Lecture note on Closed Conduit Flow 2020 A.C.

3. Closed Conduit Flow

Flow in closed conduits (pipe, if conduit is circular in section, and duct otherwise) differs from
that of open channel flow in the mechanism that derives the flow. In the case of open channel
flow, flow occurs due to the action of gravity. In closed-conduit flow, however, although gravity
is important, the main driving force is the pressure gradient along the flow. The emphasis of this
section will be on pipes.

Flow in pipes is an example of internal flow, i.e., the flow is bounded by the walls, in contrast to
external flow where the flow is unbounded. For internal flows, the fluid enters the conduit at one
point and leaves at the other. At the entrance to the conduit there appears what is known as
entrance region with in which the viscous boundary layer grows and finally at the downstream
end of this region covers the entire cross section. The flow beyond the entrance region is said to
have fully developed. The fully developed flow is characterized by a constant velocity profile (for
a steady flow), a linear drop in pressure with distance, and a constant wall shear stress.

Growing Boundary Developed
boundary  Imviscid layers velocity .
layers  core flow merge profile u(r) The entrance length is

a function of

///////:kl’//////L////////ff//f//f/////j’/ P /Aé"/// s

> , Reynolds number and
< [l S — d is given by relations
o L —— E * below:
‘___d—-"...ﬂ ulr, x) Le
B A ? ~ 0 06 Re

4

| Entrance length L, I Fully developed ] for laminar flow. and
I

{developing profile region) flow region L
- | e
| ! il 4.4 Re''®
: |
i for turbulent flow.
4 Pressure :
1
Entrance : Where
pressure : Linear Re — p\/d
drop i pressure €=
¥ - I drop in H
T—— [ fully developed
| flow region
]
!
[
|
—L - X
0 L,

Laminar flow in pipes

Recall that flow can be classified into one of two types, laminar or turbulent flow (with a small
transitional region between these two). The non-dimensional number, the Reynolds number, Re,
is used to determine which type of flow occurs:

Laminar flow: Re < 2000
Transitional flow: 2000 < Re < 4000
Turbulent flow: Re > 4000
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Derivation of basic equations of steady laminar flow in pipes

Consider a case of steady
laminar flow in a circular pipe
shown below:

Since the flow is steady
velocity distribution remains
the same through out the
length of the pipe. Hence
acceleration of the flow is
zero. Hence the sum of all
forces for the fluid element
shown should be zero.
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but for laminar flow 7 = yg—v
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Substituting this and simplifying one obtains the relationship for velocity as:
RE=rd ) ip)
4u ds

Thus the velocity distribution in a circular pipe under laminar flow condition is parabolic, with
maximum value at the center.

R? d

V=-

Vmax - Eg(ﬂ'*_ p)
For a horizontal pipe
R? dp
mex 4u ds

The discharge through the pipe is obtained as
R 2 .2
R*—r
Q= ! {— ”

The average velocity,
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This is known as the Hagen —Poiseuille Formula for Laminar flow
This equation for head loss due to friction is commonly written as

64 L V?

"~ Re D 29

Turbulent Flow

In turbulent flow there is no longer an explicit relationship between mean stress and mean
velocity gradient ou/or (because momentum is transferred more by the net effect of random
fluctuations than by viscous forces). Hence, to relate quantity of flow to head loss we require an
empirical relation connecting the wall shear stress and the average velocity in the pipe.

pV?

f

For turbulent flow, the boundary shear stress is taken as r, =1 and the derivation of the

equation for the friction head loss proceeds in the same way as in the case of laminar flow.
Consider a segment of an inclined circular pipe conveying a fluid of density p and viscosity H,

W
Plﬁ\\ i

Az
\\
P2A
Sin 6 = Az/L
For steady uniform flow, since there is no acceleration,  XF =ma=0
(P1—P2)A+vAAz—1,PL=0 , where P is the wetted perimeter

Substituting AP = (P1- P2) and dividing the whole expression by A, one gets
AP+yAz=1L/R  where R =A/P

Hence (AP +yAz)/yL —% A V?IgR

But (AP+7Az)/7 = hy

h 2
Thus —f=,1v— , for a pipe flowing full R= D/4
L 20R
LV?Z e
hy =f D2y where f'= 41 = friction factor for turbulent flow.
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The last equation for the friction loss in pipes is known as the Darcy-Weisbach equation. f is
called the Darcy coefficient. This equation also applies for laminar flow with a substitution of
64/R. for the friction factor. For a turbulent flow f is a function of the Reynolds number and the
relative wall roughness of the pipe for turbulent flow.

