Computer Graphics	 CoSc-3121

2020

AMBO University Woliso Campus
School of Technology & Informatics
Department Of Computer Science
[image: download]

 Course Name: Computer Graphics
Module Code CoSc M3121
 Course Code CoSc 3121

Prepared By: Mr. Abdisa Lechisa (MSc)

[bookmark: _GoBack]

 Ambo University Woliso Campus, Woliso, Ethiopia 2012

Chapter-1
Introduction to interactive computer graphics
Introduction to Computer Graphics
What is computer Graphics?
· Computer graphics is an art of drawing pictures, lines, charts, etc. using computers with the help of programming.
· Computer graphics image is made up of number of pixels.
· Pixel is the smallest addressable graphical unit represented on the computer screen.
· Computer graphics is commonly seen as a computer science branch that deals with the computerized image fusion theory and technology.
· The computer has become a powerful tool for producing images quickly and economically.
· Also on computers, the term computer graphics covers almost everything.
· The images can be photos, sketches, animations, or pictures of items imagined. Or they may be pictures, we cannot see directly, like internal body parts.
· Computer graphics can be a series of images which is most often called a video or single image.
· Computer graphics is the technology that concerns with designs and pictures on computers.
· That’s why, computer graphics are visual representations of data shown on a monitor made on a computer.
· “Computer graphics is the use of a computer to define, store, manipulate, interrogate, and represent the pictorial output.”
· Computer is information processing machine. User needs to communicate with computer and the computer graphics is one of the most effective and commonly used ways of communication with the user.
· ·It displays the information in the form of graphical objects such as pictures, charts, diagram and graphs.
· Graphical objects convey more information in less time and easily understandable formats for example statically graph shown in stock exchange.
· In computer graphics picture or graphics objects are presented as a collection of discrete pixels.
· We can control intensity and color of pixel which decide how picture look like.
· ·The special procedure determines which pixel will provide the best approximation to the desired picture or graphics object this process is known as Rasterization.
· ·The process of representing continuous picture or graphics object as a collection of discrete pixels is called Scan Conversion.
The term computer graphics has been used to define “almost everything on the computer, including text or sound.” Generally, the term computer graphics refer to the following things:
· Computer representation and manipulation of image data.
· Various technologies for creating and manipulating images.
· Computer graphics study is a sub-field of computer science that studies methods for digitally incorporating and manipulating visual content.
The next area of computer graphics that deals with the placement of a triangle is called transformation. Here we can use matrices to get the mapping of a triangle in image space. We can also set up the transformation matrix to control the location and orientation of the displayed image. We can also resize the triangle.
[image:]

Types of Computer Graphics
1. Based on user interaction
· Interactive CG: - games
· Non-interactive CG: - screen saver, wallpaper
2. Based on image format
· Raster(Bitmap) CG
· Vector CG
3. Based on dimension
· 2D
· 3D
1. Based on user interaction
Interactive Computer Graphics
In interactive computer graphics, users have some controls over the image, i.e., the user can make any changes to the image produced.
Interactive Computer Graphics involves computer-user two-way communication.
For Example:
· Ping-pong game.
· Drawing on touch screens.
· Display weather forecast or other moving charts/graphs on the screen.
· Animating pictures or graphics in movies.
· Graphics animation in video games.
Working of Interactive Computer Graphics
The modern display of graphics is very simple to build. It is composed of three components:
· Display controller or video controller
· Digital memory or frame buffer
· Television monitor
1. Display controller or video controller- It’s a Memory Buffer and TV Monitor interface. Its task is to pass Frame Buffer’s contents to the monitor. The display controller reads each continuous byte of Memory frame buffer data and converts 0’s and 1’s into appropriate video signals.
In today’s term, the display controller is recognized as a display card, and one of our choices can be a VGA(Video Graphics Array) card with a resolution of 640×480. Display Controller is also capable of displaying the image in colors.
2. Digital memory or frame buffer-This is a place where images and pictures are stored as an array (matrix of 0 & 1, 0 represents darkness, and 1 represents image or picture). It is also called a frame buffer.
In today’s term frame buffer is called V-RAM (video RAM), and it helps to store the image in bit form. It helps to increase the speed of graphics.
3. Television monitor- Monitor helps us to view the display, and they make use of CRT(Cathode ray tube) technology.
[image:]
Advantages
1. Superior Quality.
2. More accurate outcomes or products.
3. Increased Productivity.
4. Lower cost of development.
5. Increases the ability to understand information and interpret patterns significantly.
Non- Interactive Computer Graphics
Non-interactive computer graphics are also known as passive computer graphics. It is a type of computer graphics in which the user has no control over the image. The photo is completely controlled by the instructions of the program, not by the user.
For Example:
· Screen savers.
· Map representation of the data.
· Graphic elements are used in the text, document, and PDF presentation.
· Static images are used in mobile applications and websites.
· Business graphics are used as brochures, business cards, menu of the hotel.
2. Based on image format (representation of graphics)
 Raster Graphics: In raster graphics, the image is presented as a rectangular grid of colored squares.
Raster images are also called bitmap images. Bitmap images are stored as the collection of small individual dots called pixels.
Bitmap images require high resolution and anti-aliasing for a smooth appearance.
For example– Paint, Photoshop, etc.
 Vector Graphics: In vector graphics, the image is represented in the form of continuous geometric objects: line, curve, etc.
Vector images are not based on pixel pattern. They use mathematical formulas to draw line and curves. The lines and curves can be combined to create an image.
For Example– PowerPoint, Corel Draw, etc.
[image:]
Difference between Raster and Vector Graphics:
	 Raster Graphics
	 Vector Graphics

	Raster images are the collection of the pixel.
	The Vector images are composed of paths.

	Scan conversion is required.
	Scan Conversion is not required.

	Raster Graphics are less costly.
	Vector Graphics are more costly compared to raster graphics.

	Raster image takes less space to store.
	Vector image takes more space.

	Raster graphics can draw mathematical curves, polygons, and boundaries.
	Vector graphics can only draw continuous and smooth lines.

	File Extension: .BMP, .TIF, .JPG etc.
	File Extension: .SVG, .PDF, .AI etc.

History of Computer Graphics
Computer Graphics (CG) was first developed as a visualization tool. Computer graphics were basically introduced for scientists and engineers in government and corporate research centers, i.e., Bell Labs and Boeing in the 1950s. After then the tools would be developed at Universities in the 60s and 70s at places, i.e., Ohio State University, MIT, University of Utah, Cornell, North Carolina, and the New York Institute of Technology. The computer graphics are invented by researchers Verne Hudson and William Fetter of Boeing. It is often brief as computer graphics.
The early development that took place in academic centers continued at research centers such as the famous Xerox PARC in the 1970ąs. These achievements broke first into broadcast video graphics and then major motion pictures in the late 70ąs and early 1980ąs. Computer graphic research continues still today around the world. Companies such as Industrial Light and Magic by George Lucas are regularly refining the cutting edge of computer graphic technology to present the world with a new manufactured digital reality.
We can understand it by the following steps:
1940-1941: The first directly digital computer-generated graphics that would associate with today as being actual CG. The very first radiosity image was invented at MIT in the 1940s.
1946: The images were first presented at the 1946 national technical conference of the Illuminating Engineering Society of North America.
1948: The images were published in the book: Lighting Design by Moon and D. E. Spencer. 1948.
1950: John Whitney Sr. invents his computer-assisted mechanisms to create some of his graphic artwork and short films.
1951: Vectorscope computer graphics display on the computer at MIT.
The General Motors Research Laboratory also begins the study of computer-aided graphical design applications.
1955: Sage system uses the first light pen as an input device at MIT Lab by Bert Sutherland.
1956: Lawrence Livermore labs associate graphics display with IBM 704 and film recorder for color images.
Bertram Herzog uses analog computers to create CRT graphics in the behavior of military vehicles at the University of Michigan computing center.
1957: In the National Bureau of Standards first image-processed photo was used.
The IBM 740 created a sequence of points on a CRT monitor to represent lines and shapes.
1958: Steven Coons, Ivan Sutherland, and Timothy Johnson started working with the TX-2 computer system to manipulate the drawn pictures.1959: The first commercial film recorder produced in San Diego, CA.
Don Hart and Ed Jacks invented the first computer-aided drawing system at General Motors Research Laboratory and IBM.
1960: William Fetter was first termed “Computer Graphics” for cockpit drawing.
John Whitney Sr. invents motion graphics in LA.
1962: In MIT Lincoln Laboratory Ivan Sutherland produced a man-machine graphical communication system.
1963: An analog computer was developed by Charles Csuri and used to transform a drawing.
Edgar Horwood introduced a computer graphics mapping system which is used by U. S. Housing and urban development.
1965: IBM 2250, the first graphics computer available.
1966: Ralph Baer developed the first consumer computer graphics game, “Odyssey.”
1968: Tony Pritchett made the first computer animation “FLEXIPEDE” in the UK.
1972: Nolan Bushnell, “the father of Electronic games,” developed PONG game.
1973: The concept of Z-buffer algorithm and texture mapping were developed by Edwin Catmull.
1974: The Phong shading method is developed by Phong Bui-Toung.
1975: Dr. Edwin Catmull introduced the Tween animation system.
1976: The first 3D appearance film was created by Gary Demos, John Whitey Jr. at Triple-I.
1978: For the mechanical Universe Jim Blinn produced the first series of animation. Jim Blinn has also published the technique of bump mapping.
1979: Ray tracing created at Bell Laboratory & Cornell University.
1980: The first digital computer was used in computer graphics in the Digital Equipment Corporation (DEC).
1981: The making of computer graphics for IMAX film format is done by Nelson Max at Lawrence Liver more National Laboratory. The Donkey Kong video game was introduced by Nintendo.
1982: The first broad use of 3D graphics animation was done in Disney featured film.
AutoCAD 1.0 is launched-It is only used for wire frame representation.
1985: Medical imaging software combined with Voxel technology.
1987: Video graphics array (VGA) standard was introduced.
1989: Super video graphics array (SVGA) was recommended. Tim Berners Lee developed the first website ever, which has the original URL (Universal resource locator).
1993: Mosaic, the web browser was released by UIUC for general usage. The Codename of mosaic was “Mozilla.”
The Mosaic, the first web browser was released. First public call made by cell phone.
1994: Netscape founded by developers of the Mosaic.
1995: First, fully CGI (Computer-generated imagery) was released. MS Internet Explorer 1.0 released.
2000: The first web-based CAD system Sketchup released.
2006: Google acquires Sketchup.
2009: The state of the art of computer graphics, as of 2009, was brief in a short video.
2013: Now, it is possible to create graphics on a home computer.
2015: Big data is being used to create animations.
2018: Now, we can create “realistic” graphics on mobile phones. We can also create a completely CGI-based human face in real-time.
Application of Computer Graphics
Computer Graphics has numerous applications, some of which are listed below −
· Computer graphics user interfaces GUIs − A graphic, mouse-oriented paradigm which allows the user to interact with a computer.
· Business presentation graphics − A picture is worth a thousand words".
· Cartography − Drawing maps.
· Weather Maps − Real-time mapping, symbolic representations.
· Satellite Imaging − Geodesic images.
· Photo Enhancement − Sharpening blurred photos.
· Medical imaging − MRIs, CAT scans, etc. - Non-invasive internal examination.
· Engineering drawings − mechanical, electrical, civil, etc. - Replacing the blueprints of the past.
· Typography − The use of character images in publishing - replacing the hard type of the past.
· Architecture − Construction plans, exterior sketches - replacing the blueprints and hand drawings of the past.
· Art − Computers provide a new medium for artists.
· Training − Flight simulators, computer aided instruction, etc.
· Entertainment − Movies and games.
· Simulation and modeling − Replacing physical modeling and enactments
· Presentations: Computer graphics are used for making charts, bar diagrams, and other images for the presentation purpose, with the graphical presentation the user, can easily understand the points.
· Education and Training: Computer graphics are also used to provide training to students with simulators. The students can learn about the machines without physically trying them.
· Medical Imaging: MRIs, CT scans, and other internal scans are possible because of computer graphics.
· Flight Simulator: Computer graphic is used to provide training to pilots of aircraft. The pilots give much time to a flight simulator on the ground instead of real airplanes.
· Printing Technology: Computer graphics are used in textile designing and flex printing.
· Cartography: Computer graphics are used in map drawing.
· CAD/CAM: CAD/CAM is also known as Computer-aided design and computer-aided manufacturing. CAD/CAM is used to design and build prototypes, finished products, and manufacturing processes.
Advantages of Computer graphics
 Some important benefits of Computer graphics are:
· Increase Productivity
· Computer graphics give us tools for creating pictures of solid objects as well as of theoretical, engineered objects.
· Computer graphics also point out the moving images.
· The computer can store complex drawings and display complex pictures.
· Sound cards are used to make computers produce sound effects led to other uses of graphics.
Disadvantages of Computer graphics: Some problems with computer graphics are:
· Hardware characteristics and cost.
· Technical issues.
· Coupling issues (display-to-simulation).
· Define the motion.
· Structure of drawings (making the structure explicit).
· Hidden line removal.
· Program instrumentation and visualization.
3D Graphics techniques and terminology
· Modeling = representing 3D objects(polygons, quads, etc.)
· Rendering = constructing 2D images from 3D models
· Texture mapping:- covering a geometry using images.
· Morphing :-shifting pixels from one location to another.
· Rasterization:- geometry to pixels
· Transformation (translation, rotation, scaling, shearing)
· Animation = simulating changes over time
· Shading:-modeling light interaction with 3D objects.
· Hidden surface removal:-display only visible part of an object.
· Vertex:- point in 3D
· Edge:-line in 3D connecting two vertices
· Polygon/Face/Facet:-arbitrary shape formed by connected vertices, fundamental unit of 3D computer graphics
· Mesh :-set of connected polygons forming a surface (or object)
· Aliasing: distortion object produced when representing a high-resolution signal at a lower resolution.
· Anti-aliasing:- a technique used to remove aliasing.
[image:]

Chapter-2 -Computer Hardware

· Graphics hardware is the hardware components to quickly render3D objects as pixels on your computer screen.
 Graphics Hardware includes
· Display (CRT, LCD, LED, Plasma panels …)
· Graphics accelerator
· Scan controller
· Video Memory (frame buffer)
· Display/Graphics Processor
· CPU/Memory/Disk …
· Today's graphics hardware do have great processing and rendering capacity.
Cathode Ray Tube (CRT)
The primary output device in a graphical system is the video monitor. The main element of a video monitor is the Cathode Ray Tube (CRT), shown in the following illustration.
The operation of CRT is very simple:
· The electron gun emits a beam of electrons (cathode rays).
· The electron beam passes through focusing and deflection systems that direct it towards specified positions on the phosphor-coated screen.
· When the beam hits the screen, the phosphor emits a small spot of light at each position contacted by the electron beam.
· It redraws the picture by directing the electron beam back over the same screen points quickly.

