
Ambo University @ Woliso Campus

School of Technology and Informatics

Department of Computer Science

Compiler Design Assignment

 for

3rd year Computer Science

Regular Students.

NOTE:

 Submission of the assignment before DEADLINE is possible.

 But after deadline assignment will be received with deduction of mark.

 Submission Date should be June 25, 2020.

 Copying from others makes your mark zero.

 Please do the assignment carefully and completely. You may evaluated by it only

for a course.

 Submit your assignment in .pdf format or by capturing photo and scanning as a

single file if it is hand writing.

 Unclear, deleted, unreadable and insensible answer makes your work valueless.

 You can ask me any question, suggestion, unclear or doubt ideas about a course

and assignment via one of bellow addresses.

 Submit your assignment for me through my:

 e-mail: yoobsanb3@gmail.com

 telegram: Yoobsan B Begi or 0934407791

 Prepared and compiled by: Yoobsan Bechera

 May/26/2020, AU, Oromia, Ethiopia

mailto:yoobsanb3@gmail.com

Page 1 of 3

1) Consider the context-free grammar S -> 55 + | 55 * | a

a) Show how the string aa+a* can be generated by this grammar.

b) Construct a parse tree for this string.

c) What language does this grammar generate? Justify your answer.

2) Construct a syntax-directed translation scheme that translates arithmetic expressions from

infix notation into prefix notation in which an operator appears before its operands; e.g., -xy

is the prefix notation for x-y. Give annotated parse trees for the inputs 9-5+2 and 9-5*2.

3) Construct a syntax-directed translation scheme that t translates roman numerals into integers.

4) Construct a syntax-directed translation scheme that t translates postfix arithmetic expressions

into equivalent infix arithmetic expressions.

5) Construct a syntax-directed translation scheme that translates arithmetic expressions from

postfix notation into infix notation. Give annotated parse trees for the inputs 95-2* and 952*-

6) Construct a syntax-directed translation scheme that translates integers into roman numerals.

7) Construct recursive-descent parsers, starting with the following grammars:

a) S -> + SS | -SS | a

b) S -> 5(5) 5 | e

c) S 0 5 1 | 0 1

8) Construct DFAs for the string matched by the following definition:

a) digit =[0-9]

b) nat=digit+

c) signednat=(+|-)?nat

d) number=signednat(“.”nat)?(E signedNat)?

9) Regular expression Consider the regular expression r = (a|b)*abb, that matches {abb, aabb,

babb, aaabb, bbabb, ababb, aababb, ……}

a) Construct a NFA from this, use Thompson’s construction.

b) Construct a DFA from this NFA.

c) Built a Transition Table.

10) Using the grammar below, construct a parse tree for the following string using RDP

algorithm: ((id . id) id (id) (()))

S → E

E → id

 | (E . E)

 | (L)

 | ()

L → L E

 | E

11) Consider the following grammar over the alphabet { g,h,i,b}

 A  BCD

 B  bB | ε

 C  Cg | g | Ch | i

Page 2 of 3

 D  AB | ε

a) Fill in the table below with the FIRST and FOLLOW sets for the non-terminals in

this grammar:

12) Let G be the following grammar:

 S  [SX] | a

 X  ε | +SY | Yb

 Y  ε | -SXc

a) Find FIRST and FOLLOW sets for the non-terminals in this grammar.

b) Construct predictive parsing table for the grammar above.

c) Show a top down parse of the string [a+a-ac]

13) Consider the following grammar:

 S  ScB | B

 B  e | efg | efCg

 C  SdC | S

a) Justify whether the grammar is LL(1) or not?

b) If not, translate the grammar into LL(1).

c) Construct predictive parsing table for the above grammar.

14) Given the following Grammar:

 S  A

 S  B

 A  a A b

 A  0

 B  a B b b

 B  1

a) Construct the SLR parsing table.

b) Write the action of an LR parse for the following string aa1bbbb

GOOD LUCK!

