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8.5 Conjugate-Beam Method

The conjugate-beam method was developed by H. Miiller-Breslau in
1865. Essentially, it requires the same amount of computation as the
moment-area theorems to determine a beam’s slope or deflection;
however, this method relies only on the principles of statics, and hence
its application will be more familiar.

The basis for the method comes from the similarity of Eq. 4-1 and
Eq.4-2 to Eq.8-2 and Eq. 8-4.To show this similarity, we can write these
equations as follows:

v _ M _
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Or integrating,
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{ 0 { 0
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Here the shear V compares with the slope 6, the moment M compares
with the displacement v, and the external load w compares with the M/EI
diagram. To make use of this comparison we will now consider a beam
having the same length as the real beam, but referred to here as the
“conjugate beam,” Fig. 8-23. The conjugate beam is “loaded” with
the M/EI diagram derived from the load w on the real beam. From the
above comparisons, we can state two theorems related to the conjugate
beam, namely,

Theorem 1: The slope at a point in the real beam is numerically
equal to the shear at the corresponding point in the conjugate beam.

Theorem 2: The displacement of a point in the real beam is
numerically equal to the moment at the corresponding point in the
conjugate beam.

Conjugate-Beam Supports. When drawing the conjugate beam
it is important that the shear and moment developed at the supports of the
conjugate beam account for the corresponding slope and displacement of
the real beam at its supports, a consequence of Theorems 1 and 2. For
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example, as shown in Table 8-2, a pin or roller support at the end of the
real beam provides zero displacement, but the beam has a nonzero slope.
Consequently, from Theorems 1 and 2, the conjugate beam must be
supported by a pin or roller, since this support has zero moment but has
a shear or end reaction. When the real beam is fixed supported (3), both
the slope and displacement at the support are zero. Here the conjugate
beam has a free end, since at this end there is zero shear and zero moment.
Corresponding real and conjugate-beam supports for other cases are listed
in the table. Examples of real and conjugate beams are shown in Fig. 8-24.
Note that, as a rule, neglecting axial force, statically determinate real
beams have statically determinate conjugate beams; and statically
indeterminate real beams, as in the last case in Fig. 824, become unstable
conjugate beams. Although this occurs, the M/EI loading will provide the
necessary “equilibrium” to hold the conjugate beam stable.

TABLE 8-2
Real Beam Conjugate Beam
1) 0 0 — 14 L—=
A=0 . M=0 )
pin pin
2) 6 K v B
A=0 M=0
roller roller
0=0 V=0
3) = —
A=0 . M=0
fixed free
4) 0 =3 Vv I—
A free M fixed
5) 9 e ) — v
S G—
A=0 internal pin M=0 hinge
6) A v
S —
=0 internal roller M=0 hinge
7) 0 M \%
A . v
hinge .
internal roller
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Procedure for Analysis

The following procedure provides a method that may be used to determine the
displacement and slope at a point on the elastic curve of a beam using the
conjugate-beam method.

Conjugate Beam

® Draw the conjugate beam for the real beam. This beam has the same length as
the real beam and has corresponding supports as listed in Table 8-2.

® In general, if the real support allows a slope, the conjugate support must develop a
shear; and if the real support allows a displacement, the conjugate support must
develop a moment.

® The conjugate beam is loaded with the real beam’s M/EI diagram. This loading is
assumed to be distributed over the conjugate beam and is directed upward when
M/EL is positive and downward when M/EI is negative. In other words, the loading
always acts away from the beam.

Equilibrium
® Using the equations of equilibrium, determine the reactions at the conjugate
beam’s supports.

® Section the conjugate beam at the point where the slope 6 and displacement A of
the real beam are to be determined. At the section show the unknown shear V'
and moment M’ acting in their positive sense.

® Determine the shear and moment using the equations of equilibrium. V' and M’
equal 6 and A, respectively, for the real beam. In particular, if these values are
positive, the slope is counterclockwise and the displacement is upward.
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EXAMPLE [8.13

Determine the slope and deflection at point B of the steel beam
shown in Fig. 8-25a. The reactions have been computed.
E = 29(10°) ksi, I = 800 in*.

