Analysis of Statically
Indeterminate Structures
by the Force Method

In this chapter we will apply the force or flexibility method to analyze
statically indeterminate trusses, beams, and frames. At the end of the
chapter we will present a method for drawing the influence line for a
statically indeterminate beam or frame.

10.1 Statically Indeterminate Structures

Recall from Sec. 2-4 that a structure of any type is classified as statically
indeterminate when the number of unknown reactions or internal forces
exceeds the number of equilibrium equations available for its analysis.
In this section we will discuss the merits of using indeterminate structures
and two fundamental ways in which they may be analyzed. Realize that
most of the structures designed today are statically indeterminate. This
indeterminacy may arise as a result of added supports or members, or by
the general form of the structure. For example, reinforced concrete
buildings are almost always statically indeterminate since the columns
and beams are poured as continuous members through the joints and
OVer supports.
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CHAPTER 10  ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE FORCE METHOD

Advantages and Disadvantages. Although the analysis of a
statically indeterminate structure is more involved than that of a statically
determinate one, there are usually several very important reasons for
choosing this type of structure for design. Most important, for a given
loading the maximum stress and deflection of an indeterminate structure
are generally smaller than those of its statically determinate counterpart.
For example, the statically indeterminate, fixed-supported beam in
Fig. 10-1a will be subjected to a maximum moment of M., = PL/S,
whereas the same beam, when simply supported, Fig. 10-1b, will be
subjected to twice the moment, that is, M, = PL/4. As a result, the
fixed-supported beam has one fourth the deflection and one half the stress
at its center of the one that is simply supported.

Another important reason for selecting a statically indeterminate
structure is because it has a tendency to redistribute its load to its redundant
supports in cases where faulty design or overloading occurs. In these cases,
the structure maintains its stability and collapse is prevented. This is
particularly important when sudden lateral loads, such as wind or earthquake,
are imposed on the structure. To illustrate, consider again the fixed-end
beam in Fig. 10-1a. As P is increased, the beam’s material at the walls and
at the center of the beam begins to yield and forms localized “plastic
hinges,” which causes the beam to deflect as if it were hinged or pin
connected at these points. Although the deflection becomes large, the walls
will develop horizontal force and moment reactions that will hold the
beam and thus prevent it from totally collapsing. In the case of the simply
supported beam, Fig. 10-1b, an excessive load P will cause the “plastic
hinge” to form only at the center of the beam, and due to the large vertical
deflection, the supports will not develop the horizontal force and moment
reactions that may be necessary to prevent total collapse.

Although statically indeterminate structures can support a loading
with thinner members and with increased stability compared to their
statically determinate counterparts, there are cases when these advantages
may instead become disadvantages. The cost savings in material must be
compared with the added cost necessary to fabricate the structure, since
oftentimes it becomes more costly to construct the supports and joints of
an indeterminate structure compared to one that is determinate. More
important, though, because statically indeterminate structures have
redundant support reactions, one has to be very careful to prevent
differential displacement of the supports, since this effect will introduce
internal stress in the structure. For example, if the wall at one end of the
fixed-end beam in Fig. 10-1a were to settle, stress would be developed in
the beam because of this “forced” deformation. On the other hand, if the
beam were simply supported or statically determinate, Fig. 10-1b, then
any settlement of its end would not cause the beam to deform, and
therefore no stress would be developed in the beam. In general, then, any
deformation, such as that caused by relative support displacement, or
changes in member lengths caused by temperature or fabrication errors,
will introduce additional stresses in the structure, which must be considered
when designing indeterminate structures.
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Fig. 10-1

Methods of Analysis. When analyzing any indeterminate structure,
it is necessary to satisfy equilibrium, compatibility, and force-displacement
requirements for the structure. Equilibrium is satisfied when the reactive
forces hold the structure at rest, and compatibility is satisfied when the
various segments of the structure fit together without intentional breaks
or overlaps. The force-displacement requirements depend upon the way
the material responds; in this text we have assumed linear elastic response.
In general there are two different ways to satisfy these requirements when
analyzing a statically indeterminate structure: the force or flexibility method,
and the displacement or stiffness method.