[image:]
There are two ways (Random scan and Raster scan) by which we can display an object on the screen.
1. Raster Scan
In a raster scan system, the electron beam is swept across the screen, one row at a time from top to bottom. As the electron beam moves across each row, the beam intensity is turned on and off to create a pattern of illuminated spots.
Picture definition is stored in memory area called the Refresh Buffer or Frame Buffer.
This memory area holds the set of intensity values for all the screen points. Stored intensity values are then retrieved from the refresh buffer and “painted” on the screen one row (scan line) at a time as shown in the following illustration.
Each screen point is referred to as a pixel (picture element) or pel. At the end of each scan line, the electron beam returns to the left side of the screen to begin displaying the next scan line.
[image: Raster Scan]
2. Random Scan (Vector Scan)
In this technique, the electron beam is directed only to the part of the screen where the picture is to be drawn rather than scanning from left to right and top to bottom as in raster scan. It is also called vector display, stroke-writing display, or calligraphic display.
Picture definition is stored as a set of line-drawing commands in an area of memory referred to as the refresh display file. To display a specified picture, the system cycles through the set of commands in the display file, drawing each component line in turn. After all the line-drawing commands are processed, the system cycles back to the first line command in the list.
Random-scan displays are designed to draw all the component lines of a picture 30 to 60 times each second.
[image: Random Scan]
Flat Panel Display
This is emerging technology slowly replacing CRT monitors. The flat-panel displays have following properties such as Little Volume, Light Weight, and Lesser Power consumption.
[image:]
Flat panels are used in calculators, pocket video games and laptop computers. There are two categories of flat panel displays such as:
· Emissive Display (Plasma Panels)
· Non-Emissive Display (Liquid Crystal Display)
The emissive displays (emitters) are devices that convert electrical energy into light. Plasma panels, thin-film electro-luminescent displays, and light-emitting diodes are examples of emissive displays. Non-emissive displays (non-emitters) use optical effects to convert sunlight or light from some other source into graphics patterns. The most important example of a non-emissive flat-panel display is a liquid-crystal device.
Plasma Panels Display
Plasma panels also called gas-discharge displays are constructed by filling the region between two glass plates with a mixture of gases that usually includes neon. A series of vertical conducting ribbons is placed on one glass panel, and a set of horizontal ribbons is built into the other glass panel. Firing voltages applied to a pair of horizontal and vertical conductors cause the gas at the intersection of the two conductors to break down into glowing plasma of electrons and ions. Picture definition is stored in a refresh buffer, and the firing voltages are applied to refresh the pixel positions 60 times per second.
[image:]
Liquid Crystal Display (LCD)
Liquid crystal refers to the fact that these compounds have a crystalline arrangement of molecules, yet they flow like a liquid. Flat panel displays use nematic liquid crystal, as demonstrated in the following figure.
[image:]

Two glass plates, each containing a light polarizer at right angles to the other plate, sandwich the liquid-crystal material. Rows of horizontal transparent conductors are built into one glass plate, and columns of vertical conductors are put into the other plate. The intersection of two conductors defines a pixel position. Polarized light passing through the material is twisted so that it will pass through the opposite polarizer. The light is then reflected back to the viewer. To turn off the pixel, we apply a voltage to the two intersecting conductors to align the molecules so that the light is not twisted.
Three Dimensional Viewing Devices
Graphics monitors for the display of three-dimensional scenes have been devised using a technique that reflects a CRT image from a vibrating, flexible mirror. In this system when varifocal mirror vibrates it changes focal length. These vibrations are synchronized with the display of an object on a CRT so that each point on the object is reflected from the mirror into spatial position corresponding to the distance of that point from a specified viewing position. This allows user to walk around an object or scene and view it from different sides.
[image:]
Virtual Reality Devices
Virtual reality system enables users to move and react in a computer-simulated environment. Various types of devices allow users to sense and manipulate virtual objects much as they would real objects. This natural style of interaction gives participants the feeling of being immersed in the simulated world. Virtual reality simulations differ from other computer simulations in that they require special interface devices that transmit the sights, sounds, and sensations of the simulated world to the user. These devices also record and send the speech and movements of the participants to the simulation program.

[image:]

Graphics Card and Display Adapters
A video card is typically an adapter, a removable expansion card in the PC. Thus, it can be replaced. A video display adapter which is the special printed circuit board that plugs into one of the several expansion slots present on the mother board of the computer. A video display adapter is simply referred as a video card. The video card can also be an integral part of the system board; this is the case in certain brands of PCs and is always the case in laptops and clear preference for the replaceable video card in some PCs. A number of display adapters are available with varying capabilities especially Intel systems support following adapters:
· Monochrome Adapter (MA): The simplest and the first available adapter is MA. This adapter can display only text in single color and has no graphics displaying capability. Originally this drawback only prevented the users from playing video games, but today, even the most serious business software uses graphics and color to great advantage. Hence, MA is no longer suitable, though it offers clarity and high resolution.
· Hercules Adapter (HA): The Hercules card emulates the monochrome adapter but also operates in a graphics mode. Having graphics capabilities the Hercules card became somewhat of a standard for monochrome systems.
· Color Graphics Adapter (CGA): This adapter can display text as well as graphics. In text mode it operates in 25 rows by 80 column mode with 16 colors. In graphics mode two resolutions are available:
· Medium resolution graphics mode 320 * 200 with 4 colors available from palette of 16 colors.
· and 640 * 200 with 2 colors.
One drawback of CGA card is that it produces flicker and snow. Flicker is the annoying tendency of the text to flash as it moves up or down. Snow is the flurry of bright dots that can appear anywhere on the screen.
· Enhanced Graphics Adapter (EGA): The EGA was introduced by IBM in 1984 as alternative to CGA card. The EGA could emulate most of the functions and all the display modes of CGA and MA. The EGA offered high resolution and was not plagued with the snow and flicker problems of CGA. In addition EGA is designed to use the enhanced color monitor capable of displaying 640 * 350 in 16 colors from a palette of 64.
The EGA card has several internal registers. A serious limitation of the EGA card is that it supports write operations to most of its internal registers, but no read operation. The result is it is not possible for software to detect and preserve the state of the adapter, which makes EGA unsuited for memory resident application or for multitasking like windows and OS/2.
· Multicolor Graphics Adapter (MCGA): The MCGA was designed to emulate the CGA card and to maintain compatibility with all the CGA modes. In addition to the text and graphics modes of the CGA, MCGA has two new graphics modes:
· 640 * 480 with 2 colors
· 320 * 200 in with 256 colors
· Video Graphics Adapter (VGA): The VGA supports all the display modes of MA, CGA and MCGA. In addition VGA supports a graphics mode of 640 * 480 with 16 colors.
· Super Video Graphics Adapter (SVGA): The SVGA designation refers to enhancements to the VGA standard by independent vendors. Unlike display adapters discussed earlier SVGA does not refer to a card that meets a particular specification but to a group of cards that have different capabilities. For example one card may have resolutions 800 * 600 and 1024 * 768, whereas, another card may have same resolution but more colors. These cards have different capabilities, but still both of them are classified as SVGA. Since each SVGA card has different capabilities, you need special device driver programs for driving them. This means that unlike VGA cards which can have a single driver that works with all VGA cards, regardless of the vendor, each SVGA card must have a corresponding driver.
· Extended Graphics Adapter (XGA): The XGA evolved from the VGA and provides greater resolution, more colors and much better performance. The XGA has a graphics processor bus mastering. Being a bus master adapter means that the XGA can take control of the system as though it were the mother board. In essence, a bus master is an adapter of the mother board. The XGA offers 2 new modes:
· 640 * 480 with 16 bit colors (65536 colors)
· 1024 * 768 with 8 bit colors (256 colors)
Video Cards Supporting the CPU
The video card provides a support function for the CPU. It is a processor like the CPU. However it is especially designed to control screen images.
[image:]
RAM on the Video Card
Video cards always have a certain amount of RAM. This RAM is also called the frame buffer. Today video cards hold plenty of RAM, but earlier it was more important:
How much RAM? That is significant for color depth at the highest resolutions. Which type of RAM? This is significant for card speed.
Video card RAM is necessary to keep the entire screen image in memory. The CPU sends its data to the video card. The video processor forms a picture of the screen image and stores it in the frame buffer. This picture is a large bit map. It is used to continually update the screen image.
3D - lots of RAM
Supporting the demand for high quality 3D performance many new cards come with a frame buffer of 16 or 32 MB RAM and they use the AGP interface for better bandwidth and access to the main memory.
VRAM
Briefly, in principle all common RAM types can be used on the video card. Most cards use very fast editions of ordinary RAM (SDRAM or DDR).
Some high end cards (like Matrox Millennium II) earlier used special VRAM (Video RAM) chips. This was a RAM type, which only was used on video cards. In principle, a VRAM cell is made up of two ordinary RAM cells, which are "glued" together. Therefore, you use twice as much RAM than otherwise.
VRAM also costs twice as much. The smart feature is that the double cell allows the video processor to simultaneously read old and write new data on the same RAM address. Thus, VRAM has two gates which can be active at the same time. Therefore, it works significantly faster.
With VRAM you will not gain speed improvements increasing the amount of RAM on the graphics controller. VRAM is already capable of reading and writing simultaneously due to the dual port design.
UMA and DVMT
On some older motherboards the video controller was integrated. Using SMBA (Shared Memory Buffer Architecture) or UMA (Unified Memory Architecture) in which parts of the system RAM were allocated and used as frame buffer. But sharing the memory was very slow and the standards never became very popular.
A newer version of this is found in Intel chip set 810 and the better 815, which also integrates the graphics controller and use parts of the system RAM as frame buffer. Here the system is called Dynamic Video Memory Technology (D.V.M.T.).
The RAMDAC
All traditional graphics cards have a RAMDAC chip converting the signals from digital to analog form. CRT monitors work on analog signals. The PC works with digital data which are sent to the graphics adapter. Before these signals are sent to the monitor they have to be converted into analog output and this is processed in the RAMDAC:
The recommendation on a good RAMDAC goes like this:
· External chip, not integrated in the VGA chip
· Clock speed: 250 – 360 MHz.
[image:]
Heavy Data Transport
The original VGA cards were said to be "flat." They were unintelligent. They received signals and data from the CPU and forwarded them to the screen, nothing else. The CPU had to make all necessary calculations to create the screen image.
As each screen image was a large bit map, the CPU had to move a lot of data from RAM to the video card for each new screen image.
The graphic interfaces, like Windows, gained popularity in the early nineties. That marked the end of the "flat" VGA cards. The PC became incredibly slow, when the CPU had to use all its energy to produce screen images. You can try to calculate the required amount of data.
A screen image in 1024 x 768 in 16 bit color is a 1.5 MB bit map. That is calculated as 1024 x 768 x 2 bytes. Each image change (with a refresh rate of 75 HZ there is 75 of them each second) requires the movement of 1.5 MB data. That zaps the PC energy, especially when we talk about games with continual image changes.
Furthermore, screen data have to be moved across the I/O bus. In the early nineties, we did not have the PCI and AGP buses, which could move large volumes of data. The transfer took place through the ISA bus, which has a very limited width. Additionally the CPUs were 386’s and early 486’s, which also had limited power.
Accelerator Cards
In the early nineties the accelerator video cards appeared. Today all cards are accelerated and they are connected to the CPU through high speed buses like PCI and AGP.
With accelerated video chips, Windows (and with that the CPU) need not calculate and design the entire bit map from image to image. The video card is programmed to draw lines, Windows and other image elements.
[image:]
The CPU can, in a brief code, transmit which image elements have changed since the last transmission. This saves the CPU a lot of work in creating screen images. The video chip set carries the heavy load:
All video cards are connected to the PCI or the AGP bus, this way providing maximum data transmission. The AGP bus is an expanded and improved version of the PCI bus - used for video cards only.
Modern video cards made for 3D gaming use expensive high-end RAM to secure a sufficient bandwidth. If you for example want to see a game in a resolution of 1280 x 1024 at 80 Hz, you may need to move 400 MB of data each second - that is quite a lot. The calculation goes like this:
1280 X 1024 pixels x 32 bit (color depth) x 80 = 419,430,400 bytes
419,430,400 bytes = 409,600 kilobytes = 400 megabytes.

