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Summary 

The bearing capacity equation—“the triple N formula”—is now about 50 years old.  It was developed 
from theory of plastic resistance of metal to a cone being pressed into the surface of the metal, 
superpositioned by resistance due to shear in an interparticulate medium (soil; note, we are not dealing 
with metallurgy), and tempered by work necessary to move the footing into the medium.  The equation 
(and its coefficients) was “confirmed” by tests on small footings placed at or near the surface of the soil.  
The equation is a basic tenet of every geotechnical textbook, manual, and code.  Over the years, 
innumerable variations of the N-coefficients and adjustments to the equation have been published. 
 
The main assumption behind the bearing capacity equation is that a shear plane develops between two 
essentially otherwise unaffected bodies:  the main soil body and a body comprised of the footing with 
some soil.  Moreover, the notion is that a model footing placed at or near the surface of a soil would 
behave proportionally or similarly to a full-scale footing, or to even a same size footing (pile toe) placed 
at some depth in the ground.  This is not in agreement with factual observations.  It is suggested that the 
behavior of a small or large diameter footing as well as a pile toe is governed by compression of the soil 
below the footing or pile toe and not by “bearing capacity”. 
 
Arguments are developed with reference to steady state principles and shown to be supported by results 
from full-scale measurements.  It is proposed that design based on a factor-of-safety applied to bearing 
capacity or on the more modern factored resistance in a limit-state-design are based on a faulty models of 
behavior and, therefore, may result in less than perfect designs—some may not be reliable and some 
overly conservative and costly.  Settlement analysis should be given a greater role in foundation design; 
for footings as well as for piles. 
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Introduction 

Every university course in basic foundation design teaches the calculation of bearing capacity of footings 
and piles.  Usually, the very same course also teaches how to calculate settlement, and to apply the 
principles to the calculation of settlement of a footing.  Very few courses teach how to calculate the 
settlement of a pile foundation, however. 
 
Simply expressed, students are taught that the bearing capacity is a function of the pertinent shear 
strength of the soil (undrained shear strength, or cohesion intercept and friction, tan φ).  In school, the 
shear strength to use is provided by the professor, the text book, or the problem text.  In the real world, 
the undrained shear strength may be known or values to use are provided in the soils investigation, but 
the friction angle is usually assumed. 
 
For footings, the geotechnical engineering practice regularly calculates the bearing capacity from input 
of assumed shear strength values and a series of relations that depend on these values directly and 
indirectly.  The capacity is then divided by a factor of safety, normally ranging from 2.5 through 4 to 
obtain the allowable load or stress. 
 
For piles, the capacity of the pile toe is assumed to follow a bearing capacity formula (static analysis).  
However, it is generally thought that the capacity of a pile is so difficult to analyze that a static or 
dynamic test giving the capacity directly is necessary for a reliable design.  (As an aside, it is no more 
difficult to analyze a pile than a footing.  Yet, even when a test has been performed establishing the capacity for a 
test pile, practice is usually limited to applying the so-found value to other piles at the site directly or by some depth 
or blow-count criterion.  Unfortunately, a static back-analysis of the results is a very rare bird in current practice). 
 
Settlement analysis is usually only performed for footings in fine-grained soils.  For footings in sand, the 
practice simply assumes that if the factor of safety is good enough, settlement is automatically taken care 
of and will not have to be further considered.  As commonly stated, “we expect the settlement to be one 
inch or less”.  For piles, settlement analysis is almost universally absent from conventional designs. 
 
 
Bearing Capacity 

The first bearing capacity formula was presented by Prandtl (1920) and it applied to material deforming 
plastically under stress, such as metal.  A bearing capacity method of calculation for footings was 
proposed by Fellenius (1926) basing  the analysis on cylindrical slip surfaces and shear resistance (τ) per 
the Coulomb relation (τ = c + σ tan φ), employing the friction circle for analysis in frictional material.  
Terzaghi (1943) built on the Prandtl approach and presented a generally applicable formula, usually 
referred to as The Bearing Capacity Formula.  Fig. 1 shows a page from Taylor (1948) referencing and 
comparing the Prandtl and Fellenius methods for clays.  Fig. 2 quotes a figure from Bowles (1988) 
comparing the Terzaghi formula with adaptations by Meyerhof and Hansen. 
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Fig. 1  Page from Taylor (1948) 
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Fig. 2 Comparison between failure mode according to Terzaghi (1943)  
and others.  (Bowles, 1988) 

