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3. Closed Conduit Flow 
Flow in closed conduits (pipe, if conduit is circular in section, and duct otherwise) differs from 

that of open channel flow in the mechanism that derives the flow. In the case of open channel 

flow, flow occurs due to the action of gravity. In closed-conduit flow, however, although gravity 

is important, the main driving force is the pressure gradient along the flow. The emphasis of this 

section will be on pipes. 

Flow in pipes is an example of internal flow, i.e., the flow is bounded by the walls, in contrast to 

external flow where the flow is unbounded. For internal flows, the fluid enters the conduit at one 

point and leaves at the other. At the entrance to the conduit there appears what is known as 

entrance region with in which the viscous boundary layer grows and finally at the downstream 

end of this region covers the entire cross section. The flow beyond the entrance region is said to 

have fully developed. The fully developed flow is characterized by a constant velocity profile (for 

a steady flow), a linear drop in pressure with distance, and a constant wall shear stress.  

 

 

The entrance length is 

a function of 

Reynolds number and 

is given by relations 

below: 
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for laminar flow, and  
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for turbulent flow. 
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Laminar flow in pipes 

Recall that flow can be classified into one of two types, laminar or turbulent flow (with a small 

transitional region between these two). The non-dimensional number, the Reynolds number, Re, 

is used to determine which type of flow occurs:  

Laminar flow: Re < 2000  

Transitional flow: 2000 < Re < 4000  

Turbulent flow: Re > 4000  
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Derivation of basic equations of steady laminar flow in pipes 
Consider a case of steady 

laminar flow in a circular pipe 

shown below: 

 
Since the flow is steady 

velocity distribution remains 

the same through out the 

length of the pipe. Hence 

acceleration of the flow is 

zero. Hence the sum of all 

forces for the fluid element 

shown should be zero.  
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but for laminar flow 
dy

dv
   

Substituting this and simplifying one obtains the relationship for velocity as: 
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Thus the velocity distribution in a circular pipe under laminar flow condition is parabolic, with 

maximum value at the center. 
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For a horizontal pipe 
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The discharge through the pipe is obtained as 
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The average velocity, 
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This is known as the Hagen –Poiseuille Formula for Laminar flow 

This equation for head loss due to friction is commonly written as 

g
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Turbulent Flow 

In turbulent flow there is no longer an explicit relationship between mean stress and mean 

velocity gradient u/r (because momentum is transferred more by the net effect of random 

fluctuations than by viscous forces). Hence, to relate quantity of flow to head loss we require an 

empirical relation connecting the wall shear stress and the average velocity in the pipe. 

For turbulent flow, the boundary shear stress is taken as 
2

2V
o


  and the derivation of the 

equation for the friction head loss proceeds in the same way as in the case of laminar flow. 

Consider a segment of an inclined circular pipe conveying a fluid of density ρ and viscosity µ, 

    

 

 

 

 

 

 

 

 

 

 

 

 

   Sin θ = Δz/L 

For steady uniform flow, since there is no acceleration,       ΣF = m a=0 

(P1 – P2)A + γAΔz – τoPL = 0  ,             where P is the wetted perimeter 

Substituting ΔP = (P1- P2) and dividing the whole expression by A, one gets 

ΔP+γΔz = τoL/R       where R = A/P 

Hence (ΔP +γΔz)/γL – ½ λ V2/gR 

But (ΔP+γΔz)/γ = hf 

Thus     
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The last equation for the friction loss in pipes is known as the Darcy-Weisbach equation. f is 

called the Darcy coefficient. This equation also applies for laminar flow with a substitution of 

64/Re for the friction factor. For a turbulent flow f is a function of the Reynolds number and the 

relative wall roughness of the pipe for turbulent flow. 

A graphical summary of past experimental results has been presented by moody. This chart, 

known as the Moody diagram, is a plot of the friction factor as a function of Reynolds number 

and the relative roughness of the pipe wall, i.e. ε/D where ε is the roughness in consistent units. 

An empirical equation for the friction coefficient is also given by Colebrook and White, 
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, which applies in both smooth and rough turbulent zones. 

Hazen-Williams Formula 

The Hazen-Williams Formula has been developed specifically for use with water and has been 

accepted as the formula used for pipe-flow problems in North America. It reads 

       V= 0.849CR0.63 s0.54 

Where:  V = average velocity of flow,(m/s) 

              R = hydraulic radius, m 

              S =  slope of the energy gradient ( s = hL/L) 

              C = a roughness coefficient 

This formula can be rearranged to give 
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Local Losses (Minor Losses) 

In addition to head loss due to friction there are always head losses in pipe lines due to bends, 

junctions, valves etc. Such losses are called Minor losses. For completeness of analysis these 

should be taken into account. In practice, in long pipe lines of several kilometers their effect may 

be negligible but for short pipeline the losses may be greater than those for friction.  