[image:]

[image:]
[image:]

[image:]
[image:]
[image:]
Hidden Surface removal
· Hidden Surface Removal is the process used to determine which surfaces and parts of surfaces are not visible from a certain viewpoint.
· Different hidden surface removal techniques
· Z-buffer
· C-buffer and S-buffer
· Painter algorithm
· Ray Casting , BSP tree etc.
Z-buffer for HSR
· A commonly used image- space approach to hidden-surface removal.
· It is also referred as Depth-Buffer method
· Use the intensity color of the nearest 3D point for each pixel.
· It has two buffers
· Frame buffer:-stores image information
· Z-buffer : handle depth information
· Advantages of Z-buffer HSD
· No sorting is required. Models can be rendered in any order.
· No geometric intersection calculations are required.
· The algorithm produces the correct output even for intersecting or overlapping triangles.
· The algorithm is very simple to implement.
· Disadvantage
· Needs large memory to keep Z values

Chapter 3 – Introduction to rendering process with Open GL
s3.1 Introduction to Open GL
It is a software interface for graphics hardware; OpenGL renders multidimensional objects into a frame buffer. OpenGL is industry-standard graphics software with which programmers can create high-quality motionless and animated three-dimensional colour images.
OpenGL is the premier environment for developing portable, interactive 2D and 3D graphics applications. Since its introduction in 1992, OpenGL has become the industries
most widely used and supported 2D and 3D graphics application programming interface (API), bringing thousands of applications to a wide variety of computer platforms. OpenGL promote innovation and speeds application development by incorporating a broad set of rendering, texture mapping, special effects, and other powerful visualization functions. Developers can leverage the power of OpenGL across all popular desktop and workstation platforms, ensuring wide application deployment.
3.1.1 Where Open GL is applicable
OpenGL is built for compatibility across hardware and operating systems. This architecture makes it easy to port OpenGL programs from one system to another. While each operating system has unique requirements, the OpenGL code in many programs can be used as:
Developer Audience: Designed for use by C/C++ programmers
Run-time Requirements: OpenGL can run on Linux and all versions of 32 bit Microsoft Windows.
· High Visual Quality and Performance
Any visual computing application requiring maximum performance from 3D animation to CAD to visual simulation can exploit high-quality, high-performance OpenGL capabilities. These capabilities allow developers in diverse markets such as broadcasting, CAD/CAM/CAE, entertainment, medical imaging, and virtual reality to produce and display incredibly compelling 2D and 3D graphics. Some developer driven advantages are as:
Industry standard: An independent consortium, the OpenGL Architecture Review Board, guides the OpenGL specification. With broad industry support, OpenGL is the only truly open, vendor-neutral, multiplatform graphics standard.
Stable: OpenGL implementations have been available for more than seven years on a wide variety of platforms. Additions to the specification are well controlled, and proposed updates are announced in time for developers to adopt changes. Backward compatibility requirements ensure that existing applications do not become obsolete.
Reliable and portable: All OpenGL applications produce consistent visual display results on any OpenGL API-compliant hardware, regardless of operating system or windowing system.
Evolving: Because of its thorough and forward-looking design, OpenGL allows new hardware innovations to be accessible through the API via the OpenGL extension mechanism. In this way, innovations appear in the API in a timely fashion, letting application developers and hardware vendors incorporate new features into their normal product release cycles.
Scalable: OpenGL API-based applications can run on systems ranging from consumer electronics to PCs, workstations, and supercomputers. As a result, applications can scale to any class of machine that the developer chooses to target.
Easy to use: OpenGL is well structured with an intuitive design and logical commands. Efficient OpenGL routines typically result in applications with fewer lines of code than those that make up programs generated using other graphics libraries or packages. In addition, OpenGL drivers encapsulate information about the underlying hardware, freeing the application developer from having to design for specific hardware features.
Well-documented: Numerous books have been published about OpenGL, and a great deal of sample code is readily available, making information about OpenGL inexpensive and easy to obtain.
· Simplifies Software Development
Open GL routines simplify the development of graphics software from rendering a simple geometric point, line, or filled polygon to the creation of the most complex lighted and texture-mapped NURBS curved surface. OpenGL gives software developers access to geometric and image primitives, display lists, modelling transformations, lighting and texturing, anti-aliasing, blending, and many other features. Every conforming OpenGL implementation includes the full complement of OpenGL functions. The well-specified OpenGL standard has language bindings for C, C++, Fortran, Java.
· Available everywhere
Supported on all UNIX workstations, and shipped standard with every Windows 95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of hardware platforms and software environments. OpenGL runs on every major operating system including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT, Linux, OPENStep, and BeOS; it also works with every major windowing system including Win32, MacOS, Presentation Manager, and X-Window System. OpenGL is callable from Ada, C, C++, Fortran, Python, Perl and Java and offers complete independence from network protocols and topologies.
· Architected for Flexibility and Differentiation
Although the OpenGL specification defines a particular graphics processing pipeline, platform vendors have the freedom to tailor a particular OpenGL implementation to meet unique system cost and performance objectives. Individual calls can be executed on dedicated hardware, run as software routines on the standard system CPU, or implemented as a combination of both dedicated hardware and software routines. This implementation flexibility means that OpenGL hardware acceleration can range from simple rendering to full geometry and is widely available on everything from low-cost PCs to high-end workstations and supercomputers. Application developers are assured consistent display results regardless of the platform implementation of the OpenGL environment.
Using the OpenGL extension mechanism, hardware developers can differentiate their products by developing extensions that allow software developers to access additional performance and technological innovations.
3.1.2 Main Purpose of OpenGL
As a software interface for graphics hardware, the main purpose of OpenGL is to render two- and three-dimensional objects into a frame buffer. These objects are described as sequences of vertices (that define geometric objects) or pixels (that define images). OpenGL performs several processes on this data to convert it to pixels to form the final desired image in the frame buffer. The following topics present a global view of how OpenGL works:
· Primitives and Commands discusses points, line segments, and polygons as the basic units of drawing; and the processing of commands.
· OpenGL Graphic Control describes which graphic operations OpenGL controls and which it does not control.
· Execution Model discusses the client/server model for interpreting OpenGL commands.
· Basic OpenGL Operation gives a high-level description of how OpenGL processes data to produce a corresponding image in the frame buffer.
3.1.3 OpenGL Programming
For writing a program, using OpenGL, for any of the operating systems we can use OpenGL Utility Library named, “glut”. “glut” is used to initialize OpenGL on any platform e.g. Microsoft Windows or Linux etc because it is platform independent. “glut” can create window, get keyboard input and run an event handler or message loop in our graphics application.
All those functions that start with the prefix “gl” are the core OpenGL functions and those which start with “glu” or “glut” are the OpenGL utility library functions.
Example-1: Let’s write a program that uses “glut” and then uses OpenGL function to create graphics.
#include <GL/glut.h>
int main()
{
glutCreateWindow("first graphics window");
}
glutCreateWindow
glutCreateWindow creates a top-level window.
Usage
int glutCreateWindow(char *name);
name:
ASCII character string for use as window name.
Description: glutCreateWindow creates a top-level window. The name will be provided to the window system as the window's name. The intent is that the window system will label the window with the name.
Example 2: Now we will use more features of “glut” library.
#include <GL/glut.h>
int main()
{
//Set up the OpenGL rendering context.
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
//Create a window and set its width and height.
glutCreateWindow("Deform");
glutReshapeWindow(640, 480);
//The keyboard function gets called whenever we hit a key.
glutKeyboardFunc(keyboard);
//The display function gets called whenever the window
//requires an update or when we explicitly call
glutDisplayFunc(display);
//The reshape function gets called whenever the window changes
//shape.
glutReshapeFunc(reshape);
// The idle function gets called when there are no window-
// events to process.
glutIdleFunc(idle);
//Get the ball rolling!
glutMainLoop();
}
In the above program we have used “glut” functions. Let us discuss them in detail.
GlutInitDisplayMode
glutInitDisplayMode sets the initial display mode.
Usage
void glutInitDisplayMode(unsigned int mode);
mode
Display mode, normally the bitwise OR-ing of GLUT display mode bit masks. See values below:
GLUT_RGBA
Bit mask to select an RGBA mode window. This is the default if neither
GLUT_RGBA nor GLUT_INDEX are specified.
GLUT_RGB
An alias for GLUT_RGBA.
GLUT_INDEX
Bit mask to select a color index mode window. This overrides GLUT_RGBA if it
is also specified.
GLUT_SINGLE
Bit mask to select a single buffered window. This is the default if neither
GLUT_DOUBLE or GLUT_SINGLE are specified.
GLUT_DOUBLE
Bit mask to select a double buffered window. This overrides GLUT_SINGLE if it
is also specified.
GLUT_ACCUM
Bit mask to select a window with an accumulation buffer.
GLUT_ALPHA
Bit mask to select a window with an alpha component to the color buffer(s).
GLUT_DEPTH
Bit mask to select a window with a depth buffer.
GLUT_STENCIL
Bit mask to select a window with a stencil buffer.
GLUT_MULTISAMPLE
Bit mask to select a window with multisampling support. If multisampling is not available, a non-multisampling window will automatically be chosen. Note: both the OpenGL client-side and server-side implementations must support the GLX_SAMPLE_SGIS extension for multisampling to be available.
GLUT_STEREO
Bit mask to select a stereo window.
GLUT_LUMINANCE
Bit mask to select a window with a ``luminance'' color model. This model provides the functionality of OpenGL's RGBA color model, but the green and blue components are not maintained in the frame buffer. Instead each pixel's red component is converted to an index between zero and glutGet(GLUT_WINDOW_COLORMAP_SIZE)-1 and looked up in a per window colormap to determine the color of pixels within the window. The initial colormap of GLUT_LUMINANCE windows is initialized to be a linear gray ramp, but can be modified with GLUT's colormap routines.
Description
The initial display mode is used when creating top-level windows, sub windows, and overlays to determine the OpenGL display mode for the to-be-created window or overlay.
Note that GLUT_RGBA selects the RGBA color model, but it does not request any bits of alpha (sometimes called an alpha buffer or destination alpha) be allocated. To request alpha, specify GLUT_ALPHA. The same applies to GLUT_LUMINANCE.

Chapter 4 – Geometry and Line Generation
4.1 Point and Line
A line connects two points. It is a basic element in graphics. To draw a line, you need two points between which you can draw a line. In the following three algorithms, we refer the one point of line as X0, Y0 and the second point of line as X1, Y1.
A line, or straight line, is an (infinitely) thin, (infinitely) long, straight geometrical object, i.e. a curve that is long and straight. Given two points, in Euclidean geometry, one can always find exactly one line that passes through the two points; this line provides the shortest connection between the points and is called a straight line. Three or more points that lie on the same line are called collinear. Two different lines can intersect in at most one point; whereas two different planes can intersect in at most one line. This intuitive concept of a line can be formalized in various ways.
A line may have three forms with respect to slope i.e. it may have slope = 1 as shown in following figure (a), or may have slope < 1 as shown in figure (b) or it may have a slope > 1 as shown in figure (c). Now if a line has slope = 1 it is very easy to draw the line by simply starting from one point and go on incrementing the x and y coordinates till they reach the second point. So that is a simple case but if slope < 1 or is > 1 then there will be some problem.
[image:]

There are three line drawing techniques such as:
· Incremental line algorithm
· DDA line algorithm
· Bresenham line algorithm
4.1.1 Incremental Line Algorithm
This algorithm uses simple line equation y = m x + b
Where m = dy / dx	
and b = y – m x
Now check if |m| < 1 then starting at the first point, simply increment x by 1 (unit increment) till it reaches ending point; whereas calculate y point by the equation for each x and conversely if |m|>1 then increment y by 1 till it reaches ending point; whereas calculate x point corresponding to each y, by the equation.
Now before moving ahead let us discuss why these two cases are tested. First if |m| is less than 1 then it means that for every subsequent pixel on the line there will be unit increment in x direction and there will be less than 1 increment in y direction and vice versa for slope greater than 1.
Let us clarify this with the help of an example:
Example-1: Suppose a line has two points p1 (10, 10) and p2 (20, 18)
Now difference between y coordinates that is dy = y2 – y1 = 18 – 10 = 8
Whereas difference between x coordinates is dx = x2 – x1 = 20 – 10 = 10
This means that there will be 10 pixels on the line in which for x-axis there will be distance of 1 between each pixel and for y-axis the distance will be 0.8.