Force Method. The force method was originally developed by James
Clerk Maxwell in 1864 and later refined by Otto Mohr and Heinrich
Miiller-Breslau. This method was one of the first available for the analysis
of statically indeterminate structures. Since compatibility forms the basis
for this method, it has sometimes been referred to as the compatibility
method or the method of consistent displacements. This method consists of
writing equations that satisfy the compatibility and force-displacement
requirements for the structure in order to determine the redundant forces.
Once these forces have been determined, the remaining reactive forces on
the structure are determined by satisfying the equilibrium requirements.
The fundamental principles involved in applying this method are easy to
understand and develop, and they will be discussed in this chapter.

Displacement Method. The displacement method of analysis is
based on first writing force-displacement relations for the members and
then satisfying the equilibrium requirements for the structure. In this case
the unknowns in the equations are displacements. Once the displacements
are obtained, the forces are determined from the compatibility and force-
displacement equations. We will study some of the classical techniques
used to apply the displacement method in Chapters 11 and 12. Since
almost all present day computer software for structural analysis is
developed using this method we will present a matrix formulation of the
displacement method in Chapters 14, 15, and 16.

Each of these two methods of analysis, which are outlined in Fig. 10-2,
has particular advantages and disadvantages, depending upon the geometry
of the structure and its degree of indeterminacy. A discussion of the
usefulness of each method will be given after each has been presented.
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actual beam

(a)

(©)

(d)
Fig. 10-3

CHAPTER 10  ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE FORCE METHOD

Unknowns Equations Used Coefficients of
for Solution the Unknowns
Force Method Forces Oyl Flexibility Coefficients
and Force Displacement
Displacement Method | Displacements LI Stiffness Coefficients
and Force Displacement

Fig. 10-2

10.2 Force Method of Analysis:
General Procedure

Perhaps the best way to illustrate the principles involved in the force
method of analysis is to consider the beam shown in Fig. 10-3a. If its
free-body diagram were drawn, there would be four unknown support
reactions; and since three equilibrium equations are available for solution,
the beam is indeterminate to the first degree. Consequently, one additional
equation is necessary for solution. To obtain this equation, we will use the
principle of superposition and consider the compatibility of displacement
at one of the supports. This is done by choosing one of the support
reactions as “redundant” and temporarily removing its effect on the beam
so that the beam then becomes statically determinate and stable. This
beam is referred to as the primary structure. Here we will remove the
restraining action of the rocker at B. As a result, the load P will cause B to
be displaced downward by an amount Az as shown in Fig. 10-3b. By
superposition, however, the unknown reaction at B, i.e., B,, causes the
beam at B to be displaced Azz upward, Fig. 10-3c. Here the first letter in
this double-subscript notation refers to the point (B) where the deflection
is specified, and the second letter refers to the point (B) where the
unknown reaction acts. Assuming positive displacements act upward, then
from Figs. 10-3a through 10-3c we can write the necessary compatibility
equation at the rocker as

(+T) OZ_AB‘FA’BB

Let us now denote the displacement at B caused by a unit load acting
in the direction of B, as the linear flexibility coefficient f g, Fig. 10-3d.
Using the same scheme for this double-subscript notation as above, fgp
is the deflection at B caused by a unit load at B. Since the material behaves
in a linear-elastic manner, a force of B, acting at B, instead of the unit
load, will cause a proportionate increase in f gz. Thus we can write

App = Byf BB
When written in this format, it can be seen that the linear flexibility
coefficient fpgp is a measure of the deflection per unit force, and so its

units are m/N, ft/Ib, etc. The compatibility equation above can therefore
be written in terms of the unknown B, as

0= _AB + BnyB
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Using the methods of Chapter 8 or 9, or the deflection table on the inside
front cover of the book, the appropriate load-displacement relations for
the deflection A, Fig. 10-3b, and the flexibility coefficient f zp, Fig. 10-3d,
can be obtained and the solution for B, determined, thatis, B, = Ap/f pp.
Once this is accomplished, the three reactions at the wall A can then be
found from the equations of equilibrium.