Local losses are usually expressed in terms of the velocity head, i.e. 

            
g

V
kh ii
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     where ki is the minor loss coefficient 

Losses at Sudden Enlargement  

Consider the flow in the sudden enlargement, shown in figure  below, fluid flows from 

section 1 to section 2. The velocity must reduce and so the pressure increases (as follows 

from Bernoulli). At position 1' turbulent eddies occur which give rise to the local head 

loss.  

 
Apply the momentum equation between positions 1 and 2 to give:  

P1A1 – P2 A2 = ρQ(V2 – V1) 

Now use the continuity equation to remove Q. (i.e. substitute Q = A2V2)  
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P1A1 – P2 A2 = ρA2V2(V2 – V1) 

 

Rearranging gives  21
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Now apply the Bernoulli equation from point 1 to 2, with the head loss term hL  
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Combining the two expressions  
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Substituting again for the continuity equation to get an expression involving the two 

areas, (i.e. V2 = V1A1/A2) gives 
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When a pipe expands in to a large tank A1 << A2 i.e. A1/A2 ≈ 0 so ke = 1. That is, the head 

loss is equal to the velocity head just before the expansion into the tank.  
 

In other situations such as bends, junctions, sudden contractions, valves and fittings 

determination analytical values for the loss coefficient is difficult. The loss coefficient is a 

function of the type of obstruction in the flow and its values are given as in the subsequent figures 

and tables. 

The concept of equivalent pipe length 

From the previous discussions it can be observed that all types of energy loss in pipes are 

expressed as a coefficient times the velocity head. Hence if one is interested in the energy loss 

alone, the minor losses can be expressed in terms of a friction loss over an equivalent length of 

the pipe. Hence the equivalent length corresponding to a fitting having the minor loss coefficient 

of k1 can be obtained from 
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In the same way, if a pipe system consists of a series of two pipes having diameters D1 and D2, 

and friction coefficients f1 and f2 , if the head loss is same in both pipe segments for the same Q, 

then two pipes are said to be equivalent. Equivalently the length of, say the second pipe, that 

produces the same total head loss as for the first pipe can be obtained from, 
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Multiple Pipe systems 
In most practical pipe-flow problems the system constitutes multiple pipes joined in different 

ways. Such complex systems can be one or a combination of the following types  

 

i) pipes in series: here one pipe takes the fluid after 

the other so that the same flow rate passes through 

out the entire pipe system. 

 

ii) pipes in parallel: in paraIle1 pipes two or more 

pipes branch from a point (node) and rejoin some 

distance downstream. Hence at the node the flow is 

divided into the pipes whereas the pipes flow under 

the same energy difference between the nodes. 

 

 

iii) Branching pipes: such pipes branch off from the main 

and may return to it. Typical example is pipes that 

convey flow from multiple reservoirs. 

 

iv) Pipe networks: such a system consists of pipes 

interconnected in such a way that the flow makes a circuit. 

 

 

 

 

 

 

Pipes in series 

In such a system the same flow passes through all the pipes involved and hence the usual 

problems are either: 

To determine Q for a given head H, or 

To determine the required head H to maintain a certain flow rate. 

The latter problem is relatively simple as the friction coefficients for each pipe can easily be 

computed.  

 
For datum through B. the energy equation including the loss terms takes the form: 
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Since the flow rate is the same through out the pipes, the above equation can be reduced to 
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To determine the flow rate, since Re is not known, assume values of the friction coefficient for 

the pipes and compute the value of Q from the equation above. With this value of Q compute Re 

and based on ε/D determine f for each pipe. This iterative procedure is repeated until the assumed 

and computed values of the friction coefficient are closer to each other. 

Pipes in parallel 

 
In such arrangements the flow must satisfy: 

             i) Q = Ql + Q2 + Q3 

             ii) hf(A-B) = hfl = hf2 = hf3  

The common types of problems and the recommended procedures are given below. 

i) to determine the discharge Q for a given head difference between A and B. Since in such a 

case, the head loss is known, one can write 
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     and solve for V1 by trial 

Similar equations can be written for the other pipes that make up the system and solved for their 

respective velocities. The total discharge is the sum of the product of the velocities and the cross-

sectional areas. 

ii) the other problem is the determination of the distribution of the discharge among the pipes 

involved given the total flowrate. A step by step procedure for such problems is: 

o Assume a likely discharge in one of the pipes, say pipe 1, as Ql  and compute the head 

loss through the pipe. 

o Using the computed value of the head loss in pipe 1, compute thee discharge through the 

other pipes. 

o Add the computed trial discharges in all the pipes and compare the sum with the given 

total discharge. If the sum is not equal to the total discharge, correct the trial discharges 

by adjusting them as given below 
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o  Compute the head losses again and check if they are equal. 
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Branching pipes 

Such an arrangement of 

pipes falls in neither of the 

above two (i.e. parallel or 

series) categories. The pipes 

do not also from a network 

of complete loops. A typical 

example is the three-

reservoir problem shown in 

the figure. 