Example-2: Consider case of another line with points p1 (10, 10) and p2 (16, 20)
Now the difference between y coordinates that is dy = y2 – y1 = 20 – 10 = 10
Whereas difference between x coordinates is dx = x2 – x1 = 16 – 10 = 6
This means that there will be 10 pixels on the line in which for x-axis there will be distance of 0.6 between each pixel and for y-axis the distance will be 1.
Now having discussed this concept at length let us now understand the algorithm to draw a line using above technique which is called as incremental line algorithm:
Incremental_Line (Point p1, Point p2)
dx = p2.x – p1.x
dy = p2.y – p1.y
m = dy / dx
x = p1.x
y = p1.y
b = y – m * x
if |m| < 1
for counter = p1.x to p2.x
drawPixel (x, y)
x = x + 1
y = m * x + b
else
for counter = p1.y to p2.y
drawPixel (x, y)
y = y + 1
x = (y – b) / m
Hence the above algorithm is quite simple and easy as it involves lot of mathematical calculations that is for calculating coordinate using equation each time and secondly it works only in incremental direction.
4.1.2 DDA Algorithm (Digital Differential Analyzer)
The DDA algorithm has very simple technique. Find the difference of dx and dy between x coordinates and y coordinates respectively by ending points of a line. If |dx| is greater than |dy|, then |dx| will be step and otherwise |dy| will be step.
if |dx|>|dy| then
step = |dx|
else
step = |dy|
Now it is very simple to say that step is the total number of pixel required for a line. Next
step is to divide dx and dy by step to get xIncrement and yIncrement that is the increment required in each step to find next pixel value.
xIncrement = dx/step
yIncrement = dy/step
Next a loop is required that will run step times. In the loop drawPixel and add xIncrement in x1 by and yIncrement in y1.
To sum-up all above in the algorithm, we will get,

DDA_Line (Point p1, Point p2)
dx = p2.x – p1. x
dy = p2.y – p1. y
x1=p1.x
y1=p1.y
if |dx|>|dy| then
step = |dx|
else
step = |dy|
xIncrement = dx/step
yIncrement = dy/step
for counter = 1 to step
drawPixel (x1, y1)
x1 = x1 + xIncrement
y1 = y1 + yIncrement
4.1.3 Bresenhams Line Algorithm
The Bresenham algorithm is another incremental scan conversion algorithm. The big advantage of this algorithm is that, it uses only integer calculations. Moving across the x axis in unit intervals and at each step choose between two different y coordinates.
Bresenham's algorithm finds the closest integer coordinates to the actual line, using only integer math. Assuming that the slope is positive and less than 1, moving 1 step in the x direction, y either stays the same, or increases by 1. A decision function is required to resolve this choice.
If the current point is (xi, yi), the next point can be either (xi+1,yi) or (xi+1,yi+1) . The actual position on the line is (xi+1, m(xi+1)+c) . Calculating the distance between the true point, and the two alternative pixel positions available gives:
d1 = y - yi
= m * (x+1)+b-yi
d2 = yi + 1 - y
= yi + 1 – m (xi + 1) - b
Let us define a decision function p, to determine which distance is closer to the true point. By taking the difference between the distances, the decision function will be positive if d1 is larger, and negative otherwise. A positive scaling factor is added to ensure that no division is necessary and only integer math need be used.
pi = dx (d1-d2)
pi = dx (2m * (xi+1) + 2b – 2yi-1)
pi = 2 dy (xi+1) –2 dx yi + dx (2b-1) ------------------ (i)
pi = 2 dy xi – 2 dx yi + k ------------------ (ii)
where k=2 dy + dx (2b-1)
Then we can calculate pi+1 in terms of pi without any xi , yi or k .
pi+1 = 2 dy xi+1 – 2 dx yi+1 + k
pi+1 = 2 dy (xi + 1) - 2 dx yi+1 + k since xi+1= xi + 1
pi+1 = 2 dy xi + 2 dy- 2 dx yi+1 + k ------------------ (iii)
Now subtracting (ii) from (iii), we get
pi+1 - pi = 2 dy - 2 dx (yi+1 - yi)
pi+1 = pi + 2 dy - 2 dx (yi+1 - yi)
If the next point is: (xi+1,yi) then
d1<d2 => d1-d2<0
=> pi<0
=> pi+1= pi + 2 dy
If the next point is: (xi+1,yi+1) then
d1>d2 => d1-d2>0
=> pi>0
=> pi+1= pi + 2 dy - 2 dx
The pi is our decision variable, and calculated using integer arithmetic from pre-computed constants and its previous value. Now a question is remaining how to calculate initial value of pi. For that use equation (i) and put values (x1, y1)
pi = 2 dy (x1+1) – 2 dx yi + dx (2b-1)
where b = y – m x implies that
pi = 2 dy x1 +2 dy – 2 dx yi + dx (2 (y1 – mx1) -1)
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx
pi = 2 dy x1 +2 dy – 2 dx yi + 2 dx y1 – 2 dy x1 - dx
there are certain figures that will cancel each other shown in same different colour
pi = 2 dy - dx
Thus Bresenham's line drawing algorithm is as follows:
dx = x2-x1
dy = y2-y1
p = 2dy-dx
c1 = 2dy
c2 = 2(dy-dx)
x = x1
y = y1
plot (x,y,colour)
while (x < x2)
x++;
if (p < 0)
p = p + c1
else
p = p + c2
y++
plot (x,y,colour)
Again, this algorithm can be easily generalized to other arrangements of the end points of the line segment, and for different ranges of the slope of the line.
4.1.4 Improving Performance of Line Drawing
Several techniques can be used to improve the performance of line-drawing procedures. These are important because line drawing is one of the fundamental primitives used by most of the other rendering applications. An improvement in the speed of line-drawing will result in an overall improvement of most graphical applications. Removing procedure calls using macros or inline code can produce improvements. Unrolling loops also may produce longer pieces of code, but these may run faster. The use of separate x and y coordinates can be discarded in favour of direct frame buffer addressing. Most algorithms can be adapted to calculate only the initial frame buffer address corresponding to the starting point and to replaced:
X++ with Addr++
Y++ with Addr+=XResolution
Fixed point representation allows a method for performing calculations using only integer arithmetic, but still obtaining the accuracy of floating point values. In fixed point, the fraction part of a value is stored separately, in another integer:
M = Mint.Mfrac
Mint = Int(M)
Mfrac = Frac(M)× MaxInt
Addition in fixed point representation occurs by adding fractional and integer components separately, and only transferring any carry-over from the fractional result to the integer result. The sequence could be implemented using the following two integer additions:
ADD Yfrac,Mfrac ; ADC Yint,Mint
Improved versions of these algorithms exist. For example the following variations exist on Bresenham's original algorithm:
Symmetry (forward and backward simultaneously)
Segmentation (divide into smaller identical segments - GCD(D x,D y))
Double step, triple step, n step
4.1.5 Introduction to Pixel
A pixel is the smallest unit of a digital image or graphic that can be displayed and represented on a digital display device. A pixel is the basic logical unit in digital graphics. Pixels are combined to form a complete image, video, text or any visible thing on a computer display. A pixel is also known as a picture element.
A pixel is represented by a dot or square on a computer monitor display screen. Pixels are the basic building blocks of a digital image or display and are created using geometric coordinates. Depending on the graphics card and display monitor, the quantity, size and color combination of pixels varies and is measured in terms of the display resolution.
For example, a computer with a display resolution of 1280 x 768 will produce a maximum of 98,3040 pixels on a display screen. Each pixel has a unique logical address, a size of eight bits or more and, in most high-end display devices, the ability to project millions of different colors.
The pixel resolution spread also determines the quality of display; more pixels per inch of monitor screen yields better image results.
Setting a Pixel
Initial Task: Turning on a pixel (loading the frame buffer/bit-map). Assume the simplest case, i.e., an 8-bit, non-interlaced graphics system. Then each byte in the frame buffer corresponds to a pixel in the output display.
[image:]
To find the address of a particular pixel (X,Y) we use the following formula:
addr(X, Y) = addr(0,0) + Y rows * (Xm + 1) + X (all in bytes)
addr(X,Y) = the memory address of pixel (X,Y)
addr(0,0) = the memory address of the initial pixel (0,0)
Number of rows = number of raster lines.
Number of columns = number of pixels/raster line.
Example: For a system with 640 × 480 pixel resolution, find the address of pixel X = 340, Y = 150?
Solution: 	addr(340, 150) = addr(0,0) + 150 * 640 (bytes/row) + 340
= base + 96,340 is the byte location
Graphics system usually have a command such as set_pixel (x, y) where x, y are integers.
4.2 Circle Drawing Techniques
A circle is the set of points in a plane that are equidistant from a given point O. The distance r from the center is called the radius, and the point O is called the center. Twice the radius is known as the diameter d = 2r. The angle a circle subtends from its center is a full angle, equal to 360° or radians.
A circle has the maximum possible area for a given perimeter, and the minimum possible perimeter for a given area. The perimeter C of a circle is called the circumference, and is given by C = r
First of all for circle drawing we need to know what the input will be. Well the input will be one center point (x, y) and radius r. Therefore, using these two inputs there are a number of ways to draw a circle. They involve understanding level very simple to complex and reversely time complexity inefficient to efficient. We will see them one by one giving comparative study.
4.2.1 Circle Drawing Using Cartesian coordinates
[image:]
This technique uses the equation for a circle on radius r centred at (0, 0) given as:
[image:]
an obvious choice is to plot
[image:]
Obviously in most of the cases the circle is not centered at (0, 0), rather there is a center point (Xc, yc); other than (0, 0). Therefore the equation of the circle having center at point (Xc, yc).
[image:]
this implies that,
[image:]
Using above equation a circle can easily be drawn. The value of x varies from r – xc to r + xc . Whereas y will be calculated using above formula. Using this technique we can write a simple algorithm:
[image:]

[image:]
4.2.2 Circle Drawing using Polar Coordinates
[image:]
A better approach, to eliminate unequal spacing as shown in above figure is to calculate points along with the circular boundary using polar coordinates r and θ expressing the circle equation in parametric polar form yields the pair of equations:
[image:]
Using above equation circle can be plotted by calculating x and y coordinates as θ takes values from 0 to 360 degrees or 0 to . The step size chosen for θ depends on the application and the display device. Larger angular separations along the circumference can be connected with straight-line segments to approximate the circular path. For a more continuous boundary on a raster display, we can set the step size at 1/r. This plots pixel positions that are approximately one unit apart.
Now let us see how this technique can be sum up in algorithmic form.
[image:]
Again this is very simple technique and also solves problem of unequal space but unfortunately this technique is still inefficient in terms of calculations involves especially floating point calculations.

[image:]
Calculations can be reduced by considering the symmetry of circles. The shape of circle is similar in each quadrant. We can generate the circle section in the second quadrant of the xy-plane by noting that the two circle sections are symmetric with respect to the y axis and circle sections in the third an fourth quadrants can be obtained from sections in the first and second quadrants by considering symmetry about the x axis. We can take this one step further and note that there is also symmetry between octants. Circle sections in adjacent octants within one quadrant are symmetric with respect to the 450 line dividing the two octants. These symmetry conditions are illustrated in above figure. Therefore above algorithm can be optimized by using symmetric octants. Let’s see:
[image:]
[image:]
4.2.3 Midpoint Circle Algorithm
As in the Bresenham line drawing algorithm we derive a decision parameter that helps us to determine whether or not to increment in the y coordinate against increment of x coordinate or vice versa for slope > 1. Similarly here we will try to derive decision parameter which can give us closest pixel position.
[image:]
Let us consider only the first octant of a circle of radius r centred on the origin. We begin by plotting point (r, 0) and end when x < y.
The decision at each step is whether to choose the pixel directly above the current pixel or the pixel; which is above and to the left (8-way stepping).
[image:]
To apply the midpoint method, we define a circle function:
[image:]
Therefore following relations can be observed:
[image:]
The circle function tests given above are performed for the midpoints between pixels near the circle path at each sampling step. Thus, the circle function is the decision parameter in the midpoint algorithm, and we can set up incremental calculations for this function as we did in the line algorithm.
Figure below shows the midpoint between the two candidate pixels at sampling position xk+1. Assuming we have just plotted the pixel at (xk, yk), we next need to determine whether the pixel at position (xk+1, yk), we next need to determine whether the pixel at position (xk+1, yk), or the one at position (xk+1, yk-1) is closer to the circle. Our decision parameter is the circle function evaluated at the midpoint between these two pixels:
[image:]
[image:]
If pk<0, this midpoint is inside the circle and the pixel on scan line yk is closer to the circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we select the pixel on scan-line yk -1.
Successive decision parameters are obtained using incremental calculations. We obtain a recursive expression for the next decision parameter by evaluating the circle function at sampling position
[image:]

[image:]
Subtracting (1) from (2), we get
[image:]
Where yk+1 is either yk or yk-1, depending on the sign of Pk. Therefore, if Pk < 0 or negative then yk + 1 will be yk and the formula to calculate Pk+1 will be:
[image:]

Otherwise, if Pk > 0 or positive then yk+1 will be yk-1 and the formula to calculate Pk+1 will
be:
[image:]
 [image:]
Now a similar case that we observe in line algorithm is that how would starting Pk be evaluated. For this at the start pixel position will be (0, r). Therefore, putting this value is equation, we get
 [image:]
If radius r is specified as an integer, we can simply round p0 to:
 [image:]
Since all increments are integer. Finally sum up all in the algorithm:
[image:]
Now let us consider an example to calculate first octant of the circle using above algorithm; while one quarter is displayed where you can observe that exact circle is passing between the points calculated in a raster circle.
[image:]
4.3 Polygon Filling Algorithm
A polygon can be defined as a shape that is formed by line segments that are placed end to end, creating a continuous closed path. Polygons can be divided into three basic types such as convex, concave, and complex.
Convex: Convex polygons are the simplest type of polygon to fill. To determine whether or not a polygon is convex, ask the following question:
Does a straight line connecting any two points that are inside the polygon intersect any edges of the polygon?
[image:]
If the answer is no, the polygon is convex. This means that for any scan-line, the scanline will cross at most two polygon edges (not counting any horizontal edges). Convex polygon edges also do not intersect each other.
Concave: Concave polygons are a superset of convex polygons, having fewer restrictions than convex polygons. The line connecting any two points that lie inside the polygon may intersect more than two edges of the polygon. Thus, more than two edges may intersect any scan line that passes through the polygon. The polygon edges may also touch each other, but they may not cross one another.

