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1) Consider the context-free grammar S -> 55 + | 55 * | a  

a) Show how the string aa+a* can be generated by this grammar.  

b) Construct a parse tree for this string.  

c) What language does this grammar generate? Justify your answer. 

2) Construct a syntax-directed translation scheme that translates arithmetic expressions from 

infix notation into prefix notation in which an operator appears before its operands; e.g., -xy 

is the prefix notation for x-y. Give annotated parse trees for the inputs 9-5+2 and 9-5*2. 

3) Construct a syntax-directed translation scheme that t translates roman numerals into integers. 

4) Construct a syntax-directed translation scheme that t translates postfix arithmetic expressions 

into equivalent infix arithmetic expressions. 

5) Construct a syntax-directed translation scheme that translates arithmetic expressions from 

postfix notation into infix notation. Give annotated parse trees for the inputs 95-2* and 952*- 

6) Construct a syntax-directed translation scheme that translates integers into roman numerals. 

7) Construct recursive-descent parsers, starting with the following grammars:  

a) S -> + SS | -SS | a  

b) S -> 5(5) 5 | e  

c) S 0 5 1 | 0 1 

8) Construct DFAs for the string matched by the following definition: 

a) digit =[0-9] 

b) nat=digit+ 

c) signednat=(+|-)?nat 

d) number=signednat(“.”nat)?(E signedNat)? 

9) Regular expression Consider the regular expression r = (a|b)*abb, that matches {abb, aabb, 

babb, aaabb, bbabb, ababb, aababb, ……}  

a) Construct a NFA from this, use Thompson’s construction.  

b) Construct a DFA from this NFA.  

c) Built a Transition Table. 

10) Using the grammar below, construct a parse tree for the following string using RDP 

algorithm:    ( ( id . id ) id ( id ) ( ( ) ) )  

S → E 

E → id 

      | ( E . E ) 

       | ( L ) 

       | ( ) 

L → L E 

       | E 

11) Consider the following grammar over the alphabet  { g,h,i,b} 

    A  BCD 

    B  bB | ε 

    C  Cg | g | Ch | i 
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    D  AB | ε 

a) Fill in the table below with the FIRST and FOLLOW sets for the non-terminals in 

this grammar: 

12)     Let G be the following grammar: 

   S  [ SX ] | a 

   X  ε | +SY | Yb 

   Y  ε | -SXc  

a) Find FIRST and FOLLOW sets for the non-terminals in this grammar. 

b) Construct predictive parsing table for the grammar above. 

c) Show a top down parse of the string [a+a-ac]  

13)     Consider the following grammar: 

    S  ScB | B 

    B  e | efg | efCg 

    C  SdC | S 

a) Justify whether the grammar is LL(1) or not? 

b) If not, translate the grammar into LL(1). 

c) Construct predictive parsing table for the above grammar. 

14) Given the following Grammar: 

 S  A 

 S  B 

 A  a A b 

 A  0 

 B  a B b b 

 B  1 

a) Construct the SLR parsing table. 

b) Write the action of an LR parse for the following string aa1bbbb 

 
 
 
 
 

GOOD LUCK! 

 


