Basic Concepts of
Structural Analysis

1.1 Introduction. This book describes matrix methods for the anal-
ysis of framed structures with the aid of a digital computer. Both the flexi-
bility and stiffness methods of structural analysis are covered, but emphasis
is placed upon the latter because it is more suitable for computer program-
ming. While these methods are applicable to discretized structures of all
types, only framed structures will be discussed. After mastering the analy-
sis of framed structures, the reader will be prepared to study the finite ele-
ment method for analyzing discretized continua (see Refs. C-1 through
C-8).

In this chapter various preliminary matters are considered in prepara-
tion for the matrix methods of later chapters. These subjects include
descriptions of the types of framed structures to be analyzed and their
deformations due to loads and other causes. Also discussed are the basic
concepts of equilibrium, compatibility, determinacy, mobility, superposi-
tion, flexibility and stiffness coefficients, equivalent joint loads, energy, and
virtual work.

1.2 Types of Framed Structures.  All of the structures that are ana-
lyzed in later chapters are called framed structures and can be divided into
six categories: beams, plane trusses, space trusses, plane frames, grids,
and space frames. These types of structures are illustrated in Fig. 1-1 and
described later in detail. These categories are selected because each repre-
sents a class of structures having special characteristics. Furthermore,
while the basic principles of the flexibility and stiffness methods are the
same for all types of structures, the analyses for these six categories are
sufficiently different in the details to warrant separate discussions of them.

Every framed structure consists of members that are long in comparison
to their cross-sectional dimensions. The joints of a framed structure are
points of intersection of the members, as well as points of support and free
ends of members. Examples of joints are points A, B, C, and D in Figs.
I-1a and 1-1d. Supports may be fixed, as at support A in the beam of Fig.
1-1a, or pinned, as shown for support A in the plane frame of Fig. 1-1d, or
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there may be roller supports, illustrated by supports B and C in Fig. 1-1a.
In special instances the connections between members or between mem-
bers and supports may be elastic (or semi-rigid). However, the discussion
of this possibility will be postponed until later (see Arts. 6.9 and 6.15).
Loads on a framed structure may be concentrated forces, distributed loads,
or couples.

Consider now the distinguishing features of each type of structure
shown in Fig. 1-1. A beam (Fig. 1-1a) consists of a straight member having
one or more points of support, such as points A, B, and C. Forces applied
to a beam are assumed to act in a plane which contains an axis of symmetry
of the cross section of the beam (an axis of symmetry is also a principal
axis of the cross section). Moreover, all external couples acting on the
beam have their moment vectors normal to this plane, and the beam
deflects in the same plane (the plane of bending) and does not twist. (The
case of a beam which does not fulfill these criteria is discussed in Art. 6.17.)
Internal stress resultants may exist at any cross section of the beam and, in
the general case, may include an axial force, a shearing force, and a bending
moment.

A plane truss (Fig. 1-1b) is idealized as a system of members lying in a
plane and interconnected at hinged joints. All applied forces are assumed
to act in the plane of the structure, and all external couples have their
moment vectors normal to the plane, just as in the case of a beam. The
loads may consist of concentrated forces applied at the joints, as well as
loads that act on the members themselves. For purposes of analysis, the
latter loads may be replaced by statically equivalent loads acting at the
joints. Then the analysis of a truss subjected only to joint loads will result
in axial forces of tension or compression in the members. In addition to
these axial forces, there will be bending moments and shear forces in those
members having loads that act directly upon them.

A space truss (see Fig. 1-1c) is similar to a plane truss except that the
members may have any directions in space. The forces acting on a space
truss may be in arbitrary directions, but any couple acting on a member
must have its moment vector perpendicular to the axis of the member. The
reason for this requirement is that a truss member is incapable of support-
ing a twisting moment.

A plane frame (Fig. 1-1d) is composed of members lying in a single
plane and having axes of symmetry in that plane (as in the case of a beam).
The joints between members (such as joints B and C) are rigid connections.
The forces acting on a frame and the translations of the frame are in the
plane of the structure; all couples acting on the frame have their moment
vectors normal to the plane. The internal stress resultants acting at any
cross section of a plane frame member may consist in general of a bending
moment, a shearing force, and an axial force.

A grid is a plane structure composed of continuous members that either
intersect or cross one another (see Fig. 1-1e). In the latter case the connec-
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Fig. 1-1. Types of framed structures: (a) beam, (b) plane truss, (c) space truss,
(d) plane frame, (e) grid, and (f) space frame.
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tions between members are often considered to be hinged, whereas in the
former case the connections are assumed to be rigid. While in a plane frame
the applied forces all lie in the plane of the structure, those applied to a grid
are normal to the plane of the structure; and all couples have their vectors
in the plane of the grid. This orientation of loading may result in torsion as
well as bending in some of the members. Each member is assumed to have
two axes of symmetry in the cross section, so that bending and torsion
occur independently of one another (see Art. 6.17 for a discussion of non-
symmetric members).