[image:]
Complex: Complex polygons are just what their name suggests: complex. Complex polygons are basically concave polygons that may have self-intersecting edges. The complexity arises from distinguishing which side is inside the polygon when filling it.
[image:]
Difference between Filled and Unfilled Polygon
When an unfilled polygon is rendered, only the points on the perimeter of the polygon are drawn. Examples of unfilled polygons are shown below:
However, when a polygon is filled, the interior of the polygon must be considered. All of the pixels within the boundaries of the polygon must be set to the specified color or pattern. Here, we deal only with solid colors. The following figure shows the difference between filled and unfilled polygons.
[image:]
In order to determine which pixels are inside the polygon, the odd-parity rule is used within the scan-line polygon fill algorithm.
4.3.1 Parity
Parity is a concept used to determine which pixels lie within a polygon, i.e. which pixels should be filled for a given polygon.
The Underlying Principle: Conceptually, the odd parity test entails drawing a line segment from any point that lies outside the polygon to a point P, which we wish to determine whether it is inside or outside of the polygon. Count the number of edges that the line crosses. If the number of polygon edges crossed is odd, then P lies within the polygon. Similarly, if the number of edges is even, then P lies outside of the polygon. There are special ways of counting the edges when the line crosses a vertex. Examples of counting parity can be seen in the following demonstration.
[image:]
4.3.2 Scan Line Algorithm
In order to fill a polygon, we do not want to have to determine the type of polygon that we are filling. The easiest way to avoid this situation is to use an algorithm that works for all three types of polygons. Since both convex and concave polygons are subsets of the complex type, using an algorithm that will work for complex polygon filling should be sufficient for all three types. The scan-line polygon fill algorithm, which employs the odd/even parity concept works for complex polygon filling.
Reminder: The basic concept of the scan-line algorithm is to draw points from edges of odd parity to even parity on each scan-line.
A scan-line is a line of constant y value, i.e., y = c, where c lies within our drawing region, e.g., the window on our computer screen.
The following steps show how this algorithm works.

Step 1 − Find out the Ymin and Ymax from the given polygon.
[image:]
Step 2 − ScanLine intersects with each edge of the polygon from Ymin to Ymax. Name each intersection point of the polygon. As per the figure shown above, they are named as p0, p1, p2, p3.
Step 3 − Sort the intersection point in the increasing order of X coordinate i.e. (p0, p1), (p1, p2), and (p2, p3).
Step 4 − Fill all those pair of coordinates that are inside polygons and ignore the alternate pairs.
4.3.2 Flood Fill Algorithm
Sometimes we come across an object where we want to fill the area and its boundary with different colors. We can paint such objects with a specified interior color instead of searching for particular boundary color as in boundary filling algorithm. Instead of relying on the boundary of the object, it relies on the fill color. In other words, it replaces the interior color of the object with the fill color. When no more pixels of the original interior color exist, the algorithm is completed.
[image:]
4.3.3 Boundary Fill Algorithm
The boundary fill algorithm works as its name. This algorithm picks a point inside an object and starts to fill until it hits the boundary of the object. The color of the boundary and the color that we fill should be different for this algorithm to work.
In this algorithm, we assume that color of the boundary is same for the entire object. The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected pixels.
4.3.4 The 4-Connected Polygon
In this technique 4-connected pixels are used as shown in the figure. We are putting the pixels above, below, to the right, and to the left side of the current pixels and this process will continue until we find a boundary with different color.
[image:]
Algorithm
Step 1 − Initialize the value of seed point (seedx, seedy), fcolor and dcol.
Step 2 − Define the boundary values of the polygon.
Step 3 − Check if the current seed point is of default color, then repeat the steps 4 and 5 till the boundary pixels reached.
If getpixel(x, y) = dcol then repeat step 4 and 5
Step 4 − Change the default color with the fill color at the seed point.
setPixel(seedx, seedy, fcol)
Step 5 − Recursively follow the procedure with four neighborhood points.
FloodFill (seedx – 1, seedy, fcol, dcol)
FloodFill (seedx + 1, seedy, fcol, dcol)
FloodFill (seedx, seedy - 1, fcol, dcol)
FloodFill (seedx – 1, seedy + 1, fcol, dcol)

Step 6 − Exit
There is a problem with this technique. Consider the case as shown below where we tried to fill the entire region. Here, the image is filled only partially. In such cases, 4-connected pixels technique cannot be used.
[image:]
4.3.5 The 8-Connected Polygon
In this technique 8-connected pixels are used as shown in the figure. We are putting pixels above, below, right and left side of the current pixels as we were doing in 4-connected technique.
In addition to this, we are also putting pixels in diagonals so that entire area of the current pixel is covered. This process will continue until we find a boundary with different color.
[image:]
Algorithm
Step 1 − Initialize the value of seed point (seedx, seedy), fcolor and dcol.
Step 2 − Define the boundary values of the polygon.
Step 3 − Check if the current seed point is of default color then repeat the steps 4 and 5 till the boundary pixels reached.
If getpixel(x,y) = dcol then repeat step 4 and 5
Step 4 − Change the default color with the fill color at the seed point.
setPixel(seedx, seedy, fcol)
Step 5 − Recursively follow the procedure with four neighborhood points
FloodFill (seedx – 1, seedy, fcol, dcol)
FloodFill (seedx + 1, seedy, fcol, dcol)
FloodFill (seedx, seedy - 1, fcol, dcol)
FloodFill (seedx, seedy + 1, fcol, dcol)
FloodFill (seedx – 1, seedy + 1, fcol, dcol)
FloodFill (seedx + 1, seedy + 1, fcol, dcol)
FloodFill (seedx + 1, seedy - 1, fcol, dcol)
FloodFill (seedx – 1, seedy - 1, fcol, dcol)
Step 6 − Exit
The 4-connected pixel technique failed to fill the area as marked in the following figure which won’t happen with the 8-connected technique.
[image:]
4.3.6 Inside-outside Test
This method is also known as counting number method. While filling an object, we often need to identify whether particular point is inside the object or outside it. There are two methods such as Odd-Even Rule and Nonzero Winding Number Rule by which we can identify whether particular point is inside an object or outside.
Odd-Even Rule
In this technique, we will count the edge crossing along the line from any point (x,y) to infinity. If the number of interactions is odd, then the point (x,y) is an interior point; and if the number of interactions is even, then the point (x,y) is an exterior point. The following example depicts this concept.
[image:]
From the above figure, we can see that from the point (x,y), the number of interactions point on the left side is 5 and on the right side is 3. From both ends, the number of interaction points is odd, so the point is considered within the object.
Nonzero Winding Number Rule
This method is also used with the simple polygons to test the given point is interior or not. It can be simply understood with the help of a pin and a rubber band. Fix up the pin on one of the edge of the polygon and tie-up the rubber band in it and then stretch the rubber band along the edges of the polygon.
When all the edges of the polygon are covered by the rubber band, check out the pin which has been fixed up at the point to be test. If we find at least one wind at the point consider it within the polygon, else we can say that the point is not inside the polygon.
[image:]
In another alternative method, give directions to all the edges of the polygon. Draw a scan line from the point to be test towards the left most of X direction.
· Give the value 1 to all the edges which are going to upward direction and all other -1 as direction values.
· Check the edge direction values from which the scan line is passing and sum up them.
· If the total sum of this direction value is non-zero, then this point to be tested is an interior point, otherwise it is an exterior point.
· In the above figure, we sum up the direction values from which the scan line is passing then the total is 1 – 1 + 1 = 1; which is non-zero. So the point is said to be an interior point.

Chapter 5 – Geometrical Transformations
2.1 Introduction to 2D Transformation
Transformation means changing some graphics into something else by applying rules. We can have various types of transformations such as translation, scaling up or down, rotation, shearing, etc. We require moving pictures for example games, animation, and different model where we show certain objects moving or rotating or changing their sizes. When a transformation takes place on a 2D plane, it is called 2D transformation. Transformations play an important role in computer graphics to reposition the graphics on the screen and change their size or orientation.
Homogeneous Coordinates
To perform a sequence of transformation such as translation followed by rotation and scaling, we need to follow a sequential process −
· Translate the coordinates,
· Rotate the translated coordinates, and then
· Scale the rotated coordinates to complete the composite transformation.
To shorten this process, we have to use 3×3 transformation matrix instead of 2×2 transformation matrix. To convert a 2×2 matrix to 3×3 matrix, we have to add an extra dummy coordinate W.
In this way, we can represent the point by 3 numbers instead of 2 numbers, which is called Homogenous Coordinate system. In this system, we can represent all the transformation equations in matrix multiplication. Any Cartesian point P(X, Y) can be converted to homogenous coordinates by:
 						P’ (Xh, Yh, h).

Basically there are 5 types of 2D Transformations such as Translation, Rotation, Scaling, Sheer and Reflection.
2.1.1 Translation
A translation moves an object to a different position on the screen (i.e change in the position). You can translate a point in 2D by adding translation coordinate (tx, ty) to the original coordinate (X, Y) to get the new coordinate (X’, Y’).
[image: Translation]
From the above figure, you can write that −
X’ = X + tx
Y’ = Y + ty
The pair (tx, ty) is called the translation vector or shift vector. The above equations can also be represented using the column vectors.
[image:]
We can write it as −
P’ = P + T
2.1.2 Rotation
In rotation, we rotate the object at particular angle θ (theta) from its origin. From the following figure, we can see that the point P(X, Y) is located at angle φ from the horizontal X coordinate with distance r from the origin.
Let us suppose you want to rotate it at the angle θ. After rotating it to a new location, you will get a new point
P’ (X’, Y’).

[image:]
Using standard trigonometric the original coordinate of point P(X, Y) can be represented as –
[image:]
Same way we can represent the point P’ (X’, Y’) as –
[image:]
Substituting equation (1) & (2) in (3) & (4) respectively, we will get
[image:]
Representing the above equation in matrix form,
[image:]
P’ = P . R
Where R is the rotation matrix
[image:]
The rotation angle can be positive and negative.
For positive rotation angle, we can use the above rotation matrix. However, for negative angle rotation, the matrix will change as shown below –
[image:]
2.1.3 Scaling
To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original coordinates of the object with the scaling factor to get the desired result.
Let us assume that the original coordinates are (X, Y), the scaling factors are (SX, SY), and the produced coordinates are (X’, Y’). This can be mathematically represented as shown below –
X' = X . SX and Y' = Y . SY
The scaling factor SX, SY scales the object in X and Y direction respectively. The above equations can also be represented in matrix form as below –
[image:]
Or	P’ = P . S
Where S is the scaling matrix. The scaling process is shown in the following figure.
[image:]
If we provide values less than 1 to the scaling factor S, then we can reduce the size of the object. If we provide values greater than 1, then we can increase the size of the object.
2.1.4 Reflection
Reflection is the mirror image of original object. In other words, we can say that it is a rotation operation with 180°. In reflection transformation, the size of the object does not change.
The following figures show reflections with respect to X and Y axes, and about the origin respectively.
[image:]
[image:]
2.1.5 Shear
A transformation that slants the shape of an object is called the shear transformation. There are two shear transformations X-Shear and Y-Shear. One shifts X coordinates values and other shifts Y coordinate values. However; in both the cases only one coordinate changes its coordinates and other preserves its values. Shearing is also termed as Skewing.
X-Shear
The X-Shear preserves the Y coordinate and changes are made to X coordinates, which causes the vertical lines to tilt right or left as shown in below figure.

[image:]
The transformation matrix for X-Shear can be represented as –
[image:]
Y-Shear
The Y-Shear preserves the X coordinates and changes the Y coordinates which causes the horizontal lines to transform into lines which slopes up or down as shown in the following figure.
[image:]
The Y-Shear can be represented in matrix from as –
[image:]
2.2 Composite Transformation
If a transformation of the plane T1 is followed by a second plane transformation T2, then the result itself may be represented by a single transformation T which is the composition of T1 and T2 taken in that order. This is written as T = T1∙T2.
Composite transformation can be achieved by concatenation of transformation matrices to obtain a combined transformation matrix.
A combined matrix −
[T][X] = [X] [T1] [T2] [T3] [T4] …. [Tn]
Where [Ti] is any combination of
· Translation
· Scaling
· Shearing
· Rotation
· Reflection
The change in the order of transformation would lead to different results, as in general matrix multiplication is not cumulative, that is [A] . [B] ≠ [B] . [A] and the order of multiplication. The basic purpose of composing transformations is to gain efficiency by applying a single composed transformation to a point, rather than applying a series of transformation, one after another.
For example, to rotate an object about an arbitrary point (Xp, Yp), we have to carry out three steps −
· Translate point (Xp, Yp) to the origin.
· Rotate it about the origin.
· Finally, translate the centre of rotation back where it belonged.

2.3 Introduction to 3D Transformation
2.3.1 Rotation
3D rotation is not same as 2D rotation. In 3D rotation, we have to specify the angle of rotation along with the axis of rotation. We can perform 3D rotation about X, Y, and Z axes. They are represented in the matrix form as below –
[image:]
The following figure explains the rotation about various axes –
[image:]

2.3.2 Scaling
You can change the size of an object using scaling transformation. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original coordinates of the object with the scaling factor to get the desired result. The following figure shows the effect of 3D scaling –
[image:]
In 3D scaling operation, three coordinates are used. Let us assume that the original coordinates are (X, Y, Z), scaling factors are (SX, SY, Sz) respectively, and the produced coordinates are (X’, Y’, Z’). This can be mathematically represented as shown below-
[image:]
2.3.3 Shear
A transformation that slants the shape of an object is called the shear transformation. Like in 2D shear, we can shear an object along the X-axis, Y-axis, or Z-axis in 3D.