 
The Canadian Foundation Engineering Manual (1985) expresses The Bearing Capacity Formula, Eq. 1, 
as follows. 
 
  ru = sc ic c‘ Nc  +  sq iq q‘ Nq  +  sγ iγ 0.5B‘ γ‘ Nγ        (1) 
 
where ru = ultimate unit resistance of the footing 
  c‘  = effective cohesion intercept 
  B‘ = equivalent or effective footing width 
  q‘  = overburden effective stress at the foundation level 
  γ‘  = average effective unit weight of the soil below the foundation 
 sc, sq, sγ = non-dimensional shape factors 
 ic, iq, iγ = non-dimensional inclination factors 
  B‘ = equivalent or effective footing width 
   Nc, Nq, Nγ = non-dimensional bearing capacity factors 
 
Fig. 3 shows relations between the Nq-bearing capacity factor as a function of the friction angle, phi, as 
proposed by different authors.  The scatter of values is substantial for any phi-value.  Considering that 
phi is difficult to know within a degree or two, it is amazing that the arbitrary nature of the calculated 
N-factors has not long ago sent the formula to the place where it belongs — the museum of old 
paradigms whose time has passed.  However, the bearing capacity is so well entrenched that stating that 
it is wrong and should not be used would seem to border on committing heresy.  When I now say so, 
should I fear being burned at the stake or is the practice ready to accept new views? 
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Fig. 3  Bearing Capacity Factors proposed by different authors 
(Coyle and Castello, 1981, as taken from Coduto, 1994) 

 
Perhaps I need to prepare a first line defense by emphasizing that my statement pertains to the loading of 
footing or pile under long-term service condition.  That is, fully drained conditions.  Rapid loading of 
foundations in normally consolidated clays and silts will create pore pressures that reduce soil strength.  
Practice has established rules for the analysis of such “undrained” conditions, normally assessing the 
stability in a slip circle analysis with input of undrained shear strength.  In less routine cases, the analyses 
consider actual stress-path behavior.  Although the bearing capacity formula is still in use for these soils, 
its validity is very much in question. 
 
No theoretical analysis or formula must be accepted as correct without first being compared to the 
response of full-scale tests.  There is an abundant literature on results of tests on model footings.  
Full-scale tests on footings are rare, however.  In contrast, the literature is full of reports on full-scale 
tests on piles.  However, the analyses of these test have generally presumed that the pile shaft and the pile 
toe both respond to a loading according to the concept of bearing capacity due to shear failure.  Well, the 
presumption is true for the pile shaft, but not the pile toe. 
 
 
Results of Full-Scale Tests on Footings 

Ismael (1985) performed static loading tests on square footings with sides of 0.25 m, 0.50 m, 0.75 m, and 
1.00 m at a site where the soils consisted of fine sand 2.8 m above the groundwater table.  The sand was 
compact as indicated by a N-index equal to 20 blows/0.3 m.  The footings were placed at a depth 
of 1.0 m.  The measured stress-settlement behavior of the footing is shown in the left diagram presented 
in Fig. 4.  The right diagram shows the same data plotted as stress versus relative settlement, i. e., the 
measured settlement divided by the footing side.  Notice that the curves are gently curving having no 
break or other indication of failure despite relative settlements as large as 10 % to 15 % of the footing 
side. 
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Fig. 4  Results of static loading tests on square footings in well graded sand 

(Data from Ismael, 1985) 
 
Similar static loading tests on square footings placed at a depth of 0.8 m in sand were performed by 
Briaud and Gibbens (1994) in a slightly preconsolidated, silty fine sand well above the groundwater 
table.  The natural void ratio of the sand was 0.8.  The footing sides were 1.0 m, 1.5 m, 2.0 m, and 3.0 m.  
Two footings were of the latter size.  The results of the test are presented in Fig. 5, which, again, shows 
no indication of failure despite the large relative settlements. 
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Fig. 5  Results of static loading tests on square footings in well graded sand 
(Data from Briaud and Gibbens, 1994) 

 
 
Results of Laboratory Tests on Footings 

The results of the quoted full-scale field tests can be compared to laboratory test results on a 150 mm 
square footings performed by Vesic (1967).  The tests were performed on the surface of a dry uniform 
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sand compacted to a void ratio ranging from 0.8 through 1.0.  The results are presented in Fig. 6.  The 
uppermost curve giving the results of the test on the dense sand differs in shape from the results of the 
tests on the loose sand, as well as from the tests on the full-scale tests (Figs. 4 and 5):  instead of more or 
less rising gently, it reaches a peak and then drops off, suggesting a bearing capacity failure.  However, 
the behavior of the test is not a failure in the sense of the bearing capacity equation.  The test is 
performed in dense sand and, for the initial stages of loading, the sand dilates.  That is, the volume of the 
sand increases in the beginning of the test (the footing still settles, because the sand can expand laterally).  
Later in the test, the dilatation ceases, the sand volume reduces, and the settlement increases. 
 
