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Association Rule

 Association rule is a rule which is described in the form of XY with 
interestingness measure of support and confidence where

 X and Y are Simple or complex Statements

 A simple Statement is to mean a statement formed from a single attribute 
say age, buy or sex and a value which is related by relational operator

 Example:

Buy(X, “Computer”) Buy(X, “Printer”)[Supp = 25%, conf=95%]

 Which is to mean a person X who buy a computer also buy a printer . 

 25% of the entire data shows a person buy a computer and printer 
(support). Out of the tuples that buy a computer, 95% of them also buy 
printer (confidence) 
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Association Rule

 A complex statement is usually represented as conjunction of simple 
statements

 Example:

Buy(X, “Computer”)ʌ Buys(X, “printer”) Buy(X, “Scanner”)[Supp = 50%, 
conf=90%]

 Which is to mean a person X who buy a computer and a printer also buy a 
scanner. 

 50% of the entire data shows a person buy a computer, a printer and scanner 
among the entire data set(support). 

 Out of all transactions with a person that buy computer and printer, 90% of 
them also buy printer (confidence) 

 In order to mine such association rule, we need to discuss deeply about 

frequent pattern and its extraction algorithm
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Frequent Pattern

 Frequent pattern are patterns (such as item set, sub sequences, or sub 
structures) that appear in a data set frequently.

 An item set are two or more items that appear together in a transaction data 

set. 

 An item set is said to be frequent item set if the item set appear frequently 

together in a transaction data set. 

 For example a milk and bread may occur together frequently in a single 

transaction and hence are frequent item set.

 Subsequence refers to items that happen in transaction in a sequential order. 

 For example, buying computer at time t0 may be followed by buying a digital 

camera at time t1, and buying memory card at time t2.

 A sub sequence that appear most frequently is said to be frequent 

subsequence. 
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Frequent Pattern

 A sub structure refers to different structural forms of the data set, such as 

sub-graphs, sub-trees, or sub-lattices, which may be combined with item 

sets or subsequences. 

 If a substructure occurs frequently, it is called a (frequent) structured 

pattern.

 Finding such frequent patterns plays an essential role in mining 

associations, correlations, classification, clustering, and other data mining 

tasks as well.

 Thus, frequent pattern mining has become an important data mining task and 

a focused theme in data mining research.

 This chapter is dedicated to methods of frequent itemset mining.
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Frequent Pattern

 We look into the following questions: 

 How can we find frequent itemsets from large amounts of data, where 

the data are either transactional or relational? 

 How can we mine association rules in multilevel and multidimensional 

space?

 Which association rules are the most interesting? 

 How can we help or guide the mining procedure to discover interesting 

associations or correlations? 

 How can we take advantage of user preferences or constraints to speed 

up the mining process?
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Frequent Pattern

 Frequent itemset mining leads to the discovery of associations and correlations 

among items in large transactional or relational data sets. 

 With massive amounts of data continuously being collected and stored, many 

industries are becoming interested in mining frequent itemset patterns from 

their databases. 

 The discovery of interesting correlation relationships among huge amounts of 

business transaction records can help in many business decision-making 

processes such as:

 market basket analysis, catalog design, cross-marketing, loss-leader 

analysis and customer shopping behavior analysis.
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Association mining from frequent Pattern

 Rule form:  “Body (X) -> Head (Y) [support, confidence]”.

 Which is read as if body (X) then head (Y) will occur together in the 
transaction with the stated support and confidence 

 Rule support and confidence are two measures of rule interestingness. They 
respectively reflect the usefulness and certainty of discovered rules.

 Typically, association rules are considered interesting if they satisfy both a 

minimum support threshold and a minimum confidence threshold. 

 Such thresholds can be set by users or domain experts. 



October 22, 2019 Data Mining: Concepts and Techniques 10

 Additional analysis can be performed to uncover interesting statistical 

correlations between associated items.

 Let I ={I1, I2, …, Im} be a set of items. 

 Let D, the task-relevant data set, be a set of database transactions where each 

transaction T is a set of items such that T I . 

 Each transaction is associated with an identifier, called TID (Transaction ID).

 Let A be a set of items. 

 A transaction T is said to contain A if and only if A  T. 