 

The problem is often to find 

the flow rate (including the 

direction) in each pipe. As 

the elevation of the HGL at 

the junction is not known, 

the flow can not be readily 

computed. Hence the 

procedure for solution starts by assuming a value for this head at the junction. The flow rate in 

each pipe is then computed for the assumed head at the junction. The flow rates computed in such 

a way are then checked if they satisfy continuity. If the sum of the discharges in the pipes is less 

than zero (with flow away from the junction taken negative), then this is means the assumed head 

is too high and it is reduced for the next trial. The procedure is repeated until the sum of the flow 

rates is very close to zero. 

Pipe networks 

Pipes that are interconnected in such a way that they make loops (or circuits) form a network. In 

such systems the flow in any of the pipes may come from different circuits and as such it is not 

simple to know the direction of flow by observation. Pipe network problems involve the analysis 

of existing systems, i.e. the determination of flow rate in each pipe, pressure at junctions (or 

nodes), the head losses in the pipes and the selection of appropriate material and size. 

The solution of network problems always uses iterative procedures that make use of the following 

two facts: 

o the flow into a junction must equal the flow out of the junction, i.e. at each node (and for 

the entire system) continuity must be satisfied, 

o the algebraic sum of the head losses around any circuit must add up to zero. 

 

Below is outlined a method (commonly known as the Hardy-Cross method. after Prof. 

Hardy Cross) 

o by careful inspection of the network, assume a reasonable distribution of flow rate in the 

pipes so that continuity is satisfied at each node, 

o compute the head loss in each pipe. For this either the Darcy-Weisbach equation can be 

used with the friction coefficient determined from the Moody diagram, or other methods 

as discussed below. The Darcy- Weisbach equation can be reformulated as 
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Industrial (commercial) pipe-friction formulas are also used in practice, which are generally of 

the form: 
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R is a resistance coefficient, which, in the case of the Hazen-Williams formula is given as 

              R = l0.675/C, 

n = 1.852, and m = 4.8704 and C depends upon the roughness and is given in the following table. 

Pipe material and condition                                                                          C 

 

Extremely smooth, straight pipes; asbestos-cement                                    140 

Very smooth pipes; concrete; new cast iron                                                130 

Wood stave; new welded steel                                                                     120 

Vitrified clay; new riveted steel                                                                   110 

Cast iron after years of use                                                                           100 

Riveted steel after years of use                                                                      95     

Old pipes in bad condition                                                                        60 to 80 

Thus compute ΣhL = ΣQn and check if the sum of the head losses is zero. If it is not the 

case then adjust the initially assumed flow rate as given below. 

o if the initially assumed discharge is Qo and the adjustment that should be made to 

have sum of head losses zero is ΔQ, then head loss for the new discharge is given by 

hL = rQn = r(Qo + ΔQ)n, which can be expanded to get 
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 for a small ΔQ, higher order terms of this value can be neglected and the equation 

approximated as 
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from which 
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n
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Qnr

rQ
Q  

Note: ΣQn is the algebraic sum of the head losses with due regard to signs whereas 

Σr*n*Qn-1 is the arithmetic sum without any sign consideration. 

o the procedure is repeated until the discharges in the pipes satisfy the two conditions 

mentioned at the beginning, i.e. ΣrQn = 0 and continuity is satisfied at each node. 

When these are satisfied t11e successive values of the corrective discharge, ΔQ 

become very small. 

Examples 
1) Three pipes are interconnected. The pipes characteristics are as follows: 
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Find the rate at which water will flow in each pipe find also the pressure at point P. all 

pipe lengths are much greater than 1000 diameter, therefore minor losses may be 

neglected. 

 

Solution:  

Apply Bernoulli’s between 1 & 2 through pipe A – C knowing that P
1 

= P
2 

= 

atmospheric pressure, v
1
=v

2
~0, hp = 0  

Z
1 
–Z

2 
= 150 = h

L
 

 
To find pressure at point P, apply Bernoulli’s between 1 and P through pipe A or 

pipe B.  

Bernoulli’s through A; knowing that P
1gage

= 0 , v
1
~ 0  

P
p 

= 4.75 ft  

As a check, apply Bernoulli’s equation between 2 & P through C P
p 

= 4.75 ft.  

Exercises 

1) Determine the flow rate in each pipe in the network below using hardy cross 

method. 
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2) Reservoirs A, B and C have constant water levels of 150, 120 and 90 m 

respectively above datum and are connected by pipes to a single junction J at 

elevation 125 m. The length (L), diameter (D), friction factor (f) and minor-loss 

coefficient (K) of each pipe are given below. Calculate flow in each pipe? 

 

 