The final type of structure is a space frame (Fig. 1-1f). This is the most
general tyyle of framed structure, inasmuch as there are no restrictions on
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the locations of joints, directions of members, or directions of loads. The
individual members of a space frame may carry internal axial forces, tor-
sional moments, bending moments in both principal directions of the cross
section, and shearing forces in both principal directions. The members are
assumed to have two axes of symmetry in the cross section, as explained
above for a grid. -

It will be assumed throughout most of the subsequent discussions that
the structures being considered have prismatic members; that is, each
member has a straight axis and uniform cross section throughout its length.
Nonprismatic members are treated later by a modification of the basic
approach (see Art. 6.12).

1.3 Deformations in Framed Structures. = When a structure is acted
upon by loads, the members of the structure will undergo deformations (or
small changes in shape) and, as a consequence, points within the structure
will be displaced to new positions. In general, all points of the structure
except immovable points of support will undergo such displacements. The
calculation. of these displacements is.an essential part of structural analysis,
as will be seen later in the discussions of the flexibility and stiffness meth-
ods. However, before considering the displacements, it is first necessary.to
have an understanding of the deformations that produce the displacements.

To begin the discussion, consider a segment of arbitrary length cut from
a member of a framed structure, as shown in Fig. 1-2a. For simplicity the
bar is assumed to have a circular cross section. At any cross section, such
as at the right-hand end of the segment, there will be stress resultants that
in the general case consist of three forces and three couples. The forces are
the axial force N, and the shearing forces V, and V; the couples are the
twisting moment 7 and the bending moments M, and M. Note that
moment vectors are shown in the figure with double-headed arrows, in
order to distinguish them from force vectors. The deformations of the bar
can be analyzed by taking separately each stress resultant and determining
its effect on an element of the bar. The element is obtained by isolating a
portion of the bar between two cross sections a small distance dx apart (see
Fig. 1-2a).

The effect of the axial force N, on the element is shown in Fig. 1-2b.
Assuming that the force acts through the centroid of the cross-sectional
area, it is found that the element is uniformly extended, the significant
strains in the element being normal strains in the x direction. In the case of
a shear force (Fig. 1-2¢), one cross section-of the bar is displaced laterally
with respect to the other. There may also be some distortion of the cross
sections, but this has a negligible effect on the determination of displace-
ments and can be ignored. A bending moment (Fig. 1-2d) causes relative
rotation of the two cross sections so that they are no longer parallel to one
another. The resulting strains in the element are in the longitudinal direc-
tion of the bar, and they consist of contraction on the compression side and
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Fig. 1-2. Types of deformations: (b) axial, (c) shearing, (d) flexural, and
(e) torsional.

extension on the tension side. Finally, the twisting moment 7 causes a
relative rotation of the two cross sections about the x axis (see Fig. 1-2e)
and, for example, point A is displaced to A’. In the case of a circular bar,
twisting produces only shearing strains; and the cross sections remain
plane. For other cross-sectional shapes, distortion of the cross sections will
occur.

The deformations shown in Figs. 1-2b, 1-2¢, 1-2d, and 1-2e are called
axial, shearing, flexural, and torsional deformations, respectively. Their
evaluation is dependent upon the cross-sectional shape of the bar and the
mechanical properties of the material. This book is concerned only with
materials that are linearly elastic, that is, materials that follow Hooke’s law.
For such materials the various formulas for the deformations, as well as
those for the stresses and strains in the element, are given for reference
purposes in Appendix A, Art. A.1.

The displacements in a structure are caused by the cumulative effects
of the deformations of all the elements. There are several ways of calculat-
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ing these displacements in framed structures, depending upon the type of
deformation being considered as well as the type of structure. For example,
deflections of beams considering only flexural deformations can be found
by direct integration of the differential equation for bending of a beam.
Another method, which can be used for all types of framed structures
including beams, trusses, grids, and frames, is the unit-load method, dis-
cussed later in Art. 1.14. In both of these methods, as well as others in
common use, it is assumed that the displacements of the structure are
small.

In any particular structure under investigation, not all types of defor-
mations will be of significance in calculating the displacements. For exam-
ple, in beams the flexural deformations normally are the only ones of
importance, and it is usual to ignore the axial deformations. Of course,
there are exceptional situations in which beams are required to carry large
axial forces, and under such circumstances the axial deformation must be
included in the analysis. It is also possible for axial forces to produce a
beam-column action which has a nonlinear effect on the displacements (see
Art. 6.18).

For truss structures of the types shown in Figs. 1-1b and 1-1c, the anal-
yses are made in two parts. If the joints of the truss are idealized as hinges
and if all loads act only at the joints, then the analysis involves only axial
deformations of the members. The second part of the analysis is for the
effects of the loads that act on the members between the joints, and this
part is essentially the analysis of simply supported beams. If the joints of a
truss-like structure actually are rigid, then bending occurs in the members
even though all loads may act at the joints. In such a case, flexural defor-
mations could be important, and in this event the structure may be ana-
lyzed as a plane or space frame.

In plane frames (see Fig. 1-1d) the significant deformations are flexural -
and axial. If the members are slender and are not triangulated in the fashion
of a truss, the flexural deformations are much more important than the axial
ones. However, the axial contributions should be included in the analysis
of a plane frame if there is any doubt about their relative importance.