The dilation takes place because the sand density is significantly smaller than that at the critical void 
ratio (as first discussed by Casagrande, 1935).  The critical void ratio is a function of the mean soil stress.  
The smaller the mean stress, the larger the tendency for dilation.  Consider the load-movement behavior 
of a footing placed on the surface of a soil body.  The mean stress in the part of the soil body that is 
affected by the load from the footing is small.  In contrast, the mean stress is much larger in the part of 
the soil body affected by a wide footing, because the affected zone lies deeper down where the 
overburden stresses are larger.  Whether the footing is wide or small, if it is located deep down below the 
surface, the governing mean soil stress will be large.  As in the case of a pile toe, for example. 

 
Fig. 6  Results of model tests on square footings in dry sand 

(Data from Vesic, 1967, as taken from Vesic 1975)  
 
 
Principles of Steady State Soil Mechanics 

The principles explaining the behavior of the plate bearing tests shown in Fig. 6 are called Critical State 
Soil Mechanics or Steady State Soil Mechanics.  These say, essentially, that it is not the density, or void 
ratio, alone that determines if a soil will dilate or not, it is the density or void ratio in relation to the 
steady state line (for details, see Altaee and Fellenius, 1994).  The most characteristic parameters are the 
void ratio distance to the steady state line and the slope of this line in a void ratio vs. mean stress 
diagram.  The distance has the symbol of the Greek letter upsilon, Y, and is here called the “upsilon 
distance”.  Others have called it the “e-prime” value or “the state parameter” (it is one of several 
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LOOSE 
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parameters, albeit an important one).  The slope has the symbol of the Greek letter lambda, λ, and is 
always negative. 
 
At a small mean soil stress, such as that for the case of a model footing on the surface of a soil body, 
even a loose soil would behave similarly to a very dense soil deeper in the soil mass.  Fig. 7 (after 
Fellenius and Altaee, 1994) shows a void ratio versus mean stress diagram with a steady state line of a 
typical soil (actually, the line for a Fuji River sand, a Japanese standard sand).  The diagram also shows 
one homologous point of void ratio and mean stress for a depth below each of three footings of diameters 
0.5 m, 1.0 m, and 2.0 m placed at depths of one footing diameter below the ground surface.  Three 
variations are considered:  
 

I. The three mentioned footings are placed in soils having equal void ratio at homologous 
points 

II. The 1.0-m diameter footing is placed in soils having equal mean stress, but different 
upsilon distances, at the homologous points 

III. The three mentioned footings are placed in soils of different void ratios chosen so that the 
upsilon distances is the same for the homologous points 
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Fig. 7  Footing locations in the e-ln(p) diagram 
Analysis per steady state principles of tests on three square footings  

under different assumption of initial void ratio 
(Data from Fellenius and Altaee, 1994) 

Fig. 8 shows the results of the computations for “tests” on the three footings when the soil has the void 
ratio (same density).  The results are plotted as computed applied stress versus settlement for 
homologous points and versus relative settlement for the three footing sizes.  The larger the size of the 
footing, the deeper the location of the homologous point and the larger the mean stress.  Because of the 
sloping steady-state line, the wider footing will have a shorter upsilon distance.  That is, it will behave 
“as were it in a looser soil” and it will show larger settlement for a certain applied stress.  As in the 
full-scale test results, the relative settlements are very similar for the three footing sizes and no failure is 
indicated despite the up to 10 % relative settlement. 
 



  Page 9/17 

0 20 40 60 80
0

50

100

150

200

250

Settlement  (mm)

A
pp

lie
d 

S
tre

ss
  (

K
P

a)

0 2 4 6 8 10 12
0

50

100

150

200

250

Relative Settlement (%)

A
pp

lie
d 

S
tre

ss
  (

K
P

a)

B = 0.5 m

B = 2.0 m

B = 1.0 m

B = 0.5 m

B = 1.0 m

B = 2.0 m

 
Fig. 8  CASE  I 

 
Stress vs. Settlement  and  Stress vs. Relative Settlement 

(Data from Fellenius and Altaee, 1994) 
 
Fig. 9 shows the results for a footing tested at successively larger upsilon distances.  The curves show 
that, for a given mean stress,  the larger the distance to the steady state line, or, if you prefer, the denser 
the soil, the stiffer the reaction.  The important distinction is that density is defined in relation to the 
steady state line and not in terms of “relative density”, which is determined at very small mean stress 
(ground surface condition) and, therefore, of little use for conditions down in the soil where the mean 
stress is larger. 
 