 An association rule is an implication of the form A  B, where AI , B  I , 

and AB=. 

Association mining from frequent Pattern
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Association mining from frequent Pattern

 The rule A  B holds in the transaction set D with support s, where s is the 

percentage of transactions in D that contain A B (i.e., the union of itemsets A 

and B, or say, both A and B). 

 This is taken to be the probability, P(A  B) = 

 Support shows the probability that all the predicates in A and B fulfill together. 

 Count of tuples that has both A and B divided by total number of tuples in 
the working data set
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Association mining from frequent Pattern

 The rule A  B has confidence c in the transaction set D, where c is the 

percentage of transactions in D containing A that also contain B. 

 This is taken to be the conditional probability, P(B|A)=

 Confidence measure how often predicates B fulfilled if predicate A get fulfilled.

 Count of tuples that has both A and B together divided by total number of tuples 
that has A

 That is

support(A B) = P(A  B) 

confidence(A B) = P(B|A)
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Association mining from frequent Pattern

A

B

A and B occur together (C1)

A occur without B (C2)

B occur without A (C3) 

Others occur 

without A and B 

(C4)

•Rules that satisfy both a minimum support threshold (min sup) and a minimum 

confidence threshold (min conf) are called strong. 

•By convention, we write support and confidence values so as to occur between 0% 

and 100%, rather than 0 to 1.0 which require to multiply by 100%.



October 22, 2019 Data Mining: Concepts and Techniques 14

Association mining from frequent Pattern

 A set of items is referred to as an itemset.

 An itemset that contains k items is a k-itemset. 

 The set {computer, antivirus software} is a 2-itemset. 

 The occurrence frequency of an itemset is the number of transactions that 

contain the itemset. 

 This is also known as the frequency, support count, or count of the itemset. 

 Note that the itemset support defined  before is sometimes referred to as 

relative support, whereas the occurrence frequency is called the absolute 

support. 

 If the relative support of an itemset I satisfies a prespecified minimum support 

threshold (i.e., the absolute support of I satisfies the corresponding minimum 

support count threshold), then I is a frequent itemset. 
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Association mining from frequent Pattern

 The set of frequent k-itemsets is commonly denoted by Lk.

 From the previous equation, we have

 confidence(AB) = P(B | A) 

= support(A  B)/ support(A) (relative support)

= support_count(A  B)/support_count(A) (absolute support)

 The above equation shows that the confidence of rule A  B can be easily derived 

from the support counts of A and A  B. 

 That is, once the support counts of A, B, and A  B are found, it is straightforward 

to derive the corresponding association rules AB and B A and check whether 

they are strong. 

 Thus, the problem of mining association rules can be reduced to that of mining 

frequent itemsets.
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Association mining from frequent Pattern: 
Support and Confidence example

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

 Consider the following 4 transactions. 

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2

support(A,B,C) 1

support(B,E,F) 1

support(A,D) 1

support(A,B) 1

support(B,C) 1

support(B,E) 1

support(B,F) 1

support(E,F) 1

support(D) 1

support(E) 1

support(F) 1

 The support for the various item set can be computed and the result shows:
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Association mining from frequent 

Pattern: Support and Confidence example

Transaction ID Items Bought

2000 A,B,C

1000 A,C

4000 A,D

5000 B,E,F

 The following are some of the association rules 

with support and confidence. 

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2

support(A,B,C) 1

 A  B  (25%, 33.3%)

 A  C  (50%, 66.6%)

 A  D  (25%, 33.3%)

 B  A  (25%, 50%)

 C  A  (50%, 100%)

 D  A  (25%, 100%)

 B  C  (25%, 50%)

 B  E  (25%, 50%)

 B  F  (25%, 50%)

 C B  (25%, 50%)

 E B  (25%, 100%)

 F B  (25%, 100%)

support(B,E,F) 1

support(A,D) 1

support(A,B) 1

support(B,C) 1

support(B,E) 1

support(B,F) 1

support(E,F) 1

support(D) 1

support(E) 1

support(F) 1

 A B  C  (25%, 100%)

 A  C B  (25%, 50%)

 B  C A  (25%, 100%)

 A  C B (25%, 33.3%)

 B  A C (25%, 50%)

 C  A B (25%, 50%)

 B E  F  (25%, 100%)

 B  F E  (25%, 100%)

 E  F B  (25%, 100%)

 B  E F (25%, 50%)

 E  B F (25%, 100%)

 F  B E (25%, 100%)
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Association mining from frequent Pattern

 In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets

2. Generate strong association rules from the frequent itemsets

Find all frequent itemsets

 By definition, each of these itemsets will occur at least as frequently as a 

predetermined minimum support count, min sup. 