As stated previously, the choice of the redundant is arbitrary. For example,
the moment at A, Fig. 104a, can be determined directly by removing
the capacity of the beam to support a moment at A, that is, by replacing
the fixed support by a pin. As shown in Fig. 10-4b, the rotation at A
caused by the load P is 6 4, and the rotation at A caused by the redundant
My, at A is 6y 4, Fig. 10-4c. If we denote an angular flexibility coefficient
a4 as the angular displacement at A caused by a unit couple moment
applied to A, Fig. 10-4d, then

! —
O4n = My q4

Thus, the angular flexibility coefficient measures the angular displacement
per unit couple moment, and therefore it has units of rad/N - m or rad/Ib - ft,
etc. The compatibility equation for rotation at A therefore requires

(?+) 0=9A+MAaAA

In this case, M 4 = —64/a 44, a negative value, which simply means that
M, acts in the opposite direction to the unit couple moment.

P

A | B
- =05 =
actual beam

(a)

primary structure

(®)

1
(ire——— —_— =n s
LY V]

(d)
Fig. 10-4

redundant M, applied
(©)
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P, P,
At 2t ¢ =
A E= o —O— -
actual beam

(a)

B, (;
\ 5 c B} c B c _
A e = + A— - t ApE————— +——==n0
A Ac A'pp =B, fgg  Acp = B,fcp Apc=Cyfpe A cc= Cyfec
primary structure redundant B, applied redundant C, applied

(b) (c) (d)
Fig. 10-5

A third example that illustrates application of the force method is given
in Fig. 10-5a. Here the beam is indeterminate to the second degree and
therefore two compatibility equations will be necessary for the solution.
We will choose the vertical forces at the roller supports, B and C, as
redundants. The resultant statically determinate beam deflects as shown
in Fig. 10-5b0 when the redundants are removed. Each redundant force,
which is assumed to act downward, deflects this beam as shown in Fig. 10-5¢

1 and 10-5d, respectively. Here the flexibility coefficients* fggand fcp are

BY C found from a unit load acting at B, Fig. 10-5e; and f ¢ and f g are found

ARE—— P E——— =< from a unit load acting at C, Fig. 10-5f. By superposition, the compatibility
88 Jes equations for the deflection at B and C, respectively, are

(+1) 0=Ap+ Byfgg + C,fpe

(10-1)
(+1) 0=Ac + Byfcg + Cyfec
B c Once the load-displacement relations are established using the methods
ApE— e —— — of Chapter 8 or 9, these equations may be solved simultaneously for the
fsc fee two unknown forces B, and C,.

) Having illustrated the application of the force method of analysis by
example, we will now discuss its application in general terms and then
we will use it as a basis for solving problems involving trusses, beams,
and frames. For all these cases, however, realize that since the method
depends on superposition of displacements, it is necessary that the material
remain linear elastic when loaded. Also, recognize that any external
reaction or internal loading at a point in the structure can be directly
determined by first releasing the capacity of the structure to support the
loading and then writing a compatibility equation at the point. See
Example 10-4.

*f pp is the deflection at B caused by a unit load at B; fp the deflection at C caused by a
unit load at B.
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Procedure for Analysis

The following procedure provides a general method for determining
the reactions or internal loadings of statically indeterminate structures
using the force or flexibility method of analysis.

Principle of Superposition

Determine the number of degrees n to which the structure is
indeterminate. Then specify the » unknown redundant forces or
moments that must be removed from the structure in order to make it
statically determinate and stable. Using the principle of superposition,
draw the statically indeterminate structure and show it to be equal to
a series of corresponding statically determinate structures. The
primary structure supports the same external loads as the statically
indeterminate structure, and each of the other structures added to the
primary structure shows the structure loaded with a separate
redundant force or moment. Also, sketch the elastic curve on each
structure and indicate symbolically the displacement or rotation at
the point of each redundant force or moment.