Fig. 10 shows that, independent of the mean stress, the stress-settlement behavior for the three footing 
sizes “tested” at equal upsilon distance is the same.  As discussed by Altaee and Fellenius (1994), this 
analysis demonstrates the “law” of physical modeling, i. e., determining the behavior of a full-scale unit 
from a observations on a model-scale unit.  Thus, the stress-settlement behavior of a model footing tested 
on the surface of a dense soil is representative for the behavior of a full-scale footing placed at some 
depth into the soil where the void ratio is such that the mean stresses for model and prototype are equal at 
homologous points.  The behavior of, say, a 150-mm size plate tested on the surface of the sand is not 
directly representative for the behavior of the full-scale footing.  For the model test to be representative 
for the full-scale footing, presumably much wider than the 150 mm plate, the model footing must be 
tested in a sand that is looser than the sand at the prototype footing.  Frequently, tests on model footings 
are only representative for a full-scale footing in soils so dense that they are more like bedrock than soil.  
Model tests under ordinary gravity conditions are rarely representative for the real thing. 
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Fig. 9  CASE  II 
Stress-Settlement for same mean stress at increasing Upsilon distance 

One metre wide square footings 
(Data from Fellenius and Altaee, 1994) 
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Fig. 10  CASE  III 

Stress-Settlement for equal Upsilon distance 
(Data from Fellenius and Altaee, 1994) 

 
Of course, some soils have a very flat steady state line, which means that the upsilon distance is pretty 
much the same for all mean stresses and extrapolation from a model to a prototype is direct.  However, 
such soils are not very compressible and do not offer much problem for design. 
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Settlement Analysis 

When settlement analysis is performed to supplement the bearing capacity analysis, it is usually 
performed by distributing the applied stress using 2:1 or Boussinesq methods and the soil compressibility 
is defined by either Young’s modulus (sands) or by Cc-e0 parameters.  However, if the analysis is made 
assuming normally consolidated soils, the calculated stress-settlement curve will bend upward, directly 
contrary to observed behavior (Figs. 4 and 5, for example).  With an investment of some effort, a match 
between observed and calculated curves can be made if the analysis assumes that the soil is 
overconsolidated and that the degree of overconsolidation reduces within the affected depth.  There is a 
correlation between overconsolidation and the mean stress difference between the void ratio/mean stress 
point and the horizontal distance to the steady state line.  However, the correlation is only approximate.  
The conventional settlement analysis assumes one-dimensional behavior and neglects the contribution to 
the settlement from lateral movement of the soil under the footing, which movement extends to the 
outside of the footprint area. 
 
The load-movement or stress-settlement behavior of a footing or a pile toe, such as shown in Fig. 4, can 
be described by Eq. 2. 
 

σ1 = σref(δ1/δref)e            (2) 
 
where:  σ1 = applied stress 
   σref = reference stress 
   δ1 = observed settlement (or relative settlement) 
   δref = observed settlement (or relative settlement) for the reference stress 
   e = an exponent 
 
It is simple to apply the relation to the case shown in Fig. 4.  Taking the stress at a relative settlement of 
10 % as reference, the exponent, e, becomes about 0.6.  To do the same for the case shown in Fig. 5, the 
data must first be adjusted for the preconsolidation, which requires solving for a constant added to the 
settlement input.  Typically, the exponent, e, ranges between 0.5 through 0.9.  Using the Eq. 2 relation in 
a curve-fitting approach can often be a more reliable tool for applying observed load-settlement data to a 
design as opposed to a back calculation of compressibility parameters or other theoretical analyses. 
 