In grid structures (Fig. 1-1e) the flexural deformations are always impor-
tant, but the cross-sectional properties of the members and the method of
fabricating joints will determine whether or not torsional deformations must
be considered. If the members are thin-walled open sections, such as I-
beams, they are likely to be very flexible in torsion, and large twisting
moments will not develop in the members. Also, if the members of a grid
are not rigidly connected at crossing points, there will be no interaction
between the flexural and torsional moments. In either of these cases, only
flexural deformations need be taken into account in the analysis. On the
other hand, if the members of a grid are torsionally stiff and rigidly inter-
connected at crossing points, the analysis must include both torsional and
flexural deformations. Usually, there are no axial forces present in a grid
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because the forces are normal to the plane of the grid. This situation is
analogous to that in a beam having all its loads perpendicular to the axis of
the beam, in which case there are no axial forces in the beam. Thus, axial
deformations are not included in a grid analysis.

Space frames (Fig. 1-1f) represent the most general type of framed
structure, both with respect to geometry and with respect to loads. There-
fore, it follows that axial, flexural, and torsional deformations all may enter
into the analysis of a space frame, depending upon the particular structure
and loads..

Shearing deformations are usually very small in framed structures and
hence are seldom considered in the analysis. However, their effects may
always be included if necessary in the analysis of a beam, plane frame, grid,
or space frame (see Art. 6.16).

There are other effects, such as temperature changes and prestrains,
that may be of importance in analyzing a structure. These subjects are dis-
cussed in later chapters in conjunction with the flexibility and stiffness
methods of analysis.

1.4 Actions and Displacements. The terms ‘‘action’’ and ‘‘displace-
ment’’ are used to describe certain fundamental concepts in structural anal-
ysis. An action (sometimes called a generalized force) is most commonly a
single force or a couple. However, an action may also be a combination of
forces and couples, a distributed loading, or a combination of these actions.
In such combined cases, however, it is necessary that all the forces, cou-
ples, and distributed loads be related to one another in some definite man-
ner so that the entire combination can be denoted by a single symbol. For
example, if the loading on the simply supported beam AB shown in Fig.
1-3 consists of two equal forces P, it is possible to consider the combination
of the two loads as a single action and to denote it by one symbol, such as
F. It is also possible to think of the combination of the two loads plus the
two reactions R, and Rj at the supports as a single action, since all four
forces have a unique relationship to one another. In a more general situa-
tion, it is possible for a very complicated loading system on a structure to
be treated as a single action if all components of the load are related to one
another in a definite manner.

In addition to actions that are external to a structure, it is necessary to
deal also with internal actions. These actions are the resultants of internal
stress distributions, and they include bending moments, shearing forces,
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axial forces, and twisting moments. Depending upon the particular analysis
being made, such actions may appear as one force, one couple, two forces,
or two couples. For example, in making static equilibrium analyses of
structures these actions normally appear as single forces and couples, as
illustrated in Fig. 1-4a. The cantilever beam shown in the figure is subjected
at end B to loads in the form of actions P; and M,. At the fixed end A the
reactive force and reactive couple are denoted R, and M 4, respectively. In
order to distinguish these reactions from the loads on the structure, they
are drawn with a slanted line (or slash) across the arrow. This convention
for identifying reactions will be followed throughout the text (see also Fig.
1-3 for an illustration of the use of the convention). In calculating the axial
force N, bending moment M, and shearing force V at any section of the
beam in Fig. 1-4a, such as at the midpoint, it is necessary to consider the
static equilibrium of a portion of the beam. One possibility is to construct
a free-body diagram of the right-hand half of the beam, as shown in Fig.
1-4b. In so doing, it is evident that each of the internal actions appears in
the diagram as a single force or couple.

There are situations, however, in which the internal actions appear as
two forces or couples. This case occurs most commonly in structural anal-
ysis when a ‘‘release’” is made at some point in a structure, as shown in
Fig. 1-5 for a continuous beam. If the bending moment is released at joint
B of the beam, the result is the same as if a hinge were placed in the beam
at that joint (see Fig. 1-5b). Then, in order to take account of the bending
moment M in the beam, it must be considered as consisting of two equal
and opposite couples M that act on the left- and right-hand portions of the
beam with the hinge, as shown in Fig. 1-5c. In this illustration the moment
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M is assumed positive in the directions shown in the figure, signifying that
the couple acting on the left-hand beam is counterclockwise and the couple
acting on the right-hand beam is clockwise. Thus, for the purpose of ana-
lyzing the beam in Fig. 1-5¢c, the bending moment at point B may be treated
as a single action consisting of two couples. Similar situations are encoun-
tered with axial forces, shearing forces, and twisting moments, as illus-
trated later in the discussion of the flexibility method of analysis.