A graphical summary of past experimental results has been presented by moody. This chart,
known as the Moody diagram, is a plot of the friction factor as a function of Reynolds number
and the relative roughness of the pipe wall, i.e. /D where ¢ is the roughness in consistent units.
An empirical equation for the friction coefficient is also given by Colebrook and White,

. —2|og{i+ﬁ} , which applies in both smooth and rough turbulent zones.

Jf 37D R.f
Hazen-Williams Formula
The Hazen-Williams Formula has been developed specifically for use with water and has been
accepted as the formula used for pipe-flow problems in North America. It reads
V= 0.849CR0?63 05
Where: V = average velocity of flow,(m/s)
R = hydraulic radius, m
S = slope of the energy gradient (s =hy/L)
C =a roughness coefficient
This formula can be rearranged to give

L 0.849CR"®

Local Losses (Minor Losses)

In addition to head loss due to friction there are always head losses in pipe lines due to bends,
junctions, valves etc. Such losses are called Minor losses. For completeness of analysis these
should be taken into account. In practice, in long pipe lines of several kilometers their effect may
be negligible but for short pipeline the losses may be greater than those for friction.

Local losses are usually expressed in terms of the velocity head, i.e.
2
h, =k; \g— where k; is the minor loss coefficient
g

1.852
h_L = [L] where R= D/4 for pipes

Losses at Sudden Enlargement

Consider the flow in the sudden enlargement, shown in figure below, fluid flows from
section 1 to section 2. The velocity must reduce and so the pressure increases (as follows
from Bernoulli). At position 1' turbulent eddies occur which give rise to the local head
loss.

® © ®

Apply the momentum equation between positions 1 and 2 to give:
PiA1 — P2 A2 = pOQ(V> — Vh)
Now use the continuity equation to remove Q. (i.e. substitute Q = A>V>)

By Selam Belay AAIT Department of Civil Engineering 4



Lecture note on Closed Conduit Flow 2020 A.C.

P1A1 — P2 Ay = pAoVo(V2 — V1)

. . P,-P V
Rearranging gives ﬁ = EZ(Vl -V,)

Now apply the Bernoulli equation from point 1 to 2, with the head loss term h.
Pl Vl2 I:>2 V22
—+—=—=—=+—"=1+h
Y 20 pg 29
2 2 _
And rearranging gives h, VoV, RoR
29 ~9

2 _yy2 _
Combining the two expressions hL=Vl Vi Vo -Vy)

29 g
h = (Vl _VZ )2
L 29
Substituting again for the continuity equation to get an expression involving the two
2
V)

areas, (i.e. Vo= ViA/A2) gives h, = [1—iJ

A ) 29

A

2
This gives the expansion loss coefficient k, = (1——]
2
When a pipe expands in to a large tank A1 << Azi.e. A1/A2~ 0 so ke = 1. That is, the head
loss is equal to the velocity head just before the expansion into the tank.

In other situations such as bends, junctions, sudden contractions, valves and fittings
determination analytical values for the loss coefficient is difficult. The loss coefficient is a
function of the type of obstruction in the flow and its values are given as in the subsequent figures
and tables.

The concept of equivalent pipe length

From the previous discussions it can be observed that all types of energy loss in pipes are
expressed as a coefficient times the velocity head. Hence if one is interested in the energy loss
alone, the minor losses can be expressed in terms of a friction loss over an equivalent length of
the pipe. Hence the equivalent length corresponding to a fitting having the minor loss coefficient
of ky can be obtained from

v v
D2g '2g
:Le:%D

In the same way, if a pipe system consists of a series of two pipes having diameters D1 and D,
and friction coefficients f; and f. , if the head loss is same in both pipe segments for the same Q,
then two pipes are said to be equivalent. Equivalently the length of, say the second pipe, that
produces the same total head loss as for the first pipe can be obtained from,
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ENTERANCE FLOW CONDITIONS
AND LOSS COEFFICIENTS (A)
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FIG. CHARACTER OF THE
FLOW IN A 90-DEGREE
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Loss Coefficients for Pipe Components (hL =K, _g
Component K,
a. Elbows
Regular 90°, flanged 0.3 V=
Regular 90°, threaded 1.5
Long radius 90°, flanged 0.2 l
Long radius 90°, threaded 0.7
Long radius 45°, flanged 0.2
Regular 45°, threaded 0.4 v :\
b. 180° return bends Vo
180° return bend, flanged 0.2
180° return bend, threaded 1.5 )
——f—
C. Tees
Line flow, flanged 0.2 1T
Line flow, threaded 0.9 v— =,
Branch flow, flanged 1.0 T T
‘Branch flow, threaded 2.0
e
T T
{8 Union, threaded 0.08
Y — —_—
—_—— g
[& Valves
Globe, fully open 10
Angle, fully open 2
Gate, fully open 0.15
Gate, § closed 0.26
[Gate, § closed 2.1
Gate, § closed 17
Swing check, forward flow 2
{Swing check, backward flow e
Ball valve, fully open 0.05
{Ball valve, { closed 5.5
{Ball valve, % closed 210
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Multiple Pipe systems
In most practical pipe-flow problems the system constitutes multiple pipes joined in different
ways. Such complex systems can be one or a combination of the following types

i) pipes in series: here one pipe takes the fluid after S
the other so that the same flow rate passes through \\’_y_
out the entire pipe system.

