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Causes of slope failure

Excavation of soil at the toe of the slope,

e.g. in order to increase the width of a road

Excavation of soil in front of the toe of the  

slope, e.g. in order to install tubes, cables, etc.

Surface loads,

e.g. traffic or construction machines

Vibration caused by traffic
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Causes of slope failure

Erosion caused by surface water

Seepage flow due to heavy rain falls  

Erosion due to waves

Seepage flow due to fast lowering of water level

Confined (probably artesian) groundwater

Additional horizontal load due to water pressure

in tension cracks
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Shape of the failure surface

• Weathered rock or fissured clay: failure along chasms

• Granular soils without cohesion (c = 0):  

Failure surface = sloping ground surface

• Lightly cohesive soils: shallow slip circle

• Strongly cohesive soils: deep slip circle

• Highly plastic clay (e.g. Montmorillonite):

long, shallow sliding surface, slow movement of mass,  

smooth failure surfaces with very low friction (‘ = 4 – 10°)

• Organic ground: deep slip circle into this weak soil

• Inclined cohesive layer in the ground: Sliding on the

surface of this layer, interface weakened by percolating water
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Possible slope failure mechanisms + analysis methods

2) Planar failure  

(wedge analysis)

1) Infinite slope  

failure
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3) Circular  

failure  

surface

4) Combined mechanisms

(two or more sliding masses)



Possible slope failure mechanisms + analysis methods

• The most unfavourable failure mechanism is usually unknown

• Several possible failure mechanisms and failure surfaces have to be inspected

• The failure mechanism with the lowest safety factor is searched for

• The slope will most likely fail with this mechanism
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Infinite slope failure
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Practical relevance

• Layer of firm soil or weathered rock  

lies parallel to the surface of the slope  

at shallow depth

• Slip surface is constrained to be parallel

to the slope

• If slip surface is long in comparison to depth  

the side forces (earth pressures) El and Er 

can be neglected (El =Er)

• Determination of factor of safety from  

the analysis of an infinite slope

• Due to spatial effects the resistance usually  

is greater, i.e. the analysis is somewhat  

conservative



Infinite slope failure
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No water, soil without cohesion

• Reaction force at rock surface must be  

identical to self-weight W

• Reaction force can be splitted in normal  

component N and tangential component T

• Normal force on shear plane:

𝑁 = 𝑊 ∙ cos𝛽

• Tangential force on shear plane

(= driving force in direction of shear plane):

𝑇 = 𝑊 ∙ sin𝛽

• Maximum tangential force that can be mobilized:

𝑇max = 𝑁 ∙ tan 𝜑′ = 𝑊 ∙ cos 𝛽 ∙ tan𝜑′



Infinite slope failure

No water, soil without cohesion

• Factor of safety (global):

• If FS = 1 (limit equilibrium):

tan 𝛽 = tan 𝜑′

𝛽 = 𝜑′

Maximum inclination of slope  

in non-cohesive soil

= friction angle ‘

𝑇max
𝐹𝑆 =

𝑇

𝑊 ∙ cos 𝛽 ∙ tan𝜑′

=
𝑊 ∙ sin 𝛽

tan𝜑′

=
tan𝛽
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Infinite slope failure

No water, soil without cohesion, 2 layers

• Self-weight W

𝑊 = 𝛾1 ∙ 𝑑1 ∙ 𝑏 + 𝛾2 ∙ 𝑑2 ∙ 𝑏

• Maximum tangential force that can be mobilized:

𝑇max  = 𝑁 ∙ tan 𝜑2
′  = 𝑊 ∙ cos 𝛽 ∙ tan𝜑2

′

• Factor of safety (global):

𝑇max
𝐹𝑆 =

𝑇

𝑊 ∙ cos 𝛽 ∙ tan𝜑2
′

=
𝑊 ∙ sin 𝛽

tan𝜑2
′

=
tan𝛽

Shear strength of the lower layer is decisive
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

Analysis with effective stresses

→ Consideration of buoyant weight W‘  

below the ground water table and  

seepage force Fs

Force polygon:
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

𝐹𝑆 =
𝑇max

=

𝐹𝑠+ (𝑊 + 𝑊 ′) ∙ sin𝛽

(𝑊 + 𝑊 ′) ∙ cos 𝛽 ∙ tan𝜑′

𝑠𝐹 + (𝑊 + 𝑊 ′) ∙ sin𝛽

Analysis with

effective stresses
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• Force equilibrium normal to failure surface

𝑁 ′  = (𝑊 + 𝑊 ′) ∙ cos𝛽

• Force equilibrium parallel to failure surface

𝑇 = 𝐹𝑠+ (𝑊 + 𝑊 ′) ∙ sin𝛽

• Maximum tangential force that can be mobilized:

𝑇max = 𝑁 ′  ∙ tan 𝜑′ = (𝑊 + 𝑊 ′) ∙ cos 𝛽 ∙ tan 𝜑′

• Safety factor:



Infinite slope failure

Water flow parallel to slope, soil without cohesion
Analysis with

effective stresses

• Seepage force:

𝐹𝑠= 𝑓𝑠∙ 𝑉𝑤= 𝑓𝑠∙ 𝑏 ∙ 𝑑𝑤 = 𝛾𝑤 ∙ 𝑖 ∙ 𝑏 ∙ 𝑑𝑤

= 𝛾𝑤 ∙ sin 𝛽 ∙ 𝑏 ∙ 𝑑𝑤

• Self-weight of soil:

𝑊 + 𝑊 ′   = 𝛾 ∙ 𝑏 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑏 ∙ 𝑑𝑤

𝐹𝑆 =

𝑏 ∙ 𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′ ∙ 𝑑𝑤 ∙ cos 𝛽 ∙ tan𝜑′

𝛾𝑤 ∙ sin 𝛽 ∙ 𝑏 ∙ 𝑑𝑤 +𝑏 ∙ 𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′ ∙ 𝑑𝑤 ∙ sin𝛽

𝐹𝑆 =
𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′ ∙ 𝑑𝑤 ∙ tan𝜑′

𝛾𝑤 ∙ 𝑑𝑤 +𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′ ∙ 𝑑𝑤 ∙ tan𝛽
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

• If FS = 1 (limit equilibrium):

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤

𝑤 𝑤 𝑤

tan 𝛽 = tan 𝜑′ ∙
𝛾 ∙ 𝑑 + 𝛾 ∙ 𝑑 − 𝑑 + 𝛾 ′  ∙ 𝑑𝑤

1
= tan 𝜑′ ∙ 1

𝛾 𝑑 𝛾 𝛾′ + 1

𝛾𝑤
∙ 𝑑𝑤

− 𝛾𝑤
+𝛾𝑤

With simplified assumption 𝛾 ≈ 𝛾𝑟= 𝛾 ′  +𝛾𝑤

tan 𝛽 = tan 𝜑′ ∙ 1 − ∙
𝛾𝑤 𝑑𝑤

𝛾𝑟 𝑑

Analysis with

effective stresses
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

• Special case: water level at ground surface:

𝑑𝑤 = 𝑑

Considering 𝛾𝑟≈ 2 ∙ 𝛾𝑤

1
tan 𝛽 = tan 𝜑′ ∙

2

→ Maximum slope angle 

is only half of the friction angle

tan 𝛽 = tan 𝜑′ ∙
𝛾𝑤 𝑑𝑤

1 − ∙
𝛾𝑟 𝑑

𝛾𝑤
= tan 𝜑′ ∙ 1 −

𝛾𝑟

Analysis with

effective stresses
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

• Special case: no water

(as already discussed above)

𝑑𝑤 = 0

tan 𝛽 = tan 𝜑′ ∙
𝛾𝑤 𝑑𝑤

1 − ∙
𝛾𝑟 𝑑

= tan𝜑′
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𝛽 = 𝜑′

Maximum inclination of slope

in non-cohesive soil

= friction angle ‘

Analysis with

effective stresses



Infinite slope failure

Water flow parallel to slope, soil without cohesion

Comparison of bodies with boundaries

being either vertical or perpendicular to

the ground surface

𝐹𝑠= 𝛾𝑤 ∙ sin 𝛽 ∙ 𝑏 ∙ 𝑑𝑤

𝑊 + 𝑊 ′ = 𝛾 ∙ 𝑏 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑏 ∙ 𝑑𝑤

→ Acting forces are identical

→ Solution for safety factor is identical
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Analysis with

effective stresses



Infinite slope failure

Water flow parallel to slope, soil without cohesion

Alternative analysis with total stresses

𝑊𝑟

𝑈

= weight of water-saturated soil

below ground water table

= resulting force of pore water pressure

in failure surface

• Force equilibrium normal and parallel  

to failure surface:

𝑁 ′  + 𝑈 = 𝑊 + 𝑊𝑟 ∙ cos𝛽

𝑇 = 𝑊 + 𝑊𝑟 ∙ sin𝛽

• Maximum shear force that can be mobilized:

𝑇max  = 𝑁 ′  ∙ tan 𝜑′ = 𝑊 + 𝑊𝑟 ∙ cos 𝛽− 𝑈 ∙ tan𝜑′
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Infinite slope failure

Water flow parallel to slope, soil without cohesion

• Factor of safety:

𝐹𝑆 =
𝑇max

𝑇
=

∙ tan𝜑′𝑊 + 𝑊𝑟 ∙ cos 𝛽 −𝑈

𝑊 + 𝑊𝑟 ∙ sin𝛽

+ 𝛾𝑟 ∙ 𝑏 ∙ 𝑑𝑤

Analysis with

total stresses

• Weight of soil

𝑊 + 𝑊𝑟 = 𝛾 ∙ 𝑏 ∙ 𝑑 − 𝑑𝑤

• Pore water pressure U?
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Infinite slope failure
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Water flow parallel to slope, soil without cohesion

Flow net:

• Flow lines run parallel to slope

• Equipotential lines run  

perpendicular to the flow lines

• Hydraulic head is constant  

along equipotential line, i.e.  

piezometer tubes show  

same water level

• Pore water pressure u from

water level in piezometer tube:

𝑢 = 𝛾𝑤 ∙ ℎ𝑢 = 𝛾𝑤 ∙ 𝑑𝑤 ∙ cos2𝛽

• Due to seepage it is not simply

𝑢 = 𝛾𝑤 ∙𝑑𝑤

Analysis with

total stresses



Infinite slope failure

Water flow parallel to slope, soil without cohesion

• Resultant force U of pore water pressure

𝑤 𝑤𝑈 =𝑢 ∙ = 𝛾 ∙ 𝑑 ∙ cos2𝛽 ∙
𝑏 𝑏

cos𝛽 cos𝛽

𝐹𝑆 =

Analysis with

total stresses

= 𝛾𝑤 ∙ 𝑑𝑤 ∙ 𝑏 ∙ cos𝛽

• Setting W + Wr and U into FS leads to:

With

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾𝑟 ∙ 𝑑𝑤 − 𝛾𝑤 ∙ 𝑑𝑤 ∙ tan𝜑′

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾𝑟 ∙ 𝑑𝑤 ∙ tan𝛽

𝛾𝑟= 𝛾 ′  + 𝛾𝑤

𝐹𝑆 =
𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑑𝑤 ∙ tan𝜑′

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 + 𝛾𝑤 ∙ 𝑑𝑤 ∙ tan𝛽

→ same solution as in case of analysis with effective stresses
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Infinite slope failure

𝐶 ′  = 𝑐 ′  ∙ 𝐿 = 𝑐′∙
𝑏

cos𝛽

𝐹𝑆 =
𝑇max

=
𝑁 ′  ∙ tan 𝜑′  + 𝐶′

𝑠
′𝑇 𝐹 + (𝑊 + 𝑊 ) ∙ sin𝛽

𝐹𝑆 =
𝑤 𝑤𝛾 ∙ 𝑑 − 𝑑 + 𝛾′ ∙ 𝑑 ∙ tan 𝜑′  + 𝑐′ ∙ 1

cos2 𝛽

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 + 𝛾𝑤 ∙ 𝑑𝑤 ∙ tan𝛽

Water flow parallel to slope, soil with cohesion

• Maximum tangential force that can be mobilized:

𝑇max = 𝑁 ′  ∙ tan 𝜑′  + 𝐶′

• Cohesion force:

22

• Safety factor



Infinite slope failure

Water flow parallel to slope, soil with cohesion, additional surface load

• Resulting force due to surface load

𝐹𝑆 =
′

𝑠 0𝐹 + (𝑊 + 𝑊 + 𝑃 ) ∙ sin 𝛽

𝐹𝑆 =
𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 0+ 𝑝 ∙ tan 𝜑′  + 𝑐′ ∙ 1

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 + 𝛾𝑤 ∙ 𝑑𝑤 + 𝑝0

cos2 𝛽

∙ tan𝛽

=
𝑊 + 𝑊 ′  + 𝑃0 ∙ cos 𝛽 ∙ tan 𝜑′ +𝐶′

𝐹𝑠+ (𝑊 + 𝑊 ′  + 𝑃0) ∙ sin 𝛽

𝑃0 = 𝑝0 ∙ 𝑏

• Safety factor

𝑁 ′  ∙ tan 𝜑′ + 𝐶′
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Infinite slope failure

Alternative formulation:

𝐹𝑆 =

Water flow parallel to slope, soil with friction and cohesion

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑑𝑤 ∙ tan 𝜑′  + 𝑐′ ∙ 1
cos2 𝛽

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 𝑤 𝑤+ 𝛾 ∙ 𝑑 ∙ tan𝛽

tan𝜑′ 𝑐′
𝐹𝑆 =𝐴 ∙ + 𝐵 ∙

tan𝛽 𝛾𝑟 ∙ 𝑑

𝐴 =
𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑑𝑤

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 + 𝛾𝑤 ∙𝑑𝑤

𝛾 ∙ 𝑑 − 𝑑𝑤 + (𝛾𝑟− 𝛾𝑤) ∙ 𝑑𝑤
=

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾𝑟 ∙ 𝑑𝑤

With 𝑟𝛾 ≈ 𝛾 :
𝛾𝑤 ∙ 𝑑𝑤

𝐴 = 1 −
𝛾𝑟 ∙ 𝑑 𝑤
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= 𝑑: 𝐴 = 0.5With 𝛾𝑟 ≈ 2 ∙ 𝛾𝑤 and 𝑑



Infinite slope failure

𝐹𝑆 =
∙ tan 𝜑′  + 𝑐′ ∙ 1

cos2 𝛽

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾 ′  ∙ 𝑑𝑤 𝑤 𝑤+ 𝛾 ∙ 𝑑 ∙ tan𝛽

tan𝜑′ 𝑐′
𝐹𝑆 =𝐴 ∙ + 𝐵 ∙

tan𝛽 𝛾𝑟 ∙ 𝑑

𝐵 =
𝛾𝑟 ∙ 𝑑

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾𝑟 ∙ 𝑑𝑤 ∙ sin 𝛽 ∙ cos𝛽

With 𝑟𝛾 ≈ 𝛾 : 𝐵 =
1

sin 𝛽 ∙ cos𝛽

Water flow parallel to slope, soil with friction and cohesion

𝛾 ∙ 𝑑 − 𝑑𝑤 + 𝛾′ ∙ 𝑑𝑤
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Alternative formulation:



Infinite slope failure

Water flow parallel to slope, soil with ‘ and c‘

Modified Duncan stability chart



tan𝜑′ 𝑐′
𝐹𝑆 =𝐴 ∙ + 𝐵 ∙

tan𝛽 𝛾 ∙ 𝑑
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Infinite slope failure

Example:

 = r = 20 kN/m3

w = 10 kN/m3

‘ = 20°

c‘ = 50 kPa

From equations:

10 ∙ 4
𝐴 = 1 − = 0.75

𝐵 =

20 ∙ 8

1

sin 30° ∙ cos 30°
= 2.31

𝐹𝑆 = 0.75 ∙
tan 20°

tan 30°
+ 2.31 ∙

50

20 ∙ 8
= 1.19
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Water flow parallel to slope, soil with ‘ and c‘

Modified Duncan stability chart



Infinite slope failure

Example:

 = r = 20 kN/m3

w = 10 kN/m3

‘ = 20°

c‘ = 50 kPa

𝑏 = cot 𝛽 = 1.73

𝑟𝑢
𝑋 𝛾𝑤 4 10

= ∙ ∙ cos2𝛽 = ∙ ∙ cos2

𝑇 𝛾𝑟 8 20
30° = 0.19

A ≈ 0.75
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B ≈ 2.3

→ same solution

Water flow parallel to slope, soil with ‘ and c‘

Modified Duncan stability chart

From diagrams:



Plane failure – wedge analysis

Practical relevance

Plane failure may occur  

in steep slopes if there  

are any predominant  

sliding planes (weak  

surfaces oriented in  

unfavourable directions)
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Plane failure – wedge analysis

No water

𝑇 = (𝑊 + 𝑃) ∙ sin𝜗

1 ℎ
𝑊 = ∙ 𝛾 ∙ ℎ2 ∙ −

ℎ

2 tan𝜗 tan𝛽

𝐶 ′  = 𝑐 ′  ∙ 𝐿 =
𝑐 ′  ∙ ℎ

sin𝜗

𝑃 = 𝑝 ∙ −
ℎ ℎ

tan𝜗 tan𝛽

Acting forces:

𝑁 = (𝑊 + 𝑃) ∙ cos𝜗

= 𝑝 ∙ ℎ ∙ cot 𝜗 − cot𝛽

Maximum shear resistance

on failure plane:

𝑇max = 𝑁 ∙ tan 𝜑′  + 𝐶′

2

1
= ∙ 𝛾 ∙ ℎ2 ∙ cot 𝜗 − cot𝛽
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Plane failure – wedge analysis

No water

Factor of safety:

𝐹𝑆 =
𝑇max

=
𝑁 ∙ tan 𝜑′  + 𝐶′

𝑇 (𝑊 + 𝑃) ∙ sin𝜗

=
(𝑊 + 𝑃) ∙ cos 𝜗 ∙ tan 𝜑′  +𝐶′

(𝑊 + 𝑃) ∙ sin𝜗

=

1 2
2 ∙ 𝛾 ∙ ℎ ∙ cot 𝜗 − cot𝛽 + 𝑝 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ′ 𝑐 ′  ∙ ℎ

∙ cos 𝜗 ∙ tan𝜑 + sin𝜗

2
1 ∙ 𝛾 ∙ ℎ2 ∙ cot 𝜗 − cot𝛽 + 𝑝 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ∙ sin𝜗

=

1 2 ′ 𝑐 ′  ∙ ℎ
2 ∙ 𝛾 ∙ ℎ + 𝑝 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ∙ cos 𝜗 ∙ tan𝜑 + sin𝜗

2
1 ∙ 𝛾 ∙ ℎ2  + 𝑝 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ∙ sin𝜗
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Plane failure – wedge analysis

No water

Special case c‘ = 0, p = 0

𝐹𝑆 =
tan𝜑′

tan𝜗

For FS = 1:

tan 𝜗 = tan 𝜑′

𝜗 =𝜑′

→ Slopes steeper than  = ‘ are not stable
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Plane failure – wedge analysis

No water

Special case c‘  0, p = 0

1 2 ′ 𝑐 ′  ∙ ℎ

𝐹𝑆 = 2 ∙ 𝛾 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ∙ cos 𝜗 ∙ tan𝜑 + sin𝜗

2
1 ∙ 𝛾 ∙ ℎ2 ∙ cot 𝜗 − cot𝛽 ∙ sin𝜗

For FS = 1:
2

𝑐 ′  = 
𝛾 ∙ ℎ

∙ cot 𝜗 − cot𝛽 ∙ (sin𝜗 − cos𝜗 ∙ tan𝜑′) ∙ sin𝜗

𝑐 ′  = 𝛾 ∙ ℎ ∙𝐾𝑐

𝑐 2

1
𝐾 = ∙ cot 𝜗 − cot𝛽

33

∙ (sin𝜗 − cos𝜗 ∙ tan𝜑′) ∙ sin𝜗

Kc = cohesion factor



Plane failure – wedge analysis

No water

𝛽 + 𝜑′
𝜗0 =

2

• Variation of  in order to find the failure plane with the lowest safety factor

→ Slope will most likely fail under this 

34

• In this case the minimum FS is found for



Plane failure – wedge analysis

No water

Special case c = cu,  = 0, p = 0

𝑇

𝑇max
𝐹𝑆 = =

𝐶𝑢

=

𝑊 ∙ sin𝜗

2 ∙ 𝑐𝑢

𝛾 ∙ ℎ ∙ cot 𝜗 − cot𝛽 ∙ sin2𝜗

For FS = 1: 𝑢 2

𝛾 ∙ ℎ
𝑐 = ∙ cot 𝜗 − cot𝛽 ∙ sin2𝜗

𝑐𝑢 = 𝛾 ∙ ℎ ∙ 𝐾𝑐𝑢

𝑐 2

1
𝐾 = ∙ cot 𝜗 − cot𝛽 ∙ sin2𝜗

Searching  for smallest FS leads to
𝛽

𝜗0  = 2
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Plane failure – wedge analysis

𝑢 2

𝛾 ∙ ℎ
𝑐 = ∙ cot − cot𝛽 ∙ sin2

𝛽

2

0For FS = 1 with 𝜗 = 
𝛽

:
2

No water

Special case c = cu,  = 0, p = 0

Vertical excavation:  = 90°

2

𝛾 ∙ ℎ
= ∙ cot

𝛽

2

90°

2
− cot(90°) ∙ sin2

90°

2

𝛾 ∙ ℎ
𝑐𝑢 =

4

𝑐

4 ∙ 𝑐𝑢
ℎ = ℎ =

𝛾
Free standing height:

36

A vertical excavation can be  

undertaken without a wall  

up to this depth



Plane failure – wedge analysis

No water

Special case c = cu,  = 0, p = 0

Vertical excavation:  = 90°

Comparison to solution from earth

pressure theory (lecture Soil Mechanics)

• Maximum (= active) earth pressure obtained from ∂E/∂ = 0:

• Free standing height

without wall from Ea  =0:

𝜗𝑎 = 45° 𝐸𝑎 = ∙ 𝛾𝑟 ∙ ℎ2 − 2 ∙ 𝑐𝑢 ∙ ℎ

𝑐

4 ∙ 𝑐𝑢
ℎ =

𝛾𝑟

37
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𝐹𝑆 =
𝑇max

𝑇
=

𝑁′ ∙ tan 𝜑′ + 𝐶′ (𝑊 + 𝑊′) ∙ cos 𝜗 ∙ tan 𝜑′  +𝐶′
𝑊 + 𝑊 ′ ∙ sin 𝜗 + 𝐹

=
𝑊 + 𝑊 ′ ∙ sin 𝜗 +𝐹

𝑠 𝑠

𝐹𝑠= 𝑓𝑠∙ 𝐴2 = 𝛾𝑤 ∙ 𝑖 ∙ 𝐴2 = 𝛾𝑤 ∙ sin 𝜗 ∙ 𝐴2

𝑊 = 𝛾 ∙ 𝐴1  = 𝛾 ∙ 𝐴 − 𝐴2 𝑊 ′  = 𝛾′ ∙𝐴2

38

A1, A2 = cross-sectional areas  

within wedge above and below  

ground water table

Plane failure – wedge analysis

Seepage flow within wedge  

Analysis with effective stresses

Fs acts approximately  

parallel to failure plane



𝐹𝑆 =
𝑇max 𝑁 ′  ∙ tan 𝜑′  + 𝐶′

𝑇 𝑊 + 𝑊𝑟 ∙ sin𝜗
= =

𝑊 + 𝑊𝑟 ∙ cos 𝜗− 𝑈 ∙ tan 𝜑′  +𝐶′

𝑊 + 𝑊𝑟 ∙ sin𝜗

2𝑊𝑟 = 𝛾𝑟 ∙ 𝐴2 = 𝛾 ′ + 𝛾𝑤 ∙ 𝐴 = 𝑊 ′ +
𝑈

cos𝜗
= 𝑊 ′ +

𝐹𝑠

sin𝜗

A1, A2 = cross-sectional areas  

within wedge above and below  

ground water table

𝑈 = 𝛾𝑤 ∙ 𝐴2  ∙ cos 𝜗

𝑊 = 𝛾 ∙ 𝐴1  = 𝛾 ∙ 𝐴 − 𝐴2

Plane failure – wedge analysis

Seepage flow within wedge  

Analysis with total stresses

=
(𝑊 + 𝑊′) ∙ cos 𝜗 ∙ tan 𝜑′ + 𝐶′

𝑊 + 𝑊 ′ ∙ sin 𝜗 +𝐹𝑠
Same solution as with effective stresses
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Plane failure – wedge analysis