Compatibility Equations

Write a compatibility equation for the displacement or rotation at
each point where there is a redundant force or moment. These
equations should be expressed in terms of the unknown redundants
and their corresponding flexibility coefficients obtained from unit
loads or unit couple moments that are collinear with the redundant
forces or moments.

Determine all the deflections and flexibility coefficients using the
table on the inside front cover or the methods of Chapter 8 or 9.*
Substitute these load-displacement relations into the compatibility
equations and solve for the unknown redundants. In particular, if a
numerical value for a redundant is negative, it indicates the redundant
acts opposite to its corresponding unit force or unit couple moment.

Equilibrium Equations

Draw a free-body diagram of the structure. Since the redundant forces
and/or moments have been calculated, the remaining unknown reactions
can be determined from the equations of equilibrium.

It should be realized that once all the support reactions have been
obtained, the shear and moment diagrams can then be drawn, and the
deflection at any point on the structure can be determined using the
same methods outlined previously for statically determinate structures.

*It is suggested that if the M/EI diagram for a beam consists of simple segments, the
moment-area theorems or the conjugate-beam method be used. Beams with complicated
M/EI diagrams, that is, those with many curved segments (parabolic, cubic, etc.), can be

readily analyzed using the method of virtual work or by Castigliano’s second theorem.
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10.3 Maxwell’s Theorem of Reciprocal
Displacements; Betti's Law

When Maxwell developed the force method of analysis, he also published
a theorem that relates the flexibility coefficients of any two points on an
elastic structure—be it a truss, a beam, or a frame. This theorem is
referred to as the theorem of reciprocal displacements and may be stated
as follows: The displacement of a point B on a structure due to a unit load
acting at point A is equal to the displacement of point A when the unit load
is acting at point B, that is, fg s = [ ap-

Proof of this theorem is easily demonstrated using the principle of
virtual work. For example, consider the beam in Fig. 10-6. When a real
unit load acts at A, assume that the internal moments in the beam are
represented by m 4. To determine the flexibility coefficient at B, that is,
fBa, avirtual unit load is placed at B, Fig. 107, and the internal moments
mp are computed. Then applying Eq. 9-18 yields

. nipim 4
fa = /—EI dx

Likewise, if the flexibility coefficient f 45 is to be determined when a real
unit load acts at B, Fig. 10-7, then mp represents the internal moments in
the beam due to a real unit load. Furthermore, m 4 represents the internal
moments due to a virtual unit load at A, Fig. 10-6. Hence,

mymp
= d
fan / El X

fBA

Fig. 10-6
1
A |
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Both integrals obviously give the same result, which proves the theorem.
The theorem also applies for reciprocal rotations, and may be stated as
follows: The rotation at point B on a structure due to a unit couple moment
acting at point A is equal to the rotation at point A when the unit couple
moment is acting at point B. Furthermore, using a unit force and unit couple
moment, applied at separate points on the structure, we may also state:
The rotation in radians at point B on a structure due to a unit load acting at
point A is equal to the displacement at point A when a unit couple moment
is acting at point B.

As a consequence of this theorem, some work can be saved when
applying the force method to problems that are statically indeterminate
to the second degree or higher. For example, only one of the two flexibility
coefficients fpc or fcp has to be calculated in Eqgs. 10-1, since fzc = fep-
Furthermore, the theorem of reciprocal displacements has applications
in structural model analysis and for constructing influence lines using the
Miiller-Breslau principle (see Sec. 10-10).