5k
f —
7Skt 15 ft 15 ft |
real beam
(a)
Fig. 8-25
SOLUTION
Conjugate Beam. The conjugate beam is shown in Fig. 8-25b. The | 15 ft \ 15 ft |
supports at A" and B’ correspond to supports A and B on the real A" | B
beam, Table 8-2. It is important to understand why this is so. The M/EI
diagram is negative, so the distributed load acts downward, i.e., away
from the beam. LAl
EI .
conjugate beam
Equilibrium. Since 6z and Ay are to be determined, we must (b)
compute Vg and My in the conjugate beam, Fig. 8-25c.
562.5 k - ft? - |
T13F, = 0; SELE R VA HfLT 25 ft 1 M,
El P — l
562.5 k - ft? !
Op=Vp = ———— | T Vi
B "B El 1
3 —-562.5 k - ft? 562.5
29(10%) k/in%(144 in%/£%)800 in*(1 ft*/(12)* in*) B cactions
= —0.00349 rad Ans, ©
562.5 k - ft?

(+t=ZMp = 0; ————(25ft) + Mp =0 ‘

El

14 062.5 k - ft° ‘A \ A
Ap= My = -2 ’
B B EI @B

3 —14062.5k - ft’ ?
29(10°)(144) k/ft[800/(12)*] ft*
= —0.0873 ft = —1.05in. Ans.

(d)

The negative signs indicate the slope of the beam is measured
clockwise and the displacement is downward, Fig. 8-25d.
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EXAMPLE [8.14

Determine the maximum deflection of the steel beam shown in
Fig. 826a. The reactions have been computed. E = 200 GPa,

I = 60(10%) mm*. 18
$ kN Ll
- — ;B
T 9m 1 3m— 4 B
2kN 6 kN ‘ 4
9m 3m
real beam \ \
(a) conjugate beam
Fig. 8-26 (b)
SOLUTION
Conjugate Beam. The conjugate beam loaded with the M/EI
8Ly _nA27 diagram is shown in Fig. 8-26b. Since the M/EI diagram is positive, the
/,,EJ'T/ i T\‘?l distributed load acts upward (away from the beam).
S : = Equilibrium. The external reactions on the conjugate beam are

determined first and are indicated on the free-body diagram in
vy  Fig. 8-26c. Maximum deflection of the real beam occurs at the point
45 63 where the slope of the beam is zero. This corresponds to the same
point in the conjugate beam where the shear is zero. Assuming this
point acts within the region 0 = x = 9m from A’, we can isolate the
() section shown in Fig. 8-26d. Note that the peak of the distributed
loading was determined from proportional triangles, that is,
w/x = (18/EI)/9. We require V' = 0 so that

external reactions

45  1(2x
a2 FIER S0 _E+E(E)x=0
EI1'97 T EI
t x=67lm (0=x=9m)OK
4 it m Using this value for x, the maximum deflection in the real beam corre-
T N } V=0 sponds to the moment M'. Hence,
45 1 2(6.71)) ]1
ﬁ + = N — — | — —_ —+ I =
7 (t=ZM = 0; EI(6'71) [2< Zl 6.71 3(6.71) M =0
internal reactions 3
) A= M = _201.2kN-m
(d) EI
B —201.2 kN - m®
[200(10%) kN/m?][60(10°) mm*(1 m*/(10%)* mm*)]
= —0.0168 m = —16.8 mm Ans.

The negative sign indicates the deflection is downward.
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EXAMPLE [8.15