Homogenization of soil parameters in case of two layers

1𝛾 = 𝛾 ∙ 1 −
ℎ2

ℎ

2

2+ 𝛾 ∙
ℎ2

ℎ

2

ℎ2
𝑐 = 𝑐1 ∙ 1 − + 𝑐2 ∙

ℎ2

ℎ ℎ

1tan𝜑 = tan𝜑 ∙
ℎ1

ℎ

2

2+ tan𝜑 ∙ 1 −
ℎ1

ℎ

2

Slope stability is analyzed with these averaged parameters

1𝜑 ≈ 𝜑 ∙
ℎ1

ℎ

2

2+ 𝜑 ∙ 1 −
ℎ1

ℎ

2
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Circular failure surface

• Collin (1847) observed slope failures in overconsolidated clay with

curved failure surfaces

• Fellenius (1926) proposed to approximate the failure surface by a circle  

(so-called slip circle) passing the base point of the slope

41



Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

• Self-weight W

𝑊 = 𝑚𝑤 ∙ 𝛾 ∙ ℎ2

mw = factor ofgeometry

𝑚𝑤 = 𝑓(𝛽, 𝜗,𝜓)

W acts in center of gravity  

of sliding mass, in distance  

rW to center of slipcircle

𝑛𝑤 = 𝑓(𝛽, 𝜗,𝜓)

𝑟𝑤= 𝑛𝑤 ∙ ℎ
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Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

• Cohesion C

− Differential cohesion  

forces c ∙ ds along failure  

plane are added to a  

resulting vector C

− The same C is obtained

if c is multiplied with the

length of the chord

− C acts parallel to the chord

𝐶 = 2 ∙ 𝑐 ∙ 𝑅 ∙ sin 𝜓/2
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Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

• Cohesion C

− Moment of differential cohesion forces  

c ds around center point of slip circle:

𝑀𝑐= 𝑅 ∙ 𝑐 ∙ ds = 𝑅 ∙ 𝑐 ∙ 𝑅 ∙ d𝜓

= 𝑐 ∙ 𝑅2 ∙ 𝜓 = 𝐶 ∙ 𝑟𝑐

𝑀𝑐
𝑟𝑐 =

𝐶

𝑐 ∙ 𝑅2 ∙𝜓
=

2 ∙ 𝑐 ∙ 𝑅 ∙ sin 𝜓/2

𝜓[rad]
𝑟𝑐= 𝑅 ∙ 

2 ∙ sin 𝜓/2

Failure analysis with slip circles is based on momentum equilibrium

→ it is important to consider the exact moment Mc
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Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

• Force N acts normal to the  

failure plane

• In order to fulfill equilibrium  

of momentum the line of  

application of N passes the  

intersection point of W and C

• Line of application of N passes  

the center of the slip circle,  

since all stresses  act

normal to failure surface,

i.e. N causes no moment

around center point of slip circle
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Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

Necessary cmin for preventing slope failure  

from either force equilibrium (force polygon)  

or equilibrium of momentum:

𝑀𝑊 = 𝑀𝑐 𝑊 ∙ 𝑟𝑊= 𝐶 ∙ 𝑟𝑐

𝑚𝑊 ∙ 𝛾 ∙ ℎ2 ∙ 𝑛𝑊 ∙ ℎ = 𝑐min ∙ 𝑅2 ∙𝜓

𝑐min =
𝑚𝑊 ∙ 𝑛𝑊 ∙ 𝛾 ∙ℎ3

𝑅2 ∙𝜓

𝑚𝑊 ∙ 𝑛𝑊 ∙ ℎ2

𝐾𝑐 =
𝑅2 ∙𝜓

𝑐min = 𝐾𝑐 ∙ 𝛾 ∙ ℎ
Kc =  

cohesion  

factor

Factor

of safety:

𝑐
𝐹𝑆 =

𝑐min

𝑐
=
𝐾𝑐 ∙ 𝛾 ∙ ℎ

c = cohesion of soil determined from

laboratory tests (e.g. cu from UU triaxial tests)
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Circular failure surface

Analysis without slices

Frictionless soil with cohesion  

(e.g. cu  0, u = 0)

Variation of geometry (,), until the failure  

circle with the lowest safety factor (highest Kc)  

is found → corresponding parameters 0, 0

Solution in form

of diagrams:
Solid lines:

= Failure circles

Dashed line

= wedge failure  

(overestimates  

FS !)
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Circular failure surface

48

Analysis without slices

Soil with friction and cohesion  

(i.e. c‘  0, ‘ 0)

• W and C identical

to last example

• Line of application  

of reaction force Q  

passes intersection  

point of W and C

• Line of application  

of Q touches the

„friction circle“

with radius

𝑟𝑄= 𝑅 ∙ sin 𝜑′



Circular failure surface

Analysis without slices

Friction circle

• Incremental forces

along failure surface:

𝑑𝑁′  = 𝜎′ ∙ 𝑑𝑠 𝑑𝑇 = 𝜏 ∙ 𝑑𝑠

𝑑𝑄 = 𝑑𝑁′ 2 + 𝑑𝑇

49

2

• In failure state:

𝜏 = 𝜎′ ∙ tan𝜑′

𝑑𝑇 = 𝑑𝑁′ ∙ tan𝜑′

• All incremental forces dQ

touch circle with radius rQ

𝑟𝑄= 𝑅 ∙ sin 𝜑′



Circular failure surface

• Necessary c‘min for preventing

slope failure from force polygon: 𝑐′min = 𝐾𝑐 ∙ 𝛾 ∙ ℎ

• Safety factor:
𝑐′

𝐹𝑆 =
𝑐′min

𝑐′
=
𝐾𝑐 ∙ 𝛾 ∙ ℎ

Analysis without slices

Soil with friction and cohesion  

(i.e. c‘  0, ‘ 0)

Two possibilities for global safety factor:

1. Via cohesion

• The radius rQ is calculated with the

effective friction angle ‘ of the soil

(e.g. from laboratory tests)
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Circular failure surface

• Safety factor: 𝐹𝑆 = tan 𝜑′ / tan(𝜑′min)

Analysis without slices

Soil with friction and cohesion  

(i.e. c‘  0, ‘ 0)

Two possibilities for global safety factor:

2. Via friction angle

• C‘ is calculated with the cohesion  

c‘ of the soil (e.g. from laboratory)

• The force polygon delivers the

direction of the line of application of Q

• The line of application of Q is layed through the intersection point of W and C‘

• The friction circle is constructed around the center point of the slip circle,  

touching the line of application of Q → radius rQ → necessary friction angle ‘min
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Circular failure surface

52

Analysis without slices

Soil with friction and cohesion  

(i.e. c‘  0, ‘ 0)

• Variation of geometry  

until minimum of  

safety factor is found

• Solution in form  

of diagrams:

• No cohesion

necessary in

case of  = ‘



Circular failure surface

Analysis without slices

Soil with friction and cohesion  

(i.e. c‘  0, ‘ 0)

• Another  

representation  

of the same  

relationship  

by Taylor

𝐾
𝑐′min

𝑐 = 
𝛾 ∙ 𝐻

Kc is called

„stability number“

in this chart

𝐷 =𝑇/𝐻

53

Dotted lines  

consider



Circular failure surface

• Slope with two different inclinations

Analysis with substitutional height ℎ,  

so that the sliding mass is identical for

the original and the simplified geometry

Analysis without slices

Simplifications in case of more complicated geometry

• Slope with berm:

Analysis with average inclination 𝛽
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− Replacement of p by increasing the

height from h by ℎ𝑝 = 𝑝/𝛾 toℎ

− Over the height hp there is no shear  

strength along the failure plane

→ application of averaged shear  

strength parameters 𝑐, 𝜑 necessary  

(appropriate formulas are given later)

Leads to deep slip circles with

toe in considerable distance to the  

base of the slope

→ simplification not meaningful

• Distributed load of magnitude 𝑝 ≤ 𝛾 ∙ ℎ/3

• Larger distributed load

Circular failure surface

Analysis without slices  

Consideration of surface loads
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Circular failure surface

Analysis without slices  

Consideration of surface loads

(traffic loads)

56

• Traffic loads are only set  

into approach outside the  

friction circle because inside  

that circle they increase

the resistance

• A detailed explanation is  

given later based on the  

analysis methods using  

slices



Circular failure surface

Homogenization of soil parameters in case of two layers

• Specific weight:

Averaged soil  

parameters:

𝛾1 ∙ 𝐴1 + 𝛾2 ∙𝐴2
𝛾 =

𝐴1 +𝐴2

• Cohesion:

𝑐1 ∙ 𝜓1 + 𝑐2 ∙ 𝜓2
𝑐 =

𝜓1 +𝜓2

• Friction angle:

𝜑1 ∙ 𝑧1 ∙ 𝜓1 + 𝜑2 ∙ 𝑧2 ∙𝜓2
𝜑 =

𝑧1 ∙ 𝜓1 + 𝑧2 ∙ 𝜓2

A1, A2 = cross-sectional areas of soils 1 and 2 in the sliding mass  

P1, P2 = center points of the failure surface in soils 1 and 2
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Circular failure surface

Analysis without slices  

Seepage forces and

surface loads
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Circular failure surface

Analysis without slices  

Step 1:

Summation of all  

vertical forces

𝑅1 = 𝑃 + 𝑊 + 𝑊′

𝑊 = 𝛾 ∙𝐴1

𝑊′ = 𝛾′ ∙ 𝐴2

Distance of R1 from

center point:

𝑟𝑅1 =
𝑊 ′  ∙ 𝑟1 + 𝑊 ∙ 𝑟2 + 𝑃 ∙ 𝑟3

𝑃 + 𝑊 + 𝑊′
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Circular failure surface

Analysis without slices  

Step 1:

Summation of all  

vertical forces
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Circular failure surface

Analysis without slices  

Step 2:

Summation of R1 and  

seepage force Fs

→ resulting force R2

𝐹𝑠= 𝑓𝑠∙ 𝐴2 = 𝛾𝑤 ∙ 𝑖 ∙ 𝐴2

= 𝛾𝑤 ∙ sin 𝛽𝑤 ∙𝐴2

Fs acts in the center of  

gravity S2 of area A2  

below ground water table

Lines of application of R1  

and Fs intersect in pointP1
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Circular failure surface

Analysis without slices  

Step 2:

Summation of R1 and  

seepage force Fs

→ resulting force R2

Line of application of R2  

is obtained from the  

force polygon and  

shifted parallelly

into the cross-sectional  

plan passing point P1
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Circular failure surface

Analysis without slices  

Step 3:

Summation of R2 and  

effective cohesion force C‘

→ resulting force R3

𝐶 ′  = 2 ∙ 𝑐′ ∙ 𝑅 ∙ sin 𝜓/2

𝜓[rad]
𝑟𝑐= 𝑅 ∙ 

2 ∙ sin 𝜓/2

Lines of application of R2  

and C‘ intersect in point P2
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Circular failure surface

Analysis without slices  

Step 3:

Summation of R2 and  

effective cohesion force C‘

→ resulting force R3

Line of application of R3  

is obtained from the  

force polygon and  

shifted parallelly

into the cross-sectional  

plan passing point P2
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Circular failure surface

Analysis without slices  

Step 4:

Determination of

friction angle ‘min being  

necessary for slope stability

• Reaction force Q in  

failure surface has same  

magnitude as R3 but acts  

in opposite direction

• Line of application of Q  

touches the friction circle  

with radius

𝑟𝑄= 𝑅 ∙ sin 𝜑′min
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Circular failure surface

Analysis without slices  

Step 5:

𝐹𝑆 =

Calculation of  

safety factor

tan𝜑′

tan(𝜑′min)

‘ = effective friction  

angle of the soil

Alternative:

Safety factor via cohesion  

(similar as explained above)
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Circular failure surface

Analysis without slices

Different equivalent methods  

to consider buoyant forces

Method 1: 𝑊 + 𝑊 ′  = 𝛾 ∙ 𝐴1 + 𝛾′ ∙𝐴2

Method 2: 𝑊 + 𝑊 ′  = 𝑊∗ − 𝐵 = 𝛾 ∙ (𝐴1+𝐴2) − (𝛾 − 𝛾′) ∙ 𝐴2
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Circular failure surface

Analysis without slices

Slope stability charts  

of Hoek & Bray

• Different charts for different conditions of ground water within the slope

• Slip circle starts from a tension crack at surface and runs through the toe of

the slope

• Charts can be used for an estimation of safety factor FS or for a backanalysis  

of the shear strength parameters from an existing slide
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Circular failure surface

Analysis without slices

Slope stability charts  

of Hoek & Bray

x/h = 8

x/h = 4

x/h = 2
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Circular failure surface

Analysis without slices

Slope stability charts  

of Hoek & Bray

Chart No. 1:

H = height of slope  

F = safety factor
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Circular failure surface

Analysis without slices

Slope stability charts  

of Hoek & Bray

71

Chart No. 3:



Circular failure surface

Analysis without slices

Slope stability charts of Hoek & Bray

1. Decide upon the groundwater conditions  

which are believed to exist in the slope.  

Choose the corresponding chart

2. Estimate shear strength and unit weight  

and simplify the geometry in order to  

get h and 

3. Calculate the dimensionless ratio 𝑐′/ 𝛾 ∙ ℎ ∙ tan𝜑′
and find this ratio on the outer scale of the chart

4. Follow the radial line from the value found in step 3 to its intersection with  

the curve which corresponds to the slope angle 

5. Find the corresponding value of tan 𝜑′ /𝐹𝑆 at the ordinateand

𝑐′/  𝛾 ∙ ℎ ∙ 𝐹𝑆 at the abscissa and calculate the factor of safety FS

72



Circular failure surface

Analysis without slices

Slope stability charts of Hoek & Bray

Additional charts are available for the  

determination of the position of the  

tension crack and the critical slip circle  

(not presented herein)
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Circular failure surface

Analysis with slices

• Sliding mass is divided in several slices

• 3 to 10 slices usually are sufficient

• A larger number of slices does not  

lead to a higher accuracy because  

of the uncertainties in the shear  

strength parameters and the water

levels / pore water pressures assumed  

in the analysis

• Division into slices should be adapted  

to the soil layers (only one type of soil  

in failure surface of a certain slice)  

and surface loads (border between  

two slices coincides with start and  

end points of distributed loads)
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Circular failure surface

75

Analysis with slices

• The available methods differ  

with respect to the definition of  

safety factor and assumptions  

on forces acting on a slice

Wi = total weight of the slice

( above water level,

r below)

Pi = surface load

Eli, Eri = earth pressures on both sides of slice

Uli, Uri = water pressures on both sides of slice

Ti = shear force in failure surface

Ni‘ = effective normal force in failure surface

Ui = resultant force of pore water pressure in failuresurface



Circular failure surface

Analysis with slices

Ordinary method (Fellenius, 1936)

Force equilibrium in direction

perpendicular to the failure surface

𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜗𝑖= 𝑁 ′  + 𝑈𝑖

Maximum shear force that can be

mobilized in failure surface:

𝑇𝑖,max = 𝑁 ′  ∙ tan 𝜑′𝑖 +𝐶𝑖′

= 𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜗𝑖−𝑈𝑖

Total resisting moment:

76

𝑀res = 𝑇𝑖,max ∙ 𝑅

∙ tan 𝜑𝑖′ +𝐶𝑖′

Lateral forces on  

slice are assumed to

compensate each other



Circular failure surface

Analysis with slices

Ordinary method (Fellenius, 1936)

Total driving moment:

𝑀driv  =         𝑊𝑖 + 𝑃𝑖 ∙ 𝑅 ∙ sin𝜗𝑖

Global safety factor:

𝑀res
𝐹𝑆 =

𝑀driv

𝑈 = 𝑢 ∙ 𝐿 = 𝑢 ∙
𝑏𝑖

𝐶 ′ = 𝑐 ′ ∙ 𝐿 = 𝑐 ′ ∙
𝑏𝑖

𝐹𝑆 =
𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜗𝑖 − 𝑈𝑖 ∙ tan 𝜑𝑖′ +𝐶𝑖′

𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

(Radius R can  

be eliminated)

cos𝜗𝑖 cos𝜗𝑖
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Circular failure surface

Analysis with slices  

Method of Krey

𝑇𝑖,max = 𝑁 ′  ∙ tan 𝜑𝑖′ +𝐶𝑖′

Force equilibrium in vertical direction

𝑊𝑖 +𝑃𝑖 = 𝑁 ′ + 𝑈𝑖 ∙ cos 𝜗𝑖+ 𝑇𝑖 ∙ sin𝜗𝑖
𝑖

Assumption of limit equilibrium:

𝑇𝑖= 𝑇𝑖,max

Maximum shear force that can be  

mobilized in failure surface:

𝑇𝑖,max −𝐶𝑖′

78

𝑁 ′ = ∙ cot𝜑𝑖
′ Lateral forces on  

slice are assumed to

compensate each other



Circular failure surface

Analysis with slices  

Method of Krey

Force equilibrium in vertical direction

∙ cos 𝜗𝑖+ 𝑇𝑖 ∙ sin𝜗𝑖

𝑇𝑖,max −𝐶𝑖′

𝑊𝑖 +𝑃𝑖 = 𝑁 ′  + 𝑈𝑖

𝑊𝑖 +𝑃𝑖 = ∙ cot 𝜑𝑖
′ + 𝑈𝑖 ∙ cos 𝜗𝑖+ 𝑇𝑖,max ∙ sin𝜗𝑖

𝑇𝑖,max =
𝑊𝑖+ 𝑃𝑖+ 𝐶 ′  ∙ cot 𝜑𝑖

′  ∙ cos 𝜗𝑖− 𝑈𝑖 ∙ cos𝜗𝑖

cot 𝜑𝑖
′  ∙ cos 𝜗𝑖+ sin𝜗𝑖

𝑈𝑖= 𝑢𝑖 ∙ 𝐿𝑖 = 𝑢𝑖 ∙
𝑏𝑖

cos𝜗𝑖
𝐶𝑖′ = 𝑐𝑖′ ∙ 𝐿 = 𝑐 ′ ∙

𝑏𝑖

cos𝜗𝑖

𝑇𝑖,max =
𝑊𝑖+ 𝑃𝑖+ 𝑐 ′  ∙ 𝑏𝑖 ∙ cot 𝜑𝑖

′  − 𝑢𝑖 ∙𝑏𝑖

cot 𝜑𝑖
′  ∙ cos 𝜗𝑖+ sin 𝜗𝑖
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Circular failure surface

Analysis with slices  

Method of Krey

Total resisting moment

𝑀driv = 𝑊𝑖+𝑃𝑖 ∙ 𝑅 ∙ sin𝜗Total driving moment

𝑀res = 𝑇𝑖,max ∙ 𝑅

Global safety factor:

𝐹𝑆 =
𝑀

=
𝑀driv

res

𝑊𝑖+ 𝑃𝑖+ 𝑐 ′  ∙ 𝑏𝑖 ∙ cot 𝜑𝑖
′  − 𝑢𝑖 ∙ 𝑏𝑖

′
𝑖cot𝜑 ∙ cos𝜗 + sin𝜗

𝑊𝑖+
𝑃𝑖

𝑖 𝑖

∙ sin𝜗𝑖

(Radius R has been eliminated in enumerator and denominator)
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)

𝑇𝑖,max = 𝑁 ′  ∙ tan 𝜑𝑖
′  + 𝐶𝑖′

Force equilibrium in vertical direction

𝑊𝑖 +𝑃𝑖 = 𝑁 ′ + 𝑈𝑖 ∙ cos 𝜗𝑖+ 𝑇𝑖 ∙ sin𝜗𝑖
𝑖

Shear strength is assumed to be  

only partially mobilized

1
𝑇𝑖= 

𝐹𝑆
∙ 𝑇𝑖,max

𝑇𝑖,max −𝐶𝑖′𝑁 ′ = ∙ cot𝜑𝑖
′

𝑁 ′ = 𝐹𝑆 ∙ 𝑇𝑖 − 𝐶𝑖′ ∙ cot𝜑𝑖
′

81

Lateral forces on  

slice are assumed to

compensate each other



Force equilibrium in vertical direction

𝑊𝑖 +𝑃𝑖 = 𝑁 ′ + 𝑈𝑖 ∙ cos 𝜗𝑖+ 𝑇𝑖 ∙ sin𝜗𝑖

𝑊𝑖+ 𝑃𝑖= 𝐹𝑆 ∙ 𝑇𝑖 − 𝐶𝑖′ ∙ cot 𝜑𝑖
′ + 𝑈𝑖 ∙ cos 𝜗𝑖+ 𝑇𝑖 ∙ sin𝜗𝑖

𝑇𝑖=
𝑊𝑖+ 𝑃𝑖+ 𝐶 ′  ∙ cot 𝜑𝑖

′  ∙ cos 𝜗𝑖− 𝑈𝑖 ∙ cos𝜗𝑖

𝐹𝑆 ∙ cot 𝜑𝑖
′  ∙ cos 𝜗𝑖+ sin𝜗𝑖

𝑈𝑖= 𝑢𝑖 ∙ 𝐿𝑖 = 𝑢𝑖 ∙
𝑏𝑖

cos𝜗𝑖
𝐶𝑖′ = 𝑐𝑖′ ∙ 𝐿 = 𝑐 ′ ∙

𝑏𝑖

cos𝜗𝑖

𝑇𝑖=
𝑊𝑖+ 𝑃𝑖+ 𝑐 ′  ∙ 𝑏𝑖 ∙ cot 𝜑𝑖

′  − 𝑢𝑖 ∙ 𝑏𝑖

𝐹𝑆 ∙ cot 𝜑𝑖
′  ∙ cos 𝜗𝑖+ sin𝜗𝑖

=
𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 ∙ tan 𝜑𝑖

′  + 𝑐 ′  ∙ 𝑏𝑖

𝐹𝑆 ∙ cos 𝜗𝑖+ sin 𝜗𝑖 ∙ tan 𝜑𝑖
′

Circular failure surface

Analysis with slices  

Method of Bishop (1955)
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)

Total resisting moment

∙ 𝑅 ∙ sin𝜗𝑖

𝑀res = 𝑇𝑖,max ∙ 𝑅 = 𝐹𝑆 ∙ 𝑇𝑖 ∙𝑅

Total driving moment 𝑀driv = 𝑊𝑖+𝑃𝑖

Global safety factor:

𝐹𝑆 =
𝑀res

𝑀driv
=

𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 ∙ tan 𝜑𝑖
′  + 𝑐 ′  ∙ 𝑏𝑖

1
cos 𝜗𝑖+ 𝐹𝑆 ∙ sin 𝜗𝑖 ∙ tan 𝜑𝑖

′

𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

(Radius R has been eliminated in enumerator and denominator)
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Iterative determination  

of FS necessary, since  

FS is present on both  

sides of equation



Circular failure surface

Analysis with slices  

Method of Bishop (1955)

Additional external moments not captured in  

the forces considered so far:

𝐹𝑆 =
𝑀res

𝑀driv
=

𝑅 ∙ 
𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 ∙ tan 𝜑𝑖

′  + 𝑐 ′  ∙ 𝑏𝑖
1

cos 𝜗𝑖+ 𝐹𝑆 ∙ sin 𝜗𝑖 ∙ tan 𝜑𝑖
′

± 𝑀res,add

𝑅 ∙ 𝑊𝑖+ 𝑃𝑖 ∙ sin 𝜗𝑖±𝑀driv,add
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)  

Example: Anchors
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)  

Example: Anchors

86

• Only anchors lying outside  

slip circle cause additional  

force in failure surface  

and thus additional  

external moment

• Anchors inside slip  

circle are not  

considered, they  

are causing  

internal forces  

only



Circular failure surface

Analysis with slices  

Method of Bishop (1955)  

Example: Anchors

Additional tangential force in  

failure surface due to anchor:

𝐹𝐴𝑡= 𝐹𝐴 ∙ cos 𝜗𝑖+𝛼𝐴

Additional moment resulting  

from this tangential force

(acting against sliding direction):

𝑀𝐴𝑡 = −𝐹𝐴𝑡 ∙ 𝑅 = −𝐹𝐴 ∙ cos  𝜗𝑖 + 𝛼𝐴 ∙ 𝑅

87

Additional force in vertical direction: 𝐹𝐴𝑣= 𝐹𝐴∙ sin𝛼𝐴



Circular failure surface

Analysis with slices  

Method of Bishop (1955)  

Example: Anchors

88

• Prestressed and

non-prestressed

anchors have to

be distinguished

• Prestressed anchors:  

FA0 is considered on  

the side of driving  

moments (reducing)

• Non-prestressed anchors: FA is considered on the side of resisting moments  

(increasing)



Circular failure surface

Analysis with slices  

Method of Bishop (1955)  