When the theorem of reciprocal displacements is formalized in a more
general sense, it is referred to as Betti’s law. Briefly stated: The virtual
work 68U 4 done by a system of forces 2Py that undergo a displacement
caused by a system of forces P, is equal to the virtual work Up,
caused by the forces 2P, when the structure deforms due to the system
of forces 2Pp In other words, 8U 45 = 8U 4. The proof of this statement
is similar to that given above for the reciprocal-displacement theorem.

10.4 Force Method of Analysis: Beams

The force method applied to beams was outlined in Sec. 10-2. Using the
“procedure for analysis” also given in Sec. 10-2, we will now present
several examples that illustrate the application of this technique.

These bridge girders are statically indeterminate since
they are continuous over their piers.
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EXAMPLE [10.1

Determine the reaction at the roller support B of the beam shown in
Fig. 10-8a. EI is constant.

50 kN 50 kN
A &C B A B A _ - :[
— = A'gp = BnyB

: . T = %& — E“‘IAB + %ﬁ

PG m%——6 m=m. c B

actual beam primary structure redundant B, applied
(a) (b)
Fig. 10-8
SOLUTION

Principle of Superposition. By inspection, the beam is statically
indeterminate to the first degree. The redundant will be taken as B so
that this force can be determined directly. Figure 10-8b shows
application of the principle of superposition. Notice that removal of
the redundant requires that the roller support or the constraining
action of the beam in the direction of B, be removed. Here we have
assumed that B, acts upward on the beam.

Compatibility Equation. Taking positive displacement as upward,
Fig. 10-8b, we have

(+1) 0= —Ap+ B,fps (1)

The terms A g and f pp are easily obtained using the table on the inside
front cover. In particular, note that Az = A- + 6-(6 m). Thus,

P2 PR ()

Ap = 3EI 2EI \2
_ (50kN)(6 m)? . (50 kN) (6 m)? 6y = 2000 1<N-m3l
344 KN 50;‘ N B 3E] 2E] (6m) = EI

. . 3 3 3
t PL 1(12 m) 576 m
112 kN-m F—6m4+76m4'1 fes = 3EI  3EI  EI f

15.6 kN

© Substituting these results into Eq. (1) yields
C

9000 576
(+1) 0=-—r By<E> B, = 156kN Ans.
M (kKN -m) 938
A\ If this reaction is placed on the free-body diagram of the beam, the
3.27 —x (m) reactions at A can be obtained from the three equations of equilibrium,
6 12 Fig. 10-8c.

Having determined all the reactions, the moment diagram can be
-2 (@) constructed as shown in Fig. 10-8d.
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EXAMPLE [10.2

Draw the shear and moment diagrams for the beam shown in
Fig. 10-9a. The support at B settles 1.5 in. Take E = 29(10°) ksi,
I =750 in".

20k
iL: 15in

' T T Ay
12 ft—] 24 ft

actual beam

(a)

primary structure

Fig. 10-9

SOLUTION

Principle of Superposition. By inspection, the beam is indeterminate
to the first degree. The center support B will be chosen as the redundant,
so that the roller at B is removed, Fig. 10-9b. Here B, is assumed to
act downward on the beam.

Compatibility Equation. With reference to point B in Fig. 10-9b,
using units of inches, we require

(+1) L5in. = Ag + B,fss (1)

We will use the table on the inside front cover. Note that for Ay the
equation for the deflection curve requires 0 < x < a.Since x = 24 ft,
then a = 36 ft. Thus,

_ Pbx 2 2_2_20(12)(24) 2 2 2
Ap = 6LEI(L b* — x7) = To@S)El [(48)" — (12)" — (24)7]
31,680 k- £t}
B EI
P PL  1(48)°  2304k-ft
BB ™ 4EI ~ 48EI = EI

Substituting these values into Eq. (1), we get
1.5 in. (29(10%) k/in?) (750 in*)
31,680 k - ft*(12in./ft)* + B, (2304 k - ft*) (12 in./ft)?

B, = —5.56 k

The negative sign indicates that B, acts upward on the beam.