The girder in Fig. 8~27a is made from a continuous beam and reinforced
at its center with cover plates where its moment of inertia is larger. 6k 8k 6k
The 12-ft end segments have a moment of inertia of / = 450 in*, and l l l
the center portion has a moment of inertia of ' = 900 in*. Determine =N
the deflection at the center C. Take E = 29(10°%) ksi. The reactions O Tt [ = 4SO
have been calculated T} 1= asuin 7 =900 m "
) 12 ft 6ft 6ft 12 ft
10k 10k
SOLUTION
real beam
Conjugate Beam. The moment diagram for the beam is determined
first, Fig. 8-27b. Since I' = 21, for simplicity, we can express the load on @)
the conjugate beam in terms of the constant E/, as shown in Fig. 8-27c. Fig. 8-27
Equilibrium. The reactions on the conjugate beam can be calculated
by the symmetry of the loading or using the equations of equilibrium.
The results are shown in Fig. 8-27d. Since the deflection at C is to be
determined, we must compute the internal moment at C’. Using
the method of sections, segment A'C’ is isolated and the resultants of
the distributed loads and their locations are determined, Fig. 8-27¢. Thus,
1116 720 360 36
+3Me = 0; 18 10 3 2) + M =0
(+FZMe = 0; 2 (18) = =2(10) = 72(3) = 22.(2) + Me
11736 k-t M (k-1t)
¢ EI 120 144 120
Substituting the numerical data for EI and converting units, we have
ft
11736 k - £63(1728 in3/£t) _ 12 18 24 (0
AC = MCf = - 3 ) - 4 = —1.55in. Ans.
29(10°) k/in“(450 in") moment diagram
The negative sign indicates that the deflection is downward. (b)
720
120 120 720 720 E 290
Y60 72 60 EI,», N . 4 36
EL LLFET f S S $ A7 REI
p R ! EL | S L C | ) M.
- A e | 3
8 ft i 10 ft i 10 ft i 8 ft EI 101t
12 ft——t6 fi{-6 ft-— 12 ft ‘ 18 fit
1116 1116
EI EI
conjugate beam external reactions internal reactions
(0 (d) (e)
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EXAMPLE [8.16

Determine the displacement of the pin at B and the slope of each
beam segment connected to the pin for the compound beam shown in
Fig. 8-28a. E = 29(10%) ksi, I = 30 in*.

8k
8k

___>V R | } \ 30 kAt
12 fi— 12 fi———15 ft | (05)r ( BN (05),

real beam elastic curve

(a) (b)

Fig. 8-28

SOLUTION

Conjugate Beam. The elastic curve for the beam is shown in
Fig. 8-28b in order to identify the unknown displacement Az and the
slopes (6); and (6p)g to the left and right of the pin. Using Table 8-2,
the conjugate beam is shown in Fig. 8-28c¢. For simplicity in calculation,
the M/EI diagram has been drawn in parts using the principle of
superposition as described in Sec. 4-5. In this regard, the real beam is
thought of as cantilevered from the left support, A. The moment
diagrams for the 8-k load, the reactive force C,, = 2k, and the 30-k - ft
loading are given. Notice that negative regions of this diagram
develop a downward distributed load and positive regions have a
distributed load that acts upward.

1521
~-__ EI

oﬁ.
X
\
S—
N
Y
Y
N\
e}
(e}
-
—
&
-
<
4y
[y
W
=g

12 fte 12 f— =
conjugate beam external reactions

(©) (d)
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Equilibrium. The external reactions at B’ and C’ are calculated first
and the results are indicated in Fig. 8-28d. In order to determine
(65) g, the conjugate beam is sectioned just to the right of B’ and the
shear force (V) is computed, Fig. 8-28e. Thus,

+1SF. =0; Np + == - 22 2= =
12F, =00 (Vi)r EI EI EI
228.6 k - ft?
:V, = -
0g)r = (Vi)r 5l
228.6 k - ft?

- [29(10°)(144) k/ft2][30/(12)*] ft*
= 0.0378 rad Ans.

The internal moment at B’ yields the displacement of the pin. Thus,

225 450 3.6
+ .= 0; My + — - —(75) - — =
(+=My = 0; My EI(S) EI(75) El(15) 0
2304 k - ft°
Agp=Mp=—"——"—
B B EI
—2304 k - ft3

N [29(10°)(144) k/ft*][30/(12)*] ft*
= —0.381 ft = —4.58 in. Ans.

The slope (0p); can be found from a section of beam just to the left
of B', Fig. 8-28f.Thus,

2286 225 450 3.6 _
EI ~ EI EI EI

0g)r=(Vp)L=0 Ans.

+13F, = 0; (Vg) +

Obviously, Ag = Mp for this segment is the same as previously
calculated, since the moment arms are only slightly different in Figs. 8-28e
and 8-28f.
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. FUNDAMENTAL PROBLEMS

F8-10. Use the moment-area theorems and determine the
slope at A and deflection at A. EI is constant.

F8-11. Solve Prob. F8-10 using the conjugate beam
method.

6 kN

| |
AN T S
\ '

! 3m \

F8-10/8-11

F8-12. Use the moment-area theorems and determine the
slope at B and deflection at B. EI is constant.