Example: Anchors

res𝑀 = 𝑅 ∙ 𝐹𝑆

1
𝑊𝑖 +𝑃𝑖 + ∙ 𝐹𝐴𝑖 ∙ sin 𝛼𝐴𝑖+ 𝐹𝐴0𝑖 ∙ sin 𝛼𝐴0𝑖− 𝑢𝑖 ∙𝑏𝑖 ∙ tan 𝜑𝑖

′  + 𝑐 ′  ∙ 𝑏𝑖

cos𝜗 +
1
𝐹𝑆

∙ sin 𝜗𝑖 ∙ tan𝜑𝑖 ′

Safety factor:

𝑀res
𝐹𝑆 =

𝑀driv

+𝑅 ∙ 𝐹𝐴𝑖 ∙ cos 𝜗𝑖+𝛼𝐴𝑖

𝑀driv = 𝑅 ∙ 𝑊𝑖+𝑃𝑖 ∙ sin 𝜗𝑖− 𝐹𝐴0𝑖 ∙ cos 𝜗𝑖+𝛼𝐴0𝑖
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)

90

Example: Piles

• Additional external force

and moment due to piles

cut by the failure surface

only

• Piles fully lying within  

slip circle are considered  

by an increased

self-weight only

(Concrete = 25 kN/m3)



Circular failure surface

Analysis with slices  

Method of Bishop (1955)

Example: Piles

• Safety factor:

𝐹𝑆 =
𝑀res

𝑀driv
=

𝑅 ∙
𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 ∙ tan 𝜑′  + 𝑐 ′  ∙ 𝑏𝑖+ 𝑅𝑠𝑖 ∙ cos𝜗𝑖

1
cos 𝜗𝑖+ 𝐹𝑆 ∙ sin 𝜗𝑖 ∙ tan 𝜑′

𝑅 ∙ 𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖
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Circular failure surface

Analysis with slices  

Method of Bishop (1955)

𝐹𝑆 =
𝑀res

𝑀driv
=

𝑅 ∙ 
𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 + 𝑈𝐹𝑊,𝑖 ∙ cos𝛽 ∙ tan 𝜑′  + 𝑐 ′  ∙ 𝑏𝑖

1
cos 𝜗𝑖+ 𝐹𝑆 ∙ sin 𝜗𝑖 ∙ tan 𝜑′

𝑅 ∙ 𝑊𝑖 + 𝑃𝑖 ∙ sin 𝜗𝑖−𝑀add,𝑈

𝑀add,U = 𝑈𝐹𝑊,𝑖 ∙ 𝑟𝑈𝐹𝑊,𝑖

Example: Free water

Additional moment

(acts against sliding direction):

Additional vertical force: 𝑈𝐹𝑊,𝑖 ∙ cos𝛽
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Circular failure surface

𝐹𝑆 =
𝑊𝑖 + 𝑃𝑖 ∙ cos𝜗𝑖 ∙ tan𝜑𝑖′

𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

Analysis with slices

Traffic loads

Safety factor from ordinary  

method with Ui = 0, C‘i = 0

93

For i <‘:

𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

< 𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜗𝑖 ∙ tan𝜑′

= 𝑁𝑖 ∙ tan 𝜑′

sin 𝜗𝑖< cos 𝜗𝑖 ∙ tan𝜑′



Circular failure surface

Analysis with slices

Traffic loads

For i <  additional driving force and moment due to Pi is smaller than  

additional resisting force and moment due to Pi

→ Pi has positive effect on slope stability

→ Traffic loads must not be set into approach inside friction circle

94

Example:

i = 20°:

i = 30°:

i = 40°:

‘ = 30°

sin(20°) < cos(20°) ∙ tan(30°)  

0.34 < 0.54

sin(30°) = cos(30°) ∙ tan(30°)  

0.50 = 0.50

sin(40°) > cos(40°) ∙ tan(30°)

0.64 > 0.44



Circular failure surface

Analysis with slices

Generalized Bishop method considering lateral forces

Si = resultant force

of all lateral forces

Simplified method:

i = 0 (i.e. Eli = Eri)
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Circular failure surface

Analysis with slices

Generalized Bishop method considering lateral forces

Force equilibrium in direction n-n  

(perpendicular to Si):

𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜀𝑖 = 𝑁𝑖′ + 𝑈𝑖 ∙ cos  𝜗𝑖 − 𝜀𝑖 + 𝑇𝑖 ∙ sin 𝜗𝑖−𝜀𝑖

𝐹𝑆

1
𝑇 = ∙ 𝑇𝑖 𝑖 ,max 𝐹𝑆

1
= ∙ 𝑁 ′  ∙ tan 𝜑 ′ + 𝑐 ′ ∙𝐿𝑖 𝑖 𝑖

𝑖

𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜀𝑖 = 𝑁𝑖′ + 𝑢𝑖 ∙ 𝐿𝑖 ∙ cos 𝜗𝑖− 𝜀𝑖

𝐹𝑆

1
+ ∙ 𝑁 ′  ∙ tan 𝜑 ′ + 𝑐 ′ ∙𝐿𝑖 𝑖 𝑖

𝑖

∙ sin 𝜗𝑖−𝜀𝑖

𝑁 ′ = 𝐹𝑆

1
𝑊𝑖 + 𝑃𝑖 ∙ cos 𝜀𝑖 − 𝑢𝑖 ∙ 𝐿𝑖 ∙ cos  𝜗𝑖 − 𝜀𝑖 − ∙ 𝑐𝑖′ ∙ 𝐿𝑖 ∙ sin 𝜗𝑖− 𝜀𝑖

𝐹𝑆
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cos 𝜗 − 𝜀 + 1 ∙ tan 𝜑 ′ ∙ sin 𝜗 − 𝜀



Circular failure surface

Analysis with slices

Generalized Bishop method considering lateral forces

Driving and resisting moments:

𝑀driv  = 𝑅 ∙      𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

𝑀res = 𝑅 ∙ 𝑇𝑖,max

𝑇𝑖,max = 𝑁 ′  ∙ tan 𝜑𝑖′ + 𝑐𝑖′ ∙𝐿𝑖

(same as in case of i =0)

97

= 𝑅 ∙ 𝑁 ′  ∙ tan 𝜑𝑖′ + 𝑐𝑖′ ∙ 𝐿𝑖



Circular failure surface

Analysis with slices

Generalized Bishop method considering lateral forces

Safety factor considering inclination i of resultant lateral force:

𝑀res

𝑀driv
𝐹𝑆 = =

𝑅 ∙ 𝑁 ′  ∙ tan 𝜑𝑖′ + 𝑐𝑖′ ∙𝐿𝑖

𝑅 ∙      𝑊𝑖 + 𝑃𝑖 ∙ sin𝜗𝑖

=

𝑅 ∙
𝑊𝑖+𝑃𝑖 𝑖 𝑖 𝑖 𝑖

𝑖
𝐹𝑆∙ cos 𝜀 − 𝑢 ∙ 𝐿 ∙ cos  𝜗 − 𝜀 − 1 ∙ 𝑐 ′ ∙ 𝐿 ∙ sin 𝜗 − 𝜀𝑖 𝑖 𝑖

𝑖
cos 𝜗 − 𝜀 𝐹𝑆 𝑖+ 1 ∙ tan 𝜑 ′ ∙ sin 𝜗 − 𝜀

∙ tan 𝜑𝑖′ + 𝑐𝑖′ ∙𝐿

𝑅 ∙ 𝑊𝑖+ 𝑃𝑖 ∙ sin𝜗𝑖

The difference (= error) in the safety factor between the generalized and the  

simplified method (i = 0) of Bishop is usually less than 5 %!