B,

B

Agp= B, fsp

redundant B, applied
(b)
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EXAMPLE [10.2 (Continued)

Equilibrium Equations. From the free-body diagram shown in
Fig. 10-9¢ we have

L+ =My = 0; —20(12) + 5.56(24) + C,(48) = 0
C, =222k

+13F, = 0; Ay =20 + 556 + 222 =0
A, =1222k

Using these results, verify the shear and moment diagrams shown in
Fig. 10-94.

20k

A c
A
12ﬂaL&2ﬂ»*——z4ﬂ

A, =1222k 556k C, =222k
(©)

V (k)
12.22

—778 w—l——|2.22

M (k-ft
(-t1) 146.7

533

1 1 ft
12 24 )

(d)
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EXAMPLE [10.3

Draw the shear and moment diagrams for the beam shown in
Figure 10-10a. E1 is constant. Neglect the effects of axial load.

SOLUTION

Principle of Superposition. Since axial load is neglected, the beam
is indeterminate to the second degree. The two end moments at A and
B will be considered as the redundants. The beam’s capacity to resist
these moments is removed by placing a pin at A and a rocker at B.The
principle of superposition applied to the beam is shown in Fig. 10-105b.

Compatibility Equations. Reference to points A and B, Fig. 10-10b,

requires
(r+) 0=04 + Myaps + Mpayp (1)
(\+) 0=0p+ Mpaps + Mpagp (2)

2 k/ft

‘ £4 ‘
I 10 ft ‘ 10 ft ‘

’ p—
O,AAZMAaAA OBA_MAaBA

redundant moment M4 applied

OIAB: MBaAB O,BB:MBaBB
redundant moment My applied
(b)
Fig. 10-10
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EXAMPLE [10.3 (Continued)

The required slopes and angular flexibility coefficients can be
determined using the table on the inside front cover. We have

C3wL? 3(2)(20)° 375
AT 128EI T 128EI  EI
o WL _ 7(2)(20)° _ 2917
B 384FE1  384EI El
ML 1(20) _ 6.67
AT 3E1 T 3EI EI
ML 1(20) _ 6.67
“BE T 3E] T 3EI EI
ML 1(20) 333
UAB T 6El T 6EI | EI

Note that apy = ayp, a consequence of Maxwell’s theorem of
reciprocal displacements.
Substituting the data into Egs. (1) and (2) yields

0235, MA<6.67> . MB<3'33)

- EI EI EI
291.7 333 6.67
O="%r 1 MA(E) * MB( EI)

Canceling E7 and solving these equations simultaneously, we have
My = —458k-ft Mg = —208k-ft

Using these results, the end shears are calculated, Fig. 10-10c, and the
shear and moment diagrams plotted.

V (k)
16.25 \
- 20 ¢ (it)
8.125 375
2k/ft M (k-ft) '

1625k 375k
“HHHHH

=t ) 202

A B
45.8k-ft | ‘ 20.8 k-ft /\
3.63 , 14.4 20 L iq
101 ! 1ot \ 8.125 \‘ N

—20.8

45.8 (c)
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EXAMPLE [10.4

Determine the reactions at the supports for the beam shown in
Fig. 10-11a. EI is constant.

SOLUTION

Principle of Superposition. By inspection, the beam is indeterminate
to the first degree. Here, for the sake of illustration, we will choose the
internal moment at support B as the redundant. Consequently, the
beam is cut open and end pins or an internal hinge are placed at B in
order to release only the capacity of the beam to resist moment at this
point, Fig. 10-11b. The internal moment at B is applied to the beam in
Fig. 10-11c.