F8-13. Solve Prob. F8-12 using the conjugate beam
method.

| 8 kN-m
——)
| B ‘
} 4m !
F8-12/8-13

F8-14. Use the moment-area theorems and determine the
slope at A and displacement at C. E/ is constant.

F8-15. Solve Prob. F8-14 using the conjugate beam
method.

5kN-m

A
4@ ~ i
c

- 1.5m ‘ 1.5m |

F8-14/8-15

F8-16. Use the moment-area theorems and determine the
slope at A and displacement at C. EI is constant.

F8-17. Solve Prob. F8-16 using the conjugate beam
method.

8 kN

L

A (o) g
Treentise C

F8-16/8-17

F8-18. Use the moment-area theorems and determine the
slope at A and displacement at C. E1 is constant.

F8-19. Solve Prob. F8-18 using the conjugate beam
method.

F8-18/8-19

F8-20. Use the moment-area theorems and determine the
slope at B and displacement at B. EI is constant.

F8-21. Solve Prob. F8-20 using the conjugate beam
method.

9 kN

F8-20/8-21
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“Teropiems

8-10. Determine the slope at B and the maximum
displacement of the beam. Use the moment-area theorems.
Take E = 29(10%) ksi, I = 500 in*.

8-11. Solve Prob. 8-10 using the conjugate-beam method.

15k

_——C

]

| 6 ft | 6 ft |

Probs. 8-10/8-11

*8-12. Determine the slope and displacement at C. EI is
constant. Use the moment-area theorems.

8-13. Solve Prob. 8-12 using the conjugate-beam method.

15k

!
r a . ¢
s

8-14. Determine the value of a so that the slope at A is
equal to zero. EI is constant. Use the moment-area theorems.

} 30 ft }

Probs. 8-12/8-13

8-15. Solve Prob. 8-14 using the conjugate-beam method.

*8-16. Determine the value of a so that the displacement
at C is equal to zero. EI is constant. Use the moment-area
theorems.

8-17. Solve Prob. 8-16 using the conjugate-beam method.

P

P

1 |,
A
IR R

\
Probs. 8-14/8-15/8-16/8-17

|
|

o~

8-18. Determine the slope and the displacement at C. EI
is constant. Use the moment-area theorems.

8-19. Solve Prob. 8-18 using the conjugate-beam method.

|

\ |
| a \ a \ a \

Probs. 8-18/8-19

*8§-20. Determine the slope and the displacement at the
end C of the beam. E = 200 GPa, I = 70(10°) mm*. Use
the moment-area theorems.

8-21. Solve Prob. 8-20 using the conjugate-beam method.
8 kN
i 4 iN
P — .
\ 3

——3m ‘ ‘

m T 3m |

Probs. 8-20/8-21

8-22. At what distance a should the bearing supports at A
and B be placed so that the displacement at the center of
the shaft is equal to the deflection at its ends? The bearings
exert only vertical reactions on the shaft. £/ is constant. Use
the moment-area theorems.

8-23. Solve Prob. 8-22 using the conjugate-beam method.

P P
F w4
= A B
] I
L

Probs. 8-22/8-23



336 CHAPTER 8 DEFLECTIONS

*8-24. Determine the displacement at C and the slope
at B. EI is constant. Use the moment-area theorems.

8-25. Solve Prob. 824 wusing the conjugate-beam
method.

~
o
z
~
~
z

‘ 3m l 15m l 1.5m l 3m |

Probs. 8-24/8-25

8-26. Determine the displacement at C and the slope at B.
EI is constant. Use the moment-area theorems.

Prob. 8-26

8-27. Determine the displacement at C and the slope at B.
El is constant. Use the conjugate-beam method.

P P P
L0
T — ’
La a a a
Prob. 8-27

*8-28. Determine the force F at the end of the beam C so
that the displacement at C is zero. EI is constant. Use the
moment-area theorems.

F
P
D Y
B e
} a | a } a
Prob. 8-28

8-29. Determine the force F at the end of the beam C so
that the displacement at C is zero. EI is constant. Use the
conjugate-beam method.

P

Prob. 8-29

8-30. Determine the slope at B and the displacement at C.
EI is constant. Use the moment-area theorems.

P P

.i }

Prob. 8-30

8-31. Determine the slope at B and the displacement at C.
El is constant. Use the conjugate-beam method.

P P

.i }

Prob. 8-31