→ The simplified method of Bishop neglecting lateral forces is usually applied
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Circular failure surface

Here: GGU software

99

Analysis with slices

Simplified Bishop method is also used in common commercial software

Degree  

of mobili-

zation 



Circular failure surface

Dam on weak ground
• Failure on circular slip

surface in the weak ground

• Center of slip circle is

assumed to lie above

the center of the slope

• Self-weight of dam:

𝑊2 = 𝑚𝑤 ∙ 𝛾Dam ∙ ℎ2

𝑟𝑤2 = 𝑛𝑤 ∙ ℎ

• Earth pressure:

212 Dam

1
𝐸 = ∙ 𝛾 ∙ ℎ2 ∙𝐾 𝑎ℎ

𝑎ℎ𝐾 = tan2 45° −
𝜑Dam

2

𝑚𝑤, 𝑛𝑤
𝑟𝑚 ℎ𝑚

= 𝑓 𝛽, ,
ℎ ℎ
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Circular failure surface

Dam on weak ground

𝑀driv = 𝑊2 ∙ 𝑟𝑤2 + 𝐸12 ∙

• Driving moment around center point:

ℎ
ℎ𝑚 −

3

𝑤 Dam 𝑤 2
= 𝑚 ∙ 𝛾 ∙ ℎ2 ∙ 𝑛 ∙ ℎ + 

1 
∙ 𝛾Dam 2 𝑚∙ ℎ2 ∙ tan2 45° −

𝜑Dam ∙ ℎ −
ℎ

3

• Resisting moment due to cohesion:

• Equilibrium of momentum: 𝑀driv =𝑀res

cos
𝜓

2

ℎ𝑚
=
𝑟𝑚

= 𝛾Dam ∙ ℎ2 ∙ 𝑤 𝑤 2

1
𝑚 ∙ 𝑛 ∙ ℎ + ∙ tan2

2 𝑚

𝜑Dam
45° − ∙ ℎ −

ℎ

3

𝑀res = 𝑀𝑐= 𝑐𝑢,min ∙ 𝑅2 ∙ 𝜓

= 𝑐𝑢,min  ∙𝑅2 ∙ 2 ∙ arccos
ℎ𝑚
𝑟𝑚

𝜓 = 2 ∙ arccos
ℎ𝑚

𝑟𝑚
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Circular failure surface

Dam on weak ground

• Equilibrium of momentum leads to

undrained cohesion necessary for

slope stability:

𝑐𝑢,min =
𝛾Dam ∙ ℎ2 1

∙ 𝑚𝑤 ∙ 𝑛𝑤 ∙ ℎ + ∙ tan2 45° −
𝜑Dam

𝑅2 ∙ 𝜓 2 2
∙ ℎ𝑚 −

ℎ  

3

= 𝐾𝑐 ∙ 𝛾Dam ∙ ℎ

𝑐𝐾 =
ℎ

𝑅2 ∙𝜓
∙ 𝑚𝑤 ∙𝑛𝑤

2

1
∙ ℎ + ∙ tan2

2 𝑚

𝜑Dam
45° − ∙ ℎ −

ℎ

3

= 𝑓 𝛽,𝜑Dam

𝑟𝑚 ℎ𝑚
, ,

ℎ ℎ

• Safety factor
𝑐𝑢

𝐹𝑆 =
𝑐𝑢,min

𝑐𝑢
=
𝐾𝑐 ∙ 𝛾Dam ∙ ℎ

Kc = cohesion factor

102



Circular failure surface

Dam on weak ground

• Variation of rm/h and hm/h, until slip circle  

with lowest safety factor (largest Kc) is found

• Solution in form of diagrams:

𝑐𝑢,min = 𝐾𝑐 ∙ 𝛾Dam ∙ ℎ

• Can be used to estimate the maximum possible height h of embankment
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𝑇𝑖

cos𝜗𝑖
=

𝑊𝑖+ 𝑃𝑖− 𝑢𝑖 ∙𝑏𝑖 ∙ tan 𝜑𝑖
′  + 𝑐 ′  ∙ 𝑏𝑖

2cos 𝜗 +
1
𝐹𝑆

∙ tan 𝜗𝑖 ∙ tan𝜑𝑖 ′

𝐹𝑆 =
𝐹ℎ,res

𝐹ℎ,driv
=

𝑊𝑖 + 𝑃𝑖 − 𝑢𝑖 ∙ 𝑏𝑖 ∙ tan 𝜑𝑖
′  + 𝑐 ′  ∙ 𝑏𝑖

1
cos2 𝜗𝑖+ 𝐹𝑆 ∙ tan 𝜗𝑖 ∙ tan𝜑𝑖

′

𝑊𝑖 + 𝑃𝑖 ∙ tan𝜗𝑖

Slices method for failure surface parallel to the sloping ground

(according to Janbu, 1955)
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Example 1: Two wedges on weak soil layer

Failure mechanisms with multiple sliding masses

Relative displacements / velocities of soil masses from hodograph:

• Draw velocities v1, v2 in the directions of sliding of both soil masses on outer  

failure surfaces, starting from same point

• v21 = velocity of wedge 2 relative to wedge 1: tip of vector v1 to tip of vector v2
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Example 1: Two wedges on weak soil layer

1. Estimate safety factor FS

2. Reduce shear strength parameters by 1/FS

𝑐∗ =
𝑐

𝐹𝑆

tan 𝜑∗ = 
tan𝜑

𝐹𝑆

Failure mechanisms with multiple sliding masses
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Failure mechanisms with multiple sliding masses

107

Example 1: Two wedges on weak soil layer

3. Calculate forces with reduced  

shear strength parameters

𝐶1
∗  = 𝑐𝐼𝐼∗  ∙𝐿1

𝐶2
∗  = 𝑐𝐼∗  ∙𝐿2

𝐶12
∗ = 𝑐𝐼∗ ∙ 𝐿12

Important: only mechanisms  

with compressive normal  

forces on all inner and outer  

failure surfaces are allowed  

(no tension)!



If T is acting in sliding direction → safety is higher than estimated FS (additional

T is necessary to cause failure) → next iteration with higher FS until T ≈ 0
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Failure mechanisms with multiple sliding masses

Example 1: Two wedges on weak soil layer

4. Determine residual  

tangential force T



tan𝜑𝑑 𝑑

tan𝜑𝑘 𝑐𝑘
= 𝑐 =

𝛾𝜑 𝛾𝑐

• Multiplication of the shear strength parameters with the degree of mobilization 

tan 𝜑𝑑
∗  = 𝜇 ∙ tan𝜑𝑑 𝑐𝑑∗ = 𝜇 ∙ 𝑐𝑑

• Iteration of  until T ≈ 0

• Necessary criterion for slope stability:  < 1
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Failure mechanisms with multiple sliding masses

Example 1: Two wedges on weak soil layer

Procedure in case of

partial safety factor concept

• Calculate design  

values of shear  

strength parameters



Example 2: Sliding of two soil masses

on sloping rock ground
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Friction angle * in all failure planes

Failure mechanisms with multiple sliding masses



Example 3: Surface load, seepage and anchors

Failure mechanisms with multiple sliding masses
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Example 4: Similar to example 3,  

but with increased surface load,  

no anchors, no cohesion
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T acts in  

opposite direction,

i.e. estimated FS  

too large

Failure mechanisms with multiple sliding masses



Example 5:

Three soil masses
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Failure mechanisms with multiple sliding masses



Example 5:

Three soil masses
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Failure mechanisms with multiple sliding masses



Failure mechanisms with multiple sliding masses
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Example 5:

Three soil masses

After reduction

of shear strength

→ smaller T



Special case: Block sliding method

• Vertical inner sliding planes (similar to slices methods), 3 to 5 blocks

• Horizontal earth and water pressure forces between individual masses

• Estimation of safety factor FS, reduction of shear strength parameters with 1/FS

• Iteration until T ≈ 0
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Failure mechanisms with multiple sliding masses



Failure mechanisms with multiple sliding masses
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Special case: Block sliding method

Step 1: Force polygon for mass 1



Special case: Block sliding method

Step 2: Add self-weights of masses 2 and 3
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Failure mechanisms with multiple sliding masses



Special case: Block sliding method

Step 3: Add force polygon for mass 3
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Failure mechanisms with multiple sliding masses



Failure mechanisms with multiple sliding masses
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Special case: Block sliding method

Step 4: Add force polygon for mass 2, determineT



c- reduction method

• FE model of a slope

• Mohr-Coulomb constitutive model for the soil with shear strength parameters  

effective cohesion c‘ and effective friction angle ‘

Slope stability analysis with numerical methods
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Slope stability analysis with numerical methods

c- reduction method

• Starting from the real values of c‘ and ‘ of the soil (determined from  

laboratory tests) both values are decreased in proportional steps, e.g.  

c‘ and ‘ are simultaneously decreased in steps of 0.1 % of the original  

value, until failure occurs, visible by failure surface with localized strains

• Shear strength parameters at failure: c‘f, ‘f

• Factor of safety:

𝑐′
𝐹𝑆 =

𝑐′𝑓

tan𝜑′
𝐹𝑆 =

tan𝜑′𝑓
or

Both definitions deliver same

value of FS
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