 
Results of Full-Scale Tests Deep into the Soil 

The foregoing has presented the behavior of footings tested at shallow depths.  It may seem that results 
from tests on small diameter footings at larger depths would be rare.  However, every pile test is a test on 
a small diameter footing located at a depth many times larger than the diameter.  Unfortunately, the load 
applied to the pile toe is usually not known very accurately and neither is the movement.  Even when a 
load cell or similar is placed at the pile toe and a telltale is used to measure the pile toe movement, the 
test data are difficult to interpret, because the zero load (the starting load) is not known.  A bit over ten 
years ago, a testing method was developed that eliminated these difficulties:  The Osterberg Cell 
(Osterberg, 1998), which is a great new tool for use by the geotechnical engineer.  The method consists 
in principle of placing a hydraulic jack at the pile toe and expanding the jack while measuring the 
imposed load and the resulting toe movement.  The result of the test, amongst other, is the load-
movement curve of the pile toe. 
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Fig. 11 presents the results of an O-cell test on a 2.8 m by 0.8 m, 24 m deep barrette in Manila, 
Philippines.  The soils at the site are silty sandy volcanic tuff.  The diagram shows both the downward 
movement of the barrette base (toe) and the upward movement of the barrette shaft.  The load indicated 
for the toe includes the buoyant weight of the barrette, whereas this load has been subtracted from the 
shaft loads before plotting the data.  While the barrette shaft obviously has reached a ultimate resistance 
state, no such state or failure mode is evident for the barrette toe. 
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Fig. 11 

Result of an O-Cell Test on a 2.8 m x 0.8 m, 24 m Barrette at Belle Bay Plaza, Manila 
(Test Data from LOADTEST Inc. Report dated August 1997) 

 
At the start of the test, the barrette is influenced by residual load.  The solid line added to the beginning 
of the toe movement indicates an approximate extension of the toe movement to the zero conditions.  The 
residual load is about 2,500 KN and the soil at the toe are precompressed by a toe movement of about 
10 mm.  The maximum toe movement is 65 mm.  The relative movement is 2 % or 8 % depending on 
which cross section length one prefers to use as reference to the barrette diameter. 
 
Fig. 12 presents the results of an O-cell test on a 2.5 m circular shape pile, 85.5 m into a clayey silty soil 
in Vietnam.  The steep rise over the first 25 mm movement as opposed to the behavior thereafter appears 
to suggest that a failure value could be determined.  Say, by the intersection of two lines representing the 
initial and final trend of the curves.  However, this would be an error.  Also this pile (as all piles, really) 
is prestressed by the surrounding soils to a significant residual load.  As shown in the diagram, an 
approximate extension of the curve intersects the abscissa at a movement of about -50 mm.  The apparent 
residual load is about 10 MN and amounts to about one third of the ultimate shaft resistance (determined 
in the O-cell test).  Compare also the two unloading and reloading cycles.  The reloading curve shows 
that  the residual load increased for each such cycle. 

TOE 
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Fig. 12 
Result on an O-Cell Test on a 2.5 m diameter, 85.5 m Long Pile 

at My Thuan Bridge, Vietnam 
(Test Data and Finite Element Analysis Results 
from Urkkada Technology Report, May 1998) 

 
The maximum toe movement is 180 mm.  The relative movement is 7 % (or 9 % if the precompression 
movement is included).  No failure is evident from the test records. 
 
Fig. 13 presents the results of an O-cell test on another 2.8 m by 0.8 m, barrette in Manila, Philippines.  
The barrette is slightly deeper, 28 m.  The results are very similar to those for the first barrette, including 
the estimate of the residual load. 
 
Fig 14 presents the results of a static loading test performed on a 20 m long pile instrumented with a 
telltale to the pile toe for measuring the pile toe movement.  The pile toe load was not measured.  The 
load-movement diagram for the pile head shows that the pile clearly has reached the ultimate load.  In 
fact, the pile “plunged”.  Judging by the curve showing the applied load versus the pile toe movement, it 
would appear that also the pile toe reached an ultimate resistance — in other words, attained its bearing 
capacity.  However, this is not the case as will be discussed using the plot shown in Fig 15.   
 

-50 
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Fig. 13 
Result of an O-Cell Test on a 2.8 m x 0.8 m, 28 m Barrette at Alfaro’s Peak, Manila 

(Fellenius et al., 1999) 
 

0 5 10 15 20 25 30
0

1,000

2,000

3,000

4,000

MOVEMENT  (mm)

LO
A

D 
A

T 
PI

LE
 H

EA
D 

 (K
N)

HEAD

HEAD LOAD vs. TOE

 
 

Fig. 14 
Load-movement diagram of a static loading test 

on a 20 m long, 450 mm diameter closed toe pipe pile in compact sand 
with telltale measurements of toe movement 