A second basic concept is that of a displacement, which is most com-
monly a translation or a rotation at some point in a structure. A translation
refers to the distance moved by a point in the structure, and a rotation
means the angle of rotation of the tangent to the elastic curve (or its normal)
at a point. For example, in the cantilever beam of Fig. 1-4c, the translation
A of the end of the beam and the rotation 6 at the end are both considered
as displacements. Moreover, as in the case of an action, a displacement
may also be regarded in a generalized sense as a combination of translations
and rotations. As an example, consider the rotations at the hinge at point
B in the two-span beam in Fig. 1-5c. The rotation of the right-hand end of
the member AB is denoted 6,, while the rotation of the left-hand end of
member BC is denoted 6,. Each of these rotations is considered as a dis-
placement. Furthermore, the sum of the two rotations, denoted as 6, is also
a displacement. The angle 6 can be considered as the relative rotation at
point B between the ends of members AB and BC.

Another illustration of displacements is shown in Fig. 1-6, in which a
Plane frame is subjected to several loads. The horizontal translations A 4,
Ap, and A of joints A, B, and C, respectively, are displacements, as also
are the rotations 6,4, 5, and 6. of these joints. Joint displacements of these
types play an important role in the analysis of framed structures.
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Fig. 1-6.

It is frequently necessary in structural analysis to deal with actions and
displacements that correspond to one another. Actions and displacements
are said to be corresponding when they are of an analogous type and are
located at the same point on a structure. Thus, the displacement corre-
sponding to a concentrated force is a translation of the structure at the point
where the force acts, although the displacement is not necessarily caused
by the force. Furthermore, the corresponding displacement must be taken
along the line of action of the force and must have the same positive direc-
tion as the force. In the case of a couple, the corresponding displacement
is a rotation at the point where the couple is applied and is taken positive in
the same sense as the couple. >

As an illustration, consider again_the cantilever beam shown in Fig.
1-4a. The action P; is a concentrated force acting downward at the end of
the beam, and the downward translation A at the end of the beam (see Fig.
1-4¢) is the displacement that corresponds to this action. Similarly, the cou-
ple M, and the rotation 6 are a corresponding action and displacement. It
should be noted, however, that the displacement A corresponding to the
load P, is not caused solely by the force P,, nor is the displacement 6
corresponding to M, caused by M, alone. Instead, in this example, both A
and 0 are displacements due to P, and M, acting simultaneously on the
beam. In general, if a particular action is given, the concept of a corre-
sponding displacement refers only to the definition of the displacement,
without regard to the actual cause of that displacement. Similarly, if a dis-
placement is given, the concept of a corresponding action will describe a
particular kind of action on the structure, but the displacement need not be
caused by that action.

As another example of corresponding actions and displacements, refer
to the actions shown in Fig. 1-5c. The beam in the figure has a hinge at the
middle support and is acted upon by the two couples Mg, which are con-
sidered as a single action. The displacement corresponding to the action
M g consists in general of the sum of the counterclockwise rotation 6, of the
left-hand beam and the clockwise rotation 6, of the right-hand beam. There-



1.4 Actions and Displacements 11

fore, the angle 6 (equal to the sum of 6, and 6,) is the displacement corre-
sponding to the action Mjp. This displacement is the relative rotation
between the two beams at the hinge and has the same positive sense as M.
If the angle 6 is caused only by the couples Mp, then it is described as the
displacement corresponding to My and caused by Mp. This displacement
can be found with the aid of the table of beam displacements given in
Appendix A (see Table A-3, Case 5), and is equal to

MyL  MsL _2M,L

0=0,+6,= =
YU 3EI T 3El 3EI

in which L is the length of each span and EI is the flexural rigidity of the
beam.

There are other situations, however, in which it is necessary to deal
with a displacement that corresponds to a particular action but is caused by
some other action. As an example, consider the beam in Fig. 1-5b, which
is the same as the beam in Fig. 1-5¢ except that it is acted upon by two
forces P instead of the couples M. The displacement in this beam corre-
sponding to My consists of the relative rotation at joint B between the two
beams, positive in the same sense as Mp, but due to the loads P only.
Again using the table of beam displacements (Table A-3, Case 2), and also
assuming that the forces P act at the midpoints of the members, it is found
that the displacement 6 corresponding to My and caused by the loads P is

PL? PL* PL*?

=106 +0 16EI  16EI  8EI

The concept of correspondence between actions and displacements will
become more familiar to the reader as additional examples are encountered
in subsequent work. Also, it should be noted that the concept can be
extended to include distributed actions, as well as combinations of actions
of all types. However, these more general ideas have no particular useful-
ness in the work to follow.

In order to simplify the notation for actions and displacements, it is
desirable in many cases to use the symbol A for actions, including both
concentrated forces and couples, and the symbol D for displacements,
including both translations and rotations. Subscripts can be used to distin-
_guish between the various actions and displacements that may be of interest
In a particular analysis. The use of this type of notation is shown in Fig.
1-7, which portrays a cantilever beam subjected to actions A;, Az, and As.
The displacement corresponding to A, and due to all loads acting simulta-
neously is denoted by D, in Fig. 1-7a; similarly, the displacements corre-
sponding to A, and A; are denoted by D, and D.

Now consider the cantilever beam subjected to action A, only (see Fig.
1-7b). The displacement corresponding to A, in this beam is denoted by
D,,. The significance of the two subscripts is as follows. The first subscript
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indicates that the displacement corresponds to action A,, and the second
indicates that the cause of the displacement is action A;. In a similar man-
ner, the displacement corresponding to A, in this beam is denoted by D,,,
where the first subscript shows that the displacement corresponds to A,
and the second shows that it is caused by A,. Also shown in Fig. 1-7b is
the displacement D3, corresponding to the couple A; and caused by A;.

The displacements caused by action A, acting alone are shown in Fig.
1-7¢, and those caused by A; alone are shown in Fig. 1-7d. In each case the
subscripts for the displacement symbols follow the general rule that the
first subscript identifies the displacement a the second gives the cause of
the displacement. In general, the cause m.;f\b\e a single force, a couple, or
an entire loading system. Unless specifically stated otherwise, this conven-
tion for subscripts will always be used in later discussions.

For the beams pictured in Fig. 1-7 it is not difficult to determine the
various displacements (see Table A-3, Cases 7 and 8). Assuming that the
beam has flexural rigidity EI and length L, it is found that the displace-
ments for the beam in Fig. 1-7b are

A, L? b _ SALP b AL’
24E] 21 48EI B 8EI

In a similar manner the remaining six displacements in Figs. 1-7c and d
(D1, Dsy, . .., Ds3) can be found. Then the displacements in the beam

under all loads acting simultaneously (see Fig. 1-7a) are determined by
summation:

D,, =

D1 = D11 + D12 + D13
D2 = D21 + D22 + D23
D3 = D31 + D32 + D33

These summations are expressions of the principle of superposition, which
is discussed more fully in Art. 1.9.
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1.5 Equilibrium. One of the objectives of any structural analysis is
to determine various actions pertaining to the structure, such as reactions
at the supports and internal stress resultants (bending moments, shearing
forces, etc.). A correct solution for any of these quantities must satisfy all
conditions of static equilibrium, not only for the entire structure, but also
for any part of the structure taken as a free body.

Consider now any free body subjected to several actions. The resultant
of all the actions may be a force, a couple, or both. If the free body is in
static equilibrium, the resultant vanishes; that is, the resultant force vector
and the resultant moment vector are both zero. A vector in three-dimen-
sional space may always be resolved into three components in mutually
orthogonal directions, such as the x, y, and z directions. If the resultant
force vector equals zero, then its components also must be equal to zero,
and therefore the following equations of static equilibrium are obtained:

2F,=0 XF,=0 XF,=0 (1-1a)

In these equations the expressions 2F,, %F, and 3F, are the algebraic
sums of the x, y, and z components, respectively, of all the force vectors
acting on the free body. Similarly, if the resultant moment vector equals
zero, the moment equations of static equilibrium are

2M, =0 XM,=0 2XM,=0 (1-1b)

in which M ,, 3M,, and 2 M., are the algebraic sums of the moments about
the x, y, and z axes, respectively, of all the couples and forces acting on
the free body. The six relations in Egs. (1-1) represent the static equilibrium
equations for actions in three dimensions. They may be applied to any free
body such as an entire structure, a portion of a structure, a single member,
or a joint of a structure.

When all forces acting on a free body are in one plane and all couples
have their vectors normal to that plane, only three of the six equilibrium
equations will be useful. Assuming that the forces are in the x-y plane, it is
apparent that the equations 2F, = 0, M, = 0, and M, = 0 will be
satisfied automatically. The remaining equations are

SF,=0 XF,=0 2M.=0 (1-2)

and these equations become the static equilibrium conditions for actions in
the x-y plane.
In the stiffness method of analysis, the basic equations to be solved are

those which express the equilibrium conditions at the joints of the struc-
ture, as described later in Chapter 3.

- 1.6 Compatibility. In addition to the static equilibrium conditions,
It1s necessary in apy structural analysis that all conditions of compatibility
be satisfied. These conditions refer to continuity of the displacements
throughout the structure and are sometimes referred to as conditions of
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geometry. As an example, compatibility conditions must be satisfied at all
points of support, where it is necessary that the displacements of the struc-
ture be consistent with the support conditions. For instance, at a fixed sup-
port there can be no translation and no rotation of the axis of the member.

Compatibility conditions must also be satisfied at all points throughout
the interior of a structure. Usually, it is compatibility conditions at the
joints of the structure that are of interest. For example, at a rigid connec-
tion between two members the displacements (translations and rotations)
of both members must be the same.

In the flexibility method of analysis the basic equations to be solved are
equations that express the compatibility of the displacements, as will be
described in Chapter 2.

1.7 Static and Kinematic Indeterminacy. There are two types of
indeterminacy that must be considered in structural analysis, depending
upon whether actions or displacements are of interest. When actions are
the unknowns in the analysis, as in the flexibility method, then static inde-
terminacy must be considered. In this case, indeterminacy refers to an
excess of unknown actions as compared to the number of equations of
static equilibrium that are available. The equations of equilibrium, when
applied to the entire structure and to its various parts, may be used for the
calculation of reactions and internal stress resultants. If these equations are
sufficient for finding all actions, both external and internal, then the struc-
ture is statically determinate. If there are more unknown actions than equa-
tions, the structure is statically indeterminate. The simply supported beam
shown in Fig. 1-3 and the cantilever be Fig. 1-4 are examples of stat-
ically determinate structures, since in both cases all reactions and stress
resultants can be found from equilibrium equations alone. On the other
hand, the continuous beam of Fig. 1-5a is statically indeterminate.

The unknown actions in excess of those that can be found by static
equilibrium are known as static redundants, and the number of such redun-
dants represents the degree of static indeterminacy of the structure. Thus,
the two-span beam of Fig. 1-5a is statically indeterminate to the first. degree,
since there is one redundant action. For instance, it can be seen that it is
impossible to calculate all of the reactions for the beam by static equilib-
rium alone. However, after the value of one reaction is obtained (by one
means or another), the remaining reactions and all internal stress resultants
can be found by statics alone.

Other examples of statically indeterminate structures are shown in Fig.
1-8. The propped cantilever beam in Fig. 1-8a is statically indeterminate to
the first degree, since there are four reactive actions (H4, M4, R4, and Rp)
whereas only three equations of equilibrium are available for the calcula-
tion of reactions (see Eqgs. 1-2).

The fixed-end beam of Fig. 1-8b is statically indeterminate to the third
degree because there are six reactions to be found in the general case. In
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Fig. 1-8. Examples of statically indeterminate structures.
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the special case when all the concentrated forces on a fixed-end beam act
in a direction which is perpendicular to the axis of the beam, there will be
no axial forces at the ends of the beam. In such a case the beam can be
analyzed as if it were statically indeterminate to the second degree.

The plane truss in Fig. 1-8c is statically indeterminate to the second
degree. This conclusion can be reached by cutting two bars, such as X and
Y, thereby releasing the forces in those bars. The truss with the cut bars is
then statically determinate, since all reactions and bar forces can be found
by a direct application of equations of equilibrium. Each bar that is cut
represents one action, namely, the force in the bar, that is released from
the truss. The number of actions that must be released in order to reduce
the statically indeterminate structure to a determinate structure will be
equal to the degree of indeterminacy. This method of ascertaining the
degree of static indeterminacy is quite general and can be used with many
types of structures.

As another example of this method for determining the degree of inde-
terminateness of a structure, consider the plane frame shown in Fig. 1-6.
The object is to make cuts, or releases, in the frame until the structure has
become statically determinate. If bars AB and BC are cut, the structure
that remains consists of three cantilever portions (the supports of the can-
tilevers are at D, E, and F), each of which is statically determinate. Each
bar that is cut represents the removal (or release) of three actions (axial
force, shearing force, and bending moment) from the original structure.
Because a total of six actions was released, the degree of indeterminacy of
the frame is six.

. A distinction may also be made between external and internal indeter-
Minateness. External indeterminateness refers to the calculation of the
reactions for the structure. Normally, there are six equilibrium equations
available for the determination of reactions in a space structure, and three
f_Or a plane structure. Therefore, a space structure with more than six reac-
tive actions, and a plane structure with more than three reactions, will usu-
ally be externally indeterminate. Examples of external indeterminateness
Can be seen in Fig. 1-8. The propped cantilever beam is externally indeter-
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minate to the first degree, the fixed-end beam is externally indeterminate to
the third degree, and the plane truss is statically determinate externally.

Internal indeterminateness refers to the calculation of stress resultants
within the structure, assuming that all reactions have been found previ-
ously. For example, the truss in Fig. 1-8c is internally indeterminate to the
second degree, although it is externally determinate, as noted above.

The total degree of indeterminateness of a structure is the sum of the
external and internal degrees of indeterminateness. Thus, the truss in Fig.
1-8c¢ is indeterminate to the second degree when considered in its entirety.
The beam in Fig. 1-8a is externally indeterminate to the first degree and
internally determinate, inasmuch as all stress resultants in the beam can be
readily found after all the reactions are known. The plane frame in Fig. 1-6
has nine reactive actions, and therefore it is externally indeterminate to the
sixth degree. Internally the frame is determinate since all stress resultants
can be found if the reactions are known. Therefore, the frame has a total
indeterminateness of six, as previously observed.

Occasionally, there are special conditions of construction that affect the
degree of indeterminacy of a structure. The three-hinged arched truss
shown in Fig. 1-9 has a central hinge at joint B which makes it possible to
calculate all four reactions by statics. For the truss shown, the bar forces
in all members can be found after the reactions are known, and therefore
the structure is statically determinate overall. ya

Several additional examples of statically indeterminate stru¢tures are
given at the end of this article. These examples illustrate how th€ degree of
indeterminacy can be obtained for many structures by intuitive reasoning.
Other examples will be encountered in Chapter 2 in connection with the
flexibility method of analysis. However, for large structures it is desirable
to have more formalized methods of establishing static indeterminacy; such
methods are discussed elsewhere and are not repeated here.*

In the stiffness method of analysis the displacements of the joints of the
structure become the unknown quantities. Therefore, the second type of
indeterminacy, known as kinematic indeterminacy, becomes important. In

g
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Fig. 1-9. Three-hinged arched truss.

*For a more complete discussion of static indeterminacy, see Elementary Structural Anal-
ysis, 3rd ed., by C. H. Norris, J. B. Wilbur, and S. Utku, McGraw-Hill, New York, 1976.
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order to understand this type of indeterminacy, it should be recalled that
joints in framed structures are defined to be located at all points where two
or more members intersect, at points of support, and at free ends. When
the structure is subjected to loads, each joint will undergo displacements in
the form of translations and rotations, depending upon the configuration of
the structure. In some cases the joint displacements will be known because
of restraint conditions that are imposed upon the structure. At a fixed sup-
port, for instance, there can be no displacements of any kind. However,
there will be other joint displacements that are not known in advance, and
which can be obtained only by making a complete analysis of the structure.
These unknown joint displacements are the kinematically indeterminate
quantities, and are sometimes called kinematic redundants. Their number
represents the degree of kinematic indeterminacy of the structure, or the
number of degrees of freedom for joint displacement.

To illustrate the concepts of kinematic indeterminacy, it is useful to
consider again the examples of Fig. 1-8. Beginning with the beam in Fig.
1-8a, it is seen that end A is fixed and cannot undergo any displacement.
On the other hand, joint B has two degrees of freedom for joint displace-
ment, since it may translate in the horizontal direction and may rotate.
Thus, the beam is kinematically indeterminate to the second degree, and
there are two unknown joint displacements to be calculated in a complete
analysis of this beam. In many practical analyses it would be permissible to
neglect axial deformations of the beam; in such a case, joint B would have
only one degree of freedom (rotation), and the structure would be analyzed
as if it were kinematically indeterminate to the first degree.

The second example of Fig. 1-8 is a fixed-end beam. Such a beam has
no unknown joint displacements, and therefore is kinematically determi-
nate. By comparison, the same beam was statically indeterminate to the
third degree.

The third example in Fig. 1-8 is the plane truss that was previously
shown to be statically indeterminate to the second degree. Joint A of this
truss may undergo two independent components of displacement (such as
translations in two perpendicular directions) and hence has two degrees of
freedom. Rotation of a joint of a truss has no physical significance because,
under the assumption of hinged joints, rotation of a joint produces no
effects in the members of the truss. Thus, the degree of kinematic indeter-
minacy of a truss is always found as if the truss were subjected to loads at
thf: joints only. This philosophy is the same as in the case of static indeter-
Mminacy, wherein only axial forces in the members are considered as
unknowns. The joints B, D, and E of the truss in Fig. 1-8 also have two
degrees of freedom each, while the restrained joints C and F have zero and
one degree of freedom, respectively. Thus, the truss has a total of nine
degrees of freedom for joint translation and is kinematically indeterminate
to the ninth degree

The rigid frame shown in Fig. 1-6 offers another example of a kinemat-
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ically indeterminate structure. Since the supports at D, E, and F of this
frame are fixed, there can be no displacements at these joints. However,
joints A, B, and C each possess three degrees of freedom, since each joint
may undergo horizontal and vertical translations and a rotation. Thus, the
total number of degrees of kinematic indeterminacy for this frame is nine.
If the effects of axial deformations are omitted from the analysis, the degree
of kinematic indeterminacy is reduced. There would be no possibility for
vertical displacement of any of the joints because the columns would not
change length. Furthermore, the horizontal translations of joints A and B
would be equal, and the horizontal translation of C would have a known
relationship to that of joint B. In other words, if axial deformations are
neglected the only independent joint displacements are the rotations of
joints A, B, and C and one horizontal displacement (such as that of joint
B). Therefore, the structure would be considered to be kinematically inde-
terminate to the fourth degree.

In summary, two simple rules can always be used to find the static and
kinematic indeterminacy of a framed structure. First, to find the number of
redundant actions, count the number of releases necessary to obtain a stat-
ically determinate structure. This can be done indirectly by finding the
number of unknown actions in excess of those that ca found from static
equilibrium equations. Second, to find the number of degrees of freedom
for joint displacement, count the number of joint restrajnts that must be
added to obtain a kinematically determinate structure(no joint displace-

ments). Several examples involving both static and kinematic indetermi-
nacy will now be given.

Example 1. The space truss shown in Fig. 1-10 has pin supports at A, B,
and C. The degrees of static and kinematic indeterminacy for the truss are to be
obtained.

In determining the degree of static indeterminacy, it can be noted that there are
three equations of equilibrium available at every joint of the truss for the purpose of
calculating bar forces or reactions. Thus, a total of 18 equations of ‘statics is availa-
ble. The number of unknown actions is 21, since there are 12 bar forces and 9
reactions (three at each support) to be found. The truss is, therefore, statically inde-

Fig. 1-10. Example 1.
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terminate to the third degree. More specifically, the truss is externally indeterminate
to the third degree, because there are nine reactions but only six equations for the
equilibrium of the truss as a whole. The truss is internally determinate since all bar
forces can be found by statics after the reactions are determined.

Each of the joints D, E, and F has three degrees of freedom for joint displace-
ment, because each joint can translate in three mutually orthogonal directions.
Therefore, the truss is kinematically indeterminate to the ninth degree.

Example 2. The degrees of static and kinematic indeterminacy are to be
found for the space frame shown in Fig. 1-11a.

There are various ways in which the frame can be cut in order to reduce it to a
statically determinate structure. One possibility is to cut all four of the bars EF, FG,
GH, and EH, thereby giving the released structure shown in Fig. 1-11b. Since each
release represents the removal of six actions (axial force, two shearing forces, twist-
ing couple, and two bending moments) the original frame is statically indeterminate
to the 24th degree.

The number of possible joint displacements at E, F, G, and H is six at each
joint (three translations and three rotations); therefore, the frame is kinematically
indeterminate to the 24th degree.

Now consider the effect of omitting axial deformations from the analysis. The

degree of static indeterminacy is not affected, because the same number of actions
will still exist in the structure. On the other hand, there will be fewer degrees of
freedom for joint displacement. The columns will not change in length, thereby
eliminating four joint translations (one each at E, F, G, and H). In addition, the four
horizontal members will not change in length, thereby eliminating four more trans-
lations. Thus, it is finally concluded that the degree of kinematic indeterminacy is
16 when axial deformations are excluded from consideration.
- Consider next the effect of replacing the fixed supports at A, B, C, and D by
Immovable pinned supports. The effect of the pinned supports is to reduce the num-
ber of reactions at each support from six to three. Therefore, the degree of static
Indeterminacy becomes 12 less than with fixed supports, or a total of 12 degrees. At
the same time, three additional degrees of freedom for rotation have been added at
€ach support, so that the degree of kinematic indeterminacy has been increased by
12 when compared to the frame with fixed supports. It can be seen that removing
Iestraints at the suppurts of a structure serves to decrease the degree of statical
Indeterminacy, while increasing the degree of kinematic indeterminacy.
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Fig. 1-12. Example 3.

Example 3. The grid shown in Fig. 1-12a lies in a horizontal plane and is
supported at A, D, E, and H by simple supports. The joints at B, C, F, and G are
rigid connections. What are the degrees of static and kinematic indeterminacy?

Because there are no axial forces in the members of a grid, only vertical reac-
tions are developed at the supports of this structure. Therefore, the grid is externally
indeterminate to the first degree, because only three equilibrium equations are avail-
able for the structure in its entirety, but there are four reactions. After removing
one reaction, the grid can be made statically determinate by cutting one member,
such as CG (see Fig. 1-12b). The release in member CG removes three actions
(shearing force in the vertical direction, twisting moment, and bending moment).
Thus, the grid can be seen to be internally indeterminate to the third degree and
statically indeterminate overall to the fourth degree.

In general there are three degrees of freedom for displacement at each joint of
a grid (one translation and two rotations). Such is the case at joints B, C, F, and G
of the grid shown in Fig. 1-12a. However, at joints A, D, E, and H only two joint
displacements are possible, inasmuch as joint translation is prevented. Therefore,
the grid shown in the figure is kinematically indeterminate to the 20th degree.

1.8 Structural Mobilities. In the preceding discussion of external
static indeterminacy, the number of reactions for a structure was compared
with the number of equations of static equilibrium for the entire structure
taken as a free body. If the number of reactions exceeds the number of
equations, the structure is externally statically indeterminate; if they are
equal, the structure is externally determinate. However, it was tacitly
assumed in the discussion that the geometrical arrangement of the reactions
was such as to prevent the structure from moving when loads act on it. For
instance, the beam shown in Fig. 1-13a has three reactions, which is the
same as the number of static equilibrium equations for forces in a plane. It
is apparent, however, that the beam will move to the left when the inclined
load P is applied. A structure of this type is said to be mobile (or kinemat-
ically unstable). Other examples of mobile structures are the frame of Fig.
1-13b and the truss of Fig. 1-13c. In the structure of Fig. 1-13b the three
reactive forces are concurrent (their lines of action intersect at point O).
Therefore, the frame is mobile since it cannot support a general load, such
as the force P, which does not act through point O. In the truss of Fig.
1-13c there are two bars which are collinear at joint A, and there is no other
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Fig. 1-13. Mobile structures.

bar meeting at that joint. Again, the structure is mobile since it is incapable
of supporting the load P in its initial configuration.

From the examples of mobile structures given in Fig. 1-13, it is apparent
that both the supports and the members of any structure must be adequate
in number and in geometrical arrangement to insure that the structure is not

movable. Only structures meeting these conditions will be considered for
analysis in subsequent chapters.

1.9 Principle of Superposition.  The principle of superposition is one
of the most important concepts in structural analysis. It may be used when-
ever linear relationships exist between actions and displacements (the con-
ditions under which this assumption is valid are described later in this arti-
cle). In using the principle of superposition it is assumed that certain
agtions and displacements are imposed upon a structure. These actions and
displacements cause other actions and displacements to be developed in
the structure. Thus, the former actions and displacements have the nature
of causes, while the latter are effects. In general terms the principle states
that the effects produced by several causes can be obtained by combining
the effects due to the individual causes.

‘In order to illustrate the use of the principle of superposition when
actions are the cause, consider the beam in Fig. 1-14a. This beam is sub-
Jected to loads A, and A,, which produce various actions and displace-
ments throughout the structure. For instance, reactions R4, Rp, and Mj
are developed at thc supports, and a displacement D is produced at the
Mmidpoint of the beam. The effects of the actions A, and A, acting sepa-