 Let the minimum support count is 50% for the previous transaction which 

consists of 4 transactions.

 This enable generation of the following item set

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2
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Association mining from frequent Pattern

Generate strong association rules from the frequent 

itemsets: 

 At this step, we need to select association rules 

that  must satisfy minimum support and minimum 

confidence.

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2

• In the example considered above, only two associations are possible: A C 

and CA.

• Let the minimum confidence is 80%

• Hence the rule which full fill the condition is C  A  (50%, 100%)

• Where as A  C  (50%, 66.6%) doesn’t fulfill the requirement of confidence 

and filtered out

• As the second step is much less costly than the first, the overall performance of 

mining association rules is determined by the first step
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Issues to be considered?

 A major challenge in mining frequent itemsets from a large data set is the fact 

that such mining often generates a huge number of itemsets satisfying the 

minimum support (min sup) threshold, especially when min sup is set low. 

 This is because if an itemset is frequent, each of its subsets is frequent as well. 

 A long itemset will contain a combinatorial number of shorter, frequent sub-

itemsets. 

 For example, a frequent itemset  I of length N items, the total number of item set 

which can be derived from I becomes

 Where            the number of frequent items which are subsets of I having i elements
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Issues to be considered?

 The stated frequent itemset number is a major issue from CPU requirement of our 

computer which demands appropriate algorithm.

 To overcome this difficulty, concepts of closed frequent itemset and maximal 

frequent itemset get introduced.

 An itemset X is closed itemset in a data set S if there exists no proper super-

itemset Y such that Y has the same support count as X in S. 

 The table to the left shows the closed itemset for the data set

we have considered before

 An itemset X is a closed frequent itemset in set S if X is 

both closed and frequent in S. 

 Lets assume support is 50% for our example above which has 4 transactions. The 

closed frequent itemset becomes

support(A) 3

support(A,C) 2

support(B) 2

support(A,B,C) 1

support(B,E,F) 1

support(A,D) 1

support(A) 3

support(A,C) 2

support(B) 2



Maximal frequent 

itemset

Closed itemset
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Issues to be considered?

 An itemset X is a maximal frequent itemset (or max-itemset) in set S if X is frequent, 

and there exists no super-itemset Y such that X Y and Y is frequent in S.

 The maximal frequent itemset of our sample data set becomes

 Summarizing the whole jargon

support(A,C) 2

support(B) 2

support(B,E,F) 1

support(A,D) 1

support(A,B) 1

support(B,C) 1

support(B,E) 1

support(B,F) 1

support(E,F) 1

support(D) 1

support(E) 1

support(F) 1

support(A) 3

support(A,C) 2

support(B) 2

support(A,B,C) 1

support(B,E,F) 1

support(A,D) 1

support(A) 3

support(A,C) 2

support(B) 2

Closed frequent 

itemsetsupport(A,C) 2

support(B) 2

Frequent 

itemset

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2

support(A,B,C) 1

support(A) 3

support(A,C) 2

support(B) 2

support( C ) 2
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Issues to be considered?

 Let C be the set of closed frequent itemsets for a data set S satisfying a 

minimum support threshold, min_sup. 

 Let M be the set of maximal frequent itemsets for S satisfying min_sup. 

 Note: M  C (all maximal frequent item set is member of closed frequent 

itemset)

 Consider the table bellow that shows sample closed  and maximal frequent 

itemset
Closed frequent itemset Maximal frequent itemset

itemset count itemset count

A 70% A,B,C 51%

B 75%

C 72%

B,C 60% A, C, D 55%

A, B 65%

A,C,D 55%

A,B,C 51%
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Issues to be considered?

 Suppose that we have the support count of each itemset in C and M. 

 Notice that C and its count information can be used to derive the whole set of 

frequent itemsets and their support count.