[image:]
As shown in the above figure, there is a coordinate P. You can shear it to get a new coordinate P', which can be represented in 3D matrix form as below –
[image:]

2.4 Transformation Matrices
Transformation matrix is a basic tool for transformation. A matrix with n x m dimensions is multiplied with the coordinate of objects. Usually 3 x 3 or 4 x 4 matrices are used for transformation. For example, consider the following matrix for various operations.
[image:]
2.5 Introduction to 3D Computer Graphics and Projections
In the 2D system, we use only two coordinates X and Y but in 3D, an extra coordinate Z is added. 3D graphics techniques and their application are fundamental to the entertainment, games, and computer-aided design industries. It is a continuing area of research in scientific visualization.
Furthermore, 3D graphics components are now a part of almost every personal computer and, although traditionally intended for graphics-intensive software such as games, they are increasingly being used by other applications.
[image: 3D Coordinates]
2.5.1 Parallel Projection
Parallel projection discards z-coordinate and parallel lines from each vertex on the object are extended until they intersect the view plane. In parallel projection, we specify a direction of projection instead of center of projection.
In parallel projection, the distance from the center of projection to project plane is infinite. In this type of projection, we connect the projected vertices by line segments which correspond to connections on the original object.
Parallel projections are less realistic, but they are good for exact measurements. In this type of projections, parallel lines remain parallel and angles are not preserved. Various types of parallel projections are shown in the following hierarchy.
[image: Parallel Projection]
2.5.2 Orthographic Projection
In orthographic projection the direction of projection is normal to the projection of the plane. There are three types of orthographic projections −
· Front Projection
· Top Projection
· Side Projection
[image: Orthographic Projections]
2.5.3 Oblique Projection
In oblique projection, the direction of projection is not normal to the projection of plane. In oblique projection, we can view the object better than orthographic projection.
There are two types of oblique projections − Cavalier and Cabinet. The Cavalier projection makes 45° angle with the projection plane. The projection of a line perpendicular to the view plane has the same length as the line itself in Cavalier projection. In a cavalier projection, the foreshortening factors for all three principal directions are equal.
The Cabinet projection makes 63.4° angle with the projection plane. In Cabinet projection, lines perpendicular to the viewing surface is projected at ½ their actual length. Both the projections are shown in the following figure −
[image: Cavalier and Cabinet Projection]

2.5.4 Isometric Projections
Orthographic projections that show more than one side of an object are called axonometric orthographic projections. The most common axonometric projection is an isometric projection where the projection plane intersects each coordinate axis in the model coordinate system at an equal distance. In this projection parallelism of lines are preserved but angles are not preserved. The following figure shows isometric projection −
[image: Isometric Projections]
2.5.5 Perspective Projection
In perspective projection, the distance from the center of projection to project plane is finite and the size of the object varies inversely with distance which looks more realistic.
The distance and angles are not preserved and parallel lines do not remain parallel. Instead, they all converge at a single point called center of projection or projection reference point. There are 3 types of perspective projections which are shown in the following chart.
· One point perspective projections is simple to draw.
· Two point perspective projections gives better impression of depth.
· Three point perspective projections are most difficult to draw.

[image: Perspective Projections Types]
The following figure shows all the three types of perspective projection –
[image:]
2.6 Translation
In 3D translation, we transfer the Z coordinate along with the X and Y coordinates. The process for translation in 3D is similar to 2D translation. A translation moves an object into a different position on the screen. The following figure shows the effect of translation −
[image: 3D Translation]
A point can be translated in 3D by adding translation coordinate (tx, ty, tz) to the original coordinate (X, Y, Z) to get the new coordinate (X’, Y’, Z’).
[image:]

Chapter 6 – Drawing Geometric Objects and Curves
6.1 Introduction to Curves
In computer graphics, we often need to draw different types of objects onto the screen. Objects are not flat all the time and we need to draw curves many times to draw an object.
Types of Curves
A curve is an infinitely large set of points. Each point has two neighbors except endpoints. Curves can be broadly classified into three categories as explicit, implicit, and parametric curves.
Implicit Curves
Implicit curve representations define the set of points on a curve by employing a procedure that can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit function of the form:
f(x, y) = 0
It can represent multivalued curves (multiple y values for an x value). A common example is the circle, whose implicit representation is
x2 + y2 - R2 = 0
Explicit Curves
A mathematical function y = f(x) can be plotted as a curve. Such a function is the explicit representation of the curve. The explicit representation is not general, since it cannot represent vertical lines and is also single-valued. For each value of x, only a single value of y is normally computed by the function.
Parametric Curves
Curves having parametric form are called parametric curves. The explicit and implicit curve representations can be used only when the function is known. In practice the parametric curves are used. A two-dimensional parametric curve has the following form:
P(t) = f(t), g(t) or P(t) = x(t), y(t)
The functions f and g become the (x, y) coordinates of any point on the curve, and the points are obtained when the parameter t is varied over a certain interval [a, b], normally [0, 1].
6.1.1 Bezier Curve
Bezier curve was discovered by the French engineer Pierre Bézier. These curves can be generated under the control of other points. Approximate tangents by using control points are used to generate curve. The Bezier curve can be represented mathematically as:
[image:]
[image:]
Properties of Bezier Curves
Bezier curves have the following properties:
· They generally follow the shape of the control polygon, which consists of the segments joining the control points.
· They always pass through the first and last control points.
· They are contained in the convex hull of their defining control points.
· The degree of the polynomial defining the curve segment is one less that the number of defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3, i.e. cubic polynomial.
· A Bezier curve generally follows the shape of the defining polygon.
· The direction of the tangent vector at the end points is same as that of the vector determined by first and last segments.
· The convex hull property for a Bezier curve ensures that the polynomial smoothly follows the control points.
· No straight line intersects a Bezier curve more times than it intersects its control polygon.
· They are invariant under an affine transformation.
· Bezier curves exhibit global control means moving a control point alters the shape of the whole curve.
· A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments which join together at the point corresponding to the parameter value t=t0.
6.1.2 B- Spline Curves
The Bezier-curve produced by the Bernstein basis function has limited flexibility.
· First, the number of specified polygon vertices fixes the order of the resulting polynomial which defines the curve.
· The second limiting characteristic is that the value of the blending function is nonzero for all parameter values over the entire curve.
The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is non-global.
[image:]
Where,
· {pipi: i=0, 1, 2….n} are the control points
· k is the order of the polynomial segments of the B-spline curve. Order k means that the curve is made up of piecewise polynomial segments of degree k - 1,
· the [image:] are the “normalized B-spline blending functions”. They are described by the order k and by a non-decreasing sequence of real numbers normally called the “knot sequence”.
[image:]
Properties of B-spline Curve
B-spline curves have the following properties:
· The sum of the B-spline basis functions for any parameter value is 1.
· Each basis function is positive or zero for all parameter values.
· Each basis function has precisely one maximum value, except for k=1.
· The maximum order of the curve is equal to the number of vertices of defining polygon.
· The degree of B-spline polynomial is independent on the number of vertices of defining polygon.
· B-spline allows the local control over the curve surface because each vertex affects the shape of a curve only over a range of parameter values where its associated basis function is nonzero.
· The curve exhibits the variation diminishing property.
· The curve generally follows the shape of defining polygon.
· Any affine transformation can be applied to the curve by applying it to the vertices of defining polygon.
· The curve line within the convex hull of its defining polygon.
6.2 Vectors in Computer Graphics
A vector graphic is a type of image. Vector images are graphical representations of mathematical objects such as lines, curves, polygons and its like. These graphics are generated by computer and they follow x and y axis as their reference definition.
The important mathematical concept used in graphics is the Vector.
If P1 = (x1, y1, z1) is the starting point and P2 = (x2, y2, z2) is the ending point, then the vector V = (x2 – x1, y2 – y1, z2 – z1)
· [image:]

And if P2 = (x2, y2, z2) is the starting point and P1 = (x1, y1, z1) is the ending point, then the vector V = (x1 – x2, y1 – y2, z1 – z2)
Normal Vector
A vector that is perpendicular to a surface, such as a plane or a sphere, is said to be normal to it. It's therefore called a normal vector. (Other vectors are not abnormal.) Normal vectors for surfaces are crucial in lighting calculations, because the normal vector tells us the orientation of the surface, and the orientation is important to how light falls on the surface and where it reflects to.
A common way to find a normal vector for a plane is to find two vectors that lie in the plane and take their cross product. To find a normal vector for a surface, find a plane that is tangent at the desired point, and find the normal vector for that plane.

Chapter 7 – Representing 3D Objects
7.1 Representing 3D Objects
7.1.1 Polygon Surfaces
Objects are represented as a collection of surfaces. 3D object representation is divided into two categories.
· Boundary Representations (B-reps) − It describes a 3D object as a set of surfaces that separates the object interior from the environment.
· Space–partitioning representations − It is used to describe interior properties, by partitioning the spatial region containing an object into a set of small, non-overlapping, contiguous solids (usually cubes).
The most commonly used boundary representation for a 3D graphics object is a set of surface polygons that enclose the object interior. Many graphics system use this method. Set of polygons are stored for object description. This simplifies and speeds up the surface rendering and display of object since all surfaces can be described with linear equations.
The polygon surfaces are common in design and solid-modeling applications, since their wireframe display can be done quickly to give general indication of surface structure. Then realistic scenes are produced by interpolating shading patterns across polygon surface to illuminate.
[image:]
7.1.2 Polygon Tables
In this method, the surface is specified by the set of vertex coordinates and associated attributes. As shown in the following figure, there are five vertices, from v1 to v5.
· Each vertex stores x, y, and z coordinate information which is represented in the table as v1: x1, y1, z1.
· The Edge table is used to store the edge information of polygon. In the following figure, edge E1 lies between vertex v1 and v2 which is represented in the table as E1: v1, v2.
· Polygon surface table stores the number of surfaces present in the polygon. From the following figure, surface S1 is covered by edges E1, E2 and E3 which can be represented in the polygon surface table as S1: E1, E2, and E3.
[image:]
7.1.3 Plane Equations
The equation for plane surface can be expressed as −
Ax + By + Cz + D = 0
Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants describing the spatial properties of the plane. We can obtain the values of A, B, C, and D by solving a set of three plane equations using the coordinate values for three non collinear points in the plane. Let us assume that three vertices of the plane are (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).
Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the values of A, B, C, and D.
(A/D) x1 + (B/D) y1 + (C/D) z1 = -1
(A/D) x2 + (B/D) y2 + (C/D) z2 = -1
(A/D) x3 + (B/D) y3 + (C/D) z3 = -1
To obtain the above equations in determinant form, apply Cramer’s rule to the above equations.
[image:]
For any point (x, y, z) with parameters A, B, C, and D, we can say that:
[image:]
7.1.4 Polygon Meshes
3D surfaces and solids can be approximated by a set of polygonal and line elements. Such surfaces are called polygonal meshes. In polygon mesh, each edge is shared by at most two polygons. The set of polygons or faces, together form the “skin” of the object.
This method can be used to represent a broad class of solids/surfaces in graphics. A polygonal mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be represented by three ways such as Explicit representation, Pointers to a vertex list, and Pointers to an edge list.
[image:]
Advantages
· It can be used to model almost any object.
· They are easy to represent as a collection of vertices.
· They are easy to transform.
· They are easy to draw on computer screen.
Disadvantages
· Curved surfaces can only be approximately described.
· It is difficult to simulate some type of objects like hair or liquid.

Chapter 8 – Colors and Images in Computer Graphics
8.1 Color Models in Computer Graphics
A color model is an orderly system for creating a whole range of colors from a small set of primary colors. There are two types of color models, those that are subtractive and those that are additive. Additive color models use light to display color while subtractive models use printing inks.
The RGB color model is one of the most widely used color representation method in computer graphics. It uses a color coordinate system with three primary colors:
R(red), G(green), B(blue)
Each primary color can take an intensity value ranging from 0(lowest) to 1(highest). Mixing these three primary colors at different intensity levels produces a variety of colors (Approximately 16777216). The collection of all the colors obtained by such a linear combination of red, green and blue forms the cube shaped RGB color space.
[image: https://media.geeksforgeeks.org/wp-content/uploads/20190319141611/2221.png]
The corner of RGB color cube that is at the origin of the coordinate system corresponds to black, whereas the corner of the cube that is diagonally opposite to the origin represents white. The diagonal line connecting black and white corresponds to all the gray colors between black and white, which is also known as gray axis.
In the RGB color model, an arbitrary color within the cubic color space can be specified by its color coordinates: (r, g.b).
Example:
(0, 0, 0) for black, (1, 1, 1) for white,
(1, 1, 0) for yellow, (0.7, 0.7, 0.7) for gray
Color specification using the RGB model is an additive process. We begin with black and add on the appropriate primary components to yield a desired color. The concept RGB color model is used in Display monitor. On the other hand, there is a complementary color model known as CMY color model. The CMY color model uses a subtraction process and this concept is used in the printer.
In CMY model, we begin with white and take away the appropriate primary components to yield a desired color.
Example:
If we subtract red from white, what remains consists of green and blue which is cyan. The coordinate system of CMY model uses the three primaries’ complementary colors:
C(cray), M(magenta) and Y(yellow)
[image: https://media.geeksforgeeks.org/wp-content/uploads/20190319141752/Capture99.png]

