
Ambo University Woliso Campus

Department of Computer Science

Semester II, 2020

Compiler Design

Credits: 3

Instructor: Mr. Yoobsan B

COURSE OBJECTIVES:

Upon completion of this course, students will have gained knowledge of compiler design and
construction concepts and to:

 Introduce the major concept areas of language translation and compiler design.

 Understand the phases of the compilation process and be able to describe the purpose

and implementation approach of each phase.

 Know how to use compiler construction tools, such as generators of scanners and

parsers

 Be able to define LL(1), LR(1), and SLR(1) grammars with parsing techniques

 Design a compiler for a simple programming language; and Implement a compiler based

on its design…

Text book

 Compilers: Principles, techniques and tools by Alfred V. Aho, Ravi Sethi, Jeffrey D.
Ullman

Reference book

 Compiler construction : Principles and practice; Kenneth C.Louden

Course outline

1. Introduction
 Analysis and synthesis in a

compilation

 Various phases in a compilation

 Grouping of phases

 Major data and structures in a

compiler

 Compiler construction tools

2. Lexical analysis and Lex
 Token, pattern, lexeme

 Attributes of a token

 Errors

 Specification of tokens using

regular expressions

 Regular expression for

programming language tokens

 Recognizing tokens using

transition diagrams

 Design of lexical analyzer

 Construction and simulation of

NFA and DFA

 Conversion from RE – NFA –

DFA

 Lex scanner generator

3. Syntax analysis and Yacc
 Role of a parser

 Context Free Grammar

 Derivation, parse tree, ambiguity,

left recursion, left factoring

 Syntax analysis

 Syntax error handling

 Top down parsing

 Recursive decent parsing

 Non recursive predictive parsing

 Bottom up parsing

 LR(k) parsing

 Shift reduce parsing

 Construction of SLR parsing

table

 Yacc parser generator

4. Syntax directed translation

 Syntax directed definitions

 Dependency graph and

evaluation order

 S-attributed definitions

 Bottom-up evaluation

 Top-down evaluation

 L-attributed definitions

5. Type checking
 Type systems

 Specifications of a type checker

 A simple language example

 Equivalence of types

 Type conversion

6. Intermediate code generation
 Intermediate languages

 Types of three address statements

 Syntax directed translation into

three address code

 Implementation of three address

statements

 Translation scheme to generate

three address code

 Addressing array elements

7. Code generation and optimization

 Issues in the design of a code

generator

 A simple code generation

algorithm

 Memory management

 Instruction selection

 Register allocation

Evaluation methods:
 Quizzes 10%
 Lab 15%
 Assignment/projects 15%
 Mid/Tests 20%
 Final 40%