 Thus we say that C contains complete information regarding its 

corresponding frequent itemsets and their support count. 

 For example we know that support of D in the above table is 55%

 On the other hand, M registers only the support of the maximal itemsets. 

 It usually does not contain the complete support information regarding its 

corresponding frequent itemsets.

 For example, it is not possible to know the support of A, B, C, D, A&B, etc 

other than saying they are frequent.
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Classification of Frequent Pattern Mining

 Frequent pattern mining can be classified in various ways, based on 

different criteria, two of which are

1. Based on the levels of abstraction involved in the rule set: 

2. Based on the number of data dimensions involved in the rule: 

 Some other criterion may be

A. Based on the completeness of patterns to be mined: 

B. Based on the types of values handled in the rule: 

C. Based on the kinds of rules to be mined
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 Based on the levels of abstraction involved in the rule set: 

 Based on the level of abstraction, we can classify frequent pattern mining as 

single level and multiple level mining

 Multiple level frequent pattern mining for association rule can find rules at 

differing levels of abstraction. 

 For example, suppose that a set of association rules mined includes the following 

rules where X is a variable representing a customer:

buys(X, “computer”)buys(X, “HP printer”)

buys(X, “desktop computer”)buys(X, “HP printer”) 

 In the above Rules, the items bought are referenced at different levels of 

abstraction (e.g., “computer” is a higher-level abstraction of “desktop computer”). 

 If, instead, the rules within a given set do not reference items or attributes at 

different levels of abstraction, then the set contains single-level association 

rules.

Classification of Frequent Pattern Mining
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 Based on the number of data dimensions involved in the rule: 

 Based on the number of data dimensions involved in the rule we can classify 

frequent pattern mining as single dimensional or multidimensional 

 If the items or attributes in an association rule reference only one dimension, 

then it is a single-dimensional association rule. 

buys(X, “computer”) buys(X, “antivirus software”)  

buys(X, “computer”)buys(X, “HP printer”)

buys(X, “laptop computer”)buys(X, “HP printer”)

 The above rules are single-dimensional association rules because they each 

refer to only one dimension, buys.

 If a rule references two or more dimensions, such as the dimensions age, 

income, and buys, then it is a multidimensional association rule. 

 The following rule is an example of a multidimensional rule:

age(X, “30. . . 39”) ^ income(X, “42K. . .48K”)buys(X, “high resolution TV”)

Classification of Frequent Pattern Mining
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Mining Frequent Itemsets: the Key Step

 In order to mine association rule using frequent itemset from a database, 

we should perform the following basic steps

1. Find the frequent itemsets: 

 the sets of items that have minimum support

 A subset of a frequent itemset is also frequent i.e., if {AB} is a 

frequent itemset, both {A} and {B} are frequent

 A number of algorithms are suggested to find the set of  closed or 

maximal frequent items

2. Use the frequent itemsets to generate association rules that fulfill the 

confidence criteria.
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Algorithm to find Frequent Itemsets

 There are a number of algorithms to find frequent itemset in 

mining association pattern from the data set

 Some of them are:

1. The apriori algorithm

2. Frequent pattern growth method

3. Vertical data format method

 Several other algorithms have been proposed to mine association

rules:

„     Sampling algorithms

„     Frequent-pattern tree algorithm

„     Partition algorithm 
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Algorithm to find Frequent Itemsets

1. The apriori algorithm: 

 It iteratively find frequent itemsets with cardinality from 1 to k (k-

itemset)

2. Frequent pattern growth method

 Find frequent item set using divide and conquer method of frequent 

pattern tree
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Algorithm to find Frequent Itemsets

3. Vertical data format method

 Usually working data set is represented as a set of record where each 

record is identified by transaction id (TID) and associated itemsets. 

 This format is called horizontal data format

 Vertical data format represent a record which is uniquely identified 

by an item name and having associated transaction ids for that item.

 This approach uses this format of input data to discover all frequent 

pattern

 We will discuss in this chapter only the first approach (Apriori algorithm)
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The Apriori Algorithm

 Assume:

 Lk  be the set of all frequent  k-itemsets which are ordered 

lexicographically (i.e. the ith itemset in Lk is smaller than the jth 

itemset iff  i< j)

 Ck  be the set of k-itemset which is a super set of Lk .

 li and lj be the ith and jth k-itemset from a given Lk and  each of their 

elements are also sorted lexicographically.