The corner of the CMY color cube that is at (0, 0, 0) corresponds to white, whereas the corner of the cube that is at (1, 1, 1) represents black. The following formulas summarize the conversion between the two color models:
[image: https://media.geeksforgeeks.org/wp-content/uploads/20190319113840/F13.png]
8.1.1 CIE Color Model
The CIE color model is a color space model created by the International Commission on Illumination known as the Commission Internationale de l’Elcairage (CIE). It is also known as the CIE XYZ color space or the CIE 1931 XYZ color space.
The CIE color model is a mapping system that uses tristimulus (a combination of 3 color values that are close to red/green/blue) values, which are plotted on a 3D space. When these values are combined, they can reproduce any color that a human eye can perceive. The CIE specification is supposed to be able to accurately represent every single color the human eye can perceive.
The CIE color space was created back in 1931 in order to map out all the colors that can be perceived by the human eye. It was made independent of any technology that may present colors, which is why it is considered to be the most accurate color model. The CIE Color model is a three-dimensional model that takes account of the chromatic response of the eye; a response which changes as the cones across the retina differ in their reaction to light and color in different areas of the retina.
The CIE color space was the result of a series of experiments done in the 1920s by John Guild and W. David Wright, which led to the development of a model that was completely independent of any means of reproduction by any device as it is based very closely to how humans perceive color. As a result, the CIE color model is unsuitable for use with many technologies, including monitors and printers, although it is widely considered the most accurate color model.
8.2 Image Formats
An Image Format describes how data related to the image will be stored. Data can be stored in compressed, Uncompressed or vector format. Each format of the image has a different advantage and disadvantage. Image types such a TIFF are good for printing where as image types of JPG or PNG, are best for web.
· TIFF(.tif,.tiff)
Tagged Image File Format (TIFF) is a standard file format that is largely used in the publishing and printing industry. The extensible feature of this format allows storage of multiple bitmap images having different pixel depths, which makes it advantageous for image storage needs. Since it introduces no compression artifacts, the file format is preferred over others for archiving intermediate files.
Although TIFF does not use compression much compared to other image file formats, it supports different types of data compression. In the case of photographic images, TIFF makes use of the Lempel-Ziv-Welch lossless compression method. TIFF files can be either compressed or uncompressed but are significantly larger than JPEGs and hence consume more space. However, this format has a few advantages over the JPEG format, such as the ability to store multiple layered images under a single TIFF file and to use a bit depth of 8 bits per channel or 16 bits per channel. Again, free exchange is possible between computer platforms and applications that use TIFF.
A TIFF file uses the file extension ".tif" or ".tiff". TIFF is also known for its flexibility and has more features and capabilities than other image file formats. Often, these add to the complication to learn and understand its features. A TIFF file is organized into an image file header, an image file directory and a bitmap data, with the previous two being considered mandatory.
TIFF is largely used in imaging and 3D applications, medical imaging and desktop publishing. Most image editing software or applications are capable of working with TIFF files.
TIFF, however, has a few drawbacks. One of them is the lack of mechanism to specify the multi-layer relationships between different TIFF pages. Also, in some ways, it lacks standard support for advanced imaging capabilities. Another major drawback lies in the size limitation. As the format makes use of 32-bit offsets, the file size is limited to 4 gigabytes.
JPEG(.jpg,.jpeg)
The Joint Photographic Experts Group (JPEG) is a commission to maintain standards for image rendering in technology. The acronym JPEG is much more commonly recognized as a file extension for image files, representing the standard set by the international JPEG commission. A JPEG file may also be abbreviated as JPG. This was created in 1986, the Joint Photographic Experts Group is a product of efforts by the International Organization for Standardization (ISO) and the International Telecommunication Union (ITU). Efforts to create standards for digital images led to the creation of JPEG to promote consistency in software and hardware products. JPEG continues to look at issues of image compression and new technology methods like wavelets, which can promote a high standard for the creation and use of digital images in many devices, from computers to handheld devices and other hardware.
It is a very common format and is good for digital cameras, nonprofessional prints, E-Mail, Powerpoint etc., making it ideal for web use.
· GIF(.gif)
The graphics interchange format (GIF) is a type of bitmap image format introduced by CompuServe back in 1987 that has since gained wide support and use on the World Wide Web. The format supports up to 8 bits per pixel, allowing an image to have access to a 255-color palette. The most distinctive feature of GIF is its support for animation, with each frame being allowed to use a separate palette.
The graphics interchange format became popular because of its use of the LZW (Lempel-Ziv-Welch) compression method, which reduces the file size without reducing or degrading the quality of the image. This compression method allows for larger images to be downloaded by slow modems in a relatively short time. This method is also more efficient than the older run-length compression method that other image formats like PCX used. Even with its merits, GIF is not suitable for reproducing high-quality color photographs because of the limitations of its color palette. It is better suited to other types of graphics like logos, which usually have a lot of solid areas of color.
· PNG(.png)
Portable network graphics (PNG) refers to a raster graphics image format used on websites and Web applications. It is a type of open and bitmapped graphical file format that is built on the concept of lossless data compression. It was created and conceived by the World Wide Web Consortium as a replacement to graphics interchange format (GIF).
Unlike GIF, PNG is completely patent and license free, including its data compression algorithm. It adds on to a GIF and JPEG image format by providing alpha channels, gamma correction and a two-dimensional interlacing feature. Its features make it possible to enhance and modify the image to a greater extent than its predecessors. For example, a PNG image supporting alpha channel scan can have its background changed without inferring with the rest of its appearance. It supports up to 48-bit true color and 16-bit grayscale imagery, and doesn’t deteriorate the image quality if it’s re-saved or formatted. What PNG lacks is multiple-image support that provides the animations as seen in a GIF.
PNG or Portable Network Graphics files are a lossless image format. It was designed to replace gif format as gif supported 256 colors unlike PNG which support 16 million colors.
· Bitmap(.bmp)
Bitmap (BMP) is an image file format that can be used to create and store computer graphics. A bitmap file displays a small dots in a pattern that, when viewed from afar, creates an overall image. A bitmap image is a grid made of rows and columns where a specific cell is given a value that fills it in or leaves it blank, thus creating an image out of the data.
To create a bitmap, an image is broken into the smallest possible units (pixels) and then the color information of each pixel (color depth) is stored in bits that are mapped out in rows and columns. The complexity of a bitmap image can be increased by varying the color intensity of each dot or by increasing the number of rows and columns used to create the image. However, when a user magnifies a bitmap image enough, it eventually becomes pixelated as the dots resolve into tiny squares of color on a grid.
· MPEG
The Moving Picture Experts Group (MPEG) is the family of standards and file formats which are used in digital video. MPEG was developed by the working group formed by IEC and ISO, which is also known as moving picture experts group. Because of the various sophisticated compression techniques used, MPEGs, when compared to most audio and video formats, are smaller in size and more or less of same quality.
MPEG is a popular file format for audio and video.
For broadcasting applications with limited resources, MPEG is one of the best options as it allows streaming high quality video on platforms like the Internet. The file format is supported by most electronic products and can be played using software like Windows Media Player, Cyberlink PowerDVD, Apple Quick Time Player, etc. MPEG Features:
· Compared to most formats, are smaller in size.
· Sophisticated compression techniques.
· Compared to most formats, superior audio and video quality.
· Major standards are: MPEG1, MPEG2, MPEG3, MPEG4, and MPEG7 MPEG21.
· Many simple, cheap decoders.
· Supported by all popular browsers.
· Both a non-commercial and cross-bros
· High image resolution and multi-channel sound technique.
· Uses asymmetric compression methodology.
· EPS(.eps)
Encapsulated PostScript file is a common vector file type. EPS files can be opened in applications such as Adobe Illustrator or CorelDRAW.
· RAW Image Files (.raw, .cr2, .nef, .orf, .sr2)
These Files are unprocessed created by a camera or scanner. Many digital SLR cameras can shoot in RAW, whether it is a .raw, .cr2, or .nef. These images are the equivalent of a digital negative, meaning that they hold a lot of image information. These images need to be processed in an editor such as Adobe Photoshop or Lightroom. It saves metadata and is used for photography.

Chapter 9 – Viewing and Clipping in Computer Graphics
9.1 Introduction to Viewing and Clipping
The primary use of clipping in computer graphics is to remove objects, lines, or line segments that are outside the viewing pane. The viewing transformation is insensitive to the position of points relative to the viewing volume − especially those points behind the viewer − and it is necessary to remove these points before generating the view.
9.1.1 Point Clipping
Clipping a point from a given window is very easy. Consider the following figure, where the rectangle indicates the window. Point clipping tells us whether the given point (X, Y) is within the given window or not; and decides whether we will use the minimum and maximum coordinates of the window.
The X-coordinate of the given point is inside the window, if X lies in between Wx1 ≤ X ≤ Wx2. Same way, Y coordinate of the given point is inside the window, if Y lies in between Wy1 ≤ Y ≤ Wy2.
[image: Point Clipping]
9.1.2 Line Clipping
The concept of line clipping is same as point clipping. In line clipping, we will cut the portion of line which is outside of window and keep only the portion that is inside the window.
9.1.3 Cohen Sutherland Line Clipping
This algorithm uses the clipping window as shown in the following figure. The minimum coordinate for the clipping region is [image:] and the maximum coordinate for the clipping region is [image:].
[image:]
We will use 4-bits to divide the entire region. These 4 bits represent the Top, Bottom, Right, and Left of the region as shown in the following figure. Here, the TOP and LEFT bit is set to 1 because it is the TOP-LEFT corner.
[image:]
There are 3 possibilities for the line:
· Line can be completely inside the window (This line should be accepted).
· Line can be completely outside of the window (This line will be completely removed from the region).
· Line can be partially inside the window (We will find intersection point and draw only that portion of line that is inside region).
Algorithm
Step 1 − Assign a region code for each endpoints.
Step 2 − If both endpoints have a region code 0000 then accept this line.
Step 3 − Else, perform the logical AND operation for both region codes.
Step 3.1 − If the result is not 0000, then reject the line.
Step 3.2 − Else you need clipping.
Step 3.2.1 − Choose an endpoint of the line that is outside the window.
Step 3.2.2 − Find the intersection point at the window boundary (base on region code).
Step 3.2.3 − Replace endpoint with the intersection point and update the region code.
Step 3.2.4 − Repeat step 2 until we find a clipped line either trivially accepted or trivially rejected.
Step 4 − Repeat step 1 for other lines.
9.1.4 Cyrus-Beck Line Clipping Algorithm
This algorithm is more efficient than Cohen-Sutherland algorithm. It employs parametric line representation and simple dot products.
[image: Cyrus-Beck Line Clipping]
Parametric equation of line is −
P0P1:P(t) = P0 + t(P1 - P0)
Let Ni be the outward normal edge Ei. Now pick any arbitrary point PEi on edge Ei then the dot product Ni.[P(t) – PEi] determines whether the point P(t) is “inside the clip edge” or “outside” the clip edge or “on” the clip edge.
The point P(t) is inside if Ni.[P(t) – PEi] < 0
The point P(t) is outside if Ni.[P(t) – PEi] > 0
The point P(t) is on the edge if Ni.[P(t) – PEi] = 0 (Intersection point)
[image:]
The equation for t becomes,
[image:]
It is valid for the following conditions −
· Ni ≠ 0 (error cannot happen)
· D ≠ 0 (P1 ≠ P0)
· Ni∙D ≠ 0 (P0P1 not parallel to Ei)
9.1.5 Polygon Clipping (Sutherland Hodgman Algorithm)
A polygon can also be clipped by specifying the clipping window. Sutherland Hodgeman polygon clipping algorithm is used for polygon clipping. In this algorithm, all the vertices of the polygon are clipped against each edge of the clipping window.
First the polygon is clipped against the left edge of the polygon window to get new vertices of the polygon. These new vertices are used to clip the polygon against right edge, top edge, bottom edge, of the clipping window as shown in the following figure.
[image:]
While processing an edge of a polygon with clipping window, an intersection point is found if edge is not completely inside clipping window and the a partial edge from the intersection point to the outside edge is clipped. The following figures show left, right, top and bottom edge clippings –
[image: Clipping Four Edges]

9.1.6 Text Clipping
Various techniques are used to provide text clipping in a computer graphics. It depends on the methods used to generate characters and the requirements of a particular application. There are three methods for text clipping which are listed below:
· All or none string clipping
· All or none character clipping
· Text clipping
The following figure shows all or none string clipping –
[image: All or None String Clipping]
In all or none string clipping method, either we keep the entire string or we reject entire string based on the clipping window. As shown in the above figure, STRING2 is entirely inside the clipping window so we keep it and STRING1 being only partially inside the window, we reject. The following figure shows all or none character clipping –
[image: All or None Character Clipping]
This clipping method is based on characters rather than entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then −
· You reject only the portion of the string being outside
· If the character is on the boundary of the clipping window, then we discard that entire character and keep the rest string.
The following figure shows text clipping –
[image: Text Clipping]
This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then
· You reject only the portion of string being outside.
· If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.
9.2 Using the camera model for viewing 3D scenes
Projection and viewing are often discussed using the analogy of a camera. A real camera is used to take a picture of a 3D world. For 3D graphics, it is useful to imagine using a virtual camera to do the same thing. Setting up the viewing transformation is like positioning and pointing the camera. The projection transformation determines the properties of the camera: What is its field of view, what sort of lens does it use? An Image is a combination of objects, lights, and a viewer (or camera).
[image:]
9.2.1 Ray Tracing
Trace rays from each light source and see whether they reach the viewer, those rays that do form the image. We could do ray tracing in computer graphics but it is computationally extremely expensive. In practice we avoid ray-tracing by simplifying our models, for example by assuming all objects are equally bright (i.e. there are light sources everywhere). Then each object (e.g. triangle) looks like a light emitter. It is possible to add light sources and material properties and still avoid ray-tracing.
[image:]
9.2.2 The Pinhole Camera
[image:]
It is a box with a small hole in the centre of one side with the film placed at the other end. It is easy to model geometrically. Orient the camera along the z axis with the pinhole at the origin. Suppose the camera has length d. Assuming the pinhole allows only one ray of light from any point (x, y, z), the ray is clearly projected to the point (xp, yp, −d), with coordinates
[image:]
The point (xp, yp, −d) is called the projection point. In an idealized model, the color on the film plane at this point is the color of the point (x, y, z).
The field or angle of view of the pinhole camera is the angle of the largest object that is fully visible on the film plane. If h is the height of the camera and θ the angle of view then
[image:]
[image:]
The pinhole camera has an infinite depth of field as every point in the field of view is in focus. The pinhole camera has two disadvantages:
· Too little light gets in, and
· The angle of view cannot be adjusted.
More sophisticated cameras replace the pinhole with a lens. The lens allows more light to enter and different lenses give different angles of view (as wide angle lenses). Lenses, however, do not have an infinite depth of field; not all distances are in focus. Like the pinhole camera, computer graphics produces images in which all objects are in focus.
9.2.3 The Synthetic Camera Model
In computer graphics we use a synthetic camera model to mimic the behavior of a real camera. The image in a pinhole camera is inverted. The film plane is behind the lens.
[image:]
In the synthetic camera model we avoid the inversion by placing the film plane, called the projection plane, in front of the lens.
[image:]
The clipping rectangle or clipping window determines the size of the image.
[image:]
This is similar to the effect of the angle of view in a pinhole camera.
[image:]
Prepared By: Mr. Abdisa Lechisa. AUWC Dept of CS AUWC
Page 88

image3.png
Interface with host computer

(Display (Interaction
commands) data)

Keyboard
Mouse

L Y|

image93.jpeg
e side view
@ -

image94.jpeg
=

Cavalier Projection Cabinet Projection

image95.jpeg

image96.jpeg
Three Point

=
A2
=
8
L
2
o
)
2
B
8
]
=
@
&

image97.png
T
.

2 pomt 3 point

\

O/\©/

propchon plane |

image98.jpeg
Translation

image99.png
1 0 0 0
r_|0 100
0 0 1 0
t, t, t. 1
p'=pT
1
0
XY z1=[XY Z1
ty

=X+t Y+t

o = o

0
0
1

= O o o

ty t.
Z+t, 1]

image100.png
S RE®)
k=0

Where p; is the set of points and B:'(t) represents the Bernstein polynomials
which are given by —

Bl(t)= (?)(1 — i

image101.png
Where n is the polynomial degree, i is the index, and t is the variable.

The simplest Bézier curve is the straight line from the point Py to P;. A
quadratic Bezier curve is determined by three control points. A cubic Bezier

curve is determined by four control points.

B(112) ’ P,

Simple Bezier Curve Quadratic Bazier Curve

Cubic Bazier Curve

image102.png
A B-spline curve is defined as a linear combination of control points Pi and B-
spline basis function N; k (t) given by
C(t) =10 PN (1), n>k—1,
teltk—1,tn+1]

image4.png
Raster Graphics Vector Graphics

% @VECTOR
% @ BITMAP

image103.png
N;x(t)

image104.png
The N;, k functions are described as follows —

1, ifueltitig)
0, Otherwise

Na(t) =

andifk > 1,

t
Nix(t) = z

—t; tik—t
LN () + —5 Nij1p-1(t)
ith—1 tivk — ti1

and

teltr1,tnt1)

image105.png

image106.png
==

A 3D object represented by polvgons

image107.png
VI

/]
E,

E,
W7 S,
s,
£V, v,
v E-\/E,
Vi
VERTEX TABLE EOGE TABLE POL‘IG?RIEGLLEJRFACE
Vii Xz Ey: ViV, S,: EEyE,
Vai v Byl Valy Sy: Ey EuEg B
Vit X ¥a 2o Ey: V.V,
Vil XeVaZe E: VaV,
Vi Xe Vs 25 Eg: ViV
Ee: VsV,

image108.png
A=

1
T2

T3

1y
1 3
1 ys
n
Y2
Y3

21
22
Z3

21

22

23

B

1
Z2

Z3

21
22

23

C=

1
T2

T3

n
Y2
Y3

D=

image109.png
% AX + By + Cz + D # 0 means the point is not on the plane.
% AX + By + Cz + D < 0 means the point is inside the surface.

% AX + By + Cz + D > 0 means the point is outside the surface.

image110.png

image111.png
G

image112.png
Y

el - cyan(1,0,0)

a4

yellow(0,0,1) green(1,0,1)

image5.png
Aliased polygons
(jagged edges)

Anti-aliased polygons

image113.png
EHRE RN

image114.jpeg
WX1 «

> WX2

image115.png
(XWoin Y Winin)

image116.png
(XWinaz,Y Winaz)

image117.png
Clipping window
(XW s YWonaro) \ }g

\

(XWinaxs YWinax)

~/

(xwmmg i /

mm) (meax' yVme)

image118.png

image119.jpeg
Outside of clip region | Inside of clip rectangle

Edge E;

Pty = Pg
Py

N o[ty = Pg1<0

N+[P(t) - P]=0

image120.png
Ni.[P(t) - Pgil

Ni.[Po + t(P1 - Po) - Pgi]
Po))

Ni.[Po - Pgil + Ni.t[Py - Po]
Ni.[Po - Pgil + Ny-tD

Ni.[Po - Pgil

=0

= 0 (Replacing P(t) with Py + t(Py -

=0
= 0 (substituting D for [P1 - Pol)

- N;-tD

image121.png
__ Ni|[P,—Pg]
= =55

image122.png
Clipping Window

N rorraon
7 N

image6.png
Cathode Ray Tube (CRT)

1. Filament (generate heat)
2. Cathode (emit electrons)
3. Control grid (control intensity)
4. Focus 5.Deflector 6. Phosphor coating

image123.jpeg
Computer Graphics

Clipping Window Clipping Window

Polygon - Polvgon

Figure:

Figure: Clipping Right Edge

Clipping Window

Polygon Polygon

Figure: Clipping Bottom Edge

image124.jpeg
STRING 2

Before Clipping After Clipping

image125.jpeg
. STRING 2

Before Clipping After Clipping

image126.jpeg
STRING 2

|’RING 3

Before Clipping After Clipping

image127.png

image128.png

image129.png
‘04//0 (x,y,2)

image130.png

image131.png
h
0 =2tan"! —.
an 2d

image132.png

image7.jpeg
Horizontal
retrace

Scan line

image133.png
~ .
E 4
5
o
)
z
By
- «
C A
£

objec

(b)

(a)

image134.png

image135.png

image136.png

image8.jpeg

image9.emf

image10.emf

image11.png
~——Polarizer

image12.emf

image13.png

image14.emf

image15.emf

image16.emf

image17.png
Introduction to 3D graphics
pipeline

Model

World

View

NDC

Displa#

Graphics pipeline: series of stage

Coordinates and transformations

H&B 3-1:60-61

image18.png
From model to image

World View NDC Dbph#

Cylinder:
¥ +yz 102
0<z<h

Local or modeling coordinate

Geometric modeling

image19.png
From model to image

View NDC Displa#

Position cylinders in scene:

World coordinates

H&B 3-1:60-61

image20.png
From model to image

Model World

NDC Displa#

Look at cylinders,
project on virtual screen

Viewing coordinates

Visible surfaces, shading

image21.png
From model to image

Model World View NDC DisplaF

Display:

. Normalized Device Coordina

image22.png
From model to image

Model World

View

NDC

1024

76

Display on screen:

Device Coordinates

Interaction

image23.png
|m|=1
[mf="1 Imf<1

figure (c)
figure (a) figure (b)

image24.png
Ym

0.0

image25.png

image26.png
C+y=r

image27.png

image28.png
(x-%)7 + (y-yo) =1

image29.png
Y=Yt 4 (xx ¥

image30.png
Circlel (xcenter, ycenter, radius)
for x = radius - xcenter to radius + xcenter

image31.png
V=X + m -
drawPixel (x. y)

Y=Xe- Tx ¥
drawPixel (x. y)

image32.png

image33.png
X=Xc+r1cosH
y=yc+15sin6

image34.png
Circle2 (xcenter, ycenter, radius)
for 8 =0 to 2x step l/r
X=X.+1r*cosO
y=yc.+r*sin@
drawPixel (x. y)

image35.png
(-b.a) (b,a)

(-a.b) (a.b)
(-a-b) (a-b)

thra) (-3

image36.png
Circle2 (xcenter, ycenter, radius)
for6=0ton/4step l/r

X=X.+1%*cosO

y=yc.+r*sin@

DrawSymmetricPoints (Xcenter. ycenter. X. y)

image37.png
DrawSymmeticPoints (xcenter, ycenter, X, y)
Plot (x + xcenter. y + ycenter)
Plot (y + xcenter. x + ycenter)
Plot (y + xcenter. -X + ycenter)
Plot (x + xcenter, -y + ycenter)
Plot (-x + xcenter, -y + ycenter)
Plot (-y + xcenter, -X + ycenter)
Plot (-y + xcenter. X + ycenter)
Plot (-x + xcenter. y + ycenter)

image38.png

image39.png
Assume:
Pi = (xi. yi) is the current pixel.
Ti= (i yi+1) is the pixel directly above
Si=&i-l.yi+l) is the pixel above and to the left.

image40.png
farteX. V) =X+ y* -1

image41.png
=0. if(x.y)is on the circle boundary

<0. if(x.y)is inside the circle boundary
f circte (X. y)
>0. if(x.y) is outside the circle boundary

image42.png
Yi-1

X Xgt+1

image43.png
Pi= fcircte (X + 1, yie- ¥2)
Pe=(xp+ 1) 2+ (ye-) =12

image44.png
X+2= Xier1 H =Xt 1+1 = X +2:

image45.png
Pt = feirde (X1 + 1. Vi - %2)
Py =[(xc+ 1)+ 117+ (Yim-¥2) = 17

image46.png
or

Peo - Pe=[(X 1)+ 117+ (yi-) T = 12— (e 1) 2= (yie-) 2+

Pior =P+ 2(%+ 1) + (V1= V) — (Vi - ¥) + 1

image47.png
P =P+ 2(Xk+ 1)+ (V- Yi) = (V- yx) + 1
P =P+2(x(+1)+1

image48.png
P =P+ 2(xx+ 1)+ [(V-7 -y] —(yx-1-yx) + 1
Pea=Pe+2(xe+ 1)+ (V-2 ¥ +1- Y] = (ye-1-yx) + 1

image49.png
P =P+ 2(x+1)-2ye+1+1+1
P =Pr+2(xx+1)-2yx+2+1
P =Pe+2(xe+ 1)-2(yx—1)+1

image50.png
Po=(0+1)*+(r-%)* -1~
Po=1+ 1" -1+% —1°
Po= 5/4 -1

image51.png
Po= 1-r1

image52.png
MidpointCircle (xcenter, ycenter, radius)
y=r1.
x=0:
p=1-1
do
DrawSymmetricPoints (xcenter. ycenter. X. y)
X=x+1
If p <0 Then
p=p+2*(x+1)+1
else
y=y-1
p=p+2*(x+1)-2*(y-1)+1
while (x < y)

image53.png
Example: 10
xcenter=0 ycenter=0 radius=10 9

;

P x Y 3

-9 10 <

6 10 :

-1 10 2

6 10 !

0

012345678810

1
)

BR [N (V) S (3 11O P P
©

[|oe
~1|oo [\

image54.png

image55.png

image56.png
VAWAN

image57.png
UNFILLED POLYGON FILLED POLYGON

image58.png
W PP

|

image59.png
ymax:

ScanlLine

ymin

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.jpeg

image68.png
B S S
P=m P=F T @

image69.png
P'(x".y')

image70.png

image71.png
z' =rcos (¢ + 0) =rcospcos® — rsinsinb.

y =rsin (¢ + 0) =rcospsind + rsinepcosb

image72.png
z' =z cosf— ysinb

Yy =z sinb+ ycosh

image1.jpeg
AMBO UNVERSITY

image73.png
(X'Y'] = [XY] [cosf sino] OR

—sinf cosf

image74.png
R [cosf sino]

—sinf cosf

image75.png
[cos(—8) sin(-0)
R= [7sin(79) cos(—0)

[6039 —sinf

sinf cosf

:| (. cos(—8) = cost and sin(—0) = —sinb)

image76.png

image77.png

image78.png
(b)

image79.png
(d)

(c)

image80.png
0

(a) Original object

(b) Object after x shear

image81.png

image82.png
- X

0

(a) Original object

%

0

(b) Object after y shear

image2.png
Object Space

@‘

Image Space

e

Drawing a traingle

image83.png
1 00
Yo |shy 1 0
0 01

X=X+ Shy.Y

Y=Y

image84.png
1 0 0 0 cos® 0 sinf 0

0 cos® —sinf 0 0 1 0 0
R,(0) = 6) = R, (6
® 0 sinf cos® 0O R (6) —sinf 0 cosf 0 ®

0 0 0 1 0 0o 0 1

cosf —sinf
sinf cosf
0 0
0 0

o = o o
- o o O

image85.png
Rotation about x-axis Rotation about y-axis Rotation about z-axis

[T
/

image86.png

image87.png
P'=PS

=[X.8, V.S, Z.5, 1]

image88.png

image89.png
1 shY shZ
shy 1 shj
sh? shy 1

0 0 0

p'=P-Sh
X'=X+ ShiY +Sh:Z

Y'=ShiX+Y +sh;Z
Z' = ShiX + ShYY + Z

Sh =

= O o o

image90.png
R:(9)

[

|

& o or
S o~ o

- o oo

Translation Matrix

1
0
0
0

0
cosb
sinfd

0

0
—sinf
cosf
0

S, 0 0 0
5 0o S, 0 0
0 0 S 0
0 0 0 1
Scaling Matrix
R,(60)
cosd 0 sinf
_ 0 1 0
" | —sin® 0 cosf
0 (U]

Rotation Matrix

- o o o

Sh
1 shYy sh:
shi 1 shj
shz shY 1
0 0 0

Shear Matrix

R.(6)
[cos® —sinf 0
sinf cosf 0
o 0 o1
) 0o o

- o o o

image91.jpeg

image92.jpeg
Parallel)
Projection

Oblique