i) pipes in parallel: in parallel pipes two or more
pipes branch from a point (node) and rejoin some ;ﬁ |

distance downstream. Hence at the node the flow is
divided into the pipes whereas the pipes flow under i——@_

the same energy difference between the nodes.

iii) Branching pipes: such pipes branch off from the main [:\/:’
and may return to it. Typical example is pipes that
convey flow from multiple reservoirs. N\

iv) Pipe networks: such a system consists of pipes
interconnected in such a way that the flow makes a circuit.
R P P

>

Pipes in series
In such a system the same flow passes through all the pipes involved and hence the usual
problems are either:

To determine Q for a given head H, or

To determine the required head H to maintain a certain flow rate.
The latter problem is relatively simple as the friction coefficients for each pipe can easily be
computed.
L* N
< A

For datum through B. the energy equation including the loss terms takes the form:
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Since the flow rate is the same through out the pipes, the above equation can be reduced to

21k L, k L k L, k
H:—16Q2 |, S | S, S
2977 || D D’ D D ) | D: D’ D

To determine the flow rate, since Re is not known, assume values of the friction coefficient for
the pipes and compute the value of Q from the equation above. With this value of Q compute Re
and based on &/D determine f for each pipe. This iterative procedure is repeated until the assumed
and computed values of the friction coefficient are closer to each other.

Pipes in parallel

- —I.Af—_:t__Q’____. B —— _Q
lel

In such arrangements the flow must satisfy:
)Q=Qi+Q2+Qs
i) hya-s) = ha = h, = hgs
The common types of problems and the recommended procedures are given below.
i) to determine the discharge Q for a given head difference between A and B. Since in such a
case, the head loss is known, one can write

7/

h,="f, 31—1 and solve for V1 by trial
g

Similar equations can be written for the other pipes that make up the system and solved for their
respective velocities. The total discharge is the sum of the product of the velocities and the cross-
sectional areas.
ii) the other problem is the determination of the distribution of the discharge among the pipes
involved given the total flowrate. A step by step procedure for such problems is:
o Assume a likely discharge in one of the pipes, say pipe 1, as Qi and compute the head
loss through the pipe.
o Using the computed value of the head loss in pipe 1, compute thee discharge through the
other pipes.
o Add the computed trial discharges in all the pipes and compare the sum with the given
total discharge. If the sum is not equal to the total discharge, correct the trial discharges
by adjusting them as given below

_Q _Q _Q
Q=50 Q=@ Q=3

o  Compute the head losses again and check if they are equal.

Q
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Branching pipes
Such an arrangement of
pipes falls in neither of the ?

above two (i.e. parallel or
series) categories. The pipes
do not also from a network
of complete loops. A typical
example is the three-
reservoir problem shown in Z,
the figure.

The problem is often to find
the flow rate (including the
direction) in each pipe. As
the elevation of the HGL at

the junction is not known,
the flow can not be readily
computed.  Hence the
procedure for solution starts by assuming a value for this head at the junction. The flow rate in
each pipe is then computed for the assumed head at the junction. The flow rates computed in such
a way are then checked if they satisfy continuity. If the sum of the discharges in the pipes is less
than zero (with flow away from the junction taken negative), then this is means the assumed head
is too high and it is reduced for the next trial. The procedure is repeated until the sum of the flow
rates is very close to zero.
Pipe networks
Pipes that are interconnected in such a way that they make loops (or circuits) form a network. In
such systems the flow in any of the pipes may come from different circuits and as such it is not
simple to know the direction of flow by observation. Pipe network problems involve the analysis
of existing systems, i.e. the determination of flow rate in each pipe, pressure at junctions (or
nodes), the head losses in the pipes and the selection of appropriate material and size.
The solution of network problems always uses iterative procedures that make use of the following
two facts:

o the flow into a junction must equal the flow out of the junction, i.e. at each node (and for

the entire system) continuity must be satisfied,
o the algebraic sum of the head losses around any circuit must add up to zero.