October 22, 2019 Data Mining: Concepts and Techniques 33

The Apriori Algorithm

 The Apriori algorithm will have the following steps

 Initialization

 Join Step

 Prune Step

 Generation
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The Apriori Algorithm

 Initialization

 Generate all the frequent itemset with cardinality of 1 

(i.e. L1) in which each elements are sorted 

lexicographically. 

 Let L1 be {{i1}, {i4}, {i7}, {i9}, {i11}} (Note the 

ordering)
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The Apriori Algorithm

 Join Step: 

 Generate the candidate k-itemsets by joining Lk-1with itself 

(i.e. Ck = Lk-1 ∞ Lk-1) using the following procedure:

 Take any two element from Lk-1 where each of them  are 

similar in all their elements except the last

 Form k-itemset set by union operation of the two (k-1)-

itemset 

 Repeat the procedure for all possible such elements



October 22, 2019 Data Mining: Concepts and Techniques 36

The Apriori Algorithm

 Join Step: 

o Let’s assume L2 = {{i1,i4},  {i1,i9}, {i1,i11} , {i4,i9} , {i4,i11} , {i7,i9} 

, {i7,i11}}

o The candidate 3-itemsets are {{i1,i4,i9}, {i1,i4,i11}, {i1,i9,i11}, 

{i4,i9,i11}, {i7,i9,i11} } (Note each elements are sorted and the 

elements of the elements are also sorted)

o Note {i9,i11} is subset of the generated 3-itemset but not in L2.

o As a result, some of the 2-itemset are not frequent and hence those 

3-item set having {i9,i11} as its subset could not fulfill the 

requirement to be frequent itemset.

o which has leads into immediate removal of the 3 candidate 3-

itemsets in the next step
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The Apriori Algorithm

 Prune Step: 

 generate Ck from the candidate k-itemset by pruning apriori those 

elements which has subsets that are not frequent

 This can be best done by checking if an element in the k-itemset has 

Any (k-1)-itemset that is not frequent. 

 If such an element exist, it should be prunned as it is not frequent
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The Apriori Algorithm

 Generation:

 Generate Lk from Ck by eliminating elements which are 

not frequent 

 This can be best done by assigning count to each k-

itemset in Ck by exploring the entire database transaction
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The Apriori Algorithm

 Input:

 D, a database of transactions;

 Min_sup, the minimum support count threshold.

 Output: 

 L, frequent itemsets in D.
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The Apriori Algorithm

 Method:

1. L1= find frequent 1-itemsets(D); //initialize

2. for (k = 2;Lk-1;k++) {

3. Ck = apriori_gen(Lk-1); //join and prune

4. for each transaction t  D {// scan D for counts

5. Ct = subset(Ck, t); 

// get the subsets of t that are candidates

6. for each candidate c  Ct

7. c.count++;

8. }

9. Lk = { c  Ck | c:count   min_sup} //generate

10. }

11. return L = k Lk;
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The Apriori Algorithm

procedure apriori_gen(Lk-1:frequent (k-1)-itemsets)

1. for each itemset l1  Lk-1{

2. for each itemset l2  Lk-1 {

3. if (l1[1] = l2[1])^(l1[2] = l2[2])^ . . . ^(l1[k-2] = l2[k-2])^

(l1[k-1] < l2[k-1]) then {

4. c = l1 ∞ l2; // join step: generate candidates

5. if (not (has_infrequent_subset(c, Lk-1))) then

6. add c to Ck;

7. else delete c; // prune step: remove unfruitful candidate

8. } 

9. }

10. }

11. return Ck;
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The Apriori Algorithm

procedure has_infrequent_subset (c: candidate k-itemset; Lk-1: frequent (k-

1)-itemsets); // use prior knowledge

1. for each (k-1)-subset s of c

2. if s  Lk-1 then

3. return TRUE;

4. return FALSE;
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The Apriori Algorithm — Example

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D
itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1 L1
itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2

C2

Scan D

C3L3

itemset

{2 3 5}
Scan Ditemset sup

{2 3 5} 2