 
(Data from F. M. Clemente, TAMS Consultants) 
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Most of the shaft resistance was probably mobilized at a toe movement of about 2 mm to 3 mm, that is, at 
an applied load of about 2,500 KN.  At an applied load beyond about 3,300 KN, where the movements 
start to increase progressively, the shaft resistance probably started to deteriorate (strain softening).  
Thus, approximately between pile toe movements of about 3 mm to about 10 mm, the shaft resistance can 
be assumed to be fully mobilized and approximately constant.  An adjacent test indicates that the ultimate 
shaft resistance was about 2,000 KN.  When subtracting the 2,000 KN from the total load over this range 
of toe movement, the toe load can be estimated.  This is shown in Fig. 15, which also shows an 
extrapolation of the toe load-movement curve beyond the 100-mm movement, which implies a strain 
softening behavior of the pile shaft resistance.  Extrapolating the toe curve toward the ordinate indicates 
the existence of a residual load in the pile prior to the start of the static loading test. 
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Fig. 15 
Fig. 14 with the results of analysis of  

the load-movement of the pile toe 
 

[Reference is made of the results from a static loading test on an adjacent pile  
instrumented with strain gages indicating a shaft resistance of 2,000 KN] 

 
 
A back calculation of the toe movement curve and a simulation of the observed pile load-movement 
behavior can quite easily be performed by means of so-called t-z curves to represent the soil response 
along the pile shaft and at the pile toe (for the pile toe, the term should really be “q-y curve”).  Eq. 2 is a 
useful such t-z curve.  In this case, the shaft curve would reference the shaft resistance at a movement of 
about 3 mm and with an exponent of about 0.15.  The toe curve would reference a toe movement of 
10 mm and apply an exponent of 0.5.  The latter indicates a toe load-movement behavior that does not 
show an ultimate value. 
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Discussion and Conclusions 

Full-scale tests on footings and piles supported by theoretical analysis based on soil response to a stress 
increase show that bearing capacity failure does not occur for footings and pile toes.  Even for 
settlements much in excess of 10 % of the footing diameter, the soil response is not that of the footing 
approaching or reaching an ultimate failure mode, but of soil stiffness.  For this reason, the conventional 
bearing capacity formula does not correctly represent foundation behavior.  Moreover, to apply an 
ultimate resistance approach (whether in a global factor of safety or limit state conventions) is 
fundamentally wrong.  Instead, the approach should be to calculate the settlement of the footing 
considering the serviceability of the foundation unit. 
 
The pile toe load-movement behavior is a function of the compressibility of the soil at the pile toe.  When 
the behavior is actually determined in a test, the picture is not as clear as in the case of a footing.  The 
pile toe behavior is influenced by that set-up after installation loads the pile shaft and transfers load to the 
pile toe.  In case of driven piles, the driving may have provided considerable precompression to the soil 
at the pile toe.  A load-movement curve, if established, might be interpreted to show a “failure” point 
when in reality the point only reflects the precompression value.  The stress-settlement or 
stress-movement behavior of a pile toe should be analyzed as the compressibility problem it really is, not 
by bearing capacity formulae or similar reasoning. 
 
Ordinarily, a conventional static loading test on a pile cannot disclose the amount of residual load present 
in the pile before the start of the test.  Indeed, the tests results pertain to the pile head load-movement and 
one cannot easily separate the shaft resistance from the toe resistance without resorting to special 
instrumentation.  In many tests, the shaft resistance breaks down progressively as the applied load 
increases.  The breakdown increases the movement of the pile head, which then is interpreted as a 
progressively increasing movement of the pile toe for each load increment.  Tests on instrumented piles 
where toe load and toe movement have been determined show results that are similar to those obtained by 
the O-cell (when the residual load is taken into account). 
 
Dynamic tests on piles are taken during the impact driving of a pile.  Usually, the maximum pile toe 
movement for the blow is about 5 mm to 15 mm.  The pile toe resistance is then approximately the load 
required to move the pile that same distance.  This resistance is not equal to a pile toe bearing capacity.  
Were it the ultimate toe resistance, moving the pile toe additionally would not require much additional 
load.  The actual situation is the opposite.  However, the point is of little practical importance as the short 
duration impact only provides that limited movement.  For an O-cell test, the concept of bearing capacity 
just does not apply and is not needed.  For a Statnamic test, it is very important to ensure that the pile toe 
has not been moved too much in the test, or the capacity might be overestimated.  However, the 
implications for the testing of piles lie outside the scope of these notes and will not be addressed further. 
 
Geotechnical investigation should include information on the compressibility characteristics of also 
coarse-grained soils and geotechnical design should place the greater emphasis on determining the 
settlement of the foundations. 
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