Compatibility Equations. From Fig. 10-11a we require the relative
rotation of one end of one beam with respect to the end of the other
beam to be zero, that is,

(r+) O + Mpagp =0
where

0 = 0% + 0%
and

— ! ”
agp = app T agp

120 1b/ft 500 Ib

YYY VY VYY) \l 1
A\
T

actual beam
(a)
Il

1201b/ft 05 0", 500 1b

Y VY Y
Ai_ o\ [fo\s—= eC

= =

B

primary structure

(b)

+

Mpa'gp Mpa'pp

redundant Mp applied
(c) Fig. 10-11
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EXAMPLE [10.4 (Continued)

The slopes and angular flexibility coefficients can be determined
from the table on the inside front cover, that is,

wL?  120(12)° 86401 - ft?

T 24EI  24EI  EI
o = PL _ 500(10)° 3125 1b- ft?
BT 16EI ~ 16EI EI

. _ ML _1(12) 41t
“BB T 3EI ~ 3EI  EI

, ML 1(10) 333ft
“BB T 3p1 T 3EI  EI

Thus

8640 1b-ft>2 3125 1b - ft? 4ft  3.33ft
+ Mgl —+=—=——)=0
EI El EI EI
Mg = —16041b - ft

The negative sign indicates M g acts in the opposite direction to that
shown in Fig. 10-11¢. Using this result, the reactions at the supports
are calculated as shown in Fig. 10-11d. Furthermore, the shear and
moment diagrams are shown in Fig. 10-11e.

500 Ib
120 1b/ft

YYYYVVYVYVYVYY
B I 1?1 1 al
854 1b 854 1b 410 1b 410 1b T

1604 1b- ft 1604 1b- ft

586 1b 126 Alb 89.6 1b
B A C
(d)
V (Ib) M (1b-ft)
586 410 1432
\ 448
12
_ 72 gy 4.8 - : [ X (f)
4.89 —89.6 ’ \/ vz
—1602

—854

(e)
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10.5 Force Method of Analysis: Frames

The force method is very useful for solving problems involving statically
indeterminate frames that have a single story and unusual geometry, such
as gabled frames. Problems involving multistory frames, or those with a
high degree of indeterminacy, are best solved using the slope-deflection,
moment-distribution, or the stiffness method discussed in later chapters.

The following examples illustrate the application of the force method
using the procedure for analysis outlined in Sec. 10-2.

EXAMPLE [10.5

The frame, or bent, shown in the photo is used to support the bridge
deck. Assuming E/ is constant, a drawing of it along with
the dimensions and loading is shown in Fig. 10-12a. Determine the
support reactions.

40 kN/m

(a)
Fig. 10-12

SOLUTION

Principle of Superposition. By inspection the frame is statically
indeterminate to the first degree. We will choose the horizontal
reaction at A to be the redundant. Consequently, the pin at A is
replaced by a rocker, since a rocker will not constrain A in the
horizontal direction. The principle of superposition applied to the
idealized model of the frame is shown in Fig. 10-12b. Notice how
the frame deflects in each case.
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EXAMPLE |10.5 (Continued)

40 kN/m

AfoA
Primary structure Redundant force A, applied
(b)

Compatibility Equation. Reference to point A in Fig. 10-12b
requires

5) 0=A4+ Afan (1)

The terms A, and f,,4 will be determined using the method of
virtual work. Because of symmetry of geometry and loading we need
only three x coordinates. These and the internal moments are shown
in Figs. 10-12¢ and 10-12d. It is important that each x coordinate be the
same for both the real and virtual loadings. Also, the positive directions
for M and m must be the same.

For A, we require application of real loads, Fig. 10-12¢, and a
virtual unit load at A, Fig. 10-124d. Thus,

Mm / (O)(lxl)dxl /5 (200)(2)(_5)de
Ay = ——+2
0 0 El
5 /5 (1000 + 200x3 — 20x3)(—5)dx;
0 EI
25000 66 666.7 91666.7
- 40 kN/m =0 = — - _
T TE T E EI
szﬁ o\ Y % y y y — —
] ) Hzﬁ'”f‘ ||ri3— |

sm+xﬂ - -
/-‘ T Sm 4+x3ﬁ 5 m
1 5 (=) |
ms = 200(5 + x3) — 4Ox3< 2) T 1kN
20() kN = 1000 + 200x3 — 20x3 200 kN

(© (d)
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For f 44 we require application of a real unit load and a virtual unit
load acting at A, Fig. 10-124d. Thus,

me 5 (1x1)2dx1 5 5
= —dx=2| ———+2 2dx, + 2 2
fAA A EI dx A El A (5) de % (5) dx3

~583.33

El

Substituting the results into Eq. (1) and solving yields

~91666.7 <583.33>
— 2 4 A,

El El

A, = 157kN Ans.

