac{1}{12} * 4.8 * 0.2^{3}$ $= 3.2 * 10^{-3} m^{4}$ $\beta_{t} = \frac{C}{2 * I_{s}} = \frac{2.1 * 10^{-3}}{2 * 3.2 * 10^{-3}}$ = 0.328

Percentage of column strip moment can be determined by interpolation

$$eta_t = 0 - --100\%$$
 $0.328 - ---x$
 $eta_t = 2.5 - -75\%$
 $x = 96.72\%$
 $C.S \ moment = 0.9672 * 72.47$
 $= 70.09 \ KNm$
 $half \ M.S \ moment = 0.0164 * 72.47$
 $= 1.188 \ KNm$

• For panel between axis B & C

- a) Interior negative moment, M = 188.67KN-m
 - No intermediate beam $\rightarrow \alpha=0$
 - 75% of moment to column strip

$$C.S \ moment = 0.75*188.67$$

= 141.5 KNm
half M .S moment = 0.125*188.67
= 23.58 KNm

- b) positive moment, M = 101.6KN-m
 - No intermediate beam $\rightarrow \alpha=0$
 - 60% of moment to column strip

$$C.S \ moment = 0.6*101.6$$

= $60.9 \ KNm$
half $M.S \ moment = 0.2*101.6$
= $20.32 \ KNm$

Moment summary

Step 6: Design

$$d = h - \cot er - \frac{\phi}{2}$$
 for the bottom layer bar
= $200 - 15 - \frac{10}{2}$
= $180 mm$

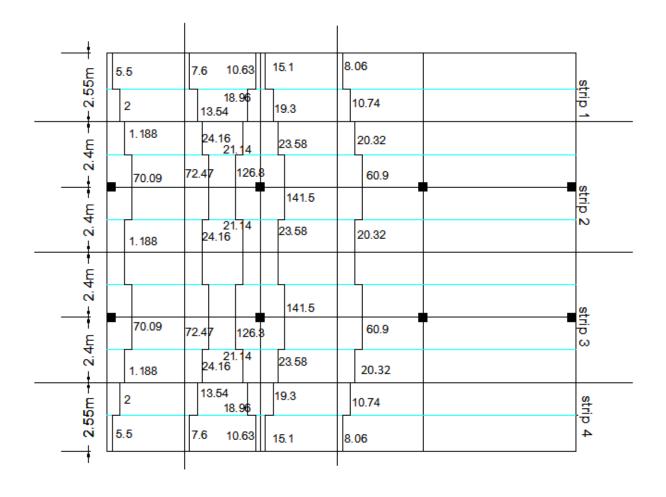
Area of minimum reinforcement

$$A_{s,\min} = \max\left(\frac{0.26 f_{ctm} b_t d}{f_{yk}}, 0.0013 b d\right)$$

$$= \max\left(\frac{0.26 * 2.2 * 1000 * 180}{400}, 0.0013 * 1000 * 180\right)$$

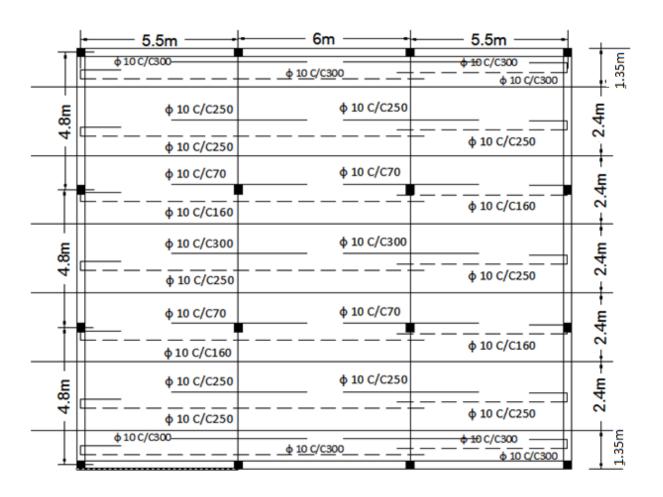
$$= \max\left(257.4, 234\right)$$

$$A_{s,\min} = 257.4 mm^2$$


Minimum spacing:

$$S_{\min} = \max(\phi, aggrigate \, size + 5mm, 20mm)$$

Maximum spacing:


$$S_{\text{max}} = \min(3h, 400mm)$$
, for primary reinf orcement $S_{\text{max}} = 400mm$

Moment diagram (not drawn to scale)

	1						
		strip	moment				
strip	Moment	width	per meter	ω	As,req	s, req	s provided
C.S	5.5	1.35	4.07	0.011	257.4	333	use φ 10 C/C300
	7.59	1.35	5.62	0.015	257.4	333	use φ 10 C/C300
	10.632	1.35	7.88	0.0216	257.4	333	use φ 10 C/C300
	15.1	1.35	20.39	0.057	332.32	250	use φ 10 C/C300
	8.06	1.35	10.88	0.03	257.4	333	use φ 10 C/C300
M.S	18.96	1.2	15.80	0.044	257.4	333	use φ 10 C/C300
	13.54	1.2	11.28	0.317	257.4	333	use φ 10 C/C300
	2	1.2	1.67	0.0045	257.4	333	use φ 10 C/C300
	19.3	1.2	16.08	0.0446	261.9	333	use φ 10 C/C300
	10.74	1.2	8.95	0.024	257.4	333	use φ 10 C/C300
C.S	126.8	2.4	52.63	0.157	921.99	90.9	use φ 10 C/C90
	72.47	2.4	30.03	0.0889	521.19	166.67	use φ 10 C/C160
	70.09	2.4	29.20	0.083	45.5	166.67	use φ 10 C/C160
	141.5	2.4	58.96	0.177	1036.99	76.9	use φ 10 C/C70
	60.9	2.4	25.40	0.072	422.8	200	use φ 10 C/C200
M.S	21.14	1.2	17.54	0.0487	286.01	333	use φ 10 C/C300
	24.16	1.2	20.03	0.0559	327.9	250	use φ 10 C/C250
	1.188	1.2	0.99	0.0027	257.4	333	use φ 10 C/C300
	23.58	1.2	19.65	0.0559	327.9	250	use φ 10 C/C250
	20.32	1.2	16.93	0.047	277.39	333	use φ 10 C/C300

Detailing:

