Displacement Method
of Analysis: Moment
Distribution

The moment-distribution method is a displacement method of
analysis that is easy to apply once certain elastic constants have been
determined. In this chapter we will first state the important definitions
and concepts for moment distribution and then apply the method to
solve problems involving statically indeterminate beams and frames.
Application to multistory frames is discussed in the last part of the
chapter.

12.1 General Principles and Definitions

The method of analyzing beams and frames using moment distribution
was developed by Hardy Cross, in 1930. At the time this method was
first published it attracted immediate attention, and it has been
recognized as one of the most notable advances in structural analysis
during the twentieth century.

As will be explained in detail later, moment distribution is a method of
successive approximations that may be carried out to any desired degree
of accuracy. Essentially, the method begins by assuming each joint of a
structure is fixed. Then, by unlocking and locking each joint in succession,
the internal moments at the joints are “distributed” and balanced until
the joints have rotated to their final or nearly final positions. It will be
found that this process of calculation is both repetitive and easy to apply.
Before explaining the techniques of moment distribution, however,
certain definitions and concepts must be presented.
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Sign Convention. We will establish the same sign convention as that
established for the slope-deflection equations: Clockwise moments that act
on the member are considered positive, whereas counterclockwise moments
are negative, Fig. 12-1.

Fixed-End Moments (FEMs). The moments at the “walls” or
fixed joints of a loaded member are called fixed-end moments. These
moments can be determined from the table given on the inside back
cover, depending upon the type of loading on the member. For example,
the beam loaded as shown in Fig. 12-2 has fixed-end moments of
FEM = PL/8 = 800(10)/8 = 1000 N-m. Noting the action of these
moments on the beam and applying our sign convention, it is seen that
Myp = —1000 N-m and Mg, = +1000 N - m.

Member Stiffness Factor. Consider the beam in Fig. 12-3, which
is pinned at one end and fixed at the other. Application of the moment M
causes the end A to rotate through an angle 6 4. In Chapter 11 we related
M to 6 4 using the conjugate-beam method. This resulted in Eq. 11-1, that
is, M = (4E1/L) 6 4. The term in parentheses

4E]1
k==
Far End Fixed (12-1)

is referred to as the stiffness factor at A and can be defined as the amount
of moment M required to rotate the end A of the beam 6, = 1 rad.

-
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Joint Stiffness Factor. If several members are fixed connected to
a joint and each of their far ends is fixed, then by the principle of
superposition, the ftotal stiffness factor at the joint is the sum of the
member stiffness factors at the joint, that is, Ky = XK. For example,
consider the frame joint A in Fig. 12—4a. The numerical value of each
member stiffness factor is determined from Eq. 12-1 and listed in the
figure. Using these values, the total stiffness factor of joint A is
Ky = 2K =4000 + 5000 + 1000 = 10 000. This value represents the
amount of moment needed to rotate the joint through an angle of 1 rad.

Distribution Factor (DF). If a moment M is applied to a fixed
connected joint, the connecting members will each supply a portion of
the resisting moment necessary to satisfy moment equilibrium at the
joint. That fraction of the total resisting moment supplied by the member
is called the distribution factor (DF).To obtain its value, imagine the joint
is fixed connected to n members. If an applied moment M causes the
joint to rotate an amount 6, then each member i rotates by this same
amount. If the stiffness factor of the ith member is K;, then the moment
contributed by the member is M; = K;0. Since equilibrium requires
M=M,+ M, = K0+ K, = 02K, then the distribution factor for
the ith member is
DF. — M; Kp
" M 62K,
Canceling the common term 6, it is seen that the distribution factor for a
member is equal to the stiffness factor of the member divided by the

total stiffness factor for the joint; that is, in general,

K

DF = —
SK

(12-2)

For example, the distribution factors for members AB, AC, and AD at
joint A in Fig. 12—4a are

DF,; = 4000/10 000 = 0.4
DF,¢ = 5000/10 000 = 0.5
DF,, = 1000/10 000 = 0.1

As aresult,if M = 2000 N - m acts at joint A, Fig. 12-4b, the equilibrium
moments exerted by the members on the joint, Fig. 12—4c, are

M 45 = 0.4(2000) = 800 N -m
M e = 0.5(2000) = 1000 N - m
Mp = 0.1(2000) = 200N -m

Kap=1000 4 Ku5= 4000# u
D K, =5000 B

(a)

(®)

M = 2000 N-m

200 N-m 800 N-m
—
1000 N-m

()
Fig. 12-4
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The statically indeterminate loading in bridge girders that are
continuous over their piers can be determined using the
method of moment distribution.

Member Relative-Stiffness Factor. Quite often a continuous
beam or a frame will be made from the same material so its modulus of
elasticity E will be the same for all the members. If this is the case, the
common factor 4F in Eq. 12-1 will cancel from the numerator and
denominator of Eq. 12-2 when the distribution factor for a joint
is determined. Hence, it is easier just to determine the member’s
relative-stiffness factor

1
KR = z
Far End Fixed (12-3)

and use this for the computations of the DF.

Carry-Over Factor. Consider again the beam in Fig. 12-3. It was
shown in Chapter 11 that M,z = (4EI/L)6, (Eq. 11-1) and
Mgy = (2EI/L) 64 (Eq. 11-2). Solving for 6, and equating these
equations we get Mg, = M p/2. In other words, the moment M at the
pin induces a moment of M’ = %M at the wall. The carry-over factor
represents the fraction of M that is “carried over” from the pin to the
wall. Hence, in the case of a beam with the far end fixed, the carry-over
factor is —l%. The plus sign indicates both moments act in the same
direction.
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12.2 Moment Distribution for Beams u

Moment distribution is based on the principle of successively locking
and unlocking the joints of a structure in order to allow the moments at
the joints to be distributed and balanced. The best way to explain the
method is by examples.

Consider the beam with a constant modulus of elasticity £ and having
the dimensions and loading shown in Fig. 12-5a. Before we begin, we
must first determine the distribution factors at the two ends of each span.
Using Eq. 12-1, K = 4E1/L, the stiffness factors on either side of B are

B 4FE(300) B 4E(600)
Mmoo 20
Thus, using Eq. 12-2, DF = K/XK, for the ends connected to joint B, 240 Ib /ft \

we have % lllllllg
4E(20) IAB:300in4"# Igc = 600in* C

= = B
DFea = 450y + aE(30) 4 R — 20 ft———f

DFye = 4EG0) = 0.6 (a)
BC T 4E(20) + 4E(30)
Fig. 12-5

4E(20)in*/ft  Kpge = = 4E(30) in*/ft

At the walls, joint A and joint C, the distribution factor depends on the
member stiffness factor and the “stiffness factor” of the wall. Since in
theory it would take an “infinite” size moment to rotate the wall one
radian, the wall stiffness factor is infinite. Thus for joints A and C we have

4E(20)

DRas = o 4E@0) ~ Y
4E(30)

DFer = S uE30) ~ 0

Note that the above results could also have been obtained if the relative
stiffness factor Ky = I/L (Eq. 12-3) had been used for the calculations.
Furthermore, as long as a consistent set of units is used for the stiffness
factor, the DF will always be dimensionless, and at a joint, except where
it is located at a fixed wall, the sum of the DFs will always equal 1.
Having computed the DFs, we will now determine the FEMs. Only
span BC is loaded, and using the table on the inside back cover for a
uniform load, we have
w2 240(20)?

FEM)pc = — = - — —80001b-f

( )BC B D 8000 1b - ft
wL?  240(20)?

2 12

(FEM)cp = = 8000 Ib - ft
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240 Ib/ft

E

B

%HHH%VC

8000 Ib - ft

joint B held fixed

8000

B

(b)

Ib-ft

8000 Ib - ft

c

correction moment applied to joint B

1600 1b - ft<— 3200 1b - ft 4800 Ib - ft —2400 Ib - ft
moment at B distributed

(©)

8000 Ib - ft

(d)
Joint A B C
Member| AB BA | BC CB
DF 0 0.4 0.6 0
FEM —8000 | 8000
Dist,CO| 1600-—3200 | 4800—= 2400
M 1600 | 3200 |(—3200 | 10400

(e)

DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIBUTION

We begin by assuming joint B is fixed or locked. The fixed-end
moment at B then holds span BC in this fixed or locked position as
shown in Fig. 12-5b. This, of course, does not represent the actual
equilibrium situation at B, since the moments on each side of this joint
must be equal but opposite. To correct this, we will apply an equal, but
opposite moment of 8000 Ib - ft to the joint and allow the joint to rotate
freely, Fig. 12-5c¢. As a result, portions of this moment are distributed in
spans BC and BA in accordance with the DFs (or stiffness) of these spans
at the joint. Specifically, the moment in BA is 0.4(8000) = 3200 Ib - ft and
the moment in BC is 0.6(8000) = 4800 Ib - ft. Finally, due to the released
rotation that takes place at B, these moments must be “carried over” since
moments are developed at the far ends of the span. Using the carry-over
factor of +%, the results are shown in Fig. 12-5d.

This example indicates the basic steps necessary when distributing
moments at a joint: Determine the unbalanced moment acting at the
initially “locked” joint, unlock the joint and apply an equal but opposite
unbalanced moment to correct the equilibrium, distribute the moment
among the connecting spans, and carry the moment in each span over
to its other end. The steps are usually presented in tabular form as
indicated in Fig. 12-5e. Here the notation Dist, CO indicates a line
where moments are distributed, then carried over. In this particular case
only one cycle of moment distribution is necessary, since the wall
supports at A and C “absorb” the moments and no further joints have to
be balanced or unlocked to satisfy joint equilibrium. Once distributed in
this manner, the moments at each joint are summed, yielding the final
results shown on the bottom line of the table in Fig. 12-5e. Notice that
joint B is now in equilibrium. Since Mpc is negative, this moment is
applied to span BC in a counterclockwise sense as shown on free-body
diagrams of the beam spans in Fig. 12-5f. With the end moments known,
the end shears have been computed from the equations of equilibrium
applied to each of these spans.

Consider now the same beam, except the support at C is a rocker,
Fig. 12-6a. In this case only one member is at joint C, so the
distribution factor for member CB at joint C is

4E(30)

4E(30) !

DFCB =

1600 Ib - ft Vg, =3201b Vg =20401b l l f4(l) lli/flt l l Ve =27601b
=t P
V, =320 lb}‘i 15 ft ——‘ 3200 1b-ft } 20 ft 7‘ 10 400 1b - ft

()
Fig. 12-5
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The other distribution factors and the FEMs are the same as computed
previously. They are listed on lines 1 and 2 of the table in Fig. 12-6b.
Initially, we will assume joints B and C are locked. We begin by unlocking
joint C and placing an equilibrating moment of —80001b-ft at the
joint. The entire moment is distributed in member CB since
(1)(—8000) Ib-ft = —8000 1b - ft. The arrow on line 3 indicates that
2(—8000) 1b - ft = —4000 Ib - ft is carried over to joint B since joint C has
been allowed to rotate freely. Joint C is now relocked. Since the total
moment at Cis balanced, a line is placed under the —8000-1b - ft moment.
We will now consider the unbalanced —12 000-1b - ft moment at joint B.
Here for equilibrium, a +12 000-1b - ft moment is applied to B and this
joint is unlocked such that portions of the moment are distributed into
BA and BC, that is, (0.4)(12000) = 48001b-ft and (0.6)(12000) =
7200 Ib - ft as shown on line 4. Also note that + of these moments must
be carried over to the fixed wall A and roller C since joint B has rotated.
Joint B is now relocked. Again joint C is unlocked and the unbalanced
moment at the roller is distributed as was done previously. The results
are on line 5. Successively locking and unlocking joints B and C will
essentially diminish the size of the moment to be balanced until it
becomes negligible compared with the original moments, line 14. Each of
the steps on lines 3 through 14 should be thoroughly understood.
Summing the moments, the final results are shown on line 15, where it is
seen that the final moments now satisfy joint equilibrium.

Joint A B C
Member AB BA BC CB
DF 0 0.4 0.6 1
FEM —8000 8000
—4000 -+ —8000
2400 -+ 4800 7200+ 3600
—1800 -+ —3600
360 -+ 720 1080 +— 540
=270 -+ —540
54 -+ 108 162 +- 81
—40.5—+ 81
81-+ 162 243+ 122
240 Ib/ft =61 —12.2
A B Ll l l l l l l l 12+ 24 3.6 T~ 1.8
—r— — R C -09—+ 18
Ly = 300 in* Igc =600 in | 0.4 0.5
15 ft
: 20n | SM | 28233 | 56470 | —=5647.0 | 0
(a) (b)

Fig. 126

0 N Lt W

S V=)
AW = O

—_
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Rather than applying the moment distribution process successively to
each joint, as illustrated here, it is also possible to apply it to all joints at
the same time. This scheme is shown in the table in Fig. 12-6c. In this case,
we start by fixing all the joints and then balancing and distributing the
fixed-end moments at both joints B and C, line 3. Unlocking joints B and
C simultaneously (joint A is always fixed), the moments are then carried
over to the end of each span, line 4. Again the joints are relocked, and the
moments are balanced and distributed, line 5. Unlocking the joints once
again allows the moments to be carried over, as shown in line 6. Continuing,
we obtain the final results, as before, listed on line 24. By comparison, this
method gives a slower convergence to the answer than does the previous
method; however, in many cases this method will be more efficient to apply,
and for this reason we will use it in the examples that follow. Finally, using
the results in either Fig. 12-6b or 12-6c¢, the free-body diagrams of each
beam span are drawn as shown in Fig. 12-6d.

Although several steps were involved in obtaining the final results
here, the work required is rather methodical since it requires application
of a series of arithmetical steps, rather than solving a set of equations as
in the slope deflection method. It should be noted, however, that the

Joint A B C
Member AB BA BC CB
DF 0 0.4 0.6 1 1
FEM —8000 8000 2
Dist. 3200 4800 —8000 3
co | 1600 —4000 2400 | 4
Dist. 1600 2400 —2400 5
CO 800 —1200 1200 6
Dist. 480 720 —1200 7
CO 240 —600 360 8
Dist. 240 360 . =360 9
CO 120 —180 180 10
Dist. 72 108 —180 11
CO 36 =90 54 12
Dist. 36 54 =54 13
CO 18 =27 27 14
Dist. 108 162 | -27 |15 B — Vg, = 564.71b
CO 54 =135 81 | 16
Dist. 54 8.1 -81 | 17 ( 1' - 'T )
co 27 —4.05 405 18 V, = 5647 Ib T 5647.0 Ib-ft
Dist. 1.62 243 —4.05| 19
CO 0.81 -2.02 1.22| 20
Dist. 08| 12| -122]21 Vi =260241b  40lb/f Ve=211761b
Co 0.40 —0.61 0.61) 22
Dist. 0.24 0.37 —0.61| 23 ( T l l l l l l l l l l | T
M 2823 | 5647 | —5647 0 | 647010 £ 201t 1
(© (d)

Fig. 126
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fundamental process of moment distribution follows the same procedure
as any displacement method. There the process is to establish load-
displacement relations at each joint and then satisfy joint equilibrium
requirements by determining the correct angular displacement for the
joint (compatibility). Here, however, the equilibrium and compatibility
of rotation at the joint is satisfied directly, using a “moment balance”
process that incorporates the load-deflection relations (stiffness factors).
Further simplification for using moment distribution is possible, and this
will be discussed in the next section.

Procedure for Analysis

The following procedure provides a general method for determining
the end moments on beam spans using moment distribution.

Distribution Factors and Fixed-End Moments

The joints on the beam should be identified and the stiffness factors
for each span at the joints should be calculated. Using these values
the distribution factors can be determined from DF = K/ZK.
Remember that DF = 0 for a fixed end and DF = 1 for an end pin
or roller support.

The fixed-end moments for each loaded span are determined
using the table given on the inside back cover. Positive FEMs act
clockwise on the span and negative FEMs act counterclockwise. For
convenience, these values can be recorded in tabular form, similar
to that shown in Fig. 12—6¢.

Moment Distribution Process

Assume that all joints at which the moments in the connecting spans
must be determined are initially locked. Then:

1. Determine the moment that is needed to put each joint in
equilibrium.

2. Release or “unlock” the joints and distribute the counterbalancing
moments into the connecting span at each joint.

3. Carry these moments in each span over to its other end by
multiplying each moment by the carry-over factor +%.

By repeating this cycle of locking and unlocking the joints, it will
be found that the moment corrections will diminish since the beam
tends to achieve its final deflected shape. When a small enough value
for the corrections is obtained, the process of cycling should be
stopped with no “carry-over” of the last moments. Each column of
FEMs, distributed moments, and carry-over moments should then
be added. If this is done correctly, moment equilibrium at the joints
will be achieved.
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n EXAMPLE [12.1

Determine the internal moments at each support of the beam shown
in Fig. 12-7a. EI is constant.

(a) 4 m 4m|

Fig. 12-7

SOLUTION
The distribution factors at each joint must be computed first.* The
stiffness factors for the members are

4E1 4E1 4E1
Ras=rp Kee=rp Re =7y

Therefore,

DF DF 0 DF DF AE1/12 0.5
AB R be BA T UBC TARIN2 + AET/12

OF 4EI/12 04 DF 4EI/8 06
©B T 4EI)12 + 4EI/8 DT AEI/12 + 4EI/8

The fixed-end moments are

wLl?  —20(12)% wL?  20(12)°
(FEM)pc = === = ——>—— = =240kN-m  (FEM)cp = —> = —>— = 240kN-m
—-250(8 250(8

Starting with the FEMs, line 4, Fig. 12-7b, the moments at joints B
and C are distributed simultaneously, line 5. These moments are then
carried over simultaneously to the respective ends of each span, line 6.
The resulting moments are again simultaneously distributed and
carried over, lines 7 and 8. The process is continued until the resulting
moments are diminished an appropriate amount, line 13. The resulting
moments are found by summation, line 14.

Placing the moments on each beam span and applying the
equations of equilibrium yields the end shears shown in Fig. 12-7¢ and
the bending-moment diagram for the entire beam, Fig. 12-74.

*Here we have used the stiffness factor 4E1I/L; however, the relative stiffness factor
I/L could also have been used.
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Joint A B C D 1
Member| AB BA BC CB CD DC 2
DF 0 0.5 0.5 0.4 0.6 0 3
FEM —240 240 —250 250 4
Dist. 120 120 N 4 6 5
CO 60 2 60 3 6
Dist. —1 —1 N —24 —36 7
CO —-0.5 —-12 —-0.5 —18 8
Dist. 6 6 N 0.2 0.3 9
CO 3 0.1 3 0.2 |10
Dist. —-0.05| —0.050 —-1.2 —1.8 11
CO —0.02 —0.6 —0.02 -09 |12
Dist. 0.3 0.3 0.01 0.01 13
>M 62.5 1252 | —1252 | 2815 | —281.5| 2343 |14

(b)
20 kN/m 250 kKN
) 15.6 kKN
62.5 klg in , B 107.0 kN l l l l l 1 l l 133.0 kN 1309kN 1, 119.1kN
= =) (1 P (1 P
1252 kN- 281.5 kN -
156kN  12M " B 12m ¢ moe D 5343KkN-m
(©)

M (KN-m) 242.1
160.9

62.5

\4.2 12 , 24 , 32
' 17.3 ' 28 x (m)
~1252

—234.3
—281.5

(d)
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n EXAMPLE [12.2

Determine the internal moment at each support of the beam shown
in Fig. 12-8a. The moment of inertia of each span is indicated.

400 Ib 60 Ib /ft

10 ft#imft*-[-—lS ft——

Fig. 12-8

SOLUTION

In this problem a moment does not get distributed in the overhanging
span AB, and so the distribution factor (DF)z, = 0. The stiffness of
span BC is based on 4EI/L since the pin rocker is not at the far end of
the beam. The stiffness factors, distribution factors, and fixed-end
moments are computed as follows:

4E(750) S0E K 4E(600) L60E
BC — 20 - CcD — 15 -

DFgc=1—- (DF)gy=1-0=1

150E
PFes = 1508 + 1602 ~

160E
DFep = 150+ 1608 ~ 0010

160E

DFpc = + 160E 0

Due to the overhang,

(FEM) 4 = 400 1b(10 ft) = 4000 Ib - ft
w2 60(20)2
(FEM)pc = === = == —2000 Ib - ft
wL?  60(20)°
FEM) g = = =20001b-f
(FEM)cp = — D 000 Ib - ft

These values are listed on the fourth line of the table, Fig. 12-8b.
The overhanging span requires the internal moment to the left of B to
be +4000 1b - ft. Balancing at joint B requires an internal moment
of —4000 1b - ft to the right of B. As shown on the fifth line of the table
—20001b - ft is added to BC in order to satisfy this condition. The
distribution and carry-over operations proceed in the usual manner as
indicated.
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Since the internal moments are known, the moment diagram for the

beam can be constructed (Fig. 12-8¢).

Joint B C D
Member BC CB CD DC
DF 0 1 0.484 0.516 0
FEM 4000 |—2000 2000
Dist. —2000 —968 | —1032
CcO —484 —1000 —-516
Dist. 484 484 516
CcO 242 242 258
Dist. —242 —117.1 | —124.9
CcO —58.6 —121 —62.4
Dist. 58.6 58.6 62.4
(60) 29.3 29.3 312
Dist. -29.3 —142 | 151
CcO -7.1 —14.6 7.6
Dist. 7.1 7.1 7.6
CO 3.5 3.5 3.8
Dist. -35 -1.7 -1.8
CcoO —0.8 -18 -0.9
Dist. 0.8 0.9 0.9
CcO 0.4 0.4 0.4
Dist. —0.4 -02 —0.2
CcO —-0.1 -0.2 —0.1
Dist. 0.1 0.1 0.1
M 4000 | —4000 | 587.1 | —587.1 | —293.6
(b)
400 Ib 60 1b /ft
400 b 770.6 1b 429.41b 58.51b 293.61b-ft
Y YYYYYYYVYYY
10 ft 15 ft
4000 Ib- ft 20 ft 587.11b-ft 5851b
M (Ib-ft)
949.1
10 30 293.6
: ! . x (ft)
22.8
—587.1
—4000

(©
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Fig. 12-10

DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIBUTION

12.3 Stiffness-Factor Modifications

In the previous examples of moment distribution we have considered
each beam span to be constrained by a fixed support (locked joint) at its
far end when distributing and carrying over the moments. For this
reason we have computed the stiffness factors, distribution factors, and
the carry-over factors based on the case shown in Fig. 12-9. Here, of
course, the stiffness factor is K = 4EI/L (Eq. 12-1), and the carry-over
factor is +3.

In some cases it is possible to modify the stiffness factor of a particular
beam span and thereby simplify the process of moment distribution. Three
cases where this frequently occurs in practice will now be considered.

Member Pin Supported at Far End. Many indeterminate beams
have their far end span supported by an end pin (or roller) as in the case of
joint B in Fig. 12-10a. Here the applied moment M rotates the end A by an
amount 6. To determine 6, the shear in the conjugate beam at A" must be
determined, Fig. 12-10b. We have

1/ M 2
+ .= 0 ' —=({—=LlZL )=
(+SMy = 0; V(L) 2<E1>L<3L) 0
, ML
Va=0=3¢
or
3ET
M ==
L

Thus, the stiffness factor for this beam is

3E]
K =——
L
Far End Pinned

or Roller Supported

(12-4)

Also, note that the carry-over factor is zero, since the pin at B does not
support a moment. By comparison, then, if the far end was fixed
supported, the stiffness factor K = 4E1/L would have to be modified by %
to model the case of having the far end pin supported. If this modification
is considered, the moment distribution process is simplified since the end
pin does not have to be unlocked-locked successively when distributing
the moments. Also, since the end span is pinned, the fixed-end moments
for the span are computed using the values in the right column of the
table on the inside back cover. Example 12—4 illustrates how to apply
these simplifications.
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| . T 4 -

R = S == - \B’ C'l
I I
A - ]
M,
EI
real beam conjugate beam

(a) (b)
Fig. 12-11

Symmetric Beam and Loading. If a beam is symmetric with
respect to both its loading and geometry, the bending-moment diagram
for the beam will also be symmetric. As a result, a modification of the
stiffness factor for the center span can be made, so that moments in the
beam only have to be distributed through joints lying on either half of
the beam. To develop the appropriate stiffness-factor modification,
consider the beam shown in Fig. 12-11a. Due to the symmetry, the
internal moments at B and C are equal. Assuming this value to be M, the
conjugate beam for span BC is shown in Fig. 12-11b. The slope 6 at each
end is therefore

M L
+2Me = 0; —Vp(L)+—(L){=)=0
&1 C i B() EI( )(2>

ML
Ve =0 o
or
2E1
M =—-3a20
L

The stiffness factor for the center span is therefore

2EI
K="=
L

12—
Symmetric Beam and Loading (12-5)

Thus, moments for only half the beam can be distributed provided
the stiffness factor for the center span is computed using Eq. 12-5. By
comparison, the center span’s stiffness factor will be one half that usually
determined using K = 4EI/L.

501



502 CHAPTER 12 DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIBUTION

%L
M
VB' i
L N ye Ly
A T [ = t D ! 5 C
I L N F oL Ve
r L "l L "l L "l = 1 M L
2 EI (2)
real beam conjugate beam

(b)
(a)

Fig. 12-12

Symmetric Beam with Antisymmetric Loading. If a
symmetric beam is subjected to antisymmetric loading, the resulting
moment diagram will be antisymmetric. As in the previous case, we can
modify the stiffness factor of the center span so that only one half of the
beam has to be considered for the moment-distribution analysis.
Consider the beam in Fig. 12-12a. The conjugate beam for its center span
BC is shown in Fig. 12-12b. Due to the antisymmetric loading, the
internal moment at B is equal, but opposite to that at C. Assuming this
value to be M, the slope 6 at each end is determined as follows:

e = o voie) =5 G5 )0E) 3G G)(6) -

ML
Vi =0="pr
or
6EI
M=—=9
L

The stiffness factor for the center span is, therefore,

6EI
K=-—-
L

Sym@etric Bc?am wit.h (12-6)
Antisymmetric Loading

Thus, when the stiffness factor for the beam’s center span is computed
using Eq. 12-6, the moments in only half the beam have to be distributed.
Here the stiffness factor is one and a half times as large as that determined
using K = 4EI/L.
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EXAMPLE [12.3 n

Determine the internal moments at the supports for the beam shown
in Fig. 12-13a. EI is constant.

/m Yy

4%/t

Y ¥V ¥ Y M\

Y

Y VY

15 ft 20 ft 15 ft

(a)
Fig. 12-13

SOLUTION

By inspection, the beam and loading are symmetrical. Thus, we will
apply K = 2EI/L to compute the stiffness factor of the center span
BC and therefore use only the left half of the beam for the analysis.
The analysis can be shortened even further by using K = 3EI/L for
computing the stiffness factor of segment AB since the far end A is
pinned. Furthermore, the distribution of moment at A can be skipped
by using the FEM for a triangular loading on a span with one end
fixed and the other pinned. Thus,

EI
Kap = 31—5 (using Eq. 12-4)
2EI , Joint | A B
Kpc = 20 (using Eq. 12-5) Member | AB BA BC
_3EINS DF 1 | 0667 | 0333
DFas = 35115 ~
/3E1/15 FEM 60 |—1333
_ _ Dist. 489 | 244
DFsa = 3EI/15 + 2E1/20 0667
2E1/20 M 0 108.9 | —108.9
DF = = 0.
B¢ = 3EI/15 + 2E120 000 o
FEM),, = ML 2 2057 _ s
( T T t
wl? 4(20)?
FEM)pc = — = - = —1333k-f
( )BC 0 B 333 t

These data are listed in the table in Fig. 12-13b. Computing the stiffness
factors as shown above considerably reduces the analysis, since only
joint B must be balanced and carry-overs to joints A and C are not
necessary. Obviously, joint C is subjected to the same internal moment
of 108.9 k - ft.
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n EXAMPLE |12.4

Determine the internal moments at the supports of the beam shown
in Fig. 12-14a. The moment of inertia of the two spans is shown in the
figure.

240 Ib /ft

RIS
S

5

Fig. 12-14

SOLUTION
Since the beam is roller supported at its far end C, the stiffness of span
BC will be computed on the basis of K = 3EI/L. We have

4E(300
4EI _ 4E(300) _ SOE

Kas =7 15
x 3EI  3E(600)
BC™ 20
Thus,
S80E
DFus = o g0r ¢
80E
DF,, = ————— = 0.4706
BA T 80E + 90E
90E
DFp = ————— = 0.5294
BC ™ Q0E + 90E 0.529
90E
DFcp = 5o = 1

Further simplification of the distribution method for this problem is
possible by realizing that a single fixed-end moment for the end span
BC can be used. Using the right-hand column of the table on the
inside back cover for a uniformly loaded span having one side fixed,
the other pinned, we have

2 —240(20)?
W;L - 8( S 120001b-ft

(FEM)BC ==
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The foregoing data are entered into the table in Fig. 12-145 and the
moment distribution is carried out. By comparison with Fig. 12-6b,
this method considerably simplifies the distribution.

Using the results, the beam’s end shears and moment diagrams are
shown in Fig. 12-14c.

Joint A B C
Member AB BA BC CB
DF 0 0.4706 | 0.5294 1
FEM —12 000
Dist. 5647.2 6352.8
co | 28236”
M 2823.6 5647.2 | —5647.2 0

(b)
240 1b /ft
564.71b 564.71b 680 Ib -
(1[ |1)5647lb‘ft (1 1) 56471b~ft(T‘ YYVYYVYVYVYVY rT
241b-ft I ? okt
32471b
M (Ib-£) 9343
2824
15 | ©
‘ x
\/ 26.2
—5647

(©
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12-1. Determine the moments at B and C. EI is constant.
Assume B and C are rollers and A and D are pinned.

3K/t

EERRRENENEEREN
s e———
I
|

—8 1t l 20 £t

Prob. 12-1

12-2. Determine the moments at A, B, and C. Assume the
support at B is a roller and A and C are fixed. E/ is constant.

3 k/ft

2k /ft

| 36 ft | 24 ft l

Prob. 12-2

12-3. Determine the moments at A, B, and C, then draw
the moment diagram. Assume the support at B is a roller
and A and C are fixed. EI is constant.

900 1b 900 Ib

l:, —

‘: = - 7—‘ﬁ:
6ftJ~6 ftJ~6 ft——10 ftJ——lO ftJ

Prob. 12-3

DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIBUTION

K e —

*12-4. Determine the reactions at the supports and then
draw the moment diagram. Assume A is fixed. EI is constant.

500 Ib
800 Ib /ft l

- bbbl
A 2B &acC D

| |
20 ft - 20 ft 15—

Prob. 124

12-5. Determine the moments at B and C, then draw the
moment diagram for the beam. Assume C is a fixed support.
El is constant.

8 kN/m l
YY Y Y YY VYVY Y

Prob. 12-5

12-6. Determine the moments at B and C, then draw the
moment diagram for the beam. All connections are pins.
Assume the horizontal reactions are zero. EI is constant.

12kN/m

iy -

~ D

12 kN/m

Prob. 12-6



12-7. Determine the reactions at the supports. Assume A
is fixed and B and C are rollers that can either push or pull
on the beam. EI is constant.

12kN/m

ST

2.5m

Sm

|

L
|
Prob. 12-7

#*]12-8. Determine the moments at B and C, then draw the
moment diagram for the beam. Assume the supports at
B and C are rollers and A and D are pins. E/ is constant.

6 m

Prob. 12-8

12-9. Determine the moments at B and C, then draw the
moment diagram for the beam. Assume the supports at B
and C are rollers and A is a pin. EI is constant.

200 Ib /£t 1

10 ft l 10 ft i

Prob. 12-9
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12-10. Determine the moment at B, then draw the
moment diagram for the beam. Assume the supports at A
and C are rollers and B is a pin. EI is constant.

6 kN /m
YY VY VY VY Y VY Y Y VY VY VY VY VYY
D | ==
A 1 . C
T ST Ty OISR
— pf’pqpo"‘ R ‘
~—2m—-~——4m - 4 m —2m

Prob. 12-10

12-11. Determine the moments at B, C, and D, then draw
the moment diagram for the beam. EI is constant.

1.5k/ft
10 k-ft
Y Y Y Y VY YV VY VY )
C
20 ft 20 ft 10 ftﬂ‘
Prob. 12-11

#]12-12. Determine the moment at B, then draw the
moment diagram for the beam. Assume the support at A is
pinned, B is a roller and C is fixed. EI is constant.

4%/t

| 15 ft b 12ft—

Prob. 12-12
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12.4 Moment Distribution for Frames:
No Sidesway

Application of the moment-distribution method for frames having no
sidesway follows the same procedure as that given for beams. To
minimize the chance for errors, it is suggested that the analysis be
arranged in a tabular form, as in the previous examples. Also, the
distribution of moments can be shortened if the stiffness factor of a

span can be modified as indicated in the previous section.

EXAMPLE (12.5

Determine the internal moments at the joints of the frame shown in
Fig. 12-15a. There is a pin at £ and D and a fixed support at A. El is

Fig. 12-15

constant.
(2)

Joint A B C D E
Member| AB BA BC CB CD CE DC EC
DF 0 0.545 | 0.455 | 0.330 | 0.298 | 0.372 1 1

FEM —135 135

Dist. 73.6 61.4|—44.6 | —40.2 | —50.2

CcO 36.8 —-22.3°" 30.7

Dist. 12.2 10.1/—10.1 —9.1|—-11.5

CO 6.1 —=5.1 5.1

Dist. 2.8 23 —1.7 | —15| —19

CO 1.4 —0.8 1.2

Dist. 0.4 04/ —04 | —04| —04

CcO 0.2 —-0.2 0.2

Dist. 0.1 01| —-0.1 00| —0.1

>M 445 | 89.1 | —89.1| 115 | —512|-64.1
(b)
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SOLUTION

By inspection, the pin at E will prevent the frame from sidesway. The
stiffness factors of CD and CE can be computed using K = 3E[/L
since the far ends are pinned. Also, the 20-k load does not contribute
a FEM since it is applied at joint B. Thus,

4FE]1 4FE] 3EI 3EI
Kin = —— Ko = —— Kon = —n Kop =
AB 15 BC 18 cD 15 CE 2

DFp, = AEL/1S = 0.545
BAT4EINS + 4EIN18

DFgc = 1-0.545 = 0.455

DF, AEI/18 0.330
©B " 4EI/18 + 3EI/15 + 3EI/12
3EI/15
DF¢p = = 0.298

AEI/18 + 3EI/15 + 3EI/12

DFp = 1-0.330 - 0.298 = 0.372
DFDC = 1 DFEC = 1

—wl? —5(18)?

(FEM)pc = — o= = — 5 = ~135k-ft
wl?  5(18)?

(FEM)cp = =5~ = =15~ = 135k ft

The data are shown in the table in Fig. 12-15b. Here the distribution
of moments successively goes to joints B and C. The final moments
are shown on the last line.

Using these data, the moment diagram for the frame is constructed
in Fig. 12-15c.

/ml—k.ﬂ\
/ - /
801 k-ft 89.1 k- ft 64.1 k- ft

115 k- ft

44.5 k- ft
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n 12.5 Moment Distribution for Frames:
Sidesway

It has been shown in Sec. 11-5 that frames that are nonsymmetrical or
subjected to nonsymmetrical loadings have a tendency to sidesway. An
example of one such case is shown in Fig. 12-16a. Here the applied
loading P will create unequal moments at joints B and C such that the
frame will deflect an amount A to the right. To determine this deflection
and the internal moments at the joints using moment distribution,
we will use the principle of superposition. In this regard, the frame in
Fig. 12-16b is first considered held from sidesway by applying an
artificial joint support at C. Moment distribution is applied and then by
statics the restraining force R is determined. The equal, but opposite,
restraining force is then applied to the frame, Fig. 12-16¢, and the
moments in the frame are calculated. One method for doing this last
step requires first assuming a numerical value for one of the internal
moments, say Mp,. Using moment distribution and statics, the
deflection A’ and external force R’ corresponding to the assumed value
of M} 4 can then be determined. Since linear elastic deformations occur,
the force R’ develops moments in the frame that are proportional to
those developed by R. For example, if M3, and R’ are known, the
moment at B developed by R will be Mg, = M34(R/R"). Addition of
the joint moments for both cases, Fig. 12-16b and c, will yield the actual
moments in the frame, Fig. 12-16a. Application of this technique is
illustrated in Examples 12-6 through 12-8.

Multistory Frames. Quite often, multistory frameworks may have
several independent joint displacements, and consequently the moment
distribution analysis using the above techniques will involve more
computation. Consider, for example, the two-story frame shown in
Fig. 12-17a. This structure can have two independent joint displacements,
since the sidesway A, of the first story is independent of any displacement

P P
R l cl c C
B[ e T-s, B d R B —> R
T / r N r N
I,’ ,Il
! /
/ !
i / = +
,I
1
| I
Al i\D A D A D
artificial joint applied artificial joint removed
(no sidesway) (sidesway)

(a) (b) ()
Fig. 12-16
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A, of the second story. Unfortunately, these displacements are not known
initially, so the analysis must proceed on the basis of superposition, in the
same manner as discussed previously. In this case, two restraining forces
R; and R, are applied, Fig. 12-17b, and the fixed-end moments are
determined and distributed. Using the equations of equilibrium, the
numerical values of Ry and R; are then determined. Next, the restraint at
the floor of the first story is removed and the floor is given a
displacement A’. This displacement causes fixed-end moments (FEMs)
in the frame, which can be assigned specific numerical values. By
distributing these moments and using the equations of equilibrium, the
associated numerical values of R} and Rj can be determined. In a similar
manner, the floor of the second story is then given a displacement A",
Fig. 12-17d. Assuming numerical values for the fixed-end moments, the
moment distribution and equilibrium analysis will yield specific values of
R{ and Rj. Since the last two steps associated with Fig. 12-17¢ and d
depend on assumed values of the FEMs, correction factors C' and C”
must be applied to the distributed moments. With reference to the
restraining forces in Fig. 12-17¢ and 12-17d, we require equal but
opposite application of R; and R, to the frame, such that

R, = —C'Ry + C"R}
R, = +C'R; — C"R{

Simultaneous solution of these equations yields the values of C’ and C”".
These correction factors are then multiplied by the internal joint
moments found from the moment distribution in Fig. 12-17¢ and 12-174d.
The resultant moments are then found by adding these corrected
moments to those obtained for the frame in Fig. 12-17b.

Other types of frames having independent joint displacements can be
analyzed using this same procedure; however, it must be admitted that
the foregoing method does require quite a bit of numerical calculation.
Although some techniques have been developed to shorten the
calculations, it is best to solve these types of problems on a computer,
preferably using a matrix analysis. The techniques for doing this will be
discussed in Chapter 16.

===

IE
4—&
o]
I
===
SN s

(a) (b) (©
Fig. 12-17

511

— T

(d)
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EXAMPLE [12.6

Determine the moments at each joint of the frame shown in Fig. 12-18a.

16 kN El is constant.
1 ml 4m

Bl ___ [ SOLUTION
First we consider the frame held from sidesway as shown in Fig. 12-18b.
We have

. i 16(4)°(1)
(FEM)pc = ——— -7 — = —1024kN-m
Al D (5)
16(1)°(4)
(a) (FEM)CB = (5—)2 = 256 kN-m

The stiffness factor of each span is computed on the basis of 4EIl/L or
by using the relative-stiffness factor /L. The DFs and the moment
distribution are shown in the table, Fig. 12-18d. Using these results,

16 kN the equations of equilibrium are applied to the free-body diagrams of
the columns in order to determine A, and D,, Fig. 12-18e. From the
B ¢ R free-body diagram of the entire frame (not shown) the joint restraint

R in Fig. 12-18b has a magnitude of
2F, =0 R =173kN — 0.81 kN = 0.92 kN

An equal but opposite value of R = 0.92 kN must now be applied
to the frame at C and the internal moments computed, Fig. 12-18c¢. To
solve the problem of computing these moments, we will assume a
force R’ is applied at C, causing the frame to deflect A" as shown in
®) Fig. 12-18f. Here the joints at B and C are temporarily restrained from
+ rotating, and as a result the fixed-end moments at the ends of the

columns are determined from the formula for deflection found on the
inside back cover, that is,

C
B -3 R
Joint A B C D
Member| AB BA BC CB CD DC t l
DF 0 05 | 05 | 05 | 05 0 Py =
A D FEM —1024 | 256 578kN-m  ||272kN-m
Dist. 512 | 5120, —-1.28| —12
(©) CO | 256 —0.64"1% 2.56 —0.64 5 5
I Dist. 032 | 032,128 ~12 m m
18 1o~ co | 0.16 —0.64"1* 0.16 —0.64
Dist. 0.32 0.32.,—0.08| —0.0 2.88kN-m 132 kN-m
CO | 0.16 —0.04”* 0.16 —-0.04| X el
Dist. 0.02 0.02 | —0.08| —0.08 A, = 1.73kN 4D, = 0.81 kN
SM | 288 | 578 | —578| 272 | —2.72| —1.32 T f

(d) (©)
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Joint A B C D
B Member| AB BA BC CB CD DC
DF | 0 | 05 | 05| 05| 05 | o
FEM |-100 |-100 —100 |-100
Dist. 50 | 50 g 50 | 50
i ; co | 25 25 N 25 25
Al b Dist. 125 |-12.5 [ —125 |-125
CO | —625 —6.25 71625 —6.25
T e Dist. 3.25| 3.125) 3.125| 3.2
CO | 156 156 71 1.56 156
® Dist. —0.78 |-0.78 | ~0.78 | —0.7
CO | -03 ~0.39 7039 ~0.39
Dist. 0.195_ 0.195| 0.195  0.195
SM | —80.00/ —60.00| 60.00 | 60.00 |—60.00]—80.00
_ 6EIA ®
LZ

Since both B and C happen to be displaced the same amount A’,
and AB and DC have the same E, I, and L, the FEM in AB will be the
same as that in DC. As shown in Fig. 12-18f, we will arbitrarily assume
this fixed-end moment to be

(FEM)AB = (FEM)BA = (FEM)CD = (FEM)DC = _100 kN'lTl

A negative sign is necessary since the moment must act counterclockwise
on the column for deflection A’ to the right. The value of R’ associated
with this —100 kN - m moment can now be determined. The moment
distribution of the FEMs is shown in Fig. 12-18g. From equilibrium, the
horizontal reactions at A and D are calculated, Fig. 12-18A. Thus, for the
entire frame we require

2F, =0 R'" =28 + 28 = 56.0 kN

Hence, R' = 56.0 kN creates the moments tabulated in Fig. 12-18g.
Corresponding moments caused by R = 0.92 kN can be determined by
proportion. Therefore, the resultant moment in the frame, Fig. 12-18a, is
equal to the sum of those calculated for the frame in Fig. 12-18b plus the
proportionate amount of those for the frame in Fig. 12-18c. We have

M,p =288 + £2%(—80) = 1.57kN-m Ans.
Mgy =578 + £2%(—60) = 479 kN -m Ans.
Mpe = =578 + £2(60) = —4.79 kN -m Ans.
Meg =272 + 33(60) = 3.71kN-m Ans.
Mep = =272 + 25(-60) = —=3.71 kN -m Ans.
Mpe = —132 + £5(—80) = —2.63kN-m Ans.

—_— —_—
£ y
60 kN -m 60 kN -m
S5m S5m
| |80 kN-m | |80kN-m

- -
T A, =28kN th=28kN

(h)
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EXAMPLE [12.7

Determine the moments at each joint of the frame shown in Fig. 12-19a.
The moment of inertia of each member is indicated in the figure.

2k /it 2k /ft

10 | o =
5 15 ft
A
12 ft
@ ()
Fig. 12-19
SOLUTION
The frame is first held from sidesway as shown in Fig. 12-19b. The
internal moments are computed at the joints as indicated in Fig. 12-19d.
Here the stiffness factor of CD was computed using 3E//L since there is
a pin at D. Calculation of the horizontal reactions at A and D is shown
in Fig. 12-19e. Thus, for the entire frame,
SF,. =0 R =289-1.00 = 1.89k
Joint A B C D
Memben A5 | BA | BC | CB | €D | DC l 19.34k-ft J 1500 k- ft
DF 0 0.615 | 0385 | 0.5 0.5 1 A £
FEM 24 | 24
Dist. 14.76 9'24)(_12 —12
CO | 7.38 -6 4.62 10 ft
Dist. 3.69 | 2.31/-231 | —2.31 151t
CO | 1.84 ~1.167 1.16
Dist. 0.713] 0.447,-0.58 | —0.58 - 9.58k-ft
CO | 0.357 —-0.29° 0.224 >
Dist. 018 | 011|-011 | 011 72K e, = 100k
M 9.58 | 19.34 | —19.34 15.00 |—15.00f O

(d) (e)
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Joint A B C D
Member, AB BA BC CB CD DC
DF 0 0.615 | 0.385| 0.5 0.5 1
FEM |—-100 | —100 —27.78
Dist. 61.5| 38.5 >|<13.89 13.89
CO | 30.75 6.947119.25
Dist. —4.27 _2'67X_9'625 —9.625
CO |—2.14 —4.81"1—1.34
A Dist. 296/ 1.85] 0.67 0.67
(f) CO 1.48 0.337 0.92
Dist. —0.20| —0.13 |-0.46 |—0.46
M |—69.91|—40.01| 40.01 | 23.31 |—23.31 0

(2)
The opposite force is now applied to the frame as shown in Fig. 12-19c.

As in the previous example, we will consider a force R’ acting as shown
in Fig. 12-19f. As a result, joints B and C are displaced by the same
amount A’ The fixed-end moments for BA are computed from

6EIA 6E(2000)A’
V2T
However, from the table on the inside back cover, for CD we have
3ETA 3E(2500)A

2 15y
Assuming the FEM for AB is —100 k - ft as shown in Fig. 12-19f,

the corresponding FEM at C, causing the same A’, is found by
comparison, i.e.,

(FEM) 43 = (FEM)p, =

(FEM)cp = —

100)(107 z |
A = _( 100)(10) - _ (FEM)cp(15) 40.01 k-ft A A 32331kt
6E£(2000) 3E(2500)
(FEM)CD = —27.78 k- ft
Moment distribution for these FEMs is tabulated in Fig. 12-19g. 10 ft 5
Computation of the horizontal reactions at A and D is shown in
Fig. 12-19A. Thus, for the entire frame, 69.91 k- ft
SF, = 0; R =11.0 + 1.55 = 12.55k Ax= 10k = ,
D =155k
The resultant moments in the frame are therefore f
_ 1.89 —
Map =958 + (53%)(—69.91) = —0.948 k - ft Ans. (h)
Mps = 1934 + (5%)(—40.01) = 133k - ft Ans.
Mpe = —1934 + (5%)(40.01) = —133k - ft Ans.
Mcg = 15.00 + (%)(23.31) = 185k ft Ans.

<
S
I

~15.00 + (5%)(-2331) = —185k-ft  Ans
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EXAMPLE [12.8

Determine the moments at each joint of the frame shown in
Fig. 12-20a. EI is constant.

+
(a) (b) (©
Fig. 12-20

SOLUTION

First sidesway is prevented by the restraining force R, Fig. 12-20b. The
FEMs for member BC are

8(10) 8(10)
(FEM) g =5 - —10k-ft (FEM)cp =3 - 10k - ft

Since spans AB and DC are pinned at their ends, the stiffness factor
is computed using 3FEI/L. The moment distribution is shown in
Fig. 12-20d.

Using these results, the horizontal reactions at A and D must be
determined. This is done using an equilibrium analysis of each
member, Fig. 12-20e. Summing moments about points B and C on
each leg, we have

FSMp=0; —597+ A/(8) —4(6)=0 A, =375k
\+3M, = 0; 597 — D,(8) + 4(6) =0 D, =375k
Thus, for the entire frame,
2F,=0; R=375-375+20=20k
Joint A B C D ]k
Member| AB | BA | BC | CB | ¢D | DC
DF 1 | 0420|0571 | 0571 [ 0420 | 1 Stty Sttt R
FEM -10 10 Voe—
Dist. 429 | 571 —571| —4.29 5.97 k- ft y_t/
Cco -2.86 2.86 5.97k-ft
it 123 | 163 163 123 k 4k
co “082T 082
i 035 | 047 —047| —035
co 024 024
Dist. 010 | 013 | —013| —0.10
M 0 | 597 | =597 597 [ -597] o

(d) (e)
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The opposite force R is now applied to the frame as shown in
Fig. 12-20c. In order to determine the internal moments developed by
R we will first consider the force R’ acting as shown in Fig. 12-20f.
Here the dashed lines do not represent the distortion of the frame
members; instead, they are constructed as straight lines extended to the
final positions B" and C’ of points B and C, respectively. Due to the
symmetry of the frame, the displacement BB’ = CC’ = A’ Furthermore,
these displacements cause BC to rotate. The vertical distance between ()
B’ and C’ is 1.2A’, as shown on the displacement diagram, Fig. 12-20g.
Since each span undergoes end-point displacements that cause the spans
to rotate, fixed-end moments are induced in the spans. These are:
(FEM);4 = (FEM)cp = —3EIN/(10)%, (FEM)ze = (FEM)cy =
6EI(1.2A7)/(10)2.
Notice that for BA and CD the moments are negative since clockwise
rotation of the span causes a counterclockwise FEM. C
If we arbitrarily assign a value of (FEM)z, = (FEM)cp = N T
—100 k- ft, then equating A" in the above formulas yields 36.9° 0'?A
(FEM)gc = (FEM)cp = 240 k - ft. These moments are applied to the B C 36.9° I
frame and distributed, Fig. 12-204. Using these results, the equilibrium A i?f
analysis is shown in Fig. 12-20i. For each leg, we have B
(+t2ZMp=0;, —A(8) + 29.36(6) + 146.80 = 0 Al =4037k
(+ZMc=0; —Di(8) + 29.36(6) + 146.80 = 0 D) = 4037k
Thus, for the entire frame, (e)
XF,. =0 R’ = 4037 + 40.37 = 80.74 k
The resultant moments in the frame are therefore
Mpy = 597 + (%) (—146.80) = —30.4k - ft Ans.
Mpe = =597 + (535;)(146.80) = 30.4 k - ft Ans.
Mcp = 597 + (555;)(146.80) = 423k - ft Ans.
Mep = =597 + (%) (—146.80) = —423k-ft  Ans
Joint | A B C D
Member] AB | BA | BC | CB | CD | DC
20.36 k DF | 1 [0429 | 0571 | 0571|0429 | 1
FEM -100 [240 [240 [-100
10 ft R’ ’l\146.80k fit Dist. —60.06|—79.94.|~79.94 | —60.06
pe— SR P o CO -39.97"-39.97
- c [ Dist. 17.15| 22.82) 22.82| 17.5
:1:146'801"& ‘4/146.80k'ft 81t Dis, _us9| 265 ~632| 489
2936k 2936 k l CO -3267 —-3.26
D’ Dist. 140[ 186) 186 140
4 x CO 0937 0.93
6 ft Dist. —0.40| —0.53| —0.53| —0.40
29.36 k M 0 -146.80| 146.80 | 146.80 |-146.80] 0
® (h)
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] prosews

12-13. Determine the moment at B, then draw the
moment diagram for each member of the frame. Assume
the supports at A and C are pins. EI is constant.

LTI
B - C‘il:

12-14. Determine the moments at the ends of each
member of the frame. Assume the joint at B is fixed, C is
pinned, and A is fixed. The moment of inertia of each
member is listed in the figure. E = 29(10°) ksi.

2k /it

NEERERERERNn

‘ Ipc = 800 in*

12 ft |

4 ket

I = 550 in*

A

Prob. 12-14

12-15. Determine the reactions at A and D. Assume the
supports at A and D are fixed and B and C are fixed
connected. EI is constant.

8 k/ft
B Yy Yy Yy Yy Yy Y C
15 ft
A Lip |
| 24 ft 1
Prob. 12-15

*12-16. Determine the moments at D and C, then draw
the moment diagram for each member of the frame.
Assume the supports at A and B are pins and D and C are
fixed joints. £/ is constant.

5k/ft

Prob. 12-16
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12-17. Determine the moments at the fixed support A
and joint D and then draw the moment diagram for the

If it supports the loading shown, determine the moments
frame. Assume B is pinned.

12-19. The frame is made from pipe that is fixed connected. u
developed at each of the joints. E7 is constant.

18 kN 18 kN

o

~ 9%

sptvas

%

.

| 4m 4m 4m

Prob. 12-17 Prob. 12-19

12-18. Determine the moments at each joint of the frame,
then draw the moment diagram for member BCE. Assume
B, C, and E are fixed connected and A and D are pins.
E = 29(10%) ksi.

*]12-20. Determine the moments at B and C, then draw
the moment diagram for each member of the frame.
Assume the supports at A, E, and D are fixed. EI is constant.

10k
0.5 k /ft & l lZII/fi l l r—Sft v STt
REERERERENEEN" . AT
2kT> 4 "iv?A i C
Isc=400in* C E|X R B
81t em ICE(= 400 in'* 121
3k Ipc = 500in* 16 ft
8ft 1 11,5 =600 in*
‘J‘::;J‘J?;lﬁé;fle?ifftl’:iff:l‘:'ﬁi‘?*%;?"“ . "é AE ———— - — Qé s"‘u
N R S R RS R
| 24 ft — 12 ft— PR e

Prob. 12-18 Prob. 12-20
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12-21. Determine the moments at D and C, then draw the
moment diagram for each member of the frame. Assume
the supports at A and B are pins. EI is constant.

16 kN

Prob. 12-21

12-22. Determine the moments acting at the ends of each
member. Assume the supports at A and D are fixed. The
moment of inertia of each member is indicated in the figure.
E = 29(10%) ksi.

6 k /it

Ipc = 1200 in* C
Icp =600in*
15 -
IAB = 800 in

| 24 fit

Prob. 12-22

DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIBUTION

12-23. Determine the moments acting at the ends of each
member of the frame. E7 is the constant.

1.5k/ft

15 k—3p|

20 ft

SIS I R g

| 24 ft |

Prob. 12-23

*12-24. Determine the moments acting at the ends of
each member. Assume the joints are fixed connected and A
and B are fixed supports. E/ is constant.

=1
a
S

12 ft
02 k/ft —> 18 ft

%y
e

| 20 ft

Prob. 12-24
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12-25. Determine the moments at joints B and C, then 12-26. Determine the moments at C and D, then draw the
draw the moment diagram for each member of the frame. moment diagram for each member of the frame. Assume
The supports at A and D are pinned. EI is constant. the supports at A and B are pins. EI is constant.

A
Ls ft 10 ft 5ft4

Prob. 12-25

Prob. 12-26

CHAPTER REVIEW

Moment distribution is a method of successive approximations that can be carried out to any desired degree of accuracy.
It initially requires locking all the joints of the structure. The equilibrium moment at each joint is then determined, the
joints are unlocked and this moment is distributed onto each connecting member, and half its value is carried over to the
other side of the span. This cycle of locking and unlocking the joints is repeated until the carry-over moments become
acceptably small. The process then stops and the moment at each joint is the sum of the moments from each cycle of locking
and unlocking.

The process of moment distribution is conveniently done in tabular form. Before starting, the fixed-end moment for each
span must be calculated using the table on the inside back cover of the book. The distribution factors are found by dividing
a member’s stiffness by the total stiffness of the joint. For members having a far end fixed, use K = 4E[/L; for a far-end
pinned or roller supported member, K = 3E[/L; for a symmetric span and loading, K = 2E//L;and for an antisymmetric
loading, K = 6E1/L. Remember that the distribution factor for a fixed end is DF = 0, and for a pin or roller-supported
end, DF = 1.