Below is outlined a method (commonly known as the Hardy-Cross method. after Prof.
Hardy Cross)
o by careful inspection of the network, assume a reasonable distribution of flow rate in the
pipes so that continuity is satisfied at each node,
o compute the head loss in each pipe. For this either the Darcy-Weisbach equation can be
used with the friction coefficient determined from the Moody diagram, or other methods
as discussed below. The Darcy- Weisbach equation can be reformulated as

1 L 1 L
h =—| f=+YkN?=—[ f =+ k|Q? =rQ"
L 29[ D+z)v ZgAZ( o> ]Q Q

1 L
where r= f—+>kn=2
2gA2[ D )2 J
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Industrial (commercial) pipe-friction formulas are also used in practice, which are generally of
the form:
LRQ" n
"o T
_ LR

m

R is a resistance coefficient, which, in the case of the Hazen-Williams formula is given as

where r

R =10.675/C,
n = 1.852, and m = 4.8704 and C depends upon the roughness and is given in the following table.
Pipe material and condition C
Extremely smooth, straight pipes; asbestos-cement 140
Very smooth pipes; concrete; new cast iron 130
Wood stave; new welded steel 120
Vitrified clay; new riveted steel 110
Cast iron after years of use 100
Riveted steel after years of use 95
Old pipes in bad condition 60 to 80

Thus compute h = Q" and check if the sum of the head losses is zero. If it is not the

case then adjust the initially assumed flow rate as given below.

o if the initially assumed discharge is Qo and the adjustment that should be made to
have sum of head losses zero is AQ, then head loss for the new discharge is given by

hL =rQ" = r(Qo + AQ)", which can be expanded to get

h, = r[QO” +NQMAQ + ”(1”*_21) Q2 AQ? +j

for a small AQ, higher order terms of this value can be neglected and the equation

approximated as

h, =rQ! +r.nQ!"AQ ,hence

Sh =X>rQ!+>rnQ)"'AQ=0

from which

2.1Q;

AT rnQ

Note: Q" is the algebraic sum of the head losses with due regard to signs whereas

Tr¥n*Q™! is the arithmetic sum without any sign consideration.

o the procedure is repeated until the discharges in the pipes satisfy the two conditions
mentioned at the beginning, i.e. XrQ" = 0 and continuity is satisfied at each node.
When these are satisfied tlle successive values of the corrective discharge, AQ
become very small.

Examples
1) Three pipes are interconnected. The pipes characteristics are as follows:
pipe D(in.) L(ft) F(Moody) L --200 ft

A
A 6 2000 0.02 l=—vp.__ 120f
B g 1600 0.032 B ‘
c 8 4000 0.024
2. 50 fi
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Find the rate at which water will flow in each pipe find also the pressure at point P. all
pipe lengths are much greater than 1000 diameter, therefore minor losses may be
neglected.

Solution:
Apply Bernoulli’s between 1 & 2 through pipe A — C knowing that P =P, =

atmospheric pressure, v,=v,~0, hp=0
Z,-2,=150=h
_ 4f1£1"'.42 + 4lezvcz

2gD, 2gD..
o 0.02x2000xv;  0.024x4000xv]
150 = + =

h,

T e (1)
2¢(6/12) 2¢(8/12)
apply continuity equation,
QA + QB = Qc
36v, +16vy; =64, (2)
Also, i, =y
80vj = 153.6v§ ................. (3)

Solving equations (1), (2) & (3)
vy=7.78 ft/s=> 0,=1.53 ft'/s
Vvg=3.62 ft/s 2 Q= 0.49 ft'/s
ve = 5.88 ft/s = Oc=2.02 f'/s
As a check, Q4 +O5 =0O¢

To find pressure at point P, apply Bernoulli’s between 1 and P through pipe A or
pipe B.
Bernoulli’s through A; knowing that P Lage O,v~0

1
Pp =4.75 ft
As a check, apply Bernoulli’s equation between 2 & P through C Pp =4.75 ft.

Exercises
1) Determine the flow rate in each pipe in the network below using hardy cross
method.
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A B
3 =
10m’/s = C
N
Qﬂ 6m3/s
4m’ls =
< =
E D
Pipe Length (1, m) Diameter (o. mm) Friction factor (f)
AB 200 150
BC 150 150
DC 150 150 0.02
ED 200 150
AE 250 150
BD 250 150

2) Reservoirs A, B and C have constant water levels of 150, 120 and 90 m
respectively above datum and are connected by pipes to a single junction J at
elevation 125 m. The length (L), diameter (D), friction factor (f) and minor-loss
coefficient (K) of each pipe are given below. Calculate flow in each pipe?

A
B
J

C

Pipe L (m) D(m) f K
JA 1600 0.3 0.015 40
JB 1600 02 0.015 25
IC 2400 0.25 0.025 50
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