Equilibrium Equations. Using this result, the reactions on the
idealized model of the frame are shown in Fig. 10-12e.

157.1 kN =—>>| 157.1 kN

(e)
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EXAMPLE [10.6

Determine the moment at the fixed support A for the frame shown in
Fig. 10-13a. EI is constant.

100 Ib/ft

4 ft

(a) Fig. 10-13
SOLUTION

Principle of Superposition. The frame is indeterminate to the first
degree. A direct solution for M, can be obtained by choosing this
as the redundant. Thus the capacity of the frame to support a moment
at A is removed and therefore a pin is used at A for support. The
principle of superposition applied to the frame is shown in Fig. 10-135b.

Compatibility Equation. Reference to point A in Fig. 10-13b requires
(7+) 0=04+ Msapa 1)
As in the preceding example, 64 and a4 4 will be computed using

the method of virtual work. The frame’s x coordinates and internal
moments are shown in Figs. 10-13¢ and 10-13d.

A

) redundant M,
actual frame primary structure applied

(b)
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For 6, we require application of the real loads, Fig. 10-13c, and a
virtual unit couple moment at A, Fig. 10-13d. Thus,

L
Mmy, dx
0, = —
A El El

- /8(29.17x1)(1 — 0.0833x;) dx,
A El

5(296.7x, — 50x3)(0.0667x,) dx,
+
A EI

_ 5185 3032 _ 8218
EI ' El  EI

For a4, we require application of a real unit couple moment and
a virtual unit couple moment acting at A, Fig. 10-13d. Thus,

L
niyhiy

= —d

(LTV] 2/0 El X

8(1 — 0.0833x;)? dx; . 3(0.0667x,)? dx,
a A EI A EI

_ 385, 0185 _ 404
EI ' EI  EI

Substituting these results into Eq. (1) and solving yields

821.8 4.04
= — 4+ D = — . 8.
0 5l MA( EI) M4 204 1b - ft Ans.

The negative sign indicates My acts in the opposite direction to that
shown in Fig. 10-13b.

222.51b

LN

3708 1b
2 Y2967 1b

(M, = 296.7x, — 50x,%|

™

T

X1
«-20.171b

A

300 1b

0.0833 1b

(©)

\21\,

0

m, = 1—0.0833x,

y .
L

niy = 00667X2

f
X1

11b-ft

(d)
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. FUNDAMENTAL PROBLEMS

F10-1. Determine the reactions at the fixed support at A
and the roller at B. EI is constant.

F10-1

F10-2. Determine the reactions at the fixed supports at A
and the roller at B. EI is constant.

J

A _é_
!

F10-2

F10-3. Determine the reactions at the fixed support at
A and the roller at B. Support B settles 5 mm. Take
E =200 GPa and I = 300(10°) mm*,

10 kN/m

6m |

F10-3

F10-4. Determine the reactions at the pin at A and the
rollers at B and C.

( r—
: |

F10-4

F10-5. Determine the reactions at the pin A and the
rollers at B and C on the beam. E1 is constant.

50 kN
Y
5 ol
AE C
’ |
l 2m 2m 7‘ 4m |

F10-6. Determine the reactions at the pin at A and the
rollers at B and C on the beam. Support B settles 5 mm.
Take E = 200 GPa, I = 300(10°) mm*.

10 kN/m
Y Y YV VYVYYYYYVYVYVYVVVVYY
l 6 m l 6m l
F10-6



